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Introduction∗

It is known since the twenties of this century (mainly due to the work of D. Hilbert which is reported

in [25] ) that the part of mathematics which usually is called classical analysis can be developed to

a great extent in formal systems A of the following type:

Let PA2 denote the extension of the usual first–order Peano arithmetic PA by variables X,Y, Z, . . .
for sets of natural numbers together with quantifiers over these variables and their usual logical
axioms and rules. In this language one can formulate the axiom schema of comprehension over
numbers:

CAset :
∨
X
∧
x
(
x ∈ X ↔ A(x)

)
,

where x is a number variable and A is an arbitrary formula (not containing X free) of PA2. In

particular A may contain set quantifiers.

Now A is defined as PA2+CAset.
For the formalization of notions and proofs in analysis it is more convenient to have (besides

variables x0, y0, z0, . . . over numbers) also variables x1, y1, f1, g1, . . . over functions IN → IN and

variables x2, y2, z2,Φ2,Ψ2, . . . over function(al)s : ININ → IN of such functions and so on. More

generally xρ(τ) is a function which maps objects of type τ into objects of type ρ.1 Let us denote

the corresponding functional version of PA2 by PAω. In PAω sets are given by their characteristic
function. In the language of functionals of finite type the schema of comprehension corresponding

to CAset now reads as follows:

CAfunc :
∧
x0
∨

!y0A(x, y)→
∨
f1
∧
x0A(x, fx),

where A is an arbitrary formula of PAω.
For some theorems in analysis, e.g. the equivalence between ε–δ– and sequential continuity of
f : IR→ IR in x ∈ IR one needs a weak form of the axiom of choice

AC0,1 :
∧
x0
∨
f1A(x, f)→

∨
g1(0)

∧
x0A(x, gx).

Let Aω denote the theory PAω+CAfunc+AC0,1.

Now let us consider the following situation:

Let A0(x0, y0) be a quantifier–free and therefore decidable2 formula of Aω, where x = x0
1, . . . , x

0
k

and y0 are all free variables of A0 and suppose that

(1) Aω `
∧
x0
∨
y0A0(x, y).

A0 defines a partial recursive function in x:

fx :=

 min y[A0(x, y)], if
∨
y A0(x, y)

undefined, otherwise.

By (1), Aω proves that f is in fact a total recursive function. This is the reason why f is called

provably recursive (or provably total) in Aω.

∗I am grateful to Prof. H. Luckhardt for stimulating discussions on the subject of this paper and for helpful
suggestions for the presentation of the results.

11 (resp. 2) abbreviates the type 0(0) (resp. 0(0(0))).
2We only have equality =0 between numbers as a primitive notion. Higher type equality is defined extensionally.

Throughout this paper A0, B0, C0, . . . denote quantifier–free formulas.
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What do we know about the rate of growth of this function if we know that (1) holds?

It is well–known that for systems like Aω the rate of growth may be really huge and goes far
beyond the rate of growth occuring in usual mathematics. In particular it may grow much faster
than e.g. the Ackermann function and even faster than every ε0–recursive function. A description

of the provably recursive functions of Aω in terms of recursion schemas was given by C. Spector in

[64] by means of so–called bar recursion.

Although beginning in 1977 a few examples of simple
∧
x0
∨
y0A0(x, y)–sentences of concrete com-

binatorial or number theoretic nature were found such that fx := min y A0(x, y) is of enormous

rate of growth (see [50],[28],[19], [62] ) this phenomenon seems to be extremely rare in concrete

mathematics (especially in analysis). In fact the growth of f in these examples is due to the fact

that A0 indirectly expresses certain properties of ordinals.

This observation indicates that Aω is much to strong to capture faithfully the reasoning used in
actual proofs in analysis. Most parts of analysis in fact can be developed in small fragments of

Aω. This was noticed already by mathematicians like Poincare, Borel and above all H. Weyl in

his influential monograph ’Das Kontinuum’([71]) where he developes analysis on the basis of so–

called predicative comprehension (due to B. Russell) which imposes a restriction on the schema of

comprehension:

CAfunc
ar :

∧
x0
∨

!y0A(x, y)→
∨
f1
∧
x0A(x, fx),

where A contains only quantifiers over type–0–objects, i.e. over numbers. We call such a
formula A arithmetical.
Although the concept of predicativity was formulated because of foundational questions concerning

the consistency of unrestricted comprehension3 it also has an impact on our question:

Let Aωar :=PAω+CAfunc
ar +AC0,1–qf, where AC0,1–qf is the restriction of AC0,1 to quantifier–free

formulas4.
The rate of growth of provably recursive functions of Aωar is much lower compared to Aω (put in

technically terms the provably recursive functions of Aωar are just the α(< εε0)–recursive functions,

see [11] ) but still is tremendous.

In the late 70ies G. Takeuti (see [65] ) noticed that almost the same portion of analysis can be

carried out in a more restricted system, where the full schema of induction

IA : A(0) ∧
∧
x0
(
A(x)→ A(x+ 1)

)
→
∧
x0A(x)

is available only for arithmetical formulas A.5 Let us denote the corresponding restriction of Aωar

(resp. PAω) by Â
ω

ar|\ (resp. P̂A
ω
|\).6 In the presence of CAfunc

ar this restricted schema of induction

follows from the axiom of quantifier–free induction

QF–IA :
∧
f1
(
f0 = 0 ∧

∧
x
(
fx = 0→ f(x+ 1) = 0

)
→
∧
x(fx = 0)

)
.

3For detailed information on predicativity and proof–theoretical investigations of formal systems for predicative
mathematics see e.g. [10].

4Using CAfuncar and AC0,1–qf one easily can derive AC0,1 for arbitrary arithmetical formulas.
5See also [17],[18] and [11] for results in this direction.
6Also the Gödel recursor constants Rρ are replaced by the predicative Kleene recursors R̂ρ. The system used by

Takeuti differs in various respects from Â
ω

ar|\ but this is not important for our discussion. Takeuti also discusses a
second system with a variant of the first one.
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The most interesting fact about Â
ω

ar|\ is that it is conservative over first–order Peano arithmetic

(see e.g. [11] ). In particular this implies that the provably recursive functions of Â
ω

ar|\ are α(< ε0)–

recursive.

In [17],[60], [8] and [56] it is shown that various important theorems of analysis are already provable

in a second–order fragment (WKL0) of P̂A
ω
|\+AC0,0–qf +WKL, where WKL is the binary (’weak’)

König’s lemma.

Friedman showed (in an unpublished manuscript) model–theoretically that (WKL0) is Π0
2–

conservative over the primitive recursive arithmetic PRA.7

In [32],[33] we developed a proof–theoretical method which extracts primitive recursive bounds

from proofs of
∧∨

–sentences in the extension P̂A
ω
|\+AC–qf+WKL of (WKL0) to all finite types.

In fact we showed much more:

(∗)


From a proof P̂A

ω
|\+AC–qf +WKL `

∧
u1
∧
v ≤τ tu

∨
wγA0(u, v, w)

one can extract a primitive recursive (in the sense of [30] ) bound Φ such that

P̂A
ω

i |\ `
∧
u1
∧
v ≤τ tu

∨
w ≤γ Φu A0(u, v, w),

where A0 is a quantifier–free formula containing only u, v, w free, τ is arbitrary, γ ≤ 2 and t is a

closed term of P̂A
ω
|\8. Note that the bound Φu does not depend on v.

The mathematical significance of this result in particular rests on the fact that in applications
in analysis one quite often is interested in uniform bounds Φ which do not depend on input data
x ∈ K where K is a compact metric space. Since compact metric spaces have standard represen-

tations by sets of functions having the form {f1 : f ≤1 t}, (∗) provides such uniform bounds. The

fact that Φu is only a bound on
∨
w is no essential weakening since

∧
u1
∧
v ≤τ tu

∨
w0–sentences

in analysis usually are monotone w.r.t. w0 and thus every bound on
∨
w0 in fact provides a real-

ization of
∨
w0, i.e.

∧
u1
∧
v ≤τ tu A0(u, v,Φu) (see [39] for a discussion of this phenomenon).

In [32],[37],[38] this method is applied to concrete (ineffective) proofs in approximation theory

yielding new a–priori estimates for numerically relevant data as constants of strong unicity and
others which improve known estimates significantly.

In analyzing these applications we developed in [39] a new monotone functional interpretation

which has important advantages over the method from [33] and provides a particular perspicuous

procedure of analyzing ineffective proofs in analysis.

The starting point for the investigation carried out in the present paper are the following prob-
lems:

(I) Whereas the general meta–theorem (∗) only guarantees the existence of a primitive recursive

bound Φ, the bounds which are actually obtained in our applications to approximation theory

have a very low rate of growth which is polynomial (of degree ≤ 2) relatively to the growth

7For a proof–theoretic treatment of this result using cut–elimination see [57]. In [58] and [59] also Π0
2–conservativity

of WKL over elementary recursive arithmetic is shown. But note that the proof for Π1
1–conservation given in [58],[59]

is incorrect (see [35] for a discussion of this point).
8P̂A

ω

i |\ denotes the intuitionistic variant of P̂A
ω
|\. Instead of u1, wγ one may also have tuples of variables of type

≤ 1 resp. ≤ 2. In particular, instead of the quantifier–free A0 one may have A1 ∈ Σ0
1.
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of the data of the problem. Thus the problem arises to close the still large gap between
polynomial and primitive recursive growth.

(II) Although in a theory like P̂A
ω
|\+AC–qf+WKL one can carry out a substantial portion of

analysis there are important analytical principles, e.g. the Bolzano–Weierstraß principle for
bounded sequences in IR, the Arzelà–Ascoli lemma for bounded sequences of equicontinuous

functions f ∈ C[0, 1] or the existence of lim sup, lim inf for bounded sequences in IR, which

are not provable by this means. In fact these principles are known to be equivalent to CAfunc
ar

(relatively to P̂A
ω
|\+AC–qf). Thus the problem arises to impose mathematical natural re-

strictions on the use of these principles and to prove that under these restrictions one can
extract bounds of more reasonable growth.

(III) So far we have considered the question of extracting bounds∧
u1
∧
v ≤τ tu

∨
w ≤γ Φu A0(u, v, w)

for sentences∧
u1
∧
v ≤τ tu

∨
wγA0(u, v, w)

with quantifier–free A0.
It is natural to ask for bounds for more general and even arbitrary formulas A instead of
A0. The problem is that in the presence of full classical logic there are simple logically valid

sentences
∧
x0
∨
y0
∧
z0A0(x, y, z) such that there is no computable bound on

∨
y at all.

If however analytical principles (even non–constructive ones) are used only relatively to intu-

itionistic arithmetical reasoning, then it might be possible (and in fact is possible for many

non–constructive analytical theorems as we will show in chapter 8) to extract bounds for very

general formulas A.

In order to address the problems formulated in (I)–(III) we first introduce a hierarchy
(
GnAω

)
n∈IN

of subsystems of P̂A
ω
|\ and investigate the rate of growth caused by various analytical principles rel-

atively to GnAω+AC–qf. The definable functionals t1(1) in GnAω are of increasing order of growth:

If n = 1, then tf1x0 is bounded by a linear function in fM , x,

if n = 2, then tf1x0 is bounded by a polynomial in fM , x;

if n = 3, then tf1x0 is bounded by an elementary recursive (i.e. a (fixed) finitely iterated

exponential) function in fM , x,

where fM := λx0.max(f0, . . . , fx) and Φfx is called linear (polynomial, elementary recursive) in

f, x if
∧
f1, x0(Φfx =0 Φ̂[f, x]) for a term Φ̂[f, x] which is built up from 00, x0, f1, S1,+

(respectively 00, x0, f1, S1,+, · and 00, x0, f1, S1,+, ·, λx0, y0.xy) only.

Let us motivate this notion for the polynomial case:

If Φfx is a polynomial in f1, x0, then in particular for every polynomial p ∈ IN[x] the function

λx0.Φpx can be written as a polynomial in IN[x]. Moreover there exists a polynomial q ∈ IN[x]
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(depending only on the term structure of Φ) such that
For every polynomial p ∈ IN[x]

one can construct a polynomial r ∈ IN[x] such that∧
f1
(
f ≤1 p→

∧
x0(Φfx ≤0 r(x))

)
and deg(r) ≤ q(deg(p)).

Since every closed term t1(1) in G2Aω is bounded by a polynomial ΦfMx in fM , x and f ≤1 p →
fM ≤1 p (since p is monotone) this holds also for tfx instead of Φfx.

In particular every closed term t1 (t0

k︷ ︸︸ ︷
(0) . . . (0)) of G2Aω is bounded by a polynomial pt ∈ IN[x]

(resp. a polynomial pt ∈ IN[x1, . . . , xk]).

For general n ∈ IN, every closed term t1 of GnAω is bounded by some function ft ∈ En where En
denotes the n–th level of the Grzegorczyk hierarchy.

It turns out that many basic concepts of real analysis can be defined already in G2Aω: e.g. rational

numbers, real numbers (with their usual arithmetical operations and inequality relations), d–tuples

of real numbers, sequences and series of reals, continuous functions F : IRd → IR and uniformly

continuous functions F : [a, b]d → IR, the supremum of F ∈ C([a, b]d, IR) on [a, b]d, the Riemann

integral of F ∈ C[a, b]. Furthermore the trigonometric functions sin, cos, tan, arcsin, arccos, arctan

and π as well as the restriction expk (lnk) of the exponential function (logarithm) to [−k, k] for

every fixed number k can be introduced in G2Aω (The unrestricted functions exp and ln can be

defined in G3Aω).

G2Aω+AC–qf (and even its intuitionistic version G2Aω
i +AC–qf) proves many of the basic proper-

ties of these objects.

Thus it is reasonable to consider proofs of sentences

(+)
∧
u1, k0

∧
v ≤τ tu k

∨
w0A0, where u = u1

1, . . . , u
1
l , k = k0

1, . . . , k
0
i

which use relatively to G2Aω+AC–qf various higher analytical theorems Γ (which usually will not

be provable in G2Aω).

In view of the problem (I) formulated above we now ask:

What do we know about the rate of growth of bounds Φ

(++)
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤0 Φu k A0

which can be extracted from a given proof9

G2Aω+AC–qf + Γ `
∧
u1, k0

∧
v ≤τ tu k

∨
w0A0 ?

Let Γ consist of theorems choosen from the following list

9Such bounds can be extracted also for tuples w of variables w
γi
i with γi ≤ 2. For simplicity we discuss here only

the (most important) case type(w) = 0.
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• The fundamental theorem of calculus

• Fejér’s theorem on the uniform approximation of 2π–periodic continuous functions by trigono-
metric polynomials

• The equivalence (local and global) of ε–δ –continuity and sequential continuity of F : IR→ IR

in x ∈ IR.

• Attainment of the maximum of f ∈ C([0, 1]d, IR)10 on [0, 1]d

• Mean value theorem for integrals

• Mean value theorem of differentiation

• Cauchy–Peano existence theorem for ordinary differential equations

• Brouwer’s fixed point theorem for continuous functions f : [0, 1]d → [0, 1]d

• Every pointwise continuous function G : [0, 1]d → IR is uniformly continuous on [0, 1]d and

possesses a modulus of uniform continuity

• [0, 1]d ⊂ IRd has the (sequential form of the) Heine–Borel covering property

• Dini’s theorem: Every sequence Gn of pointwise continuous functions :[0, 1]d → IR which

increases pointwise to a pointwise continuous function G : [0, 1]d → IR converges uniformly on

[0, 1]d to G and there exists a modulus of uniform convergence

• Every strictly increasing pointwise continuous function G : [0, 1] → IR possesses a uniformly

continuous strictly increasing inverse function G−1 : [G0, G1]→ [0, 1] together with a modulus

of uniform continuity

then one can extract a bound Φ which is (bounded by) a polynomial in uM , k0 in the sense above.

¿From a proof of (+) in G3Aω+AC–qf+Γ one can extract a bound Φ which is (bounded by) an

elementary recursive (i.e. finitely iterated exponential) function in uM , k0.

Let us consider the important case where the proof uses besides tools which are available already

in G2Aω+AC-qf+Γ only certain fixed functions f1 of simple exponential growth as e.g. fx := 2x

or fx := x!. Since the proof may use a (fixed) finite number of iterations of f (either explicitly by

forming terms like f(fx) or implicitly by a logical circumscription of such a substitution, e.g. in

its most simple form
∧
x
∨
y, z(y = fx ∧ z = fy)), in general only an elementary recursive bound is

guaranteed. If however the proof does not iterate f (not even implicitly)11 as is often the case in

practice, our method will yield a bound which is built up from uM , k0, 00, S0,+, ·, f with f–depth

1 and thus (for polynomially bounded u) is essentially simple exponential in k (more precisely

bounded by 2p(k) where p ∈ IN[k]). So our result that analytical theorems Γ from the list above

do not cause any non–polynomial growth is of relevance also in the presence of certain functions
having exponential growth.

10Here and below we may have also [a1, b1]× . . .× [ad, bd] for variable real numbers ai < bi (i = 1, . . . , d) instead
of [0, 1]d.

11Of course whether a proof implicitly makes use of an iteration of f or not is not always possible to recognize in
advance but may become transparent only by the process of the extraction of Φ itself.
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¿From these results it is clear that for the part of analysis outlined so far it is the arithmeti-
cal reasoning used in a given proof which is decisive for the growth of bounds. We now discuss
an arithmetical principle used in analysis which may contribute significantly to the growth of ex-
tractable bounds:

PCM1 :

 Every decreasing sequence (xn)n∈IN of positive real numbers xn is a

Cauchy sequence

(The restriction to the special lower bound 0 is convenient for our discussion but of course not

essential).

This principle (which is not provable in GnAω+AC–qf for any n) may contribute to the growth of

bounds which can be extracted from a proof in GnAω+AC–qf+Γ + PCM1 by a functional Ψ such
that

(+ + +)
∧
k0, g1

∨
n ≤0 Ψ((xn), k, g)

(
gn >0 n→ xn − xgn ≤

1

k + 1

)
,

(+++) is satisfied by

Ψ((xn), k, g) := max
i<C(x0)(k+1)

(
gi(0)

)
,

Where IN 3 C(x0) ≥ x0 and gi(0) is the i–th iteration g(. . . (g(0)) . . .) of g (starting with 0).

Since Ψ essentially is the iteration functional Φgx := gx(0) and since Φ can be used (relatively to

G2Aω) to define every primitive recursive function, the use of (+++) in a proof has the consequence

that (in general) only the existence of a primitive recursive bound is guaranteed. This is unavoidable

since we can show that G2Aω + PCM1 proves the schema of Σ0
1–induction

Σ0
1–IA : A(0) ∧

∧
x
(
A(x)→ A(x+ 1)

)
→
∧
x A(x),

where A ∈ Σ0
1, and the provably recursive functions of G2Aω+Σ0

1–IA are just the primitive recursive
ones.
However in the important special case where (+ + +) is applied only to g := S we still have poly-

nomial growth: Ψ((xn), k, S) ≤ C(x0)(k+ 1). Furthermore for special sequences (xn) there may be

much simpler bounds (+++) than Ψ.

We now come to our results concerning problem (II). Let us illustrate the general type of these

results for the most simple example namely for the analytical strengthening PCM2 of PCM1
which asserts the existence of a Cauchy modulus function for every decreasing sequence of positive
real numbers, i.e.

PCM2 :

 For every decreasing sequence (xn)n∈IN of positive real numbers xn there exists

a function h1 such that
∧
k0,m0

(
m ≥0 hk → xhk − xm ≤ 1

k+1

)
.

In particular PCM2 easily implies the existence of a limit of (xn)n∈IN (together with a modulus of

convergence). The existence of a limit does not follow from PCM1 (relatively to GnAω+AC–qf)

since within GnAω (as in algorithmic numerical analysis and complexity theory for real analysis)

real numbers are always given by Cauchy sequences of rational numbers with fixed Cauchy rate

(See chapter 3 for an extensive discussion on enrichment of data).

The proof

G2Aω ` PCM1→ Σ0
1–IA

vii



mentioned above yields

G2Aω + AC–qf ` PCM2→ CAfunc
ar .

Hence every α(< ε0)–recursive function is provably recursive in G2Aω+AC–qf+PCM2.

In contrast to this general result, we show that if PCM2 is applied only to single instances or

more general single sequences of instances of PCM2 in a proof of a sentence (+) (where these

instances may depend on the parameters u, k, v of (+)) then the contribution of PCM2 to the bound

Φ is just Ψ above applied to (majorants of) these instances. In particular the facts on PCM1 men-

tioned above apply and the existence of a primitive recursive bound is guaranteed. Again if Ψ is
applied only to g := S, then one has a polynomial bound.

In a similar way single (sequences of) instances of the following principles

• The existence of a greatest lower bound for every sequence of real numbers which is bounded
from below

• The Bolzano–Weierstraß property for bounded sequences in IRd

• The Arzelà–Ascoli lemma

can be reduced to single (sequences of) instances of PCM1 in a given proof of (+) relatively to

GnAω+AC–qf+Γ for n ≥ 2 (resp. in the case of the Arzelà–Ascoli lemma for n ≥ 3), where Γ is

the set of analytical theorems from above.

Hence these principles contribute to the growth of bounds in the same way as PCM2.

Finally we investigate

• the existence ∃ lim sup(xn) of the lim sup for bounded sequences (xn) in IR

w.r.t. its impact on the growth of bounds (likewise for lim inf):

Single instances of ∃ lim sup(xn) in proofs of sentences (+) (relatively to GnAω+AC–qf+Γ for n ≥ 2)

can be reduced to a certain arithmetical sentence L(xn) ∈ Π0
5. L(xn) can be proved in G3Aω+Σ0

2–

IA (but seems to be unprovable in G3Aω + Σ0
1–IA). In contrast to GnAω + Σ0

1–IA, the theory

G3Aω + Σ0
2–IA suffices to prove the totality of the Ackermann function.

Thus ∃ lim sup(xn) is the strongest (w.r.t. its impact on growth) principle used in the standard

parts of classical analysis.
Note however that sometimes lim supxn is used only to abbreviate a certain proposition which can
be expressed also without assuming the existence of lim supxn, e.g. ’lim supxn ≤ c’ can be para-

phrased simply as ’
∧
k0
∨
n0
∧
m > n(xm ≤ c+ 1

k+1 )’. There are also important applications of the

Bolzano–Weierstraß principle and the Arzelà–Ascoli lemma which do not contribute to the growth
of bounds since they are used just to derive theorems which e.g. have a simple monotone functional

interpretation (e.g. the theorem on the attainment of the maximum of f ∈ C[0, 1] and the Cauchy–

Peano existence theorem discussed in (I) are usually proved using these principles respectively).

In this paper we are interested in the determination of the rate of growth of bounds which can
be extracted from proofs in various parts of analysis and in most perspicuous methods for carrying
out such extractions but not in the proof–theoretic strength of the tools needed to verify these
bounds. We are satisfied with their classical truth, i.e. the truth in the full set–theoretic type
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structure Sω (where set–theoretic is meant in the sense of e.g. ZFC).12

Concerning problem (III) we show in particular the following results:

Let A(u1, k0, vτ , w0) be an arbitrary formula (containing only u, k, v, w as free variables) and let

us consider the intuitionistic version GnAω
i of GnAω.

If the sentence

(1)
∧
u1, k0

∧
v ≤τ tu k

∨
w0A(u, k, v, w)

is proved in

GnAω
i + AC + Γ̃,

where AC is the axiom schema of full choice and Γ̃ is a set of analytical principles taken from the

following list13

• The fundamental theorem of calculus

• Fejér’s theorem on the uniform approximation of 2π–periodic continuous functions by trigono-
metric polynomials

• Attainment of the maximum of f ∈ C([0, 1]d, IR) on [0, 1]d

• Mean value theorem for integrals

• Cauchy–Peano existence theorem for ordinary differential equations

• Brouwer’s fixed point theorem for continuous functions f : [0, 1]d → [0, 1]d

• The axiom schema of comprehension for negated formulas

CAρ
¬ :

∨
Φ ≤0ρ λx

ρ.10
∧
yρ
(
Φy =0 0↔ ¬A(y)

)
then one can extract from the proof a bound Φ such that

(2)
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤0 Φu k A(u, k, v, w)

is true in the full type structure Sω and

(i) Φ is a polynomial in uM , k (in the sense above), if n = 2,

(ii) Φ is elementary recursive in uM , k, if n = 3.

12It should be noted however that for the results discussed so far a verification in e.g. PAω is possible in principle:
Our methods developed in this paper yield verification proofs in PAωi + ∆+b–AC, where ∆ is a set of sentences

having the form (∗)
∧
x1
∨
y ≤1 sx

∧
z0A0 and b–AC the schema of bounded choice from [34] (see also chapter 2

below). Using results from [33] one can reduce (∗) to an ε–weakening, which is provable in PAω for our examples,
and thereby eliminate b–AC from the verification proof. Since also all universal axioms we use are provable in PAω

we obtain a verification in PAω . We will not go into details of this in the present paper.
13Here continuous functions f : [0, 1]d → IR are always understood to be endowed with a modulus of uniform

continuity.

ix



Thus even in the presence of the highly non–constructive and impredicative comprehension schema

CA¬ (note that G2Aω
i +CA¬ has the proof–theoretic strength of full classical simple type theory

as can be seen via negative translation) one obtains reasonable bounds as long as the underlying

arithmetical theory only uses intutionistic logic14 (This is in contrast to the corresponding classical

theory which has the same provably recursive functions as simple type theory).

If A is restricted to a certain set Γ which in particular includes all sentences in prenex normal
form where the universal quantifiers have types ≤ 1 and the existence quantifiers have types ≤ 2
and if τ ≤ 1 and CA¬ is replaced by

CAρ
∨f :

∨
Φ ≤0ρ λx

ρ.10
∧
yρ
(
Φy =0 0↔ B(y)

)
, where B is

∨
–free,

then the result above also holds if the following principles are added to Γ̃

• Every pointwise continuous function G : [0, 1]d → IR is uniformly continuous on [0, 1]d and

possesses a modulus of uniform continuity

• [0, 1]d ⊂ IRd has the (sequential form of the) Heine–Borel covering property

• Dini’s theorem: Every sequence Gn of pointwise continuous functions :[0, 1]d → IR which

increases pointwise to a pointwise continuous function G : [0, 1]d → IR converges uniformly on

[0, 1]d to G and there exists a modulus of uniform convergence

The last two principles may even be strengthened by allowing arbitrary (not necessarily open balls)

in the Heine–Borel property and omitting the monotonicity assumption in Dini’s theorem. These
strengthened versions which can easily be refuted classically do not have constructive counterex-
amples.

These results cannot be extended to intuitionistic proofs relative to PCM1 (or even PCM2 and

the other principles discussed under (II)) since PCM1 itself is a
∧∨

–sentence ∈ Γ1 but (for general

(xn)) there is no computable bound on
∨

in PCM1.

We now indicate very briefly the proof–theoretic methods used in the proofs of the results
sketched so far.

The main proof–theoretic tool used for the results on (I) is a monotone version of Gödel’s functional

interpretation which is based on a suitable notion of majorizability. This method was introduced in

[39] for PAω and is now applied to our theories GnAω. In addition to the features of this method

developed in [39] we make essential use of the fact that this interpretation allows to extract bounds

Φ which have a very simple term structure. This fact (which is also of central importance for (II))

enables us to measure the growth of these bounds in usual mathematical terms using only logical

14In addition to pure intuitionistic logic one may use the so–called independence–of–premise schema for negated
formluas

IP¬ : (¬A→
∨
yρB)→

∨
yρ(¬A→ B) (y not free in A),

which does not hold intuitionistically. Also note that CA¬ implies the tertium–non–datur schema for negated
formulas.
A different kind of a theory which adds a non–constructive principle (more precisely the so–called limited principle
of omniscience) to an intuitionistic theory is presented in [18]. Friedman shows that his system ALPO is conservative
over Peano arithmetic PA.
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normalization (i.e. λ–reductions).

Within G2Aω we develope a special representation of real numbers and continuous functions which
has the property that many basic facts for these notions can be expressed as purely universal sen-

tences
∧
u1, k0A0(u, k) (which sometimes requires strengthened quantitative versions of these facts

together which an enrichment of data). Since universal sentences have a very simple monotone func-

tional interpretation they can be treated simply as axioms. In particular such sentences contribute
to the growth of bounds at most via majorants for the terms used in their formalization but not by
their proofs.

At some occasions we introduce new constants c of type 1 or 1(0) to G2Aω (e.g. for sin, cos) together

with universal axioms. Since these constants have majorants c∗ by closed terms in G2Aω and ’c∗

majorizes c’ is a purely universal sentence (for the types 1, 1(0)), the addition of such constants

contributes to the growth of bounds only via c∗.
One of the most important properties of the monotone functional interpretation is that sentences
having the form

(∗)
∧
xδ
∨
y ≤ρ sx

∧
zτA0

also have a very simple direct (i.e. even without negative translation) monotone functional in-

terpretation (whereas they usually do not have a direct Gödel functional interpretation by any

computable functionals and even the Gödel functional interpretation of their negative translation15

cannot be satisfied by primitive recursive functionals in the extended sense of Gödel’s calculus T ).

The relevance of this is due to the fact that some central theorems of analysis, e.g. the attainment

of the maximum of F ∈ C([0, 1]d, IR) on [0, 1]d, are not purely universal but can be expressed in the

logical form (∗).

Nevertheless there still are important analytical theorems, e.g. Dini’s theorem, which do not have

the form (∗). In order to treat such theorems in the context of G2Aω we introduce a new ax-

iom F− which has the form (∗) and implies combined with AC1,0–qf the following principle of

Σ0
1–boundedness

Σ0
1–UB− :


∧
y1(0)

(∧
k0
∧
x ≤1 yk

∨
z0 A(x, y, k, z)→

∨
χ1
∧
k0, x1, n0( ∧

i<0n

(xi ≤0 yki)→
∨
z ≤0 χk A((x, n), y, k, z)

))
,

where A ∈ Σ0
1 and

(x, n)(k) :=

 xk, if k < n

00, otherwise.

Using Σ0
1–UB− one can give very short proofs (even more simple than the usual ones) of Dini’s

theorem (together with a modulus of convergence), the uniform continuity of every pointwise con-

tinuous function F : [0, 1]d → IR (together with a modulus of uniform continuity), the (sequential)

Heine–Borel property of [0, 1]d and the existence of a continuous strictly increasing inverse function

for every strictly increasing continuous function F : [0, 1]→ IR.

F− is not true in the full type structure Sω of all set–theoretic functionals but only in the type

structureMω of all so-called strongly majorizable functionals which was introduced in [4]. However

15Note that the negative translation of (∗) is a weakening of (∗) (intuitionistically).
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F− can be eliminated proof–theoretically from the verification of a bound Φ extracted from a proof

which uses F−. For τ ≤ 2

Mω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤0 Φu k A(u, k, v, w)

implies

Sω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤0 Φu k A(u, k, v, w)

and thus for a classical verification of Φ no F−–elimination is needed.
This also holds for a strengthened version F of F− which proves the uniform continuity of every

function F : [0, 1]d → IR which is given by a functional Φ1(1). This does not contradict the

existence of discontinuous functions since the existence of a functional Φ1(1) which represents a
discontinuous function requires comprehension over functions which is not available in our systems

(Of course within GnAω one can express discontinuous functional dependencies∧
x ∈ IR

∨
!y ∈ IRA(x, y) which describe uniquely determined discontinuous functions).

The proofs of our results on (II), i.e. on PCM2, the Bolzano–Weierstraß principle and so on,

form the proof–theoretically most complicated part of this paper. Let us motivate what proof–
theoretic tools are needed for these results for the most simple example PCM2:

The reduction of an instance of PCM2 to the corresponding instance of PCM1 in a proof of

a
∧
u1
∧
v ≤τ tu

∨
w0A0–sentence requires the transformation of a given proof of

(1)
∧
u1
∧
v ≤τ tu

(∨
h1
∧
k0
∧
m, m̃ > hk(|(ξuv)m − (ξuv)m̃| ≤

1

k + 1
)→

∨
w0A0(u, v, w)

)
into a proof (within a theory which is not stronger w.r.t. the growth of extractable bounds) of

(2)
∧
u1
∧
v ≤τ tu

(∧
k0
∨
n0
∧
m, m̃ > n(|(ξuv)m − (ξuv)m̃| ≤

1

k + 1
)→

∨
w0A0(u, v, w)

)
,

where
(
(ξuv)n

)
n∈IN

is a (bounded monotone) sequence in IR.16

More general we are looking for a proof–theoretic procedure which produces a proof for

(3) A ≡
∧
u1
∧
v ≤τ tu

∨
y0

1

∧
x0

1 . . .
∨
y0
k

∧
x0
k

∨
wγA0(u, v, y1, x1, . . . , yk, xk, w),

from a given proof of the Herbrand normal form AH of A, where

(4) AH :≡
∧
u1
∧
v ≤τ tu

∧
h1, . . . , hk

∨
y0

1 , . . . , y
0
k, w

γ A0(u, v, y1, h1y1, . . . , yk, hky1 . . . yk, w)︸ ︷︷ ︸
AH0 :≡

(A0 is quantifier–free and contains only u, v, y, x, w free, t is a closed term of GnAω and τ, γ are

arbitrary finite types).

For

(5) B :≡
∧
u1
∧
v ≤τ tu

∨
k
∧
n
∨
m, m̃, w

(
(m, m̃ > n→ |(ξuv)m − (ξuv)m̃| ≤

1

k + 1
)→ B0(u, v, w)

)
16This transformation is possible for an arbitrary sequence ξuv of real numbers. The assumption that this sequence

is bounded and monotone is used only to ensure the constructability of a functional which satisfies the (negative
translation of the) monotone functional interpretation of the implicative premise in (2).
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(which is just a prenex normal form of (2)) this would yield the passage from (1) to (2).

However such a proof–theoretic procedure does not exist. In fact for every fixed number k one can
construct an arithmetical sentence A such that

G2Aω ` AH but GkAω + Γ+AC–qf /̀ A, where Γ is as above.

This phenomenon (a special case of which was noticed firstly in [35] ) will be studied in detail in

chapter 10 below.
On the other hand, if A satisfies a monotonicity condition

Mon(A) :≡



∧
u1
∧
v ≤τ tu

∧
x1, x̃1, . . . , xk, x̃k, y1, ỹ1, . . . yk, ỹk( k∧
i=1

(x̃i ≤0 xi ∧ ỹi ≥0 yi) ∧
∨
wγA0(u, v, y1, x1, . . . , yk, xk, w)

→
∨
wγA0(u, v, ỹ1, x̃1, . . . , ỹk, x̃k, w)

)
,

then such a transformation is possible. In fact in chapter 10 we will show

(6) GnAω +Mon(A) `
∧
u1
∧
v ≤τ tu

∧
h1, . . . , hk

∨
y1 ≤0 Ψ1uh . . .

∨
yk ≤0 Ψkuh

∨
wγAH0 → A,

where Ψ1, . . . ,Ψk are arbitrary closed terms (of suitable types) of GnAω.

Thus if AH is proved within a theory T ω for which the extractability of such bounds Ψ1, . . . ,Ψk

on
∨
y1, . . . , yk is guaranteed, e.g. for T ω :=GnAω + Γ+AC–qf, then one can construct a proof of

A (in a theory which is closely related to T ω).

The relevance of this result follows from the fact that

G2Aω `Mon(B) for B from (5) above17,

and thus a proof of (2) can be transformed into a proof of (1) thereby replacing the analytical

implicative premise∨
h1
∧
k0
∧
m, m̃ > hk

(
|(ξuv)m − (ξuv)m̃| ≤

1

k + 1

)
by the arithmetical premise∧

k0
∨
n0
∧
m, m̃ > n

(
|(ξuv)m − (ξuv)m̃| ≤

1

k + 1

)
.

It is not always as obvious as in the case of PCM2 to what arithmetical principle a certain

analytical premise may be reducible. E.g. for ∃ lim sup(xn) the construction of the monotone arith-

metical principle L(xn) ∈ Π0
5 is quite complicated. Nevertheless the reduction of ∃ lim sup(xn) to

L(xn) is faithfull since G2Aω ` ∃ lim sup(xn)→ L(xn).

For the Bolzano–Weierstraß principle BW things are even more complicated since we are not
able to construct a monotone arithmetical sentence whose Skolem normal form implies BW and

which is implied by BW . In order to capture BW we first investigate the axiom Π0
1–CA of Π0

1–

comprehension. We show that every single instance Π0
1–CA(g) of this axiom follows (in G2Aω) from

a suitable instance PCM2(t(g)) of PCM2 and therefore can be reduced to PCM1(t(g)). Using a

suitable sequence of instances of Π0
1–CA combined with the axiom F− discussed above we are able

17m, m̃,w can be coded into a single variable w′ of type γ.
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to prove every single sequence of instances of BW .
The treatment of the Arzelà–Ascoli lemma is similar although technically more involved. The de-

termination of the growth caused (potentionally) by the use of instances of the last two principles

thus uses results from almost all parts of this paper.

Our results on (III), i.e. on analytical proofs relatively to the intuitionistic theories GnAω
i are

based on new monotone versions of the well–known ’modified realizability’ and ’modified realiz-
ability with truth’ interpretations.

In chapter 1 the theories GnAω and several variants and extensions are introduced. Further-
more the growth of the definable functionals of these theories is measured.
Chapter 2 developes the method of monotone functional interpretation for GnAω and applies it

for the extraction of uniform bounds from proofs in (analytical extensions of) GnAω.

Chapter 3 deals with the representation in G2Aω of the basic objects and concepts of anal-

ysis as e.g. real numbers, continuous functions f : IRd → IR, uniformly continuous functions

f : [0, 1]d → IR, maximum and sum of variable length for sequences of real numbers, sup
x∈[0,1]

fx and

x∫
0

f(x)dx (x ∈ [0, 1]) for f ∈ C[0, 1]. We discuss the impact of enrichments of data on the logical

form of the basic properties of these objects and quantification over them (A summary of these

results can be found at the end of chapter 3).

In chapter 4 we show that various criteria for convergence of series can be proved in G2Aω even

in quantitative versions. Chapter 5 treats (in the context of G2Aω) the trigonometric functions

sin, cos, tan, arcsin, arccos, arctan as well as the restrictions expk and lnk of exp and ln to the interval

[−k, k] for every fixed number k (The unristricted versions of these functions can be introduced in

G3Aω).

In chapter 6 we investigate in the context of G2Aω+ AC1,0–qf the fundamental theorem of calcu-

lus, Fejér’s theorem, and the (local and global) equivalence between sequential and ε–δ continuity

of real functions.
Chapter 7 shows that various important non–constructive theorems of analysis as e.g. the at-

tainment of the maximum of f ∈ C([0, 1]d, IR), Brouwer’s fixed point theorem, Cauchy–Peano’s

existence theorem and mean value theorems have monotone functional interpretations which can be

fulfilled by terms of G2Aω. Furthermore the axioms F and F− are introduced. These axioms com-

bined with AC1,0–qf yield principles of uniform–Σ0
1–boundedness which are used to derive e.g. Dini’s

theorem, the (sequential) Heine–Borel property for [0, 1]d, the existence of an inverse function for

every strictly increasing function f ∈ C[0, 1] and so on. Also we introduce a generalization WKL2
seq

of the binary König’s lemma WKL to sequences of trees in a higher type formulation which can be

used in G2Aω (The usual formulation of WKL in the literature uses already for its formulation a

coding functional which is available only in G3Aω). WKL2
seq can be derived in G2Aω +F−+AC1,0–

qf. Finally we show how to eliminate F− from proofs of
∧
u1
∧
v ≤τ tu

∨
wγA0–sentences which

yields conservation results for WKL2
seq.

Chapter 8 applies monotone versions of modified realizability interpretations for the proof of the

results on (III) discussed above.

In chapter 9 we study versions of induction which go beyond quantifier–free induction. E.g.
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we discuss the rule of Σ0
1–induction. Furthermore we show the equivalence of the axiom of Σ0

1–

induction Σ0
1–IA and PCM1. In particular we construct a functional χ in G2Aω such that

G2Aω
i ` PCM1(χ(g)) → Σ0

1–IA(g) and determine the rate of growth caused (potentionally) by

the use of PCM1.
Chapter 10 is devoted to the elimination of Skolem functions from monotone premises in given
proofs thereby replacing analytical premises by suitable arithmetical ones. In particular we prove

(6) above.

In chapter 11 results from the chapters 1,2,3,4,7,9 are combined with the method developed in

chapter 10 to determine the contribution to the growth of bounds by single (sequences of) instances

of PCM2, the existence of a greatest lower bound for every sequence of reals which is bounded

from below, Π0
1–CA and Π0

1–AC (and their arithmetical consequences ∆0
2–IA and Σ0

2–collection),

the Bolzano–Weierstraß property for bounded sequences in IRd, the Arzelà–Ascoli lemma and the
existence of lim sup for bounded sequences in IR.

In chapter 12 we first notice that our results on Π0
1–CA imply as a corollary the fact that the re-

striction Π0
1–CA− of Π0

1–CA without function parameters produces only primitive recursive growth

(relative to GnAω+AC–qf). We show that various theorems on Π0
1–CA− stated by Mints and Sieg

in [46], [57] are incorrect. A discussion of the errors in their proofs exhibits that our result on

Π0
1–CA− cannot be obtained (at least not straightforeward) from their proofs.
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1 Subsystems of primitive recursive arithmetic in all finite
types

1.1 Classical and intuitionistic predicate logic PLω and HLω in the lan-
guage of all finite types

The set T of all finite types is defined inductively by

(i) 0 ∈ T and (ii) ρ, τ ∈ T⇒ τ(ρ) ∈ T.

Terms which denote a natural number have type 0. Elements of type τ(ρ) are functions which map

objects of type ρ to objects of type τ .
The set P ⊂ T of pure types is defined by

(i) 0 ∈ P and (ii) ρ ∈ P⇒ 0(ρ) ∈ P.

Brackets whose occurrences are uniquely determined are often omitted, e.g. we write 0(00) instead

of 0(0(0)). Furthermore we write for short τρk . . . ρ1 instead of τ(ρk) . . . (ρ1). Pure types can be

represented by natural numbers: 0(n) := n+1. The types 0, 00, 0(00), 0(0(00)) . . . are so represented

by 0, 1, 2, 3 . . .. For arbitrary types ρ ∈ T the degree of ρ (for short deg(ρ) ) is defined by deg(0) := 0

and deg(τ(ρ)) := max(deg(τ),deg(ρ) + 1). For pure types the degree is just the number which

represents this type. Functions having a type whose degree is > 1 are usually called functionals.

The language L(HLω) of HLω contains variables xρ, yρ, zρ, . . . for each type ρ ∈ T together with

corresponding quantifiers
∧
xρ,
∨
yρ as well as the logical constants ∧,∨,→ and an equality relation

=0 between objects of type 0. Furthermore we have a propositional constant ⊥ (”falsum”). Negation

as a defined notion: ¬A :≡ A→ ⊥. Finally L(HLω) contains ’logical’ combinators Πρ,τ and Σδ,ρ,τ

of type ρτρ and τδ(ρδ)(τρδ) for all ρ, τ, δ ∈ T.

HLω has the usual axioms and rules of intuitionistic predicate logic (for all sorts of variables) plus the

equality axioms for =0 (e.g. see [67] ). Equations s =ρ t between terms of higher type ρ = 0ρk . . . ρ1

are abbreviations for the formula
∧
xρ1

1 , . . . , x
ρk
k (sx1 . . . xk =0 tx1 . . . xk).

Πρ,τ ,Σδ,ρ,τ are characterized by the corresponding axioms of typed combinatory logic:

Πρ,τx
ρyτ =ρ x and Σδ,ρ,τxyz =τ xz(yz) where x ∈ τρδ, y ∈ ρδ, z ∈ δ.

Furthermore we have the following quantifier–free rule of extensionality

QF–ER :
A0 → s =ρ t

A0 → r[s] =τ r[t]
, where A0 is quantifier–free.

Classical predicate logic in all finite types PLω results if the tertium–non–datur schema A ∨ ¬A is

added to HLω. The enrichment of HLω (resp. PLω ) obtained by adding the extensionality axiom

(Eρ) :
∧
xρ, yρ, zτρ(x =ρ y → zx =τ zy)

for every type ρ is denoted by E–HLω (resp. E–PLω).

Remark 1.1.1 Using Πρ,τ and Σδ,ρ,τ one defines (e.g. as in [67] ) λ–terms λxρ.tτ [x] for each term

tτ [xρ] such that

HLω `
(
λxρ.tτ [x]

)
sρ =τ t[s]. In particular one can define a combinator Π′ρ,τ = λxρ, yτ .y such that

Π′ρ,τx
ρyτ =τ y (E.g. take Π′ := Π(ΣΠΠ) for Σ,Π of suitable types).

Notational convention: Throughout this paper A0, B0, C0, . . . always denote quantifier–free for-
mulas.
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1.2 Subsystems of arithmetic in all finite types corresponding to the
Grzegorczyk hierarchy

In the following we extend PLω and HLω by adding certain computable functionals and the schema

of quantifier–free induction. The following definition from [54] is a variant of a definition due to

[1] and can be used for a perspicuous definition of the well–known Grzegorczyk hierarchy from [22]

(see def.1.2.26 ).

Definition 1.2.1 For each n ∈ IN we define (by recursion on n from the outside) the n-th branch

of the Ackermann function An : IN× IN→ IN by

A0(x, y) := y′ (Here and in the following x′ stands for the successor Sx of x),

An+1(x, 0) :=


x, if n = 0

0, if n = 1

1, if n ≥ 2,

An+1(x, y′) := An(x,An+1(x, y))

.

Remark 1.2.2 1) A1(x, y) = x+y, A2(x, y) = x ·y, A3(x, y) = xy, A4(x, y) = xx
...x

(y times).

2) For each fixed n ∈ IN the function An is primitive recursive. But: A(x) := Ax(x, x) is not

primitive recursive.

We now define the Grzegorczyk arithmetic GnAω of level n in all finite types and their
intuitionistic variant GnAω

i :

L(GnAω) is defined as the extension of L(PL) ω) by the addition of function constants S00 (suc-

cessor), max000
0 ,min000

0 , A000
0 , . . . , A000

n and functional constants Φ001
1 , . . . ,Φ001

n , µ001
b (bounded µ–

operator), R̃ρ ∈ ρ(ρ0)(ρ00)ρ0 (for each ρ ∈ T). Furthermore we have a predicate symbol ≤0.

In addition to the axioms and rules of PLω the theory GnAω contains the following:

1) ≤0–axioms: x ≤0 x, x ≤0 y ∨ y ≤0 x, x ≤0 y ∧ y ≤0 z → x ≤0 z.

2) S–axioms: Sx =0 Sy → x =0 y, ¬0 =0 Sx, x ≤0 Sx.

3) (max) : max0(x, y) ≥0 x, max0(x, y) ≥0 y, max0(x, y) =0 x ∨max0(x, y) =0 y.

4) (min) : min0(x, y) ≤0 x, min0(x, y) ≤0 y, min0(x, y) =0 x ∨min0(x, y) =0 y.

5) The defining recursion equations for A0, . . . , An from the definition 1.2.1 above.

6) Defining recursion equations for Φ1, . . . ,Φn: Φif0 =0 f0

Φifx
′ =0 Ai−1(fx′,Φifx) for i ≥ 2

and  Φ1f0 =0 f0

Φ1fx
′ =0 max0(fx′,Φ1fx).
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(For i ≥ 1, Φi is the iteration of the i− 1-th branch Ai−1 of the Ackermann function on the

f–values f0, . . . , fx for variable x).

7) (µb) :


y ≤0 x ∧ f000xy =0 0→ fx(µbfx) =0 0,

y <0 µbfx→ fxy 6= 0,

µbfx =0 0 ∨ (fx(µbfx) =0 0 ∧ µbfx ≤0 x)

(These axioms express that µbfx = min y ≤0 x(fxy =0 0) if such an y ≤ x exists and = 0

otherwise).

8) Defining recursion equations for R̃ρ (bounded and predicative recursion, since only type–0–

values are used in the recursion): R̃ρ0yzvw =0 yw

R̃ρx
′yzvw =0 min0(z(R̃ρxyzvw)xw, vxw),

where y ∈ ρ = 0ρk . . . ρ1, w = wρ1

1 . . . wρkk , z ∈ ρ00, v ∈ ρ0.

9) All IN, ININ, IN(ININ)–true purely universal sentences
∧
xA0(x), where x is a tuple of variables

whose types have a degree≤ 2 (HereBA denotes the set of all set–theoretic functions : A→ B).

GnAω
i is the variant of GnAω with intuitionistic logic only.

If we add (E) =
⋃
ρ {(Eρ)} to GnAω,GnAω

i we obtain theories which are denoted by E–GnAω,

E–GnAω
i .

GnRω denotes the set of all closed terms on GnAω.

Remark 1.2.3 1) The functionals Φ1,Φ2 and Φ3 have the following meaning:

Φ1fx = max(f0, f1, . . . , fx), Φ2fx =
∑x
y=0 fy, Φ3fx =

∏x
y=0 fy.

2) Our definition of GnAω contains some redundances (which however we want to remain for

greater flexibility of our language): E.g. Φi (i > 1) can be defined from Ai, R̃,min0 and Φ1:

With fM := λx.Φ1fx prop.1.2.16 and 1.2.18 below imply Φifx ≤ Φif
Mx ≤ Ai(fM +1, x+1).

Hence Φi can be defined by R̃ using Ai(f
M + 1, x+ 1) as boundary function v.

3) The axiom of quantifier–free induction

(1)
∧
f1, x0

(
f0 =0 0 ∧

∧
y < x(fy =0 0→ fy′ =0 0)→ fx =0 0

)
can be expressed as an universal sentence

∧
f1, x0A0 by prop.1.2.6 below and thus is an axiom

of GnAω
i . (1) implies every instance (with parameters of arbitrary type) of the schema of

quantifier–free induction

QF–IA :
∧
x0
(
A0(0) ∧

∧
y < x(A0(y)→ A0(y′))→ A0(x)

)
since again by prop.1.2.6 there exists a term t such that tx =0 0↔ A0(x): QF–IA now follows

from (1) applied to f := t.
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4) Because of the axioms in 9), our theories are not recursively enumerable. The motivation for

the addition of these sentences as axioms is two–fold:

(i) As G. Kreisel has pointed out in various papers, proofs of IN–true universal lemmas have

no impact on bounds extracted from proofs using such lemmas. For the methods we use for

the extraction of bounds (e.g. our monotone functional interpretation) this applies even for

arbitrary universal sentences
∧
xρA0 where ρ may be an arbitrary type. Taking such sentences

as axioms usually simplifies the process of the extraction of bounds enormously. The reason
for our restriction to those sentences for which ρ ≤ 2 is that on some places in this paper we
deal with principles which are valid only in the type structure Mω of the so–called majorizable

functionals (see chapter 7 below) but not in the full type structure Sω of all set–theoretic

functionals. Since both type structures coincide up to type 1 and for the type 2 the inclusion

Mω
2 ⊂ Sω2 holds, the implication Sω |=

∧
xρA0 ⇒Mω |=

∧
xρA0 is obvious if ρ ≤ 2. The same

holds if we replace Mω by the type structure ECF of all extensional continuous functionals

over ININ (see [67] for details on ECF).

(ii) Many important primitive recursive functions as sg, sg, |x − y| and so on are already

definable in G1Aω. However the usual proofs for their characteristic properties (which can

be expressed as universal sentences) often make use of functions which are not definable in

G1Aω (as e.g. x · y). Thus we would have to carry out the boring details of a proof for these

properties in G1Aω.

Using R̃0 the following primitive recursive functions can be defined easily in G1Aω:

Definition 1.2.4

1)

 prd(0) =0 0

prd(x′) =0 x (predecessor),

2)

 sg(0) =0 0 sg(0) =0 1 (1 := S0)

sg(x′) =0 1, sg(x′) =0 0,

3)

 x−· 0 =0 x

x−· y′ =0 prd(x−· y),

4) |x− y| =0 max(x−· y, y−·x) (symmetrical difference),

5) ε(x, y) =0 sg(|x− y|) (characteristic function for =0),

6) δ(x, y) =0 sg(|x− y|) (characteristic function for 6=).

Remark 1.2.5 Because of the universal axioms in 9), the theory G1Aω
i proves the usual properties

of the functions max,min, prd, sg, sg,−·, |x− y|, ε and δ, e.g.

sg(x) = 0↔ x = 0, sg(x) = 0↔ x 6= 0, sg(x) ≤ 1, sg(x) ≤ 1, prd(x) ≤ x−· 1,
|x− y| = 0↔ x = y, x = 0 ∨ x = S(prd(x)), max(x, y) = 0↔ x = 0 ∧ y = 0,

min(x, y) = 0↔ x = 0 ∨ y = 0.
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Proposition: 1.2.6 Let n be ≥ 1. For each formula A ∈ L(GnAω) which contains no quantifiers

except for bounded quantifiers of type 0 one can construct a closed term tA in GnAω such that

GnAω
i `

∧
xρ1

1 , . . . , x
ρk
k

(
tAx1 . . . xk =0 0↔ A(x1, . . . , xk)

)
,

where x1, . . . , xk are all free variables of A.

Proof: Induction on the logical structure of A0 using the remark above. Bounded quantifiers are
captured by µb:

GnAω
i `

∨
y ≤0 xA0(x, y, a)

(µb)↔ A0(x, µb(λy.tA0xya, x), a).

Proposition: 1.2.7 Let n ≥ 1, A0(x) ∈ L(GnAω), where x = xρ1

1 . . . xρkk are all free variables of

A0, and t0ρk...ρ1

1 , t0ρk...ρ1

2 are closed terms of GnAω. Then there exists a closed term Φ0ρk...ρ1 in

GnAω such that

GnAω
i `

∧
x

Φx =0

 t1x, if A0(x)

t2x, if ¬A0(x).




Proof: Define t′2 := λy0, u0.t2x, t
′′
2 := λu0.t2x. One easily verifies that Φ := λx.R̃ρ(tA0

x)t1t
′
2t
′′
2x

with tA0
as in the previous proposition and ρ = 0ρk . . . ρ1 fulfils our claim.

Definition 1.2.8 (and lemma) For n ≥ 2 we can define the surjective Cantor pairing function j

(’diagonal counting from below’) with its projections18 in GnRω:

j(x0, y0) :=

 minu ≤0 (x+ y)2 + 3x+ y[2u =0 (x+ y)2 + 3x+ y] if existent

00, otherwise, 19

j1z := minx ≤0 z[
∨
y ≤ z(j(x, y) = z)],

j2z := min y ≤0 z[
∨
x ≤ z(j(x, y) = z)].

Using j, j1, j2 we can define a coding of k–tuples for every fixed number k by

ν1(x0) := x0, ν
2(x0, x1) := j(x0, x1), νk+1(x0, . . . , xk) := j(x0, ν

k(x1, . . . , xk)),

νki (x1, . . . , xk) :=

 j1 ◦ (j2)i−1(x), if 1 ≤ i < k

(j2)k−1(x), if 1 < i = k
(if k > 1)

One easily verifies that νki (νk(x1, . . . , xk)) = xi for 1 ≤ i ≤ k and νk(νk1 (x), . . . , νkk (x)) = x.

Finite sequences are coded (following [67] ) by

〈〉 := 0, 〈x0, . . . , xk〉 := S(ν2(k, νk+1(x0, . . . , xk))).

Using R̃ one can define functions lth,Π(k, y) ∈ GnRω such that for every fixed k, n

lth(〈〉) = 0, lth(〈x0, . . . , xk〉) = k + 1, Π(x, y) =

 xy, if y ≤ m

00, otherwise
if x = 〈x0, . . . , xm〉.

18For detailed information on this as well as various other codings see [63] and also [13] (where j is called ’Cauchy’s
pairing function’).

19One easily shows that (x+ y)2 + 3x+ y is always even (This can be expressed as a purely universal sentence, i.e.
as an axiom in GnAω). Hence the case ’otherwise’ never occurs and therefore 2j(x, y) = (x+ y)2 + 3x+ y for all x, y.
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Define

lth(x) :=

 00, if x =0 0

j1(x−· 1) + 1, otherwise,

Π(x, y) =0


00, if lthx = 0

j1 ◦ (j2)y(x−· 1), if 1 ≤ y < lthx

(j2)lthx(y), if 1 < y = lthx

We usually write (x)y instead of Π(x, y).

In order to verify that Π(x, y) is definable in G2Rω it suffices to show that the variable iteration

ϕxy = (j2)y(x) of j2 is definable in G2Rω. This however follows from the fact that ϕxy ≤ x for all

x, y. Thus we can define ϕxy by R̃ using λy.x as bounding function.
For n ≥ 3 we can code initial segments of variable length of a function f in GnAω, i.e. there is a

functional Φ〈〉 ∈ G3Rω such that Φ〈〉fx = 〈f0, . . . , f(x−· 1)〉:20

As an intermediate step we first show the definability of f̃0 = f0

f̃x′ = j̃(f̃x, fx′), where j̃(x, y) := j(y, x)

in G3Rω: One easily verifies (using j(x, x) ≤ 4x2) that f̃x ≤ 43x
(
fMx

)2x
for all x. Hence

the definition of f̃ can be carried out by R̃ using λx.43x
′ (
fMx′

)2x′ ∈ G3Rω as bounding func-

tion. f̃x means j̃(. . . j̃(j̃(f0, f1), f2) . . . fx). Hence f̂x := ( ˜λy.f(x−· y))x has the meaning

j(f0, j(f1, f2)), . . . , fx)) . . .). We are now able to define Φ〈〉 ∈ G3Rω:

Φ〈〉fx :=

 00, if x = 0

(̂fx)x+ 1, otherwise,

where

fxy :=

 x, if y = 0

f(y−· 1), otherwise.

We usually write fx for Φ〈〉fx. Furthermore one can define a function ∗ in G3Rω such that

〈x0, . . . , xk〉 ∗ 〈y0, . . . , ym〉 = 〈x0, . . . , xk, y0, . . . , ym〉.

Define

n ∗m := Φ〈〉(fnm)(lth(n) + lth(m)), where

(fnm)(k) :=

 (n)k, if k < lth(n)

(m)k−· lthn, otherwise.

20Of course we cannot write 〈f0, . . . , f(x−· 1)〉 for variable x. However the meaning of Φ〈〉fx can be expressed via

(Φ〈〉fx)y = fy for all y < x (and = 0 for y ≥ x).
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Note that Φ〈〉 and ∗ are not definable in G2Rω since their definitions involve an iteration of the

polynomial j.

Definition 1.2.9 Between functionals of type ρ we define relations ≤ρ (’less or equal’) and s–majρ

(’strongly majorizes’) by induction on the type: x1 ≤0 x2 :≡ (x1 ≤0 x2),

x1 ≤τρ x2 :≡
∧
yρ(x1y ≤τ x2y);

 x∗ s–maj0 x :≡ x∗ ≥0 x,

x∗ s–majτρ x :≡
∧
y∗ρ, yρ(y∗ s–majρ y → x∗y∗ s–majτ x

∗y, xy).

Remark 1.2.10 ’s–maj’ is a variant of W.A. Howard’s relation ’maj’ from [26] which is due to

[4]. For more details see [34].

Lemma: 1.2.11 G1Aω
i proves the following facts:

1) x̃∗ =ρ x
∗ ∧ x̃ =ρ x ∧ x∗ s–majρ x→ x̃∗ s–majρ x̃.

2) x∗ s–majρ x→ x∗ s–majρ x
∗ ([4]).

3) x1 s–majρ x2 ∧ x2 s–majρ x3 → x1 s–majρ x3 ([4]).

4) x∗ s–majρ x ∧ x ≥ρ y → x∗ s–majρ y.

5) For ρ = τρk . . . ρ1 we have

x∗ s–majρ x↔
∧
y∗1 , y1, . . . , y

∗
k, yk( k∧

i=1

(y∗i s–majρi yi)→ x∗y∗1 . . . y
∗
k s–majτ x

∗y1 . . . yk, xy1 . . . yk

)
.

6) x∗ s–maj1 x↔ x∗ monotone ∧ x∗ ≥1 x,

where x∗ is monotone iff
∧
u, v(u ≤0 v → x∗u ≤0 x

∗v).

7) x∗ s–maj2 x→ λy1.x∗(Φ1y) ≥2 x.

Proof: 1)–4) follow easily by induction on the type (in the proof of 3) one has to use 2) ). 5)

follows by induction on k using 2) (for details see [34] ). 6) is trivial. 7) follows from
∧
y1(Φ1y

s–maj1y).

Remark 1.2.12 In contrast to ≥ρ the relation s–majρ has a nice behaviour w.r.t. substitution (see

5) of the lemma above). This makes it possible to prove results on majorization of complex terms

simply by induction on the term structure. For types ≤ 2 (which are used in our applications to

analysis) we can infer from a majorant to a ’real’ ≥–bound by 6) and 7) of lemma 1.2.11.

Next we need some basic properties of Aj which are formulated in the following lemmas (since these

properties are purely universal we only have to verify their truth in order to ensure their provability

in GnAω
i for j ≤ n):
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Lemma: 1.2.13 Assume j ≥ 1. Then
∧
x
∧
y ≥ 1

(
Aj(x, y) ≥ x

)
.

Proof: j–Induction: j = 1 : A1(x, y) = x+ y ≥ x.
j 7→ j + 1 : y–induction: Aj+1(x, 1) = Aj(x,Aj+1(x, 0)) =

=

 Aj(x, 0) = x+ 0 ≥ x, if j = 1

Aj(x, 1)
j−I.H.
≥ x, if j ≥ 2.

y 7→ y + 1 : Aj+1(x, y + 1) = Aj(x, Aj+1(x, y)︸ ︷︷ ︸
≥x (y−I.H.)

)
j−I.H.
≥ x.

Lemma: 1.2.14 For all j ∈ IN the following holds:∧
x, x̃, y, ỹ

(
x̃ ≥ x ≥ 1 ∧ ỹ ≥ y → Aj(x̃, ỹ) ≥ Aj(x, y)

)
.

Proof: j–Induction. For j = 0, 1, 2 the lemma is trivial. j 7→ j + 1: To begin with we verify (for

x ≥ 1) by y–induction

(∗)
∧
y
(
Aj+1(x, y + 1) ≥ Aj+1(x, y)

)
:

I. Aj+1(x, 1)
1.2.13
≥ x ≥ 1

j≥2
= Aj+1(x, 0).)

II. y 7→ y + 1 : Aj+1(x, y + 2) = Aj(x,Aj+1(x, y + 1)︸ ︷︷ ︸
y−I.H.

≥Aj+1(x,y)

)
j−I.H.
≥ Aj(x,Aj+1(x, y)) = Aj+1(x, y + 1).

(∗) implies

(∗∗)
∧
y
∧
ỹ ≥ y(Aj+1(x, ỹ) ≥ Aj+1(x, y)).

Again by y–induction we show (for x̃ ≥ x ≥ 1):

(∗ ∗ ∗)
∧
y(Aj+1(x̃, y) ≥ Aj+1(x, y)) :

y = 0 : Aj+1–definition! y 7→ y + 1 :

Aj+1(x̃, y + 1) = Aj(x̃, Aj+1(x̃, y)︸ ︷︷ ︸
≥Aj+1(x,y) (y−I.H.)

)
j−I.H.
≥ Aj(x,Aj+1(x, y)) = Aj+1(x, y + 1).

(∗∗) and (∗ ∗ ∗) yield the claim for j + 1.

Lemma: 1.2.15 If j ≥ 2, then
∧
y(Aj(0, y) ≤ 1).

Proof: j–Induction: The case j = 2 is clear.

Aj+1(0, 0) = 1, Aj+1(0, y + 1) = Aj(0, Aj+1(0, y))
j−I.H.
≤ 1.

Proposition: 1.2.16 Φj s–maj Φj for all j ≥ 1.
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Proof: Assume f∗ s–maj1f ∧ x∗ ≥0 x. j = 1:
Φ1f

∗x∗ = max
y≤x∗

f∗y ≥ max
y≤x

fy = Φ1fx.

j ≥ 2: By induction on x∗ we show∧
x∗
∧
x ≤ x∗(Φjf∗x∗ ≥0 Φjfx) :

x∗ = 0: Φjf
∗0 = f∗0 ≥ f0 = Φjf0.

