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Introduction*®

It is known since the twenties of this century (mainly due to the work of D. Hilbert which is reported
in [25] ) that the part of mathematics which usually is called classical analysis can be developed to
a great extent in formal systems 2 of the following type:

Let PA2 denote the extension of the usual first-order Peano arithmetic PA by variables X,Y, Z, ...
for sets of natural numbers together with quantifiers over these variables and their usual logical
axioms and rules. In this language one can formulate the axiom schema of comprehension over
numbers:

CAset . \/X/\g:(x cX & A(I))a

where z is a number variable and A is an arbitrary formula (not containing X free) of PA2. In
particular A may contain set quantifiers.

Now 2 is defined as PA2+CASs¢t,

For the formalization of notions and proofs in analysis it is more convenient to have (besides
variables x°,9°, 20, ... over numbers) also variables !, y', f1,g',... over functions IN — IN and
variables x2,92, 2% ®2 W2 ... over function(al)s : NN — IN of such functions and so on. More
generally z°(7) is a function which maps objects of type 7 into objects of type p.! Let us denote

the corresponding functional version of PA%2 by PA¥. In PA“ sets are given by their characteristic
function. In the language of functionals of finite type the schema of comprehension corresponding

to CA*¢* now reads as follows:
CATune . /\xOV!yoA(x,y) — \/fl/\on(x,fx),

where A is an arbitrary formula of PA“.
For some theorems in analysis, e.g. the equivalence between e—§— and sequential continuity of
f:IR — IR in = € IR one needs a weak form of the axiom of choice

ACYL . /\xo\/flA(x, f— \/gl(o)/\on(ac,gx).
Let A% denote the theory PAY+CAfune ACOL,

Now let us consider the following situation:
Let Ag(z",y°) be a quantifier—free and therefore decidable? formula of 2“, where z = 9,..., 29

and y° are all free variables of Ay and suppose that
(1) 2 = Az®Vy Ao (z, ).

A defines a partial recursive function in x:

fp MU YL VY Aoz y)

undefined, otherwise.

By (1), 2* proves that f is in fact a total recursive function. This is the reason why f is called
provably recursive (or provably total) in 2A“.

*I am grateful to Prof. H. Luckhardt for stimulating discussions on the subject of this paper and for helpful
suggestions for the presentation of the results.

11 (resp. 2) abbreviates the type 0(0) (resp. 0(0(0))).

2We only have equality =¢ between numbers as a primitive notion. Higher type equality is defined extensionally.
Throughout this paper Ao, By, Co, . .. denote quantifier—free formulas.



What do we know about the rate of growth of this function if we know that (1) holds?

It is well-known that for systems like 20“ the rate of growth may be really huge and goes far
beyond the rate of growth occuring in usual mathematics. In particular it may grow much faster
than e.g. the Ackermann function and even faster than every eg—recursive function. A description

of the provably recursive functions of 2“ in terms of recursion schemas was given by C. Spector in
[64] by means of so—called bar recursion.

Although beginning in 1977 a few examples of simple /\xo\/yvo(m, y)-sentences of concrete com-
binatorial or number theoretic nature were found such that fa := miny Ag(z,y) is of enormous
rate of growth (see [50],[28],[19], [62] ) this phenomenon seems to be extremely rare in concrete
mathematics (especially in analysis). In fact the growth of f in these examples is due to the fact
that Ag indirectly expresses certain properties of ordinals.

This observation indicates that 20“ is much to strong to capture faithfully the reasoning used in
actual proofs in analysis. Most parts of analysis in fact can be developed in small fragments of

2A“. This was noticed already by mathematicians like Poincare, Borel and above all H. Weyl in
his influential monograph 'Das Kontinuum’([71]) where he developes analysis on the basis of so—
called predicative comprehension (due to B. Russell) which imposes a restriction on the schema of
comprehension:

cAl* e+ NV Az, y) — VA Ax, fa),

where A contains only quantifiers over type—0—objects, i.e. over numbers. We call such a
formula A arithmetical.
Although the concept of predicativity was formulated because of foundational questions concerning

the consistency of unrestricted comprehension? it also has an impact on our question:

Let A :=PA“4+CASumcL AC®! qf, where AC%!'-qf is the restriction of AC%! to quantifier—free

formulas®.
The rate of growth of provably recursive functions of 2. is much lower compared to 2A* (put in

technically terms the provably recursive functions of 2% are just the a(< e, )-recursive functions,
see [11] ) but still is tremendous.