Φjf
∗(x∗ + 1) = Aj−1(f∗(x∗ + 1),Φjf

∗x∗)


1.2.13,I.H.

≥ Φjf0
!
≥ Aj−1(f(x+ 1),Φjfx) = Φjf(x+ 1)

.

Ad!: x∗–I.H. yields Φjf
∗x∗ ≥ Φjfx. Because of f∗ s–maj f it follows that f∗(x∗ + 1) ≥ f(x+ 1).

Case 1: f(x+ 1) ≥ 1. Then ’ !’ follows from 1.2.14 .

Case 2: f(x + 1) = 0: 2.1 f∗(x∗ + 1) = 0. Then
∧
y ≤ x∗ + 1(f∗y = fy = 0) and therefore

Φjf
∗(x∗ + 1) = Φjf(x+ 1).

2.2 f∗(x∗ + 1) ≥ 1: For j ≥ 3 lemma 1.2.15 yields Aj−1(f(x+ 1),Φjfx) ≤ 1.

By lemma 1.2.13 we have Aj−1(f∗(x∗ + 1),Φjf
∗x∗) ≥ 1, if Φjf

∗x∗ ≥ 1 (If 0 = Φjf
∗x∗ ≥ Φjfx,

then Aj−1(f(x + 1),Φjfx) ≤ Aj−1(f∗(x∗ + 1),Φjf
∗x∗) follows immediately from the definition of

Aj−1).

The case j = 2 is trivial.

Lemma: 1.2.17 For every j ≥ 1 the following holds:∧
f
(
f monotone ∧ f ≥ 1→

∧
x(Aj(fx, x+ 1) ≥0 Φjfx)

)
.

Proof: The case j = 1 is trivial. Assume j ≥ 2. We proceed by induction on x:

Aj(f0, 1) = Aj−1(f0, Aj(f0, 0)) =

 f0 = Φjf0 for j = 2

Aj−1(f0, 1)
1.2.13
≥ f0 = Φjf0 for j > 2.

Aj(f(x+ 1), x+ 2) = Aj−1(f(x+ 1), Aj(f(x+ 1), x+ 1))
fx′≥fx≥1

≥ Aj−1(f(x+ 1), Aj(fx, x+ 1))(1.2.14)
I.H.,1.2.14

≥ Aj−1(f(x+ 1),Φjfx) = Φjf(x+ 1).

Proposition: 1.2.18 For all j ≥ 1: λf, x.Aj(fx+ 1, x+ 1) s–maj Φj
21 .

Proof: Assume f∗ s–maj f and x∗ ≥0 x. By prop.1.2.16 we know Φj(f
∗ + 1)x∗ ≥0 Φjfx.

L.1.2.11 6) yields that f∗ + 1 is monotone. Hence – by l.1.2.17 ,1.2.14 – Aj(f
∗(x∗) + 1, x∗ + 1) ≥

Aj(fx+ 1, x+ 1),Φj(f
∗ + 1)x∗.

Lemma: 1.2.19 If A∗j (x, y) := max(Aj(x, y), 1). Then A∗j s–maj Aj.

Proof: For j ≤ 2 the lemma is trivial. Assume j ≥ 3: We have to show∧
x, x̃, y, ỹ

(
x̃ ≥ x ∧ ỹ ≥ y → A∗j (x̃, ỹ) ≥ A∗j (x, y), Aj(x, y)

)
:

If x ≥ 1 this follows from l.1.2.14.

Assume x = 0. By l.1.2.15
∧
y(A∗j (0, y), Aj(0, y) ≤ 1) and therefore∧

x̃, ỹ, y
(
A∗j (x̃, ỹ) ≥ A∗j (0, y), Aj(0, y)

)
(since A∗j (x̃, ỹ) ≥ 1).

21For j = 1 the more simple functional λf, x.fx already majorizes Φ1.
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Definition 1.2.20 1) The subset GnRω
− ⊂GnRω denotes the set of all terms which are built up

from Πρ,τ ,Σδ,ρ,τ , A0, . . . , An, 0
0, S, prd,min0 and max0 only (i.e. without Φ1, . . . ,Φn, R̃ρ or

µb).

2) GnRω
−[Φ1] is the set of all term built up from GnRω

− plus Φ1.

Proposition: 1.2.21 For all n ≥ 1 the following holds: To each term tρ ∈GnRω one can construct

by induction on the structure of t (without normalization) a term t∗ρ ∈GnRω
− such that

GnAω
i ` t∗ s–majρ t.

Proof: 1. Replace every occurrence of R̃ρ in t by Gρ, where

Gρ := λx, y, z, v, w.max0(yw, v(prd(x), w)).

Gρ is built up from Π,Σ (which are used for defining the λ–operator) and the monotone functions

max0 and prd. One easily verifies that

(i) Gρ ≥ R̃ρ and (ii) Gρ s–maj Gρ.

Together with l.1.2.11 (i) and (ii) imply Gρ s–maj R̃ρ.

2. Replace all occurrences of Φ1, . . . ,Φn, µb in t by

Φ∗1 := λf, x.fx, Φ∗j := λf, x.Aj(fx+ 1, x+ 1) for i ≥ 2, µ∗b := λf, x.x.

By prop. 1.2.18 we conclude

GnAω
i ` Φ∗j s–maj Φj ∧ µ∗b s–maj µb.

3. Replace all occurrences of A0, . . . , An in t by A∗0, . . . , A
∗
n.

The term t∗ which results after having carried out 1.–3. is ∈ GnRω
−. t∗ is constructed by replacing

every constant c in t by a closed term s∗c such that s∗c s–maj c. Since t is built up from constants

only this implies (using lemma 1.2.11.1),5) t∗ s–maj t.

Corollary to the proof:

Since λx0.x0 s–maj1 prd and A1 s–maj max0,min0, the term t∗ can be constructed even without
prd,max0 and min0. However estimating max0 by A1 may give away interesting numerical informa-
tion. For the extraction of bounds from actually given proofs we may use not only max or min but
any further functions which are convenient for the construction of a majorant which is numerically
as sharp as possible.

The majorizing term t∗ constructed in prop.1.2.21 will have (in general) a much simpler form than

t since t∗ does not contain any higher mathematical functional but only the ’logical’ functionals Π

and Σ. In the following we show that if t∗ has a type ρ with deg(ρ) ≤ 2, than it can be simplified

further by eliminating even these logical functionals. This will allow the exact calibration of the
rate of growth of the definable functions of GnAω and will be crucial also for our elimination of
monotone Skolem functions in chapters 10 and 11 below.

Proposition: 1.2.22 Assume deg(ρ) ≤ 2 (i.e. ρ = 0ρk . . . ρ1 where deg(ρi) ≤ 1 for i = 1, . . . , k)

and tρ ∈ GnRω
−. Then one can construct (by ’logical’ normalization, i.e. by carrying out all possible

Π,Σ–reductions) a term t̂[xρ1

1 , . . . , x
ρk
k ] such that
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1) t̂[x1, . . . , xk] contains at most x1 . . . , xk as free variables,

2) t̂[x1, . . . , xk] is built up only from x1, . . . , xk, A0, . . . , An, S
1, 00, prd,min0,max0,

3) GnAω
i `

∧
xρ1

1 , . . . , x
ρk
k (t̂[x1, . . . , xk] =0 tx1 . . . xk).

Proof: We carry out reductions Πst ; s and Σstr ; sr(tr) in tx1 . . . xk as long as no further

such reduction is possible and denote the resulting term by t̂[x1, . . . , xk]. The well–known strong

normalization theorem for typed combinatory logic ensures that this situation will always occur

after a finite number of reduction steps. Since Πxy = x and Σxyz = xz(yz) are axioms of GnAω
i

the quantifier–free rule of extensionality yields

GnAω
i `

∧
xρ1

1 , . . . , x
ρk
k (t̂[x1, . . . , xk] =0 tx1 . . . xk).

It remains to show that t̂[x1, . . . , xk] does not contain the combinators Π, Σ anymore:

Assume that t̂[x1, . . . , xk] contains an occurrence of Σ (resp. Π). Then Σ (Π) must occur in the form

Σ,Σt1 or Σt1t2 (Π,Πt1) but not in the form Σt1t2t3 (resp. Πt1t2) since in the later case we could have

carried out the reduction Σt1t2t3 ; t1t3(t2t3) (resp. Πt1t2 ; t1) contradicting the construction of

t̂. All the terms s = Σ,Σt1,Σt1t2,Π,Πt1 have a type whose degree is ≥ 1. Hence s can occur in t̂

only in the form r(s), where r = Σ,Σt4,Σt4t5,Π or Πt4 since these terms are the only reduced ones

requiring an argument of type ≥ 1, which can be built up from xρ1

1 , . . . , x
ρk
k ,Σ,Π, Ai, S

1, 00 and

max0 (because of deg(ρi) ≤ 1). Now the cases r = Σt4t5 and r = Πt4 can not occur since otherwise

r(s) would allow a reduction of Σ resp. Π. Hence r(s) is again a Π,Σ–term having a type of degree

≥ 1 and therefore has to occur within a term r′ for which the same reasoning as for r applies etc.

. . . . Thus we obtain a contradiction to the finite structure of t̂.

Remark 1.2.23 Proposition1.2.22 becomes false if deg(ρ) = 3: Define ρ := 0(0(000)) and tρ :=

λx0(000).x(Π0,0). Then tx =0 x(Π0,0) contains Π but no Π–reduction applies.

Corollary 1.2.24 Assume deg(ρ) ≤ 2 (i.e. ρ = 0ρk . . . ρ1 where deg(ρi) ≤ 1 for i = 1, . . . , k) and

tρ ∈ GnRω. Then one can construct (by majorization and subsequent ’logical’ normalization) a

term t∗[xρ1

1 , . . . , x
ρk
k ] such that

1) t∗[x1, . . . , xk] contains at most x1 . . . , xk as free variables,

2) t∗[x1, . . . , xk] is built up only from x1, . . . , xk, A0, . . . , An, S
1, 00, prd,min0,max0,

3) GnAω
i ` λx1, . . . , xk.t

∗[x1, . . . , xk] s–maj t.

Proof: The corollary follows immediately from prop.1.2.21 and prop.1.2.22 (using lemma 1.2.11

(1)).

The use of the concept of majorization combined with logical normalization has enabled us to
majorize a term t of type ≤ 2 by a term t∗ which does not contain any functionals of type > 1.

This allows the calibration of the rate of growth of the functions given by t1 ∈ GnRω in usual

mathematical terms without any computation of recursor terms (which would require the

reduction of closed number terms to numerals):
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Definition 1.2.25 ([22] ,[54]) The function f(x, y) is defined from g(x), h(x, y, z) and j(x, y) by

limited recursion if
f(x, 0) =0 g(x)

f(x, y + 1) =0 h(x, y, f(x, y))

f(x, y) ≤0 j(x, y).

Definition 1.2.26 (n-th level of the Grzegorczyk hierarchie) For each n ≥ 0, En is defined

to be the smallest class of functions containing the successor function S, the constant–zero function,

the projections Uni (x1, . . . , xn) = xi, and An(x, y) which is closed under substitutions and limited

recursion.

Remark 1.2.27 Grzegorczyk’s original definition of En uses somewhat different functions gn(x, y)

instead of An(x, y). Ritchie ([54] ) showed that the same class of En of functions results if the gn

are replaced by the (more natural) An (which are denoted by fn in [54] ). See also [13] for a proof

of this result.

Proposition: 1.2.28 Assume t1 ∈GnRω. Then one can construct a function ft ∈ En such that∧
x0(tx ≤0 ftx) and every function f ∈ En can be defined in GnRω, i.e. there is a term t1f ∈ GnRω

such that
∧
x0(fx = tx).

In particular for n = 1, 2, 3 the following holds:

t1 ∈ G1Rω ⇒ ∃c1, c2 ∈ IN : G1Aω
i `

∧
x0(tx ≤0 c1x+ c2) (linear growth),

t1 ∈ G2Rω ⇒ ∃k, c1, c2 ∈ IN : G2Aω
i `

∧
x0(tx ≤0 c1x

k + c2) (polynomial groth),

t1 ∈ G3Rω ⇒ ∃k, c ∈ IN : G3Aω
i `

∧
x0(tx ≤0 2cxk ), where 2a0 = a, 2ak′ = 22ak

(finitely iterated exponential growth).

More generally, if tρ (where ρ = 0 (0) . . . (0)︸ ︷︷ ︸
m−times

), defines an m–ary function:


tρ ∈ G1Rω ⇒ ∃c1, . . . , cm+1 ∈ IN : G1Aω

i `
∧
x0

1, . . . , x
0
m(tx ≤0 c1x1 + . . .+ cmxm + cm+1),

tρ ∈ G2Rω ⇒ ∃p ∈ IN[x1, . . . , xm] : G2Aω
i `

∧
x(tx ≤0 px),

tρ ∈ G3Rω ⇒ ∃k, c1, . . . , xm ∈ IN : G3Aω
i `

∧
x(tx ≤0 2c1x1+...+cmxm

k ).

The constants ci, k ∈ IN in can be effectively written down for each given term t.

Proof: To t1 we construct t̂[x] (according to cor.1.2.24 and the corollary to the proof of 1.2.21 )

such that t̂[x] is built up from x0, 00 and A0, . . . , An, and λx.t̂[x] s–maj1 tx. The later property

implies
∧
x0(t̂[x] ≥0 tx). By [54] (p. 1037) we know that A0, . . . , An ∈ En. Since En is closed under

substitution it follows that ft := λx.t̂[x] ∈ En.

For the other direction assume f ∈ En. Since GnRω contains S, λx.00, the projections Uki and

An, and it is closed under substitution (because λ–abstraction is available) and limited recursion

(because of R̃) it follows that f is definable in GnRω.

We now consider the special cases n = 1, 2, 3:

12



n = 1: Assume tρ ∈ G1Rω where ρ = 0 (0) . . . (0)︸ ︷︷ ︸
m

. t̂[x0
1, . . . , x

0
m] is built up from 00, A0 and A1 only.

Both A0(x1, x2) = 0 · x1 + 1 · x2 + 1 and A1(x1, x2) = 1 · x1 + 1 · x2 + 0 are functions having the

form c1x1 + c2x2 + c3 or – more generally – c1x1 + . . . + ckxk + ck+1. Since substitution of such

functions again yields a function which can be written in this form it follows that t̂[x1, . . . , xm] =

c1x1 + . . .+ cmxm + cm+1 for suitable constants c1, . . . , cm+1.

n = 2: Assume tρ ∈ G2Rω. t̂[x1, . . . , xm] is built up from 00, A0, A1, A2. Since A0, A1 and A2 are

polynomials (in two variables) and substitution of polynomials in several variables yields a function

which can be written again as a polynomial, it is clear that t̂[x1, . . . , xm] = p(x1, . . . , xm) for a

suitable polynomial in IN[x1, . . . , xm]. In the case m = 1, p(x) can be bounded by c1x
k + c2 for

suitable numbers c1, c2.
n = 3: Assume tρ ∈ G3Rω. For all x, y the following inequalities hold:

(∗) A3(x+ 2, y+ 2) ≥ A2(x, y), A1(x, y), A0(x, y), 2. Replace in t̂[x1, . . . , xm] all occurrences of 0 by

2 and all occurrences of Ai(x, y) with i ≤ 2 by A3(x + 2, y + 2) and denote the resulting term by

t̃[x1, . . . , xm].

(∗) together with the monotonicity of A3(x, y) in x, y for x, y ≥ 2 yields∧
x1, . . . , xm

(
t̃[x1, . . . , xm] ≥ t̂[x1, . . . , xm] ≥ tx1 . . . xm

)
.

t̃[x1, . . . , xm] is built up from x1, . . . , xm,+2 and A3 only. Let k be the number of A3–occurrences

in t̃[x1, . . . , xm]. Then t̃[x1, . . . , xm] can be bounded by yk, where y0 := 0, yk′ := yyk and y :=

max(x1, . . . , xm) + 2. By [44] we have yk ≤ 2
x
k, where 2

x
1 := x1 + . . . + xm and 2

x
k′ = 22

x

k . Hence∧
x
(
2
x
k ≥ tx

)
.

Remark 1.2.29 This proposition provides a quite perspicuous characterization of the rate of growth
of the functions which are definable in GnAω. Of course for concrete terms t the bounds given for
n = 1, 2, 3 may be to rough. To obtain better estimates one will use combinations of any convenient

functions like e.g. max,min (instead of replacing them by x + y) and (for n = 3) the growth of t

will be expressed using max,min, A0, A1, A2 and A3 and not A3 allone. Thus one can treat also all
intermediate levels between e.g. polynomial and iterated exponential growth.

The estimates for n = 1, 2, 3 generalize to function parameters as follows: Let t1(1) ∈ GnRω, then

tf1 can be bounded by a linear (polynomial resp. elementary recursive) function in f∗ where

f∗ s–maj f . By ’tf1x0 is linear (polynomial, elementary recursive) in f ,x’ we mean

that tfx =0 t̃[x, f ] for all x, f , where t̃[x, f ] is a term which is built up only from x, f, 00, S1,+

(x, f, 00, S1,+, · resp. x, f, 00, S1,+, ·, (·)(·)). In particular this implies that if f∗ is a linear (poly-

nomial, elementary recursive) function then tf∗ can be written again as a linear (polynomial, ele-

mentary recursive) function. This holds even uniformly in the following sense (which we formulate

here explicitly only for the most interesting polynomial case):

Proposition: 1.2.30 Let t1(1) ∈ G2Rω. Then one can construct a polynomial q ∈ IN[x] such that
For every polynomial p ∈ IN[x]

one can construct a polynomial r ∈ IN[x] such that∧
f1
(
f ≤1 p→

∧
x0(tfx ≤0 r(x))

)
and deg(r) ≤ q(deg(p))
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This extends to the case where t has tuples f1
1 , . . . , f

1
k , x

0
1, . . . , x

0
l of arguments with f1, . . . , fk ≤1 p

and r ∈ IN[x1, . . . , xl].

Proof: Let p ∈ IN[x]. Since p is monotone, f ≤ p implies p s–maj f . Let t̂[f, x] be constructed

to tf according to prop.1.2.22 and the corollary to the proof of prop.1.2.21. Then t̂[p, x] ≥0 tfx

for all f ≤1 p and t̂[p, x] is built up from x, 00, A0, A1 and p only. As in the proof of prop.1.2.28

one concludes that t̂[p, x] can be written as a polynomial r in x. The existence of the polynomial q

bounding the degree of r in the degree of p follows from the fact that the degree of a polynomial

p1 ∈ IN[x1, . . . , xm] obtained by substitution of a polynomial p2 for one variable in a polynomial p3

is ≤ deg(p2)·deg(p3).

1.3 Extensions of GnA
ω

Definition 1.3.1 1) Let G∞Aω denote the union of the theories GnAω for all n ≥ 1 and G∞Aω
i

its intuitionistic variant.
E–G∞Aω and E–G∞Aω

i are the corresponding theories with full extensionality.

G∞Rω is the set of all closed terms of these theories, i.e. G∞Rω :=
⋃
n∈IN

GnRω.

2) PRAω is the theory obtained from G∞Aω by adding the Kleene–recursor operators R̂ρ (on

which S. Feferman’s theory P̂A
ω
|\ is based on; see [11] ): R̂ρ0yzv =0 yv

R̂ρ(Sx)yzv =0 z(R̂ρxyzv)xv,

where y ∈ ρ, z ∈ ρ00 and v = vρ1

1 . . . vρkk are such that yv is of type 0.

Correspondingly we have the theories PRAω
i , E–PRAω and E–PRAω

i .

The set of all closed terms of PRAω is denoted by P̂R
ω

.

Thus PRAω is equivalent to P̂A
ω
|\+all true

∧
xA0–sentences for ρ ≤ 2. We now show that the same

theory results if we only add the (unrestricted) iteration functional Φit together with the axioms Φit0yf =0 y

Φitx
′yf =0 f(Φitxyf) i.e.Φitxyf = fxy

instead of R̂:

We define R̂ρ through one intermediate step:

Firstly we show that R̂ρ can be defined from Φ̃, where Φ̃0yf =0 y

Φ̃x′yf =0 f(Φ̃xyf)x (f ∈ 0(0)(0)).

One easily verifies that R̂ρ can be defined as

R̂ρ := λx, y, z, v.Φ̃x(yv)(λx0
1, x

0
2.zx1x2v).
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Φ̃ in turn is definable using Φit: This follows from the fact that for f̃x :=

max(Φ1(λy1.Φ1(λy2.fy1y2)x)x, x′)(= max
y1,y2≤0x

(fy1y2, x
′)) one has Φitxyf̃ ≥0 Φ̃xyf for all x, y, f .

Thus using Φit as a bound in the recursion one can define Φ̃ by the bounded recursor operator R̃.

Put together we have shown that R̂ρ is definable in PRAω. Since on the other hand Φit is trivially

definable using R̂ our claim follows.

On the level of type 1 the theories PRAω and G∞Aω coincide: The functions given by the closed
terms of type level 1 of both theories are just the primitive recursive ones: For PRAω this follows

from [11]. Since G∞Aω is a subtheory of PRAω it suffices to verify that all primitive recursive

functions are definable in it. This however follows immediately from prop.1.2.28 and the well–know

fact (due to Grzegorczyk) that the class of all primitive recursive functions is just the union of all

En.
In contrast to this, both theories differ already on the type–2–level:

Proposition: 1.3.2 The functional Φit is not definable in G∞Aω, i.e. there is no term t ∈ G∞Rω

such that t satifies (provable in G∞Aω) the defining equations of Φit.

Proof: Assume that Φit is definable in G∞Aω. Then there exists an n such that Φit is already
definable in GnAω. On the hand from the proof above we know that within GnAω + Φit the

unbounded recursors R̂ρ and therefore all primitive recursive functions (in particular An+1 ) are

definable. Hence An+1 could be defined in GnAω contradicting prop.1.2.28, since An+1 cannot be

bounded by a function from En (see [54] ).

Finally we introduce the theory PAω which results from PRAω if

1) R̂ρ is replaced by the Gödel–recursor operators Rρ characterized by Rρ0yz =ρ y

Rρx
′yz =ρ z(Rρxyz)x, where y ∈ ρ, z ∈ ρ0ρ,

2) the schema of full induction

(IA) : A(0) ∧
∧
x(A(x)→ A(x′))→

∧
xA(x)

is added.
The set of all closed terms of PAω is denoted by T (following Gödel).

PAω
i is the intuitionistic variant of PAω. E–PAω, E–PAω

i are the corresponding theories with

full extensionality (E).

In this chapter we have introduced a hierarchy G1Aω, G2Aω, . . . , PRAω of subsystems of arithmetic

in all finite types PAω. Furthermore we have determined the growth of the functionals t1(1) which
are definable in these theories. In particular for n ≤ 3 it turned out that t can be majorized by a

term t∗ of type 1(1) such that

t∗f1x0 is a linear function in f, x, if n = 1,

t∗f1x0 is a polynomial function in f, x, if n = 2,

t∗f1x0 is an elementary recursive function in f, x, if n = 3,
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and in the case n = 2, for every polynomial p1 there is a polynomial r1 such that t∗fx ≤0 rx for
all f ≤1 p.

In the following chapters these theories (in particular G2Aω) will be used as base theories to measure

the impact on the growth of provably recursive functionals of many analytical principles.
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2 Monotone functional interpretation of GnA
ω, PRAω ,PAω

and their extensions by analytical axioms: the rate of
growth of provable function(al)s

2.1 Gödel functional interpretation

Definition 2.1.1 The schema of the quantifier–free axiom of choice is given by

ACρ,τ–qf :
∧
xρ
∨
yτA0(x, y)→

∨
Y τρ

∧
xρA0(x, Y x),

where A0 is a quantifier–free formula of the respective theory.

AC–qf :=
⋃

ρ,τ∈T

{ACρ,τ–qf} .

If

GnAω `
∧
xρ
∨
yτA0(x, y),

then

GnAω + ACρ,τ–qf `
∨
Y τρ

∧
xρA0(x, Y x).

In order to determine the growth which is implicit in the functional dependency ’
∧
xρ
∨
yτ ’ we have

to determine the rate of growth of a functional term which realizes (or bounds) ’
∨
Y τρ’. Let A′

denote one of the well–known negative translations of A (see [43] for a systematical treatment) and

AD be the Gödel functional interpretation of A (as defined in [43] or [67] ).

AD has the logical form∨
x
∧
yAD(x, y, a),

where AD is quantifier–free, x, y are tuples of variables of finite type and a is the tuple of all free

variables of A. For our theories this functional interpretation holds:

Theorem 2.1.2 Let Γ be a set of purely universal sentences F ≡
∧
uγF0(u) ∈ L(GnAω) and

n ∈ IN ∪ {∞} (n ≥ 1). Then the following rule holds GnAω + Γ + AC–qf ` A⇒ ∃t ∈ GnRω such that

GnAω
i + Γ `

∧
y
((
A′
)
D

(ta, y, a)
)
.

t can be extracted from a given proof

(An analogous result holds if GnAω,GnRω,GnAω
i are replaced by PRAω, P̂R

ω
, PRAω

i or PAω, T,

PAω
i ).

Proof: For PAω the proof is given e.g. in [67]. The interpretation of the logical axioms and rules

only requires the closure under λ–abstraction, definition by cases and the existence of characteristic

functionals for the prime formulas. All this holds in GnRω and P̂R
ω

. The interpretation of the
universal axioms is trivial.
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Corollary 2.1.3 Let Γ be as above and A0(x, y) is a quantifier–free formula which has only x, y as

free variables. Then GnAω + Γ + AC–qf `
∧
x
∨
yA0(x, y)⇒ ∃t ∈ GnRω such that :

GnAω
i + Γ `

∧
xA0(x, tx)

(Analogously for PRAω and PAω).

By the well–known elimination procedure for the extensionality axiom (E) one may replace GnAω

by E–GnAω if the types of x are ≤ 1 and the types in AC–qf are somewhat restricted:

Corollary 2.1.4 Assume that (α = 0 ∧ β ≤ 1) or (α = 1 ∧ β = 0), and x = xρ1

1 , . . . , x
ρk
k where

ρi ≤ 1 for i = 1, . . . , k. Then E–GnAω + Γ + ACα,β–qf `
∧
x
∨
yA0(x, y)⇒ ∃t ∈ GnRω such that :

GnAω
i + Γ `

∧
xA0(x, tx)

(Analogously for E–PRAω and E–PAω).

Proof: The corollary follows from the previous corollary using the elimination of extensionality

procedure as carried out in [43] and observing the following facts:

1) The hereditary extensionality of R̃ρ (i.e. Ex(R̃) in the notation of [43] ) can be proved by

(QF–IA). Similarly for Φ1. The heriditary extensionality of µb follows easily from the axioms
µb.

2) (AC1,0–qf)e is provable by bounded search using µb and prop. 1.2.6 .

3) For F ∈ Γ the implication F → Fe holds logically.

2.2 Monotone functional interpretation

In [39] we introduced a new monotone functional interpretation which extracts instead of a

realizing term t for
∨
y in cor.2.1.3 a ’bound’ t∗ for t (in the sense of s–maj, which for types ≤ 2

provides a ≥–bound by lemma 1.2.11.7). This is sufficient in order to estimate the rate of growth

of t. The construction of t∗ does not cause any rate of growth in addition to that actually involved

in a given proof since besides the terms from the proof only the functionals maxρ
22 and Φ1 are

used (For the theories GnAω even Φ1 is not necessary for the construction of t∗ but only for the

very simple transformation of t∗ into a ≥–bound for type ≤ 2 by lemma 1.2.11 ). This has been

confirmed in applications to concrete proofs in approximation theory where t∗ could be used to

improve known estimates significantly (see [37] ,[38] ,[39] ). In most applications in analysis the

formula
∧
x
∨
yA(x, y) (A ∈ Σ0

1) will be monotone w.r.t. y, i.e.∧
x, y1, y2

(
y2 ≥ y1 ∧A(x, y1)→ A(x, y2)

)
,

and thus the bound t∗ in fact also realizes ’
∨
y’ (This phenomenon is discussed in [39] ).

The monotone functional interpretation has various properties which are important for the following
but do not hold for the usual functional interpretation:

22maxτρ(xτρ1 , xτρ2 ) := λyρ.maxτ (x1y, x2y).

18



1) The extraction of t∗ by monotone functional interpretation from a given proof is much easier

than the extraction of t provided by the usual functional interpretation: E.g. no decision of

prime formulas and no functionals defined by cases are needed for the construction of t∗ (but

only for its verification) since the logical axioms A → A ∧ A and A ∨ A → A have a simple

monotone functional interpretation (whereas these axioms are the difficult ones for the usual

functional interpretation). Because of this also the structure of the term t∗ is more simple

than that of t, in particular t∗ ∈ GnRω
− whereas t ∈ GnRω.

2) The bound t∗ obtained by monotone functional interpretation for
∨
zτ in sentences∧

x1
∧
y ≤ρ sx

∨
zτA0(x, y, z) does not depend on y, i.e.

∧
x1
∧
y ≤ρ sx

∨
z ≤τ t∗x A0(x, y, z)

(Here τ ≤ 2 and s is a closed term).

The most important property of our monotone functional interpretation however is
the following

3) Sentences of the form

(∗)
∧
xγ
∨
y ≤δ sx

∧
zηA0(x, y, z)

have a simple monotone functional interpretation which is fulfilled by any term s∗ such that

s∗ s–maj s (see [39] ). This means that sentences (∗) although covering many strong non–

constructive analytical theorems which usually do not have a functional interpretation in the

usual sense (not even in T) (as we will see in chapter 7 below) do not contribute to the growth

of the bound t∗ by their proofs but only by the term s and therefore can be treated simply as
axioms.

Definition 2.2.1 (bounded choice) The schema of ’bounded’ choice is defined as

(b–ACδ,ρ) :
∧
Zρδ

(∧
xδ
∨
y ≤ρ Zx A(x, y, Z)→

∨
Y ≤ρδ Z

∧
xA(x, Y x, Z)

)
,

b–AC :=
⋃
δ,ρ∈T

{
(b–ACδ,ρ)

}
.

(a discussion of this principle can be found in [34] ).

Theorem 2.2.2 Let ∆ be a set of sentences having the form
∧
uγ
∨
v ≤δ tu

∧
wηF0(u, v, w), where

t ∈ GnRω. Then the following rule holds
From a proof GnAω + ∆+AC–qf ` (A)′

one can extract by monotone functional interpretation a tuple Ψ ∈ GnRω
− such that

GnAω
i + ∆+b-AC ` (Ψ satisfies the monotone functional interpretation of (A)′),

where (A)′ denotes the negative translation of A.

In particular for A0(x, y, z) containing only x, y, z free and s ∈ GnRω the following rule holds for
τ ≤ 2:

From a proof GnAω + ∆ + AC–qf `
∧
x1
∧
y ≤ρ sx

∨
zτA0(x, y, z)

by monotone functional interpretation one can extract a Ψ ∈ GnRω
−[Φ1] such that

GnAω
i + ∆ + b–AC `

∧
x1
∧
y ≤ρ sx

∨
z ≤τ Ψx A0(x, y, z).
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Ψ is built up from 00, 10,maxρ,Φ1 and majorizing terms23 (for terms t occurring in those quantifier

axioms
∧
xGx → Gt and Gt →

∨
xGx which are used in the given proof) by use of λ–abstraction

and substitution.
If τ ≤ 1 (resp. τ = 2) then Ψ has the form Ψ ≡ λx1.Ψ0x

M (resp. Ψ ≡ λx1, y1.Ψ0x
MyM ), where

xM := Φ1x and Ψ0 does not contain Φ1

(An analogous result holds for PRAω, PAω).

Corollary 2.2.3 For 1 ≤ n ≤ 3 the following holds (for A0(x0, yρ, z0) containing only x, y, z free)

GnAω + ∆ + AC–qf `
∧
x0
∧
y ≤ρ sx

∨
z0A0(x, y, z)⇒

∃c1, c2 ∈ IN : G1Aω
i + ∆ + b–AC `

∧
x0
∧
y ≤ρ sx

∨
z ≤0 c1x+ c2 A0(x, y, z), if n = 1

∃k, c1, c2 ∈ IN : G2Aω
i + ∆ + b–AC `

∧
x0
∧
y ≤ρ sx

∨
z ≤0 c1x

k + c2 A0(x, y, z), if n = 2

∃k, c ∈ IN : G3Aω
i + ∆ + b–AC `

∧
x0
∧
y ≤ρ sx

∨
z ≤0 2cxk A0(x, y, z), if n = 3.

This generalizes to the case
∧
x0, x̃1

∧
y ≤ρ sxx̃

∨
z0A0: One obtains a bound which linear (polyno-

mially, elementary recursive) in x0, x̃M in the sense of chapter 1 for n = 1 (n = 2,n = 3) and for

n = 2 prop.1.2.30 applies.

Remark 2.2.4 1) For δ, ρ ≤ 1 the theory GnAω may be strengthened to E–GnAω in thm.2.2.2

and cor.2.2.3 if AC–qf is restricted as in 2.1.4 .

2) Theorem 2.2.2 and cor.2.2.3 generalize immediately to tuples x, y, z of variables instead of

x, y, z, if b–AC is formulated for tuples. Furthermore instead of
∨
wτA0 we may also have∨

zτ
∨
z′A0 where z′ is of arbitrary type: It still is possible to bound

∨
zτ .

Remark 2.2.5 Cor.2.2.3 is a considerable generalization of a theorem due to Parikh ([49] ): Parikh

shows for a subsystem (called PB) of the first order fragment of G2Aω: If PB`
∧
x
∨
A(x, y) (where

A contains only bounded quantifiers and only x, y as free variables) then there is a polynomial p

such that PB`
∧
x
∨
y ≤ p(x) A(x, y).

Proof of thm.2.2.2 : For PAω the theorem is proved in [39] . We only recall the treatment of ∆:

The negative translation ¬¬
∧
uγ¬¬

∨
v ≤δ tu

∧
wη¬¬F0 of D :≡

∧
u
∨
v ≤ tu

∧
w F0 is intuitionisti-

cally implied by D. The functional interpretation transforms D into

DD :≡
∨
V ≤ t

∧
u,w F0(u, V u,w). Let t∗ be such that t∗ s–maj t. Then (by lemma1.2.11.4)

V ≤ t → t∗ s–maj V . Hence t∗ satisfies the monotone functional interpretation of D (provable by

DD and thus in the presence of b-AC by D). The same proof applies to PRAω. For GnAω one

has to use prop.1.2.21 to show that the majorizing terms for the terms occuring in the quantifier

axioms can be choosen in GnRω
− (and not only in GnRω).

Proof of cor.2.2.3 : The corollary follows immediately from thm.2.2.2 and prop.1.2.28 using the

embedding x0 7→ λy0.x0 of type 0 into type 1. The assertion for the case
∧
x0, x̃1

∧
y ≤ρ sxx̃

∨
z0A0

follows using prop.1.2.21, the corollary to its proof and prop.1.2.22.

23Here t∗[ a ] is called a majorizing term if λa.t∗ s–maj λa.t, where a are all free variables of t.
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Remark 2.2.6 The size of the numbers k, c1, c2, c in the cor.2.2.3 above depends on the depth of
nestings of the functions +, · resp. xy occuring in the given proof. Such nestings may occur explicitly

by the formation of terms like (x · (x · (. . .))) by substitution or are logically circumscribed. In the

later case they are made explicit by the (logical) normalization of the bound extracted by monotone

functional interpretation. The process of normalization may increase the term depth enormously (In

fact by an example due to [55] even non–elementary recursively in the type degree of the term). This

corresponds to the fact that there are proofs of
∨
x0A0(x)–sentences such that the term complexity

of a realizing term for
∨
x0 is not elementary recursive in the size of the proof (see [72] ). However

such a tremendous term complexity is very unlikely to occur in concrete proofs from mathematical

practice: Firstly the parameter which is crucial for this complexity (the quantifier–complexity resp.

the type degree of the modus ponens formulas) is very small in practice, lets say ≤ 3. Secondly even

complex modus ponens formulas are able to cause an explosion of the term complexity only under
very special circumstances which describe logically the iteration of a substitution process as in the

example from [72] (we intend to discuss this matter in detail in another paper). Hence if a given

proof does not involve such an iterated substitution process the degree of the polynomial bound in
cor.2.2.3 will essentially be of the order of the degrees of the polynomials occuring in the proof and

if the proof uses the exponential function 2x (without applying it to itself) it will be a polynomial in

2x. Hence the results of this paper which establish that main parts of analysis can be developed in a
system whose provable growth is polynomial bounded also apply in a relativised form to proofs using
e.g. the exponential function.

¿From the proof of thm.2.2.2 it follows that b–AC is needed only to derive

F̃ :≡
∨
V ≤δγ t

∧
uγ , wηF0(u, V u,w) from F :≡

∧
uγ
∨
v ≤δ tu

∧
wηF0(u, v, w).24 Hence if in the

conclusion ∆ is replaced by ∆̃ :=
{
F̃ : F ∈ ∆

}
then b–AC can be omitted. In particular this is the

case if each F ∈ ∆ has the form
∨
v ≤ t

∧
w F0(v, w) since F̃ ≡ F for such sentences.

Combining the proof of thm.2.2.2 with the proof of thm.2.9 from [33] one can strenghten the

theorem by weakening b–AC(–
∧

) to b–AC–qf, i.e. b–AC restricted to quantifier–free formulas:

As in the proof of thm.2.9 in [33] one shows that

GnAω + AC–qf `
∧
uγ ,W ηδ

∨
v ≤δ tu F0(u, v,Wv)→

∧
uγ
∨
v ≤δ tu

∧
wηF0.

Thus ∆ can be replaced by ∆̂ :=
{∧

u,W
∨
v ≤ tu F0 : F ∈ ∆

}
without weakening of the theory.

Since the implication∧
u,W

∨
v ≤ tuF0(u, v,Wv)→

∨
V ≤ λu,W.tu

∧
u,WF0(u, V uW,W (V uW ))

can be proved by b–AC–qf (u,W can be coded into a single variable in GnAω for n ≥ 2)25 the proof

of the conclusion of thm.2.2.2 can be carried out in

GnAω
i + ∆̂ + b–AC–qf

and thus a fortiori in

GnAω
i + ∆ + b–AC–qf.

24Thus in particular only b–AC restricted to universal formulas (b–AC–
∧

) is used.
25For n = 1 one has to formulate b–AC–qf for tuples of variables.
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However replacing ∆ by ∆̂ may make the extraction of a bound more complicated since it causes a
raising of the types involved. Since we are interested in an extraction method which is as practical

as possible and yields bounds which are numerically as good as possible but not (primarily) in

the proof–theoretic strength of the theory used to verify these bounds we prefer the more simple
extraction from thm.2.2.2 .
Similarly to thm. 2.12 in [33] we have the following generalization of thm.2.2.2 to a larger class of

formulas:

Theorem 2.2.7 Let ∆ be as in thm.2.2.2 , ρ1, ρ2 ∈ T arbitrary types, τ1, τ2 ≤ 2, A0(x, y, z, a, b)

a quantifier–free formula containing at most x, y, z, a, b free and s, r ∈ GnRω. Then the following
rule holds:

GnAω + ∆ + AC–qf `
∧
x1
∧
y ≤ρ1

sx
∨
zτ1
∧
a ≤ρ2

rxz
∨
bτ2A0(x, y, z, a, b)

⇒ by monotone functional interpretation ∃Ψ1,Ψ2 ∈ GnRω
−[Φ1] :

E–GnAω + ∆ + b–AC `
∧
x1
∧
y ≤ρ1 sx

∨
z ≤τ1 Ψ1x

∧
a ≤ρ2 rxz

∨
b ≤τ2 Ψ2x A0(x, y, z, a, b).

Ψ1,Ψ2 are built up as Ψ in thm.2.2.2 . (An analogous result holds for PRAω and PAω).

Proof: Since the implication∧
x1
∧
y ≤ρ1 sx

∨
zτ1
∧
a ≤ρ2 rxz

∨
bτ2A0(x, y, z, a, b)→∧

x1
∧
y ≤ρ1 sx

∧
A ≤ρ2τ1 rx

∨
zτ1 , bτ2A0(x, y, z, Az, b)

holds logically the assumption of the theorem implies

GnAω + ∆ + AC–qf `
∧
x1
∧
y ≤ρ1

sx
∧
A ≤ρ2τ1 rx

∨
zτ1 , bτ2A0(x, y, z, Az, b).

By thm.2.2.2 and remark 2.2.4 2) one can extract (by monotone functional interpretation) terms

Ψ1,Ψ2 ∈ GnRω
−[Φ1] such that∧

x1
∧
y ≤ρ1

sx
∧
A ≤ρ2τ1 rx

∨
z ≤τ1 Ψ1x

∨
b ≤τ2 Ψ2x A0(x, y, z, Az, b).

As in the proof of 2.12 in [33] (using the fact that lemma 2.11 from [33] also holds for

E–GnAω
i + b–AC) one concludes the assertion of the theorem.

Theorem 2.2.8 All of our results on GnAω (GnAω
i , E–GnAω, E–GnAω

i ) and GnRω remain valid

if these theories are replaced by GnAω[χ] (GnAω
i [χ], E–GnAω[χ], E–GnAω

i [χ]) and GnRω[χ], where

for a theory T , T [χ] is defined as the extension obtained by adding a tuple χ of function symbols

χρii with deg(ρi) ≤ 1 together with

(1) arbitrary purely universal axioms
∧
xτA0(x) on χ, where τ ≤ 2

plus axioms having the form

(2) χ∗ s–maj χ for χ∗ ∈ GnRω
−,

where (1),(2) are valid in the full type structure Sω under a suitable interpretation of χ (GnRω[χ]

denotes the set of all closed terms of the extended theories).

In particular the bounds extracted in thm.2.2.2, 2.2.7 and cor.2.2.3 are still ∈ GnRω
−[Φ1].
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Proof: The theorem follows immediately from the proofs above (observing that also (2) is purely

universal) if one extends the construction of t∗ in the proof of prop.1.2.21 by the clause

’Replace all occurrences of χi in t by χ∗i ’. Since the majorizing terms χ∗i are ∈ GnRω
− this also holds

for t∗.

Remark 2.2.9 The reason for the restriction to deg(ρi) ≤ 1 in the theorem above is that the

addition of symbols for higher type functionals χ in general destroys the possibility of elimination

of extensionality since Ex(χ) may not be provable (and cannot be added simply as an axiom since

it is not purely universal). Also (2) is no longer purely universal if deg(ρi) ≥ 2.

By theorem 2.2.8 the extension by symbols for majorizable functions has no impact on the bounds
extracted from a proof. This is the reason why in the following chapters at some places we will

make free use of such extensions (e.g. we will add new function symbols for sin and cos in chapter

5) and will denote the resulting theories also by GnAω etc.

By cor.2.1.3 and thm.2.2.2 we can extract realizing functionals respectively uniform bounds for∧∨
A0–sentences (in the later case even for the more general sentences from thm.2.2.7 ). Since

the theories GnAω are based on classical logic it is in general not possible to extract computable

realizations or bounds for
∧∨∧

A0–sentences: Let us consider e.g.

(+)
∧
x0
∨
y0
∧
z0(Pxy ∨ ¬Pxz),

which holds by classical logic. If Pxy :≡ Txxy, where T is the Kleene T–predicate, then any upper
bound f on y, i.e.∧

x0
∨
y ≤0 fx

∧
z0(Pxy ∨ ¬Pxz)

can be used to decide the halting–problem (and therefore must be ineffective): For h which is defined

primitive recursively in f such that

hx :=

 0, if
∨
y ≤ fx(Txxy)

1 otherwise

one has hx = 0↔
∨
yTxxy for all x.

T is elementary recursive and can therefore be defined already in G3Aω.

If one generalizes (+) to tuples of number variables then – by Matijacevic’s result on Hilbert’s 1oth

problem– there is a polynomial Px y whith coefficients in IN such that there is no tuple t1, . . . , tk

of recursive functions (for y = y1 . . . yk) with∧
x
∨
y1 ≤ t1x . . .

∨
yk ≤ tkx

∧
z(Pxy = 0 ∨ ¬Pxz = 0).

Since P ∈ G2Rω and G2Rω allows the coding of finite tuples of natural numbers one can define

already in G2Rω a predicate P such that there is no recursive bound on y in (+).

The use of non–constructive
∧∨

–dependencies as in (+) is a characteristic feature of classical logic.

If intuitionistic logic is used the situation changes completely: In chapter 8 we will show that even

in the presence of a large class of non–constructive analytical axioms (including as a special case
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arbitrary
∧
uδ
∨
v ≤ρ su

∧
wτA0–sentences) one can extract uniform bounds Ψ ∈ GnRω on z in sen-

tences
∧
x1
∧
y ≤γ tx

∨
z A(x, y, z), which are proved in GnAω

i from such non–constructive axioms,

where A is an arbitrary formula ( containing only x, y, z free). This extraction is achieved by a

new monotone version of modified realizability.

Although in the case of theories based on classical logic it is not always possible to extract effec-

tive bounds for
∧
x
∨
yA(x, y)–sentences when A is not purely existential, one may obtain relative

bounds :
By AC0,0–qf and classical logic

(1)
∧
x0
∨
y0
∧
z0(Pxy ∨ ¬Pxz)

is equivalent to

(2)
∧
x, f1

∨
y(Pxy ∨ ¬Px(fy))

and a bound on y in (2) is given by

Ψxf := max0(0, f0) = f0

since26

(Px0 ∨ ¬Px(f0)) ∨ (Px(f0) ∨ ¬Px(ff0)).

For a more complex situation let us consider

F :≡
(∧

x0
∨
y0
∧
z0A0(x, y, z)→

∧
u0
∨
v0B0(u, v)

)
,

which is –by AC0,0–
∧

and prenexing– equivalent to

F̃ :≡
∧
f1, u

∨
x, z, v

(
A0(x, fx, z)→ B0(u, v)

)
.

F̃ is a
∧∨

F0–sentence. Thus v (and also x,z) can be bounded by a functional Ψuf in u, f with Ψ ∈
GnRω if F is proved in GnAω + ∆+AC–qf. Ψ is an effective bound relatively to the oracle f .

By raising the types one can replace F̃ by a different (and more complex)
∧∨

F0–sentence F̂ which

is more closely related to F in that the equivalence of F and F̂ can be proved using only AC0,0–qf:

F ↔
(∨

Φ2
∧
x0, f1A0(x,Φxf, f(Φxf))→

∧
u
∨
vB0(u, v)

)
↔
∧

Φ, u
∨
x, f, v

(
A0(x,Φxf, f(Φxf))→ B0(u, v)

)
≡: F̂ .

If F̂ is proved in GnAω+AC–qf, then one can extract from this proof a term t ∈ GnRω such that

tΦu realizes ’
∨
v’. If F̂ is proved in GnAω + ∆+AC–qf one obtains (using monotone functional

interpretation) a term t∗ ∈ GnRω such that for every Φ∗ which majorizes Φ, t∗Φ∗u is a bound for
v:

Φ∗ s–maj Φ→
(∧

x, fA0(x,Φxf, f(Φxf))→
∧
u
∨
v ≤ t∗Φ∗u B0(u, v)

)
.

26More generally fz is an upper bound where z is a variable.
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In this chapter we have determined the growth of uniform bounds Φu k on
∨
wγ (where γ ≤ 2) for

sentences

(+)
∧
u1, k0

∧
v ≤τ tu k

∨
wγA0

27

(and also the more general sentences from thm. 2.2.7 ) which are provable in GnAω+ axioms ∆

having the form
∧
xδ
∨
y ≤ρ sx

∧
zηB0.

In particular, for γ = 0 and n ≤ 3 we have bounds Φ such that

Φu k is a linear function in uM , k (where uMi := λx0.max0(u0, . . . , ux)), if n = 1,

Φu k is a polynomial function in uM , k for which prop.1.2.30 applies, if n = 2,

Φu k is an elementary recursive function in uM , k, if n = 3.

These results will be used in the following chapters (besides other proof–theoretic methods) to

determine the growth of extractable bounds from proofs which may use various genuine analytical
theorems.

27Here u, k denote tuple of variables of type 1, 0.
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3 Real numbers and continuous functions in G2A
ω
i :

Enrichment of data

3.1 Representation of real numbers in G2A
ω
i

Suppose that a proposition
∧
x
∨
yA(x, y) is proved in one of the theories T ω from the previous

chapters, where the variables x, y may range over IN,ZZ,Q, IR or e.g. C[0,1] etc. What sort of

numerical information on ’
∨
y’ relatively to the ’input’ x can be extracted from a given proof

depends in particular on how x is represented, i.e. on the numerical data by which x is given:
Suppose e.g. x that is a variable on IR and real numbers are represented by arbitrary Cauchy
sequences of rational numbers xn, i.e.

(1)
∧
k0
∨
n0
∧
m, m̃ ≥ n

(
|xm − xm̃| ≤

1

k + 1

)
.

Let us consider the (obviously true) proposition

(2)
∧
x ∈ IR

∨
l ∈ IN(x ≤ l).

Given x by a representative (xn) in the sense of (1) it is not possible to compute an l which satisfies

(2) on the basis of this representation, since this would involve the computation of a number n

which fulfils a (in general undecidable) universal property like
∧
m, m̃ ≥ n(|xm − xm̃| ≤ 1): Define

now l := d|xn|e+ 1.

If however real numbers are represented by Cauchy sequences with a fixed Cauchy modulus,

e.g. 1/(k + 1), i.e.

(3)
∧
m, m̃ ≥ k

(
|xm − xm̃| ≤

1

k + 1

)
,

then the computation of l is trivial:

l := Φ ((xn)) := d|x0|e+ 1.

Φ is not a function : IR → IN since it is not extensional: Different Cauchy sequences (xn), (x̃n)

which represent the same real number, i.e. limn→∞(xn − x̃n) = 0, yield in general different num-

bers Φ ((xn)) 6= Φ ((x̃n)). Following E. Bishop [5] , [6] we call Φ an operation : IR → IN. This

phenomenon is a general one (and not caused by the special definition of Φ): The only computable

operations IR→ IN, which are extensional, are operations which are constant, since the computabil-

ity of Φ implies its continuity as a functional28 : ININ → IN and therefore (if it is extensional w.r.t.

=IR) the continuity as a function IR→ IN.

The importance of the representation of complex objects as e.g. real numbers is also indicated
by the fact that the logical form of properties of these objects depends essentially on the represen-
tation:
If (xn), (x̃n) are arbitrary Cauchy sequences (in the sense of (1)) then the property that both

sequences represent the same real number is expressed by the Π0
3–formula

(4)
∧
k
∨
n
∧
m, m̃ ≥ n

(
|xm − x̃m| ≤

1

k + 1

)
.

28An operation Φ : IR→ IN is given by a functional : ININ → IN (which is extensional w.r.t. =1!) since sequences
of rational numbers are coded as sequences of natural numbers.
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For Cauchy sequences with fixed Cauchy modulus as in (2) this property can be expressed by the

(logically much simpler) Π0
1–formula

(5)
∧
k
(
|xk − x̃k| ≤

3

k + 1

)
.

For Cauchy sequences with modulus 1/(k + 1) (4) and (5) are equivalent (provably in G2Aω
i ). But

for arbitrary Cauchy sequences (4) does not imply (5) in general.

If (xn) ⊂ Q is an arbitrary Cauchy sequence then AC0,0 applied to∧
k
∨
n
∧
m, m̃ ≥ n

(
|xm − xm̃| ≤

1

k + 1

)
yields the existence of a function f1 such that∧

k
∧
m, m̃ ≥ fk

(
|xm − xm̃| ≤

1

k + 1

)
.

For m, m̃ ≥ k this implies |xfm − xfm̃| ≤ 1
k+1 (choose k′ ∈ {m, m̃} with fk′ ≤ fm, fm̃ and apply

the Cauchy property to m′ := fm, m̃′ := fm̃), i.e. the sequence (xfn)n∈IN is a Cauchy sequence

with modulus 1/(k + 1) which has the same limit as (xn)n∈IN.

Thus in the presence of AC0,0 (or more precisely the restriction AC0,0–
∧

of AC0,0 to Π0
1–formulas)

both representations (1) and (2) equivalent. However AC0,0–
∧

is not provable in any of our theories

and the addition of this schema to the axioms would yield an explosion of the rate of growth of

the provably recursive functions. In fact every α(< ε0)–recursive function is provably recursive in

G2Aω+ AC0,0–
∧

. This follows from the fact that iterated use of AC0,0–
∧

combined with classical
logic yields full arithmetical comprehension

CAar :
∨
f1
∧
x0(fx =0 0↔ A(x)),

where A is an arithmetical formula, i.e. a formula containing only quantifiers of type 0. CAar
applied to QF–IA proves the induction principle for every arithmetical formula. Hence full Peano–

arithmetic PA is a subsystem of G2Aω+ AC0,0–
∧

.

As a consequence of this situation we have to specify the representation of real numbers we choose:

Definition 3.1.1 A real number is given by a Cauchy sequence of rational numbers with modulus

1/(k + 1).

The reason for this representation is two–fold:

1) As we have seen already above any numerically interesting application of the extraction of a

bound presupposes that the input is given as a numerical reasonable object. This is also the

reason why in constructive analysis (in the sense of Bishop) as well as in complexity theory

for analysis (in the sense of H. Friedman and K.–I. Ko, see [31] ) real numbers are always

endowed with a rate of convergence, continuous functions with a modulus of continuity and
so on. Also in the work by H. Friedman, S. Simpson and others on the program of so–called
’reverse mathematics’, real numbers are always given with a fixed rate of convergence.
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2) For our representation of real numbers we can achieve that quantification over real numbers

is nothing else then quantification over ININ, i.e.
∧
x1,
∨
y1. Because of this many interesting

theorems in analysis have the logical form
∧∨

F0 (see [39] for a discussion on that) so that

our method of extracting feasible bounds applies.

1) and 2) are in fact closely related: If real numbers would be represented as arbitrary Cauchy

sequences then a proposition
∧
x ∈ IR

∨
y ∈ IN A(x, y) would have the logical form∧

x1(
∧
k
∨
n
∧
mF0 →

∨
y0A),

where (∗)
∧
k
∨
n
∧
mF0 expresses the Cauchy property of the sequence of rational numbers coded

by x1. By our reasoning in chapter 2 we know that we can only obtain a bound on y which depends

on x together with a Skolem function for (∗). But this just means that the computation of the

bound requires that x is given with a Cauchy modulus.
As concerned with provability in our theories like GnAω+AC–qf the representation with fixed
modulus is no real restriction: In chapter 11 we will show in particular that the a proof of∧

(xn)
(∨
f1
∧
k
∧
m, m̃ ≥ fk(|xm − x̃m| ≤

1

k + 1
)→

∨
y0A

)
can be transformed into a proof of∧

(xn)
(∧
k
∨
n
∧
m, m̃ ≥ n(|xm − x̃m| ≤

1

k + 1
)→

∨
y0A

)
.

within the same theory (i.e. without any use of AC0,0) for a large class of formulas A.

In particular we show that for every definable Cauchy sequence the assertion of the existence of a

Cauchy modulus is conservative (i.e. it does not cause any additional rate of growth).

The representation of IR presupposes a representation of Q: Rational numbers are represented

as codes j(n,m) of pairs (n,m) of natural numbers n,m. j(n,m) represents

the rational number
n
2

m+1 , if n is even,

the negative rational −
n+1

2

m+1 if n is odd.

By the surjectivity of our pairing function j from chapter 1 every natural number can be conceived
as code of a uniquely determined rational number. On the codes of Q, i.e. on IN, we define an
equivalence relation by

n1 =Q n2 :≡
j1n1

2

j2n1 + 1
=

j1n2

2

j2n2 + 1
if j1n1, j1n2 both are even

and analgously in the remaining cases, where a
b = c

d is defined to hold iff ad =0 cb (for bd > 0).

On IN one easily defines functions | · |Q ,+Q ,−Q , ·Q :Q ,maxQ ,minQ ∈ G2Rω and (quantifier–free)

relations) <Q ,≤Q which represent the corresponding functions and relations on Q. In the following

we sometimes omit the index Q if this does not cause any confusion.

Notational convention: For better readability we often write e.g. 1
k+1 instead of its code j(2, k)

in IN. So e.g. we write x0 ≤Q
1
k+1 for x ≤Q j(2, k).

28



By the coding of rational numbers as natural numbers, sequences of rationals are just functions

f1 (and every function f1 can be conceived as a sequence of rational numbers in a unique way). In

particular representatives of real numbers are functions f1 modulo this coding. We now show that
every function can be conceived as an representative of a uniquely determined Cauchy sequence of

rationals with modulus 1/(k+ 1) and therefore can be conceived as an representative of a uniquely

determined real number.29

To achieve this we need the following functional

Definition 3.1.2 The functional λf1.f̂ ∈ G2Rω is defined such that

f̂n =


fn, if

∧
k,m, m̃ ≤0 n

(
m, m̃ ≥0 k → |fm−Q fm̃| ≤Q

1
k+1

)
f(n0 − 1) for n0 := min l ≤0 n[

∨
k,m, m̃ ≤0 l

(
m, m̃ ≥0 k ∧ |fm−Q fm̃| >Q

1
k+1

)
],

otherwise.

One easily verifies (within G2Aω
i ) that

1) if f1 represents a Cauchy sequence of rational numbers with modulus 1/(k + 1), then∧
n0(fn =0 f̂n),

2) for every f1 the function f̂ represents a Cauchy sequence of rational numbers with modulus

1/(k + 1).

Hence every function f gives a uniquely determined real number, namely that number which is

represented by f̂ . Quantification
∧
x ∈ IR A(x) (

∨
x ∈ IR A(x)) so reduces to the quantification∧

f1A(f̂) (
∨
f1A(f̂)) for properties A which are extensional w.r.t. =IR below (i.e. which are really

properties of real numbers). Operations Φ : IR → IR are given by functionals Φ1(1) (which are

extensional w.r.t.=1). A real function : IR→ IR is given by a functional Φ1(1) which (in addition) is

extensional w.r.t. =IR . Following the usual notation we write (xn) instead of fn and (x̂n) instead

of f̂n.
In the following we define various relations and operations on functions which correspond to the
usual relations and operations on IR for the real numbers represented by the respective functions:

Definition 3.1.3 1) (xn) =IR (x̃n) :≡
∧
k0
(
|x̂k −Q

̂̃xk| ≤Q
3
k+1

)
;

2) (xn) <IR (x̃n) :≡
∨
k0
(̂̃xk − x̂k >Q

3
k+1

)
;

3) (xn) ≤IR (x̃n) :≡ ¬(̂̃xn) <Q (x̂n);

4) (xn) +IR (x̃n) := (x̂2n+1 +Q
̂̃x2n+1);

5) (xn)−IR (x̃n) := (x̂2n+1 −Q
̂̃x2n+1);

6) |(xn)|IR := (|x̂n|Q);

7) (xn) ·IR (x̃n) := (x̂2(n+1)k ·Q ̂̃x2(n+1)k), where k := dmaxQ(|x0|+ 1, |x̃0|+ 1)e;
29A related representation of real numbers is sketched in [3] .
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8) For (xn) and l0 we define

(xn)−1 :=

 (maxQ(x̂(n+1)(l+1)2 , 1
l+1 )−1), if x̂2(l+1) >Q 0

(minQ(x̂(n+1)(l+1)2 , −1
l+1 )−1), otherwise;

9) maxIR

(
(xn), (x̃n)

)
:=
(

maxQ(x̂n, ̂̃xn)
)
, minIR

(
(xn), (x̃n)

)
:=
(

minQ(x̂n, ̂̃xn)
)
.

One easily verifies the following

Lemma: 3.1.4 1) (xn) =IR (x̃n) resp. (xn) <IR (x̃n), (xn) ≤IR (x̃n) hold iff the correponding

relations hold for those real numbers which are represented by (xn), (x̃n).

2) Provably in G2Aω
i , (xn) +IR (x̃n), (xn) −IR (x̃n), (xn) ·IR (x̃n), maxIR

(
(xn), (x̃n)

)
,

minIR

(
(xn), (x̃n)

)
and |(xn)|IR also represent Cauchy sequences with modulus 1/(k+ 1) which

represent the real number obtained by addition (subtraction,...) of those real numbers which

are represented by (xn), (x̃n). This also holds for (xn)−1 if |(xn)|IR ≥IR
1
l+1 for the number

l used in the definition of (xn)−1. In particular the operations +IR,−IR etc. are extensional

w.r.t. to =IR and therefore represent functions30.

3) The functionals +IR,−IR, ·IR,maxIR,minIR of type 1(1)(1), | · |IR of type 1(1) and ()−1 of type

1(1)(0) are definable in G2Rω.

Proof: The lemma is easily proved using the following hints: Ad =IR: If
∧
k0
(
|x̂k−Q

̂̃xk| ≤Q
3
k+1

)
then the Cauchy sequences (xn), (x̃n) clearly have the same limit. If

∨
k0
(
|x̂k−Q

̂̃xk| >Q
3
k+1

)
then∧

n ≥ k
(
|x̂n −Q

̂̃xn| >Q
1
k+1

)
(since (x̂n), (̂̃xn) have the Cauchy modulus 1

n+1 ). Hence (x̂n), (̂̃xn)

have different limits.
Ad ·IR: Because of |ca− db| = |(c− d)a+ (a− b)d| ≤ |c− d| · |a|+ |a− b| · |d| one has for m, m̃ ≥ n:

|x̂2(m+1) · ̂̃x2(m+1)k −Q |x̂2(m̃+1) · ̂̃x2(m̃+1)k| ≤

|x̂2(m+1)k −Q x̂2(m̃+1)k| · k + |̂̃x2(m+1)k −Q
̂̃x2(m̃+1)k| · k ≤

1
2(n+1)k+1 · k + 1

2(n+1)k+1 · k <
1

n+1 .

That the definition of (xn)−1 is correct is proved using

| 1q −
1
p | =

1
|pq| · |p− q| (for p, q 6= 0) and |max(p, r)−max(q, r)| ≤ |p− q|.

Rational numbers q coded by rq have as canonical representative in IR (besides other representatives)

the constant function λn0.rq. One easily shows that∧
k
(
|(xn)−IR λn.xk| ≤IR

1

k + 1

)
for every function (xn).

Notational convention: For notational simplicity we often omit the emmbedding Q ↪→ IR, e.g.

x1 ≤IR y0 stands for x ≤IR λn.y0. From the type of the objects it will be always clear what is meant.

30The functional ()−1 is extensional for all l and (xn), (yn) such that |(xn)|IR, |(yn)|IR ≥ 1
l+1

.
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If (fn)n∈IN of type 1(0) represents a 1
k+1–Cauchy sequence of real numbers, then f(n) :=

f̂3(n+1)(3(n+ 1)) represents the limit of this sequence, i.e.∧
k
(
|fk −IR f | ≤IR

1

k + 1

)
.

(One only has to show that f̂ =1 f . But this follows from

|f̂3(m+1)(3(m+ 1))−Q f̂3(m̃+1)(3(m̃+ 1))| ≤

|f̂3(m+1)(3(m+ 1))−IR f3(m+1)|+ |f3(m+1) −IR f3(m̃+1)|+ |f3(m̃+1) −IR f̂3(m̃+1)(3(m̃+ 1))| ≤ 3
3(n+1)

for m, m̃ ≥ n).

Representation of IRd in G2A
ω
i :

For every fixed d we represent IRd as follows: Elements of IRd are represented by functions f1

in the following way: Using the construction f̂ from above, every f1 can be conceived as a rep-
resentative of such a d–tuple of Cauchy sequences of real numbers, namely the sequence which is
represented by( ̂νd1 (f), . . . , ̂νdd(f)

)
, where νdi (f) := λx0.νdi (fx).

Since the ̂νdi (f) represent Cauchy sequences of rationals with Cauchy modulus 1
k+1 , elements of IRd

are so represented as Cauchy sequences of elements in Qd which have the Cauchy modulus 1
k+1

w.r.t. the maximum norm ‖f1‖max := maxIR

(
|νd1 (f)|IR, . . . , |νdd(f)|IR

)
.

Quantification
∧

(x1, . . . , xd) ∈ IRd so reduces to
∧
f1A( ̂νd1 (f), . . . , ̂νdd(f)) for IR–extensional prop-

erties A (likewise for
∨

).

The operations +IRd ,−IRd , . . . are defined via the corresponding operations on the components, e.g.

x1 +IRd y
1 :≡ νd(νd1x+IR ν

d
1y, . . . , ν

d
dx+IR ν

d
dy).

Sequences of elements are represented by (fn) of type 1(0).

Representation of [0,1]⊂ IR in G2A
ω
i

We now show that every element of [0, 1] can be represented already by a bounded function

f ∈ {f : f ≤1 M}, where M is a fixed function from G2Rω and that every function from this

set can be conceived as an (representative of an) element in [0,1]: Firstly we define a function

q ∈ G2Rω by

q(n) :=

 min l ≤0 n[l =Q n], if 0 ≤Q n ≤Q 1

00, otherwise.

It is clear that every rational number ∈ [0, 1] ∩Q has a unique code by a number ∈ q(IN) and∧
n0(q(q(n)) =0 q(n)). Also every such number codes an element of ∈ [0, 1] ∩Q. We may conceive

every number n as a representative of a rational number ∈ [0, 1] ∩Q, namely of the rational coded

by q(n).

In contrast to IR we can restrict the set of representing functions for [0,1] to the compact (in the

sense of the Baire space) set f ∈ {f : f ≤1 M}, where M(n) := j(6(n+ 1), 3(n+ 1)− 1):
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Each fraction r having the form i
3(n+1) (with i ≤ 3(n+ 1)) is represented by a number k ≤ M(n),

i.e. k ≤ M(n) ∧ q(k) codes r. Thus {k : k ≤M(n)} contains (modulo this coding) an 1
3(n+1)–net

for [0,1].

We define a functional λf.f̃ ∈ G2Rω such that

f̃(k) = q(i0), where i0 = µi ≤0 M(k)[
∧
j ≤0 M(k)(|f̂(3(k + 1))−Q q(j)| ≥Q |f̂(3(k + 1))−Q q(i)|)].

f̃ has (provably in G2Aω
i ) the following properties:

1)
∧
f1(
̂̃
f =1 f̃).

2)
∧
f1(0 ≤IR f̃ ≤IR 1).

3)
∧
f1(0 ≤IR f ≤IR 1→ f =IR f̃).

4)
∧
f1(

˜̃
f =IR f̃).

Proof: 1)
∧
f1(

˜̃
f =1 f̃) follows easily from the definition of f̃ .∧

f1(
̂̃
f =1 f̃): Assume m, m̃ ≥0 n. |f̂(3(m + 1)) −Q f̂(3(m̃ + 1))| ≤ 1

3(n+1) and the fact that

{q(i) : i ≤0 M(n)} contains a 1
3(n+1)–net for [0, 1] imply that |f̃(m) −Q f̃(m̃)| ≤ 1

n+1 (here one

has to disinguish the cases f̂(3(m + 1) in [0, 1] or not in [0, 1]), so f̃ has the appropriate Cauchy

modulus.

2) follows again immediately from the definition of f̃ .

3) follows from 1). 4) follows from 2) and 3).

By this construction quantification
∧
x ∈ [0, 1] A(x) and

∨
x ∈ [0, 1] A(x) reduces to quantification

having the form
∧
f ≤1 M A(f̃) and

∨
f ≤M A(f̃) for properties A which are =IR–extensional (for

f1, f2 such that 1 ≤IR f1, f2 ≤IR 1), where M ∈ G2Rω . Similarly one can define a representation

of [a, b] for variable a1, b1 such that a <IR b by bounded functions {f1 : f ≤1 M(a, b)}. However

by remark 3.1.5 below one can easily reduce the quantification over [a, b] to quantification over

[0, 1] so that we do not need this generalization. But on some occasions it is convenient to have

an explicit representation for [−k, k] for all natural numbers k. This representation is analogous to

the representation of [0, 1] except that we now define Mk(n) := j(6k(n + 1), 3(n + 1) − 1) as the

bounding function. The construction corresponding to λf.f̃ is also denoted by f̃ since it will be
always clear from the context what interval we have in mind.

Representation of [0, 1]d in G2A
ω
i

Using the construction f 7→ f̃ from the representation of [0,1] we also can represent [0, 1]d for

every fixed number d by a bounded set
{
f1 : f ≤1 Md

}
of functions, where Md : νd(M, . . . ,M) ∈

G2Rω for every fixed d:

f(≤ Md) represents the vector in [0, 1]d which is represented by ( ˜(νd1f), . . . , ˜(νddf)). If (in the

other direction) f1, . . . , fd represent real numbers x1, . . . , xd ∈ [0, 1], then f := νd(f̃1, . . . , f̃d) ≤1

νd(M, . . . ,M) represents (x1, . . . , xd) ∈ [0, 1]d in this sense.
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Remark 3.1.5 For a, b ∈ IR with a ≤IR b, quantification
∧
x ∈ [a, b] A(x) (

∨
x ∈ [a, b] A(x))

reduces to quantification over [0, 1] (and therefore –modulo our representation– over {f : f ≤1 M})
by
∧
λ ∈ [0, 1] A(λa+(1−λ)b) and analogously for

∨
x. This transformation immediately generalizes

to [a1, b1]× · · · × [ad, bd] using λ1, . . . , λd.

3.2 Representation of continuous functions f : [0, 1]d → IR by number

theoretic functions

Functions f : [a, b] → IR (a, b ∈ IR, a < b) are represented in GnAω by functionals Φ1(1) which are

=IR–extensional:∧
x1, y1(a1 ≤IR x, y ≤IR b1 ∧ x =IR y → Φx =IR Φy).

Let f : [a, b]→ IR be a pointwise continuous function. Then (classically) f is uniformly continuous

and possesses a modulus ω : IN→ IN of uniform continuity, i.e.∧
x, y ∈ [a, b], k ∈ IN(|x− y| ≤ 1

ω(k) + 1
→ |fx− fy| ≤ 1

k + 1
).

In GnAω this reads as follows

(+)
∧
x1, y1, k0(a1 ≤IR x, y ≤IR b ∧ |x−IR y| ≤IR

1

ω(k) + 1
→ |Φx−IR Φy| ≤IR

1

k + 1
).

Thus quantification over continuous functions : [a, b] → IR corresponds in GnAω to quantification

over all Φ1(1), ω1 which fulfil (+).

In the following we show how this quantification over objects of type level 2 can be reduced to type–

1–quantification and how the condition (+) can be eliminated so that quantification over continuous

functions on [a, b] corresponds exactly to (unrestricted) quantification over f1. We do this first for

a = 0, b = 1 and reduce the general case to this situation. Finally we generalize our treatment to

functions on [0, 1]d (and [a1, b1]× . . .× [ad, bd]).

Let f : [0, 1]→ IR be a uniformly continuous function with modulus of uniform continuity ωf .

f is already uniquely determined by its restriction to [0, 1] ∩ Q. Thus continuous functions f :

[0, 1]→ IR can be conceived as a pair (fr, ωf ) of functions fr : [0, 1] ∩Q → IR, ωf : IN→ IN which

satisfy

(∗)
∧
k ∈ IN, x, y ∈ [0, 1] ∩Q

(
|x− y| ≤ 1

ωf (k) + 1
→ |frx− fry| ≤

1

k + 1

)
(See also [70] and [6]).

Remark 3.2.1 To represent a continuous function f ∈ C[0, 1] as a pair including a modulus of

uniform continuity is a numerical enrichment of the given data which we use here for reasons
which are similar to the endowment of real numbers with a Cauchy modulus: As we will see below

quantification over C[0, 1] so reduces to quantification over functions of type 1. Furthermore many

functions on C[0, 1] as e.g.
∫ 1

0
f(x)dx or sup

x∈[0,1]

f(x) are given by functionals ∈ G2Rω in these

data (see paragraph 3 and 4 below). This has as a consequence that many important theorems on
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continous functions have the logical form of axioms Γ or ∆ in the theorems of chapter 2. Also many

sentences
∧
f ∈ C[0, 1]

∧
x ∈ IR

∧
y ∈ [0, 1]

∨
z ∈ IN A(f, x, y, z) have the logical form

∧
f1, x1

∧
y ≤1

M
∨
z0 Ã(f, x, y, z) with Ã ∈ Σ0

1 so that theorem 2.2.2 applies yielding bounds on
∨
z which depend

only on f, x (if f is represented with a modulus of continuity).

In chapter 7 we will extend E-GnAω by an axiom F− having the form of the sentences ∈ ∆ in

thm. 2.2.2 (and therefore not contributing to the rate of growth) which implies that every pointwise

continuous function f : [0, 1] → IR is uniformly continuous and possesses a modulus of uniform

continuity. Hence under F− the enrichment by such a modulus does not imply a restriction on the
class of functions. We also formulate a stonger axiom F of this type which even implies that every

function f : [0, 1] → IR which is given by a functional Φ1(1) is uniformly continuous and possesses

a modulus of uniform continuity. This is not contradictory to the existence of non–continuous
functions since the proof of the existence of a functional Φ representing such a function would
require higher comprehension which is not available in our theories.

Modulo our representation of Q and IR, fr is an object of type 1(0) (i.e. a sequence of number

theoretic functions). Quantification over continuous functions on [0,1] reduces to quantification over

all pairs (f1(0), ω1) (and therefore by suitable coding to quantification over all functions of type 1)

which satisfy (∗) by substituting λx1.f(x)IR for (f, ω) in the matrix where f(x)IR := lim
k→∞

f(x̃(ω(k)))

(λk0.f(x̃(ω(k))) is a Cauchy sequence of real numbers with modulus 1
k+1 and so its limit is definable

in G2Aω).

For the program carried out in this paper it is of crucial importance to be able to eliminate the

implicative premise (∗): Let us consider the theorem of the attainment of the maximum of a

continuous function on [0,1]∧
f ∈ C[0, 1]

∨
x0 ∈ [0, 1]

∧
x ∈ [0, 1](f(x0) ≥ fx).

Without the need of the implicative premise (∗) on (f, ω) this theorem would have (using our

representation) the logical form∧
f1
∨
x0 ≤1 M

∧
x1 A(f, x0, x),

where A ∈ Π0
1, i.e. the logical form of an axiom ∆ in the theorems 2.2.2 and 2.2.7 and corollary

2.2.3 from chapter 2. Similarly many other important non–constructive theorems would have the
logical form of an axiom ∆ and thus do not contribute to the rate of growth of the uniform bounds
extracted from proofs which use these theorems.

In fact below we will show that the premise (∗) can be eliminated by constructing functionals

Ψ̃1, Ψ̃2 ∈ G2Rω such that the following holds

1) If (f1(0), ω1) fulfils (∗), then f =1(0) Ψ̃1fω and Ψ̃2fω is also a modulus of uniform continuity

for f .

2) For every pair (f1(0), ω1) the pair (Ψ̃1fω, Ψ̃2fω) satisfies (∗).

By this construction the quantification∧
(f1(0), ω1)

(
(∗)→ A(f, ω)

)
reduces to∧

(f1(0), ω1) A(Ψ̃1fω, Ψ̃2fω)
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(and likewise for
∨

) for properties A which are extensional in the sense of =C[0,1].

In the following we write more suggestively fω, ωf for Ψ̃1fω, Ψ̃2fω.

The underlying intuition for the following definition is roughly as follows: If f is uniformly continu-

ous with modulus ω, then fω(n) := f(n). In the case that the continuity property is violated at the

first time at a point n, then we define fω as a simple polygon using the f–values on the previous
points:

Definition 3.2.2 For f1(0), ω1 we define fω, ωf as follows:

fω(n) :=1



f(n), if A0(f, ω, n) :≡
∧
m, m̃ ≤0 Φω(3n)

∧
k ≤0 n

2(
|q(m)−Q q(m̃)| ≤ 1

ω̃(k)+1 → | ̂(f(qm))k −Q
̂(f(qm̃))k| ≤ 3

k+1

)
pn0,f (n), for n0 ≤0 n minimal such that ¬A0(f, ω, n0), otherwise,

ωf (n) :=0



ω̃(3n), if A0(f, ω, n)

max0

((
max0

{⌈ ̂∣∣∣ f(qi)−IRf(qj)
qi−Qqj

∣∣∣(1)

⌉
+ 1 : i, j ≤0 Φω(3n0), q(i) 6= q(j)

})
· (n+ 1), ω̃(n)

)
for n0 ≤0 n minimal such that ¬A0(f, ω, n0), otherwise,

(here | . . . |(1) is the value of the sequence | . . . | at 1) where

pn0,f is the polygon defined by f(q0), . . . , f(q(Φω(3(n0 −· 1)))),

ω̃(k) :=0 max0(k, 1)2 ·
(

maxi≤k ω(i) + 1
)
, ωf (n) := ωf (5(n+ 1)) and

Φω(n) :=0 j(2(ω̃(n) + 1), ω̃(n) + 1) (Note that 0, 1 are coded by 0, j(2, 0) ≤0 Φω(3(n0 −· 1))).

Remark 3.2.3 fω and ωf are definable in G2Rω (as functionals in f, ω) since A0 can be expressed

quantifier–free and pn0,f can be written as

pn0,f (n) =1 f(qi) +IR
f(qi)−IR f(qj)

qi−Q qj
·IR (qn−Q qi),

where i, j ≤0 Φω(3(n0 −· 1)) are such that qi ≤Q qn∧ (|qi−Q qn| minimal)∧ qj >Q qn∧ (|qj −Q qn|
minimal) (If q(n) =Q 1, then pn0,f (n) =1 f(q(n))).

Lemma: 3.2.4 1) k1 ≥0 k2 → ω̃(k1) ≥0 ω̃(k2).

2) ω̃(k) ≥0 k and ω̃(k) ≥0 ω(k).

3) ω̃(3 · k) ≥0 3 · ω̃(k) + 3 for k ≥ 1.

Proof: 1) and 2) follow immediately from the definition of ω̃.

3) ω̃(3k)
k≥1

≥ 9k2 ·
(

max
i≤k

ω(i) + 1
)
≥ 3k2 ·

(
max
i≤k

ω(i) + 1
)

+ 6k2

k≥1

≥ 3k2
(

max
i≤k

ω(i) + 1
)

+ 3 = 3 · ω̃(k) + 3.
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Lemma: 3.2.5 If f1(0) represents a uniformly continuous function F : [0, 1] → IR with a modulus

ω1 of uniform continuity, i.e.∧
m, m̃, k

(
|qm−Q qm̃| ≤Q

1
ω(k)+1 → |f(qm)−IR f(qm̃)| ≤IR

1
k+1

)
,

then fω =1(0) f and ωf is also a modulus of uniform continuity for F .

Proof: The first part of the lemma follows from the definition of fω observing that the case
’otherwise’ never occurs because of the assumption, since

|qm−Q qm̃| ≤ 1

ω̃(k) + 1

l.3.2.4
≤ 1

ω(k) + 1

implies that

| ̂(f(qm))k −Q
̂(f(qm̃))k| ≤ |f(qm)−IR f(qm̃)|+ 2

k + 1
≤ 3

k + 1
.

Furthermore ωf (n) = ω̃(3n)
l.3.2.4
≥0 ω(n). Hence together with ω also ωf and thus a fortiori ωf is a

modulus of uniform continuity.

Lemma: 3.2.6 For every pair (f1(0), ω1) the following holds:

fω represents a uniformly continuous function : [0, 1] ∩ Q → IR and ωf is a modulus of uniform

continuity for this function, i.e.∧
m, m̃, k

(
|qm−Q qm̃| ≤ 1

ωf (k) + 1
→ |fω(qm)−IR fω(qm̃)| ≤ 1

k + 1

)
.

Proof: Let m, m̃, k ∈ IN be such that |qm−Q qm̃| ≤ 1
ωf (k)+1 .

We may assume that qm >0 qm̃.

Case 1: A0(f, ω, qm). Then also A0(f, ω, qm̃) since the monotonicity of Φω(3n) and n2 implies

n1 ≥0 n2 ∧A0(f, ω, n1)→ A0(f, ω, n2).

Hence f(qm) =IR fω(qm) and f(qm̃) =IR fω(qm̃). By ωf (k) ≥0 ω̃(k), k the assumption on m, m̃, k

yields

(+) |qm−Q qm̃| ≤ 1

ω̃(k) + 1
and (++) |qm−Q qm̃| ≤ 1

k + 1
.

(++) implies that k ≤0 (qm)2 (Because of j2(qm), j2(qm̃) <0 qm, the (distinct) fractions coded

by qm, qm̃ have denominaters a, b ≤0 qm. Thus | ia −
j
b | ≥

1
ab ≥

1
(qm)2 ). Furthermore qm, qm̃ ≤0

Φω(3(qm)). Hence (+) and A0(f, ω, qm) yield (using
∧
x0(q(qx) =0 qx))

|( ̂f(qm))k −Q ( ̂f(qm̃))k| ≤ 3

k + 1

and therefore

|fω(qm)−IR fω(qm̃)| =IR |f(qm)−IR f(qm̃)| ≤ 5

k + 1
.

Case 2: ¬A0(f, ω, qm).

2.1 k ≥0 n0 := minn ≤0 qm¬A0(f, ω, n):
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In this case we have fω(qm) =IR pn0,f (qm) and fω(qm̃) =IR pn0,f (qm̃) (In the case A0(f, ω, qm̃)

we have qm̃ < n0 ≤ Φω(3(n0 − 1)) and so fω(qm̃) = f(qm̃) is one of the f–values used in defining

pn0,f ). Since ωf is a modulus of uniform continuity for pn0,f for k ≥ n0, the assumption on m, m̃

implies

|fω(qm)−IR fω(qm̃)| ≤ 1

k + 1
.

2.2 1 ≤0 k <0 n0: Then A0(f, ω, k) and therefore ωf (k) = ω̃(3k). Since all fractions i
ω̃(3(n0−1))+1

with i ≤0 ω̃(3(n0−1))+1 have a code ≤0 Φω(3(n0−1)), the maximal distance between two adjacent

breaking points of pn0,f is ≤ 1
ω̃(3(n0−1))+1 . Hence there are m∗, m̃∗ ≤0 Φω(3(n0− 1)) (i.e. ’breaking

points’ of the polygon pn0,f next to m, m̃ satisfying (2) below) such that

(1) |qm∗ −Q qm̃∗| ≤ 1

ωf (k) + 1
+

2

ω̃(3(n0 − 1)) + 1

l.3.2.4
≤ 3

ω̃(3k) + 1

l.3.2.4
≤ 3

3ω̃(k) + 3 + 1
≤ 1

ω̃(k) + 1

and

(2) | pn0,f (qm̃∗)︸ ︷︷ ︸
=IRf(qm̃∗)

−IR pn0,f (qm∗)︸ ︷︷ ︸
=IRf(qm∗)

| ≥IR | pn0,f (qm̃)︸ ︷︷ ︸
=IRfω(qm̃)

−IR pn0,f (qm)︸ ︷︷ ︸
=IRfω(qm)

|.

Since A0(f, ω, n0 − 1) and k ≤0 (n0 − 1)2, (1) and (2) imply

|fω(qm)−IR fω(qm̃)|
(2)

≤ |f(qm∗)−IR f(qm̃∗)| ≤ |( ̂f(qm∗))k −Q ( ̂f(qm̃∗))k|+ 2
k+1

(1)

≤ 3
k+1 + 2

k+1 = 5
k+1 .

Put together we have shown that in both cases (for k ≥ 1)

|qm−Q qm̃| ≤ 1

ωf (k) + 1
→ |fω(qm)−IR fω(qm̃)| ≤ 5

k + 1
.

Hence ωf is a modulus of uniform continuity for fω.

Since every pair (f1(0), ω1) can be conceived now as a representation of a uniformly continuous

function [0, 1] ∩ Q → IR, namely that function which is represented by (Ψ̃1fω, Ψ̃2fω) (where

Ψ̃1fω := fω ◦ q, Ψ̃2fω := ωf ).31 And every function g1 can be conceived as a pair (f, ω) by

g 7→ (λk0, n0.(j1g)(j(k, n)), j2g) (where jig := λx0.ji(gx)), so g1 represents the continuous function

(Ψ1g,Ψ2g), where Ψ1g := Ψ̃1(λk0, n0.(j1g)(j(k, n)), j2g) and Ψ2g := Ψ̃2(λk0, n0.(j1g)(j(k, n)), j2g).

Since every pair (f, ω) can be coded by a function g, every uniformly continuous function

[0, 1] ∩Q → IR is represented by some function g. Together with Ψ̃i also the Ψi are in G2Rω.

Now we define the continuation on full [0, 1]:

Definition 3.2.7 The functional λg1, x1.g(x)IR ∈ G2Rω is defined by

(g(x)IR)(k0) :=0
̂Ψ1g(x̃(Ψ2g(3(k + 1))))(3(k + 1)), x̃ is the construction used in our representation

of [0, 1].

31By switching from fω to fω ◦ q we can formulate the continuity of Ψ̃1fω now as∧
m, m̃

(
0 ≤Q m, m̃ ≤Q 1 ∧ |m−Q m̃| ≤ 1

ωf (k)+1
→ |(Ψ̃1fω)(m)−IR |(Ψ̃1fω)(m̃)| ≤ 1

k+1

)
, i.e. without mentioning

q anymore.
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Remark 3.2.8 g(x)IR represents the value of the function ∈ C[0, 1], which is represented by g,

applied to the real ∈ [0, 1], which is represented by x.

Notation: If a function ∈ C[0, 1] is given as a pair (f1(0), ω1) we also use the notation f(x)IR in

order to avoid the need of spelling out the coding (f, ω) 7→ g1.

Remark 3.2.9 Quantification over C[a, b] (where a < b) reduces to quantification over C[0, 1] by

f ∈ C[a, b] 7→ g := λx.f(a(1− x) + bx) ∈ C[0, 1] and

g ∈ C[0, 1] 7→ f := λx.g(x−ab−a ) ∈ C[a, b].

In [32] and [37] we used a different representation of the space C[0, 1] (following [8] ) based on the

Weierstraß approximation theorem: A function f ∈ C[0, 1] was represented as a Cauchy sequence

w.r.t. ‖ · ‖∞ (with modulus 1/(k + 1)) of polynomials with rational coefficients. Then we applied

a construction, similarly to f̂ used in our representation of IR above, to ensure that every function

f1 could be conceived as such a Cauchy sequence.
However this representation is not convenient for our theory G2Aω

i since the coding of an arbitrary

sequence of polynomials requires the coding of finite sequences of natural numbers (the codes of the

coefficients) of variable length which can be carried out in G3Aω
i but not in G2Aω

i . Furthermore in

practice the computation of an approximating sequence of polynomials to a given function is quite

complicated (and even more when one deals with functions in several variables as we will do below)

whereas for most functions occurring in mathematics a modulus of continuity can be written down
directly. Hence it is much more useful to extract bounds which require as a function input only
the function endowed with a modulus of uniform continuity than an approximating sequence of
polynomials. In our applications to approximation theory we always obtained bounds in functions

with a modulus of continuity. Because of this we conjectured in [37] that this will always hold for

extractions of bounds from concrete proofs. By our new representation of C[0, 1] this conjecture is

theoretically justified: From a proof of a sentence∧
f ∈ C[0, 1]

∨
y0 A(f, y), where A ∈ Σ0

1

we obtain a bound on y in a representative of f in our sense, i.e. in f endowed with a modulus of
uniform continuity.

The construction of fω, ωf looks quite complicated. However if f is already given with a mod-

ulus ω (as in concrete applications) then fω does not change anything and ωf (n) is just a slight

modification of ω and the proof of this (3.2.5 ) is almost trivial. The complicated clause in the

definition of fω, ωf is needed only to ensure that an arbitrary given pair (f, ω) is transformed into a

continuous function. The quite complicated proof of lemma 3.2.6 is not relevant for the extraction
process since the statement of this lemma is a purely universal sentence and therefore an axiom of
G2Aω

i .

For the construction of fω and ωf we have made use of the fact that the values fx, fx̃ of f on

two points x < x̃ can be connected by a line given by the simple function

(∗) py := fx+
fx̃− fx
x̃− x

(y − x)

which extends f from {x, x̃} to [x, x̃]. We have used the following properties of p:

1) min(fx, fx̃) ≤ py ≤ max(fx, fx̃) for x, x̃ ∈ [x, x̃].

38



2) px = fx and px̃ = fx̃.

3) p has a (simple) modulus of uniform continuity ∈ G2Rω (in fact a Lipschitz constant) on [x, x̃].

In the following we generalize this construction to the d–dimensional space [0, 1]d and obtain (for

every fixed d) a representation of C([0, 1]d, IR) by the functions of type 1.

(∗) can be written also in the following form:

Let y ∈ [x, x̃]. Then y = (1− λ)x+ λx̃ with λ = y−x
x̃−x ∈ [0, 1] and py = (1− λ)fx+ λfx̃.

This formulation of p easily generalizes to the dimension d:

Let us consider an d–dimensional rectangle (i.e. a regular parallel epipthed) in [0, 1]d defined by

Kx,n :=

{
y ∈ [0, 1]d :

d∧
i=1

(xi ≤ yi ≤ xi +
1

ni + 1
)

}
,

where x = (x1, . . . , xd) ∈ [0, 1]d and xi ≤ 1− 1
ni+1 for i = 1, . . . , d and n := n1, . . . , nd.

Vx,n :=

{
(x1, . . . , xd) ∈ [0, 1]d :

d∧
i=1

(xi = xi ∨ xi = xi +
1

ni + 1
)

}
=: {e1, . . . , e2d} ,

denotes the set of vertices of Kx,n.

We now define a construction by which a function f defined on Vx,n is continued on the whole

rectangle Kx,n:

A(x, n, y) :=

{
λ1 · . . . · λd · f(x1, . . . , xd) :

d∧
i=1

[(λi = 1− λi ∧ xi = xi) ∨ (λi = λi ∧ xi = xi +
1

ni + 1
)]

}
,

where λi := λ(yi) := (yi − xi)(ni + 1). #A(x, n, y) = 2d.

Definition 3.2.10 p(x, n, y) := ΣA(x, n, y).

Remark 3.2.11 For every fixed number d the function p is definable in G2Rω.

Lemma: 3.2.12 1) p equals f on the vertices of Kx,n:
2d∧
i=1

(p(x, n, ei) = fei).

2) min(fe1, . . . , fe2d) ≤ p(x, n, y) ≤ max(fe1, . . . , fe2d) for all y ∈ Kx,n.

3) p(x, n, ·) is Lipschitz continuous on Kx,n w.r.t. ‖(y1, . . . , yd)‖max := max
i=1,...,d

|yi| with Lipschitz

constant λ(x, n) := max([max(fe1, . . . , fe2d)−min(fe1, . . . , fe2d)] ·(max0(n1, . . . nd)+1)d, 1).

Proof: 1) Let (x1, . . . , xd) ∈ Kx,n. Then

xi = xi → λ(xi) = 1− λ(xi) = 1 ∧ λ(xi) = 0

and

xi = xi +
1

ni + 1
→ λ(xi) = λ(xi) = 1 ∧ 1− λ(xi) = 0.
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Hence

f(x1, . . . , xd) = λ(x1) · . . . · λ(xd) · f(x1, . . . , xd) ∈ A(x, n, x), where x := (x1, . . . , xd).

All other elements λ
′
1 · . . . · λ

′
d · f(x′1, . . . , x

′
d) ∈ A(x, n, x) are = 0 since at least one factor λ

′
i = 0.

Hence p(x, n, x) = fx.

2) Let y ∈ Kx,n. Then λ(yi), 1 − λ(yi) ∈ [0, 1] for i = 1, . . . , d. Define M := max(fe1, . . . , fe2d).

Then

ΣA(x, n, y) ≤M · Σ

{
λ(y1) · . . . · λ(yd) :

d∧
i=1

(λ(yi) = λ(yi) ∨ λ(yi) = 1− λ(yi))

}
= M.

Analogously one shows the inequality min(fe1, . . . , fe2d) ≤ ΣA(x, n, y).

3) We show that for every ε > 0 and every fixed i with 1 ≤ i ≤ d and all y1, . . . , yd, z ∈ [0, 1]

(+)
(
|yi − z| ≤

ε

λ(x, n)
→ |p(x, n, (y1, . . . , yd))− p(x, n, (y1, . . . , yi−1, z, yi, . . . , yd))| ≤

ε

d

)
.

This implies the claim of the lemma since for (y1, . . . , yd), (ỹ1, . . . , ỹd) ∈ [0, 1]d

‖(y1, . . . , yd)− (ỹ1, . . . , ỹd)‖max = ‖(y1 − ỹ1), . . . , (yd − ỹd)‖max ≤
ε

λ(x, n)

implies

d∧
i=1

(
|yi − ỹi| ≤

ε

λ(x, n)

)
and therefore (by (+))

|p(x, n, (y1, . . . , yd))− p(x, n, (ỹ1, . . . , ỹd)|

≤
d∑
i=1

|p(x, n, (ỹ1, . . . , ỹi−1, yi, yi+1, . . . , yd))− p(x, n, (ỹ1, . . . , ỹi, yi+1, . . . , yd))|

≤ d ·
(
ε
d

)
= ε.

For notational simplicity we assume that i = 1 (for an arbitrary i = 1, . . . , d the proof proceeds

analogously):

|y1 − z| ≤ ε
λ(x,n) implies for λ(y1) = (y1 − x1)(n1 + 1), λ(z) = (z − x1)(n1 + 1):

(0)

 |λ(y1)− λ(z)| ≤ (n1 + 1) · ε
λ(x,n) ≤ ε · c,

where c :=
(

max([max(fe1, . . . , fe2d)−min(fe1, . . . , fe2d)] · d, 1/(max(ni) + 1)))−1.

We may assume that λ(y1) ≥ λ(z):∑
:=∑{

λ2 · . . . · λd · f(x1, x2, . . . , xd) :
d∧
i=2

[(λi = 1− λi ∧ xi = xi) ∨ (λi = λi ∧ xi = xi + 1
ni+1 )]

}
,∑

:=

40



∑{
λ2 · . . . · λd · f(x1, x2, . . . , xd) :

d∧
i=2

[(λi = 1− λi ∧ xi = xi) ∨ (λi = λi ∧ xi = xi + 1
ni+1 )]

}
,

where x1 = x1 + 1
n1+1 .

(1) (1− λ(y1)) ·
∑
−(1− λ(z)) ·

∑
≤ −(λ(y1)− λ(z)) ·min(fe1, . . . , fe2d).

(2) λ(y1) ·
∑
− λ(z) ·

∑
≤ (λ(y1)− λ(z)) ·max(fe1, . . . , fe2d)

and Put together (0),(1) and (2) yield

∑
A(x, n, y)−

∑
A(x, n, (z, y2, . . . , yd))

= λ(y1) ·
∑

+ (1− λ(y1)) ·
∑
−
(
λ(z) ·

∑
− (1− λ(z)) ·

∑)
=
(
λ(y1) ·

∑
− λ(z) ·

∑)
+
(
(1− λ(y1)) ·

∑
−(1− λ(z)) ·

∑)
≤ (λ(y1)− λ(z)) ·

(
max(fe1, . . . , fe2d)−min(fe1, . . . , fe2d)

)
≤ ε

d .

Analogously:
∑
A(x, n, (z, y2, . . . , yd))−

∑
A(x, n, y) ≤ ε

d .

Using p one can now define constructions f
1

d︷ ︸︸ ︷
(0) . . . (0)

ω and ω1
f such that every pair (f1(0)...(0), ω1)

is transformed into a representative of a function ∈ C([0, 1]d, IR) together with a modulus of

uniform continuity ωf (w.r.t. to ‖ · ‖max). In the definition of fω(n1, . . . , nd) we test whether

the continuity property is satisfied for all m1, m̃1, . . . ,md, m̃d ≤0 Φω(3(max(n1, . . . , nd))) and

k ≤0 max0(n1, . . . , nd)
2. Every ’lattice’ in [0, 1]d ∩ Qd coded by

{
(m1, . . . ,md) :

d∧
i=1

(mi ≤0 k)

}
defines a decomposition of [0, 1]d into d–dimensional rectangles. Using our construction p we are

able to continue the restriction of f on the vertices of each rectangle to a function on the whole

rectangle. By carrying out this for every rectangle we obtain a function on the whole space [0, 1]d

which coincides with f on the ’lattice’ points and is Lipschitz continuous with the maximum of

the Lipschitz constants of the functions on all single rectangle (This follows from the fact that two

functions corresponding to rectangles which have a face in common coincide on this face). Using

this function instead of the polygon in definition 3.2.2 one obtains a representation analogously to

fω, ωf also for functions ∈ C([0, 1]d, IR) (together with a corresponding application (·)IRd).

3.3 The functionals maxIR,+IR for sequences of variable length

and sup
x∈[a,b]

fx ,
b∫
a
f(x)dx in G2A

ω
i

For the computation of sup
x∈[a,b]

fx and
b∫
a

f(x)dx for f ∈ C[a, b] we need the maximum and the sum of

a sequence of real numbers of variable length, i.e. maxIR {f(ri) : i ≤ k} and f(r0) +IR . . .+IR f(rk)

for a sequence of rational numbers ri. For the construction of such operations in G2Rω we need a
special form of our representation of real numbers:
The computation of the addition of a sequence of x real numbers a0, . . . , ax requires the addition of

corresponding sequences of the n–th rational approximations â0(n), . . . , âx(n) of these real numbers
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(for all n). For this we need the computation of a common divisor of â0(n), . . . , âx(n). However the

size of such a common divisor will (in general) have an exponential growth in x and therefore is not

definable in G2Rω but only in G3Rω. This difficulty is avoided by modifying representatives f of real

numbers to representatives f ′ such that f =IR f ′ and the n–th rational approximation f ′n of f ′ is a

(code of a) fraction with a fixed denominator. We choose 3(n+ 1) + 1 as this denominator in order

to ensure the right rate of convergence such that f̂ ′ =1 f
′. For the computation of maxIR(a0, . . . , ax)

this modification is (although not necessary) very convenient.

Definition 3.3.1

f̌n :=0



min k ≤0 j1(f̂(3(n+ 1))) · (3(n+ 1) + 1)
[

k
2

3(n+1)+1 ≤Q f̂(3(n+ 1)) <Q

k
2 +1

3(n+1)+1

]
if it exists and j1(f̂(3(n+ 1))) is even

min k ≤0 j1(f̂(3(n+ 1))) · (3(n+ 1) + 1)
[
− k+1

2

3(n+1)+1 ≤Q f̂(3(n+ 1)) <Q
− k+1

2 +1

3(n+1)+1

]
if it exists and j1(f̂(3(n+ 1))) is odd

00, otherwise.

f ′(n) := j
(
f̌n, 3(n+ 1)

)
.

Remark 3.3.2 Together with λf.f̂ also λf.f̌ and therefore λf.f ′ are definable in G2Rω.

Lemma: 3.3.3 G2Aω
i `

∧
f1(f ′ =IR f).

Proof: The case ’otherwise’ does not occur since by our coding of rational numbers32

−j1
(
f̂(3(n+ 1))

)
− 1 ≤Q 2f̂(3(n+ 1))) ≤Q j1

(
f̂(3(n+ 1))

)
.

Hence

|f ′(n)−Q f̂(3(n+ 1))| < 1

3(n+ 1) + 1
for all n ∈ IN.

It therefore suffices to show that f ′ has the right rate of convergence, i.e. f̂ ′ =1 f ′: Assume
m, m̃ ≥ k. Then

|f ′m−Q f̂(3(m+ 1))| ≤ 1
3(m+1)+1 ≤

1
3(k+1)+1

|f ′m̃−Q f̂(3(m̃+ 1))| ≤ 1
3(m̃+1)+1 ≤

1
3(k+1)+1

|f̂(3(m+ 1))−Q f̂(3(m̃+ 1))| ≤ 1
3(k+1)+1

⇒ |f
′m−Q f ′m̃| ≤ 1

k + 1
.

Definition 3.3.4 χ1, ψ1(1) ∈ G2Rω are defined such that (provably in G2Aω
i )

χn0 =0

 1, if
∨
m ≤0 n(n =0 2m)

0, otherwise.

32Here we simply write j1(f̂(3(n+ 1))) instead of the code of this natural number as an element of Q.
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and

ψg1k0 =0


max
i≤k

(
g(i) · χ(gi)

)
, if

∨
i ≤0 k(χ(gi) =0 1)

min
i≤k

g(i), otherwise.

Definition 3.3.5 ΦmaxIR
∈ G2Rω is defined by

ΦmaxIR := λf1(0), k0, n0.j
(
ψ(λi0.j1((fi)′n), k), 3(n+ 1)

)
.

Lemma: 3.3.6

G2Aω
i `

∧
k0, f1(0)

(
ΦmaxIRf0 =IR f0 ∧ ΦmaxIRf(k + 1) =IR maxIR(ΦmaxIRfk, f(k + 1))

)
.

Proof: For notational simplicity we write Φm instead of ΦmaxIR
in the following.

(Φmf0)(n) =0 j(j1((f0)′n), 3(n+ 1)) =0 (f0)′n and therfore Φmf0 =IR (f0)′ =IR f0.

k + 1: Case 1)
∨
i ≤ k + 1

(
χ(j1((fi)′n)) = 1

)
:

j
(

max
i≤k+1

(
j1((fi)′n) · χ(j1((fi)′n))

)
, 3(n+ 1)

)
=0 j

(
max0

(
max
i≤k

(
j1((fi)′n) · χ(j1((fi)′n))

)
, j1((f(k + 1))′n) · χ(j1((f(k + 1))′n))

)
, 3(n+ 1)

)
=Q maxQ

(
j(max

i≤k
(. . .), 3(n+ 1)), j

(
j1((f(k + 1))′n) · χ(j1((f(k + 1))′n))

)
, 3(n+ 1))

)
!

=Q maxQ

(
(Φmfk)n, (f(k + 1))′n

)
.

Hence Φmf(k + 1) =IR maxIR(Φmfk, f(k + 1)).

(Ad !: Case α)
∨
i ≤ k

(
χ(j1((fi)′n)) = 1

)
:

j
(

max
i≤k

(. . .), 3(n+ 1)
)

=0 (Φmfk)n, hence j
(

max
i≤k

(. . .), 3(n+ 1)
)

=Q (Φmfk)n
√

.

Case β)
∧
i ≤ k

(
χ(j1((fi)′n)) = 0

)
:

(1) (Φmfk)n =0 j
(

min
i≤k

j1((fi)′n), 3(n+ 1)
)
<Q 0,

(2) j
(

max
i≤k

(. . .), 3(n+ 1)
)

=0 j(0, 3(n+ 1)) =Q 0.

Since j1((f(k + 1))′n) is even, it follows that

(3) j
(
j1((f(k + 1))′n) · χ(j1((f(k + 1))′n)), 3(n+ 1)

)
=0 j

(
j1((f(k + 1))′n), 3(n+ 1)

)
≥Q 0.

(1)–(3) imply ’ !’).

Case 2)
∧
i ≤ k + 1

(
χ(j1((fi)′n)) = 0

)
: Similarly!

Since the statement of lemma 3.3.6 is purely universal it is an axiom of G2Aω
i .

Lemma: 3.3.7 1) G2Aω
i `

∧
f1(0),m0, m̃0

(
m ≥0 m̃→ ΦmaxIR

fm ≥IR ΦmaxIR
fm̃, fm̃

)
.

2) G2Aω+AC0,0–qf `
∧
f1(0),m0

∨
k ≤0 m(fk =IR ΦmaxIR

fm).

Proof: 1) follows by induction on m using lemma 3.3.6 . Since 1) is purely universal it is an axiom

of G2Aω
i .

2) Assume
∧
k ≤0 m(fk <IR ΦmaxIRfm). Then∧

k ≤0 m
∨
l0(fk <IR ΦmaxIR

fm− 1

l + 1
).
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By AC0,0–qf one obtains a function χ1 such that∧
k ≤0 m(fk <IR ΦmaxIR

fm− 1

χk + 1
).

Put l0 := max
k≤m

χk. Then
∧
k ≤0 m(fk <IR ΦmaxIRfm− 1

l0+1 ) and therefore

(1)
∧
k ≤0 m

(
(f̂k)(6(l0 + 1)) <Q ( ̂ΦmaxIRfm)(6(l0 + 1))−Q

2

3(l0 + 1)
).

One easily verifies that

(2) a1, b1 ≤IR c1 → maxIR(a, b) ≤IR c.

Using this and the previous lemma one shows by induction on m that

(3)
∧
k ≤0 m(fk ≤IR c)→ ΦmaxIR

fm ≤IR c.

¿From this and the implication

(f̂k)(6(l0 + 1)) <Q ( ̂ΦmaxIR
fm)(6(l0 + 1))−Q

2

3(l0 + 1)
→ fk <IR ΦmaxIR

fm−IR
1

3(l0 + 1)
,

one concludes

(4)


∧
k ≤0 m

(
(f̂k)(6(l0 + 1)) <Q ( ̂ΦmaxIR

fm)(6(l0 + 1))−Q
2

3(l0+1)

)
→

ΦmaxIR
fm ≤IR ΦmaxIR

fm−IR
1

3(l0+1) ,

which is purely universal and hence an axiom of G2Aω. (1) and (4) imply

ΦmaxIRfm ≤IR ΦmaxIRfm−
1

3(l0 + 1)
,

which is a contradiction.

Remark 3.3.8 1) The tedious proofs for the two lemmas above have no impact on the extraction

of bounds: Lemma 3.3.6 and 3.3.7 1) are purely universal sentences. Since we have proved

their truth they are treated as axioms. Lemma 3.3.7 2) (although not being universal) has the

logical form
∧
x
∨
y ≤ sx

∧
zA0 of an axiom ∈ ∆ and therefore is treated as an axiom by our

monotone (but not by the ususal) functional interpretation. The same is true for the next

lemma.

2) ΦminIR
fm can be defined from ΦmaxIR

fm by := −IRΦmaxIR

(
λk.(−IRfk),m

)
.

Using ΦmaxIR we are able to define sup
x∈[0,1]

f(x) for f ∈ C[0, 1]:

Definition 3.3.9 Φ
1(1)
sup[0,1]

∈ G2Rω is defined as follows

Φ1(1)
sup[0,1]

:= λf1, n0.ΦmaxIR

(
Ψ1f, h(Ψ2f(3(n+ 1)))

)
(3(n+ 1)),

where hn := j(2n, n) and Ψ1,Ψ2 ∈ G2Rω are the functionals used in the representation of C[0, 1].
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Lemma: 3.3.10

G2Aω
i `

∧
f ∈ C[0, 1](

∧
x ∈ [0, 1]

(
Φsup[0,1]

f ≥IR fx) ∧
∧
k0
∨
x ∈ [0, 1]

(
Φsup[0,1]

f −IR fx ≤
1

k + 1

))
.

Proof: In the following we write ΦM instead of ΦmaxIR
.

1) Φf := λk0.ΦM (Ψ1f, h(Ψ2fk)) is a Cauchy sequence of real numbers with Cauchy modulus

1/(k + 1) (This implies that Φ
1(1)
sup[0,1]

f represents the limit of this sequence):

Assume m ≥0 m̃ ≥0 k: The monotonicity of Ψ2f (see lemma 3.2.4 ) implies Ψ2fm ≥0 Ψ2fm̃ and

therefore (by 3.3.7 and the monotonicity of h) Φfm ≥IR Φfm̃. By induction on l0 we show

(∗)
∧
l0
(
ΦM (Ψ1f, h(Ψ2fm̃) + l) ≤IR Φfm̃+

1

k + 1
:

The case l = 0 is trivial. l + 1:

ΦM (Ψ1f, h(Ψ2fm̃) + l + 1)
3.3.6
=IR maxIR(ΦM (Ψ1f, h(Ψ2fm̃) + l︸ ︷︷ ︸

I.V.

≤IRΦfm̃+ 1
k+1

),Ψ1f(h(Ψ2fm̃) + l + 1))).

Thus it remains to show that

Ψ1f(h(Ψ2fm̃) + l + 1) ≤IR Φfm̃+
1

k + 1
.

¿From our represention of [0, 1] ∩ Q (which used the function q) it follows that there exists an

i ≤0 h(Ψ2fm̃) such that

|q(i)−Q q
(
h(Ψ2fm̃) + l + 1

)
| ≤Q

1

Ψ2fm̃+ 1

and therefore

Ψ1f(h(Ψ2fm̃) + l + 1) ≤IR Ψ1fi+
1

m̃+ 1

3.3.7
≤IR Φfm̃+

1

m̃+ 1
≤ Φfm̃+

1

k + 1
,

which completes the proof of (∗).
Since Ψ2fm ≥0 Ψ2fm̃ implies h(Ψ2fm) ≥0 h(Ψ2fm̃), this yields

Φfm = ΦM (Ψ1f, h(Ψ2fm)) ≤IR Φfm̃+
1

k + 1
,

which completes the proof of the Cauchy property.

2) Φsup[0,1]
f ≥IR f(x)IR for all x ∈ [0, 1]. We know that

(a) |f(x)IR −IR Ψ1f(x̃(Ψ2fk))| ≤ 1

k + 1
,

where x̃ is the construction used in the representation of [0,1], and

(b)
∨
i ≤0 h

(
Ψ2f(3(k + 1))

)(
|q(i)−Q q(x̃(Ψ2fk))| ≤Q

1

Ψ2f(3(k + 1)) + 1

)
for all k ∈ IN.
i ≤0 h

(
Ψ2f(3(k + 1))

)
implies ΦM

(
Ψ1f, h(Ψ2f(3(k + 1)))

)
≥IR Ψ1fi (see lemma 3.3.7 ). It follows

that

Φsup[0,1]
fk ≥Q Ψ1fi−

1

3(k + 1) + 1
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and therefore

Φsup[0,1]
f ≥IR Ψ1fi−

(
1

3(k+1)+1 + 1
k+1

)
(b)

≥IR Ψ1f(x̃(Ψ2fk))−
(

2
3(k+1)+1 + 1

k+1

)
(a)

≥IR f(x)IR −
(

2
3(k+1)+1 + 2

k+1

)
for all k ∈ IN. Put together this yields our claim.

3)
∧
n0
∨
x ≤1 M

(
Φsup[0,1]

f −IR f(x)IR ≤ 1
n+1

)
, where M is the boundedness function from the

representation of [0,1]:

i0 := min i ≤0 h(Ψ2f(3(n+ 1))) such that∧
j ≤0 h(Ψ2f(3(n+ 1)))

((
Ψ̂1fi

)
(3(n+ 1)) ≥Q

(
Ψ̂1fj

)
(3(n+ 1))

)
.

We show by induction on k that

(+)
∧
k0
(
ΦM (Ψ1f, k) ≤IR Ψ1fi0 +

1

n+ 1

)
and therefore a fortiori

(++)
∧
k0
(
Φfk ≤IR Ψ1fi0 +

1

n+ 1

)
,

which implies –by 1)– that

(+ + +) Φsup[0,1]
f ≤IR Ψ1fi0 +

1

n+ 1
:

k = 0: ΦM (Ψ1f, 0) =IR Ψ1f0 ≤IR Ψ1fi0 + 2
3(n+1)+1 by the definition of i0. k + 1:

ΦM (Ψ1f, k + 1)
3.3.7
=IR maxIR( ΦM (Ψ1f, k)︸ ︷︷ ︸

≤IRΨ1fi0+ 1
n+1

,Ψ1f(k + 1)).

To show Ψ1f(k + 1) ≤IR Ψ1fi0 + 1
n+1 :

∨
jk ≤0 h(Ψ2f(3(n+ 1)))

(
|q(k + 1)−Q q(jk)| ≤Q

1

Ψ2f(3(n+ 1)) + 1

)
.

Hence

|Ψ1fjk −IR Ψ1f(k + 1)| ≤IR
1

3(n+ 1) + 1
.

Together with Ψ1fjk ≤IR Ψ1fi0 + 2
3(n+1)+1 we obtain Ψ1f(k+1) ≤IR Ψ1fi0 + 1

n+1 , which completes

the proof of (+) and so of (+ + +).

Since (+++) is purely universal its truth implies its provability in G2Aω
i . Our claim follows immedi-

ately from (+++) since the rational number ∈ [0, 1]∩Q which is coded by q(i0) has a representative

x as a real number and so x =IR x̃ ≤1 M .
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In the following chapters we make liberal use of the usual mathematical expressions ’ sup
x∈[0,1]

fx’

and ’f ∈ C[0, 1]’ and go back to the details of the actual representation of these notions in G2Aω
i

only when this is needed to determine the logical form of a sentence which involves these notions.

For a function f ∈ C[a, b] we can express sup
x∈[a,b]

fx as sup
x∈[0,1]

f̃x, where f̃x := f((1− x)a+ xb).

For the definition of the sum of a sequence of real numbers of length x we need the following
constructions.

Definition 3.3.11 The functionals ζ, ζ, ξ ∈ G2Rω are defined such that

ζn0 =0

 n, if
∨
m ≤ n(n = 2m)

0, otherwise.

ζn0 =0

 n+ 1, if
∨
m ≤ n(n = 2m+ 1)

0, otherwise.

ξn0m0 =0

 n−· m, if n ≥ m

m−·n−· 1, otherwise.

Using these functions we are now able to define a variable summation:

Definition 3.3.12 ΦΣIR ∈ G2Rω is defined as

ΦΣIR
:= λf1(0), k0, n0.j

(
ξ
( k∑
i=0

ζ(j1[(fi)′(α(k, n))]),
k∑
i=0

ζ(j1[(fi)′(α(k, n))])
)
, 3(α(k, n) + 1)

)
,

where α(k, n) := 2(k + 1)(n+ 1).

Lemma: 3.3.13

G2Aω
i `

∧
f1(0), k0

(
ΦΣIRf0 =IR f0 ∧ ΦΣIRf(k + 1) =IR ΦΣIRfk +IR f(k + 1)

)
.

Proof: We do not give a formalized proof in G2Aω
i by induction on k but show informally that

’ΦΣIR
fk = f0 +IR . . .+IR fk’ (and hence the assertion of the lemma) is true. Since the lemma is a

purely universal statement it therefore is an axiom of G2Aω
i . By the definition of the construction

f 7→ f ′ and our coding of rational numbers we conclude:

(Σ:=)

k∑
i=0

ζ(j1[(fi)′(2(k+1)(n+1))])

3(2(k+1)(n+1)+1)+1 = 2× the rational which is represented by

(fi1)′(2(k + 1)(n + 1)) +Q . . . +Q (fil)
′(2(k + 1)(n + 1)), where {i1, . . . , il} (⊂ {0, . . . , k}) are the

indices of the positive fractions.

Analogously, −
(Σ:=)

k∑
i=0

ζ(j1[(fi)′(2(k+1)(n+1))])

3(2(k+1)(n+1)+1)+1 = 2× the sum of the negative fractions among

(f0)′(2(k + 1)(n+ 1)), . . . , (fk)′(2(k + 1)(n+ 1)).

Case 1) Σ ≥0 Σ: Then j(ξ(Σ,Σ), 3(2(k+ 1)(n+ 1) + 1)) represents the fraction
Σ−Σ

2

3(2(k+1)(n+1)+1)+1 ,

i.e. the fraction which is represented by

(f0)′(2(k + 1)(n+ 1)) +Q . . .+Q (fk)′(2(k + 1)(n+ 1)).
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Case 2) Σ <0 Σ: Analogously!

Since (fi)′(2(k + 1)(n+ 1)) is a 1/(2(k + 1)(n+ 1))–approximation of fi, the rational

(f0)′(2(k+1)(n+1))+Q . . .+Q (fk)′(2(k+1)(n+1)) is a 1/2(n+1)–approximation of f0+IR. . .+IRfk.

Hence ΦΣIR
fk has the Cauchy modulus 1/(n+1), i.e. ̂ΦΣIR

fk =1 ΦΣIR
fk, which concludes the proof

of the lemma.

Using ΦΣIR we now define the Riemann integral
∫ 1

0
f(x)dx for f ∈ C[0, 1]:

Let Sn := 1
ωf (n)+1 ·

ωf (n)∑
i=0

f
(

i
ωf (n)+1

)
denote the n–th Riemann sum (where ωf is the modulus of

uniform continuity from the representation of f). One easily follows from the usual proof of the

convergence of the sequence of Riemann sums that (Sn)n∈IN is a Cauchy sequence with Cauchy

modulus 2/(n+ 1) (which converges to
∫ 1

0
f(x)dx). Therefore we define:

Definition 3.3.14 1) ΦS ∈ G2Rω is defined as

ΦS := λf1, n0.j(2,Ψ2fn) ·IR ΦΣIR

(
λi.(Ψ1f)(j(2i,Ψ2fn)),Ψ2fn

)
.

2) ΦI ∈ G2Rω is defined as

ΦI := λf1, n0.[ΦSf(2(3(n+ 1)) + 1)](3(n+ 1)).

Proposition: 3.3.15 ΦIf
1 represents the real number

∫ 1

0
F (x)dx, where F is the function ∈ C[0, 1]

which is represented by f .

Proof: Since j(2i,Ψ2fn) codes i
Ψ2fn+1 and Ψ2 is a modulus of uniform continuity for the function

: [0, 1] ∩ Q → IR which is represented by Ψ1, ΦS is just the n–th Riemann sum for the function

represented by f . As we have mentioned already above, these Riemann sums Sn form a Cauchy

sequence with modulus 2/(n+1). Hence (S2n+1)n∈IN is a Cauchy sequence with modulus 1/(n+1).

ΦIf represents the limit of this sequence.

In the following we use the usual notation
∫ 1

0
f(x)dx instead of ΦI .

Proposition: 3.3.16 The following properties of
∫ 1

0
are provable in G2Aω

i (f, fn, g ∈ C[0, 1], λ ∈
IR):

1)
∫ 1

0
(f + g)(x)dx =

∫ 1

0
f(x)dx+

∫ 1

0
g(x)dx.

2)
∫ 1

0
(λ · f)(x)dx = λ

∫ 1

0
f(x)dx.

3) f ≤ g →
∫ 1

0
f(x)dx ≤

∫ 1

0
g(x)dx.

4)
∣∣∣∫ 1

0
f(x)dx

∣∣∣ ≤ ∫ 1

0
|f |(x)dx ≤ ‖f‖∞.

5) fn
‖·‖∞→ f ⇒

∫ 1

0
fn(x)dx→

∫ 1

0
f(x)dx.

Proof: It is clear from the ususal proofs in analysis that 1)–5) are true. Since 1),2) and 4) are

purely universal, they are axioms of G2Aω
i . 3) can be transformed into a purely universal sentence

3)′
∫ 1

0

f(x)dx ≤
∫ 1

0

max(f, g)(x)dx.
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The proof of the equivalence of 3) and 3)’ uses the extensionality of
∫ 1

0
, which follows immediately

from 4) and thus is also provable in G2Aω
i . 5) follows from 1),2) and 4).

Our definition of
∫ 1

0
easily generalizes to

∫ b
a
F (x)dx for F ∈ C[a, b] (a < b). Let F be given as

a pair (Ψ1(1), ω), where Ψ represents a function : [a, b] → IR which has the modulus of uniform

continuity ω. Then a representative of
∫ b
a
F (x)dx can be computed in Ψ, ω, a, b by a functional in

G2Rω. For this one has to replace the partition

0

ω(n) + 1
, . . . ,

ω(n) + 1

ω(n) + 1

of [0,1] by the partition

a0, . . . , ak(ω(n)+1), where ai := a+IR i(b− a) ·IR
1

k(ω(n) + 1)
and IN 3 k ≥ b− a,

of [a, b] which also has mesh ≤ 1/(ω(n) + 1).

We can define also a functional ΦIxa ∈ G2Rω such that ΦIxa (x1, a1,Ψ1(1), ω1) represents the in-

tegral
∫ x
a

Ψxdx if Ψ represents a function [a, b] → IR (a < b), which is uniformly continuous with

modulus ω, and x ∈ [a, b]:

ΦIxa (x1, a1,Ψ1(1), ω1) := lim
n→∞

Sn(x, a,Ψ, ω),

where

Sn(= Sn(x, a,Ψ, ω)) :=
x−IR a

n+ 1
·IR ΦΣ(λi.Ψ(a+IR i(x−IR a) ·IR

1

n+ 1
), n+ 1).

¿From our reasoning above it is clear that (Sn) is a Cauchy sequence which converges to
∫ x
a

Ψxdx.

In order to be able to define limn→∞ Sn in G2Rω we have to construct a Cauchy modulus for this
sequence in G2Rω. This however is possible since

|Sk(ω(n)+1) −
∫ x

a

Ψxdx| ≤ k

n+ 1
,

where k ∈ IN such that k ≥ x− a.

The formula∫ c

a

f(x)dx+

∫ b

c

f(x)dx =

∫ b

a

f(x)dx for a < c < b

is purely universal and hence an axiom of G2Aω
i .

Summary of the main features of our representation of basic analytical notions

1) Rational numbers are coded by natural numbers with corresponding relations =Q ,≤Q , <Q

and operations | · |Q ,+Q ,−Q , ·Q on the codes.

2) Sequences of rational numbers are represented by number–theoretic functions.
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3) Real numbers are given as Cauchy sequences of rational numbers with fixed

Cauchy modulus 1
k+1 and are therefore represented by functions f1 with a corresponding

equality relation =IR.

Using the construction f1 7→ f̂1 every function can be conceived as a representative of a real

number, namely the real number which is represented by f̂ .

Using this construction we have relations =IR,≤IR∈ Π0
1, <IR∈ Σ0

1 and operations +IR,−IR, . . . ∈
G2Rω on all functions f1 which correspond to the usual relations and operations on IR.

Quantification over reals so reduces to
∧
f1A(f̂),

∨
f1A(f̂) for =IR–extensional properties

A.

4) Elements of IRd are represented by functions f1: f represents the d–tuple of real numbers

which is represented by (ν̂d1f, . . . , ν̂
d
df).

5) The closed unit interval [0, 1] is represented by {f1 : f ≤1 M} (for a suitable M ∈ G2Rω)

using a construction f 7→ f̃ such that 0 ≤IR f̃ ≤IR 1 and 0 ≤IR f ≤IR 1 → f =IR f̃ . Hence

quantification over [0, 1] reduces to
∧
f ≤1 M A(f̃),

∨
f ≤1 M A(f̃) for properties A which

are =IR–extensional. Similar for [0, 1]d.

Quantification over [a, b] ([a1, b1]× . . .× [ad, bd]) is reduced to quantification over [0, 1] ([0, 1]d)

by a convex transformation.

6) Functions f : IR → IR (f : [a, b] → IR) are given by functionals Φ1(1) which are =IR–

extensional.
Continuous functions f : [0, 1] → IR endowed with a modulus ω1 of uniform con-

tinuity can be represented as pairs of type–1–objects (f
1(0)
r , ω1), where fr represents the

restriction of f on [0, 1] ∩ Q. Using the functionals Ψ1,Ψ2 ∈ G2Rω every function f1 rep-

resents such a pair (Ψ1f,Ψ2f) and hence using the application (·)IR a uniformly continuous

function : [0, 1] → IR. Thus quantification over C[0, 1] reduces to
∧
f1A(λx1.f(x)IR,Ψ2f)

for =C[0,1]–extensional properties A. This generalizes to C([0, 1]d).

Quantification over C[a, b] (C([a1, b1]× . . .× [ad, bd])) is reduced to quantification over C[0, 1]

(C([0, 1]d)).

7) Maximum and sum for sequences of real numbers of variable length are given by

functionals Φ
1(0)(1(0))
max ,Φ

1(0)(1(0))
Σ ∈ G2Rω.

8) sup
x∈[0,1]

fx,
1∫
0

fxdx for f ∈ C[0, 1] are given by functionals Φsup,ΦI ∈ G2Rω in the representa-

tives of f .

The definition of sup
x∈[a,b]

fx for f ∈ C[a, b] reduces to sup
x∈[0,1]

f̃x for suitable f̃ ∈ C[0, 1].

x∫
a

fxdx for f ∈ C[a, b], x ∈ [a, b] is given by a functional ΦIxa ∈ G2Rω in x1, a1, b1,Φ
1(1)
f , ω1,

where Φ
1(1)
f represents f and ω is a modulus of uniform continuity for this function.

The representation of all these notions can be carried out in GnAω for n ≥ 2. The basic properties
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of
∫ a
b
fxdx and supx∈[a,b] fx (for f ∈ C[a, b]) and the variable maximum and sum for sequences of

real numbers are expressible as purely universal sentences (or follow relatively to G2Aω+AC0,0–qf

easily from such sentences) and therefore contribute to the growth of bounds extractable from proofs

which use these notions and their properties only by majorants ∈ G2Rω for the terms used in our
representation. More general this holds for sentences having the form

(∗)
∧
f ∈ C([0, 1]d), x ∈ [0, 1], y ∈ IR, k ∈ IN

(
ϕ1fxyk

6=IR

<IR
ϕ2fxyk → ϕ3fxyk

=IR

≤IR
ϕ4fxyk

)
,

where the ϕi ∈ G2Rω represent functionals C([0, 1]d) × [0, 1] × IR × IN → IR, since (modulo our

representation) sentences (∗) are equivalent to purely universal sentences.

In particular, from a GnAω+AC-qf–proof of a sentence

(+)
∧
u1, k0

∧
v ≤ρ tu k

∨
w0A0 relatively to sentences (∗) which may be used as lemmas one can

extract (using cor.2.2.3 ) a uniform bound
∧
u1, k0

∧
v ≤ρ tu k

∨
w ≤0 χuk A0 such that

(i) χ is a polynomial in uM , k (where uMi := λx0.max0(u0, . . . , ux)) for which prop. 1.2.30

applies, if n = 2,

(ii) χ is elementary recursive in uM , k, if n = 3.

Using our representation many sentences in analysis have the form (+), in particular sentences of

the form

(++)
∧
f ∈ C([0, 1]d), x ∈ IR, y ∈ [0, 1]m

∨
k ∈ INA(f, x, y, k),

where A ∈ Σ0
1 and the bound χ only depends on (representatives of) f, x but not on y. In [37],[38]

and [39] we study interesting examples of sentences (++).
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4 Sequences and series in G2A
ω
i : Convergence with moduli

involved

By our representation of real numbers by functions f1 (see chapter 3), sequences of real numbers

are given as functions f1(0) in G2Aω
i . We will use the usual notation (an) instead of f . In this

chapter we are concerned with the following properties of sequences of real numbers:

1) (an) is a Cauchy sequence, i.e.

∧
k0
∨
n0
∧
m, m̃ ≥0 n

(
|am −IR am̃| ≤IR

1

k + 1

)
.

2) (an) is convergent, i.e.

∨
a1
∧
k0
∨
n0
∧
m ≥0 n

(
|am −IR a| ≤IR

1

k + 1

)
.

3) (an) is convergent with a modulus of convergence, i.e.

∨
a1, h1

∧
k0
∧
m ≥0 hk(|am −IR a| ≤IR

1

k + 1

)
.

4) (an) is a Cauchy sequence with a Cauchy modulus, i.e.

∨
h1
∧
k0
∧
m, m̃ ≥0 hk(|am −IR am̃| ≤IR

1

k + 1

)
.

One easily shows within G2Aω
i that

4)↔ 3)→ 2)→ 1).

Using

AC0,0–
∧0

:
∧
x0
∨
y0
∧
z0A0(x, y, z)→

∨
f1
∧
x0, z0A0(x, fx, z)

one can prove that 1)→ 4) (and therefore 1)↔ 2)↔ 3)↔ 4)).

However, as we already have discussed in chapter 3, the addition of AC0,0–
∧0

to G2Aω
i would make

all α(< ε0)–recursive functions provably recursive.

Thus since we are working in G2Aω we have to distinguish carefully between e.g. 1) and 4). In

chapters 9–11 we will study the relationship between 1) and 4) in detail and show in particular that

the use of sequences of single instances of 4) in proofs of
∧
u1
∧
v ≤ρ tu

∨
w2A0–sentences relatively

to e.g. G2Aω + ∆+AC–qf (where ∆ is defined as in thm.2.2.2) can be reduced the use of the same

instances of 1).

For monotone sequences (an) the equivalence of 2) and 3) (and hence that of 2) and 4)) is already

provable using only the quantifier–free choice AC0,0–qf:

Let (an) be say increasing, i.e.

(i)
∧
n0(an ≤IR an+1),
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and a1 be such that

(ii)
∧
k0
∨
n0
∧
m ≥0 n

(
|am − a| ≤IR

1

k + 1

)
.