In the late 70ies G. Takeuti (see [65] ) noticed that almost the same portion of analysis can be
carried out in a more restricted system, where the full schema of induction

TIA : A(0) AN (A(z) — Az + 1)) — NP A(x)

is available only for arithmetical formulas A.5 Let us denote the corresponding restriction of A%,

(resp. PA%) by ﬁ:r[\ (resp. ﬁAwP).G In the presence of CAJ“" this restricted schema of induction
follows from the axiom of quantifier—free induction

QF-IA : AfY(f0=0ANz(fz =0 f(z+1)=0) = Aa(fz = 0)).

3For detailed information on predicativity and proof-theoretical investigations of formal systems for predicative
mathematics see e.g. [10].

4Using CA{;:.”LC and AC%1—qf one easily can derive AC%1 for arbitrary arithmetical formulas.

5See also [17],[18] and [11] for results in this direction.

6 Also the Gédel recursor constants R, are replaced by the predicative Kleene recursors ﬁp. The system used by
~w

Takeuti differs in various respects from 2(,,,.|\ but this is not important for our discussion. Takeuti also discusses a
second system with a variant of the first one.
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The most interesting fact about ﬁ:r[\ is that it is conservative over first—order Peano arithmetic

(see e.g. [11] ). In particular this implies that the provably recursive functions of é\l:r[\ are o< g9)—
recursive.

In [17],[60], [8] and [56] it is shown that various important theorems of analysis are already provable

in a second—order fragment (WKLg) of PA" ) +AC%%—qf + WKL, where WKL is the binary ("weak’)
Konig’s lemma.

Friedman showed (in an unpublished manuscript) model-theoretically that (WKLg) is IT9-
conservative over the primitive recursive arithmetic PRA.7

In [32],[33] we developed a proof-theoretical method which extracts primitive recursive bounds

from proofs of AV -sentences in the extension P/’Aw[\+Aquf+WKL of (WKL) to all finite types.
In fact we showed much more:

From a proof PA” MAC—qf +WKL + At N\ <; tu\/uﬂAo (u, v, w)
(*) one can extract a primitive recursive (in the sense of [30] ) bound ® such that

ISJ\A:J[\ - Aut Ay <, tuVw <, ®u Ao(u,v,w),

where Ay is a quantifier—free formula containing only w,v,w free, 7 is arbitrary, v < 2 and ¢t is a

closed term of PA” 8. Note that the bound ®u does not depend on v.

The mathematical significance of this result in particular rests on the fact that in applications
in analysis one quite often is interested in uniform bounds ® which do not depend on input data
r € K where K is a compact metric space. Since compact metric spaces have standard represen-

tations by sets of functions having the form {f* : f <; t}, () provides such uniform bounds. The
fact that ®u is only a bound on Vaw is no essential weakening since Nt N\ <; tuVw —sentences
in analysis usually are monotone w.r.t. w’ and thus every bound on Vw in fact provides a real-

ization of Vu®, i.e. Aul/\v <, tu Ao (u, v, Pu) (see [39] for a discussion of this phenomenon).

In [32],[37],[38] this method is applied to concrete (ineffective) proofs in approximation theory
yielding new a—priori estimates for numerically relevant data as constants of strong unicity and
others which improve known estimates significantly.

In analyzing these applications we developed in [39] a new monotone functional interpretation
which has important advantages over the method from [33] and provides a particular perspicuous
procedure of analyzing ineffective proofs in analysis.

The starting point for the investigation carried out in the present paper are the following prob-
lems:

(I) Whereas the general meta—theorem (x) only guarantees the existence of a primitive recursive
bound ®, the bounds which are actually obtained in our applications to approximation theory
have a very low rate of growth which is polynomial (of degree < 2) relatively to the growth

"For a proof-theoretic treatment of this result using cut—elimination see [57]. In [58] and [59] also II9—conservativity
of WKL over elementary recursive arithmetic is shown. But note that the proof for H%fconservation given in [58],[59]
is incorrect (see [35] for a discussion of this point).

Sﬁf |\ denotes the intuitionistic variant of ISXW |\. Instead of u',w" one may also have tuples of variables of type
< 1resp. < 2. In particular, instead of the quantifier—free Ag one may have A; € 2(1).
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of the data of the problem. Thus the problem arises to close the still large gap between
polynomial and primitive recursive growth.

(IT) Although in a theory like P/’Aw[\JrAququWKL one can carry out a substantial portion of
analysis there are important analytical principles, e.g. the Bolzano—Weierstrafl principle for
bounded sequences in IR, the Arzela—Ascoli lemma for bounded sequences of equicontinuous

functions f € C0,1] or the existence of limsup, liminf for bounded sequences in IR, which
are not, provable by this means. In fact these principles are known to be equivalent to CAJu"e
(relatively to PA” NAC—qf). Thus the problem arises to impose mathematical natural re-

strictions on the use of these principles and to prove that under these restrictions one can
extract bounds of more reasonable growth.

(III) So far we have considered the question of extracting bounds
Nt Ny <, tuVw <5 Qu Ag(u,v,w)
for sentences
Nut Ay <, tquVAo(u, v, W)

with quantifier—free Aj.
It is natural to ask for bounds for more general and even arbitrary formulas A instead of
Ap. The problem is that in the presence of full classical logic there are simple logically valid

sentences /\z°Vy0/\20 Ao (z, y, 2) such that there is no computable bound on Vy at all.

If however analytical principles (even non—constructive ones) are used only relatively to intu-
itionistic arithmetical reasoning, then it might be possible (and in fact is possible for many
non—constructive analytical theorems as we will show in chapter 8) to extract bounds for very
general formulas A.

In order to address the problems formulated in (I)~(IIT) we first introduce a hierarchy (G,A%)

of subsystems of PA” | and investigate the rate of growth caused by various analytical principles rel-
atively to G, AY+AC-qf. The definable functionals t'(!) in G,,A“ are of increasing order of growth:

If n =1, then tf'2° is bounded by a linear function in fM, x,
if n = 2, then ¢tf'2° is bounded by a polynomial in f™, x;
if n = 3, then tf'2° is bounded by an elementary recursive (i.e. a (fixed) finitely iterated
exponential) function in fM, z,
where fM := \z%. max(f0,..., fz) and ®fx is called linear (polynomial, elementary recursive) in
f,x if /\fl,xo(fbfx =9 &)[f, z]) for a term Cf)[f, x] which is built up from 0°, 2%, f1, 5% +
(respectively 0°, 2%, f1, St +,- and 0°, 2%, f1, S, +, - Ax0, ¢".2¥) only.

Let us motivate this notion for the polynomial case:
If ®fz is a polynomial in f1, 2% then in particular for every polynomial p € IN[z] the function

Az?.®pr can be written as a polynomial in IN[z]. Moreover there exists a polynomial ¢ € IN|[z]
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(depending only on the term structure of ®) such that

For every polynomial p € IN[z]
one can construct a polynomial » € IN[x] such that

/\f1 (f <ip— /\xo(@fa: <o T(x))) and deg(r) < q(deg(p)).

Since every closed term t*1) in GyA“ is bounded by a polynomial ® fMz in fM z and f <, p —
fM <, p (since p is monotone) this holds also for ¢ fz instead of ® fx.

k

——
In particular every closed term t! (to(O) e (0)) of GoA¥ is bounded by a polynomial p; € IN[x]

(resp. a polynomial p; € IN[z1, ..., xx]).
For general n € IN, every closed term ¢! of G, A¥ is bounded by some function f; € £€® where £"
denotes the n—th level of the Grzegorczyk hierarchy.

It turns out that many basic concepts of real analysis can be defined already in GoA¥: e.g. rational
numbers, real numbers (with their usual arithmetical operations and inequality relations), d—tuples
of real numbers, sequences and series of reals, continuous functions F : R? - R and uniformly
continuous functions F : [a,b]¢ — IR, the supremum of F € C([a,b]?,R) on [a,b]¢, the Riemann
integral of F' € Cla,b]. Furthermore the trigonometric functions sin, cos, tan, arcsin, arccos, arctan
and 7 as well as the restriction exp, (Ing) of the exponential function (logarithm) to [—k, k] for
every fixed number k can be introduced in GoA“ (The unrestricted functions exp and In can be
defined in G3A¥).

G2A“+AC—qf (and even its intuitionistic version GoA¥+AC—qf) proves many of the basic proper-
ties of these objects.

Thus it is reasonable to consider proofs of sentences
(+) /\gl,ko/\v <, tg@VwOAO, where u = uj,...,uj, k= EO,..., k?

which use relatively to GoA“+AC—qf various higher analytical theorems I' (which usually will not
be provable in GoA¥).

In view of the problem (I) formulated above we now ask:

What do we know about the rate of growth of bounds ¢
(++) N, k0N <, tukVw <o ®uk Ay

which can be extracted from a given proof?