AC0,0–qf applied to∧
k0
∨
n0
(
|an − a| <IR

1

k + 1︸ ︷︷ ︸
∈Σ0

1

)

yields∨
h1
∧
k0
(
|ahk − a| <IR

1

k + 1

)
,

which gives∨
h1
∧
k0
∧
m ≥0 hk

(
|am − a| <IR

1

k + 1

)
,

since –by (i),(ii)– ahk ≤ am ≤ a for all m ≥0 hk. (Here we use the fact that
∧
n(an ≤IR an+1) →∧

m, m̃(m ≥ m̃→ am̃ ≤IR am). This follows in G2Aω from the universal sentence

(+)
∧
a

1(0)
(·) , n, l

(∧
k < n

(
âk(l) ≤Q âk+1(l) + 3

l+1

)
→
∧
m, m̃ ≤ n

(
m ≥ m̃→ am̃ ≤IR am+ 5n

l+1

))
. (+)

is true (and hence an axiom of G2Aω) since âk(l) ≤Q âk+1(l) + 3
l+1 → ak ≤IR ak+1 + 5

l+1 .)

If one of the properties 1), . . . ,4) –say i ∈ {1, . . . , 4}– is fulfilled for two sequences (an), (bn), then

i) is also fulfilled (provably in G2Aω
i ) for (an +IR bn), (an −IR bn), (an ·IR bn) and (if bn 6= 0 and

bn → b 6= 0) for
(
an
bn

)
, where in the later case the modulus in 3),4) depends on an estimate l ∈ IN

such that |b| ≥ 1
l+1 (The construction of the moduli for (an +IR bn), (an −IR bn), (an ·IR bn),

(
an
bn

)
from the moduli for (an), (bn) (for i=3,4) is similar to our definition of +IR,−IR, ·IR, (·)−1 given in

chapter 3.

The most important property of bounded monotone sequences (an) of real numbers is their conver-

gence. We call this fact ’principle of convergence for monotone sequences’ (PCM). Because of the

difference between 1) and 4) above we have in fact to consider two versions of this principle:

(PCM1) :


∧
a

1(0)
(·) , c1

(∧
n0(c ≤IR an+1 ≤IR an)

→
∧
k0
∨
n0
∧
m, m̃ ≥0 n(|am −IR am̃| ≤IR

1
k+1 )

)
,

(PCM2) :


∧
a

1(0)
(·) , c1

(∧
n0(c ≤IR an+1 ≤IR an)

→
∨
h1
∧
k0
∧
m, m̃ ≥0 hk(|am −IR am̃| ≤IR

1
k+1 )

)
,

Both principles cannot be derived in any of the theories GnAω + ∆+AC–qf. They will be examined
thoroughly in the chapters 9 and 11 below where the exact rate of growth of provable functionals
is determined which may result from the use of PCM1 and PCM2 in proofs. In chapter 11 we will

also study the rate of growth which is caused (potentionally) by the Bolzano–Weierstraß principle.

By lemma 3.3.13 there is a functional Φ
1(0)(1(0))
ΣIR

∈ G2Rω such that ΦΣIR

(
a(·)
)
n is the partial sum
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n∑
k=0

ak. Thus within G2Rω we can form the sequence sn =
n∑
k=0

ak of partial sums for the

sequence (an).

Criteria for convergence of series in G2A
ω
i

As far as the Cauchy criterion is concerned our remarks above on the relationship of 1) and

2) apply.

The Leibniz criterion is provable in G2Aω
i +AC0,0–qf in its strongest quantitative version:

(L)


∧

(an) ⊂ IR
(∧
n0(0 ≤ an+1 ≤ an) ∧

∧
k0
∨
n0
∧
m ≥0 n(am ≤ 1

k+1 )

→
∨
h1
∧
k0
∧
m, m̃ ≥0 hk

(
|
m∑
i=0

(−1)iai −
m̃∑
i=0

(−1)iai| ≤ 1
k+1

))
.

(L) follows from the simple observation that

|
n+k∑
i=0

(−1)iai −
n∑
i=0

(−1)iai| = |an+1 − (an+2 − an+3) − (an+4 − an+5) − . . . | ≤ an+1 and the above

proof for the existence of a modulus of convergence for a convergent monotone sequence by AC–qf.

Remark 4.1 1) AC0,0–qf is needed only to prove the existence of a modulus h1 such that∧
k0
∧
m ≥0 hk(ahm ≤ 1

k+1 ) (which can be done since (an) is decreasing to 0). If (an) is

already given with such a modulus, then the proof of (L) needs no AC0,0–qf.

2) In various calculus textbooks the Leibniz criterion is proved as a consequence of PCM. How-

ever this proof (as it stands) does not provide any information on the rate of convergence of∑
(−1)iai relatively to the rate of the convergence an → 0, since PCM is non–constructive.

The comparison test for series is also provable in a quantitative form within G2Aω
i +AC0,0–qf:

Let (an), (cn) ⊂ IR be such that
∧
n0(|an| ≤ cn). If

∞∑
i=0

ci converges in the sense of 2) or 3) or 4),

then
∞∑
i=0

|an| (and a fortiori
∞∑
i=0

an) converges with a modulus of convergence, i.e. it converges in

the sense of 3),4) and so a fortiori in the sense of 2). If
∞∑
i=0

ci converges in the sense of 1) (i.e. the

sequence of its partial sums is a Cauchy sequence), then the same holds for
∞∑
i=0

ai. All this follows

immediately from the ususal proof of the comparison test and the fact that by AC0,0–qf one obtains

a modulus of convergence for the monotone sequence of the partial sums of
∞∑
i=0

ci if this series fulfils

2). If
∞∑
i=0

ci satisfies 3) or 4) we do not need AC–qf.

In order to treat the quotient criterion we have to introduce the geometric series in G2Aω
i :

For this purpose we introduce (according to theorem 2.2.8 ) a new constant P 1(0)(0) to G2Aω
i (which

is majorized by a suitable term ∈G2Aω) whose intended meaning is that Px0n0 represents qn (as

a real number) for the rational number q which is coded by x, if |q| ≤ 1. The following purely

universal sentences are true assertions about P (under this interpreation) and are therefore taken

as axioms in G2Aω
i ∪ {P} (which we denote also by G2Aω

i in the following):
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1)
∧
x0, n0(|x| ≤Q 1→ |Pxn| ≤IR 1).

2)
∧
x0, y0, n0(|x|, |y| ≤Q 1→ |Pxn−IR Pyn| ≤IR n · |x− y|)33.

This is true since the absolute value of the derivative n ·xn−1 of xn is bounded by n on [−1, 1].

3)
∧
x0
(
Px0 =IR 1 ∧ (|x| ≤Q 1→ Px1 =IR x)

)
.

4)
∧
x0, n0,m0(|x| ≤Q 1→ Px(n+0 m) =IR Pxn ·IR Pxm).

By 2), using the application (·)IR, P extends to a continuous function [−1, 1]× IN→ IR, represented

by a functional of type 1(0)(1), which we denote also by P . The axioms 3),4) imply∧
x1
(
Px1 =IR 1 ∧ (|x| ≤IR 1→ Px1 =IR x)

)
,∧

x1, n0,m0
(
|x| ≤IR 1→ Px(n+m) =IR Pxn ·IR Pxm

)
.

In contrast to 3),4) (or the case |x| <IR 1) these propositions are not ∈ Π0
1 but ∈ Π0

2 and therefore

cannot be treated directly as axioms.

Since we use Px0n0 only for |x| ≤Q 1, we are free to extend this function on Q by stipulating

5)
∧
x0(|x| >Q 1→ Pxn =IR 1).

Similar to our representation of [0, 1] where we used the construction f̃ such that f̃ =IR f and

f̃ ≤1 M , we can represent [−1, 1] with a corresponding construction f̃ and a function M ∈ G2Rω.

Hence we may assume that

6) P ≤1(0)(0) λx
0, n0.M .

Because of 6) P can be majorized by a term ∈ G2Rω
− (namely by any majorant M∗ ∈ G2Rω

− for

M) so that theorem 2.2.8 applies.

Remark 4.2 1) Within G2Aω + ∆+AC–qf one can not prove that

(∗)
∧
x1, n0(0 <IR x ≤IR 1→ Pxn >IR 0),

since this would yield e.g. for x = 1
2 the exponential growth 1

Pxn ≥ 2n (hence contradicting

cor.2.2.3 ). One easily verifies that G3Aω
i ` (∗).

2) Within G3Aω
i one can define the xn as a function in x ∈ IR and n ∈ IN on whole IR.

Using P we are now able to define the geometric series via the sum formula:

(1)
∧
x1, n0(|x| <IR 1→

n∑
k=0

Pxk =IR
1−IR Px(n+ 1)

1−IR x

)
.

Note that (1) can be transformed (by intuitionistic logic) into a purely universal sentence, i.e. an

axiom of G2Aω
i .

In order to obtain the convergence of
∞∑
k=0

Pxk to 1
1−x we need the convergence Pxn

n→∞→ 0 which

can be expressed in a quantitative form as a purely universal sentence:34

(2)
∧
x1, n0, k0

(
|x| <IR 1 ∧ n >IR

k + 1

1− x
→ |Pxn| ≤IR

1

k + 1

)
.

33Here and below we write simply n for the code j(2n, 0) of n as a rational number.
34See also [42] for a derivation of this modulus by a (variable) Herbrand disjunction for (PCM1).
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Together with (1) this yields

(3)
∧
x1, n0, k0

(
|x| <IR 1 ∧ n >IR

k + 1

1−IR x
·
⌈

1

1− x

⌉
→ |

n∑
k=0

Pxk − 1

1− x
| ≤IR

1

k + 1

)
.

The quotient criterion now follows as usual together with an explicit rate of convergence in θ ∈ (0, 1)

such that |an+1/an| ≤ θ (for all n ∈ IN).

G2Aω
i proves the divergence of the harmonic series

∞∑
n=1

1
n in the sense that the sequence of

its partial sums sk :=
k∑

n=1

1
n is not a Cauchy sequence: This follows immediately from the universal

axiom |s2k − sk| ≥ k · 1
2k = 1

2 (G2Aω(+∆+AC–qf) does not prove that the harmonic series diverges

to infinity: see chapter 9!).

In chapter 9 below we need the convergence of
∞∑
n=1

1
n(n+1) in G2Aω

i . This follows from the uni-

versal axiom
k∑

n=1

1
n(n+1) =IR

k
k+1 , which implies

∞∑
n=1

1
n(n+1) =IR 1 with hk := k as a modulus of

convergence.

We have seen in this chapter that within GnAω+AC–qf (for n ≥ 2) one can treat infinite se-

quences and series of real numbers and establish the comparison test, the Leibniz criterion and the
quotient criterion. The last two criteria can be proved even in a quantitative version, i.e. together
with a modulus of convergence. This also holds for the comparison test, if the series of the majoriz-
ing sequence is given together with its limit. Thus the results on the growth of bounds extracted
from proofs stated at the end of chapter 3 extend to proofs which use these principles for series.

Furthermore the function xn in x ∈ IR and n ∈ IN can be introduced for x ∈ [0, 1] in G2Aω and for

unrestricted x in G3Aω.
If a sequence (xn) is definable in GnAω together with a modulus of convergence for the sequence of

its partial sums, then
∑∞
i=0 xn is definable in GnAω.

The principle of convergence for bounded monotone sequences of real numbers is not provable
in GnAω+AC–qf, not even in its weak form PCM1 which asserts the Cauchy property for such
sequences. We will discuss PCM1 in chapter 9 where we determine its impact on the growth of
bounds.
In chapter 11 we investigate the full principle of convergence of bounded monotone sequences PCM2

which asserts the existence of a limit (together with a modulus of convergence) and show that single

arithmetical families of instances of PCM2 can be reduced to instances of PCM1 (this requires quite

complicated proof–theoretic methods which are developed in chapter 10).
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5 Trigonometric functions in G2A
ω
i : Moduli and universal

properties

5.1 The functions sin, cos and tan in G2A
ω
i

In the following we introduce the functions sin , cos axiomatically by adding to G2Aω
i new function

constants Φsin,Φcos of type 1(0) which represent the restriction of sin and cos to Q. Then the Lip-

schitz continuity of sin, cos is used to continue these functions to IR (If we would introduce sin, cos

directly as functions on IR, this would require new constants for functionals of type 1(1). In order

to express their extensionality by universal axioms we also would have to make use of the Lipschitz

continuity, since uniform continuity is just a uniform quantitative version of extensionality).

The following purely universal assertions on the function constants Φsin,Φcos express true proposi-

tions on sin, cos and are therefore taken as axioms in G2Aω
i ∪ {Φsin,Φcos} (which we also denote by

G2Aω
i ):

1)
∧
x0( ̂(Φsinx) =1 Φsinx ≤1 M ∧ ̂(Φcosx) =1 Φcosx ≤1 M ∧ −1 ≤IR Φsinx,Φcosx ≤IR 1), where

M1 ∈ G2Rω is the boundedness function from the representation of [−1, 1] (one may take

M := λn0.j(6(n+ 1), 3(n+ 1)− 1) see [0, 1]).

2)
∧
x0, y0, q0

(
|x−Q y| ≤Q q → |Φsinx−IR Φsiny| ≤IR q ∧ |Φcosx−IR Φcosy| ≤IR q

)
.

(2) (together with 1)) asserts that Φsin and Φcos represent functions : Q → [−1, 1] which are

Lipschitz continuous on Q with Lipschitz constant λ = 1).

3)
∧
x0
(
Φsin(−Qx) =IR −IRΦsinx ∧ Φcos(−Qx) =IR Φcosx

)
, Φcos0 =IR 1.

4)
∧
x0, y0

(
Φsin(x+Q y) =IR (Φsinx) ·IR (Φcosy) +IR (Φcosx) ·IR (Φsiny) ∧

Φcos(x+Q y) =IR (Φcosx) ·IR (Φcosy)−IR (Φsinx) ·IR (Φsiny)
)
.∧

x0, y0
(
Φsinx−IR Φsiny = 2 · Φcos(

x+Qy
2 ) ·IR Φsin(

x−Qy
2 ) ∧

Φcosx−IR Φcosy = −2 · Φsin(
x+Qy

2 ) ·IR Φsin(
x−Qy

2 )
)
.

5)
∧
x0
(
0 <Q |x| →

∣∣Φsinx
x −IR 1

∣∣ ≤IR
|x|2

6

)
.

This proposition on sin (which is proved e.g. in [15] ) provides a quantitative version of the

proposition sin x
x

x→0→ 1. Only by this quantitative strengthening the proposition becomes

purely universal (and therefore an axiom of G2Aω
i ).

Because of axiom 2) there are unique continuous extensions of the functions : Q → IR, which are

represented by Φsin,Φcos, to the whole space IR. These extensions are represented by

Φ̃
1(1)
sin x1 := λk0.Φsin(x̂(3(k + 1)))(3(k + 1)),

Φ̃1(1)
cos x

1 := λk0.Φcos(x̂(3(k + 1)))(3(k + 1)).

Remark 5.1.1 1) It is well–known that 2)–5) already characterize sin, cos (see e.g. [24] ).

2) By the axioms 1) Φsin and Φcos are majorizable by λx0, n0.j(6(n+ 1), 3(n+ 1)− 1) ∈ G2Rω
−.

Hence thm.2.2.8 applies.
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3) In G3Aω we can define constants Φ′sin,Φ
′
cos which satisfy (provable in G3Aω

i ) −1 ≤
Φ′sinx,Φ

′
cosx ≤ 1 and 2)–5) above using the usual definition via the Taylor expansion of sin

and cos. If we now define Φsinx := ˜(Φ′sinx) and Φcosx := ˜(Φ′cosx) (where λy1.ỹ ∈ G2Rω is

the construction corresponding to our representation of [−1, 1] such that ỹ ≤1 M , y =IR ỹ if

−1 ≤IR y ≤IR 1, and −1 ≤IR ỹ ≤IR 1 for all y1), then these functionals satisfy 1)–5).

In the following we will write Φsin,Φcos also for Φ̃sin, Φ̃cos since from the type of the argument it

will always be clear wether Φsin,Φcos or their extensions Φ̃sin, Φ̃cos are meant.

In the following we will introduce π
2 (and thus π) as the uniquely determined zero of the func-

tion cos on [0, 2]. This is possible since Φcos0 =IR 1, Φcos2 ≤IR − 1
3 and

(∗)
∧
x0, y0

(
0 ≤Q y ≤Q x ≤Q 2→ Φcosx−IR Φcosy ≤IR −

(x−Q y)2

18

)
are true purely universal assertions on cos (see below for the verfication of (∗)) and hence axioms

of G2Aω
i .

(∗) is a uniform quantitative version of the strict monotonicity of cos on [0, 2]. This strict mono-

tonicity implies the uniqueness and hence (by a general meta–theorem from [37] ) the effectivity of

the uniquely determined zero of cos [0, 2]. This can be seen also directly as follows: The quantita-

tive monotonicity (∗) immediately yields a modulus of uniqueness (in the sense of [37] ) ω ∈ G2Rω,

namely ω(n) := 1
36(n+1)2 and thus the computability of the zero of cos in G2Rω ∪ Φcos:

Let xm, xm̃ ∈ [0, 2] be such that

| cosxm|, | cosxm̃| <
1

36(n+ 1)2
and therefore | cosxm − cosxm̃| <

1

18(n+ 1)2
.

Then –by (∗)– |xm − xm̃| < 1
n+1 , i.e. ω is a modulus of uniqueness. We define a partition of [0, 2]

by

xi :=
i

3 · 36(n+ 1)2
for i = 0, . . . , 6 · 36(n+ 1)2

and compute for each i a rational 1/(6 · 36(n+ 1)2)–approximation yi of | cosxi|. Next we compute

an in such that

|yin | = min
{
|yi| : i = 0, . . . , 6 · 36(n+ 1)2

}
.

It follows

| cos(xin)| ≤ min
i≤6·36(n+1)2

| cosxi|+
1

3 · 36(n+ 1)2
≤ inf
x∈[0,2]

| cosx|+ 2

3 · 36(n+ 1)2
<

1

36(n+ 1)2
.

Hence (xin) is a Cauchy sequence in [0, 2] with Cauchy modulus 1/(n+ 1). (xin) can be computed

by a term t1 in G2Rω ∪ Φcos. Therefore we may define π :=1 2 ·IR t.

The following propositions on π,Φsin,Φcos are purely universal and therefore axioms of G2Aω
i :

1) 2 ≤IR π ≤IR 4, Φcos(
π
2 ) =IR 0.
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2)
∧
x1
(
Φcos(x+IR 2π) =IR Φcosx ∧ Φsin(x+IR 2π) =IR Φsinx ∧
Φcos(x+IR π) =IR −Φcosx ∧ Φsin(x+IR π) =IR −Φsinx ∧
Φcosx =IR Φsin(π2 −IR x) ∧ Φsinx =IR Φcos(

π
2 −IR x)

)
.

3) Uniform quantitative strict monotonicity:∧
x0, y0

((
0 ≤Q y ≤Q x ≤Q 4→ Φcos(x̃)−IR Φcos(ỹ) ≤IR − (x̃−IRỹ)2

18

)
∧(

− 2 ≤Q y ≤Q x ≤Q 2→ Φsin(x̌)−IR Φsin(ŷ) ≥IR
(x̌−IRŷ)2

18

))
,

where z̃ := minIR(z, π), ž := minIR(z, π/2) and ẑ := maxIR(z,−π/2).

3) implies (together with 1) and the continuity of cos, sin):

3)’
∧
x1, y1

((
0 ≤IR y ≤IR x ≤IR π → Φcos(x)−IR Φcos(y) ≤IR − (x−IRy)2

18

)
∧(

− π
2 ≤IR y ≤IR x ≤IR

π
2 → Φsin(x)−IR Φsin(y) ≥IR

(x−IRy)2

18

))
.

The reason for our somewhat complicated formulation 3) instead of 3)’ is that 3) is in Π0
1 (in contrast

to 3)’).

Proof of 3)’ (and hence of 3) and (∗) above):

Since sin z ≥ z
3 for all z ∈ [0, 2] (see e.g. [15] ), we obtain for all x, y such that 0 ≤ y ≤ x ≤ π

2 :

cosx− cos y = −2 sin(
x+ y

2
) sin(

x− y
2

) ≤ −2(
x+ y

6
)(
x− y

6
) ≤ − (x− y)2

18
.

Because of cosx = − cos(π − x), the claim follows for x, y ∈ [0, π2 ] and x, y ∈ [π2 , π]. Now assume

that x ≥ π
2 ∧ y ≤

π
2 : Then

cosx − cos y = cosx − cos π2 + cos π2 − cos y ≤ −2
(
x2−y2

36

)
≤ − (x−y)2

18 . Put together this yields the

claim for [0, π].

By sinx = − cos(π2 + x) the corresponding claim for sin follows.

Remark 5.1.2 The proof of 3)’ above can be conceived as an instance of cor.2.2.3 (of course a very

simple one): When formalized within G2Aω, the strict monotonicity of cos has (modulo a suitable

prenexation) the logical form

(+)
∧
x, y ≤1 Mπ, k

0
∨
n0
(
x ≥IR y +

1

k + 1
→ Φcosx− Φcosy <IR −

1

n+ 1︸ ︷︷ ︸
≡:A∈Σ0

1(modulo prenexation)

)
.

Since (+) is provable in G2Aω, cor.2.2.3 implies the extractability of a polynomial pk providing a

bound on n which does not depend on x, y. Since A is monotone w.r.t. n, this bound in fact realizes

‘
∨
n’, i.e.

G2Aω
i `

∧
x, y ∈ [0, π], k0

(
x ≥IR y +

1

k + 1
→ Φcosx− Φcosy <IR −

1

pk + 1

)
.

Our proof of 3)’ yields pk := 18(k + 1)2. The majorization used in this proof to eliminate the

dependence on x, y is simply the inequality

(x+ y)(x− y) ≥ (x− y)2 ≥ 1

(k + 1)2
for x ≥ y +

1

k + 1
≥ 1

k + 1
.
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The tangent function tanx := sin x
cos x is represented by a term Φ

1(0)(1)
tan ∈ G2Rω ∪ {Φsin,Φcos} such

that ∧
x1, n0

(
− π

2
+

1

n+ 1
≤IR x ≤IR

π

2
− 1

n+ 1
→ Φtanxn =IR

Φsinx

Φcosx

)
.

5.2 The functions arcsin, arccos and arctan in G2A
ω
i

As we have seen above, sinx is strictly monotone on [−π2 ,
π
2 ] with the ’modulus of uniform strict

monotonicity’ ω(ε) := ε2

18 . Since sinx has the Lipschitz constant λ = 1,∧
y ∈ [−1, 1]

∨
x ∈ [−π2 ,

π
2 ](sinx = y) implies

(∗)
∧
y ∈ [−1, 1], n ∈ IN

∨
rn ∈ {q1, . . . , qln}

(
| sin rn − y| ≤

1

n+ 1

)
,

where {q1, . . . , qln} ⊂ [−π2 ,
π
2 ]∩Q is a 1/(n+1)–net for [−π2 ,

π
2 ]. Similarly to the function M used in

our representation of [0, 1] one constructs a function Mπ ∈ G2Rω such that {i : i ≤0 Mπn} contains

(modulo our coding of Q) such a 1/(n+ 1)–net (e.g. Mπn := j(8(n+ 1), n)). (∗) implies∧
y ≤1 M,n0

∨
q ≤0 Mπn

( ̂
(−π

2
)(n) +

1

n+ 1
≤Q q ≤Q (

π̂

2
)(n)− 1

n+ 1
∧ |Φsinq −IR ỹ| ≤IR

3

n+ 1

)
35

and therefore∧
y ≤1 M,n0

∨
q ≤0 Mπn

( ̂
(−π

2
)(n) +

1

n+ 1
≤Q q ≤Q (

π̂

2
)(n)− 1

n+ 1
∧ |(Φsinq)(n)−Q ỹ(n)| ≤Q

5

n+ 1

)
.

Bounded µ–search provides a functional Ψ̃1(1) ∈ G2Rω ∪ {Φsin} such that∧
y ≤1 M,n0

( ̂
(−π

2
)(n) +

1

n+ 1
≤Q Ψ̃yn ≤Q (

π̂

2
)(n)− 1

n+ 1
∧ |Φsin(Ψ̃yn))(n)−Q ỹ(n)| ≤Q

5

n+ 1

)
and therefore∧

y ≤1 M,n0
( ̂
(−π

2
)(n) +

1

n+ 1
≤Q Ψ̃yn ≤Q (

π̂

2
)(n)− 1

n+ 1
∧ |Φsin(Ψ̃yn)−IR ỹ| ≤IR

7

n+ 1

)
Hence for Ψyn := Ψ̃y(7 · 36(n+ 1)2)∧

y ∈ [−1, 1], n ∈ IN
(
|Φsin(Ψyn)−IR ỹ| <

1

36(n+ 1)2

)
.

¿From the fact that ω(ε) is a modulus of strict monotonicity for sin we obtain that (Ψyn)n∈IN is a

Cauchy sequence in [−π2 ,
π
2 ] with Cauchy modulus 1/(n+ 1): Suppose that m, m̃ ≥0 n, then

|Φsin(Ψym)− Φsin(Ψym̃)| ≤ |Φsin(Ψym)− ỹ|+ |ỹ − Φsin(Ψym̃)| < 1

18(n+ 1)2

and therefore |Ψym−Q Ψym̃| < 1
n+1 .

Hence Φarcsiny := Ψỹ represents the inverse function of sin on [−π2 ,
π
2 ] and is uniformly continuous

on [−1, 1] with ω as a modulus of uniform continuity.

The inverse arccos of cos on [0, π] is defined analogously.

Similarly to arcsin, arccos one can finally define arctan in G2Aω
i .

35Here again λy1.ỹ ∈ G2Rω is the construction corresponding to our representation of [−1, 1] such that ỹ ≤1 M ,
y =IR ỹ if −1 ≤IR y ≤IR 1, and −1 ≤IR ỹ ≤IR 1 for all y1.
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5.3 The exponential functions expn and exp in G2A
ω
i and G3A

ω
i

Since all terms t1 ∈ G2Rω are bounded by a polynomial (prop.1.2.28 ) it is clear that exp can neither

be defined in G2Aω
i nor can exp be represented by a new function constant which is majorized by a

term from G2Rω. However for every fixed number n ≥0 1 we can introduce the restriction of exp

to [−n, n](⊂ IR) by such a constant. This means that we can deal locally with exp in G2Aω
i and

e.g. may use exp for the solution of ordinary differential equations etc.

We add to G2Aω
i a function constant Φ

1(0)
expn which is intended to represent the restriction of exp on

[−n, n]∩Q. Since exp is Lipschitz continuous on [−n, n] with a Lipschitz constant e.g. λ := 3n, we

have the following universal axioms on Φ
1(0)
expn in G2Aω

i
36

(1)
∧
x0
( ̂Φexpnx =1 Φexpnx ≤1 Mn ∧ 0 ≤IR Φexpnx ≤IR 3n),

where Mn is the boundedness function used in the representation of [0, 3n] (e.g. Mn(k) :=

j(6 · 3n(k + 1), 3(k + 1)− 1)).37

(2)
∧
x0, y0, q0

(
− n ≤Q x, y ≤Q n ∧ |x−Q y| ≤Q

q

3n
→ |Φexpnx−IR Φexpny| ≤IR q

)
.

As in the case of Φsin, by (2) we can extend Φexpn to a constant Φ̃
1(1)
expn ∈ G2Rω which represents

the continuation of the function represented by Φexpn to [−n, n]. As for Φsin we will denote this

extension also by Φexpn . The most important properties of exp (restricted on [−n, n]) can be

expressed by purely universal sentences and thus are axioms of G2Aω
i :

(3)
∧
x0, y0

(
− n ≤Q y ≤Q x ≤Q n→

∫ x

y

(Φexpnt)dt =IR Φexpnx−IR Φexpny
)
, Φexpn0 =IR 1,

(4)
∧
x0, y0

(
− n ≤Q x, y, x+Q y ≤Q n→ Φexpn(x+Q y) =IR Φexpn(x) ·IR Φexpn(y)

)
.

By the continuity of Φexpn , (3) and (4) immediately generalize to real arguments. Furthermore by

the theorem that the derivative of
∫ x

0
f(x)dx is f (which we will discuss in the next chapter in the

context of G2Aω
i ), (3) implies

(3)’
∧
x1(−n ≤IR x ≤IR n→ Φ′expn

x =IR Φexpnx), where ′ denotes the derivative.

In contrast to G2Aω
i we can define the unrestricted exponential function in G3Aω

i as usual via the

exponential series:38 one easily defines the sequence of partial sums of this series for rational argu-
ments. From the quotient criterion one gets the convergence of this series together with a modulus
of convergence. By the continuity of this series in x ∈ IR with the modulus

ω(x, n) := 3d|x̂(0)|+1e · (n+ 1) we can continue it on IR.

36As in the case of Φsin and Φcos we denote (according to the discussion in connection with thm.2.2.8 ) G2Aωi ∪
{Φ1(0)

expn
} also by G2Aωi

37For notational simplicity we identify in the following the natural number n with its code j(2n, 0) as a rational
number, e.g. we write x0 ≤Q n instead of x0 ≤Q j(2n, 0) in order to express that the rational number which is coded

by x is ≤ the natural number n.
38In particular we can define a term Φexpn in G3Aωi which satisfies (provably) (1)–(4).
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Analogously to the definition of arcsin we can define the inverse function lnn of expn using the

fact that e.g. ω(ε) := ε · 3−n is a modulus of strict monotonicity for expn on [−n, n].

In this chapter we have seen that sin, cos can be introduced relatively to G2Aω via new con-

stants Φ
1(0)
sin ,Φ

1(0)
cos and purely universal axioms which express the usual (characterizing) properties

of sin, cos. tan and the inverse functions arcsin, arccos, arctan of sin, cos, tan as well as π can be
defined in G2Aω using Φsin,Φcos. Furthermore for each fixed n ∈ IN the restriction expn of the

exponential function exp to [−n, n] can be introduced relatively to G2Aω via a new constant Φ
1(0)
expn

and its characterizing properties can be expressed as universal axioms. Thus by theorem 2.2.8 the
use of sin, cos, tan, arcsin, arccos, arctan, π and the local use of exp only contributes to the growth of

provably functionals by majorants ∈ G2Rω for the constants Φ
1(0)
sin ,Φ

1(0)
cos ,Φ

1(0)
expn and the terms used

in the formulation of their universal axioms and in the definition of π, arcsin, arccos, arctan. Hence
the results stated at the end of chapter 3 on polynomial growth of bounds extractable from proofs

relatively to G2Aω (resp. finitely iterated exponential growth in case of G3Aω) extend to proofs

which use (besides the analytical tools discussed in chapter 3 and 4 above) also these trigonometric

functions and expn and their usual properties. The result on finitely iterated exponential growth

also applies in the presence of the unrestricted exponential function.
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6 Analytical theorems which can be expressed as universal
sentences in G2A

ω or follow from AC0,1–qf

In the previous chapters 3–5 we have seen that many basic special functions as e.g. sin, cos etc.

and functionals as sup,
∫ b
a

etc. can be introduced in G2Aω and their characteristic properties can

be expressed as universal sentences (which are treated as axioms). As we have discussed in chapters

1,2 such universal axioms have a trivial functional interpretation and monotone functional inter-
pretation. In particular their proofs are irrelevant and do not contribute neither to the extraction

of bounds nor to the bounds itself (that is why we have taken universal sentences as axioms39).

Only the terms (respectively their majorants) used to formulate these axioms may contribute to

the growth of the bounds. Since we have used only terms which (are polynomials or) can be ma-

jorized by polynomials of degree ≤ 3, the order of growth which may result from the use of these

function(al)s and their basic properties is quite low.40

In this chapter we show that the same holds for some basic analytical theorems by reducing them

(in fact strengthening them) to universal sentences or a simple application of AC0,1–qf. Since AC–qf

also has a trivial functional interpretation and monotone functional interpretation this is as good
as a reduction to a universal sentence.

6.1 Fundamental theorem of calculus

In this paragraph we consider the following theorem

Theorem 6.1.1 (Existence of a primitive function) Let f ∈ C[a, b], where a < b, and define

F (x) :=
x∫
a

f(t)dt for x ∈ [a, b]. Then F ′(x) = f(x) on [a, b], where F ′ denotes the derivative of F .

We now verify that this theorem can be written as a purely universal sentence in G2Aω
i (and

therefore is an axiom in G2Aω
i ):

Firstly we express the definition of the derivative as sequential limit

(1) lim
h→0
|h|>0

F (x+ h)− F (x)

h
= f(x)

in the form

(2)
∧
k
∨
n
∧
y ∈ [a, b]

(
|x− y| ≤ 1

n+ 1
→ |f(x)(x− y)− (F (x)− F (y))| ≤ 1

k + 1
· |x− y|

)
.

Remark 6.1.2 (2) trivially implies (1) relatively to G2Aω
i whereas the proof of the implication

’(1)→ (2)’ needs classical logic and AC0,1– qf (the proof is analogously to the proof of the equivalence

of sequential continuity and ε–δ–continuity which we will discuss in detail in paragraph 3 of this

chapter).

39At least up to type–2–variables. However we use only such axioms where the types of the universal quantifiers
are ≤ 1.

40Mainly we have used polynomials of degree 2 as j(x, y) or the modulus of monotonicty q2/18 for sin, cos or the
functions from the representation of C[0, 1]. Only in the representation of the inverse 1/x for a real number x with
|x| > 0 we used a polynomial of degree 3.
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In order to write (2) as a universal sentence we need a modulus of convergence. However the usual

proof of (2) immediately yields such a modulus (in fact even a uniform one, i.e. a modulus which

does not depend on x), namely any modulus ωf of uniform continuity for f works:

(3)
∧
k
∧
y ∈ [a, b]

(
|x− y| < 1

ωf (k) + 1
→ |f(x)(x− y)− (F (x)− F (y))| ≤ 1

k + 1
· |x− y|︸ ︷︷ ︸

≡:A

)
.

Since <IR∈ Σ0
1 and ≤IR∈ Π0

1, the formula A is (when formalized in G2Aω
i ) equivalent to a purely

universal formula. By our representation of C[a, b] from chapter 3, quantification over C[a, b] (and

over [a, b]) reduces to quantification over f1. Hence (3) can be expressed in G2Aω as a sentence∧
f1A with A ∈ Π0

1.

Remark 6.1.3 In constructive analysis the relation ’f is uniformly differentiable on [a, b] with

derivative f ′’ is defined as∨
α1
∧
k0
∧
x, y ∈ [a, b]

(
|x− y| ≤ 1

α(k) + 1
→ |f ′(x)(x− y)− (f(x)− f(y))| ≤ 1

k + 1
· |x− y|

)
(see e.g. [70] ).

This is a uniform quantitative version of differentiation which classically is equivalent to the usual
one but not constructively. From our treatment of the fundamental theorem of calculus we obtain in
G2Aω

i as a corollary the differentiability in this strong sense of many basic functions. We illustrate

this by a simple example:

The formalization of ’
∧
x ∈ [0, 7]

( ∫ x
0

cos(t)dt = sin(x)
)
’ in G2Aω

i is a purely universal sentence and

hence taken as an axiom. Therefore G2Aω
i proves that sin is uniformly differentiable (on [0, 7] and

hence on IR because sin is 2π–periodic) with derivative cos and the modulus α(k) := k (since cos is

Lipschitz continuous with λ := 1).

The theorem on the existence of a primitive function is sometimes called ’first part’ of the funda-
mental theorem of calculus, where the ’second part’ of this theorem refers to the proposition that

every primitive function for f ∈ C[a, b] differs from F only by an additive constant. This second

part follows immediately from the mean value theorem of differentiation which will be discussed in
the first paragraph of the next chapter.

Both parts of the fundamental theorem of calculus together yield f(x) = f(a) +
x∫
a

f ′(t)dt for all

functions f ∈ C[a, b] with derivative f ′ ∈ C[a, b]. From this one obtains in G2Aω
i for every fixed

number k the Taylor formula for k+1–times continuously differentiable functions f with the inte-

gral form of the error term by the usual inductive procedure (In order to formulate this formula for

variable k we need the functions λk.k! and λk.xk which are definable in G3Aω
i but not in G2Aω

i ).

The Taylor formula with the Lagrange error term follows from this as usual by the mean value
theorem of integration which will be considered in chapter 7.

6.2 Uniform approximation of continuous functions by trigonometric
polynomials

Let f ∈ C[−π, π] be a continuous function with the modulus ωf of uniform continuity and assume

f(π) =IR f(−π). It is well–known that f can be approximated uniformly (i.e. w.r.t. the norm
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‖f‖∞ := sup
x∈[−π,π]

|fx|) by trigonometric polynomials

n∑
k=1

(ak · cos(kx) + bk · sin(kx)),

where ak, bk ∈ IR.

In order to express this theorem in G2Aω
i as a universal sentence we have to define (within G2Rω) a

sequence of approximating polynomials as a functional in f, ωf together with a modulus of conver-

gence. This can be achieved by a theorem due to Fejr (more precisely by the proof of this theorem

as it is given e.g. in [53] ):

Theorem 6.2.1 (Fejr) Let σn(f, x) := 1
n ·

n−1∑
k=0

S(k, f, x), where

S(n, f, x) := a0

2 +
n∑
k=1

(
ak · cos(kx) + bk · sin(kx)

)
and

ak := 1
π

π∫
−π

f(t) cos(kt)dt, bk := 1
π

π∫
−π

f(t) sin(kt)dt.

Then lim
n→∞

σn(f, x) = f(x) uniformly on [−π, π].

Remark 6.2.2 Usually theorem 6.2.1 is formulated for 2π–periodic continuous functions f : IR→
IR. This version follows immediately from our formulation (which is more suited to formalize this

theorem as a universal sentence) by the fact that sin, cos are periodic with period 2π.

By the results from the chapters 3-5 on the definability of variable sums of real numbers, the Riemann

integral and sin, cos, π in G2Rω ∪ {Φsin,Φcos} and our representation of functions f ∈ C[−π, π]

and real numbers by functions f1, x1 we know that σn(f, x) can be defined as a functional Φσ ∈
G2Rω ∪ {Φsin,Φcos} in n0, f1, x1

The proof of theorem 6.2.1 from [53] (pp.129–131) yields∧
x ∈ [−π, π]

(
|σn0(f, x)− f(x)| ≤ 1

k + 1

)
,

if n0 is sufficiently large such that

2 ·Mf

π · n0

(
sin
(
1/(ωf (2(k + 1)) + 1)

))2 ≤ 1

4(k + 1)
, i.e.

n0 ≥
8(k + 1)Mf

π ·
(

sin
(
1/(ωf (2(k + 1)) + 1)

))2 ,
where Mf ≥ ‖f‖∞ and ωf : IN→ IN is a modulus of uniform continuity for f .

¿From the fact that ω(ε) := ε2

18 is a modulus of strict monotonicity for sin on [−π2 ,
π
2 ] ⊃ [0, 1] (as

we have proved in chapter 4) we obtain

π · sin
(
1/(ωf (2(k + 1)) + 1)

)
≥ 1

6(ωf (2(k + 1)) + 1)2
,

Hence for Ψ ∈ G2Rω defined as

Ψfk := 48(k + 1)Mf · (ωf (2(k + 1)) + 1)2,
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we have

(+)
∧
f ∈ C[−π, π],m, n ∈ IN

(
m ≥0 Ψfn ∧ f(−π) =IR f(π)→ ‖σm − f‖∞ ≤

1

n+ 1

)
.

(+) is equivalent to

(+)′
∧
f ∈ C[−π, π], k,m, n

(
m ≥0 Ψf̃n∧|f(−π)−f(π)| <IR

1

k + 1
→ ‖σm(f̃)−f‖∞ ≤IR

1

n+ 1
+

1

k + 1

)
,

where f̃x := fx+
(
x+π
2π

)
(f(−π)− f(π)).

By our representation of C[a, b] from chapter 3, ’
∧
f ∈ C[−π, π]’ reduces to ’

∧
f1’. Furthermore by

the definability of ‖f‖∞ in G2Rω (and the computability of an upper bound IN 3Mf ≥ ‖f‖∞; see

also chapter 3) and the remark above, we conclude that (+)′ (in contrast to (+)) has the logical

form
∧
f1, n0A0 (when formalized in G2Aω

i ) and thus is an axiom of G2Aω
i .

6.3 An application of AC0,1–qf

A function IR → IR in G2Aω
i is given by a functional F 1(1) which is extensional w.r.t. =IR (for

short: F : IR→ IR), i.e.∧
x1, y1(x =IR y → Fx =IR Fy).

As usual F is called sequentially continuous in x iff∧
x

1(0)
(·)
(

lim
n→∞

xn =IR x→ lim
n→∞

F (xn) =IR F (x)
)
,

where ( lim
n→∞

xn =IR x) :≡
∧
k0
∨
n0
∧
m ≥0 n(|xm −IR x| ≤ 1

k+1 ).

F is called ε–δ–continuous in x iff∧
k0
∨
n0
∧
y1
(
|x−IR y| ≤

1

n+ 1
→ |F (x)−IR F (y)| ≤ 1

k + 1

)
.

Proposition: 6.3.1 The theory G2Aω+AC0,1–qf proves

∧
F 1(1) : IR→ IR

∧
x1
(
F is sequentially continuous in x↔ F is ε–δ–continuous in x

)
.

Proof: ’←’: Obvious!
’→’: Suppose that F is not ε–δ–continuous in x, i.e.

(∗)
∨
k0
∧
n0
∨
y1
(
|x−IR y| <IR

1

n+ 1
∧ |F (x)−IR F (y)| >IR

1

k + 1︸ ︷︷ ︸
≡:A∈Σ0

1

)
.

By our coding of pairs of natural numbers and numbers into functions one can express
∨
y1A in the

form
∨
y1A0. Hence AC0,1–qf applied to (∗) yields∨
k0, ξ1(0)

∧
n0
(
|x−IR ξn| <IR

1

n+ 1
∧ |F (x)−IR F (ξn)| >IR

1

k + 1

)
,

i.e. (ξn)n∈IN represents a sequence of real numbers which converges to x. But

¬ lim
n→∞

F (ξn) =IR F (x) and thus F is not sequentially continuous in x.
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Remark 6.3.2 1) The the proof of the implication ’←’ needs no AC0,1–qf and can be carried

out even in the intuitionistic theory G2Aω
i . On the other hand it is known that the implication

’→’ is not provable in elementary intuitionistic analysis: See [47] for details on this. The

weaker ’global’ implication ’F is sequentially continuous on IR → F is ε–δ–continuous on IR’
can be proved in elementary intuitionistic analysis if a certain principle of local continuity is

added which (although classically incorrect) is of interest in intuitionistic mathematics (see

[70] ,[66] and also [48] for a discussion on this point).

2) The use of AC0,1–qf in the proof of∧
F : IR→ IR

∧
x ∈ IR

(
F sequentially continuous in x→ F ε–δ–continuous in x

)
is unavoidable since this implication is known to be unprovable even in Zermelo–Fraenkel

set theory ZF (and a fortiori in G2Aω): see [27] ,[23] and [12] (However the weaker global

implication (see 1) can be proved without choice; see [70] (7.2.9)).

The results of this chapter imply that the statements on the growth of extractable bounds stated
at the end of the previous chapter extend without any changes to proofs which may use in addition
to the analytical principles studied in chapters 3–5 also

1) the fundamental theorem of calculus

2) Fejer’s theorem on the uniform approximation of 2π–periodic continuous functions by trigono-

metric polynomials

3) the equivalence (local and global) of ε–δ –continuity and sequential continuity of F : IR→ IR

in x ∈ IR.
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7 Axioms having the logical form
∧
xδ
∨
y ≤ρ sx

∧
zτA0(x, y, z)

So far we have considered basic properties of special functions and functionals in analysis as well
as analytical theorems which can be expressed as purely universal sentences or follow from such
sentences by the use of AC–qf. These theorems therefore have both a trivial functional interpretation

and a trivial monotone functional interpretation and contribute to the growth of bounds (if they

contribute at all) only by their term structure but not by their proofs.

In this chapter we deal with sentences which have the much more general form

(∗)
∧
xδ
∨
y ≤ρ sx

∧
zτA0(x, y, z)

of the axioms ∆ in the theorems 2.2.2, 2.2.8 and the cor.2.2.3 . Although all the sentences of this
type which we consider in this chapter have no direct usual functional interpretation by computable

functionals at all (and for the most interesting ones even their negative translations have no func-

tional interpretation in Gödel’s T) they have a simple direct (i.e. without negative translation)

monotone functional interpretation by very simple functionals ∈ G2Rω
−. In particular their proofs

do not matter for the extraction of uniform bounds but only the growth of majorants for the terms

needed to formulate these sentences which is very low (mainly polynomially of degree 2).

In §1 we show that the following theorems of analysis can be expressed as sentences (∗) with

s ∈ G2Rω and A0 ∈ L(G2Aω)41:

1) Attainment of the maximum of f ∈ C([0, 1]d, IR) on [0, 1]d.

2) Mean value theorem of integration.42

3) Cauchy–Peano existence theorem for ordinary differential equations.

4) Brouwer’s fixed point theorem for continuous functions : [0, 1]d → [0, 1]d.

In §2 we introduce new axioms F and F− which both have the form (∗) and are true in the type

structure of all strongly majorizable functionals (which was introduced in [4] ) but are false in the

full set– theoretic model. Thus, whereas F, F− do not contribute to the construction of bounds

extracted from a proof, the verification of these bounds so long uses these axioms. However F−

can be eliminated from the verification proof by further proof–theoretic transformations (which do

not effect the bounds themselves) so that the bounds extracted can also be verified without F−.

For bounds of type ≤ 1 this is also possible for proofs using F . The importance of the F, F− rests

on the fact that they imply combined with AC1,0–qf (which also has a trivial monotone functional

interpretation) relative to G2Aω many important analytical theorems in there direct formulation

(i.e. without any special representation) which do not have the form (∗) by themselves: In §3 we

show that F− implies

5) Every pointwise continuous function G : [0, 1]d → IR is uniformly continuous on [0, 1]d and

possesses a modulus of uniform continuity.

6) [0, 1]d ⊂ IRd has the (sequential form of the) Heine–Borel covering property.

41These theorems which are formulated here only for [0, 1]d generalize to variable rectangles [a1, b1]× . . .× [ad, bd],
where ai < bi for i = 1, . . . , d.

42The mean value theorem of differentiation does not have this logical form but can easily be derived from 1) as
in its usual proof.
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7) Dini’s theorem: Every sequence Gn of pointwise continuous functions :[0, 1]d → IR which

increases pointwise to a pointwise continuous function G : [0, 1]d → IR converges uniformly on

[0, 1]d to G and there exists a modulus of uniform convergence.

8) Every strictly increasing pointwise continuous function G : [0, 1] → IR possesses a uniformly

continuous inverse function G−1 : [G0, G1] → [0, 1] together with a modulus of uniform

continuity.

As a consequence of this we obtain the following result: If
∧
x0
∧
y ≤ρ sx

∨
z0A0(x, y, z) is proved in

G2Aω plus the theorems 1)–8), then one can extract from the proof a polynomial p which provides

a uniform bound on ’
∨
z’ (which does not depend on y), i.e.

∧
x0
∧
y ≤ρ sx

∨
z ≤0 p(x) A0(x, y, z).

If x has the type 1 one obtains a polynomial relatively to x (in the sense of prop.1.2.30 ).

By 5) our representation of f ∈ C([0, 1]d, IR) which presupposes that f is endowed with a modulus

of uniform continuity does not impose any restriction on the domain of functions in the presence of

F− and AC1,0–qf.

It is well–known that the existence of a function G : [0, 1]d → IR, represented by a functional Φ1(1),

which is not continuous can be proved only by an instance of arithmetical comprehension over
functions

CA1
ar :

∨
Φ0(1)

∧
f1(Φf =0 0↔ A(f)), where A is an arithmetical formula.

Since CA1
ar implies CAar it in particular makes all α(< ε0)–recursive functions provably recursive

(when added to G2Aω). Since we deal with theories which do not contain CA1
ar it is consistent to

assume as an axiom that all functions G : [0, 1]d → IR, which are given explicitely by a functional

Φ1(1), are uniformly continuous.43 This is achieved by the axiom F :

G2Aω + F+AC1,0–qf proves: Every function G : [0, 1]d → IR is uniformly continuous and pos-

sesses a modulus of uniform continuity.

The use of F (which does not contribute to the bounds extracted) has the nice property that

continuous functions G : [0, 1]d → IR are nothing else then functionals Φ1(1) which are extensional

w.r.t. =[0,1]d and =IR (and thus represent a function : [0, 1]d → IR). This simplifies the formaliza-

tion of given proofs and thereby the extraction of bounds from these proofs. Moreover the proofs

of 5)–8) (which now hold for arbitrary functions G,Gn) become more simple.

¿From the work on the program of so–called ’reverse mathematics’ (see [16],[17],[60],[61], [56] )

it is known that 1) and 3)–6) are provable in a subsystem RCA0+WKL of second–order arithmetic

which is based on the binary König’s lemma and Σ0
1–induction (see chapter 9)44. The provably

recursive functions of RCA0+WKL are just the primitive recursive ones. This was firstly proved by

H. Friedman in 1979 (in an unpublished paper) using model–theoretic methods. Later on W.Sieg

gave a proof–theoretic treatment of this result using cut–elimination (see [57] ).45 In [33] we proved

43The restriction ’given explicitely by a functional’ is essential. Of course we can formulate functional dependencies
in e.g. G2Aω which describe a discontinuous functional: E.g. we can prove∧
f1
∨

!x0([
∨
y(fy = 0)→ fx = 0 ∧

∧
x̃ < x(fx̃ 6= 0)] ∧ [

∧
y(fy 6= 0)→ x = 0]) and x does not depend continuously

on f , but we cannot show the existence of a funtional Φ0(1) which maps f to x.
44In fact this work shows that 1) and 3)–6) actually are equivalent to WKL over the base theory RCA0. From this

it follows that these theorems have no functional interpretation in Gödel’s T.
45One should mention also [14] where the conservativity of a special version of WKL over a system of second–order

arithmetic whose provably recursive functions are polynomial time computable is established by model–theoretic
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the conservativity of WKL over the finite type theories PRAω and PAω even for higher type sen-

tences
∧
x1
∧
y ≤ρ sx

∨
zτA0(x, y, z), where ρ, τ are arbitrary types. Moreover we gave a perspicuous

method for the the extraction of bounds from proofs using WKL and arbitrary axioms (∗) by a

new combination of functional interpretation with majorization which, in [39], was simplified even

further to the monotone functional interpretation (see chapter 2). In [37], [38] this was applied

to concrete proofs in best approximation theory yielding new numerical estimates which improved

known estimates significantly (see [39] for a discussion of these results). In [37] we also gave a de-

tailed representation of IR, C[0, 1] and more general complete separable metric spaces and showed

that e.g. 1) (for d=1), 2) and 3) as well as some more specific theorems from approximation theory

have the logical form (∗). However we did not determine the growth of the terms needed in the

formalization of these theorems as axioms (∗). Only by our much more involved representation of

C[0, 1] and its generalization to C([0, 1]d, IR) and the explicit definition of the basic function(al)s of

analysis in the chapters 3 and 5 we are now able to show that 1)–4) can be expressed as axioms (∗)
in G2A

ω .

Since 5)–8) do not have the logical form (∗) one has to consider their proofs. The proofs of 5)

and 6) using WKL (relative to RCA0) require a tedious coding technique. In particular pointwise

continuous functions have to be coded as a complicated set of quadruples of rational numbers (see

[60] ). Although working in the more flexible language of finite types makes it much easier to speak

about such functions (namely as functionals of type 1(1)) this does not help as long as one has

to use WKL as the basic principle of proof. In fact even the formulation of WKL itself uses the
coding of sequences of variable length and therefore cannot be carried out in G2Aω. The motivation

for our axioms F , F− was to formulate a more general higher type version of WKL which can be

formulated and applied without the need of coding up objects like functions [0, 1] → IR. This

allows very short proofs for 5)–8) in G2A
ω + F−+AC1,0–qf. In §2 we will study the relationship

between F− and (a generalization of) WKL (to sequences of trees) in great detail.

7.1 Examples of theorems in analysis which can be expressed as∧
x1
∨
y ≤1 sx

∧
z0/1A0–sentences in G2A

ω
i

Example 1:

a) Attainment of the maximum of f ∈ C([0, 1]d, IR) on [0, 1]d:

(1)
∧
f ∈ C([0, 1]d, IR)

∨
x0 ∈ [0, 1]d

(
fx0 = sup

x∈[0,1]d
fx
)
.

(1) is equivalent to

(2)
∧
f ∈ C([0, 1]d, IR)

∨
x0 ∈ [0, 1]d

∧
n0
(
fx0 ≥ frn

)
,

where (rn)n∈IN enumerates a dense subset of [0, 1]d (e.g. [0, 1]d ∩Qd).

Modulo our representation of C([0, 1]d, IR), [0, 1]d and IR, the formalization of (2) in G2Aω
i has the

following logical form∧
f1
∨
x0 ≤1 ν

d(M, . . . ,M)
∧
n0
(
f(x0)IRd ≥IR Ψ1fn︸ ︷︷ ︸

∈Π0
1

)
,

methods.
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where M := λn.j(6(n + 1), 3(n + 1) − 1) is the boundedness function from the representation of

[0, 1], Ψ1 is the functional used in the representation of C([0, 1]d, IR) and (·)IRd the corresponding

application.

Hence (for each fixed number d) theorem (1) is an axiom ∈ ∆ in theorems 2.2.2 ,2.2.7 ,2.2.8 and

corollary 2.2.3 . This generalizes to functions f ∈ C([a1, b1] × . . . × [ad, bd], IR), where ai < bi for

i = 1, . . . , d.

b) Mean value theorem of differentiation: Assume a < b.∧
f ∈ C[a, b](f differentiable in (a, b)→

∨
x0 ∈ (a, b)

(f(b)− f(a)

b− a
= f ′(x0)

)
.

This theorem does not have the logical form
∧
x1
∨
y ≤1 sx

∧
z0A0 by itself since there are unbounded

quantifiers hidden in
∨
x0 ∈ (a, b) because∨

x ∈ (a, b) A(x)↔
∨
x ∈ [a, b](a < x < b ∧A(x))

and <IR∈ Σ0
1.

However the usual proof of the mean value theorem using the above theorem on the attainment of
the maximum can easily be formalized in G2Aω so that the mean value theorem also does not go
beyond polynomial growth.

Example 2: Mean value theorem of integration

∧
f, ϕ ∈ C[0, 1]

(
ϕ ≥ 0→

∨
x0 ∈ [0, 1]

( 1∫
0

f(x)ϕ(x)dx = f(x0) ·
1∫

0

ϕ(x)dx
))
.

Formalized in G2Aω
i this theorem has the following logical form:∧

f1, ϕ1
∨
x0 ≤1 M

(
ΦI(f · ϕ+) =IR f(x0)IR ·IR ΦIϕ︸ ︷︷ ︸

∈Π0
1

)
,

where ϕ+ is the code of the pair (λx0.maxQ(0,Ψ1ϕx),Ψ2ϕ) into a single function (i.e. ϕ+ repre-

sents the positive part of the function represented by ϕ) and f ·ϕ+ is a representative of the product

of the functions represented by f and ϕ+. Again this generalizes to [a, b] instead of [0, 1].

Example 3: Cauchy–Peano existence theorem

Let F (x, y) be a continuous function on the rectangle R := {(x, y) : |x− ξ| ≤ a, |y − η| ≤ b} ⊂ IR2,

where a, b ∈ IR+ \{0}, (ξ, η) ∈ IR2. Furthermore assume that MF := sup
(x,y)∈R

|F (x, y)| > 0 and define

α := min(a, b
MF

). Then (one version of) the Cauchy–Peano existence theorem says (see e.g. [9] )

(∗)

 There exists a continuously differentiable function G : [ξ − α, ξ + α]→ [η − b, η + b] such that∧
x ∈ [ξ − α, ξ + α]

(
G′(x) = F (x,G(x))

)
∧G(ξ) = η

.
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By the fundamental theorem of calculus, (∗) is implied by

(∗∗)


There exists a function G ∈ C([ξ − α, ξ + α], [η − b, η + b]) such that∧
x ∈ [ξ − α, ξ + α]

(
G(x) = η +

x∫
ξ

F (t, G(t))dt
) .

(∗∗) immediately implies

(1)
∧
x ∈ [ξ − α, ξ + α]

(
|G(x)| ≤ b+ |η|

)
and (2)

∧
x, y ∈ [ξ − α, ξ + α]

(
|G(x)−G(y)| ≤MF · |x− y|

)
.

Hence we can (∗∗) write in the form

(∗ ∗ ∗)



∧
(ξ, η) ∈ IR2, a, b ∈ IR, k ∈ IN

(
a, b > 1

k+1 →
∧
F ∈ C(R, IR)

(
MF >

1
k+1 →∨

G : [ξ − α, ξ + α]→ [η − b, η + b]
∧
x, y ∈ [ξ − α, ξ + α](

|G(x)−G(y)| ≤MF · |x− y| ∧G(x) = η +
x∫
ξ

F (t, Gt)dt
)))

.

(∗ ∗ ∗) can be formalized in G2Aω
i in the following way

(+)


∧
ξ1, η1, a1, b1, k0

(
a, b >IR

1
k+1 →

∧
F 1
(
MF >IR

1
k+1 →

∨
G ≤1(0) λk

0.M(χηb)(∧
x0, y0(0 ≤Q x, y ≤Q 1→ (|Gx−IR Gy| ≤IR 2αMF · |x−Q y|) ∧ (η − b ≤IR Gx ≤IR η + b))

∧
∧
z1
(
Gξ,α(z̆)IR =IR η +IR ΦI z̆

ξ
(λx1.F (ν2(x,Gξ,α(x)IR))IR2)

))))
, 46

where χηb =0 d( ̂|η|+IR b)(1)e+147 , Mk := λn0.j(6k(n + 1), 3(n + 1) − 1) and Gξ,α(x1)IR :=

G
(x−IR(ξ−IRα)

2α

)
IR

and z̆1 := maxIR(ξ − α,minIR(z, ξ + α)).

The fact that (+) expresses (∗∗∗) in G2Aω
i follows from our representation of IR, IR2, R, C(R, IR),

∫ x
ξ

and the following observations: Let G be a function [ξ−α, ξ+α]→ [η− b, η+ b] which is Lipschitz

continuous with constant MF . Then G̃x := G((ξ − α)(1 − x) + (ξ + α)x) is a function : [0, 1] →
[η − b, η + b] which is Lipschitz continuous with constant 2α ·MF . Because of this continuity G̃ is

already determined by its restriction on [0, 1] ∩ Q. Such a function is represented in G2Aω
i by a

function G1(0). Since |G̃(x)| ≤ |η|+ b we may assume that Gx0 ≤1 M(χηb) (By our representation

of [−k, k](⊂ IR) there is a construction x1 7→ x̃ ≤1 Mk such that −k ≤IR x̃ ≤IR k for all x1 and

x̃ =IR x if −k ≤IR x ≤IR k.48 Thus we can achieve that Gx0 ≤1 M(χηb) simply by switching to

G̃x. Now λz1.Gξ,α(z)IR just represents the original function G. In the other direction one only has

to observe that any G1(0) such that∧
x0, y0(0 ≤Q x, y ≤Q 1→ (|Gx−IR Gy| ≤IR 2αMF · |x−Q y|) ∧ (η − b ≤IR Gx ≤IR η + b))

represents a function [0, 1] → [η − b, η + b] with Lipschitz constant 2α ·MF and hence that Gξ,α

represents a continuous function : [ξ − α, ξ + α]→ [η − b, η + b].

46For notational simplicity we omit here the modulus of uniform continuity for λx.F (ν2(x,Gξ,α(x)IR)) which can

be easily computed from the moduli of F,G.
47dx0e denotes the least natural number which is an upper bound for the rational number coded by x (One easily

shows that d·e ∈ G2Rω). Hence χηb is a natural number which is an upper bound of the real number (represented
by) |η|+IR b.

48Here we simply write k as representative of the natural number k in IR.
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It is clear that (+) has (modulo a shift of the existential quantifiers hidden in >IR into the front of

the implication) the form
∧
x
∨
G ≤1(0) sx

∧
zA0, where x, z are tuples of variables whose types are

≤ 1 and s ∈ G2Rω.

Example 4: Brouwer’s fixed point theorem

Theorem 7.1.1 (Brouwer’s fixed point theorem)

Every continuous function F : [0, 1]d → [0, 1]d has at least one fixed point, i.e. there exists an

x0 ∈ [0, 1]d such that F (x0) = x0.

For every fixed number d continuous functions F : [0, 1]d → [0, 1]d can be represented in G2Aω
i as

d–tuples of continuous functions Fi : [0, 1]d → [0, 1] and therefore as d–tuples of number–theoretic

functions f1
i . Hence Brouwer’s fixed point theorem has (formalized in G2Aω

i ) the logical form

∧
f1

1 , . . . , f
1
d

∨
x0 ≤1 ν

d(M, . . . ,M)

d∧
i=1

( ˜fi(x0)IRd =IR
˜(νdi x0)︸ ︷︷ ︸

∈Π0
1

)
,

where M := λn.j(6(n + 1), 3(n + 1) − 1) is the boundedness function from our representation of

[0, 1]. This generalizes to any rectangle [a1, b1] × . . . × [ad, bd] (with variable a1, b1, . . . , ad, bd such

that ai < bi for i = 1, . . . , d) instead of [0, 1]d.

7.2 The axiom F and the principle of uniform boundedness

In [39] we introduced the following axiom:49

F0 :≡
∧

Φ2, y1
∨
y0 ≤1 y

∧
z ≤1 y(Φz ≤0 Φy0).

F0 states that every functional Φ2 assumes its maximum value on the fan {z1 : z ≤1 y} for each y1.

This is an indirect way of expressing that Φ is bounded on {z1 : z ≤1 y}:

B0 :≡
∧

Φ2, y1
∨
x0
∧
z ≤1 y(Φz ≤0 x).

F0 immediately implies B0: Put x := Φy0. The proof of the implication ’B0 → F0’ uses the least
number principle and classical logic:

If x is a bound for Φz on {z1 : z ≤1 y} then there exists a minimal bound x0 and therefore a z0

such that z0 ≤1 y ∧ Φz0 =0 x0 (since otherwise sup
{z1:z≤1y}

Φz < x0, contradicting the minimality of

n0).

Our motivation for expressing B0 via F0 is that F0 –in contrast to B0– has (almost) the logi-

cal form
∧
x
∨
y ≤ sx

∧
zA0 of an axiom ∈ ∆ in theorems 2.2.2,2.2.7, 2.2.8 and cor.2.2.3 . This is

the case because F0 contains instead of the unbounded quantifier ’
∨
x0’ only the bounded quanti-

fier ’
∨
y0 ≤1 y’ (of higher type). The reservation ’almost’ refers to the fact that there is still an

49In [39] this axiom is denoted by F instead of F0. In this paper we reserve the name F for a generalization of this
axiom which will be introduced below.
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unbounded existential quantifier in F0 hidden in the negative occurrence of ’z ≤1 y’. However this

quantifier can be eliminated by the use of the extensionality axiom (E). By (E), F0 is equivalent to

F̃0 :≡
∧

Φ2, y1
∨
y0 ≤1 y

∧
z1
(
Φ(min1(z, y)) ≤0 Φy0

)
(see lemma 7.2.7 below).

This use of extensionality does not cause problems for our monotone functional interpretation since
the elimination of extensionality procedure applies: Because of the type–structure of F0 the impli-

cation ’F0 → (F0)e’ is trivial.

F0 is not true in the full type structure Sω of all set–theoretic functionals:

Definition 7.2.1
S0 := ω,

Sτ(ρ) := {all set–theoretic functions x : Sρ → Sτ},

Sω :=
⋃
ρ∈T
Sρ,

where ’set–theoretic’ is meant in the sense of ZFC.50

Proposition: 7.2.2 Sω |=/F0.

Proof: Define

Φ2y1 :=

 the least n such that yn =0 0, if it exists

00, otherwise.