CoAY+ACof + T+ A K°Nw <, tukVulAa, ?

Let T" consist of theorems choosen from the following list

Vi

9Such bounds can be extracted also for tuples w of variables w,

the (most important) case type(w) = 0.

with v; < 2. For simplicity we discuss here only



e The fundamental theorem of calculus

e Fejér’s theorem on the uniform approximation of 2r—periodic continuous functions by trigono-
metric polynomials

e The equivalence (local and global) of e-0 —continuity and sequential continuity of F': IR — IR
inx e IR.

e Attainment of the maximum of f € C([0,1]¢,IR)*° on [0, 1]¢

e Mean value theorem for integrals
e Mean value theorem of differentiation

e Cauchy—Peano existence theorem for ordinary differential equations
e Brouwer’s fixed point theorem for continuous functions f : [0,1]¢ — [0,1]¢

e Every pointwise continuous function G : [0,1]¢ — IR is uniformly continuous on [0,1]¢ and
possesses a modulus of uniform continuity

e [0,1]¢ C R? has the (sequential form of the) Heine-Borel covering property

e Dini’s theorem: Every sequence G,, of pointwise continuous functions :[0,1]% — IR which
increases pointwise to a pointwise continuous function G : [0, 1] — IR converges uniformly on

[0,1]¢ to G and there exists a modulus of uniform convergence

e Every strictly increasing pointwise continuous function G : [0,1] — IR possesses a uniformly
continuous strictly increasing inverse function G=1 : [G0, G1] — [0, 1] together with a modulus
of uniform continuity

then one can extract a bound ® which is (bounded by) a polynomial in u™, k% in the sense above.

(From a proof of (+) in G3A“+AC-qf+T" one can extract a bound ® which is (bounded by) an
elementary recursive (i.e. finitely iterated exponential) function in u?, K.

Let us consider the important case where the proof uses besides tools which are available already
in GoA“+AC-gf+T only certain fixed functions f! of simple exponential growth as e.g. fz := 2%
or fz := z!. Since the proof may use a (fixed) finite number of iterations of f (either explicitly by
forming terms like f(fz) or implicitly by a logical circumscription of such a substitution, e.g. in

its most simple form /\x\/y, z(y = fx Az = fy)), in general only an elementary recursive bound is

guaranteed. If however the proof does not iterate f (not even implicitly)!! as is often the case in

practice, our method will yield a bound which is built up from u™, k", 0°, 8%, +, -, f with f—depth
1 and thus (for polynomially bounded w) is essentially simple exponential in k (more precisely
bounded by 2P®) where p € IN[k]). So our result that analytical theorems T' from the list above

do not cause any non—polynomial growth is of relevance also in the presence of certain functions
having exponential growth.

10Here and below we may have also [a1,b1] X ... X [aq, bg] for variable real numbers a; < b; (i = 1,...,d) instead
of [0,1]%.

HOf course whether a proof implicitly makes use of an iteration of f or not is not always possible to recognize in
advance but may become transparent only by the process of the extraction of ® itself.
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(From these results it is clear that for the part of analysis outlined so far it is the arithmeti-
cal reasoning used in a given proof which is decisive for the growth of bounds. We now discuss
an arithmetical principle used in analysis which may contribute significantly to the growth of ex-
tractable bounds:

Every decreasing sequence (x N of positive real numbers z,, is a
PCMl . Yy g q ( n)ne 1% n

Cauchy sequence

(The restriction to the special lower bound 0 is convenient for our discussion but of course not
essential).

This principle (which is not provable in G, A“+AC—qf for any n) may contribute to the growth of
bounds which can be extracted from a proof in G,,AY+AC—qf+I" + PCM1 by a functional ¥ such
that

1
(+++) /\lgo,gl\/n <o ¥((wn),k,9) (gn >0n = Ty — Tgn < m)a

(++4+) is satisfied by

U((zy), k,g) = ma {0

(( TL)? 79) i<C($0))((k:+1) (g ( ))a

Where IN 3 C(z0) > 79 and ¢*(0) is the i—th iteration g(...(g(0))...) of g (starting with 0).