Φ is not bounded on {z1 : z ≤1 λx
0.10} since Φ(1, x) =0 x, where

(1, x)(k) :=

 10, if k <0 x

00, otherwise.

On the other hand F0 is true in the type structure Mω of all strongly majorizable set–theoretic

functionals, which was introduced in [4] :

Definition 7.2.3

M0 := ω, x∗ s–maj0 x :≡ x∗, x ∈ ω ∧ x∗ ≥ x;

x∗ s–majτ(ρ) x :≡ x∗, x ∈MMρ
τ ∧

∧
y∗, y ∈Mρ(y

∗ s–majρ y → x∗y∗ s–majτ x
∗y, xy),

Mτ(ρ) :=
{
x ∈MMρ

τ :
∨
x∗ ∈MMρ

τ (x∗ s–majτ(ρ) x)
}

;

Mω :=
⋃
ρ∈T
Mρ

(Here MMρ
τ denotes the set of all set–theoretic functions: Mρ →Mτ ).

Proposition: 7.2.4 Mω |= F0.

50The following proposition also holds if we omit the axiom of choice since only comprehension is used for the
refutation of F0.
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Proof: It suffices to show thatMω |= B0: Φ ∈M2 implies the existence of a functional Φ∗ ∈M2

such that Φ∗ s–maj2 Φ. Hence Φ∗yM ≥0 Φz for all y1, z1 such that y ≥1 z (yMx0 := max
i≤x

(yi)).

For our applications in this paper we also need a strengthening F of F0, which generalizes F0

to sequences of functionals and still holds in Mω:

Definition 7.2.5

F :≡
∧

Φ2(0), y1(0)
∨
y0 ≤1(0) y

∧
k0
∧
z ≤1 yk

(
Φkz ≤0 Φk(y0k)

)
.

F implies the existence of a sequence of bounds for a sequence Φ2(0) of type–2–functionals on a
sequence of fan’s:

Proposition: 7.2.6

G1Aω
i ` F →

∧
Φ2(0), y1(0)

∨
χ1
∧
k0
∧
z ≤1 yk(Φkz ≤0 χk).

Proof: Put χk := Φ(y0k)k for y0 from F .

Similarly to F0 also F can be transformed into a sentence F̃ having the logical form∧
x
∨
y ≤ sx

∧
z A0:

Lemma: 7.2.7

E–G1Aω
i ` F ↔ F̃ :≡

∧
Φ2(0), y1(0)

∨
y0 ≤1(0) y

∧
k0, z1

(
Φk(min1(z, yk)) ≤0 Φk(y0k)

)
.

Proof: ’→’ is trivial. ’←’ follows from z ≤1 yk → min1(z, yk) =1 z by the use of (E).

Because of this lemma we can treat F as an axiom ∈ ∆ in the presence of (E). In order to ap-

ply our monotone functional interpretation we firstly have to eliminate (E) from the proof. This

can be done as in cor.2.1.4 and remark 2.2.4 since F → (F )e.

Theorem 7.2.8 Assume that n ≥ 1. Let ∆ be a set of sentences having the form∧
uγ
∨
v ≤δ tu

∧
wη B0, where t ∈ GnRω and γ, η ≤ 2, δ ≤ 1 such that Sω |= ∆. Furthermore let s ∈

GnRω and A0 ∈ L(GnAω) be a quantifier–free formula containing only x, y, z free and let α, β ∈ T

such that (α = 0 ∧ β ≤ 1) or (α = 1 ∧ β = 0), and τ ≤ 2. Then the following rule holds:

E–GnAω + F + ∆ + ACα,β–qf `
∧
x1
∧
y ≤1 sx

∨
zτ A0(x, y, z)

⇒ by elimination of (E) and monotone functional interpretation ∃Ψ ∈ GnRω
−[Φ1] :

GnAω
i + F̃ + ∆ + b–AC `

∧
x1
∧
y ≤1 sx

∨
z ≤τ Ψx A0(x, y, z)

⇒Mω,Sω |=
∧
x1
∧
y ≤1 sx

∨
z ≤τ Ψx A0(x, y, z).51

Ψ is built up from 00, 10,maxρ,Φ1 and majorizing terms52 for the terms t occurring in the quantifier

axioms
∧
xGx → Gt and Gt →

∨
xGx which are used in the given proof by use of λ–abstraction

and substitution.
If τ ≤ 1 then Ψ has the form Ψ ≡ λx1.Ψ0x

M , where xM := Φ1x and Ψ0 does not contain Φ1

(An analogous result holds for E–PRAω,E–PAω).

51Note that the conclusion holds in Sω although Sω |=/ F̃ .
52Here t∗[a] is called a majorizing term if λa.t∗ s–maj λa.t, where a are all free variables of t.
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Proof: By lemma 7.2.7 and elimination of extensionality the assumption yields

GnAω + F̃ + ∆ + ACα,β–qf `
∧
x1
∧
y ≤1 sx

∨
zτ A0(x, y, z).

By thm.2.2.2 there exists a Ψ ∈ GnRω
−[Φ1] satifying the properties of the theorem such that

GnAω
i + F̃ + ∆ + b–AC `

∧
x1
∧
y ≤1 sx

∨
z ≤τ Ψx A0(x, y, z).

¿From [34] and the proof of prop.7.2.4 we know that Mω |= PAω + F̃+b–AC and therefore

Mω |= GnAω + F̃+b–AC. Note that every Sω–true universal sentence
∧
xρA0(x) with deg(ρ ≤ 2)

as well as every sentence from ∆ is also true in Mω. This follows from S0 = M0,S1 = M1 and
S2 ⊃M2. Hence

Mω |= GnAω + F̃ + ∆+b–AC

and therefore

Mω |=
∧
x1
∨
y ≤1 sx

∨
z ≤τ ΨxA0(x, y, z).

Since τ ≤ 2 this implies

Sω |=
∧
x1
∨
y ≤1 sx

∨
z ≤τ ΨxA0(x, y, z).

Remark 7.2.9 It is the need of the (E)–elimination that prevents us from dealing with stronger

forms of F , where y0 may be given as a functional in Φ and y, since for such a strengthened version

the interpretation (F )e would not follow from F (without using (E) already). The same obstacle

arises when F is generalized to higher types ρ > 1:

Fρ :≡
∧

Φ0ρ0, yρ0
∨
y0 ≤ρ0 y

∧
k0
∧
z ≤ρ yk

(
Φkz ≤0 Φk(y0k)

)
.

Fρ, which still is true in Mω, will be used in the intuitionistic context studied in chapter 8 below.

In our applications of F we actually make use of the following consequence of F+AC1,0–qf:

Definition 7.2.10 The schema of uniform Σ0
1–boundednes is defined as

Σ0
1–UB :


∧
y1(0)

(∧
k0
∧
x ≤1 yk

∨
z0 A(x, y, k, z)

→
∨
χ1
∧
k0
∧
x ≤1 yk

∨
z ≤0 χk A(x, y, k, z)

)
,

where A ≡
∨
lA0(l) and l is a tuple of variables of type 0 and A0 is a quantifier–free formula (which

may contain parameters of arbitrary types).

Proposition: 7.2.11 Assume that n ≥ 2.

GnAω+AC1,0–qf ` F → Σ0
1–UB.

Proof:
∧
k0
∧
x1 ≤1 yk

∨
z0 A(x, y, k, z) implies∧

k0
∧
x1
∨
z0, v0

(
xv ≤0 ykv → A(x, y, k, z)

)
. Thus using the fact that k, x as well as z, v, l can

be coded together in G2Aω, one obtains by AC1,0–qf the existence of a functional Φ2(0) such that∧
k0
∧
x ≤1 yk A(x, y, k,Φkx). Proposition 7.2.6 yields∨

χ1
∧
k0
∧
x ≤1 yk(χk ≥0 Φkx).
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Remark 7.2.12 In the proof above we have made use of classical logic for the shift of the quantifier
on v as an existential quantifier in front of the implication. Nevertheless we will make use of the

principle of uniform boundedness (and even generalizations of this principle) in the intuitionistic

context studied in chapter 8. This is possible since instead of classical logic we could have used also

(E) to derive
∧
k, x
∨
z A(min1(x, yk), y, k, z) and (E) does not cause any problems intuitionistically.

Σ0
1–UB together with classical logic implies the existence of a modulus of uniform continuity for

each extensional Φ1(1) on {z1 : z ≤1 y} (where ’continuity’ refers to the usual metric on the Baire

space ININ):

Proposition: 7.2.13 For n ≥ 2 the following holds

GnAω + Σ0
1–UB `∧

Φ1(1), y1
(
ext(Φ)→

∨
χ1
∧
k0
∧
z1, z2 ≤1 y

( ∧
i≤0χk

(z1i =0 z2i)→
∧
j≤0k

(Φz1j =0 Φz2j)
))
,

where ext(Φ) :≡
∧
z1

1 , z
1
2(z1 =1 z2 → Φz1 =1 Φz2).

Proof:
∧
z1, z2 ≤1 y(z1 =1 z2 → Φz1 =1 Φz2) implies∧

z1, z2 ≤1 y
∧
k0
∨
n0
( ∧
i≤0n

(z1i =0 z2i)→
∧
j≤0k

(Φz1j =0 Φz2j)
)
.

By Σ0
1–UB (using the coding of z1, z2 into a single variable) we conclude∨
χ1
∧
k0
∧
z1, z2 ≤1 y

( ∧
i≤0χk

(z1i =0 z2i)→
∧
j≤0k

(Φz1j =0 Φz2j)
)
.

Remark 7.2.14 The weaker axiom F0 instead of F proves Σ0
1–UB only in a weaker version which

asserts instead of the bounding function χ1 only the existence of a bound n0 for every k0. This

is sufficient to prove that every Φ1(1) is uniformly continuous but not to show the existence of a
modulus of uniform continuity.

For many applications a weaker version F− of F is sufficient which we will study now for the
following reasons:

1) F− has already the logical form
∧
x
∨
y ≤ sx

∧
zA0 of an axiom ∈ ∆ and needs (in contrast

to F ) no further transformation. This simplifies the extraction of bounds and allows the

generalization to higher types (see thm.7.2.20 below).

2) F− can be eliminated from the proof for the verification of the bound extracted in a simple

purely syntactical way (see thm.7.2.20 ) yielding a verification in Gmax(3,n)A
ω
i . In particular

no relativation toMω is needed. For F such an elimination uses much more complicated tools

and gives a verification only in HAω and only for τ ≤ 1 in thm.7.2.8 (see [39] ).

Definition 7.2.15

F− :≡
∧

Φ2(0), y1(0)
∨
y0 ≤1(0) y

∧
k0, z1, n0

( ∧
i<0n

(zi ≤0 yki) → Φk(z, n) ≤0 Φk(y0k)
)
, where, for

zρ0, (z, n)(k0) :=ρ zk, if k <0 n and := 0ρ, otherwise (It is clear that λz, n.(z, n) ∈ G2Rω).
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Remark 7.2.16 Since F− is a weakening of F (to ’finite’ sequences) it is also true in Mω. By

the proof of prop.7.2.2 F− does not hold in Sω.

Lemma: 7.2.17

G1Aω
i ` F− →

∧
Φ2(0), y1(0)

∨
χ1(0)

∧
k0, z1, n0

( ∧
i<0n

(zi ≤0 yki)→ Φk(z, n) ≤0 χk
)
.

Definition 7.2.18 The schema Σ0
1–UB− is defined as the following weakening of Σ0

1–UB:

Σ0
1–UB− :


∧
y1(0)

(∧
k0
∧
x ≤1 yk

∨
z0 A(x, y, k, z)→

∨
χ1
∧
k0, x1, n0( ∧

i<0n

(xi ≤0 yki)→
∨
z ≤0 χk A((x, n), y, k, z)

))
,

where A ∈ Σ0
1.

Proposition: 7.2.19 For each n ≥ 2 we have

GnAω+AC1,0–qf ` F− → Σ0
1–UB−.

Proof: Analogously to the proof of prop.7.2.11 using lemma 7.2.17 instead of prop.7.2.6.

Theorem 7.2.20 Assume n ≥ 1, τ ≤ 2, s ∈GnRω. Let A0(x, y, z) ∈ L(GnAω) be a quantifier–free

formula containing only x, y, z as free variables. Then the following rule holds:
GnAω ⊕AC–qf⊕ F− `

∧
x1
∧
y ≤ρ sx

∨
zτ A0(x, y, z)

⇒ by monotone functional interpretation ∃Ψ ∈ GnRω
−[Φ1] such that

Gmax(3,n)A
ω
i
`
∧
x1
∧
y ≤ρ sx

∨
z ≤τ Ψx A0(x, y, z).

Ψ is built up from 00, 10,maxρ,Φ1 and majorizing terms for the terms t occurring in the quantifier

axioms
∧
xGx → Gt and Gt →

∨
xGx which are used in the given proof by use of λ–abstraction

and substitution.53

If τ ≤ 1 then Ψ has the form Ψ ≡ λx1.Ψ0x
M , where xM := Φ1x and Ψ0 does not contain Φ1.

For ρ ≤ 1, GnAω⊕AC–qf⊕F− can be replaced by E–GnAω+ACα,β–qf+F−, where α, β are as in

thm.7.2.8 . A remark analogous to 2.2.4 applies. Furthermore on may add axioms ∆ (having the

form as in thm. 2.2.2) to GnAω⊕AC–qf⊕F−. Then the conclusion holds in Gmax(3,n)A
ω
i + ∆+b–

AC.

An analogous result holds for PRAω and PAω with Ψ ∈ P̂R
ω

resp. ∈ T.

Proof: The assumption implies

GnAω + AC–qf `
(∨
Y ≤ λΦ2(0), y1(0).y

∧
Φ, ỹ1(0), k0, z̃1, n0( ∧

i<n

(z̃i ≤ ỹki)→ Φk(z̃, n) ≤0 Φk(Y Φỹk)
)
→
∧
x1
∧
y ≤ρ sx

∨
zτA0(x, y, z)

)
,

and therefore

GnAω + AC–qf `
∧
Y ≤ λΦ, y.y

∧
x1
∧
y ≤ρ sx

∨
Φ, ỹ, k, z̃, n, z(. . .).

53Here ⊕ means that F− and AC–qf must not be used in the proof of the premise of an application of the
quantifier–free rule of extensionality QF–ER. GnAω satisfies the deduction theorem w.r.t ⊕ but not w.r.t +.
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By theorem 2.2.2 and a remark on it we can extract Ψ1,Ψ2 ∈ GnRω
−[Φ1] such that

GnAω
i `

∧
Y ≤ λΦ, y.y

∧
x1
∧
y ≤ρ sx

∨
Φ, ỹ, k, z̃

∨
n ≤0 Ψ1x

∨
z ≤τ Ψ2x(. . .).

Hence

GnAω
i `

∧
x
(∨
Y ≤ λΦ2(0), y1(0).y

∧
Φ, ỹ1(0), k0, z̃1

∧
n ≤0 Ψ1x( ∧

i<n

(z̃i ≤ ỹki)→ Φk(z̃, n) ≤ Φk(Y Φỹk)
)
→
∧
y ≤ρ sx

∨
z ≤τ Ψ2xA0(x, y, z)

)
.

It remains to show that

G3Aω
i `

∧
n0

∨
Y ≤ λΦ2(0), y1(0).y

∧
Φ, ỹ1(0), k0, z̃1

∧
n ≤0 n0( ∧

i<n

(z̃i ≤ ỹki)→ Φk(z̃, n) ≤ Φk(Y Φỹk)
)

:

Define

Ỹ := λΦ, ỹ, k, n0. max
j≤0(ỹk)n0

Φk
(
(min1(λi.(j)i, ỹk), n0

)
.

One easily shows (using the fact that Φ〈·〉 ∈ G3Rω) that Ỹ is definable in G3Aω
i . In the same way

we can define (using µb)

Ŷ := λΦ, ỹ, k, n0. min
j≤0(ỹk)n0

[
Φk
(
(min1(λi.(j)i, ỹk), n0) =0 Ỹ Φỹkn0

]
.

For every n0 we now put

Y := λΦ, ỹ, k.
(
min1

(
λi.(Ŷ Φỹkn0)i, ỹk), n0

)
.

We now show that F− implies (relatively to G1Aω+AC1,0–qf) a generalization of the binary (’weak’)

König’s lemma WKL:

Definition 7.2.21 (Troelstra(74))

WKL:≡
∧
f1
(
T (f) ∧

∧
x0
∨
n0(lth n =0 x ∧ fn =0 0)→

∨
b ≤1 λk.1

∧
x0(f(bx) =0 0)

)
,

where Tf :≡
∧
n0,m0(f(n ∗m) =0 0 → fn =0 0) ∧

∧
n0, x0(f(n ∗ 〈x〉) =0 0 → x ≤0 1) (i.e. T (f)

asserts that f represents a 0,1–tree).

In the following we generalize WKL to a sequential version WKLseq which states that for every

sequence of infinite 0,1–trees there exists a sequence of infinite branches:

Definition 7.2.22

WKLseq :≡


∧
f1(0)

(∧
k0(T (fk) ∧

∧
x0
∨
n0(lth n =0 x ∧ fkn =0 0))

→
∨
b ≤1(0) λk

0, i0.1
∧
k0, x0(fk((bk)x) =0 0)

)
.

This formulation of WKL and WKLseq (which is used e.g. in [68] and [57],[59] and in a similar way

in the system RCA0 considered in the context of ’reverse mathematics’ with set variables instead

of function variables) uses the functional Φ〈·〉bx = bx which is definable in GnAω
i only for n ≥ 3

and causes exponential growth. Since we are mostly interested in polynomial growth and therefore

79



in systems based on G2Aω we need a different formulation WKL2
seq of WKLseq which avoids the

coding of finite sequences (of variable length) as numbers and can be used in G2Aω and is equivalent

to WKLseq in the presence of the functional Φ〈·〉. This is achieved by expressing trees as higher

type (≥ 2) functionals which are available in our finite type theories:

Definition 7.2.23

WKL2
seq :≡


∧

Φ0010
(∧
k0, x0

∨
b ≤1 λn

0.10
x∧
i=0

(Φk(b, i)i =0 0)

→
∨
b ≤1(0) λk

0, n0.1
∧
k0, x0(Φk(bk, x)x =0 0)

)
.

Proposition: 7.2.24

G3Aω
i ` WKL2

seq ↔ WKLseq.

Proof: ’→’: Define Φk0b1x0 := fk(bx) and assume
∧
k0T (fk) and (+)

∧
k, x
∨
n(lth n = x∧fkn =

0). It follows that

∧
k, x
∨
b ≤ λn.1

x∧
i=0

(Φk(b, i)i =0 0)

(Put b := λi.(n)i for n as in (+)).

Hence WKL2
seq yields∨

b ≤ λk, n.1
∧
k, x(Φk(bk, x)x =0 0),

i.e. ∨
b ≤ λk, n.1

∧
k, x
(
fk((bk)x) =0 0

)
.

’←’: Define

fkn :=

 Φk(λi.(n)i)(lth n), if
∧
j ≤ lth n

((
Φk(λi.(n)i, j)j =0 0

)
∧ (n)j ≤ 1

)
10, otherwise.

The assumption
∧
k, x
∨
b ≤1 λn

0.10
x∧
i=0

(
Φk(b, i)i =0 0

)
implies∧

k, x
∨
n(lth n = x∧ fkn = 0). Since furthermore T (fk) for all k (by f–definition), WKLseq yields∨
b ≤1(0) λk, n.1

∧
k0, x0

(
fk((bk)x) =0 0

)
,

i.e. ∨
b ≤ λk, n.1

∧
k, x(Φk(bk, x)x =0 0).

Theorem 7.2.25
G2Aω+AC0,1–qf ` Σ0

1–UB− → WKL2
seq.

Proof: Assume that∧
b ≤1(0) λk

0, i0.1
∨
k0, x0

(
Φk(bk, x)x 6=0 0

)
.
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By Σ0
1–UB− it follows that (since the type 1(0) can be coded in type 1):

(∗)
∨
x0

∧
b ≤1(0) λk, i.1

∨
k, x ≤0 x0

(
Φk
(

(bk, x0), x︸ ︷︷ ︸
=1bk,x

)
x 6=0 0

)
.

Assume
∧
k0, x0

∨
b1
( x∧
i=0

(bi ≤0 1 ∧ Φk(b, i)i =0 0)
)
. AC0,1–qf yields

∧
x0
∨
b1(0)

∧
k0
( x∧
i=0

(bki ≤0 1 ∧ Φk(bk, i)i =0 0)
)

Since bk, i =1 (bk, x), i for i ≤ x and bk, x ≤1 λi.1 if
x∧
i=0

(bki ≤0 1) this implies

∧
x0
∨
b ≤1(0) λk, i.1

∧
k

x∧
i=0

(
Φk(bk, i)i = 0

)
,

which contradicts (∗).

Together with prop.7.2.19 this theorem implies the following

Corollary 7.2.26 Let n ≥ 2. Then

GnAω ⊕AC1,0–qf⊕AC0,1–qf⊕ F− `WKL2
seq.

Hence theorem 7.2.8 and theorem 7.2.20 capture proofs using WKL2
seq. In particular (combined with

cor.2.2.3 ) we have the following rule
E–G2Aω + ACα,β–qf +WKL2

seq `
∧
x0
∧
y ≤1 sx

∨
z0A0(x, y, z)

⇒ ∃(eff.)k, c1, c2 ∈ IN such that

G3Aω
i `

∧
x0
∧
y ≤1 sx

∨
z ≤0 c1x

k + c2 A0(x, y, z),

where s ∈ G2Rω and A0 is a quantifier–free formula of G2Aω which contains only x, y, z as free

variables and (α = 0 ∧ β ≤ 1) or (α = 1 ∧ β = 0).

Remark 7.2.27 WKL2
seq does not imply F− since Sω |= WKL2

seq, but Sω |=/F−.

7.3 Applications of F+AC1,0 (resp. F−+AC1,0) relatively to G2A
ω

Application 1:

Proposition: 7.3.1 For every fixed number d the following holds:

1) G2Aω+AC1,0 + F proves:

Every function F : [0, 1]d → IR is uniformly continuous and possesses a modulus of uniform

continuity.

2) G2Aω+AC1,0 + F− proves:

Every pointwise continuous function F : [0, 1]d → IR is uniformly continuous and possesses a

modulus of uniform continuity.
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Proof: 1) Formulated in G2Aω the assertion above reads as follows:

If Φ1(1) (note that we do not need the complicated representation of C([0, 1]d, IR) from chapter 3)

represents a function [0, 1]d → IR, i.e.∧
x1

1, x
1
2(

d∧
i=1

(0 ≤IR νdi (x1), νdi (x2) ≤IR 1 ∧ νdi (x1) =IR νdi (x2)) → Φx1 =IR Φ2), then Φ is uniformly

continuous on [0, 1]d and possesses a modulus of uniform continuity.

By the representation of [0, 1] from chapter 3 we can restrict ourselves to representatives x1 of

elements of [0, 1]d which satisfy νdi (x) ≤1 M for i = 1, . . . , d (where M := λn.j(6(n+1), 3(n+1)−1)).

∧
x1, x2 ≤1 ν

d(M, . . . ,M)(

d∧
i=1

( ˜νdi (x1) =IR
˜νdi (x2))→ Φx̃1 =IR Φx̃2)

is equivalent to54

∧
x1, x2 ≤1 ν

d(M, . . . ,M)
∧
k0
∨
n0
(
‖x̃1 −IRd x̃2‖max ≤IR

1

n+ 1
→ |Φx̃1 −IR Φx̃2|IR <IR

1

k + 1︸ ︷︷ ︸
≡:A∈Σ0

1

)
,

where ‖ · ‖max denotes the maximum metric55 on IRd.

Since x1, x2 can be coded together, Σ0
1–UB (which is derivable by prop.7.2.11 ) yields (using the

monotonicity of A w.r.t. n)∨
χ1
∧
x1, x2 ≤1 ν

d(M, . . . ,M)
∧
k0
(
‖x̃1 −IRd x̃2‖max ≤

1

χk + 1
→ |Φx̃1 −IR Φx̃2|IR <

1

k + 1

)
.

2) Using Σ0
1–UB− instead of Σ0

1–UB in the proof of 1) one obtains

∨
χ1
∧
x1, x2 ≤1 ν

d(M, . . . ,M)
∧
l0, k0

(
‖ ˜(x1, l)−IRd

˜(x2, l)‖max ≤
1

χk + 1
→ |Φ ˜(x1, l)−IRΦ ˜(x2, l)|IR <

1

k + 1

)
.

Since ‖˜(x, l) −IRd x̃‖max ≤ 2
k+1 for l > 3(k + 1), this together with the pointwise continuity of Φ

implies the claim .

This result generalizes also to variable rectangles [a1, b1] × . . . × [ad, bd] instead of [0, 1]d (where

ai < bi for i = 1, . . . , d).

Remark 7.3.2 (to the proof prop.7.3.1) In the proof above we actually used only Σ0
1–UB (resp.

Σ0
1–UB−) and classical logic (more precisely Markov’s principle).

Corollary 7.3.3 G2Aω+AC1,0–qf+F proves: Every Φ1(1) which represents an unrestricted func-

tion IRd → IR is pointwise continuous on IRd and possesses a modulus of pointwise continuity
operation.

54Here x̃ is a shortage for νd( ˜νd1 (x1), . . . , ˜νd
d

(xd)).
55Instead of ‖ · ‖max we can also use e.g. the euclidean metric on IRd thereby obtaining a modulus of continuity

w.r.t. this metric. However, since both norms on IRd are contructively equivalent, a modulus of uniform continuity
w.r.t. one norm can be easily transformed into a modulus for the other norm.
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Proof: ¿From the proof of 1) above we obtain a function χ1(0) such that χ(m) is a modulus of

uniform continuity for Φ on [−m,m]d by applying Σ0
1–UB to∧

m0
∧
x1, x2 ≤1 ν

d(M(m), . . . ,M(m))
∧
k0
∨
n0
(
‖x1 −IRd x2‖max ≤

1

n+ 1
→ |Φx1 −IR Φx2|IR <

1

k + 1︸ ︷︷ ︸
∈Σ0

1

)
,

where M(m) := λn.j(6m(n+ 1), 3(n+ 1)− 1) is the boundedness function from our representation

of [−m,m].

Now define ξ0(1) ∈ G2Rω by ξ(x1) := max0(d ̂(νd1 (x))(1)e + 2, . . . , d ̂(νdd(x))(1)e + 2). The natural

number ξ(x1) is an upper bound for ‖x1‖max + 1. Hence ωx1 := λk0.χ(ξ(x), k) is a modulus of

pointwise continuity in x, since ‖x− y‖max ≤ 1
ω(x,k)+1 implies that ‖x‖max, ‖y‖max ≤ ξ(x).

Remark 7.3.4 The modulus of pointwise continuity ω(x1, k0) is only an operation (see chapter 3)

and not a function of x as an element of IRd (but a function of x ∈ ININ as an representative of

such an element) since it is not extensional w.r.t. =IRd .

Application 2: Sequential form of the Heine–Borel covering property of [0, 1]d and other
compact spaces

Let Bε(x0) := {y ∈ IRd : ‖x0 − y‖E < ε} denote the open ball with center x0 ∈ IRd and radius ε

( w.r.t. the euclidean norm).

Proposition: 7.3.5 G2Aω
i + Σ0

1–UB− (and therefore G2Aω + F−+AC1,0–qf) proves that every

sequence of open balls which cover [0, 1]d contains a finite subcover.

Proof: We have to show

(1)
∧
f : IN→ IR+ \ {0}

∧
g : IN→ [0, 1]d

(∧
x ∈ [0, 1]d

∨
k ∈ IN(x ∈ Bfk(gk))

→
∨
k0

∧
x ∈ [0, 1]d

∨
k ≤ k0(x ∈ Bfk(gk))

)
.

When formalized in G2Aω
i (1) has the form (compare application 1 above)

(2)

∧
f1(0), g1(0)

(∧
l0(fl >IR 0) ∧

∧
x ≤1 ν

d(M, . . . ,M)
∨
k0(‖x̃−IRd gk‖E <IR fk)

→
∨
k0

0

∧
x ≤1 ν

d(M, . . . ,M)
∨
k ≤0 k0(‖x̃−IRd gk‖E <IR fk)

)
.

Using Σ0
1–UB− and the fact that <IR∈ Σ0

1 we obtain

(3)

∧
f1(0), g1(0)

(∧
l0(fl >IR 0) ∧

∧
x ≤1 ν

d(M, . . . ,M)
∨
k0(‖x̃−IRd gk‖E <IR fk)

→
∨
k0

0

∧
x ≤1 ν

d(M, . . . ,M)
∧
n0
∨
k,m ≤0 k0(‖ ˜(x, n)−IRd gk‖E <IR fk − 1

m+1 )
)
.

Since ‖ ˜(x, n)−IRd x̃‖max ≤ 2
k+1 for n > 3(k + 1), (3) implies (2) which concludes the proof.

Similarly one shows this result for [a1, b1] × . . . × [ad, bd] and also for other compact spaces as

e.g. Kc,λ := {f ∈ C[0, 1] : ‖f‖∞ ≤ c∧ f has Lipschitz constant λ}: We have already verified in our
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treatment of the Cauchy–Peano existence theorem in example 3 above that Kc,λ can be represented

by a bounded set of functions f1 so that Σ0
1–UB applies.

Application 3: Attainment of the maximum value for f ∈ C([0, 1]d, IR)

Proposition: 7.3.6 1) G2Aω + Σ0
1–UB+AC0,0–qf (and therefore G2Aω + F+AC1,0–qf) proves:

Every function F : [0, 1]d → IR attains it maximum value on [0, 1]d.

2) G2Aω + Σ0
1–UB−+AC0,0–qf (and therefore G2Aω + F−+AC1,0–qf) proves:

Every pointwise continuous function F : [0, 1]d → IR attains it maximum value on [0, 1]d.

Proof: In view of prop.7.3.1 and the remark to its proof we only have to show 2). Assume

(1)
∨

Φ : [0, 1]d → IR
∧
x ∈ [0, 1]d

∨
r ∈ [0, 1]d ∩Qd(Φx < Φr)

)
.

The proposition
∧
x ∈ [0, 1]d

∨
r ∈ [0, 1]d ∩Qd(Φx < Φr) has the following logical form

(2)
∧
x ≤1 ν

d(M, . . . ,M)
∨
n0(Φx̃ <IR Φ(λk0.q(n))︸ ︷︷ ︸

∈Σ0
1

),

where q ∈ G2Rω is an enumeration of [0, 1]d ∩Qd.

Σ0
1–UB− applied to (2) yields∨

n0

∧
x ≤1 ν

d(M, . . . ,M)
∧
l0
∨
n ≤0 n0(Φ ˜(x, l) <IR Φ(λk0.q(n))).

By lemma 3.3.7 2) there exists an n1 ≤ n0 be such that

Φ(λk0.q(n1)) =IR maxIR(Φ(λk0.q(0)), . . . ,Φ(λk0.q(n0))).

Since there exist x1, l0 such that x ≤1 ν
d(M, . . . ,M) and ˜(x, l) =IR λk0.q(n1) we obtain a contra-

diction to (1). Hence

(3)
∧

Φ : [0, 1]d → IR
∨
x ∈ [0, 1]d

∧
r ∈ [0, 1]d ∩Qd(Φx ≥ Φr)

)
,

which implies∧
Φ : [0, 1]d → IR(Φ pointwise continuous →

∨
x ∈ [0, 1]d

∧
y ∈ [0, 1]d(Φx ≥ Φy)

)
.

Application 4: Dini’s theorem

Proposition: 7.3.7 1) G2Aω
i + Σ0

1–UB (and therefore G2Aω + F+ AC1,0–qf) proves: Every

sequence Φn of functions : [0, 1]d → IR which increases pointwise to a function Φ : [0, 1]d → IR

converges uniformly on [0, 1]d to Φ, and there exists a modulus of uniform convergence.

2) G2Aω
i + Σ0

1–UB− (and therefore G2Aω +F−+AC1,0–qf) proves: Every sequence Φn of point-

wise continuous functions : [0, 1]d → IR which increases pointwise to a pointwise continuous

function Φ : [0, 1]d → IR converges uniformly on [0, 1]d to Φ, and there exists a modulus of

uniform convergence.
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Proof: By the assumption we have∧
k0
∧
x ∈ [0, 1]d

∨
n0(Φx− Φnx <IR

1

k + 1
).

Similarly to the proof of prop.7.3.6 one obtains using Σ0
1–UB∨

χ1
∧
k0
∧
x ∈ [0, 1]d

∨
n ≤0 χ(k)(Φx− Φnx <IR

1

k + 1
).

Since (Φn)n∈IN is increasing this implies

(∗)
∨
χ1
∧
k0
∧
x ∈ [0, 1]d

∧
n ≥0 χ(k)(Φx− Φnx <IR

1

k + 1
),

which concludes the proof of 1).

By Σ0
1–UB− we obtain (∗) only for a dense subset of [0, 1]d. However this implies (∗) if Φn,Φ are

assumed to be pointwise continuous on [0, 1]d.

Application 5: Existence of the inverse function of a strictly monotone function

Proposition: 7.3.8 1) G2Aω + Σ0
1–UB (and therefore G2Aω + F+AC1,0–qf) proves:

Every strictly increasing function Φ : [0, 1]→ IR possesses a strictly increasing inverse function

Φ−1 : [Φ0,Φ1]→ [0, 1] which is uniformly continuous on [Φ0,Φ1] and has a modulus of uniform

continuity.

2) G2Aω + Σ0
1–UB− (and therefore G2Aω + F−+AC1,0–qf) proves:

Every strictly increasing pointwise continuous function Φ : [0, 1] → IR possesses a strictly

increasing inverse function Φ−1 : [Φ0,Φ1]→ [0, 1] which is uniformly continuous on [Φ0,Φ1]

and has a modulus of uniform continuity.

Proof: The strict monotonicity of Φ implies

(1)
∧
x, y ∈ [0, 1]

∧
k0
∨
n0(x ≥ y +

1

k + 1
→ Φx > Φy +

1

n+ 1
).

Modulo our representation of [0, 1], Φ and ≥IR, >IR (1) has the logical form∧
x, y ≤1 M

∧
k0
∨
n0
(
x̃ ≥IR ỹ +IR

1

k + 1
→ Φx̃ >IR Φỹ +

1

n+ 1︸ ︷︷ ︸
≡:A∈Σ0

1

)
.

By Σ0
1–UB we obtain (using the monotonicity of A w.r.t. n) a modulus of uniform strict mono-

tonicity, i.e.

(2)
∨
χ1
∧
x, y ≤1 M

∧
k0
(
x̃ ≥IR ỹ +IR

1

k + 1
→ Φx̃ >IR Φỹ +

1

χk + 1

)
(If we use Σ0

1–UB− only instead of Σ0
1–UB we obtain the restriction of (2) to a dense subset of [0, 1]

which implies (2) if Φ is assumed to be pointwise continuous).

Analogously to our definition of the inverse functions of sin, cos in chapter 5 (where we used the

modulus ω of uniform strict monotonicity) one now shows the existence of the inverse function Φ−1

and the fact that χ is a modulus of uniform continuity for Φ−1 on [Φ0,Φ1]. That Φ−1 again is

strictly increasing is clear.
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Remark 7.3.9 ¿From the proofs of applications 1)–5) it is clear that the propositions can be proved

already in G2Aω ⊕ F⊕AC1,0–qf (resp. G2Aω ⊕ F−⊕AC1,0–qf) instead of G2Aω + F+AC1,0–qf

(G2Aω + F−+AC1,0–qf).

The applications 1–5 show that F− combined with AC1,0–qf allows to give very short proofs for

important theorems in analysis. In these proofs one can treat continuous functions Φ : [0, 1]d → IR

simply as functionals of type 1(1) (which are =[0,1]d ,=IR–extensional) without the need of the quite

complicated representation of C([0, 1]d, IR) from chapter 3.56 Moreover the applications 1–4 gener-

alize to other compact spaces K instead of [0, 1]d as long as the elements of K can be represented

by {f1 : f ≤1 t} for a suitable term t.

Since the formulation of the examples 1–4 uses only terms which are majorizable in G2Aω and

the applications 1–5 (for continuous functions) can be carried out in GnAω + F−+AC1,0–qf for all

n ≥ 2 we can conclude (using the results obtained so far):

If a sentence (+)
∧
u1, k0

∧
v ≤ρ tuk

∨
w0A0 is proved in GnAω+AC–qf plus the analytical tools

developed in chapters 3–6 plus

1) Attainment of the maximum of f ∈ C([0, 1]d, IR) on [0, 1]d

2) Mean value theorem of integration

3) The mean value theorem of differentiation

4) Cauchy–Peano existence theorem for ordinary differential equations

5) Brouwer’s fixed point theorem for continuous functions f : [0, 1]d → [0, 1]d

6) Every pointwise continuous function G : [0, 1]d → IR is uniformly continuous on [0, 1]d and

possesses a modulus of uniform continuity

7) [0, 1]d ⊂ IRd has the (sequential form of the) Heine–Borel covering property

8) Dini’s theorem: Every sequence Gn of pointwise continuous functions :[0, 1]d → IR which

increases pointwise to a pointwise continuous function G : [0, 1]d → IR converges uniformly on

[0, 1]d to G and there exists a modulus of uniform convergence

9) Every strictly increasing pointwise continuous function G : [0, 1] → IR possesses a uniformly

continuous strictly increasing inverse function G−1 : [G0, G1]→ [0, 1] together with a modulus

of uniform continuity

as lemmas one can extract a uniform bound
∧
u1, k0

∧
v ≤ρ tuk

∨
w ≤0 χuk A0 such that

(i) χ is a polynomial in uM , k (where uMi := λx0.max0(u0, . . . , ux)) for which prop. 1.2.30

applies, if n = 2,

(ii) χ is elementary recursive in uM , k, if n = 3.

56Because of this, application 3 is usefull although this theorem can be treated directly as an axiom when one uses
our representation of C([0, 1]d, IR).
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8 Relative constructivity

In the previous chapters we studied various analytical principles in the context of theories

GnAω+AC–qf (mainly for n = 2) whose underlying logic is the usual classical logic and applied

the meta–theorems from chapter 2 to determine the growth of provably recursive functionals. As
we already have discussed at the end of chapter 2, the use of classical logic has the consequence

that the extractability of an effective (and for n = 2 polynomial) bound from a proof of an
∧∨

A–

sentence is (in general) guaranteed only if A is quantifier–free. In this chapter we study proofs

which may use non–constructive analytical principles as e.g. Brouwer’s fixed point theo-

rem, Cauchy–Peano existence theorem, attainment of the maximum of f ∈ C([0, 1]d, IR) and so

on, but apply these principles only in the context of the intuitionistic theories (E)–GnAω
i .

The restriction to intuitionistic logic guarantees the extractability of (uniform) effective bounds (∈
GnRω) for arbitrary

∧∨
A–sentences. Furthermore instead of analytical axioms ∆ having the form∧

xδ
∨
y ≤ρ sx

∧
zτA0(x, y, z) we may use more general sentences as axioms, e.g. arbitrary sentences

having the form (∗)
∧
xδ(A →

∨
y ≤ρ sx¬B), where A,B are arbitrary formulas (such that (∗) is

closed). The methods by which such extractions are achieved are monotone versions of the so–called

’modified realizability’ interpretations mr and mrt. Modified realizability was introduced in [41]

and is studied in great detail in [67] and [69] (to which we refer).57 In [67],[69] these interpretations

are developed for theories like E-HAω. However both interpretations immediately apply also to our
theories E–GnAω

i :

The interpretation of the logical part can be carried out using only Πρ,τ ,Σδ,ρ,τ , sg, 0
0 and definition

by cases which is available in E–GnAω
i . The non–logical axioms can be expressed (using µb and

min(x, y) = 0 ↔ x = 0 ∨ y = 0) as purely universal sentences (without ∨) which are trivially

interpreted (with the empty tuple of realizing terms).

Whereas the usual modified realizability interpretation extracts tuples of closed terms t = t1, . . . , tk
such that t mr A (where A is a closed formula, the types of ti and the length k of the tuple depends

only on the logical form of A, and ’x mr A’ (in words ’x (modified) realizes A’) is a formula defined

by induction on A) we are interested in majorants of such realizing terms, i.e. t∗1, . . . , t
∗
k such that

(+)
∨
x1, . . . , xk

k∧
i=1

(
t∗i s–maj xi ∧ x mr A

)
.

By saying that ’t∗ fulfils the monotone mr–interpretation of A’ we simply mean that ’t∗ fulfils

(+)’ (analogously for the ’modified realizability with truth’ variant mrt of mr).58 For E–GnAω
i

such terms t∗ can be obtained by applying at first the usual mr–interpretation and subsequent
construction of majorants for the resulting terms by proposition 1.2.21. As in the case of functional

interpretation it is also possible to extract such majorizing terms directly from a given proof (i.e.

without extracting t at first). However the simplification achieved in this way is not as significant

as for the functional interpretation since no decision of prime formulas is needed for the mr–

interpretation (in contrast to usual functional interpretation, where this is avoided only by our

monotone variant) and it will be therefore not studied further.

The monotone mr–interpretation is closed under deduction as the usual mr–interpretation. Hence
in order to treat the extension of E–GnAω

i by new axioms, we only have to consider what terms

57In [70] ’mrt’ is denoted by ’mq’.
58This variant has the property that x mrt A implies A; see [70], [69] for information on this.

87



are needed to fulfil their monotone mr–interpretation (and what principles are necessary to verify

them). We will show that for an axiom (∗) any majorant s∗ for s satisfies its monotone mr–

interpretation (provably in E–GnAω
i + (∗)+b-AC), whereas such axioms in general do not have a

usual mr-interpretation by computable functionals at all. So sentences (∗) contribute to extractable

bounds only by majorants for the terms occuring in their formulation but not by their proofs. That

is why we conceive them as axioms (if they are true in Sω or –as F– in Mω).

Definition 8.1 ([67]) The independence–of–premise schema IP¬ for negated formulas is defined

as59

IP¬ : (¬A→
∨
yρB)→

∨
yρ(¬A→ B),

where y is not free in A.

Notational convention 8.2 In the theorems of this chapter we consider always closed formu-

las, i.e. e.g. in the theorem below A,B,C resp. D contain (at most) x, (x, y), (u, v) resp. (u, v, w)

as free variables.

Theorem 8.3 Let s, t be ∈ GnRω, A,B,C,D ∈ L(E–GnAω
i ). Then the following holds:

E–GnAω
i +

∧
xδ(A→

∨
y ≤ρ sx¬B)(+AC+IP¬) `

∧
u1
∧
v ≤γ tu(¬C →

∨
w2D)

⇒ ∃ (eff.) Ψ ∈ GnRω
−[Φ1] such that

E–GnAω
i +

∨
Y ≤ρδ s

∧
x(A→ ¬B(x, Y x))(+AC+IP¬) `

∧
u1
∧
v ≤γ tu

∨
w ≤2 Ψu(¬C → D)

⇒ E–GnAω + b-AC +
∧
xδ(A→

∨
y ≤ρ sx¬B)(+AC) `

∧
u1
∧
v ≤γ tu

∨
w ≤2 Ψu(¬C → D).

An analogous result holds for E–PRAω
i ,P̂R

ω
and E–PAω

i , T instead of E–GnAω
i , GnRω

−[Φ1].

Proof: By intuitionistic logic one shows∨
Y ¬¬

(
Y ≤ s ∧

∧
x(A→ ¬B(x, Y x))

)
↔
∨
Y
(
Y ≤ s ∧

∧
x(A→ ¬B(x, Y x))

)
and ∨

Y
(
Y ≤ s ∧

∧
x(A→ ¬B(x, Y x))

)
→
∧
x(A→

∨
y ≤ sx¬B(x, y)).

Hence the assumption gives

E–GnAω
i +

∨
Y ¬¬(Y ≤ s ∧

∧
x(A→ ¬B(x, Y x)))(+AC+IP¬) `

∧
u1
∧
v ≤γ tu(¬C →

∨
wD).

By prop.1.2.21 we can construct a term s∗ ∈GnRω
− such that E–GnAω

i ` s∗ s–maj s.

T :=E–GnAω
i +

∨
Y ≤ s

∧
x(A→ ¬B(x, Y x)) proves

(+)
∨
u
(
s∗ s–maj u ∧ u mrt

(∨
Ỹ ¬¬(Ỹ ≤ s ∧

∧
x(A→ ¬B(x, Ỹ x))

))
:

By the definition of mrt and the easy fact that (x mrt ¬F ) ↔ ¬F (and x is the empty sequence)

for negated formulas one shows

u mrt
(∨
Ỹ ¬¬(Ỹ ≤ s ∧

∧
x(A→ ¬B(x, Ỹ x)))

)
↔ ¬¬

(
u ≤ s ∧

∧
x(A→ ¬B(x, ux))

)
.

59In [67] IP¬ is denoted by IPω .
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(+) now follows by taking u := Y since s∗ s–maj s∧ s ≥ Y implies s∗ s–maj Y (see lemma 1.2.11 ).

Thus T (+AC+IP¬) has a monotone mrt–interpretation in itself by terms ∈GnRω
−. In particular

(by the assumption) one can extract Ψ = Ψ1, . . . ,Ψk ∈ GnRω
− such that60

T (+AC+IP¬) `
∨
χ
(
Ψ s–maj χ ∧ χ mrt

(∧
u
∧
v ≤ tu(¬C →

∨
w2D(w))

))
.

Let t∗ ∈GnRω
− be such that E–GnAω

i ` t∗ s–maj t.

The following implications hold in E–GnAω
i :

χ mrt
(∧
u
∧
v ≤ tu(¬C →

∨
w2D(w))

)
→∧

u
∧
v(v ≤ tu ∧ ¬C → χ2uv . . . χkuv mrt D(χ1uv)) → (because x mrt D → D)∧

u, v(v ≤ tu ∧ ¬C → D(χ1uv))
Ψ1 s–maj χ1→∧

u
∧
v ≤ tu

(
λy1.Ψ1u

M (t∗uM )yM︸ ︷︷ ︸
Ψu:=

≥2 χ1uv ∧ (¬C → D(χ1uv))
)
→

∧
u
∧
v ≤ tu

∨
w ≤2 Ψu(¬C → D(w)).

It remains to show that

E–GnAω +(b-AC) `
∧
x(A→

∨
y ≤ sx¬B)→

∨
Y ≤ s

∧
x(A→ ¬B(x, Y x)) :

∧
x(A→

∨
y ≤ sx¬B)

(E)→
∧
x(A→

∨
y¬B(x,minρ(y, sx)))

class.logic→
∧
x
∨
y(A→ ¬B(minρ(y, sx)))

→
∧
x
∨
y ≤ sx(A→ ¬B(x, y))

(b−AC)→
∨
Y ≤ s

∧
x(A→ ¬B(x, Y x)).

Corollary 8.4 (to the proof) 1) If A ≡ ¬Ã is a negated formula, then the conclusion can be

proved in E–GnAω
i +b-AC+

∧
x(A→

∨
y ≤ sx¬B)+IP¬(+AC).

2) If the variable x is not present (i.e. if we only have closed axioms A →
∨
y ≤ s¬B(y), then

the conclusion can be proved without b-AC.

3) Instead of a single axiom
∧
x(A→

∨
y ≤ sx¬B) we may also use a finite set of such axioms.

Definition 8.5 ([67]) A formula A ∈ L(E–GnAω
i ) is called

∨
–free (or ’negative’) if A is built up

from quantifier–free formulas by means of ∧,→,¬,
∧

(i.e. A does not contain
∨

and contains ∨
only within quantifier–free subformulas61).

Definition 8.6 ([67]) The subset Γ1 of formulas ∈ L(E–GnAω
i ) is defined inductively by

1) Quantifier–free formulas are in Γ1.

60Here Ψ s-maj χ means
k∧
i=1

(Ψi s–maj χi).

61Troelstra distinguishes between negative formulas which are built up from the double negation ¬¬P of prime

formulas (instead of the arbitrary quantifier–free formulas in our definition) and
∨

–free formulas where P instead of
¬¬P may be used. Since our theories have only decidable prime formulas both notions coincide with our definition.
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2) A,B ∈ Γ1 ⇒ A ∧B,A ∨B,
∧
x A,

∨
x A ∈ Γ1.

3) If A is
∨

–free and B ∈ Γ1, then (
∨
xA→ B) ∈ Γ1.

Definition 8.7 ([67]) The independence–of–premise schema for
∨

–free formulas is defined as

IP∨f : (A→
∨
yρ B)→

∨
yρ(A→ B),

where A is
∨

–free and does not contain y as a free variable.

Theorem 8.8 Let A,D be ∈ Γ1 and B,C denote
∨

–free formulas; s, t ∈ GnRω. Then the following
rule holds

E–GnAω
i +

∧
xδ(A→

∨
y ≤ρ sx B) + AC+IP∨f `

∧
u1
∧
v ≤γ tu(C →

∨
w2D(w))

⇒ ∃ (eff.) Ψ ∈ GnRω
−[Φ1] such that

E–GnAω
i +

∨
Y ≤ρδ s

∧
x(A→ B(x, Y x)) `

∧
u1
∧
v ≤γ tu

∨
w ≤2 Ψu(C → D(w))

⇒ E–GnAω + b-AC +
∧
xδ(A→

∨
y ≤ρ sx B) `

∧
u1
∧
v ≤γ tu

∨
w ≤2 Ψu(C → D(w)).

An analogous result holds for E–PRAω
i ,P̂R

ω
and E–PAω

i , T instead of E–GnAω
i , GnRω

−[Φ1].

Proof: Since quantifier–free formulas can be transformed into formulas tx =0 0, we may assume

that the
∨

–free formulas B,C do not contain ∨. The assumption of the theorem implies

(∗) T := E–GnAω
i +

∨
Y ≤ s

∧
xδ(A→ B(x, Y x)) + AC+IP∨f `

∧
u1
∧
v ≤γ tu(C →

∨
w2D(w)).

We now show that T has a monotone mr–interpretation in T − := T \ {AC,IP∨f} by terms ∈
GnRω

−. For E–GnAω
i + AC+IP∨f this follows from the proof of the fact that E–HAω + AC+IP∨f

has a mr–interpretation in E–HAω (see [69]) combined with our remarks in the introduction of

this chapter and prop.1.2.21 (The mr–interpretation of AC+IP∨f requires only terms built up from

Π,Σ). Next we show that

T − `
∨
u
(
s∗ s–maj u ∧ u mr (

∨
Y ≤ s

∧
x(A→ B(x, Y x)))

)
:

Since for
∨

–free formulas (x mr B) ≡ B (x being the empty sequence) the mr–definition yields

u mr
(∨
Y ≤ s

∧
x(A→ B(x, Y x))

)
↔ u ≤ s ∧

∧
x
(∨
v(v mr A)→ B(x, ux)

)
.

The right side of this equivalence is fulfilled by taking u := Y since
∨
v(v mr A) → A (because of

the assumption A ∈ Γ1). Hence T has a monotone mr–interpretation in T − by terms ∈ GnRω
−.

Therefore (∗) implies the extractability of terms Ψ = Ψ1, . . . ,Ψk ∈ GnRω
− such that∨

χ
(
Ψ s–maj χ ∧ χ mr (

∧
u
∧
v ≤ tu(C →

∨
wD(w)))

)
.

The following chain of implications holds in E–GnAω
i :

χ mr
(∧
u
∧
v ≤ tu(C →

∨
w D(w))

) C ∨–free→∧
u, v(v ≤ tu ∧ C → χ2uv . . . χkuv mr D(χ1uv))

D∈Γ1→∧
u, v, (v ≤ tu ∧ C → D(χ1uv))

Ψ1 s–maj χ1→∧
u
∧
v ≤ tu(λy1.Ψ1u

M (t∗uM )yM ≥2 χ1uv ∧ (C → D(χ1uv))→∧
u
∧
v ≤ tu

∨
w ≤2 Ψu(C → D(w)),
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where t∗ ∈ GnRω
− such that E–GnAω

i ` t∗ s–maj t and

Ψ := λu, y.Ψ1u
M (t∗uM )yM ∈ GnRω

−[Φ1].

As in the proof of the previous theorem one shows

E–GnAω+(b-AC) `
∧
x(A→

∨
y ≤ sx B)→

∨
Y ≤ s

∧
x(A→ B).

Corollary 8.9 (to the proof) 1) If A ≡ ¬Ã is a negated (resp.
∨

–free) formula, then the

conclusion can be proved in E–GnAω
i +IP¬ + (b-AC) +

∧
x(A→

∨
y ≤ sx B)

(resp. E–GnAω
i +IP∨f + (b-AC) +

∧
x(A→

∨
y ≤ sx B)).

2) If the variable x is not present, i.e. if only axioms A→
∨
y ≤ sxB(y) are used (A ∈ Γ1, B

∨
–

free), then the conclusion can be proved without b-AC.

3) Instead of a single axiom
∧
x(A→

∨
y ≤ sxB(y)) we may also use a finite set of such axioms.

Remark 8.10 For every
∨

–free formula A of our theories the equivalence A ↔ ¬¬A holds intu-

itionistically (since the prime formulas are stable). So the allowed axioms in thm.8.3 include the

axioms allowed in thm.8.8.

Although theorem 8.8 is weaker than theorem 8.3 in some respects (e.g. A,D have to be in Γ1) it

is of interest for the following reason:
Despite the fact that the schema AC of full choice may be used in the proof of the assumption, the
proof of the conclusion uses only b-AC instead of AC. This has the consequence that the conclusion

is valid in the modelMω, if
∧
x(A→

∨
y ≤ sxB) holds inMω (althoughMω |=/ AC, see [34] ). Let

us e.g. consider the theory E–GnAω
i +F+AC, where F is the axiom studied in chapter 7 §2. Since

F has the form
∧
x(A →

∨
y ≤ sx B) (with A(:≡ 0 = 0) ∈ Γ1 and B

∨
–free) of an allowed axiom

in thm.8.8 (and a fortiori in thm.8.3 ) we can apply thm. 8.8 and obtain the following rule
E–GnAω

i + F+AC `
∧
u1
∧
v ≤1 tu(C →

∨
w2D(w))

⇒ ∃ (eff.) Ψ ∈ GnRω
−[Φ1] such that

E–GnAω
i + F+(b-AC) `

∧
u1
∧
v ≤1 tu

∨
w ≤2 Ψu(C → D(w)).

The conlusion of this rule implies (see the proof of thm.7.2.8 )

Mω |=
∧
u1
∧
v ≤1 tu

∨
w ≤2 Ψu(C → D(w)).

If all positively occuring
∧
xρ–quantifiers and all negatively occuring

∨
xρ–quantifiers in this formula

have types ρ ≤ 1 and if all other quantifiers have types ≤ 2, then we can conclude (since M1 = S1

and M2 ⊂ S2)

Sω |=
∧
u1
∧
v ≤1 tu

∨
w ≤2 Ψu(C → D(w)).

Hence the bound Ψ is classically valid although it has been extracted from a proof in a theory which
classically is inconsistent:

Claim: E–GnAω + F+AC ` 0 = 1.
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Proof of the claim: Consider∧
f ≤1 λx.1

∨
n0(
∨
k0(fk = 0)→ fn = 0),

which holds by classical logic. AC yields the existence of a functional Ψ0(1) such that∧
f ≤1 λx.1(

∨
k0(fk = 0)→ f(Ψf) = 0).

F applied to Ψ implies (prop.7.2.6 )∨
n0

∧
f ≤1 λx.1

∨
n ≤0 n0(

∨
k0(fk = 0)→ fn = 0),

which –of course– is wrong.

The (intuitionistically consistent) combination of F and AC (instead of AC–qf only, which we

have used in the classical setting of chapter 7) can be used to prove strengthened versions of various

classical theorems which may have non–constructive counterexamples, but no constructive ones.
These proofs rely on the fact that F and AC prove a very general principle of uniform boundedness
for arbitrary formulas:

Proposition: 8.11

E–GnAω
i + F + AC `∧
y1(0)

(∧
k0
∧
x ≤1 yk

∨
z0A(x, y, k, z)→

∨
χ1
∧
k0
∧
x ≤1 yk

∨
z ≤0 χk A(x, y, k, z)

)
,

where A is an arbitrary formula of L(E–GnAω).

Proof: Similarly to the proof of prop.7.2.11 using remark 7.2.12.

Example 1: Pointwise convergence implies uniform convergence or ’Dini’s theorem

without monotonicity assumption’62

E–G2Aω
i + F+AC `

∧
Φn,Φ : [0, 1]d → IR(Φn converges pointwise to Φ→

Φn converges uniformly on [0, 1]d to Φ and there exists a modulus of convergence).

Proof: By the assumption we have∧
k0
∧
x ∈ [0, 1]d

∨
n0
∧
l ≥0 n

(
|Φx− Φlx| ≤

1

k + 1

)
.

By prop.8.11 and the fact that ’
∧
x ∈ [0, 1]d’ has the form ’

∧
x ≤1 M ’ in our representation of [0, 1]d

one obtains∨
χ1
∧
k0
∧
x ∈ [0, 1]d

∨
n ≤0 χk

∧
l ≥0 n

(
|Φx− Φlx| ≤

1

k + 1

)
and therefore∨

χ1
∧
k0
∧
x ∈ [0, 1]d

∧
l ≥0 χk

(
|Φx− Φlx| ≤

1

k + 1

)
.

62This principle has been studied in [2] in a purely intuitionistic context, i.e. without our (in general non–

constructive) axioms
∧
x(A→

∨
y ≤ sx¬B),

∧
x(C →

∨
y ≤ sx D).
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Remark 8.12 1) The usual counterexamples to the theorem above do not occur in E–GnAω
i

since they use classical logic to verify the assumption of pointwise convergence: E.g. consider

the well–known example Φn(x) := max(n−n2|x− 1
n |, 0) (n ≥ 1). The proof that Φn converges

pointwise to 0 requires the instance ’
∧
x ∈ [0, 1](x = 0 ∨ x > 0)’ of the tertium–non–datur

schema, which cannot be proved in E–GnAω
i .

2) Note that the monotonicity assumption of Dini’s theorem has been used in our treatment in

chapter 7 §3 just to eliminate the universal quantifier ’
∧
l ≥0 n’ which reduces the application

of the general principle of uniform boundedness to an application of its restriction Σ0
1–UB to

Σ0
1–formulas (since ≤ can be replaced by <).

Example 2: Heine–Borel property for [0, 1]d and sequences of arbitrary (not necessarily

open) balls

E–G2Aω
i +AC + F `

∧
f : IN→ IR+

∧
g : IN→ [0, 1]d

∧
h1(∧

x ∈ [0, 1]d
∨
k0
(
(hk = 0 ∧ ‖x− gk‖E < fk) ∨ (hk 6= 0 ∧ ‖x− gk‖E ≤ fk)

)
→∨

k0

∧
x ∈ [0, 1]d

∨
k ≤0 k0

(
(hk = 0 ∧ ‖x− gk‖E < fk) ∨ (hk 6= 0 ∧ ‖x− gk‖E ≤ fk)

))
.

Proof: Similarly to the proof of the Heine–Borel property in chapter 7 §3, but note that now

Σ0
1–UB would not suffice since there is a universal quantifier hidden in ’‖x− gk‖E ≤ fk’.

Examples of sentences having (in E–G2A
ω
i ) the form G ≡

∧
x(A →

∨
y ≤ sx¬B) or

H ≡
∧
x(C →

∨
y ≤ sx D) where D is

∨
–free and C ∈ Γ1:

1) All sentences having the form
∧
xδ
∨
y ≤ρ sx

∧
zτA0(x, y, z) are axioms G,H, in particular

the examples 1)–4) from chapter 7 §1: Attainment of the maximum of f ∈ C([0, 1]d, IR),

mean value theorem of integration, Cauchy–Peano existence theorem, Brouwer’s fixed point
theorem.

2) The generalization of the axiom F to arbitrary types ρ:

Fρ :≡
∧

Φ0ρ0, yρ0
∨
y0 ≤ρ0 y

∧
k0
∧
z ≤ρ yk

(
Φkz ≤0 Φk(y0k)

)
has the form of an axiom H (and so a fortiori of G) since ’

∧
k0
∧
z ≤ρ yk

(
Φkz ≤0 Φk(y0k)

)
’

is
∨

–free.

3) Our generalization WKL2
seq of the binary König’s lemma WKL has the form H (and therefore

G) since its implicative premise ’
∧
k0, x0

∨
b ≤1 λn

0.10
x∧
i=0

(Φk(b, i)i =0 0)’ is in Γ1.

4) The ’double negation shift’ DNS :
∧
x¬¬A → ¬¬

∧
x A has the form G and –if A is

∨
–free–

the form H.
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5) The ’lesser limited principle of omniscience’ is defined as:63

LLPO :
∧
f1
∨
k ≤0 1([k = 0→

∧
n(f ′(2n) = 0)] ∧ [k = 1→

∧
n(f ′(2n+ 1) = 0)]),

where

f ′n :=

 1, if fn = 1 ∧
∧
k < n(fk 6= 1)

0, otherwise.

LLPO can be formulated also in the following equivalent form∧
x1, y1

∨
k ≤0 1([k = 0→ x ≤IR y] ∧ [k = 1→ y ≤IR x]).

LLPO has the form of an axiom G,H (see [7] for a discussion of LLPO).

6) Comprehension for negated (resp.
∨

–free) formulas:

CAρ¬ :
∨

Φ ≤0ρ λx
ρ.10

∧
yρ
(
Φy =0 0↔ ¬A(y)

)
, where A is arbitrary,

CAρ∨f :
∨

Φ ≤0ρ λx
ρ.10

∧
yρ
(
Φy =0 0↔ A(y)

)
, where A is

∨
–free.

By intuitionistic logic we have

¬¬
∧
yρ
(
Φy =0 0↔ ¬A(y)

)
↔
∧
yρ
(
Φy =0 0↔ ¬A(y)

)
.

Hence CAρ¬ is (equivalent to) an axiom G.

CAρ∨f is an axiom H since together with A also
∧
yρ
(
Φy =0 0↔ A(y)

)
is
∨

–free.

Remark 8.13 1) In order to express the examples 1)–4) from chapter 7 §1 as axioms G,H

we do not have to use the quite complicated representation of f ∈ C([0, 1]d, IR) from chapter

3: Since an implicative premise A ∈ Γ1 is now allowed (in contrast to the axioms ∈ ∆ in

the classical setting), the (purely universal) implicative assumption (∗) expressing that ω is a

modulus of uniform continuity for f (which had to be eliminated by the constructions Ψ1,Ψ2

in chapter 3) does not cause any problems.

2) WKL2
seq does not have the form of an axiom ∈ ∆ and therefore has to be derived from F and

AC–qf in the classical context of chapter 7. In E–GnAω
i it can be treated directly as an axiom.

3) DNS and LLPO follow of course from classical logic but are not derivable in E-GnAω
i .

4) Fρ and AC prove a principle of uniform boundedness for the type ρ:

UBρ :
∧
yρ0
(∧
k0
∧
x ≤ρ yk

∨
z0A(x, y, k, z)→

∨
χ1
∧
k0
∧
x ≤ρ yk

∨
z ≤0 χk A(x, y, k, z)

)
.

63Usually one quantifies over all functions ≤ 1 which are =1 in at most one point. This is achieved by our
transformation f 7→ f ′.
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5) One easily shows that LLPO is implied by CA1
∨f .

6) CA0
¬ added to E–GnAω

i yields the axiom schema of induction for arbitrary negated formulas

IA¬ : ¬A(0) ∧
∧
x0(¬A(x)→ ¬A(x+ 1))→

∧
x0¬A(x) :

Apply (QF–IA) to the characteristic function of ¬A(x0) which exists by CA0
¬.

Likewise E–GnAω
i + CA0

∨f proves induction for arbitrary
∨

–free formulas (IA∨f ) . Whereas

in the classical theories E–GnAω the restricted schemas IA¬ and IA∨f are equivalent to the

unrestricted schema of induction, which (for n ≥ 2) makes every α(< ε0)–recursive function

provably recursive, IA¬ and IA∨f do not cause any growth of provable functionals when added

to the intuitionistic theories E–GnAω
i .

One real limitation for applications of the theorems 8.3 and 8.8 is due to the fact that the Markov
principle

Mω :
∧
x(A ∨ ¬A) ∧ ¬¬

∨
x A→

∨
x A

is not an allowed axiom, not even in its weak form

Mpr : ¬¬
∨
x0A0(x)→

∨
x0A0(x),

where A0 is a quantifier–free formula.
In fact the addition of Mpr would make the theory E–GnAω

i +AC+F+IP¬ inconsistent:

E–GnAω
i +Mpr+IP¬ `

∧
f ≤1 λx.1

∨
k0(¬¬

∨
n(fn = 0)→ fk = 0).

Together with AC and F this gives a contradiction.

As we have discussed in [39] many
∧∨

–sentences in classical analysis come from sentences

(1)
∧
x ∈ X(Fx =IR 0→ Gx =IR 0)

by prenexation to

(2)
∧
x ∈ X

∧
k0
∨
n0
(
|Fx| ≤ 1

n+ 1
→ |Gx| < 1

k + 1

)
,

what intuitionistically just needs Mpr (Here X is a complete separable metric space and F,G : X →
IR are constructive functions).

We now prove a theorem which covers Mω but still allows the extraction of bounds for arbitrary∧∨
–sentences. The price we have to pay for this is that the allowed axioms have to be restricted

to the class ∆ from the theorems in chapter 2 (and that we can use only the quantifier–free rule of

extensionality instead of (E)).

Definition 8.14 ([67])

IPω0 :
∧
x(A ∨ ¬A) ∧ (

∧
x A→

∨
y B)→

∨
y(
∧
x A→ B),

where y is not free in A.
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Theorem 8.15 Let s, t ∈ GnRω, A0, B0 be quantifier–free and C be an arbitrary formula (respecting

the convention made before thm.8.3 ). Then
GnAω

i +AC+IPω0 +Mω +
∧
xδ
∨
y ≤ρ sx

∧
zγA0 `

∧
u1
∧
v ≤τ tu(

∧
aηB0 →

∨
w2C)

⇒ by monotone functional interpretation one can extract Ψ ∈ GnRω
−[Φ1] such that

GnAω
i +AC+IPω0 +Mω +

∧
xδ
∨
y ≤ρ sx

∧
zγA0 `

∧
u1
∧
v ≤τ tu

∨
w ≤2 Ψu(

∧
aηB0 → C(w)).

An analogous result holds for PRAω
i ,P̂R

ω
and PAω

i , T instead of GnAω
i , GnRω

−[Φ1].

Proof: As an abbreviation we define T :=GnAω
i +AC+IPω0 +Mω +

∧
xδ
∨
y ≤ρ sx

∧
zγA0. By the

assumption and IPω0 we obtain

T `
∧
u, v
∨
w(v ≤ tu ∧

∧
a B0 → C(w)).

Monotone functional interpretation extracts a term Ψ̃ ∈ GnRω
− such that

T̃ := T +
∨
Y ≤ s

∧
x, z A0(x, Y x, z) `∨

χ
(
Ψ̃ s–maj χ ∧

∧
u
∧
v(v ≤ tu ∧

∧
a B0 → C(χuv))D

)
.

By [67] (3.5.10) we have T ` AD ↔ A for all formulas A. Hence

T̃ `
∨
χ
∧
u
∧
v ≤ tu

(
λy1.Ψ̃uM (t∗uM )yM︸ ︷︷ ︸

Ψu:=

≥2 χuv ∧ (
∧
a B0 → C(χuv))

)
,

and thus

T̃ `
∧
u
∧
v ≤ tu

∨
w ≤2 Ψu

(∧
a B0 → C(w)

)
.

Since AC implies∧
xδ
∨
y ≤ρ sx

∧
zγA0 →

∨
Y ≤ρδ s

∧
xδ, zγA0(x, Y x, z),

the proof is finished.

Let us summarize now the main consequences of the results obtained in this chapter on the growth
of uniform bounds which are extractable from proofs in classical analysis:

If a proof of a sentence

(1)
∧
u1, k0

∧
v ≤ρ tu k

∨
w0A

uses in the intuitionistic context of E–GnAω
i +AC only the analytical tools developed in chap-

ters 3–6 (except the equivalence between ε–δ–continuity and sequential continuity) plus the (non–

constructive!) principles

1) attainment of the maximum of f ∈ C([0, 1]d, IR) on [0, 1]d

2) mean value theorem of integration
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3) Cauchy–Peano existence theorem for ordinary differential equations

4) Brouwer’s fixed point theorem for continuous functions : [0, 1]d → [0, 1]d

5) the schema of comprehension for negated formulas CA¬,

then one can extract from this proof (using thm.8.3, prop.1.2.22) a bound

(2)
∧
u1, k0

∧
v ≤ρ tu k

∨
w ≤0 χu k A

such that (2) is true in the full type structure Sω and

(i) χ is a polynomial in uM , k (where uMi := λx0.max0(u0, . . . , ux)) for which prop. 1.2.30

applies, if n = 2,

(ii) χ is elementary recursive in uM , k, if n = 3.

The most important feature of this result is that the restriction to the intuitionistic theory GnAω
i

instead of GnAω ensures (even relatively to the non–constructive theorems 1)–5) above) the ex-

tractability of such bounds for arbitrary formulas A (instead of quantifier–free ones only).

For A ∈ Γ1 such that all positively occurring
∧
xρ (resp. negatively occuring

∨
xρ) in A have

types ≤ 1 and all other quantifiers in A have types ≤ 2, ρ ≤ 1 and 5) replaced by the schema of

comprehension for
∨

-free formulas we may use even the axiom F from chapter 7 in the proof of

(1) and still obtain (using thm.8.8 ) a χ with the properties above. This covers proofs using the

uniform continuity of every pointwise continuous function : [0, 1]d → IR and Dini’s theorem and the

(sequential) Heine–Borel property for [0, 1]d (the last two principles even in strengthened versions

which can be refuted in the presence of full classical logic).
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9 Applications of logically complex induction in analysis and
their impact on the growth of provably recursive func-
tion(al)s

By logically complex induction we mean instances of induction (or closely related schemas as

bounded collection, see chapter 11 below) which go beyond quantifier–free induction QF–IA. One

of the weakest induction principles which is stronger than QF–IA is the rule of Σ0
1–induction:

Σ0
1–IR :

∨
y0

0A0(0, y0) ,
∧
x0
(∨
y0

1A0(x, y1)→
∨
y0

2A0(x′, y2)
)∧

x0
∨
y0A0(x, y)

,

where A0 is a quantifier–free formula.

Assume now that

GnAω(+∆ + AC–qf) `
∨
y0

0A0(0, y0) ∧
∧
x0
(∨
y0

1A0(x, y1)→
∨
y0

2A0(x′, y2)
)
,

and therefore

GnAω(+∆ + AC–qf) `
∨
y0

0A0(0, y0) ∧
∧
x0, y0

1

∨
y0

2

(
A0(x, y1)→ A0(x′, y2)

)
,

where ∆ as in 2.2.2. By functional interpretation (or by monotone functional interpretation and

bounded search) one can extract terms s, t ∈ GnRω such that GnAω(+∆+b–AC) proves

(∗) A0(0, sa) ∧
∧
x, y1(A0(x, y1)→ A0(x′, taxy1)),

where a are the parameters of A0. A realizing term for the conclusion
∧
x
∨
yA0(x, y) of Σ0

1–IR is

constructed by an iteration of t:

(∗∗)

 t̃a0 := sa

t̃ax′ := tax(t̃ax).

One easily verifies (using only QF–IA) that
∧
x A0(x, t̃ax).

In general t̃ 6∈ GnRω: E.g. if n ≥ 2 and taxy := An(a, y), sa := 1 (where An is the function from

def. 1.2.1 ). Then t̃ax = An+1(a, x) but An+1 6∈ GnRω by prop.1.2.28 and the well–known fact

that An+1 6∈ En. On the other hand we have t̃ ∈ P̂R
ω

(∈T) if s, t ∈ P̂R
ω

(s, t ∈T), since Φit can

be defined in P̂R
ω

and T.
If Σ0

1–IR is restricted to formulas A which contain only number parameters a (i.e. free variables of

type 0), then t̃ can be defined in Gn+1Rω if s, t ∈ GnRω. Let Σ0
1–IR− denote this restriction.

If the upper formulas of Σ0
1–IR− are provable in GnAω(+∆+AC–qf) for n ≥ 2, then the conclusion

is provable in Gn+1Aω(+∆+b–AC) together with a term ∈ Gn+1Rω which realizes
∧
x
∨
y A0.

We now give a (very simple) example of an application of Σ0
1–IR− in analysis, where such a speed

up of growth (in our example from G2Rω to G3Rω) actually happens:

Claim:

G2Aω + Σ0
1–IR− `

∞∑
k=1

1
k =∞, i.e.

G2Aω + Σ0
1–IR− `

∧
n0
∨
m0
(
sm :=

m∑
k=1

1
k >IR n

)
.
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Proof: n := 0: Put m := 1. n 7→ n+ 1: Assume sm > n. Because of s2k − sk ≥ 1
2 we obtain

s4m = (s4m − s2m) + (s2m − sm) + sm > n+ 1. Σ0
1–IR− now yields

∧
n
∨
m(sm >IR n).

In this example s is 1 and tm := 4m. Hence t̃n = 4n.

¿From that well–known fact that lim
n→∞

(
∑n
i=1

1
i − ln(n)) = C (where C = 0, 57721 . . . is the Euler–

Mascheroni constant) it is clear that any function f which realizes (or –what is equivalent– is a

bound for)
∧
n
∨
m(sm > n) has to have exponential growth.

We now come back to the principle (PCM1)

′Every decreasing sequence (an) ⊂ IR which is bounded from below is a Cauchy sequence
′
,

which we mentioned already in chapter 4. We show that, relatively to G2Aω, the principle (PCM1)

implies the axiom of Σ0
1–induction (and is implied by this axiom relatively to G3Aω)

Σ0
1–IA :

∧
g000

(∨
y0(g0y =0 0) ∧

∧
x0
(∨
y0(gxy =0 0)→

∨
y0(gx′y =0 0)

)
→
∧
x0
∨
y0(gxy =0 0)

)
.

Remark 9.1 This axiom is (relative to GnAω
i ) equivalent to the schema of induction for all Σ0

1–

formulas in L(GnAω) : Let
∨
y0A0(x, y) be a Σ0

1–formula (containing only x as free variables).

Then by prop. 1.2.6 there exists a term tA0
∈ GnRω such that

GnAω
i `

∧
x(
∨
y0A0(x, y)↔

∨
y0(txy =0 0)).

Proposition: 9.2 One can construct functionals Ψ1,Ψ2 ∈ G2Rω such that:

1) G3Aω proves∧
a1(0)

(∧
k0
[∨
y0(Ψ1ak0y =0 0) ∧

∧
x0
(∨
y0(Ψ1akxy =0 0)→

∨
y0(Ψ1akx

′y =0 0)
)
→∧

x0
∨
y0(Ψ1akxy =0 0)

]
→
[∧
n0(0 ≤IR a(n+ 1) ≤IR an)

→
∧
k0
∨
n0
∧
m >0 n

(
|am−IR an| ≤IR

1
k+1

)])
.

2) G2Aω proves∧
g000

([∧
n0(0 ≤IR Ψ2g(n+ 1) ≤IR Ψ2gn ≤IR 1)→

∧
k0
∨
n0
∧
m ≥0 n(|Ψ2gm−IR Ψ2gn| ≤IR

1
k+1 )

]
→
[∨
y0(g0y =0 0) ∧

∧
x0
(∨
y0(gxy =0 0)→

∨
y0(gx′y =0 0)

)
→
∧
x0
∨
y0(gxy =0 0)

])
.

Proof: 1) Assume that
∧
n0(0 ≤IR a(n+ 1) ≤IR an) and∨

k
∧
n
∨
m > n

(
|am−IR an| >IR

1
k+1

)
. By Σ0

1–IA one proves that

(+)
∧
n0
∨
i0
∧
j <0 n

(
(i)j < (i)j+1 ∧ ̂(a((i)j)−IR a((i)j+1))(3(k + 1)) >Q

2

3(k + 1)

)
.

Let C ∈ IN be such that C ≥ a0. For n := 3C(k + 1), (+) yields an i ∈ IN such that∧
j < 3C(k + 1)

(
a((i)j)−IR a((i)j+1) >IR

1

3(k + 1)

)
.
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Hence a((i)0) ≥
3C(k+1)−1∑

j=0

(
a((i)j)−IR a((i)j+1)

)
>IR C which contradicts the assumption∧

n(an ≤ C). Define

Ψ1akni :=0

 0, if
∧
j <0 n

(
(i)j < (i)j+1 ∧ ̂(a((i)j)−IR a((i)j+1))(3(k + 1)) >Q

2
3(k+1)

)
1, otherwise.

2) Define Ψ2 ∈ G2Rω such that Ψ2gn =IR 1−IR

n∑
i=1

χgni
i(i+1) , where χ ∈ G2Rω such that

χgni =0

 1, if
∨
l ≤0 n(gil =0 0)

0, otherwise.

¿From
∞∑
i=1

1
i(i+1) = 1 (which is provable in G2Aω

i as we have seen in chapter 4) it follows that

∧
n0(0 ≤IR Ψ2g(n+ 1) ≤IR Ψ2gn ≤IR 1).

By the assumption there exists an nx for every x > 0 such that∧
m, m̃ ≥ nx

(
|Ψ2gm−IR Ψ2gm̃| <

1

x(x+ 1)

)
.

Claim:
∧
x̃
(
0 < x̃ ≤0 x→

(∨
y(gx̃y = 0)↔

∨
y ≤ nx(gx̃y = 0)

))
:

Assume that
∨
l0(gx̃l = 0) ∧

∧
l ≤ nx(gx̃l 6= 0) for some x̃ > 0 with x̃ ≤ x.

Subclaim: Let l0 be minimal such that gx̃l0 = 0. Then l0 > nx and

Ψ2g(max(l0, x̃)) ≤IR Ψ2g(max(l0, x̃)− 1)−IR
1

x̃(x̃+ 1)
.

Proof of the subclaim: i)
max(l0,x̃)∑

i=1

χg(max(l0,x̃))i
i(i+1) contains 1

x̃(x̃+1) as an element of the sum, since

gx̃l0 = 0 and therefore χg(max(l0, x̃))x̃ = 1.

ii)
max(l0,x̃)−1∑

i=1

χg(max(l0,x̃)−1)i
i(i+1) does not contain 1

x̃(x̃+1) as an element of the sum:

Case 1. x̃ ≥ l0: Then max(l0, x̃)− 1 = x̃− 1 < x̃.

Case 2. l0 > x̃: Then max(l0, x̃)− 1 = l0 − 1. Since l0 is the minimal l such that gx̃l = 0, it follows

that ∧
i ≤ max(l0, x̃)− 1(gx̃i 6= 0) and thus χg(max(l0, x̃)− 1)x̃ = 0,

which finishes case 2.
Because of

χg(max(l0, x̃)− 1)i 6= 0→ χg(max(l0, x̃))i 6= 0

, i) and ii) yield

max(l0,x̃)∑
i=1

χg(max(l0, x̃))i

i(i+ 1)
≥

max(l0,x̃)−1∑
i=1

χg(max(l0, x̃)− 1)i

i(i+ 1)
+

1

x̃(x̃+ 1)
,
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which concludes the proof of the subclaim (Note that the assertion of the subclaim is purely uni-

versal. Hence its provability in G2Aω
i is also clear now).

The subclaim implies

max(l0, x̃)− 1 ≥ nx ∧ |Ψ2g(max(l0, x̃))−IR Ψ2g(max(l0, x̃)− 1)| ≥ 1

x(x+ 1)
.

However this contradicts the construction of nx and therefore concludes the proof of the claim.
Assume

(a)
∨
y0(g0y0 = 0).

Define Φ ∈ G2Rω such that

Φgx̃y =

 min ỹ ≤0 y[gx̃ỹ =0 0], if
∨
ỹ ≤0 y(gx̃ỹ =0 0)

00, otherwise.

By the claim above and (a) we obtain for y := max(nx, y0):

(b)
∧
x̃ ≤0 x

(∨
ỹ(gx̃ỹ =0 0)↔ gx̃(Φgx̃y) =0 0

)
.

QF–IA applied to A0(x) :≡
(
gx(Φgxy) =0 0

)
yields

g0(Φg0y) = 0) ∧
∧
x̃ < x

(
(gx̃(Φgx̃y) = 0→ gx̃′(Φgx̃′y) = 0

)
→ gx(Φgxy) = 0.

¿From this and (a), (b) we obtain∨
y0(g0y0 = 0) ∧

∧
x̃ < x

(∨
ỹ(gx̃ỹ = 0)→

∨
ỹ(gx̃′ỹ = 0)

)
→
∨
ỹ(gxỹ = 0).

Corollary 9.3

G3Aω ` Σ0
1–IA↔ (PCM1).

Remark 9.4 1) ¿From the proof of prop.9.2 it follows that 2) is already provable in the intu-

itionistic theory G2Aω
i . In particular

G2Aω
i ` (PCM1)→ Σ0

1–IA.

The other implication Σ0
1–IA → (PCM1) cannot be proved intuitionistically since (PCM1)

implies the non–constructive so–called ’limited principle of omniscience’ (see [45] for a dis-

cussion on this).

2) Prop.9.2 provides much more information than cor.9.3 . In particular one can compute (in

G2Aω
i ) uniformly in g a decreasing sequence of positive real numbers such that the Cauchy

property of this sequence implies induction for the Σ0
1–formula A(x) :≡

∨
y(gxy = 0). The

convers is not so explicit (due to the non–constructivity of this implication) but Ψ1 provides

an arithmetical family Ak(x) :≡
∨
y(Ψ1akxy = 0) of Σ0

1–formulas such that the induction

principle for these formulas classically implies the Cauchy property of the decreasing sequence
of positive reals a.
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We now determine the rate growth of uniform bounds for provably recursive functionals which may

be caused by the use of (PCM1) in proofs:

Using the construction ã(n) := maxIR(0,min
i≤n

(a(i))) we can express (PCM1) in the following logically

more simple form64

(1)
∧
a1(0)

∧
k0
∨
n0
∧
m >0 n

(
ã(n)−IR ã(m) ≤IR

1

k + 1

)
.

(If a1(0) fulfils
∧
n(0 ≤IR a(n+ 1) ≤IR a(n)), then

∧
n(ã(n) =IR a(n)). Furthermore∧

n(0 ≤IR ã(n + 1) ≤IR ã(n)) for all a1(0). Thus by the transformation a 7→ ã, quantification over

all decreasing sequences ⊂ IR+ reduces to quantification over all a1(0)).

By AC0,0–qf (1) is equivalent to

(2)
∧
a1(0), k0, g1

∨
n0
(
gn >0 n→ ã(n)−IR ã(gn) ≤IR

1

k + 1

)
.

We now construct a functional Ψ which provides a bound for
∨
n, i.e.

(3)
∧
a1(0), k0, g1

∨
n ≤0 Ψakg

(
gn >0 n→ ã(n)−IR ã(gn) ≤IR

1

k + 1

)
.

Let C(a) ∈ IN be an upper bound for the real number represented by ã(0), e.g. C(a) := (a(0))(0)+1.

We show that
Ψakg := max

i<C(a)k′

(
Φiti0g

)
(= max

i<C(a)k′

(
gi(0)

)
satisfies (3) (provably in PRAω):

Claim:
∨
i < C(a)k′

(
g(gi0) > gi0→ ã(gi0)−IR ã(g(gi0)) ≤IR

1
k+1

)
.

Case 1:
∨
i < C(a)k′(g(gi0) ≤ gi0): Obvious!

Case 2:
∧
i < C(a)k′(g(gi0) > gi0): Assume

∧
i < C(a)k′

(
ã(gi0)−IR ã(g(gi0)) >IR

1
k+1

)
.

Then ã(0)−IR ã(gC(a)k′0) > C(a), contradicting ã(n) ∈ [0, C(a)].

In contrast to (2) the bounded proposition (3) has the form of an axiom ∆ in thm.2.2.2 ,2.2.7 and

cor.2.2.3. Hence the monotone functional interpretation of (3) requires just a majorant for Ψ. In

particular we may use Ψ ∈ P̂R
ω

itself since Ψ s–maj Ψ.

Thus from a proof of e.g. a sentence
∧
x0
∧
y ≤ρ sx

∨
z0A0(x, y, z) in GnAω + ∆ + (PCM1)+AC–qf

we can (in general) extract only a bound t for z (i.e.
∧
x
∧
y ≤ sx

∨
z ≤ tx A0(x, y, z)) which is

defined in P̂R
ω

since the definition of Ψ uses the functional Φit which is not definable in G∞Rω

(see chapter 1). If however the proof uses (3) above only for functions g which can be bounded by

terms in GkRω, then we can extract a t ∈ Gmax(k+1,n)R
ω since the iteration of a function ∈ GkRω

is definable in Gk+1Rω (for k ≥ 2).

The monotone functional interpretation of the negative translation of (1) requires (taking the quan-

tifier hidden in ≤IR into account) a majorant for a functional Φ which bounds ’
∨
n’ in

(3)′
∧
a1(0), k0, g1, h1

∨
n
(
gn > n→ ̂̃a(n)(hn)−Q

̂ã(gn)(hn) ≤ 1

k + 1
+

3

h(n) + 1

)
.

64Here we use that
∧
n0
(
a(n + 1) ≤IR an

)
→
∧
n0
(
ΦminIR

(a, n) =IR an
)
. This follows in G2Aω from the purely

universal sentence

(+)
∧
a1(0), n, k

(∧
l < n

(( ̂a(l + 1)
)
(k) ≤Q (âl)(k) + 3

k+1

)
→ |ΦminIR

(a, n) −IR an| ≤IR
5n
k+1

)
. (+) is true (and

hence an axiom of G2Aω) since
( ̂a(l + 1)

)
(k) ≤Q (âl)(k) + 3

k+1
→ a(l + 1) ≤IR al + 5

k+1
.
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However every Φ which provides a bound for (2) a fortiori yields a bound for (3)′ (which does not

depend on h). Hence Ψ satisfies (provably in PRAω
i ) the monotone functional interpretation of the

negative translation of (1).

In this chapter we have considered principles which may have a significant impact on the rate
of growth of extractable bounds:

An instance of the Σ0
1–induction rule (without function parameters) may increase the growth of a

bound by one level in the GnRω–hierarchy (for n ≥ 2) by a (single) iteration process. In particular

if the upper formulas of this rule are derivable in G2Aω the growth of any bound for the conclusion

may be exponential. This has been demonstrated using the example
l∑

n=1

1
n

l→∞→ ∞.

The axiom of Σ0
1–induction may contribute to the growth of bounds by the iteration functional

Φit. Relatively to G3Aω, Σ0
1–IA is equivalent to the Cauchy property of bounded monotone se-

quences in IR (PCM1) which contributes to the growth by a term which fulfils the monotone

functional interpretation of its negative translation, namely Ψ := λa1(0), k0, g1. max
i<C(a)k′

(
Φiti0g

)
,

where IN 3 C(a) ≥IR a(0).

In the important special case where (3) above is applied only to g := S in a given proof, one has

ΨakS ≤ C(a) · k′ and the results on polynomial growth stated at the end of chapter 7 apply.

In general only the existence of a primitive recursive bound is guaranteed (this is unavoidable since

Σ0
1–IA suffices to introduce all primitive recursive functions when added to G2Aω).
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10 Elimination of Skolem functions of type 0(0) . . . (0) in
higher type theories for monotone formulas: no addi-
tional growth

There are central theorems in analysis whose proofs use arithmetical instances of AC, i.e. instances
of

ACar :
∧
x0
∨
y0A(x, y)→

∨
f1
∧
x0A(x, fx),

where A ∈ Π0
∞ is not quantifier–free. Examples are the following theorems

1) Every bounded monotone sequence of real numbers has a limit (or equivalently –as we have

seen in chapter 4– every bounded monotone sequence of reals has a Cauchy modulus: PCM2).

2) For every sequence of real numbers which is bounded from above there exists a least upper

bound.

3) The Bolzano–Weierstraß property for bounded sequences in IRd (for every fixed d).

4) The Arzelà–Ascoli lemma.

We will investigate these theorems (w.r.t. to their contribution to the rate of growth of uniform

bounds extractable from proofs which use them) in chapter 11 below and discuss now only (PCM2)

in order to motivate the results of the present chapter:

(PCM2) :


∧
a

1(0)
(·) , c1

(∧
n0(c ≤IR an+1 ≤IR an)

→
∨
h1
∧
k0
∧
m, m̃ ≥0 hk(|am −IR am̃| ≤IR

1
k+1 )

)
follows immediately from

(PCM1) :


∧
a

1(0)
(·) , c1

(∧
n0(c ≤IR an+1 ≤IR an)

→
∧
k0
∨
n0
∧
m, m̃ ≥0 n(|am −IR am̃| ≤IR

1
k+1 )

)
by an application of ACar to

A :≡
∧
m, m̃ ≥ n(|am −IR am̃| ≤IR

1

k + 1
) ∈ Π0

1.

It is well–known that a constructive functional interpretation of the negative translation of ACar re-

quires so–called bar recursion and cannot be caried out e.g. in Gödel’s term calculus T (see [64] and

[43] ). In fact ACar is (using classically logic) equivalent to CAar+AC0,0–qf and therefore causes

an immense rate of growth (when added to e.g. G2Aω) as we have already discussed in chapter 3

§1. ¿From the work in the context of ’reverse mathematics’ (see e.g. [61] ) it is known that 1)–4)

imply CAar relatively to a (second order version) of P̂A
ω
|\+AC0,0–qf. In the next chapter we show

that this holds even relative to G2Aω.

In contrast to these general facts we prove in this chapter a meta–theorem which in particular
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implies that if (PCM2) is applied in a proof only to sequences (an) which are given explicitely in

the parameters of the proposition (which is proved) then this proof can be (effectively) transformed

(without causing new growth) into a proof of the same conclusion which uses only (PCM1) for

these sequences. By this transformation the use of ACar is eliminated and the determination of

the growth caused (potentially by (PCM2)) reduces to the determination of the growth caused by

(PCM1) which we have already carried out in chapter 9.

More precisely our meta–theorem has the following consequence:

Let T ω :=GnAω+∆, where ∆ is the set of axioms from thm.2.2.2 and cor.2.2.3. Then the following
rule holds

(1)



T ω + AC–qf `
∧
u1
∧
v ≤ρ tu

(∨
h1
∧
k0
∧
m, m̃ ≥0 hk

(
| ˜(χuv)m −IR

˜(χuv)m̃| ≤
1
k+1

)
→
∨
wτA0(u, v, w)

)
⇒ there exists a Φ ∈ GnAω such that

T ωi + b-AC `
(∧

u1
∧
v ≤ρ tu

(∧
k0
∨
n0
∧
m, m̃ ≥0 n

(
| ˜(χuv)m −IR

˜(χuv)m̃| ≤
1
k+1

)
→
∨
wτA0(u, v, w)

))
∧Φ fulfils the monotone funct. interpr. of the negative trans. of

(
. . .
)
.

In contrast to (PCM2) the (negative translation of the) principle (PCM1) has a simple constructive

monotone functional interpretation which is fulfilled by the functional Ψ defined at the end of
chapter 9. Because of the nice behaviour of the monotone functional interpretation with respect to

the modus ponens one obtains (by applying Φ to Ψ) a monotone functional interpretation of∧
u1
∧
v ≤ρ tu

∨
wτA0(u, v, w)

and so (if τ ≤ 2) a uniform bound ξ for
∨
w, i.e.∧

u1
∧
v ≤ρ tu

∨
w ≤τ ξuA0(u, v, w).

If ∆ = ∅ then no b–AC is needed.
Let us assume now for simplicity that ∆ = ∅ and consider the following general situation:
For

F :≡
∧
x0

1

∨
y0

1 . . .
∧
x0
k

∨
y0
kF0(x1, y1, . . . , xk, yk, a),

where x, y, a are all free variables of F , we define the Skolem normal form FS of F by

FS :≡
∨
f1, . . . , fk

∧
x0

1, . . . , x
0
k F0(x1, f1x1, . . . , xk, fkx1 . . . xk, a).

If we could prove that

(2)

 T ω(+AC–qf) `
∧
u1
∧
v ≤ρ tu

(
FS(u, v)→

∨
wτA0(u, v, w, a)

)
⇒

T ω `
∧
u1
∧
v ≤ρ tu

(
F (u, v)→

∨
wτA0(u, v, w, a)

)
,

then (for ∆ = ∅) (1) would follow as a special case.

(2) in turn is implied by

(3) T ω(+AC–qf) ` GH ⇒ T ω ` G,
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where

GH :≡
∧
u1
∧
v ≤ρ tu

∧
h1, . . . , hk

∨
y0

1 , . . . , y
0
k, w

τG0(u, v, y1, h1y1, y2, h2y1y2, . . . , yk, hky1 . . . yk, w)

is the (generalized)65 Herbrand normal form of

G :≡
∧
u1
∧
v ≤ρ tu

∨
y0

1

∧
x0

1 . . .
∨
y0
k

∧
x0
k

∨
wτG0(u, v, y1, x1, . . . , yk, xk, w).

Since
∧
u1
∧
v ≤ρ tu

(
F (u, v) →

∨
wτA0

)
can be transformed into a prenex normal form G whose

Herbrand normal form is logically equivalent to
∧
u
∧
v ≤ tu

(
FS(u, v) →

∨
wA0

)
, (2) is a special

case of (3).

Unfortunately (3) is wrong (even without AC–qf) for T ω =GnAω, PRAω and much weaker theo-

ries. In fact it is false already for the first order fragments of these theories augmented by function

variables. For (the second order fragment of) PRAω +Σ0
1–IA this was proved firstly in [35] (thereby

detecting a false argument in the literature). Below we will prove a result which implies this as a

special case and refutes (3) also for GnAω (and their second order fragments).

On the other hand (3) is true for T ω =GnAω (but remains false for T ω =PRAω) if G satisfies a

certain monotonicity condition (see def.10.6 below) which is fulfilled e.g. in (1). This result will be

used in the next chapter to determine the growth caused by instances of

1) Principle of convergence of bounded monotone sequences (PCM2).

2) Least upper bound for bounded sequences of real numbers.

3) Bolzano–Weierstraß principle for bounded sequences in IRd.

4) Arzelà–Ascoli lemma.

5) The existence of lim sup and lim inf for bounded sequences in IR.

6) The restriction of ACar and CAar to Π0
1 formulas: Π0

1–AC, Π0
1–CA.

We now prove a result which in particular refutes (3) (even without AC–qf) for GnAω (with n ≥ 2),

G∞Aω and PRAω:

Let G2A+ be the first–order part of G2Aω augmented by function variables and a substitution rule

SUB :
A(f)

A(g)
.

G2A+ contains the schema of quantifier–free induction with function parameters .

Proposition: 10.1 Let A ∈ Π0
∞ be a theorem of (first order) Peano arithmetic PA. Then one can

construct a sentence Ã ∈ Π0
∞ such that

G2A+ ` ÃH and G2A ` A↔ Ã.

65The Hebrand normal form is usually defined only for arithmetical formulas, i.e. if u, v, w are not present. In this
case it coincides with our definition. In G2A+ below, u, v, v do not occur and the hi are free function variables.
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Proof: If PA ` A, then there are arithmetical instances (without function parameters) of the

induction schema such that for their universal closure F̃1, . . . , F̃k

G2A+ `
k∧
i=1

F̃i → A,

since PA ⊂ G2A+ + Π0
∞–IA−, where Π0

∞–IA− is the induction schema for all arithmetical formulas

without function variables.

Let B be any prenex normal form of
( k∧
i=1

(yi =0 0↔ Fi(xi))→ A
)
, where Fi denotes the induction

formula of F̃i, then

Ã :≡
∨
a, x1, . . . , xk

∧
y1, . . . , yk B(x1, . . . , xk, y1, . . . , yk)

is a prenex normal form of

∧
a, x1, . . . , xk

∨
y1, . . . , yk

k∧
i=1

(yi = 0↔ Fi(xi))→ A,

where a are the (number) parameters of the induction formulas Fi. Because of

G2A `
∧
a, x1, . . . , xk

∨
y1, . . . , yk

k∧
i=1

(yi = 0↔ Fi(xi)),

we obtain

G2A ` A↔ Ã.

Since ÃH is logically implied by

C :≡
∨
a, x1, . . . , xk B(x1, . . . , xk, f1ax1 . . . xk, . . . , fkax1 . . . xk),

it remains to show that G2A+ ` C:

Assume
∧
a, x1, . . . , xk

k∧
i=1

(
fiax1 . . . xk = 0 ↔ Fi(xi)

)
. Quantifier–free induction applied to

A0(xi) :≡ fi(a, 0, . . . , 0, xi, 0, . . . 0) = 0 yields F̃i. Hence

G2A+ `
∧
a, x1, . . . , xk

k∧
i=1

(
fiax1 . . . xk = 0↔ Fi(xi)

)
→ A,

i.e. G2A+ ` C.

Corollary 10.2 (to the proof) Let G2A be the first order fragment of G2A+ (i.e. G2A+ without

function variables and the rule SUB) and let G2A[f1, . . . , fk] denote the extension of G2A which is

obtained by adding new function symbols f1, . . . , fk which may occur in instances of QF–IA. Then

G2A[f1, . . . , fk] ` ÃH and G2A ` A↔ Ã (with A, Ã as in the proof above), where f1, . . . , fk are the

function symbols used in the definition of ÃH .
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Corollary 10.3 1) For each n ∈ IN one can construct a sentence A ∈ Π0
∞ such that

G2Aω ` AH , but G∞Aω + Σ0
n–IA ⊂ PRAω + Σ0

n–IA /̀ A.

2) For each n ∈ IN one can construct sentences A ∈ Π0
∞ and

∧
x0
∨
y0B0(x, y) ∈ Π0

2 such that

G2Aω ` AH , but G2Aω +A `
∧
x0
∨
y0B0(x, y),

where fx := min y[B0(x, y)] is not ωn–recursive.

Proof: 1) Let A ∈ L(PA) be an instance of Σ0
n+1–IA which is not provable in PRAω+Σ0

n–IA (such

an instance exists since every ωn+1–recursive function is provably recursive in G2Aω + Σ0
n+1–IA,

but in PRAω + Σ0
n–IA only ωn–recursive functions are provably recursive and there are ωn+1–

recursive functions which are not ωn–recursive). Construct now Ã as in prop.10.1 . It follows that

G2Aω ` ÃH , but PRAω + Σ0
n–IA /̀ Ã.

2) follows from prop.10.1 and the fact that every α(< ε0)–recursive function is provably recursive

in PA.

The reason for the provability of ÃH in prop.10.1 is that the schema of quantifier–free induction is

applicable to the index functions used in defining ÃH . This always is the case in the presence of the

substitution rule SUB or
∧1

–elimination in theories like G2Aω where quantification over functions
is possible.

In the following we show that the same phenomenon occurs if QF–IA is restricted to formulas

without function variables (we call this restricted system G2A) but instead of this new func-

tional symbols Φmax,n are added (for each number n ∈ IN) together with the axioms

(max, n) :

n∧
i=1

(yi ≤0 xi)→ fy ≤0 Φmax,nfx,

where f is an n–ary function variable.

(max) := ∪n(max, n).

Remark 10.4 (max, 1) is fulfilled by the functional Φ1fx = max(f0, . . . , fx) from GnAω. By λ–

abstraction and finite iteration of Φ1 one can easily define a functional satisfying (max, n) (Hence

GnA+(max) is a subsystem of GnAω). This is the reason for calling this axiom (max). Of course

instead of Φ1 one could also use Φ2fx =
x∑
i=0

fi,Φ3fx =
x∏
i=0

fi or Φ〈〉fx := fx.

Proposition: 10.5 Let A ∈ Π0
∞ be a theorem of PA. Then one can construct a sentence Ã ∈ Π0

∞
such that

G2A + (max) ` ÃH and G2A ` A↔ Ã.

108



Proof: Since PA ` A there are arithmetical instances (without function parameters) of the induc-

tion schema such that for their universal closure F̃1, . . . , F̃k

G2A `
k∧
i=1

F̃i → A.

Lets consider now the so–called collection principle

CP :
∧
x̃0
(∧
x <0 x̃

∨
y0F (x, y, a)→

∨
z
∧
x <0 x̃

∨
y <0 z F (x, y, a)

)
,

where x, y, a are all free variables of F . This principle has been studied proof–theoretically in [51]

and also in [57]. By [57] (prop.4.1 (iv)) one can construct for every instance F̃ of Σ0
n–IA instances

Fi of Σ0
n+1–CP (i.e. CP restricted to Σ0

n+1–formulas) such that
∧
i

Fi → F̃ . From the proof in [57]

(which uses only QF–IA and the function −· ) it follows that G2A `
∧
i

Fi → F̃ . Let F1, . . . , Fl denote

such instances of CP whose universal closures imply F̃1, . . . , F̃k. Fi has the form

Fi :≡
(∧
x <0 x̃

∨
y0Gi(x, y, a)→

∨
z
∧
x < x̃

∨
y < z Gi(x, y, a)

)
.

Thus

(1) G2A `
∧
a, x̃

l∧
i=1

(∧
xi <0 x̃

∨
y0
iGi(xi, yi, a)→

∨
zi
∧
xi < x̃

∨
yi < zi Gi(xi, yi, a)

)
→ A.

Consider now

B :≡
(∧

a, x̃, x1, . . . , xl
∨
y1, . . . , yl

l∧
i=1

(∧
ui < x̃

∨
wiGi(ui, wi, a)→ (xi < x̃→ Gi(xi, yi, a))

)
→ A

)
and

C :≡
( l∧
i=1

(∧
ui < x̃

∨
wiGi(ui, wi, a)→ (xi < x̃→ Gi(xi, yi, a))

)
→ A

)
.

Let Cpr be an (arbitrary) prenex normal form of C. Then

Bpr :≡
∨
a, x̃, x1, . . . , xl

∧
y1, . . . , ylC

pr(x̃, x1, . . . , xl, y1, . . . , yl, a)

is a prenex normal form of B.

We now show i) G2A+(max) ` (Bpr)H and ii) G2A ` Bpr ↔ A.

i) Define

B̂ :≡
∨
a, x̃, x1, . . . , xlC

pr(x̃, x1, . . . , xl, f1ax̃x1 . . . xl, . . . , flax̃x1 . . . xl, a).

The implication B̂ → (Bpr)H holds logically. Hence we have to show that G2A+(max) ` B̂:

B̂ is logically equivalent to

(2)
∧
a, x̃

l∧
i=1

(∧
ui < x̃

∨
wiGi(ui, wi, a)→

∧
xi(xi < x̃→ Gi(xi, fiax̃x1 . . . xl, a))︸ ︷︷ ︸
Hi:≡

)
→ A.
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By (max) applied to fi,
∧
xi(xi < x̃→ Gi(xi, fiax̃x1 . . . xl, a)) implies∨

zi
∧
xi < x̃

∨
yi < ziGi(xi, yi, a). Thus

G2A + (max) ` Hi → Fi for i = 1, . . . l.

By (1),(2) this yields G2A+(max) ` B̂. ii) We have to show that G2A` B ↔ A. This follows

immediately from the fact that

∧
a, x̃, x1, . . . , xl

∨
y1, . . . , yl

l∧
i=1

(∧
ui < x̃

∨
wiGi(ui, wi, a)→ (xi < x̃→ Gi(xi, yi, a))

)
holds logically.

Prop.10.1 and prop.10.5 show that for theories like GnAω the Herbrand normal form AH of a

formula A is in general much weaker than A with respect to provability in GnAω (compare cor.10.3

). This phenomenon does not occur if A satisfies the following monotonicity condition:

Definition 10.6 Let A ∈ L(GnAω) be a formula having the form

A ≡
∧
u1
∧
v ≤τ tu

∨
y0

1

∧
x0

1 . . .
∨
y0
k

∧
x0
k

∨
wγA0(u, v, y1, x1, . . . , yk, xk, w),

where A0 is quantifier–free and contains only u, v, y, x, w free. Furthermore let t be ∈ GnRω and

τ, γ are arbitrary finite types.

1) A is called (arithmetically) monotone if

Mon(A) :≡



∧
u1
∧
v ≤τ tu

∧
x1, x̃1, . . . , xk, x̃k, y1, ỹ1, . . . yk, ỹk( k∧
i=1

(x̃i ≤0 xi ∧ ỹi ≥0 yi) ∧
∨
wγA0(u, v, y1, x1, . . . , yk, xk, w)

→
∨
wγA0(u, v, ỹ1, x̃1, . . . , ỹk, x̃k, w)

)
.

2) The Herbrand normal form AH of A is defined to be

AH :≡
∧
u1
∧
v ≤τ tu

∧
hρ1

1 , . . . , h
ρk
k

∨
y0

1 , . . . , y
0
k, w

γ

A0(u, v, y1, h1y1, . . . , yk, hky1 . . . yk, w)︸ ︷︷ ︸
AH0 :≡

, where ρi = 0 (0) . . . (0)︸ ︷︷ ︸
i

.

Theorem 10.7 Let Ψ1, . . . ,Ψk ∈ GnRω. Then

GnAω +Mon(A) `
∧
u1
∧
v ≤τ tu

∧
h1, . . . , hk

( k∧
i=1

(hi monotone)

→
∨
y1 ≤0 Ψ1uh . . .

∨
yk ≤0 Ψkuh

∨
wγAH0

)
→ A,

where (hi monotone) :≡
∧
x1, . . . , xi, y1, . . . , yi

( i∧
j=1

(xi ≥0 yi)→ hix ≥0 hiy
)
.
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Theorem 10.8 Let A be as in thm.10.7 and ∆ be as in thm.2.2.2 and let A′ denote the negative

translation of A66. Then the following rule holds:

GnAω+AC–qf + ∆ ` AH ∧Mon(A)⇒

GnAω + ∆ + b-AC ` A and

by monotone functional interpretation one can extract a tuple Ψ ∈ GnRω such that

GnAω
i +b–AC + ∆ ` Ψ satisfies the monotone functional interpretation of A′.

Proof of theorem 10.7 : We assume that

∧
u1
∧
v ≤τ tu

∧
h1, . . . , hk

( k∧
i=1

(hi monotone)→
∨
y1, . . . , yk ≤0 Ψuh

∨
wγAH0

)
(This assumption follows from the implicative premise in the theorem by taking Ψuh :=

max0(Ψ1uh, . . . ,Ψkuh)). By cor.1.2.24 and the corollary to the proof of prop.1.2.21 one can con-

struct a term Ψ∗[u, h] such that

1) Ψ∗[u, h] is built up from u, h,A0, . . . , An, S
1, 00,max0 only (by substitution).

2) λu, h.Ψ∗[u, h] s–maj Ψ.

1) in particular implies

1∗) Every occurrence of an hj ∈ {h1, . . . , hk} in Ψ∗[u, h] has the form hj(rn1
, . . . , rnj ), i.e. hj occurs

only with a full stock of arguments but not as a function argument in the form s(hjrn1
. . . rnl) for

some l < j.

By 2),
∧
u1(uM s–maj u) and (hi monotone → hi s–maj hi) we have

2∗) GnAω `
∧
u
∧
h1, . . . , hk

( k∧
i=1

(hi monotone) → Ψ∗[uM , h] ≥0 Ψuh
)
.

(Note the the replacement of hi by hMi := λx1, . . . , xi. max
x̃1≤x1

...
x̃i≤xi

h(x̃1, . . . , x̃i), which would make the

monotonicity assumption on hi superfluous, would destroy property 1∗) on which the proof below

is based. This is the reason why we have to assume hi to be monotone. In order to overcome this

assumption we will use essentially the monotonicity of A).

Let r1, . . . , rl be all subterms of Ψ∗[uM , h] which occur as an argument of a function ∈ {h1, . . . , hk}
in Ψ∗[uM , h] plus the term Ψ∗[uM , h] itself.

Let r̂j [a1, . . . , aqj ] be the term which results from rj if every occurrence of a maximal h1, . . . , hk–

subterm (i.e. a maximal subterm which has the form hi(s1, . . . , si) for an i = 1, . . . , k) is replaced

by a new variable and let a1, . . . , aqj denote these variables. We now define

r̃ja1 . . . aqj := max
(

max
ã1≤a1

...
ãqj
≤aqj

r̂j [ã1, . . . , ãqj ], a1, . . . , aqj
)
.

66Here we can use any of the various negative translations. For a systematical treatment of negative translations
see [43].
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(r̃j can be defined in GnRω from r̂j by successive use of Φ1).

By the construction of r̃j we get

GnAω `
(
λa.r̃ja s–maj λa.r̂j [a1, . . . , aqj ]

)
∧
∧
a(r̃ja ≥0 a1, . . . , aqj ).

Since Ψ∗[uM , h] is built up from r̂j , h and uM only (by substitution) and (hi monotone→ hi s–maj

hi), u
M s–maj u, this implies

GnAω `
∧
u, h1, . . . , hk

( k∧
i=1

(hi monotone)→ Ψ[uM , h] ≥0 Ψ∗[uM , h] ≥0 Ψuh
)
,

where Ψ[uM , h] is built up as Ψ∗[uM , h] but with r̃ja1 . . . aqj instead of r̂j [a1, . . . , aqj ].

Summarizing the situation achieved so far we have obtained a term Ψ[uM , h] such that

(α)
∧
u1
∧
v ≤τ tu

∧
h
(
h monotone→

∨
y1, . . . , yk ≤0 Ψ[uM , h]

∨
wγAH0

)
.

(β) h1, . . . , hk occur in Ψ[uM , h] only as in 1∗), i.e. with all places for arguments filled and not as

function arguments themselves.

(γ) For Ψ[uM , h] and all subterms s which occur as an argument of a function h1, . . . , hk in

Ψ[uM , h] we have ŝ[a1, . . . , aq] ≥0 a1, . . . , aq, where ŝ results by replacing every occurrence of

a maximal h1, . . . , hk–subterm in s by a new variable al.

In the following we only use (α)–(γ) and Mon(A).

¿From now on let r1, . . . , rl denote all subterms of Ψ[uM , h] which occur as an argument of a

function ∈ {h1, . . . , hk} in Ψ[uM , h] plus Ψ[uM , h] itself. M := {r1, . . . , rl} (This set formation is

meant w.r.t. identity ≡ of terms and not =0, i.e. ’s ∈M ’ means ’s ≡ r1 ∨ . . . ∨ s ≡ rl’).
We now show that we can reduce ’

∨
y1, . . . , yk ≤ Ψ[uM , h]’ in (α) to a disjunction with fixed length,

namely to the disjunction over M :

(1)


∧
u1
∧
v ≤τ tu

∧
h
(
h monotone on M →

∨
s1, . . . , sk ∈M

∨
wγ

A0(u, v, s1, h1s1, . . . , sk, hks1 . . . sk, w)
)
.

Proof of (1): Let h1, . . . , hk be monotone on M . We order the terms ri w.r.t. ≤0. The resulting

ordered tuple depends of course on u, h1, . . . , hk. For notational simplicity we assume that

r1 ≤0 . . . ≤0 rl. We now define (again depending on u, h) functions h̃1, . . . , h̃k by

h̃iy
0
1 . . . y

0
i := hi(rjy1 , . . . , rjyi ),where

jyq :=


1, if yq ≤0 r1

j + 1, if rj <0 yq ≤0 rj+1

l, if rl <0 yq.

Since l (and therefore the number of cases in this definition of h̃i) is a (from outside) fixed number

depending only on the term structure of Ψ[uM , h] but not on u, h, the functions h̃i can be defined
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uniformly in u, h within GnAω. On M , h̃i equals hi.

By the definition of h̃i and the assumption that h1, . . . , hk are monotone on M we conclude

(a) h̃1, . . . , h̃k are monotone everywhere.

By (β) we know that h1, . . . , hk occur in Ψ[uM , h] only in the form his1 . . . si for certain terms

s1, . . . , si ∈ M . Hence we can define the h–depth of a term s ∈ M as the maximal number of

nested occurrences of h1, . . . , hk in s and show by induction on this rank (on the meta–level):

(b)


l∧
i=1

(ri =0 r̃i), where r̃i results if in ri ∈M the functions h1, . . . , hk

are replaced by h̃1, . . . , h̃k everywhere. In particular Ψ[uM , h̃] =0 Ψ[uM , h].

By (α), (a) and (b) it follows (for all u1, v ≤ tu and all h which are monotone on M) that

(c)
∨
y1, . . . , yk ≤0 Ψ[uM , h]

∨
wγA0(u, v, y1, h̃1y1, . . . , yk, h̃ky1 . . . yk, w).

Let y1, . . . , yk ≤0 Ψ[uM , h] be such that (c) is fulfilled. Because of h̃iy1 . . . yi = hi(rjy1 , . . . , rjyi )

this implies

(d)
∨
wγA0(u, v, y1, h1rjy1 , . . . , yk, hkrjy1 , . . . , rjyk , w).

With yq ≤ rjyq for q = 1, . . . .k (since yq ≤ Ψ[uM , h] ≤ rl –because of Ψ[uM , h] ∈ M and the

yq–assumption– the case ’yq > rl’ does not occur) and Mon(A) we conclude∨
wγA0(u, v, rjy1 , h1rjy1 , . . . , rjyk , hkrjy1 , . . . , rjyk , w)

and therefore

(e)
∨
s1, . . . , sk ∈M

∨
wγA0(u, v, s1, h1s1, . . . , sk, hks1 . . . sk, w).

This concludes the proof of (1) (from (α), (β)) which can easily be carried out in GnAω, i.e.

GnAω `Mon(A) ∧ (α)→ (1).

We now define N :=
k⋃
i=1

Ni, where Ni := {hi(s1, . . . , si) : s1, . . . , si ∈ M} (Again this set is meant

w.r.t. identity ≡ between terms). With the terms in N we associate new number variables according

to their h–depth as follows: Let p the maximal h–depth of all terms ∈ N .

1. Let t ∈ N be a term with h–depth(t) = p. Then t 7→ y1
i , if t ∈ Ni.

2. Let t ∈ N be a term with h–depth(t) = p− 1. Then t 7→ y2
i , if t ∈ Ni.

...

p. Let t ∈ N be a term with h–depth(t) = 1. Then t 7→ ypi , if t ∈ Ni.

This association of variables to the terms in N has the following properties:

(i) Terms s1, s2 ∈ N with different h–depth have different variables associated with.
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(ii) If s1, s2 ∈ N have the same h–depth, then the variables associated with s1 and s2 are equal

iff s1, s2 ∈ Ni for an i = 1, . . . , k.

For r ∈ M ∪ N we define r̂ as the term which results if every maximal h–subterm occurring in r

is replaced by its associated variable. Thus r̂ does not contain h1, . . . , hk. For r ∈ N , r̂ is just the

variable associated with r. M̂ := {r̂ : r ∈M}.
We now show that (1) implies a certain index function–free (i.e. h1, . . . , hk–free) disjunction ((2)

below):

For q with 2 ≤ q ≤ p let r̂q1, . . . , r̂
q
nq be all terms ∈ M̂ whose smallest upper index i of a variable

yij occurring in them equals q (i.e. there occurs a variable yqj in the term and for all variables yim

occurring in the term, i ≥ q holds). Since for r ∈ M the h–depth of h1(r) ∈ N is strictly greater

than those of subterms of r, there are no terms r̂ ∈ M̂ containing a variable y1
j . r̂p+1

1 , . . . , r̂p+1
np+1

denote those terms ∈ M̂ which do not contain any variable yij at all.

We now show that (1) implies (for all u and for all v ≤ tu)

(2)


∧
y1

1 , . . . , y
1
k; . . . ; yp1 , . . . , y

p
k

( ∧
q=1,...,p−1
l=1,...,p−q

(
yq1, . . . , y

q
k > r̂q+l1 , . . . r̂q+lnq+l

, r̂p+1
1 , . . . , r̂p+1

np+1
, yq+l1 , . . . , yq+lk

)
→

∨
ŝ1,...,̂sk∈M̂

∨
wγA0(u, v, ŝ1, ĥ1s1, . . . , ŝk, ̂hks1 . . . sk, w)

)
.

Assume that there are values y1
1 , . . . , y

1
k; . . . ; yp1 , . . . , y

p
k such that

(+)
∧

q=1,...,p−1
l=1,...,p−q

(
yq1, . . . , y

q
k > r̂q+l1 , . . . r̂q+lnq+l

, r̂p+1
1 , . . . , r̂p+1

np+1
, yq+l1 , . . . , yq+lk

)
and ∧

ŝ1,...,̂sk∈M̂

¬
∨
wγA0(u, v, ŝ1, ĥ1s1, . . . , ŝk, ̂hks1 . . . sk, w).

We construct (working in GnAω) functions h1, . . . , hk which are monotone on M and satisfy∧
s1, . . . , sk ∈M¬

∨
w A0(u, v, s1, h1s1, . . . , sk, hks1 . . . sk, w)

yielding a contradiction to (1): Define for i = 1, . . . , k

hi(x1, . . . , xi) :=

 y
min1≤l≤i(ql)−1
i , if

∨
r̂q1j1 , . . . , r̂

qi
ji
∈ M̂

(
(x1, . . . , xi) =0 (r̂q1j1 , . . . , r̂

qi
ji

)
)

00, otherwise.67

We have to show:

(i) The hi are well–defined functions : IN× . . .× IN︸ ︷︷ ︸
i

→ IN and the definition above can be carried

out in GnAω.

(ii) r̂ =0 r for all r ∈M ∪N (for these h1, . . . , hk).

67For r̂
qi
ji
∈ M̂ we have qi ≥ 2 since e.g. h1rji (∈ N) has an h–depth which is strictly greater than those of subterms

in rji .

114



(iii) h1, . . . , hk are monotone on M̂ (and hence –by (ii)– on M).

Ad (i): Consider (r̂q1j1 , . . . , r̂
qi
ji

) and (r̂q̃1
j̃1
, . . . , r̂q̃i

j̃i
). We show that y

min1≤l≤i(ql)−1
i 6= y

min1≤l≤i(q̃l)−1
i

implies (r̂q1j1 , . . . , r̂
qi
ji

) 6= (r̂q̃1
j̃1
, . . . , r̂q̃i

j̃i
):

We may assume min
1≤l≤i

(ql) < min
1≤l≤i

(q̃l). Let l0 be such that ql0 = min
1≤l≤i

(ql)∧ 1 ≤ l0 ≤ i. r̂
ql0
jl0

contains

a variable y
ql0
d for some d = 1, . . . , k. By the property (γ) of Ψ[uM , h] this implies

r̂
ql0
jl0
≥ yql0d

(+),ql0<q̃l0
> r̂

q̃l0
j̃l0

and thus (r̂q1j1 , . . . , r̂
qi
ji

) 6= (r̂q̃1
j̃1
, . . . , r̂q̃i

j̃i
).

Hence hi can be defined in GnAω by a definition by cases which are pairwise exclusive.

Ad (ii): (ii) follows from the definition of h1, . . . , hk by induction on the h–depth of r.

Ad (iii): Assume
i∧
l=1

(
r̂qljl ≤0 r̂

q̃l
j̃l

). Let l0 (1 ≤ l0 ≤ i) be such that ql0 = min
1≤l≤i

(ql). By contraposition

of the implication established in the proof of (i) one has: min
1≤l≤i

(ql) ≥ min
1≤l≤i

(q̃l).

Case 1: min
1≤l≤i

(ql) = min
1≤l≤i

(q̃l). Then (by hi–definition)

hi
(
r̂q1j1 , . . . , r̂

qi
ji

)
= y

min(ql)−1
i = y

min(q̃l)−1
i = hi

(
r̂q̃1
j̃1
, . . . , r̂q̃i

j̃i

)
.

Case 2: ql0 = min
1≤l≤i

(ql) > min
1≤l≤i

(q̃l) = ql̃0 (where 1 ≤ l0, l̃0 ≤ i). Then

hi
(
r̂q1j1 , . . . , r̂

qi
ji

)
= y

ql0−1

i

(+)
< y

q̃l̃0
−1

i = hi
(
r̂q̃1
j̃1
, . . . , r̂q̃i

j̃i

)
.

Hence h1, . . . , hk are monotone on M̂ and therefore (by (ii)) on M , which concludes the proof of

(2) from (1) ∧ (α) ∧ (β) ∧ (γ). Since (1) follows (in GnAω) from Mon(A) ∧ (α) ∧ (β), and

F :≡
∧
u1
∧
v ≤τ tu

∧
h
(
h monotone →

∨
y1, . . . , yk ≤0 Ψuh

∨
wγAH0

)
implies (in GnAω) (α)–(γ), we have shown altogether

(3) GnAω +Mon(A) `
F →

[
v ≤ tu ∧

∧
q=1,...,p−1
l=1,...,p−q

(
yq1, . . . , y

q
k > r̂q+l1 , . . . r̂q+lnq+l

, r̂p+1
1 , . . . , r̂p+1

np+1
, yq+l1 , . . . , yq+lk

)
→

∨
ŝ1,...,̂sk∈M̂

∨
wγA0(u, v, ŝ1, ĥ1s1, . . . , ŝk, ̂hks1 . . . sk, w)

]
.

It remains to show that (3) implies

(4) GnAω +Mon(A) ` F → A.

We prove this by a suitable application of quantifier introduction rules: We start with the variables

with smallest upper index, i.e. y1
1 , . . . , y

1
k. Under these variables we first take those of maximal

lower index, i.e. with y1
k: We split the assumption

(+)
∧

q=1,...,p−1
l=1,...,p−q

(
yq1, . . . , y

q
k > r̂q+l1 , . . . r̂q+lnq+l

, r̂p+1
1 , . . . , r̂p+1

np+1
, yq+l1 , . . . , yq+lk

)
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as well as the disjunction

Ad :≡
∨

ŝ1,...,̂sk∈M̂

∨
wγA0(u, v, ŝ1, ĥ1s1, . . . , ŝk, ̂hks1 . . . sk, w)

into the part in which y1
k occurs and into its y1

k–free part:

(5)



F →
[
v ≤ tu ∧

∧
l=1,...,p−1

(
y1
k > r̂1+l

1 , . . . , r̂1+l
n1+l

, r̂p+1
1 , . . . , r̂p+1

np+1
, y1+l

1 , . . . , y1+l
k

)
∧

∧′
(. . .)︸ ︷︷ ︸

y1
k
–free part of (+)

→
∨
j

∨
wγA0(u, v, ŝj1, ĥ1s

j
1, . . . , ŝ

j
k, y

1
k, w) ∨

∨
j′

(. . .)︸ ︷︷ ︸
y1
k
–free part of Ad

]
.

y1
k does not occur at any place other than indicated. Hence

∧
–introduction applied to y1

k yields:

(6) F →
∧
y1
k

[
v ≤ tu ∧

∧
l

(y1
k > . . .) ∧

∧′
(. . .)→

∨
j

∨
wγA0(. . . , y1

k, w) ∨
∨
j′

(. . .)
]
.

Using Mon(A) this implies

(7) F →
[
v ≤ tu ∧

∧′
(. . .)→

∧
y1
k

∨
j

∨
wγA0(. . . , y1

k, w) ∨
∨
j′

(. . .)
]
.

(Proof: In (6) put ỹ1
k := max

1≤l≤p−1

(
y1
k, r̂

1+l
1 , . . . r̂1+l

n1+l
, r̂p+1

1 , . . . , r̂p+1
np+1

, y1+l
1 , . . . , y1+l

k

)
+ 1 for y1

k.

(6) then gives

F →
[
v ≤ tu ∧

∧′
(. . .)→

∨
j

∨
wγA0(. . . , ỹ1

k, w) ∨
∨
j′

(. . .)
]
.

Mon(A) and
∨
j

∨
wγA0(. . . , ỹ1

k, w) imply
∨
j

∨
wγA0(. . . , y1

k, w), since ỹ1
k ≥ y1

k. Now
∧

–introduction

applied to y1
k and shifting

∧
y1
k in front of

∨
j

, which is possible since y1
k occurs only in this disjunction,

proves (7)).

Again by Mon(A) we obtain
∨
j

∧
y1
k

∨
wγA0(. . . , y1

k, w) from
∧
y1
k

∨
j

∨
wγA0(. . . , y1

k, w):

Assume
∧
j

∨
y1
k

∧
wγ¬A0(. . . , y1

k, w). Then
∨
y
∧
j

∨
y1
k ≤0 y

∧
wγ¬A0(. . . , y1

k, w). Using Mon(A) this

implies
∨
y
∧
j

∧
wγ¬A0(. . . , y, w).

Hence (7) implies

(8)


F →

[
v ≤ tu ∧

∧′
(. . .)→

∨
j

∨
x
∧
y
∨
wA0(u, v, ŝj1, ĥ1s

j
1, . . . ,

̂
hk−1s

j
1 . . . s

j
k−1, x, y, w)

∨
∨
j′

(. . .)
]
.

Next we apply the same procedure to the variable y1
k−1 and then to y1

k−2 and so on until all y1
1 , . . . , y

1
k

are bounded. We then continue with y2
k, y2

k−1 and so on. This corresponds to the sequence of
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quantifications used in the usual proofs of Herbrand’s theorem in order to show that there is a
direct proof from the Herbrand disjunction of a first order formula to this formula itself: By taking

always variables of minimal upper index it is ensured that any variable to which the
∧

–introduction

rule is applied occurs in the disjunction
∨
A0 only at places where it is universal quantified in the

original formula A. By quantifying under these variables firstly the one with maximal lower index
one ensures that a universal quantifier is introduced only if the quantifiers which stand behind this
one in A have already been introduced. In addition to these two reasons for the special sequence of

quantifications there is in our situation another (essentially used) property which is fulfilled only if

variables which have minimal lower index are quantified first: If yij has minimal index i (under all

variables which still have to be quantified), then yij occurs in the implicative assumption (+) only

in the form ’yij > (...yij–free...)’. So we are in the situation at the begining for y1
k and are able to

eliminate this part of (+) which is connected with yij altogether using Mon(A) (as we have shown

for y1
k).

Finally we have derived

(9) F →
[
v ≤ tu→

∨∨
x0

1

∧
y0

1 . . .
∨
x0
k

∧
y0
k

∨
wγA0(u, v, x1, y1, . . . , xk, yk, w)

and therefore (by contraction of
∨

)

(10) F →
[
v ≤ tu→

∨
x0

1

∧
y0

1 . . .
∨
x0
k

∧
y0
k

∨
wγA0(u, v, x1, y1, . . . , xk, yk, w)

which (by
∧

–introduction applied to u, v) yields

(11) F → A.

Remark 10.9 The proof of thm.10.7 also works for various other systems T and domains of terms
S than GnAω and GnRω. What actually is used in the proof is:

1) Every term Ψρ ∈ S with deg(ρ) ≤ 2 has a majorant Ψ∗[h1] such that

(i) T ` λh.Ψ∗[h] s–maj Ψ,

(ii) Ψ∗[h] is built up only from h and terms ∈ S of type level ≤ 1 (by substitution).

2) S is (provably in T ) closed under definition by cases, λ –abstraction and contains the variable

maximum–functional Φ1.

Condition 1) is a sort of an upper bound for the complexity of T , S. E.g. 1) is not satisfied if

S contains the iteration functional Φit. In the next chapter we will show that thm.10.7 becomes

false if GnRω is replaced by P̂R
ω

(see also remark 10.12 ). Since Φit is on some sense the simplest

functional for which 1) fails, this shows that the upper bound provided by 1) is quite sharp. 1)

essentially says that Ψ001 can be majorized by a term Ψ∗[x0, h1] which uses h only at a fixed number

of arguments, i.e. there exists a fixed number n (which depends only on the structure of Ψ∗ but not

on x, h) such that for all h, x the value of of Ψ∗[x, h] only depends on (at most) n–many h–values.

Let us illustrate this by an example: Φ1hx = max(h0, . . . , hx) depends on x + 1–many h–values

but is majorized by Φ∗hx := hx for monotone h which for every x depends only on one h–value,

namely on hx. If a term Ψ has a majorant which satisfies 1) we say that Ψ is majorizable with

finite support. One easily convinces oneself that Φit is not majorizable with finite support.

2) is a lower bound on the complexity of T , S, which also is essential. E.g. take T := L2 and
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S := {00}, where L2 is first–order logic with =0,≤0 extended by quantification over functions and

two constants 00, 10. Consider now

G :≡
∨
x0
∧
y0
∨
z0, f1(F0(f, z)→ A0(x, y)),

where F0(f, z) :≡ (fz = 0 ∧ 0 6= 1) and A0(x, y) :≡ (y 6= 0 ∧ x = x→ ⊥). Then

L2 `
∧
g1
∨
x, z ≤0 0

∨
f(F0(f, z)→ A0(x, gx)) ∧Mon(G), but L2 /̀ G,

i.e. thm.10.7 fails for L2, S. If however L2 is extended by λ–abstraction, then G becomes derivable

since we can form f := λx0.10.

Corollary 10.10 Let A be as in def.10.6 and thm.10.7, n ≥ 2. Then

1) GnAω ⊕ F− ⊕AC–qf ` AH ⇒ Gmax(n,3)A
ω +Mon(A) ` A.

In particular

GnAω ⊕ F− ⊕AC–qf ` A⇒ Gmax(n,3)A
ω +Mon(A) ` A.

2) GnAω ⊕WKL2
seq ⊕AC–qf ` AH ⇒ Gmax(n,3)A

ω +Mon(A) ` A.

In particular

GnAω ⊕WKL2
seq ⊕AC–qf ` A⇒ Gmax(n,3)A

ω +Mon(A) ` A.

If τ ≤ 1 (in A) then GnAω ⊕ F−⊕ AC–qf can be replaced by E–GnAω + F−+ACα,β–qf (with

(α = 0 ∧ β ≤ 1) or (α = 1 ∧ β = 0)).

Proof: 1) By thm.7.2.20 GnAω ⊕ F− ⊕ AC–qf ` AH implies the extractability of a Ψ ∈ GnRω

such that

Gmax(n,3)A
ω `

∧
u1
∧
v ≤τ tu

∧
h
∨
y1, . . . , yk ≤0 Ψuh AH0 .

Theorem 10.7 now yields Gmax(n,3)A
ω +Mon(A) ` A.

2) follows from 1) by cor.7.2.26.

Proof of theorem 10.8 :

GnAω + ∆+AC–qf ` AH implies (by thm.2.2.2) the extractability (by monotone functional in-

terpretation and the remarks after 2.2.6) of terms Ψ := Ψ1, . . . ,Ψl ∈ GnRω such that Ψ satisfies

the monotone functional interpretation of (AH)′ provably in GnAω
i + ∆̃, where

∆̃ := {
∨
Y ≤ρδ s

∧
xδ, zηF0(x, Y x, z) :

∧
xδ
∨
y ≤ρ sx

∧
zηF0(x, y, z) ∈ ∆}. From these terms Ψi one

constructs (as in the proof of thm.2.2.2) uniform bounds Ψ̃i ∈ GnRω on
∨
yi which depend only on

u and h:

(1) GnAω
i + ∆̃ `

∧
u
∧
v ≤ tu

∧
h
∨
y1 ≤0 Ψ̃1uh . . .

∨
yk ≤0 Ψ̃kuh

∨
w AH0︸ ︷︷ ︸

AH,B :≡

.
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The assumption assumption GnAω + ∆+AC–qf ` Mon(A) implies (by monotone functional in-

terpretation, since Mon(A) is implied by the monotone functional interpretation of its negative

translation) that

(2) GnAω
i + ∆̃ `Mon(A).

Theorem 10.7 combined with (1) and (2) yields (using that each sentence ∈ ∆̃ follows from the

corresponding sentence in ∆ by b-AC)

GnAω + ∆ + b-AC ` A.

Again by thm.10.7 and the assumption GnAω + ∆+AC–qf `Mon(A) we have

GnAω + ∆ + AC–qf ` AH,B → A

and therefore using (1)

GnAω + ∆̃+AC–qf ` A.

The second part of the theorem now follows by monotone functional interpretation, since ∆̃ also is
a set of allowed axioms ∆ in thm.2.2.2.

For our applications in the next chapter we need the following corollary of theorem 10.8:

Corollary 10.11 Let
∧
x0
∨
y0
∧
z0A0(u1, vτ , x, y, z) ∈ L(GnAω) be a formula which contains only

u, v as free variables and satisfies provably in GnAω+∆+AC–qf the following monotonicity property:

(∗)
∧
u, v, x, x̃, y, ỹ(x̃ ≤0 x ∧ ỹ ≥0 y ∧

∧
z0A0(u, v, x, y, z)→

∧
z0A0(u, v, x̃, ỹ, z)),

(i.e. Mon(
∨
x
∧
y
∨
z¬A0)). Furthermore let B0(u, v, wγ) ∈ L(GnAω) be a formula which contains

only u, v, w as free variables and γ ≤ 2. Then from a proof

GnAω + ∆ + AC–qf `
∧
u1
∧
v ≤τ tu

(∨
f1
∧
x, z A0(u, v, x, fx, z)→

∨
wγB0(u, v, w)

)
∧ (∗)

one can extract a term χ ∈ GnRω such that

GnAω
i + ∆ + b-AC `

∧
u1
∧
v ≤τ tu

∧
Ψ∗
(
(Ψ∗ satisfies the mon.funct.interpr. of∧

x0, g1
∨
y0A0(u, v, x, y, gy))→

∨
w ≤γ χuΨ∗ B0(u, v, w)

)
68.

Proof: We may assume that γ = 2. The property Mon(F ) for

F :≡
∧
u1
∧
v ≤τ tu

∨
x0
∧
y0
∨
z0, w2

(
A0(u, v, x, y, z)→ B0(u, v, w)

)
follows logically from the monotonicity assumption (∗). By the assumption of the corollary we have

GnAω + ∆ + AC–qf ` FH +Mon(F ).

68’Ψ∗ satisfies the mon. funct.interpr. of
∧
x, g
∨
yA0(u, v, x, y, gy)’ is meant here for fixed u, v (and not uniformly

as a functional in u, v), i.e.
∨

Ψ
(
Ψ∗ s–maj Ψ ∧

∧
x, g A0(u, v, x,Ψxg, g(Ψxg))

)
.
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¿From this we conclude by thm.10.8 that

GnAω
i + ∆ + b-AC ` χ̃ satisfies the monotone funct.interpr. of F ′,

for a suitable tuple χ̃ of terms ∈ GnRω which can be extracted from the proof.

F ′ is intuitionistically equivalent to∧
u
∧
v ≤ tu¬¬

∨
x0
∧
y0¬¬

∨
z, w(A0 → B0)

of F (This follows immediately if one uses the negative translation which is denoted by ∗ in [43] ).

By intuitionistic logic the following implication holds

F ′ →
∧
u
∧
v ≤τ tu

(∧
x¬¬

∨
y
∧
z A0(u, v, x, y, z)→ ¬¬

∨
w B0(u, v, w)

)
.

Hence from χ̃ we obtain a term which satisfies the monotone functional interpretation of the right

side of this implication. In particular we obtain a term χ̂ ∈ GnRω such that

GnAω
i + ∆ + b-AC `

∨
W
(
χ̂ s–maj W ∧

∧
u
∧
v ≤ tu

∧
Ψ(∧

x, g A0(u, v, x,Ψxg, g(Ψxg))→ B0(u, v,WuvΨ)
))
.

Define χ ∈ GnRω by χ := λu1,Ψ, y1.χ̂uM (t∗uM )ΨyM , where t∗ ∈ GnRω is such that

GnAω
i ` t∗ s–maj t. Then∧

u
∧
v ≤ tu

∧
Ψ∗
(∨

Ψ
(
Ψ∗ s–maj Ψ ∧

∧
x, g A0(u, v, x,Ψxg, g(Ψxg))

)
→
∨
w ≤2 χuΨ∗ B0(u, v, w)

)
,

since χ̂ s–maj W and Ψ∗ s–maj Ψ imply
∧
u
∧
v ≤ tu(χuΨ∗ ≥2 WuvΨ).

Remark 10.12 In §3 of the next chapter we will show that cor.10.11 does not hold for

PRAω, P̂R
ω
,PRAω

i (or GnAω + Σ0
1–IA, P̂R

ω
, GnAω

i + Σ0
1–IA) instead of GnAω ,GnRω, GnAω

i

(even for ∆ = ∅).

Since the proof of cor.10.11 from thm.10.8 as well as the proof of thm.10.8 from thm.10.7 extends
to these theories it follows that also the theorems 10.7 and 10.8 do not hold for them. The proof

of thm.10.7 fails for Ψ ∈ P̂R
ω

since P̂R
ω

contains functionals like Φit which are not majorizable

with finite support (see also remark 10.9 ). The proof of thm.10.8 fails for PRAω + Σ0
1–IA since the

(monotone) functional interpretation of Σ0
1–IA requires Φit and thus thm. 10.7 is not applicable.

The mathematical significance of corollary 10.11 for the growth of bounds extractable from given
proofs rests on the following fact: Direct monotone functional interpretation of

GnAω + ∆ + AC–qf `
∧
u1
∧
v ≤τ tu

(∨
f1
∧
x, z A0(u, v, x, fx, z)→

∨
wγB0(u, v, w)

)
yields only a bound on

∨
w which depends on a functional which satisfies the monotone functional

interpretation of (1)
∨
f
∧
x, z A0 or if we let remain the double negation in front of

∨
(which comes

from the negative translation) (2) ¬¬
∨
f
∧
x, z A0. However in our applications the monotone

functional interpretation of (1) would require non–computable functionals (since f is not recursive)

and the monotone functional interpretation of (2) can be carried out only using bar recursive
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functionals. In contrast to this the bound χ only depends on a functional which satisfies the

monotone functional interpretation of
∧
x
∨
y
∧
z A0(x, y, z): In our applications such a functional

can be constructed in P̂R
ω

.
In particular the use of the analytical premise∨

f1
∧
x, zA0

has been reduced to the arithmetical premise∧
x0
∨
y0
∧
z0A0.
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11 The rate of growth caused by sequences of instances of
analytical principles whose proofs rely on arithmetical
comprehension

In this chapter we apply the results from the previous chapter in order to determine the impact

on the rate of growth of uniform bounds for provably
∧
u1
∧
v ≤τ tu

∨
wγA0–sentences which may

result from the use of sequences (which however may depend on the parameters of the proposition

to be proved) of instances of:

1) (PCM2) and the convergence of bounded monotone sequences of real numbers.

2) The existence of a greatest lower bound for every sequence of real numbers which is bounded

from below.

3) Π0
1–CA and Π0

1–AC.

4) The Bolzano–Weierstraß property for bounded sequences in IRd (for every fixed d).

5) The Arzelà–Ascoli lemma.

6) The existence of lim sup and lim inf for bounded sequences in IR.

11.1 (PCM2) and the convergence of bounded monotone sequences of

real numbers

Let a1(0) be such that
∧
n0(0 ≤IR a(n+ 1) ≤IR an)69

(PCM2) implies∨
h1
∧
k0,m0(m ≥0 hk → a(hk)−IR a(m) ≤IR

1

k + 1

)
.

(
a(hk)

)
k

is a Cauchy sequence with modulus 1
k+1 whose limit equals the limit of (a(m))n∈IN. The

existence of a limit a0 of (a(m))m now follows from the remarks below lemma 3.1.4 : a0k :=

( ̂a(h(3(k + 1))))(3(k+ 1)). Thus we only have to consider (PCM2). In order to simplify the logical

form of (PCM2) we use the construction ã(n) := maxIR(0,min
i≤n

(a(i)) from chapter 9 (recall that

this construction ensures that ã is monotone decreasing and bounded from below by 0. If a already

fulfils these properties nothing is changed by the passage from a to ã).

(PCM2)(a1(0)) :≡
∨
h1
∧
k0,m0

(
m ≥0 hk → ã(hk)−IR ã(m) ≤IR

1

k + 1

)
.

We now show that the contribution of single instances (PCM2)(a) of (PCM2) to the growth of

uniform bounds is (at most) given by the functional Ψakg := max
i<C(a)k′

(
Φiti0g

)
(where

IN 3 C(a) ≥ ã(0)) from chapter 9:

69The restriction to the lower bound 0 is (convenient but) not essential: If
∧
n0(c ≤IR a(n + 1) ≤IR an) we may

define a′(n) := a(n)−IR c. (PCM2) applied to a′ implies (PCM2) for a. Everything holds analogously for increasing
sequences which are bounded from above.
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Proposition: 11.1.1 Let n ≥ 2 and B0(u1, vτ , wγ) ∈ L(GnAω) be a quantifier–free formula which

contains only u1, vτ , wγ free, where γ ≤ 2. Furthermore let ξ, t ∈ GnRω and ∆ be as in thm.2.2.2.
Then the following rule holds

GnAω + ∆ + AC–qf `
∧
u1
∧
v ≤τ tu

(
(PCM2)(ξuv)→

∨
wγB0(u, v, w)

)
⇒ ∃(eff.)χ, χ̃ ∈ GnRω such that

GnAω
i + ∆ + b-AC `

∧
u1
∧
v ≤τ tu

∧
Ψ̃∗
(
(Ψ̃∗ satifies the mon.funct.interpr. of∧

k0, g1
∨
n0(gn > n→ (ξ̃uv)(n)−IR (ξ̃uv)(gn) ≤IR

1
k+1 )

)
→
∨
w ≤γ χ̃uΨ̃∗B0(u, v, w)

)
and

GnAω
i + ∆ + b-AC `

∧
u1
∧
v ≤τ tu

∧
Ψ∗
(
(Ψ∗ satifies the mon. funct.interpr. of∧

a1(0), k0, g1
∨
n0(gn > n→ ã(n)−IR ã(gn) ≤IR

1
k+1 ))→

∨
w ≤γ χuΨ∗ B0(u, v, w)

)
and therefore

PRAω
i + ∆ + b-AC `

∧
u1
∧
v ≤τ tu

∨
w ≤γ χuΨB0(u, v, w),

where Ψ := λa, k, g. max
i<C(a)k′

(
Φiti0g

)
and C(a) := (a(0))(0) + 1.

If ∆ = ∅, then b–AC can be omitted from the proof of the conclusion. If τ ≤ 1 and the types of the∨
–quantifiers in ∆ are ≤ 1, then GnAω + ∆+AC–qf may be replaced by E–GnAω + ∆+ACα,β–qf,

where α, β are as in cor.10.10.

Proof: The existence of χ̃ follows from cor.10.11 since

G2Aω `
∧
a1(0)

∧
k, k̃, n, ñ

(
k̃ ≤0 k ∧ ñ ≥0 n ∧

∧
m ≥0 n(ã(n)−IR ã(m) ≤IR

1
k+1 )

→
∧
m ≥0 ñ(ã(ñ)−IR ã(m) ≤IR

1

k̃+1
)
)
.

Ψ fulfils the monotone functional interpretation of∧
a1(0), k0, g1

∨
n0(gn > n → ã(n) −IR ã(gn) ≤IR

1
k+1 ) (see the end of chapter 9) and hence

Ψ(ξ∗(uM , t∗uM )) satisfies the monotone functional interpretation of∧
k0, g1

∨
n0(gn > n→ (ξ̃uv)(n)−IR (ξ̃uv)(gn) ≤IR

1

k + 1
), where ξ∗ s–maj ξ ∧ t∗ s–maj t.

χ is defined by χ := λu,Ψ∗.χ̃u
(
Ψ∗(ξ∗(uM , t∗uM ))

)
.

Remark 11.1.2 1) The computation of the bound χ̃ in the proposition above needs only a func-

tional Ψ̃∗ which satifies the monotone functional interpretation of

(+)
∧
k0, g1

∨
n0(gn > n→ (ξ̃uv)(n)−IR (ξ̃uv)(gn) ≤IR

1

k + 1
).

For special ξ such a functional may be constructable without the use of Φit. Furthermore for

fixed u the number of iterations of g only depends on the k–instances of (+) which are used

in the proof.

2) If the given proof of the assumption of this proposition applies Ψ only to functions g of low

growth, then also the bound χuΨ is of low growth: e.g. if only g := S is used and type/w = 0,

then χuΨ is a polynomial in uM .
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Corollary to the proof of prop.11.1.1:
The rule

GnAω + ∆ + AC–qf `
∧
u1
∧
v ≤τ tu

(∨
f0
∧
k
∧
m, m̃ > fk(|(ξuv)(m̃)−IR (ξuv)(m)| ≤ 1

k+1 )→∨
wγB0(u, v, w)

)
⇒

GnAω
i + ∆ + b-AC `

∧
u1
∧
v ≤τ tu

(∧
k
∨
n
∧
m, m̃ > n(|(ξuv)(m̃)−IR (ξuv)(m)| ≤ 1

k+1 )→∨
wγB0(u, v, w)

)
holds for arbitrary sequences (ξuv)1(0) of real numbers. The restriction to bounded monotone se-

quences ˜ξuv is used only to ensure the existence of a functional Ψ which satisfies the monotone

functional interpretation of (+) above.

We now consider a generalization (PCM2∗)(a
1(0)(0)
(·) ) of (PCM2)(a1(0)) which asserts the existence

of a sequence of Cauchy moduli for a sequence ãl of bounded monotone sequences:

(PCM2∗)(a
1(0)(0)
(·) ) :≡

∨
h1(0)

∧
l0, k0

∧
m ≥0 hkl

(
(̃al)(hkl)−IR (̃al)(m) ≤IR

1

k + 1

)
.

Proposition: 11.1.3 Let n,B0(u, v, w), t,∆ be as in prop.11.1.1. t, ξ ∈ GnRω. Then the following

rule holds

GnAω + ∆ + AC–qf `
∧
u1
∧
v ≤τ tu

(
(PCM2∗)(ξuv)→

∨
wγB0(u, v, w)

)
⇒ ∃(eff.)χ ∈ GnRω such that

GnAω
i + ∆ + b-AC `

∧
u1
∧
v ≤τ tu

∧
Ψ∗
(
(Ψ∗ satifies the mon. funct.interpr. of∧

a1(0)(0), k0, g1
∨
n0(gn > n→

∧
l ≤ k((̃al)(n)−IR (̃al)(gn) ≤IR

1
k+1 )))→

∨
w ≤γ χuΨ∗ B0(u, v, w)

)
⇒ PRAω

i + ∆ + b-AC `
∧
u1
∧
v ≤τ tu

∨
w ≤γ χuΨ′ B0(u, v, w),

where Ψ′ := λa, k, g. max
i<C(a,k)(k+1)2

(
Φiti0g

)
and IN 3 C(a, k) ≥ maxIR((̃a0)(0), . . . , (̃ak)(0)).

If ∆ = ∅, then b–AC can be omitted from the proof of the conclusion. If τ ≤ 1 and the types of the∨
–quantifiers in ∆ are ≤ 1, then GnAω + ∆+AC–qf may be replaced by E–GnAω + ∆+ACα,β–qf,

where α, β are as in cor.10.10.

As in prop.11.1.1 we also have a term χ̃ which needs only a Ψ̃∗ for the instance a := ξuv.

Proof: The first part of the proposition follows from cor.10.11 since (PCM2∗)(a) is implied by∨
h1
∧
k0
∧
m ≥0 hk

∧
l ≤0 k

(
(̃al)(hk)−IR (̃al)(m) ≤IR

1

k + 1

)
and

G2Aω `
∧
a

1(0)(0)
(·)

∧
k, k̃, n, ñ

(
k̃ ≤0 k ∧ ñ ≥0 n ∧

∧
m ≥0 n

∧
l ≤0 k((̃al)(n)−IR (̃al)(m) ≤IR

1
k+1 )

→
∧
m ≥0 ñ

∧
l ≤0 k̃((̃al)(ñ)−IR (̃al)(m) ≤IR

1

k̃+1
)
)
.
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It remains to show that Ψ′ satisfies the monotone functional interpretation of∧
a1(0)(0), k0, g1

∨
n0
(
gn > n→

∧
l ≤ k

(
(̃al)(n)− (̃al)(gn) ≤ 1

k+1

))
:

Assume∧
i < C(a, k)(k + 1)2

(
g(gi0) > gi0 ∧

∨
l ≤ k

(
(̃al)(g

i0)− (̃al)(g(gi0)) >
1

k + 1

))
.

Then ∧
i < C(a, k)(k + 1)2

(
g(gi0) > gi0

)
and∨

l ≤ k
∨
j
(∧
i < C(a, k)(k + 1)−· 1

(
(j)i < (j)i+1 < C(a, k)(k + 1)2

)
∧∧

i < C(a, k)(k + 1)
(
(̃al)(g

(j)i0)− (̃al)(g(g(j)i0)) > 1
k+1

))
and therefore∨

l ≤ k
∨
j
(∧

i < C(a, k)(k + 1)−· 1
(
g(j)i+10 > g(j)i0 ∧ (̃al)(g

(j)i0)− (̃al)(g
(j)i+10) > 1

k+1

)
∧g(g

(j)
C(a,k)(k+1)−· 1(0)) > g

(j)
C(a,k)(k+1)−· 1(0)

∧(̃al)(g
(j)

C(a,k)(k+1)−· 1(0))− (̃al)(g(g
(j)

C(a,k)(k+1)−· 1(0))) > 1
k+1

)
.

Hence∨
l ≤ k

∨
j
∧
i < C(a, k)(k + 1)

(
g(j)i+10 > g(j)i0 ∧ (̃al)(g

(j)i0)− (̃al)(g
(j)i+10) >

1

k + 1

)
,

which contradicts (̃al) ⊂ [0, C(a, k)].

11.2 The principle (GLB) ’every sequence of real numbers in IR+ has a

greatest lower bound’

This principle can be easily reduced to (PCM2) (provably in G2Aω):

Let a1(0) be such that
∧
n0(0 ≤IR an). Then (PCM2)(a) implies that the decreasing sequence

(ã(n))n ⊂ IR+ has a limit ã1
0. It is clear that ã0 is the greatest lower bound of (a(n))n ⊂ IR+. Thus

we have shown

GnAω `
∧
a1(0)

(
(PCM2)(a)→ (GLB)(a)

)
.

By this reduction we may replace (PCM2)(ξuv) by (GLB)(ξuv) in the assumption of prop.11.1.1.

There is nothing lost (w.r.t to the rate of growth) in this reduction since in the other direction we

have

GnAω + AC0,0–qf `
∧
a1(0)

(
(GLB)(a)→ (PCM2)(a)

)
:

Let a1(0) be as above and a0 its greatest lower bound. Then a0 = lim
n→∞

ãn. Using AC0,0–qf one

obtains (see chapter 4) a modulus of convergence and so a Cauchy modulus for (ã(n))n.
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11.3 Π0
1–CA and Π0

1–AC

Π0
1–CA(f1(0)) :≡

∨
g1
∧
x0
(
gx =0 0↔

∧
y0(fxy =0 0)

)
.

(Note that iteration of
∧
f1(0)(Π0

1–CA(f)) yields CAar).

Π0
1–CA can also be reduced to (PCM2)(a):

Proposition: 11.3.1

G2Aω `
∧
f1(0)

(
(PCM2)(λn0.Ψ2f

′n)→ Π0
1–CA(f)

)
,

where Ψ2 ∈ G2Rω is the functional from prop. 9.2.2) such that Ψ2fn =IR 1−IR

n∑
i=1

χfni
i(i+1) and

χ ∈ G2Rω such that

χfni =0

 10, if
∨
l ≤0 n(fil =0 0)

00, otherwise, and

f ′ := λx, y.sg(fxy).

Proof: ¿From the proof of prop.9.2.2) we know

(1)
∧
n0(0 ≤IR Ψ2f

′(n+ 1) ≤IR Ψ2f
′n)

and

(2)


∧
x, n >0 0

(
(
∧
m, m̃ ≥ n→ |Ψ2f

′m−IR Ψ2f
′m̃| <IR

1
x(x+1)

)
→∧

x̃
(
0 <0 x̃ ≤0 x→

(∨
y(f ′x̃y = 0)↔

∨
y ≤0 n(f ′x̃y = 0)

)))
By (1) and (PCM2)(λn0.Ψ2f

′n) there exists a function h1 such that∧
x >0 0

∧
m, m̃ ≥0 hx

(
|Ψ2f

′m−IR Ψ2f
′m̃| <IR

1

x(x+ 1)

)
.

Hence by (2)∧
x >0 0

(∨
y(f ′xy = 0)↔

∨
y ≤0 hx(f ′xy = 0)

)
.

Furthermore, classical logic yields
∨
z0(z0 =0 0↔

∧
y(f0y = 0)). Define

gx :=

 z0, if x = 0

ϕhf ′x, otherwise,

where

ϕhfx :=

 10, if
∨
y ≤ hx(fxy = 0)

00, otherwise.

It follows that
∧
x0(gx = 0↔

∧
y(fxy = 0)), i.e. Π0

1–CA(g).
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Remark 11.3.2 Proposition 11.3.1 in particular implies that relatively to G2Aω the principle

(PCM2) implies CAar. For a second order version RCA0 of P̂A
ω
|\+AC0,0–qf (instead of G2Aω)

this implication is stated in [17]. A proof (which is different to our proof) can be found in [61].

Prop.11.1.1 combined with prop.11.3.1 yields

Proposition: 11.3.3 Let n,B0(u, v, w), ξ, t,∆ be as in prop.11.1.1. Then the following rule holds

GnAω + ∆ + AC–qf `
∧
u1
∧
v ≤τ tu

(
Π0

1–CA(ξuv)→
∨
wγB0(u, v, w)

)
⇒ ∃(eff.)χ ∈ GnRω such that

GnAω
i + ∆ + b-AC `

∧
u1
∧
v ≤τ tu

∧
Ψ∗
(
(Ψ∗ satifies the mon. funct.interpr. of∧

a1(0), k0, g1
∨
n0(gn > n→ ã(n)−IR ã(gn) ≤IR

1
k+1 ))→

∨
w ≤γ χuΨ∗ B0(u, v, w)

)
⇒ PRAω

i + ∆ + b-AC `
∧
u1
∧
v ≤τ tu

∨
w ≤γ χuΨB0(u, v, w),

where Ψ := λa, k, g. max
i<C(a)k′

(
Φiti0g

)
.

If ∆ = ∅, then b–AC can be omitted from the proof of the conclusion. If τ ≤ 1 and the types of the∨
–quantifiers in ∆ are ≤ 1, then GnAω + ∆+AC–qf may be replaced by E–GnAω + ∆+ACα,β–qf,

where α, β are as in cor.10.10.

As in prop.11.1.1 we also have a term χ̃ which needs only a Ψ̃∗ for an instance a := ζuv (where ζ

is a suitable term in G2Rω).70

We now consider Π0
1–instances of ACar:

Π0
1–AC(f1(0)(0)(0)) :≡

∧
l0
(∧
x0
∨
y0
∧
z0(flxyz =0 0)→

∨
g1
∧
x0, z0(flx(gx)z =0 0)

)
.

Π0
1–AC(f) can be reduced to Π0

1–CA(g) by

Proposition: 11.3.4

G2Aω + AC0,0–qf `
∧
f1(0)(0)(0)

(
Π0

1–CA(f ′)→ Π0
1–AC(f)

)
,

where f ′ := λv0, z0.f(ν3
1(v), ν3

2(v), ν3
3(v), z).

Proof: By Π0
1–CA(f ′) there exists a function h1 such that∧

v0(hv = 0↔
∧
z(f ′vz = 0)).

h̃lxy := h(ν3(l, x, y)). Then∧
l, x, y(h̃lxy = 0↔

∧
z(flxyz = 0)).

AC0,0–qf applied to
∧
x
∨
y(h̃lxy = 0) yields

∨
g
∧
x, z(flx(gx)z = 0).

As a corollary of prop.11.3.3 and prop.11.3.4 we obtain

Corollary 11.3.5 Proposition 11.3.3 also holds with Π0
1–AC(ξuv).

70ζ is defined as the composition of Ψ2 from prop.11.3.1 and ξ.
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Arithmetical consequences of Π0
1–CA(f) and Π0

1–AC(f)

Using Π0
1–CA(f) we can prove (relatively to G2Aω) every instance of ∆0

2–IA with fixed function
parameters:

∆0
2–IA(f, g) :≡


∧
l0
(∧

x0
(∨
u0
∧
v0(flxuv =0 0)↔

∧
ũ0
∨
ṽ0(glxũṽ =0 0)

)
→[∨

u
∧
v(fl0uv = 0) ∧

∧
x(
∨
u
∧
v(flxuv = 0)→

∨
u
∧
v(flx′uv = 0))

→
∧
x
∨
u
∧
v(flxuv = 0)

])
.

Define f ′ := λi0, v0.f(ν3
1(i), ν3

2(i), ν3
3(i), v) and g′ := λi0, v0.sg(g(ν3

1(i), ν3
2(i), ν3

3(i), v)). We now

show

Proposition: 11.3.6

G2Aω + AC0,0–qf `
∧
f, g
(

Π0
1–CA(f ′) ∧Π0

1–CA(g′)→ ∆0
2–IA(f, g)

)
.

Proof: Π0
1–CA(f ′) and Π0

1–CA(g′) imply the existence of functions h1, h2 such that

h1lxu =0 0↔
∧
v(flxuv =0 0) and h2lxu =0 0↔

∨
v(glxuv =0 0).

Assume now that∧
x0
(∨
u0
∧
v0(flxuv =0 0)↔

∧
ũ0
∨
ṽ0(glxũṽ =0 0)

)
.

Then∧
x
(∨
u(h1lxu = 0)↔

∧
ũ(h2lxũ = 0)

)
.

With classical logic this yields∧
x
∨
z0
( [∧

ũ(h2lxũ = 0)→ z = 0
]
∧
[
z = 0→

∨
u(h1lxu = 0)

]︸ ︷︷ ︸
∈Σ0

1

)
.

By AC0,0–qf we obtain a function α such that∧
x(αx = 0↔

∨
u(h1lxu = 0)).

∆0
2–IA(f, g) now follows by applying QF–IA to A0(x) :≡ (αx = 0).

Next we show that Π0
1–instances (with fixed function parameters) of the so–called ’collection

principle’71

CP :
∧
x̃ <0 x

∨
y0A(x, x̃, y)→

∨
y0

∧
x̃ <0 x

∨
y <0 y0A(x, x̃, y).

are derivable from Π0
1–AC–instances.

Π0
1–CP(f) :≡

∧
l0, x0

(∧
x̃ < x

∨
y0
∧
z0(flxx̃yz =0 0)→

∨
y0

∧
x̃ < x

∨
y <0 y0

∧
z(flxx̃yz = 0)

)
.

71For a detailed discussion of this principle and its relation to induction see [52].
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Proposition: 11.3.7

G2Aω `
∧
f
(
Π0

1–AC(f ′)→ Π0
1–CP(f)

)
,

where f ′ such that f ′ix̃yz =0 0↔ (x̃ < ν2
2(i)→ f(ν2

1(i), ν2
2(i), x̃, y, z) =0 0).

Proof: Π0
1–AC(f ′) yields∧

l0, x0
(∧
x̃ < x

∨
y
∧
z(flxx̃yz = 0)→

∨
h1
∧
x̃ < x

∧
z(flxx̃(hx̃)z = 0)

)
.

Define y0 := 1 + Φ1hx (Recall that Φ1hx := max
i≤x

(hi)).

We conclude this paragraph by showing that cor.10.11 is false when GnAω, GnRω, GnAω
i are

replaced by GnAω + Σ0
1–IA, P̂R

ω
, GnAω

i + Σ0
1–IA or PRAω, P̂R

ω
, PRAω

i :

It is well–known that there is an (function parameter–free) instance G of Π0
2–IA such that

G2Aω + Σ0
1–IA +G `

∧
x0
∨
y0A0(x, y),

where
∧
x
∨
y ≤ fx A0(x, y) implies that f has the growth of the Ackermann function.

Let B(x0) :≡
∧
u0
∨
v0B0(a0, u, v, x) be the induction formula ofG, where B0(a, u, v, x) contains only

a, u, v, x as free variables. By applying Π0
1–CA(f) to f := sg ◦ tB0 , where tB0 is the characterictic

function of B0, G reduces to an instance of Σ0
1–IA. Hence

G2Aω + Σ0
1–IA ` Π0

1–CA(f)→
∧
x
∨
y A0(x, y).

If cor.10.11 would apply to G2Aω + Σ0
1–IA and P̂R

ω
we would obtain (by the proof of prop. 11.3.3)

a term s1 ∈ P̂R
ω

such that
∧
x
∨
y ≤ sx A0(x, y). This however would contradict the well–known

fact that every s1 ∈ P̂R
ω

is primitive recursive.

The same argument applies to PRAω since PRAω+AC0,0 –qf ` Σ0
1–IA (see e.g. [32],pp.8–9).

11.4 The Bolzano–Weierstraß property for bounded sequences in IRd (for

every fixed d)

We now consider the Bolzano–Weierstraß principle for sequences in [−1, 1]d ⊂ IRd. The restriction

to the special bound 1 is convenient but not essential: If (xn) ⊂ IRd is bounded by C > 0, we

define x′n := 1
C · xn and apply the Bolzano–Weierstraß principle to this sequence. For simplicity

we formulate the Bolzano– Weierstraß principle w.r.t. the maximum norm ‖ · ‖max. This of course

implies the principle for the Euclidean norm ‖ · ‖E since ‖ · ‖E ≤
√
d · ‖ · ‖max.

We start with the investigation of the following formulation of the Bolzano–Weierstraß principle:

BW :
∧

(xn) ⊂ [−1, 1]d
∨
x ∈ [−1, 1]d

∧
k0,m0

∨
n >0 m

(
‖x− xn‖max ≤

1

k + 1

)
,

i.e. (xn) possesses a limit point x.

Later on we discuss a second formulation which (relatively to GnAω) is slightly stronger than BW :

BW+ :


∧

(xn) ⊂ [−1, 1]d
∨
x ∈ [−1, 1]d

∨
f1
(∧
n0(fn <0 f(n+ 1))

∧
∧
k0
(
‖x− xfk‖max ≤ 1

k+1

))
,
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i.e. (xn) has a subsequence (xfn) which converges (to x) with the modulus 1
k+1 .

Using our representation of [−1, 1] from chapter 3, the principle BW has the following form

∧
x

1(0)
1 , . . . , x

1(0)
d

∨
a1, . . . , ad ≤1 M

∧
k0,m0

∨
n >0 m

d∧
i=1

(
|ãi −IR x̃in| ≤IR

1

k + 1︸ ︷︷ ︸
BW (x1(0)):≡

)
,

where M and y1 7→ ỹ are the constructions from our representation of [−1, 1] in chapter 3. We now
prove

(∗) G2Aω + AC1,0–qf ` F− →
∧
x

1(0)
1 , . . . , x

1(0)
d

(
Π0

1–CA(χx)→ BW (x)
)
,

for a suitable χ ∈ G2Rω:

BW (x) is equivalent to

(1)
∨
a1, . . . , ad ≤1 M

∧
k0
∨
n >0 k

d∧
i=1

(
|ãi −IR x̃in| ≤IR

1

k + 1

)
which in turn is equivalent to

(2)
∨
a1, . . . , ad ≤1 M

∧
k0
∨
n >0 k

d∧
i=1

(
|ãik −Q (x̃in)(k)| ≤Q

3

k + 1

)
.

Assume ¬(2), i.e.

(3)
∧
a1, . . . , ad ≤1 M

∨
k0
∧
n >0 k

d∨
i=1

(
|ãik −Q (x̃in)(k)| >Q

3

k + 1

)
.

Let χ ∈ G2Rω be such that

G2Aω `
∧
x

1(0)
1 , . . . , x

1(0)
d

∧
l0, n0

(
χxln =0 0↔[

n >0 ν
d+1
d+1(l)→

d∨
i=1

|νd+1
i (l)−Q (x̃in)(νd+1

d+1(l))| >Q
3

νd+1
d+1

(l)+1

])
.

Π0
1–CA(χx) yields the existence of a function h such that

(4)
∧
l01, . . . .l

0
d, k

0
(
hl1 . . . , ldk =0 0↔

∧
n >0 k

d∨
i=1

(
|li −Q (x̃in)(k)| >Q

3

k + 1

)
.

Using h, (3) has the form

(5)
∧
a1, . . . , ad ≤1 M

∨
k0
(
h(ã1k, . . . , ãdk, k) =0 0

)
.

By Σ0
1–UB− (which follows from AC1,0–qf and F− by prop. 7.2.19 ) we obtain

(6)
∨
k0

∧
a1, . . . , ad ≤1 M

∧
m0
∨
k ≤0 k0

∧
n >0 k

d∨
i=1

(
|(ãi,m)(k)−Q (x̃in)(k)| >Q

3

k + 1

)
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and therefore

(7)
∨
k0

∧
a1, . . . , ad ≤1 M

∧
m0
∧
n >0 k0

d∨
i=1

(
|(ãi,m)−IR x̃in| >IR

1

k0 + 1

)
.

Since | ˜
ai, 3(m+ 1)−IR ãi| <IR

2
m+1 (see the definition of y 7→ ỹ from chapter 3) it follows

(8)
∨
k0

∧
a1, . . . , ad ≤1 M

∧
n >0 k0

d∨
i=1

(
|ãi −IR x̃in| >IR

1

2(k0 + 1)

)
, i.e.

(9)
∨
k0

∧
(a1, . . . , ad) ∈ [−1, 1]d

∧
n >0 k0

(
‖a− xn‖max >

1

2(k0 + 1)

)
.

By applying this to a := x(k0 + 1) yields the contradiction ‖x(k0 + 1) − x(k0 + 1)‖max >
1

2(k0+1) ,

which concludes the proof of (∗).

Remark 11.4.1 In the proof of (∗) we used a combination of Π0
1–CA(f) and Σ0

1–UB− to obtain a

restricted form Π0
1–UB−|\ of the extension of Σ0

1–UB− to Π0
1–formulas:

Π0
1–UB−|\ :


∧
f ≤1 s

∨
n0
∧
k0A0(t0[f ], n, k)→∨

n0

∧
f ≤1 s

∧
m0
∨
n ≤0 n0

∧
k0A0(t[f,m], n, k),

where k does not occur in t[f ] and f does not occur in A0(0, 0, 0).

Π0
1–UB−|\ follows by applying Π0

1–CA to λn, k.tA0
(a0, n0, k0), where tA0

is such that

tA0
(a0, n0, k0) =0 0↔ A0(a0, n0, k0), and subsequent application of Σ0

1–UB−.

Π0
1–CA and Σ0

1–UB− do not imply the unrestricted form Π0
1–UB− of Π0

1–UB−|\:

Π0
1–UB−


∧
f ≤1 s

∨
n0
∧
k0A0(f, n, k)→∨

n0

∧
f ≤1 s

∧
m0
∨
n ≤0 n0

∧
k0A0((f,m), n, k)

since a reduction of Π0
1–UB− to Σ0

1–UB− would require a comprehension functional in f :

(+)
∨

Φ
∧
f1, n0(Φfn =0 0↔

∧
k0A0(f, n, k)).

In fact Π0
1–UB− can easily be refuted by applying it to

∧
f ≤1 λx.1

∨
n0
∧
k0(fk = 0 → fn = 0),

which leads to a contradiction. This reflects the fact that we had to use F− to derive Σ0
1–UB−, which

is incompatible with (+) since Φ+AC1,0–qf produces (see above) a non–majorizable functional,

whereas F− is true only in Mω.

Next we prove

(∗∗) G2Aω + AC0,0–qf `
∧
x

1(0)
1 , . . . , x

1(0)
d

(
Σ0

1–IA(χx) ∧BW (x)→ BW+(x)
)

for a suitable term χ ∈ G2Rω, where

Σ0
1–IA(f) :≡


∧
l0
(∨
y0(fl0y =0 0) ∧

∧
x0(
∨
y(flxy = 0)→

∨
y(flx′y = 0))

→
∧
x
∨
y(flxy = 0)

)
.

131



BW (x) implies the existence of a1, . . . , ad ≤1 M such that

(10)
∧
k,m

∨
n > m

d∧
i=1

(
|ãi(2(k + 1)(k + 2))−Q (x̃in)(2(k + 1)(k + 2))| ≤Q

1

k + 1

)
.

Define (for x
1(0)
1 , . . . , x

1(0)
d , l01, . . . , l

0
d)

F (x, l, k,m, n) :≡(
xn is the m–th element in (x(l))l such that

d∧
i=1

(
|li −Q (x̃in)(2(k + 1)(k + 2))| ≤Q

1
k+1

))
.

One easily verifies that F (x, l, k,m, n) can be expressed in the form
∨
a0F0(x, l, k,m, n, a), where

F0 is a quantifier–free formula in L(G2Aω), which contains only x, l, k,m, n, a as free variables. Let

χ̃ ∈ G2Rω such that

χ̃(x, l, k,m, n, a) =0 0↔ F0(x, l, k,m, n, a)

and define χ(x, q,m, p) := χ̃(x, νd+1
1 (q), . . . , νd+1

d+1(q),m, j1(p), j2(p)).

Σ0
1–IA(χx) yields

(11)


∧
l1, . . . , ld, k

(∨
n F (x, l, k, 0, n) ∧

∧
m
(∨
nF (x, l, k,m, n)→

∨
nF (x, l, k,m′, n)

)
→
∧
m
∨
nF (x, l, k,m, n)

)
.

(10) and (11) imply

(12)


∧
k,m

∨
n
(
xn is the m–th element of (x(l))l such that

d∧
i=1

(
|ãi(2(k + 1)(k + 2))−Q (x̃in)(2(k + 1)(k + 2))| ≤Q

1
k+1

))
.

and therefore

(13)


∧
k
∨
n
(
xn is the k–th element of (x(l))l such that

d∧
i=1

(
|ãi(2(k + 1)(k + 2))−Q (x̃in)(2(k + 1)(k + 2))| ≤Q

1
k+1

))
.

By AC0,0–qf we obtain a function g1 such that

(14)


∧
k
(
x(gk) is the k–th element of (x(l))l such that

d∧
i=1

(
|ãi(2(k + 1)(k + 2))−Q ( ˜xi(gk))(2(k + 1)(k + 2))| ≤Q

1
k+1

))
.

We show

(15)
∧
k(gk < g(k + 1)) :

Define A0(xl, k) :≡
d∧
i=1

(
|ãi(2(k+ 1)(k+ 2))−Q (x̃il)(2(k+ 1)(k+ 2))| ≤Q

1
k+1

)
. Let l be such that

A0(xl, k + 1). Because of

|ãi(2(k + 1)(k + 2))−Q (x̃il)(2(k + 1)(k + 2))| ≤

|ãi(2(k + 2)(k + 3))−Q (x̃il)(2(k + 2)(k + 3))|+ 2
2(k+1)(k+2)

A0(xl,k+1)

≤
1
k+2 + 2

2(k+1)(k+2) = 1
k+1 ,
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this yields A0(xl, k). Thus the (k+1)–th element xl such that A0(xl, k+1) is at least the (k+1)–th

element such that A0(xl, k) and therefore occurs later in the sequence than the k-th element such

that A0(xl, k), i.e. gk < g(k + 1).

It remains to show

(16)
∧
k

d∧
i=1

(
|ãi −IR

˜xi(fk)| ≤IR
1

k + 1

)
, where fk := g(2(k + 1)) :

This follows since

d∧
i=1

(
|ãi(2(k + 1)(k + 2))−Q ( ˜xi(gk))(2(k + 1)(k + 2))| ≤Q

1

k + 1

)
implies

d∧
i=1

(
|ãi −IR

˜xi(gk)| ≤IR
1

k + 1
+

2

2(k + 1)(k + 2) + 1
≤ 2

k + 1

)
.

(15) and (16) imply BW+(x) which concludes the proof of (∗∗).

Remark 11.4.2 One might ask why we did not use the following obvious proof of BW+(x) from

BW (x):

Let a be such that
∧
k
∨
n > k

d∧
i=1

(
|ãi−IR x̃in| <IR

1
k+1

)
. AC0,0–qf yields the existence of a function

g such that

∧
k(gk > k ∧

d∧
i=1

(|ãi −IR
˜xi(gk)| <IR

1

k + 1
)
)
.

Now define fk := g(k+1)(0). It is clear that f fulfils BW+(x).

The problem with this proof is that we cannot use our results from chapter 10 in the presence of the

iteration functional Φit (see §3 above) which is needed to define f as a functional in g. To introduce

the graph of Φit by Σ0
1–IA and AC–qf does not help since this would require an application of Σ0

1–

IA which involves (besides x) also a as genuine function parameters. In contrast to this situation,

our proof of BW (x) → BW+(x) uses Σ0
1–IA only for a formula with (besides x) only k, ak as

parameters. Since k (as a parameter) remains fixed throughout the induction, a only occurs as the

number parameter ak but not as genuine function parameter. This is the reason why we

are able to construct a term χ such that Σ0
1–IA(χx) ∧BW (x)→ BW+(x).

Using (∗) and (∗∗) we are now able to prove

Proposition: 11.4.3 Let n ≥ 2 and B0(u1, vτ , wγ) ∈ L(GnAω) be a quantifier–free formula which

contains only u1, vτ , wγ free, where γ ≤ 2. Furthermore let ξ, t ∈ GnRω and ∆ be as in thm.2.2.2.
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Then the following rule holds

GnAω + ∆ + AC–qf `
∧
u1
∧
v ≤τ tu

(
BW+(ξuv)→

∨
wγB0(u, v, w)

)
⇒ ∃(eff.)χ ∈ GnRω such that

Gmax(n,3)A
ω
i

+ ∆ + b-AC `
∧
u1
∧
v ≤τ tu

∧
Ψ∗
(
(Ψ∗ satifies the mon. funct.interpr. of∧

a1(0), k0, g1
∨
n0(gn > n→ ã(n)−IR ã(gn) ≤IR

1
k+1 ))→

∨
w ≤γ χuΨ∗ B0(u, v, w)

)
⇒ PRAω

i + ∆ + b-AC `
∧
u1
∧
v ≤τ tu

∨
w ≤γ χuΨB0(u, v, w),

where Ψ := λa, k, g. max
i<C(a)k′

(
Φiti0g

)
.

If ∆ = ∅, then b–AC can be omitted from the proof of the conclusion. If τ ≤ 1 and the types of the∨
–quantifiers in ∆ are ≤ 1, then GnAω + ∆+AC–qf may be replaced by E–GnAω + ∆+ACα,β–qf,

where α, β are as in cor.10.10.

As in prop.11.1.1 we also have a term χ̃ which needs only a Ψ̃∗ for an instance a := ζuv (where ζ

is a suitable term in G2Rω).

Proof: By (∗),(∗∗) and the proof of prop.11.3.6 there are functionals ϕ1, ϕ2 ∈ G2Rω such that

G2Aω + AC1,0–qf ` F− →
∧
x
(
Π0

1–CA(ϕ1x) ∧Π0
1–CA(ϕ2x)→ BW+(x)

)
.

Furthermore

G2Aω ` Π0
1–CA(ψf1f2)→ Π0

1–CA(f1) ∧Π0
1–CA(f2),

where

ψf1f2x
0y0 =0

 f1(j2x, y), if j1x = 0

f2(j2x, y), otherwise.

Hence

G2Aω + AC1,0–qf ` F− →
∧
x
(
Π0

1–CA(ϕ3x)→ BW+(x)
)
,

for a suitable ϕ3 ∈ G2Rω and thus

GnAω + ∆ + AC–qf ` F− →
∧
u1
∧
v ≤τ tu

(
Π0

1–CA(ϕ3(ξuv))→
∨
w B0

)
.

By the proof of thm.7.2.20 we obtain

GnAω + ∆̃ + (∗) + AC–qf `
∧
u1
∧
v ≤τ tu

(
Π0

1–CA(ϕ3(ξuv))→
∨
w B0

)
,

where

∆̃ := {
∨
Y ≤ρδ s

∧
xδ, zηA0(x, Y x, z) :

∧
x
∨
y ≤ sx

∧
zηA0 ∈ ∆},

(∗) :≡
∧
n0

∨
Y ≤ λΦ2(0), y1(0).y

∧
Φ, ỹ1(0), k0, z̃1

∧
n ≤0 n0

( ∧
i<n

(z̃i ≤ ỹki)→ Φk(z̃, n) ≤ Φk(Y Φỹk)
)
.

Prop.11.3.3 (with ∆′ := ∆̃ ∪ {(∗)}) yields the conclusion of our proposition in GnAω
i + ∆ + (∗)+

b–AC and so (since, again by the proof of thm.7.2.20, G3Aω
i ` (∗) ) in Gmax(3,n)A

ω
i + ∆+ b–AC.

Remark 11.4.4 Analogously to (PCM2∗) one can generalize BW+(x) to BW ∗(x(·)), where

BW ∗(x(·)) asserts the existence of a sequence of subsequences for a sequence of bounded sequences.
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11.5 The Arzela–Ascoli lemma

Under the name ’Arzelà–Ascoli’ lemma’ we understand (as in the literature on ’reverse mathemat-

ics’) the following proposition:

Let (fl) ⊂ C[0, 1] be a sequence of functions72 which are equicontinuous and have a common bound,

i.e. there exists a common modulus of uniform continuity ω for all fl and a bound C ∈ IN such that

‖fl‖∞ ≤ C. Then

(i) (fl) possesses a limit point w.r.t. ‖ · ‖∞ which also has the modulus ω, i.e.

∨
f ∈ C[0, 1]

(∧
k0
∧
m
∨
n >0 m

(
‖f − fn‖∞ ≤

1

k + 1

)
∧ f has modulus ω

)
;

(ii) there is a subsequence (fgl) of (fl) which converges with modulus 1
k+1 .

As in the case of the Bolzano–Weierstraß principle we deal first with (i). The sligthly stronger

assertion (ii) can then be obtained from (i) using Σ0
1–IA(f) analogously to our proof of BW+(x)

from BW (x). For notational simplicity we may assume that C = 1. When formalized in GnAω,

the version (i) of the Arzelà–Ascoli lemma has the form

A–A(f
1(0)(0)
(·) , ω1) :≡

(
f(·) ≤1(0)(0) λl

0, n0.M∧

∧
l0,m0, u0, v0

( Π0
13F (fl,m,u,v):≡

∧
a0F0(fl,m,u,v,a):≡︷ ︸︸ ︷

|qu−Q qv| ≤Q
1

ω(m) + 1
→ |f̃lu−IR f̃lv| ≤IR

1

m+ 1

)
→
∨
g ≤1(0) λn.M

(∧
m,u, vF (g,m, u, v) ∧

∧
k
∨
n >0 k(‖λx1.g(x)IR − λx1.fn(x)IR‖∞ ≤ 1

k+1 )
))
.

Here M, q and y1 7→ ỹ are the constructions from our representation of [−1, 1] in chapter 3. For

notational simplicity we omit in the following (̃ ).

A–A(f, ω) is equivalent to73

f(·) ≤ l0, n0.M ∧
∧
l0,m0, u0, v0F (fl,m, u, v)→

∨
g ≤1(0) λn.M

(∧
m,u, vF (g,m, u, v)∧∧

k
∨
n >0 k

ω(k)+1∧
i=0

(
|g( i

ω(k)+1 )IR(k)−Q fn( i
ω(k)+1 )IR(k)| ≤Q

5
k+1

))
.

Assume ¬A–A(f, ω), i.e. f(·) ≤ λl0, n0M ∧
∧
l,m, u, vF (fl,m, u, v) and

(1)


∧
g ≤1(0) λn.M

(∧
m,u, v F (g,m, u, v)→∨

k
∧
n
(
n >0 k →

ω(k)+1∨
i=0

(
|g( i

ω(k)+1 )IR(k)−Q fn( i
ω(k)+1 )IR(k)| >Q

5
k+1

)))
.

Let α be such that

α(l0, k0, n0) =0 0↔
[
n > k →

ω(k)+1∨
i=0

(
|(l)i −Q fn(

i

ω(k) + 1
)IR(k)| >Q

5

k + 1

)]
.

72The restriction to the unit interval [0, 1] is convenient for the following proofs but not essential.
73For better readability we write i

ω(k)+1
instead of its code.

135



Π0
1–CA(α′) (where α′in := α(j1i, j2i, n)) yields the existence of a function h such that

hlk =0 0↔
∧
n
(
α(l, k, n) = 0

)
.

Hence

(2)


h(λi.g( i

ω(k)+1 )IR(k)(ω(k) + 1), k) =0 0↔∧
n >0 k

ω(k)+1∨
i=0

(
|g( i

ω(k)+1 )IR(k)−Q fn( i
ω(k)+1 )IR(k)| >Q

5
k+1

)
.

(1),(2) and Σ0
1–UB− yield (using the fact that g can be coded into a type–1–object by g′x0 :=

g(j1x, j2x))

(3)


∨
k0

∧
g′ ≤1 λx.M(j1x)

∧
l0
(∧

m,u, v, a ≤ k0F0(λx, y.(g′, l)(j(x, y)),m, u, v, a)→∨
k ≤ k0

∧
n > k0

ω(k)+1∨
i=0

(
|(λx, y.(g′, l)(j(x, y)))( i

ω(k)+1 )IR(k)−Q fn( i
ω(k)+1 )IR(k)| >Q

5
k+1

))
,

and therefore using

glmn :=

 gmn, if m,n ≤ l

00, otherwise, and gl =1(0) λx, y.((gl)′, r)(j(x, y)) for r > j(x, y)

(4)


∨
k0

∧
g ≤1(0) λn.M

∧
l0
(∧

m,u, v, a ≤ k0F0(gl,m, u, v, a)→∨
k ≤ k0

∧
n > k0

ω(k)+1∨
i=0

(
|gl( i

ω(k)+1 )IR(k)−Q fn( i
ω(k)+1 )IR(k)| >Q

5
k+1

))
,

By putting g := fk0+1 and l0 := 3(c + 1), where c is the maximum of k0 + 1 and the codes of all
i

ω(k)+1 for i ≤ ω(k) + 1 and k ≤ k0, (4) yields the contradiction

∨
k ≤ k0

ω(k)+1∨
i=0

(
|fk0+1(

i

ω(k) + 1
)(k)−Q fk0+1(

i

ω(k) + 1
)(k)| >Q

5

k + 1

)
.

α′ can be defined as a functional ξ in f(·), ω, where ξ ∈ G2Rω. Since the proof above can be carried

out in G3Aω+AC1,0–qf74 (under the assumption of F− and Π0
1–CA(ξ(f, ω)) using prop.7.2.19 ) we

have shown that

G3Aω + AC1,0–qf ` F− →
∧
f1(0)(0), ω1

(
Π0

1–CA(ξ(f, ω))→ A–A(f, ω)
)
.

Analogously to BW+ one defines a formalization A–A+(f, ω) of the version (ii) of the Arzelà–Ascoli

lemma. Similarly to the proof of BW (x)→ BW+(x) one shows (using Σ0
1–IA(χ(f, ω)) for a suitable

χ ∈ G2Rω) that A–A(f, ω)→ A–A+(f, ω). Aanalogously to prop.11.4.3 one so obtains

Proposition: 11.5.1 For n ≥ 3 proposition 11.4.3 holds with BW+(ξuv) replaced by A–A(ξuv) or

A–A+(ξuv).

74We have to work in G3Aω instead of G2Aω since we have used the functional Φ〈〉fx = fx.
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11.6 The existence of lim sup and lim inf for bounded sequences in IR

Definition 11.6.1 a ∈ IR is the lim sup of (xn) ⊂ IR iff

(∗)
∧
k0
(∧
m
∨
n >0 m(|a− xn| ≤

1

k + 1
) ∧
∨
l
∧
j >0 l(xj ≤ a+

1

k + 1
)
)
.

Remark 11.6.2 This definition of lim sup is equivalent to the following one:

(∗∗) a is the greatest limit point of (xn).

The implication (∗) → (∗∗) is trivial and can be proved e.g. in G2Aω. The implication (∗∗) → (∗)
uses the Bolzano–Weierstraß principle.
In the following we determine the rate of growth caused by the assertion of the existence of lim sup

(for bounded sequences) in the sense of (∗) and thus a fortiori in the sense of (∗∗).

We may restrict ourselves to sequences of rational numbers: Let x1(0) represent a sequence of real

numbers with
∧
n(|xn| ≤IR C). Then yn := x̂n(n) represents a sequence of rational numbers which

is bounded by C + 1. Let a1 be the lim sup of (yn), then a also is the lim sup of x. Hence the

existence of lim supxn follows from the existence of lim sup yn. Furthermore we may assume that
C = 1.

The existence of lim sup for a sequence of rational numbers ∈ [−1, 1] is formalized in GnAω (for

n ≥ 2) as follows:

∃ lim sup(x1) :≡
∨
a1
∧
k0
(∧
m
∨
n >0 m(|a−IR x̆(n)| ≤IR

1

k + 1
) ∧
∨
l
∧
j >0 l(x̆(j) ≤IR a+

1

k + 1
)
)
,

where x̆(n) := maxQ(−1,minQ(xn, 1)). In the following we use the usual notation x̆n instead of

x̆(n).

We now show that ∃ lim sup(x1) can be reduced to a purely arithmetical assertion L(x1) on

x1 in proofs of
∧
u1
∧
v ≤τ tu

∨
wγA0–sentences:

L(x1) :≡
∧
k
∨
l >0 k

∧
K ≥0 l

∨
j
∧
q, r ≥0 j

∧
m,n(K ≥0 m,n ≥0 l→ |xmq −Q xnr | ≤Q

1

k + 1︸ ︷︷ ︸
L0(x,k,l,K,q,r):≡

),

where xmq := maxQ(x̆m, . . . , x̆m+q) (Note that L0 can be expressed as a quantifier–free formula in

GnAω).

Lemma: 11.6.3 1) G2Aω `Mon(
∨
k
∧
l
∨
K
∧
j
∨
q, r(l > k → K ≥ l ∧ q, r ≥ j ∧ ¬L0).

2) G2Aω `
∧
x1
(
∃ lim sup(x)→ L(x)

)
.

3) G2Aω `
∧
x1
(
(L(x)s → ∃ lim sup(x)

)
.

(The facts 1)–3) combined with the results of chapter 10 imply that ∃ lim sup(ξuv) can be

reduced to L(ξuv) in proofs of sentences
∧
u1
∧
v ≤τ tu

∨
wγA0, see prop. 11.6.4 below).

4) G3Aω + Σ0
2–IA `

∧
x1L(x).
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Proof: 1) is obvious.

2) By ∃ lim sup(x1) there exists an a1 such that

(1)
∧
k0
∧
m
∨
n >0 m(|a−IR x̆m| ≤IR

1

k + 1
)

and

(2)
∧
k0
∨
l
∧
j >0 l(x̆j ≤IR a+

1

k + 1
).

Assume ¬L(x), i.e. there exists a k0 such that

(3)
∧
l > k0

∨
K ≥ l

∧
j
∨
q, r ≥ j

∨
m,n

(
K ≥ m,n ≥ l ∧ |xmq −Q xnr | >

1

k0 + 1

)
.

Applying (2) to 2k0 + 1 yields an u0 such that

(4)
∧
j ≥ u0(x̆j ≤IR a+

1

2(k0 + 1)
).

(3) applied to l := max0(k0, u0) + 1 provides a K0 with

(5) K0 ≥ u0 ∧
∧
j
∨
q, r ≥ j

∨
m,n

(
K0 ≥ m,n ≥ u0 ∧ |xmq −Q xnr | >

1

k0 + 1

)
.

(1) applied to k := 2k0 + 1 and m := K0 yields a d0 such that

(6) d0 > K0 ∧
(
|a− x̆d0

| ≤ 1

2(k0 + 1)

)
.

By (5) applied to j := d0 we obtain

(7)

 K0 ≥ u0 ∧ d0 > K0 ∧
(
|a−IR x̆d0 | ≤ 1

2(k0+1)

)
∧∨

q, r ≥ d0

∨
m,n

(
K0 ≥ m,n ≥ u0 ∧ |xmq −Q xnr | > 1

k0+1

)
.

Let q, r,m, n be such that

(8) q, r ≥ d0 ∧K0 ≥ m,n ≥ u0 ∧ |xmq −Q xnr | >
1

k0 + 1
.

Then xmq ≥ x̆d0

(6)

≥ a− 1
2(k0+1) since m ≤ K0 ≤ d0 ≤ m+ q. Analogously: xnr ≥ a− 1

2(k0+1) .

On the other hand, (4) implies xmq , x
n
r ≤ a + 1

2(k0+1) . Thus |xmq −Q xnr | ≤ 1
k0+1 which contradicts

(8).

3) Let f, g be such that Ls is fulfilled, i.e.

(∗)


∧
k
(
fk > k ∧

∧
K ≥ fk

∧
q, r ≥ gkK∧

m,n(K ≥ m,n ≥ fk → |xmq −Q xnr | ≤Q
1
k+1 )

)
.

We may assume that f, g are monotone for otherwise we could define

fMk := max0(f0, . . . , fk), gMkK := max0 {gxy : x ≤0 k ∧ y ≤0 K} (fM , gM can be defined in
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G1Rω using Φ1 and λ–abstraction). If f, g satisfy (∗), then fM , gM also satisfy (∗).
Define

h(k) :=0

 min i[f(k) ≤0 i ≤0 f(k) + gk(fk) ∧ x̆i =Q xfkgk(fk)], if existent

00, otherwise.

h can be defined in G2Aω as a functional in f, g. The case ’otherwise’ does not occur since∧
m, q

∨
i(m ≤0 i ≤0 m+ q ∧ x̆i =Q maxQ(x̆m, . . . , x̆m+q)).

By the definition of h we have (+) x̆hk =Q xfkgk(fk) for all k. Assume that m ≥ k. By the

monotonicity of f, g we obtain

fm ≥0 fk ∧ gm(fm) ≥0 gk(fm) ≥0 gk(fk).

Hence (∗) implies

(1) |xfkgk(fm) −Q xfmgm(fm)| ≤
1

k + 1

and

(2) |xfkgk(fk) −Q xfkgk(fm)| ≤
1

k + 1

and therefore

(3) |xfkgk(fk) −Q xfmgm(fm)| ≤
2

k + 1
.

Thus for m, m̃ ≥ k we obtain

(4) |xfmgm(fm) −Q xfm̃gm̃(fm̃)| ≤
4

k + 1
.

For h̃(k) := h(4(k + 1)) this yields

(5)
∧
k
∧
m, m̃ ≥ k

(
x̆h̃m −Q x̆h̃m̃| ≤

1

k + 1

)
.

Hence for a :=1 λm
0.x̆h̃m we have â =1 a, i.e. a represents the limit of the Cauchy sequence (x̆h̃m).

Since h̃(k) = h(4(k + 1)) ≥ f(4(k + 1))
(∗)
≥ 4(k + 1) > k, we obtain

(6)
∧
k
(
h̃(k) > k ∧ |x̆h̃k −IR a| ≤IR

1

k + 1

)
,

i.e. a is a limit point of x.
It remains to show that

(7)
∧
k
∨
l
∧
j >0 l

(
x̆j ≤IR a+

1

k + 1

)
:

Define c(k) := g(4(k + 1), f(4(k + 1))). Then by (∗)∧
q, r ≥ c(k)

(
|xf(4(k+1))
q −Q xf(4(k+1))

r | ≤ 1

4(k + 1)

)
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and by (+)

a(k) =Q x
f(4(k+1))
g(4(k+1),f(4(k+1)))

and therefore∧
j ≥ c(k)

(
|xf(4(k+1))
j −Q a(k)| ≤ 1

4(k + 1)

)
.

Hence∧
j ≥ c(k)

(
x̆f(4(k+1))+j ≤Q a(k) +

1

4(k + 1)

)
which implies∧

j ≥ c(k) + f(4(k + 1))
(
x̆j ≤IR a+

1

4(k + 1)
+

1

k + 1

)
.

Thus (7) is satisfied by l := c(2(k + 1)) + f(4(2k + 1) + 1).

4) Assume ¬L(x), i.e. there exists a k0 such that

(+)
∧
l̃ > k0

∨
K ≥ l̃

∧
j
∨
q, r ≥ j

∨
m,n

(
K ≥ m,n ≥ l̃ ∧ |xmq −Q xnr | >

1

k0 + 1

)
.

We show (using Σ0
1–IA on l0):

(++)
∧
l ≥0 1

∨
i0
(
lth(i) = l ∧

∧
j < l−· 1

(
(i)j < (i)j+1

)
∧
∧
j, j′ ≤ l−· 1(j 6= j′ → |x̆(i)j −Q x̆(i)j′

| > 1

k0 + 1︸ ︷︷ ︸
A0(i,l):≡

)
.

l = 1: Obvious.
l 7→ l + 1: By the induction hypothesis their exists an i which satisfies A0(i, l).

Case 1:
∧
j ≤ l−· 1

∨
a
∧
b > a

(
|x̆b −Q x̆(i)j | > 1

k0+1

)
.

Then by Π0
1–CP there exists an a0 such that∧

j ≤ l−· 1
∧
b > a0

(
|x̆b −Q x̆(i)j | >

1

k0 + 1

)
.

Hence
i′ := i ∗ 〈max0(a0, (i)l−· 1) + 1〉 satisfies A0(i′, l + 1).

Case 2: ¬ Case 1. Let us assume that x̆(i)0
< . . . < x̆(i)

l−· 1 (If not we use a permutation of

(i)0, . . . , (i)l−· 1). Let j0 ≤0 l−· 1 be maximal such that

(1)
∧
m̃
∨
n ≥0 m̃

(
|x̆n −Q x̆(i)j0

| ≤ 1

k0 + 1

)
.

(The existence of j0 follows from the least number principle for Π0
2–formulas Π0

2–LNP: Let j1 be

the least number such that (l−· 1)−· j1 satisfies (1). Then j0 = (l−· 1)−· j1).

The definition of j0 implies∧
j ≤ l−· 1

(
j > j0 →

∨
a
∧
b > a(|x̆b −Q x̆(i)j | >

1

k0 + 1
)
)
.
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Hence (again by Π0
1–CP)

(2)
∨
a1 > j0

∧
j ≤ l−· 1

(
j > j0 →

∧
b > a1(|x̆b −Q x̆(i)j | >

1

k0 + 1
)
)
.

Let c ∈ IN be arbitrary. By (+) (applied to l̃ := max0(k0, c) + 1) there exists a K1 such that

(3)
∧
j
∨
q, r ≥ j

∨
m,n

(
K1 ≥ m,n ≥ c, k0 ∧ |xmq −Q xnr | >

1

k0 + 1

)
.

By (1) applied to m̃ := K1 there exists a u ≥ K1 such that |x̆u −Q x̆(i)j0
| ≤ 1

k0+1 .

(3) applied to j := u yields q, r,m, n such that

(5) q, r ≥ u ∧K1 ≥ m,n ≥ c, k0 ∧ |xmq −Q xnr | >
1

k0 + 1
∧ xmq , xnr ≥Q x̆(i)j0

− 1

k0 + 1

(since m,n ≤ u ≤ m+ q, n+ r).

Because of m,n ≥ c, k0 this implies the existence of an α ≥ c, k0 such that x̆α > x̆(i)j0
. Thus we

have shown

(6)
∧
c
∨
α ≥0 c, k0(x̆α > x̆(i)j0

).

For c := max0(a1, (i)l−· 1)+1 this yields the existence of an α1 > a1, (i)l−· 1, k0 such that x̆α1
> x̆(i)j0

.

Let Kα1 be (by (+)) such that

(7)
∧
j
∨
q, r ≥ j

∨
m,n

(
Kα1

≥ m,n ≥ α1(≥ a1, k0) ∧ |xmq −Q xnr | >
1

k0 + 1

)
.

(6) applies to c := Kα1
provides an α2 ≥ Kα1

such that x̆α2
> x̆(i)j0

. Hence (7) applied to j := α2

yields q, r,m, n with

(8) q, r ≥ α2 ∧Kα1 ≥ m,n ≥ α1 ∧ |xmq −Q xnr | >
1

k0 + 1
∧ xmq , xnr ≥Q x̆α2 .

Since m,n ≥ α1 > a1, (i)l−· 1, (8) implies the existence of an α3 > (i)l−· 1, a1 such that

(9) x̆α3
>Q x̆(i)j0

+
1

k0 + 1
.

Since x̆(i)j ≤ x̆(i)j0
for j ≤ j0, this implies

(10)
∧
j ≤ j0

(
x̆α3

>Q x̆(i)j +
1

k0 + 1

)
.

Let j ≤ l−· 1 be > j0. Then by (2) and α3 > a1: |x̆α3
−Q x̆(i)j | > 1

k0+1 . Put together we have shown

(11) α3 > (i)l−· 1 ∧
∧
j ≤ l−· 1

(
|x̆α3

−Q x̆(i)j | >
1

k0 + 1

)
.

Define i′ := i ∗ 〈α3〉. Then A0(i, l) implies A0(i′, l + 1), which concludes the proof of (++).

(++) applied to l := 2(k0 + 1) + 1 yields the existence of indices i0 < . . . < i2(k0+1)

such that |x̆(i)j−Q x̆(i)j′
| > 1

k0+1 for j, j′ ≤ 2(k0+1)∧j 6= j′, which contradicts
∧
j0(−1 ≤Q x̆j ≤Q 1).

Hence we have proved L(x). This proof has used Σ0
1–IA, Π0

1–CP and Π0
2–LNP. Since Π0

2–LNP is

equivalent to Σ0
2–IA (see [52]), and Π0

1–CP follows from Σ0
2–IA by [51] (where CP is denoted by M),

the proof above can be carried out in G3Aω + Σ0
2–IA.
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Proposition: 11.6.4 Let n ≥ 2 and B0(u1, vτ , wγ) ∈ L(GnAω) be a quantifier–free formula which

contains only u1, vτ , wγ free, where γ ≤ 2. Furthermore let ξ, t ∈ GnRω and ∆ be as in thm.2.2.2.
Then the following rule holds

GnAω + ∆ + AC–qf `
∧
u1
∧
v ≤τ tu

(
∃ lim sup(ξuv)→

∨
wγB0(u, v, w)

)
⇒ ∃(eff.)χ ∈ GnRω such that

GnAω
i + ∆ + b-AC `

∧
u1
∧
v ≤τ tu

∧
Ψ∗
(
(Ψ∗ satifies the mon. funct.interpr. of

the negative translation L(ξuv)′ of L(ξuv)) →
∨
w ≤γ χuΨ∗ B0(u, v, w)

)
⇒ ∃Ψ ∈ T1 such that

PAω
i + ∆ + b-AC `

∧
u1
∧
v ≤τ tu

∨
w ≤γ Ψu B0(u, v, w).

where T1 is the restriction of Gödel’s T which contains only the recursor Rρ for ρ = 1 (see chapter

2). The Ackermann function (but no functions having an essentially greater order of growth) can

be defined in T1.

If ∆ = ∅, then b–AC can be omitted from the proof of the conclusion. If τ ≤ 1 and the types of the∨
–quantifiers in ∆ are ≤ 1, then GnAω + ∆+AC–qf may be replaced by E–GnAω + ∆+ACα,β–qf,

where α, β are as in cor.10.10.

Proof: Prenexation of
∧
u1
∧
v ≤τ tu

(
L(ξuv)→

∨
wγB0(u, v, w)

)
yields

G :≡
∧
u1
∧
v ≤τ tu

∨
k
∧
l
∨
K
∧
j
∨
q, r, w

[
(l > k ∧ (K ≥ l ∧ q, r ≥ j → L0))→ B0(u, v, w)

]
.

Lemma 11.6.3.1) implies

(1) G2Aω `Mon(G).

The assumption of the proposition combined with lemma 11.6.3.3) implies

(2) GnAω + ∆ + AC–qf `
∧
u1
∧
v ≤τ tu

(
L(ξuv)S →

∨
wγB0(u, v, w)

)
and therefore

(3) GnAω + ∆ + AC–qf ` GH .

Theorem 10.8 applied to (1) and (3) provides the extractability of a tuple ϕ ∈ GnRω such that

(4) GnAω
i + ∆ + b-AC `

(
ϕ satisfies the monotone functional interpretation of G′

)
.

G′ intuitionistically implies

(5)
∧
u1
∧
v ≤τ tu

(
L(ξuv)′ → ¬¬

∨
wγB0(u, v, w)

)
.

Hence from ϕ one obtains a term ϕ̃ ∈ GnRω such that (provably in GnAω
i + ∆ + b-AC)

(6)
∨
ψ
(
ϕ̃ s–maj ψ ∧

∧
u1
∧
v ≤τ tu

∧
a
(∧
b(L(ξuv)′)D → B0(u, v, ψuva)

))
,

where
∨
a
∧
b
(
L(ξuv)′

)
D

is the usual functional interpretation of L(ξuv)′.

Let Ψ∗ satisfy the monotone functional interpretation of L(ξuv)′ then

(7)
∨
a
(
Ψ∗ s–maj a ∧

∧
b
(
L(ξuv)′

)
D

)
.
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Hence for such a tuple a we have

(8) λu1.ϕ̃u(t∗u)Ψ∗ s–maj ψuva for v ≤ tu

(Use lemma 1.2.11. t∗ in GnRω is a majorant for t).

Since γ ≤ 2 this yields a ≥2 bound χuΨ∗ for ψuva (lemma 1.2.11 ).

The second part of the proposition follows from lemma 11.6.3.4) and the fact that GnAω + Σ0
2–IA

has a monotone functional interpretation in PAω
i by terms ∈ T1 (By [52] Σ0

2–IA has a functional

interpretation in T1. Since every term in T1 has a majorant in T1, also the monotone functional

interpretation can be satisfied in T1).

Remark 11.6.5 By the theorem above the use of the analytical axiom ∃ lim sup(ξuv) in a given

proof of
∧
u1
∧
v ≤τ tu

∨
wγB0 can be reduced to the use of the arithmetical principle L(ξuv). By

lemma 11.6.3.2) this reduction is optimal (relatively to G2Aω).

In this chapter we have determined the impact of sequences of instances
∧
l0B(ξuvl) of the

following analytical principles
∧
x1(0)B(x) on the growth of bounds for sentences

(+)
∧
u1, k0

∧
v ≤ρ tu k

∨
w0A0

extractable from proofs using such instances:

1) the convergence of bounded monotone sequences in IR,

2) the existence of a greatest lower bound for sequences in IR which are bounded from below,

3) the existence of a convergent subsequence for bounded sequences in IRd,

4) the Arzelà–Ascoli lemma,

5) the existence of lim sup and lim inf for bounded sequences in IR.

We have shown that the use of sequences of instances
∧
l0B(ξuvl) of 1)–4) in a proof of (+)

(relatively to GnAω+AC–qf+ the analytical principles discussed in chapters 3–7) can be reduced

to a suitable sequence
∧
l0PCM1(ξ̃uvl) of instances of the arithmetical principle PCM1 (i.e.

the Cauchy property of bounded monotone sequences in IR) studied in chapter 9.75 So the results

on the growth of bounds stated at the end of chapter 9 apply. In particular the contribution of∧
l0PCM1(ξ̃uvl) and even

∧
a1(0)PCM1(a) is not stronger then Φit and hence a primitive recursive

bound is always guaranted (this is in contrast to the use of the full universal closure
∧
x1(0)B(x) of

the principles 1)–4) which are equivalent to CAar and therefore make all α(< ε0)–recursive functions

provably recursive). However for special ξ̃ and if Φit is applied only to g := S (see the discussion

at the end of chapter 9) one still may obtain polynomial bounds (for n = 2 and 1)–3)).

These results also apply to instances of Π0
1–CA and its arithmetical consequences (relatively to

GnAω+AC–qf) ∆0
2–IA and Π0

1–CP.

Instances of 5) also can be reduced to corresponding instances of a certain arithmetical princi-

ple L ∈ Π0
5. L can be proved using Σ0

2–IA which suffices to prove the totality of the Ackermann

function (but not of functions having an essentially greater order of growth). So w.r.t. its impact

on the growth of provably recursive functions, 5) is the strongest tool used in standard analysis.

75For 1)–3) this works for all n ≥ 2 and for 4) if n ≥ 3.
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12 False theorems on Π0
1–CA− and Σ0

2–AC− in the literature

By Π0
1–CA− and Σ0

2–AC− we denote the schemas of Π0
1–comprehension and Σ0

2–choice for formulas

without parameters of type ≥ 1, i.e.

Π0
1–CA− :

∨
f
∧
x0(fx =0 0↔

∧
y0A0(x, y, a0)), (only x, y, a free in A0),

Σ0
2–AC− :

∧
x0
∨
y0
∨
z0
∧
v0A0(x, y, z, v, a0)→

∨
f
∧
x
∨
z
∧
v A0(x, fx, z, v, a),

where only x, y, z, v, a occur free in A0(x, y, z, v, a).

As a special case of cor.11.3.5 we have

Proposition: 12.1 Let γ ≤ 2 and A0(u1, vτ , wγ) contains only u, v, w as free variables; t ∈ GnRω.

Then the following rule holds
GnAω ⊕AC–qf⊕Π0

1–CA− ⊕ Σ0
2–AC− `

∧
u1
∧
v ≤τ tu

∨
wγB0(u, v, w)

⇒ ∃Ψ ∈ P̂R
ω

such that

PRAω
i `

∧
u1
∧
v ≤τ tu

∨
w ≤γ Ψu B0(u, v, w).

If τ ≤ 1, we may replace GnAω ⊕AC–qf⊕Π0
1–CA− ⊕ Σ0

2–AC− by

E–GnAω+ACα,β–qf +Π0
1–CA− + Σ0

2–AC−, where (α = 0 ∧ β ≤ 1) or (α = 1 ∧ β = 0).

In particular
E–GnAω+ACα,β–qf +Π0

1–CA− + Σ0
2–AC− `

∧
u0
∨
v0R(u, v)

⇒ ∃ primitive recursive function ϕ :∧
uR(u, ϕu) is true,

where R is a primitive recursive relation. If in the definition of GnAω the universal axioms 9) are

replaced by the schema of quantifier–free induction one has PRA ` R(u, ϕu)

(Note that this proposition also holds for n =∞. Since all primitive recursive functions (but not all

primitive recursive functionals of type 2!) can be defined in G∞Aω (see chapter 1) we may assume

that G∞Aω ⊃ PRA).

Proof: The proposition follows from cor.11.3.5 using the fact that Σ0
2–AC− can be derived from

Π0
1–AC− (using pairing) and the fact that there is a ξ ∈ GnRω such that ξ(x, y, z, v, a) =0 0 ↔

A0(x0, y0, z0, v0, a0). Thus Π0
1–AC− follows from Π0

1–AC(ξ) for a term ξ without parameters of
type ≥ 1.

In this final chapter we diccuss the two treatments of Π0
1–CA− and Σ0

2–AC− in the literature due

to Mints [46] and Sieg [57], which are carried out in the context of a second–order fragment BT

of PRAω and which state some conservativity results. By constructing counterexamples to these
results we show the incorrectness of these treatments. Furthermore a weakening of their results

which is correct by our prop.12.1 does not follow by the proofs in [46] and [57].

Let BT denote the extension of primitive recursive arithmetic PRA to the second–order theory which

144



results if function variables and (two–sorted) classical predicate logic with quantifiers for number

variables as well as for function variables are added and the schema of quantifier–free induction
QF–IA is extended to this language, i.e. instances of QF–IA in BT may contain function variables.

Furthermore BT contains (at least76 ) the functionals Φ1fx = max(f0, . . . , fx), Φ2fx =
∑x
i=0 fi,

Φ〈〉fx = fx and µb together with their defining equations. Finally we have the schema of so–called

’explicit definition’ in BT:∨
f
∧
x(fx = t[x]), where t is a term of BT.

(In our theories GnAω these schema is superfluous because of the defininability of λ–operators by

means of Π and Σ).

Both Mints ans Sieg are not very explicit on the inclusion of primitive recursive functionals in BT:

’The formalization of PRA being examined by us contains variables for the positive intergers ...,
and for unary number–theoretic functions f, g, h, . . . . Functors are constructed from the functional

variables and the constants Jn,k (projection), Z (function identically equal 0), and s (addition of 1)

with the aid of substitution and primitive recursion formulas. Terms are constructed from objective

variables and 0 with the aid of the functors’ ([46], p.1488)77 .

’The base theory for subsystems is formulated in L2 and is called (BT); it includes the axioms

of (QF–IA) (but possibly with second–order parameters in the defining equations for primitive re-

cursive functions and the instances of IA) and the schema for explicit definitions of functions ED

(∃f)(∀x) fx = ta[x] . . .’ ([57], p.37).

Since Mints explicitely uses the functional Φ2 and both Mints and Sieg use the functional Φ〈〉

for the formulation of WKL, it is clear that genuine primitive recursion in function arguments is
allowed. Here ’genuine’ means primitive recursion which depends on a variable number of values

of the function arguments as in Φi (i = 1, 2, . . .) or Φ〈〉. Such primitive recursive functionals can

not be obtained from primitive recursive functions by substitution of number terms (which may

contain function variables) for number variables (an example for the later e.g. is the functional

Φfx = x+ fx which is not genuine in our sense).

The iteration functional Φitxyf = fx(y) is also a (genuine) primitive recursive functional. However

it has quite different properties than Φ1,Φ2, . . . and Φ〈〉 as we have seen in chapter 2 and chapter 9.

Since it is not clear to us whether Mints or Sieg intend to include Φit in BT, we treat the theories
BT and BT+Φit seperately. It turns out that our refutations apply in an even stronger sense when
Φit is added to BT.

Let Π0
2–IR− denote the rule of induction for Π0

2–formulas without function parameters. In

76If further primitive recursive functionals of type 2 (in the sense of [29] ) are added our refutation of the results
stated in [46] ,[57] applies a fortiori. Prop.12.3 and prop.12.5 below as well as their corollaries even hold when BT
does not contain any of these funcionals at all.

77Note that the restriction to unary function variables is no real restriction since coding of finite tuples of numbers
is possible in BT.
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[46] the following theorem is stated

(1)


If BT + Π0

2–IR− + Π0
1–CA− `

∧
x
∨
y A0(x, y),

then there is a primitive recursive function ϕ such that

PRA `
∧
x A0(x, ϕx).

(Here A0(x, y) ∈ L(PRA) contains only x, y free).

Remark 12.2 Mints uses (1) to show the Π0
2–conservativity of WKL restricted to primitive recur-

sive trees when added to BT+Π0
2–IR− + Π0

1–CA− over PRA (In fact Mints claims to have proved

the conservativity of full WKL, which however does not follow from (1) since the derivation of WKL

from Π0
1–CA is possibly only when function parameters are allowed to occur in Π0

1–CA. This has

already been noticed in [57] p.65).

In [57] various generalizations of (1) are stated:

(2) ([57], thm.5.8): Let Γ be a set of Σ0
3–sentences in L2. Then BT+Σ0

2–AC−+Π0
2–IR−+WKL+Γ

is conservative over BT+Γ for Π0
3–sentences.

(3) ([57], cor.5.9): Let Γ be a set of Σ0
3–sentences in L2. Then BT+Π0

1–CA−+Π0
2–IR−+WKL+Γ

is conservative over BT+Γ for Π0
3–sentences. Consequently BT+Π0

1–CA− + Π0
2–IR−+WKL

is conservative over PRA.

These theorems are also stated in a generalized hierarchy version in [57] (5.13,5.14).

In contrast to these claims we now show:

Proposition: 12.3 BT+Π0
2–IR− + Π0

1–CA− proves the totality of the Ackermann function and

therefore is not conservative over PRA.

Corollary 12.4 (1), (2) and (3) above (even when Γ = ∅, WKL is dropped and conservativity is

claimed only for Π0
2–sentences) are wrong. This applies a fortiori to BT+Φit.

Proposition: 12.5 BT+Π0
1–CA− is not Π0

3–conservative over the first order fragment of BT+Φit.

Corollary 12.6 The Π0
3–conservativity assertion in (2), (3) is wrong when Γ = ∅ and WKL, Π0

2–

IR− are dropped (for both theories BT and BT+Φit ).

Proof of prop.12.3: Let
∨
yA0(x, y) be a Σ0

1–formula of BT which does not contain any function

variable. By Π0
1–CA− there exists a function g such that

∧
x
(
gx = 0↔

∨
yA0(x, y)

)
. Since function

variables are allowed to occur in instances of QF–IA we can apply QF–IA to F0(x, g) :≡ (gx = 0)

and obtain∨
y A0(0, y) ∧

∧
x
(∨
y A0(x, y)→

∨
y A0(x′, y)

)
→
∧
x
∨
y A0(x, y).

Hence every function variable free instance of Σ0
1–IA, i.e. every instance of Σ0

1–IA− can be proved

in BT+Π0
1–CA−. On the other hand it is known (see [51] ) that there is an instance of Σ0

1–IA−

which together with an application of Π0
2–IR− proves the totality of the Ackermann function (This

fact is mentioned e.g. in [57](!) note 16).
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Proof of prop.12.5: By the proof of prop.12.3 every instance of Σ0
1–IA− is provable in BT+Π0

1–

CA−. Since every instance of Σ0
1–IA− can be logically transformed into a prenex normal form ∈ Π0

3

it suffices to show that there is such an instance – lets call it A– with BT+Φit /̀ A: We first notice

that BT+Φit is conservative over the first order fragment BT′ of BT: Every model of BT′ can be
extended to a model of BT+Φit by letting range the function variables over all primitive recursive

functions. It is known from [40] (see also [51], cor.to thm.1) that there exists an instance A of

Σ0
1–IA− such that BT′ /̀ A.

Corollary 12.7 (to the proofs of prop.12.3 and 12.5) Prop.12.3 and 12.5 also hold if the

functionals Φ1,Φ2,Φ〈〉 are omitted from BT.

In the proofs of prop.12.3 and prop.12.5 we essentially used the fact that in BT function variables

may occur in instances of QF–IA. Let QF–IA− be the restriction of QF–IA to formulas without

function variable and BT− the restriction of BT which results if QF–IA is replaced by QF–IA−.

Within BT− we are not able to derive the usual properties of functionals like Φ1,Φ2 or Φ〈〉 from

their defining equations. Thus in order to deal with WKL (as formulated in [46] ,[57] ) we have to

add the axiom

(∗)
∧
f, x, y(y < x→ (fx)y = fy),

which is provable in BT.

Proposition: 12.8 1) BT− + (∗) + Π0
2–IR− + Π0

1–CA− proves the totality of the Ackermann

function.

2) BT− + (∗) + Π0
1–CA− is not Π0

3–conservative over the first order fragment of BT+Φit.

Proof: Let A(x) be a Σ0
1–formula without function variables: By Π0

1–CA− there exists a function

f ≤ λx.1 such that
∧
x(fx = 0 ↔ A(x)). By (∗) there exists a number y –namely y := fa′ – for

each a such that∧
x ≤ a

(
(y)x = (fa′)x = fx ∧ [

(
fx = 0 ∧A(x)

)
∨
(
fx = 1 ∧ ¬A(x)

)
]
)

and therefore

(1)
∧
x ≤ a

((
(y)x = 0 ∧A(x)

)
∨
(
(y)x = 1 ∧ ¬A(x)

))
.

By QF–IA− we have

(2) (y)0 = 0 ∧
∧
x < a

(
(y)x = 0→ (y)x′ = 0

)
→ (y)a = 0.

(1) and (2) yield

(3) A(0) ∧
∧
x < a

(
A(x)→ A(x′)

)
→ A(a).

Hence BT−+(∗)+Π0
1–CA− proves every instance of Σ0

1–IA−. 1) and 2) now follow from the proofs

of prop.12.3,12.5.

As we already have mentioned above there is a further negative result if Φit is added to BT.

Then even without Π0
2–IR− the principle Σ0

2–AC− is not conservative over PRA:
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Proposition: 12.9 BT+Φit + Σ0
2–AC− proves every (function parameter free) Π0

2–consequence of

Σ0
2–IA− and hence is not conservative over PRA.

Corollary 12.10 For BT+Φit instead of BT (2) is false already with respect to Π0
2–conservativity

even when Π0
2–IR−, WKL and Γ are omitted.

Proof of prop.12.9: Let us consider an instance

(1)


∨
x
∧
y A0(0, x, y) ∧

∧
z
(∨
x
∧
y A0(z, x, y)→

∨
x
∧
y A0(z′, x, y)

)
→
∧
z
∨
x
∧
y A0(x, y, z)

of Σ0
2–IA−. By Π0

1–CA− (which follows from Σ0
2–AC−) there exists a function g such that

(2)
∧
z, x
(
gzx = 0↔

∧
y A0(z, x, y)

)
.

Using g, (1) reduces to an instance of Σ0
1–IA. One easily shows that BT+Φit+AC0,0–qf ` Σ0

1–IA

(see e.g. [32] ). Hence

(3) BT+Π0
1–CA− + Φit+AC0,0–qf ` Σ0

2–IA−.

Since Σ0
2–IA− (which is equivalent to Π0

2–IA− relatively to BT, see e.g. [57] ) proves the totality

of the Ackermann function, the theory BT+Π0
1–CA− + Φit+AC0,0–qf is not Π0

2–conservative over

PRA.
We now show that BT+Φit+Σ0

2–AC− proves every Π0
2– consequence of BT+Π0

1–CA−+Φit+AC0,0–

qf (together with (3) this concludes the proof of the proposition): Suppose that

(4) BT+Π0
1–CA− + Φit+AC0,0–qf `

∧
u
∨
v F0(u, v), where F0 contains only u, v free.

For notational simplicity let us assume that only one instance

(5)
∨
g
∧
x(gx = 0↔

∧
y A0(x, y))

of Π0
1–CA− is used in the proof of (4). Let h be a new function constant with the axiom

(∗)
∧
x, y
(
¬A0(x, hx) ∨A0(x, y)

)
.

It is clear BT+(∗) ` (5). Hence

(6) BT + (∗) + Φit + AC0,0–qf `
∧
u
∨
v F0(u, v).

By functional interpretation there exists a term t[h] in the set of all closed terms of BT+(∗) + Φit

such that78

(7) BT + (∗) + Φit `
∧
u F0(u, t[h]u).

78More precisely one obtains a functional Ψ[h] ∈ P̂R
ω

[h] such that P̂A
ω
|\+ (∗) proves (7). By normalization one

eliminates the higher type levels in Ψ[h] and realizes that Ψ[h] reduces to a functional t[h] which is primitive recursive

in h in the sense of [29]. Finally one verifies that P̂A
ω
|\+ (∗) is conservative over the first order part (BT+(∗) + Φit)

′

of BT+(∗) + Φit (more precisely the first order part of BT plus the defining equations for all functions which are
primitive recursive in h) for arithmetical sentences. This follows from the fact that every model of (BT+(∗) + Φit)

′

can be extended to a model of P̂A
ω
|\ + (∗) by letting range the variables for functionals over all functionals which

are primitive recursive (in the sense of P̂R
ω

) in h.

148



Hence

(8) BT + Φit +
∨
h
∧
x, y
(
¬A0(x, hx) ∨A0(x, y)

)
`
∧
u
∨
v F0(u, v)

and therefore

(9) BT + Φit + Σ0
2–AC− `

∧
u
∨
v F0(u, v).

We now discuss where the errors in the proofs of (1)–(3) in [46] and [57] occur:

Mints reduces QF–IA to the rule of quantifier free induction

QF–IR :
B0(0) , B0(x)→ B0(x′)∧

x B0(x)
.

This can be done by applying QF–IR to

A0(x) :≡ B0(0) ∧
∧
y < x

(
B0(y)→ B0(y′)

)
→ B0(x).

In order to express A0 as a quantifier–free formula one has to eliminate the bounded quantifier∧
y < x. Since B0 may contain function variables (e.g. B0(x) :≡ (fx = 0)) this elimination requires

the use of a primitive recursive functional as e.g. Φ1 or Φ2 (Mints uses Φ2 to express bounded

quantification in a quantifier free way). If now B0 involves a function g which results from Π0
1–CA−

then the corresponding instance of QF–IA is reduced to a g–free instance of Π0
2–IR by replacing g

by its graph (which ’is described in the form of a Π0
2–formula’ ([46] p.1490)). Then Mints applies a

previous result that BT is closed under Π0
2–IR which finishes his proof.

The problem with this argument is that the elimination of g only works in this way if g occurs

everywhere in the form g(t) in B0 but not if g occurs also as a function argument Φ1g or Φ2g. In

the later case one first has to reduce expressions like Φ1gx = y to
∧
i ≤ x(y ≥ gi)∧

∨
j ≤ x(y = gj)

and to eliminate g from the result. However the bounded quantifiers
∧
i ≤ x,

∨
j ≤ x now stand in

front of the Π0
2–formula which results from the g–elimination. In contrast to bounded quantifiers in

front of quantifier–free formulas these bounded quantifiers can not be neglected in BT. In fact to

express e.g.
∨
y ≤ x

∧
u
∨
v B0 as a Π0

2-formula requires Π0
1–CP which implies Σ0

1–IA (and combined

with Π0
2–IR proves the totality of the Ackermann function).

Sieg uses a sort of ε–terms to reduce theories like BT+Π0
1–CA− + Π0

2–IR− to certain ’operator

theories’ Π0
0–OT2

1+QF–AC0 + Π0
2–IR. He also does not treat the (genuine) primitive recursive func-

tionals in his definition of the number terms of OT2: If one adds here the clause ’If f is a function

term and t a number term then Φft is a number term’ (where e.g. Φ = Φ1 or = Φ〈〉) one gets

problems with the interpretation of the operator theories: The reduction of OT2
n to fragments of

second order arithmetic via the τn–translation no longer works in the way presented in [57] (2.2). It

is not even clear how to define the ν–depth of Φ(νx.(A0(x)), t) anymore. Besides this in Sieg’s proof

of 5.8 one has to understand Π0
0 w.r.t. L(OT2

1) and not with respect to L(Z) (as is claimed by Sieg):

Since function parameters are allowed to occur in QF–IA, in particular the functions obtained from

Σ0
2–AC−0 may occur in QF–IA. Therefore the reduction of Σ0

2–AC−0 to OT2
1+QF–AC0 only works

if in the schema of quantifier–free induction of OT2
1 ν–terms (which are used in the reduction of
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Σ0
2–AC−0 to QF–AC0) are allowed to occur. However the τn–translation of such instances of QF–IA

requires (according to Sieg’s remarks on p.45) already Π0
2–IA which proves the totality of the Ack-

ermann function.

Finally both arguments by Mints and Sieg do not establish (as they stand) the following weak-

ening of (1) which is a corollary of our prop.12.1:

(1)′


If BT + Π0

1–CA− `
∧
x
∨
y A0(x, y),

then there is a primitive recursive function ϕ such that

PRA `
∧
x A0(x, ϕx).

(Here A0(x, y) ∈ L(PRA) contains only x, y free. This result also follows if all the functionals Φi

with i ∈ IN from G∞Aω are added to BT but not if Φit is added: compare prop.12.9 .) Since

the reduction of Π0
1–CA− to Π0

2–IR by Mints uses Σ0
1–CP which proves (combined with Π0

2–IR)

the totality of the Ackermann function it is not possible to obtain (1)′ using his argument. The

failure of Sieg’s proof has nothing to do with Π0
2–IR and its straightforward correction needs Π0

2–IA

(which is not conservative over PRA) already for the treatment of BT+Π0
1–CA−. In any case both

methods (even if they can be corrected to yield (1)′) are not usuable for our results on finite type

theories from chapter 11, since they rest on the elimination of function symbols f by their graphs
which is not possible if a proof applies for instance variables of type 2 to these function symbols as

it is possible in our context (e.g. we may use f as the bounding function of the fan in the axiom F

from chapter 7).
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13 Summary of results on the growth of uniform bounds

In this paper we have considered proofs of sentences79

(+)
∧
u1, k0

∧
v ≤τ tu k

∨
wγA0(u, k, v, w) (where γ ≤ 2)

in various parts of classical analysis, more precisely in GnAω + Γ+AC–qf, where Γ is a set of
analytical theorems. Using proof–theoretic methods we are able to extract uniform bounds Φ on∨
wγ which do not depend on v such that

(++)
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w)

holds classically80 , i.e. is true in the full set–theoretic type structure Sω.

In chapter 2 (see thm.2.2.2 and the remark on it) we have shown in particular that

Theorem 13.1 Let ∆ be a set of sentences having the form
∧
xδ
∨
y ≤ρ sx

∧
zηB0(x, y, z), where

s ∈GnRω. Let A0(u1, k0, v, wγ) contain only u = u1
1, . . . , u

1
j , k = k0

1, . . . k
0
l and v, w as free variables,

where γ ≤ 2. Then the following rule holds:
GnAω + ∆+AC–qf `

∧
u1, k0

∧
v ≤τ tu k

∨
wγA0(u, k, v, w)

⇒ one can extract a term Φ ∈GnRω such that

GnAω
i + ∆ + b-AC `

∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w).

If ∆ = ∅, then b-AC is not needed in the conclusion.

For γ ≤ 1 (γ = 2), Φ has the form λu, k.Φ̃uMk (λu, k, y1.Φ̃uMkyM ) , where Φ̃ ∈GnRω
− and by the

results from chapter 1 (prop.1.2.21, the cor. to the proof of 1.2.21 and prop.1.2.22) we have:

For n = 1: Φ̃uMk ( Φ̃uMky0 resp. Φ̃uMkyM ) is a linear function in uM , k

(uM , k, y0 resp. uM , k, yM )

For n = 2: Φ̃uMk ( Φ̃uMky0 resp. Φ̃uMkyM ) is a polynomial in uM , k

(uM , k, y0 resp. uM , k, yM )

For n = 3: Φ̃uMk ( Φ̃uMky0 resp. Φ̃uMkyM ) is an elementary recursive

function in uM , k (uM , k, y0 resp. uM , k, yM ).

We recall that by definition tf1x0 is a linear function (polynomial resp. elementary recursive

function) in f, x if there is a term t̂[f, x] of type 0 containing only f := f1
1 , . . . , f

1
i and x := x0

1, . . . , x
0
j

free such that

(i)
∧
f, x

(
tfx =0 t̂[f, x]

)
and

79Sometimes we have formulated (for notational simplicity) only the case
∧
u1 instead of

∧
u1, k0. However using

suitable coding the general case reduces to the special one in GnAωi for n ≥ 2 (Also all of our proofs immediately

generalize to tuples without the need of any coding).
80For the mathematical significance of sentences (+) and of such uniform bounds see [37],[38], [39] and the discussion

at the end of chapter 3 of the present paper. We recall that A0, B0, . . . always denote quantifier–free formulas.
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(ii) t̂[f, x] is built up from 00, x0
1, . . . , x

0
j , f

1
1 , . . . , f

1
i , S

1,+ (or 00, x0
1, . . . , x

0
j , f

1
1 , . . . , f

1
i , S

1,+, ·
resp. 00, x0

1, . . . , x
0
j , f

1
1 , . . . , f

1
i , S

1,+, ·, λx0, y0.xy) only.

In particular if tfx is a polynomial in fM , x, then for every polynomial p ∈ IN[x] the function λx.tpx

can be written as a polynomial in IN[x]. Moreover (by prop.1.2.30 ) for t1(1) ∈ G2Rω there exists a

polynomial q ∈ IN[x] (depending only on the term structure of t) such that
For every polynomial p ∈ IN[x]

one can construct a polynomial r ∈ IN[x] such that∧
f1
(
f ≤1 p→

∧
x0(tfx ≤0 r(x))

)
and deg(r) ≤ q(deg(p)).

The cases n = 2 and n = 3 are of particular interest since within G2Aω many of the fundamental
notions of the analysis of continuous functions can be treated but some as e.g. the unrestricted
exponential function exp need G3Aω.

Let us consider the following analytical properties, principles and theorems:

I. • Basic properties of the operations +,−, ·, (·)−1, | · |,max,min and the relations =,≤, <
for rational numbers and real numbers (which are given by Cauchy sequences of rationals

with fixed Cauchy rate, see chapter 3 §1 for details).

• Basic properties of maximum and sum for sequences of real numbers of variable length

(see chapter 3 §3).

• Basic properties of uniformly continuous81 functions f : [a, b]d → IR, sup
x∈[a,b]

fx and

x∫
a

f(x)dx for f ∈ C[a, b] where a < b (see chapter 3 §2,3).

• The Leibniz criterion, the quotient criterion, the comparison test for series of real num-
bers. The convergence of the geometric series together with its sum formula. The

nonconvergence of the harmonic series. (But not: The Cauchy property of bounded

monotone sequences in IR or the Bolzano–Weierstraß property for bounded sequences in

IR). See chapter 4 for details.

• Characteristic properties of the trigonometric functions sin, cos, tan, arcsin, arccos, arctan

and of the restrictions expk and lnk of exp, ln to [−k, k] for every fixed number k.

• Fundamental theorem of calculus.

• Fejér’s theorem on uniform approximation of 2π–periodic uniformly continuous functions
f : IR→ IR by trigonometric polynomials.

• Equivalence (local and global) of sequential continuity and ε–δ–continuity for f : IR→ IR.

II. • Attainment of the maximum of f ∈ C([a, b]d, IR) on [a, b]d.

• Mean value theorem of differentiation.

• Mean value theorem for integrals.

81Uniformly continuous is meant always endowed with a modulus of uniform continuity. In the presence of III.
below we can prove the uniform continuity (with a modulus) of pointwise continuous functions f : [a, b]d → IR.
Thus together with III. we have I. also for pointwise continuous functions. Instead of [a, b]d we may also have
[a1, b1]× . . .× [ad, bd] where ai < bi for i = 1, . . . , d.
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• Cauchy–Peano existence theorem.

• Brouwer’s fixed point theorem for uniformly continuous functions f : [a, b]d → [a, b]d.

(See chapter 7 for precise formulations of these principles).

III. • Uniform continuity (together with the existence of a modulus of uniform continuity) of

pointwise continuous functions f : [a, b]d → IR.

• Sequential form of the Heine–Borel covering property of [a, b]d ⊂ IRd.

• Dini’s theorem: Every sequence (Gn) of pointwise continuous functions Gn : [a, b]d → IR

which increases pointwise to a pointwise continuous function G : [a, b]d → IR converges

uniformly on [a, b]d to G and there exists a modulus of uniform convergence.

• Every strictly increasing pointwise continuous function G : [a, b] → IR possesses a uni-

formly continuous strictly increasing inverse function G−1 : [Ga,Gb]→ [a, b].

• König’s lemma WKL2
seq for sequences of binary trees.

(See chapter 7 for precise formulations of these principles).

In the chapters 3–6 we have shown that G2Aω+AC0,1–qf proves the analytical facts summerized

under I. so that theorem 13.1 applies with ∆ = ∅.

In chapter 7 §1 we have shown that the principles II. can be expressed in the language of G2Aω

as sentences (∗)
∧
x1
∨
y ≤1 sx

∧
z0/1B0 ∈ ∆ or follow relatively to G2Aω+AC0,0–qf from such sen-

tences. In the following let ∆ denote the finite set of these sentences (∗) used in chapter 7 §1. One

clearly has Sω |= ∆. Hence by thm.13.1 we obtain the following results for γ ≤ 2 and n ≥ 2:

From a proof

GnAω+AC–qf+I+II `
∧
u1, k0

∧
v ≤τ tu k

∨
wγA0(u, k, v, w)

one can extract a bound Φ ∈GnRω such that Φ has the form as in thm.13.1 and

GnAω
i + ∆+b-AC `

∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w)

and therefore

Sω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w).

In particular (for γ = 0):

Φu k is a polynomial in uM , k if n = 2 and

Φu k is an elementary recursive function in uM , k if n = 3.

The theorems III. can be proved in G2Aω⊕AC1,0–qf ⊕F− (see chapter 7 §2,3).

Hence for n ≥ 2

GnAω+AC–qf+I+II⊕III `
∧
u1, k0

∧
v ≤τ tu k

∨
wγA0(u, k, v, w)

implies

GnAω+AC–qf + ∆ ` F− →
∧
u1, k0

∧
v ≤τ tu k

∨
wγA0(u, k, v, w)

Thus combined with the proof of thm.7.2.20 we obtain
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Theorem 13.2 Let n ≥ 2 and γ ≤ 2. Then the following rule holds:

(+)



From a proof

GnAω+AC–qf+I+II⊕III `
∧
u1, k0

∧
v ≤τ tu k

∨
wγA0(u, k, v, w)

one can extract a bound Φ ∈GnRω such that Φ has the form as in thm.13.1 and

Gmax(n,3)A
ω
i + ∆+b-AC `

∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w)

and therefore

Sω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w).

In particular (for γ = 0):

Φu k is a polynomial in uM , k if n = 2 and

Φu k is an elementary recursive function in uM , k if n = 3.

(In the case n ≥ 3 the proof of the assumption may use also e.g. the unrestricted exponential func-

tion exp and the unrestricted logarithm ln.)

For τ ≤ 2 the conclusion

Sω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w)

holds even when GnAω+AC–qf+I+II⊕III is replaced by GnAω+AC–qf+I+II+III.

For τ ≤ 1 (which is the most important case for applications) (+) holds also for

E–GnAω+AC1,0–qf+AC0,1–qf+I+II+III

instead of

GnAω+AC–qf+I+II⊕III.

A result analogous to (+) holds for PRAω, P̂R, PRAω
i and PAω, T , PAω

i instead of GnAω, GnRω,

Gmax(n,3)A
ω
i .

Proof: In view of the comments above it remains to show the special assertions for τ ≤ 2 and
τ ≤ 1:

For τ ≤ 2 the elimination of F− is not needed for a classical verification of Φ since F− has the
logical form of an axiom ∆ in thm.13.1 and

Mω |= GnAω + ∆+b-AC+F− (see chapter 7 §2) and thus

Mω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w) which implies

Sω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w)

(since τ, γ ≤ 2 and v ≤ tu k is majorized by t∗uMk, where t∗ is a majorant of t).

For τ ≤ 1 we argue as follows:

E–GnAω+AC1,0–qf+AC0,1–qf+I+II+III ` (. . .)
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implies

E–GnAω+AC1,0–qf+AC0,1–qf+∆ ` F− → (. . .)

since E–GnAω satisfies the deduction theorem w.r.t. +. Elimination of extensionality now yields

GnAω+AC1,0–qf+AC0,1–qf+∆ ` F− → (. . .)

(Note that the sentences in ∆ used to derive II only have variables of type ≤ 1 and that (F−)e is

implied by F−). Now one proceeds as in the proof of (+).

Growth caused by (function parameter–free) applications of the Σ0
1–induction rule

Σ0
1–IR−:

¿From chapter 9 it follows that a single application of Σ0
1–IR− may increase the growth of the

bound Φ in thm.13.2 by one level in the hierarchy (GnRω)n∈IN. Thus if the proof of∧
u1, k0

∧
v ≤τ tu k

∨
wγA0(u, k, v, w)

uses besides GnAω+AC–qf and I–III a single application of Σ0
1–IR− whose upper formulas are

provable in GkAω+AC–qf plus I–III (k ≥ 2), then only a bound Φ ∈Gmax(n,k+1)R
ω is guaranteed

(In chapter 9 we have presented an example from analysis where such a speed up actually happens).

Growth caused by the axiom of Σ0
1–induction Σ0

1–IA and the Cauchy property of

bounded monotone sequences in IR (PCM1):

In chapter 9 we have shown that G3Aω proves the equivalence of Σ0
1–IA and (PCM1). The impli-

cation (PCM1)→ Σ0
1–IA holds even in G2Aω

i and we have constructed a functional χ ∈G2Rω such

that PCM1(χ(g))→ Σ0
1–IA(g) (see prop.9.2).

According to the results in chapter 9 the contribution of PCM1(xn) (where (xn) is a decreasing

sequence of positive real numbers82 ) to the growth of bounds is given by a functional Ψ such that

(1)
∧
k0, g1

∨
n ≤0 Ψ((xn), k, g)

(
gn >0 n→ xn −IR xgn ≤IR

1

k + 1

)
.

A functional Ψ which satisfies (1) is given by

(2)Ψ((xn), k, g) := max
i<C(x0)(k+1)

(gi(0)),

where gi(x) is the i–th iteration of g (i.e.

i times︷ ︸︸ ︷
g(. . . (gx) . . .) and IN 3 C(x0) ≥ x0 (e.g. C(x0) :=

x0(0) + 1).

Since this functional Ψ satisfies (provably in PRAω) the monotone functional interpretation of the

negative translation of PCM1 we have

82The restriction to the special lower bound 0 is convenient but of course not essential. Analogous results hold for
increasing sequences (xn) which are bounded from above.

155



Theorem 13.3 Let n ≥ 2 and γ ≤ 2. Then the following rule holds:

From a proof

GnAω+AC–qf+(PCM1)+I+II⊕III `
∧
u1, k0

∧
v ≤τ tu k

∨
wγA0(u, k, v, w)

one can extract a bound Φ ∈GnRω[Ψ] (where Ψ is defined as in (2) above) such that

PRAω
i + ∆+b-AC `

∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w)

and therefore

Sω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w).

In particular Φ is a primitive recursive functional in the sense of [30].

The special assertions for τ ≤ 2 and τ ≤ 1 from thm.13.2 hold analogously.

This result is valid also for PRAω, P̂R, PRAω
i and PAω, T , PAω

i instead of GnAω, GnRω[Ψ], PRAω
i .

Since Σ0
1–IA (and so PCM1) suffices to introduce every primitive recursive function relative to

GnAω (for n ≥ 2) in general only a primitive recursive bound is guaranteed. However in concrete

proofs in analysis usually PCM1 is not used iterated and so Φ will have only ’Ψ–depth’ 1. In this
case λk.Φuk has a growth of type Gmax(n,k)+1Rω for input functions u having growth of type GkRω.

A particular important special case is where (1) is applied only to g := S. Then Ψ((xn), k, g) ≤
C(x0) ·(k+1) contributes only polynomial (in fact quadratic) growth and thus for n = 2 one obtains

a bound Φu k which is polynomial in uM , k in this situation.

Growth caused by single (sequences of) instances of analytical principles involving

arithmetical comprehension:

In chapter 11 we have studied the following principles:

1) The Cauchy property together with the existence of a Cauchy modulus (which implies

the convergence) for bounded monotone sequences (xn) in IR (short: PCM2(xn))83

2) The existence of a greatest lower bound for sequences (xn) ⊂ IR+ (short: GLB(xn))

3) Comprehension for Π0
1–formulas

Π0
1–CA(f1(0)) :≡

∨
g1
∧
x0
(
gx =0 0↔

∧
y0(fxy =0 0)

)
4) Choice for Π0

1–formulas

Π0
1–AC(f1(0)(0)) :≡

∧
x0
∨
y0
∧
z0(fxyz =0 0)→

∨
g1
∧
x, z(fx(gx)z =0 0)

5) The Bolzano–Weierstraß principle for bounded sequences (xn) ⊂ IRd for every fixed number

d (short: BW (xn))84

83For simplicity we may consider only decreasing sequences in IR+.
84In chapter 11 we have distinguished between two versions of this principle (called BW and BW+). BW asserts

the existence of a limit point whereas BW+ asserts the existence of a convergent subsequence of (xn). Since both
principles have the same impact on the growth of bounds (which however is more difficult to prove for BW+) we
now denote both versions by BW . Similarly for A–A in 6) below.
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6) The Arcelà–Ascoli lemma for bounded equicontinuous sequences (fn) ⊂ C[0, 1]

(short: A–A(fn)).

Whereas the universal closure of these principles (i.e.
∧

(xn)
(
PCM2(xn)

)
in the case of PCM2)

implies full arithmetical comprehension and thus makes every α(< ε0)–recursive function provably

recursive when added to GnAω for n ≥ 2 (see chapter 11) this does not happen if only single

sequences of instances (which may depend on the parameters u, k, v) of these principles are used

in a proof of
∧
u, k
∧
v ≤τ tu k

∨
wγA0, i.e.∧

u, k
∧
v ≤τ tu k

(∧
l0
(
PCM2(ξu kvl)

)
→
∨
wγA0

)
,

where ξ is a closed term of GnAω.
More precisely we have the following theorem

Theorem 13.4 Let n ≥ 2 and τ, γ ≤ 2, ξ ∈GnRω (of suitable type). Then the following rule holds

From a proof

GnAω+AC–qf+I+II+III `
∧
u1, k0

∧
v ≤τ tu k

(∧
l0
(
PCM2(ξu kvl)

)
→
∨
wγA0(u, k, v, w)

)
one can extract a bound Φ ∈GnRω such that

Gmax(n,3)A
ω
i + ∆ + F−+b-AC `

∧
u1, k0

∧
v ≤τ tu k

∧
Ψ∗
(
(Ψ∗ satisfies the mon.funct. interp. of∧

a1(0)(0), k0, g1
∨
n0(gn > n→

∧
l ≤ k

(
(̃a)l(n)−IR (̃a)l(gn) ≤IR

1
k+1 ))

)
→
∨
w ≤γ Φu kΨ∗A0

)
and

Sω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu kΨA0(u, k, v, w),

where Ψ := λa, k, g. max
i<C(a,k)(k+1)2

(gi(0)), IN 3 C(a, k) ≥ maxIR((a0)(0), . . . , (ak)(0)) and ã(n) :=

maxIR(0,min
i≤n

IR(a(i))).

In fact Φ (more precisely a slight variant of Φ) only needs (instead of Ψ∗ as input) a functional Ψ̃∗

which satisfies the monotone functional interpretation of the instance λl0.ξu kvl of ’
∧
a1(0)(0)(. . .)’.

If only a single instance PCM2(ξu kv) is used then even a functional Ψ̃∗ which satisfies the mono-

tone functional interpretation of
∧
k, g
∨
n(gn > n → ( ˜ξu kv)(n) −IR ( ˜ξu kv)(gn) ≤IR

1
k+1 ) is suffi-

cient.

This result also holds for
∧
l0
(
GLB(ξu kvl)

)
,
∧
l0
(
Π0

1–CA(ξu kvl)
)
,
∧
l0
(
Π0

1–AC(ξu kvl)
)
,∧

l0
(
BW (ξu kvl)

)
and (for n ≥ 3) also for

∧
l0
(
A–A(ξu kvl)

)
instead of

∧
l0
(
PCM2(ξu kvl)

)
(ξ ∈GnRω of suitable type).85

For τ ≤ 1: GnAω+AC–qf+I+II+III may be replaced by E–GnAω+AC1,0–qf+AC0,1–qf+I +II+III.

Proof: As in the proof of thm.13.2 the assumption yields that

GnAω+AC–qf+∆ + F− `
∧
u1, k0

∧
v ≤τ tu k

(∧
l0
(
PCM2(ξu kvl)

)
→
∨
wγA0(u, k, v, w)

)
.

85Then Ψ̃∗ has to satisfy the monotone functional interpretation of the instance λl.ξ′u kvl of ’
∧
a1(0)(0)(. . .)’for a

suitable ξ′ ∈GnRω .
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The conclusion (for
∧
l0
(
PCM2(ξu kvl)

)
now follows from prop.11.1.3, the fact thatMω |= GnAω+

∆ + F−+b-AC (see chapter 7) and the fact that (as in the proof of thm.13.2)

Mω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w) implies

Sω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w).

The assertions for the other principles follow from 11.2 and the propositions 11.3.3,11.3.4,11.4.3

and 11.5.1 (More precisely from the proofs of these propositions some of which are formulated

only for single instances ξuv instead of sequences λl0.ξuvl. However the proof e.g. for BW re-

duces every instance BW (f) to an instance PCM2(tf) and hence
∧
l0
(
BW (ξu kvl)

)
reduces to∧

l0
(
PCM2(ξ′u kvl)

)
and so to PCM2∗(ξ′′u kv) for a suitable ξ′, ξ′′ ∈GnRω so that prop.11.1.3

applies. Similar for the other principles).

Remark 13.5 1) Instead of
∧
l0
(
PCM2(ξu kvl)

)
we may also use a strengthened version

PCM2∗ which asserts the existence of a sequence of Cauchy moduli for the sequence λl0. ˜ξukvl
of monotone sequences (see prop. 11.1.3).

2) For GnAω+AC–qf+I+II⊕III instead of GnAω+AC–qf+I+II+III we can eliminate F− from

the conclusion and may have an arbitrary type τ as in thm.13.2.

3) In the theorem above we may also have the conjunction
∧
l0
(
PCM2(ξ1u kvl)

)
∧∧

l0
(
GLB(ξ2u kvl)

)
∧ . . . of sequences of instances of the principles treated in this theorem

(for ξ1, ξ2, . . . ∈GnRω) since a (fixed) finite number of sequences of instances of PCM2 can

be coded into a single sequence of such instances.

4) In thm.13.4 we may add also single sequences of instances of ∆0
2–IA and Π0

1–CP since they

follow from suitable sequences of instance of Π0
1–CA and Π0

1–AC (see chapter 11). But note

that the theorem becomes false if the full axiom Σ0
1–IA is added: Using suitable instances

of Π0
1–CA one can prove (in the presence of Σ0

1–IA) Σ0
2–IA− which suffices to establish the

totality of the Ackermann function. In particular the theorem does not hold for PRAω, P̂R,

PRAω
i instead of GnAω, GnRω, GnAω

i since PRAω+AC–qf proves Σ0
1–IA.

Finally we have investigated the following principle w.r.t. its impact on the growth of bounds

7) For every bounded sequence (xn) ⊂ IR there exists the lim sup (short: ∃ lim sup(xn)).

For simplicity we restrict ourselves to sequences in Q ∩ [−1, 1] (In chapter 11 we have seen

that the general case can be reduced to this).
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Theorem 13.6 Let n ≥ 2 and τ, γ ≤ 2, ξ ∈GnRω (of suitable type). Then the following rule holds:

From a proof

GnAω + AC–qf +I+II+III `
∧
u1, k0

∧
v ≤τ tu k

(
∃ lim sup(ξu kv)→

∨
wγA0(u, k, v, w)

)
one can extract a bound χ ∈ GnRω such that

GnAω
i + ∆ + F− + b-AC `

∧
u1, k0

∧
v ≤τ tu k

∧
Ψ∗
(
(Ψ∗ satifies the mon. funct.interpr. of

the negative translation L(ξu kv)′ of L(ξu kv)) →
∨
w ≤γ χukΨ∗ A0(u, k, v, w)

)
and in particular one can construct a bound Φ ∈ T1 such that

PAω
i + ∆ + F− + b-AC `

∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w)

and

Sω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w),

where

L(x1) :≡
∧
k
∨
l >0 k

∧
K ≥0 l

∨
j
∧
q, r ≥0 j

∧
m,n(K ≥0 m,n ≥0 l→ |xmq −Q xnr | ≤Q

1

k + 1
),

with xmq := maxQ(xm, . . . , xm+q) and

T1 is the restriction of Gödel’s T which contains only the recursor Rρ for ρ = 1 (see chapter 2).

The Ackermann function (but no functions of essentially greater order of growth) can be defined in

T1.

Proof: As in the proof of thm.13.2 the assumption implies that

GnAω + AC–qf + ∆ + F− `
∧
u1, k0

∧
v ≤τ tu k

(
∃ lim sup(ξu kv)→

∨
wγA0(u, k, v, w)

)
.

The theorem now follows from prop.11.6.4 using that

Mω |= PAω + ∆ + F−+b-AC and the fact that

Mω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w) implies

Sω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k A0(u, k, v, w).

By lemma 11.6.3.2) the reduction of ∃ lim sup(ξu kv) to L(ξu kv) is sharp. Since it is very unlikely

that L(xn) has a monotone functional interpretation without R1, the principle ∃ lim sup seems to be

the strongest principle (w.r.t. its impact on growth) used in the standard parts of classical analysis

of continuous functions.

Growth of functional dependencies for logically complex formulas in (non–constructive)

analytical proofs relatively to the intuitionistic theories E–GnAω
i :

Let A be the set of the following theorems and principles:86

86In 1)–4) continuous functions on [a, b]d are always understood to be endowed with a modulus of uniform continuity.
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1) Attainment of the maximum of f ∈ C([a, b]d, IR)

2) Mean value theorem for integrals

3) Cauchy–Peano existence theorem

4) Brouwer’s fixed point theorem for uniformly continuous functions f : [a, b]d → [a, b]d

5) The generalization WKL2
seq of the binary König’s lemma WKL

6) The ’double negation shift’ DNS :
∧
x¬¬A→ ¬¬

∧
x A

7) The ’lesser limited principle of omniscience’

LLPO :
∧
x1, y1

∨
k ≤0 1([k = 0→ x ≤IR y] ∧ [k = 1→ y ≤IR x])

8) Comprehension for negated formulas:

CAρ¬ :
∨

Φ ≤0ρ λx
ρ.10

∧
yρ
(
Φy =0 0↔ ¬A(y)

)
, where A is arbitrary.

Theorem 13.7 Let γ ≤ 2, n ≥ 2, t ∈ GnRω and C,D arbitrary formulas of E–GnAω such that∧
u1, k0

∧
v ≤τ tu k

(
¬C →

∨
wγD(u, k, v, w)

)
is closed. Then the following rule holds

From a proof

E–GnAω
i +AC + IP¬ +A `

∧
u1, k0

∧
v ≤τ tu k

(
¬C →

∨
wγD(u, k, v, w)

)
one can extract a bound Φ ∈GnRω such that

E–GnAω+AC +A `
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k

(
¬C → D(u, k, v, w)

)
and therefore

Sω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k

(
¬C → D(u, k, v, w)

)
.

An analogous result holds E–PRAω
i , P̂R, E–PRAω and E–PAω

i , T , E–PAω instead of E–GnAω
i ,

GnRω, E–GnAω.

Proof: The theorem follows immediately from thm.8.3 and the fact that the sentences in A can

be expressed in the logical form
∧
x(A→

∨
y ≤ sx¬B) as we have seen in chapter 8.

Let B consist of the following theorems and principles:

1) Attainment of the maximum of f ∈ C([a, b]d, IR)

2) Mean value theorem for integrals

3) Cauchy–Peano existence theorem

4) Brouwer’s fixed point theorem for uniformly continuous functions f : [a, b]d → [a, b]d

5) The generalization WKL2
seq of the binary König’s lemma WKL
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6) The ’double negation shift’ DNS :
∧
x¬¬A→ ¬¬

∧
x A

7) The ’lesser limited principle of omniscience’

LLPO :
∧
x1, y1

∨
k ≤0 1([k = 0→ x ≤IR y] ∧ [k = 1→ y ≤IR x])

8) Comprehension for
∨

–free formulas:

CAρ∨f :
∨

Φ ≤0ρ λx
ρ.10

∧
yρ
(
Φy =0 0↔ A(y)

)
, where A is

∨
–free

9) The generalization of the axiom F to arbitrary types ρ:

Fρ :≡
∧

Φ0ρ0, yρ0
∨
y0 ≤ρ0 y

∧
k0
∧
z ≤ρ yk

(
Φkz ≤0 Φk(y0k)

)
10) Every pointwise continuous function F : [a, b]d → IR is uniformly continuous (together with a

modulus of uniform continuity)

11) Every sequence of continuous functions Fn : [a, b]d → IR which converges pointwise to a

continuous function F : [a, b]d → IR converges uniformly on [a, b]d (together with a modulus

of convergence)

12) Every sequence of balls (not necessarily open ones) which cover [a, b]d contains a finite sub-

covering.

Theorem 13.8 Let n ≥ 2, γ, τ ≤ 2, C be
∨

–free and D ∈ Γ1 such that
∧
u1, k0

∧
v ≤τ tu k

(
C →∨

wγD) is closed, where t ∈GnRω. Suppose that all positively occuring
∧
xρ (resp. negatively

occuring
∨
xρ) in C →

∨
wD have types ≤ 1 and all other quantifiers have types ≤ 2. Then the

following rule holds:

From a proof

E–GnAω
i +AC + IP∨f + B `

∧
u1, k0

∧
v ≤τ tu k

(
C →

∨
wγD(u, k, v, w)

)
one can extract a bound Φ ∈GnRω such that

E–GnAω+b–AC + B− `
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k

(
C → D(u, k, v, w)

)
and

Sω |=
∧
u1, k0

∧
v ≤τ tu k

∨
w ≤γ Φu k

(
C → D(u, k, v, w)

)
,

where B− := B \ {10), 11), 12)}.
An analogous result holds E–PRAω

i , P̂R, E–PRAω and E–PAω
i , T , E–PAω instead of E–GnAω

i ,

GnRω, E–GnAω.

Proof: The first part of the theorem follows from thm.8.8 , the fact that the principles 1)–9) from

B have the logical form
∧
x
(
G →

∨
y ≤ sxH

)
(where G ∈ Γ1 and H is

∨
–free) and the fact that

principles 10)–12) follow from AC and F relatively to E–G2Aω
i (see chapter 8).

Since Mω |= E–GnAω+b–AC+B− the conclusion holds in Mω and so (since τ, γ ≤ 2) in Sω.
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Remark 13.9 As a special corollary of thm.13.8 one obtains the consistency of

E–GnAω
i +AC+IP∨f +B which is not obvious since (due to 10)–12)∈ B) the corresponding classical

theory is inconsistent.

In this paper we have studied the impact of many analytical theorems on the growth of extractable
bounds. Moreover we have developed general methods to determine this impact. These methods
can be applied to many further analytical tools. In practice one will try to apply them directly

to the analytical lemmas G which are used in a concrete given proof (even if these lemmas can

be proved e.g. in GnAω plus analytical theorems whose contribution to growth has already been

determined) because this may avoid the need of analyzing the whole proof of G (e.g. if G can be

reduced to a sentence
∧
xδ
∨
y ≤ρ sx

∧
zηA0 then the proof of G is not relevant for the construction

of the bound but only for its verification) and will in general provide better bounds.
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Errata (1998):

P.ii: delete footnote 2.
P.2, l.14: ‘addition of 00 and of’ instead of ‘addition of’
P.2, l.23: add ‘x ≤0 y ∧ y ≤0 x↔ x =0 y’
P.8, Prop.1.2.16 must be modified into ‘f∗ ≥ 1 ∧ f∗ s-maj f ∧ x∗ ≥0 x → Φjf

∗x∗ ≥0 Φjfx’. In

the proof of 1.2.16, the case 2.1 (whose treatment is incorrect) now falls away. The proof of 1.2.18

(which is the only application of 1.2.16) remains unchanged.

p.19, l.-9: ‘` A’ instead of ‘` (A′)’

P.21, l.-12: ‘strengthen’ instead of ‘strenghten’

P.25, l.7: ‘max(ui0, . . . , uix)’ instead of ‘max(u0, . . . , ux)’

P.29, l.-5: ‘<IR’ instead of ‘<Q ’

P.30, l.-11: ‘|x̂2(m+1)k · ˆ̃x2(m+1)k −Q x̂2(m̃+1)k · ˆ̃x2(m+1)k|’
P.30, l.-4: ‘λn.x̂k’ instead of ‘λn.xk’
P.43, Def.3.3.1: add ‘k even’ and ‘k odd’ to the 1st and 2nd case resp.

P.76, l.11,13: ‘
∧
x1
∧
y ≤1 sx’ instead of ‘

∧
x1
∨
y ≤1 sx’

P.76, l.-12: ‘boundedness’ instead of ‘boundednes’

P.77, l.10: ‘GnAω⊕AC1,0-qf’ instead of ‘GnAω+AC1,0-qf’

P.81, Prop.7.3.1: ‘AC1,0-qf’ instead of ‘AC1,0’
P.88, l.3: ‘E-GnAω’ instead of ‘E-GnAω

i ’

P.105, l.13, ‘T ω’ instead of ‘T ωi ’

P.106, footnote 5: ‘Herbrand’ instead of ‘Hebrand’
P.117, l.9: ‘upper index’ instead of ‘lower index’
P.117, l.-14: ‘under S, definition ...’ instead of ‘under definition...’

P.117, l.-8: ‘Ψ∗[x0, h1]’ instead of ‘Ψ∗[x0, h1]’

P.118, l.-11: ‘
∨
wγAH0 ’ instead of ‘AH0 ’

P.121, l.2: ‘interpretation of the negative translation of’ instead of ‘interpretation of’
P.124, l.6: ‘GnAω’ instead of ‘GnAω

i ’

P.126, last line: ‘Π0
1-CA(f)’ instead of ‘Π0

1-CA(g)’

P.127, l.10: ‘GnRω’ instead of ‘G2Rω’
P.134, l.12: ‘GnRω’ instead of ‘G2Rω’
P.138, l.3: ‘x̆n’ instead of ‘x̆m’

P.150, l.11: ‘Π0
1-CP’ instead of ‘Σ0

1-CP’

P.158, l.1: ‘PRAω’ instead of ‘GnAω’
P.158, l.3,4: ‘Φu k ψ’ instead of ‘Φu k’

P.161, l.1: add ‘for
∨

-free A
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