Since ¥ essentially is the iteration functional ®gz := ¢g*(0) and since ® can be used (relatively to
G2AY) to define every primitive recursive function, the use of (+++) in a proof has the consequence
that (in general) only the existence of a primitive recursive bound is guaranteed. This is unavoidable

since we can show that GoA¥ + PCM1 proves the schema of %¢-induction
SOTA ¢ A(0) AN (A(z) = Az +1)) = Na Az),

where A € ¥9, and the provably recursive functions of GoA“ +X9-TA are just the primitive recursive
ones.
However in the important special case where (+ + +) is applied only to g := .S we still have poly-

nomial growth: ¥((z,),k,S) < C(xo)(k+1). Furthermore for special sequences (z,,) there may be
much simpler bounds (+++) than W.

We now come to our results concerning problem (II). Let us illustrate the general type of these
results for the most simple example namely for the analytical strengthening PCM2 of PCM1
which asserts the existence of a Cauchy modulus function for every decreasing sequence of positive
real numbers, i.e.

POM?2 For every decreasing sequence (2, ),ecn of positive real numbers z,, there exists

a function h! such that /\k‘o,mo (m >0 hk = zpp — 2 < %_H)

In particular PC' M2 easily implies the existence of a limit of (z,,)nen (together with a modulus of
convergence). The existence of a limit does not follow from PCM1 (relatively to G, A“+AC-qf)
since within G, A% (as in algorithmic numerical analysis and complexity theory for real analysis)
real numbers are always given by Cauchy sequences of rational numbers with fixed Cauchy rate
(See chapter 3 for an extensive discussion on enrichment of data).

The proof

GoA”Y F PCM1 — X0-1A
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mentioned above yields
CGoAY + AC—qf - PCM2 — CAIU"e,

Hence every (< gg)-recursive function is provably recursive in GoA“+AC—qf+PCM?2.

In contrast to this general result, we show that if PCM?2 is applied only to single instances or
more general single sequences of instances of PCM2 in a proof of a sentence (+) (where these
instances may depend on the parameters u, k, v of (+)) then the contribution of PCM2 to the bound
® is just ¥ above applied to (majorants of) these instances. In particular the facts on PCM1 men-

tioned above apply and the existence of a primitive recursive bound is guaranteed. Again if ¥ is
applied only to g := S, then one has a polynomial bound.

In a similar way single (sequences of) instances of the following principles

e The existence of a greatest lower bound for every sequence of real numbers which is bounded
from below

e The Bolzano—Weierstrafl property for bounded sequences in R4
e The Arzela—Ascoli lemma

can be reduced to single (sequences of) instances of PCM1 in a given proof of (4) relatively to
G,AY+AC—qf+T for n > 2 (resp. in the case of the Arzela—Ascoli lemma for n > 3), where I' is
the set of analytical theorems from above.

Hence these principles contribute to the growth of bounds in the same way as PC' M 2.

Finally we investigate
e the existence Jlimsup(x,,) of the lim sup for bounded sequences (z,) in IR

w.r.t. its impact on the growth of bounds (likewise for lim inf):

Single instances of 3lim sup(z,,) in proofs of sentences (+) (relatively to G, AY+AC—qf+T for n > 2)
can be reduced to a certain arithmetical sentence L(z,,) € I12. L(x,) can be proved in G3A% +X9—
IA (but seems to be unprovable in GzA“ + X{-TA). In contrast to G,A% + X{-TA, the theory
G3A“ + X9-TA suffices to prove the totality of the Ackermann function.

Thus Flimsup(x,) is the strongest (w.r.t. its impact on growth) principle used in the standard

parts of classical analysis.
Note however that sometimes lim sup x,, is used only to abbreviate a certain proposition which can
be expressed also without assuming the existence of limsup x,, e.g. 'limsupz, < ¢’ can be para-

phrased simply as AOVROAm > n(x, <c+ %4—1)’ There are also important applications of the
Bolzano—Weierstrafl principle and the Arzela—Ascoli lemma which do not contribute to the growth
of bounds since they are used just to derive theorems which e.g. have a simple monotone functional
interpretation (e.g. the theorem on the attainment of the maximum of f € C]0,1] and the Cauchy—
Peano existence theorem discussed in (I) are usually proved using these principles respectively).

In this paper we are interested in the determination of the rate of growth of bounds which can
be extracted from proofs in various parts of analysis and in most perspicuous methods for carrying
out such extractions but not in the proof-theoretic strength of the tools needed to verify these
bounds. We are satisfied with their classical truth, i.e. the truth in the full set-theoretic type
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structure 8% (where set-theoretic is meant in the sense of e.g. ZFC).12

Concerning problem (IIT) we show in particular the following results:

Let A(u', k°,v7,w°) be an arbitrary formula (containing only u, k,v,w as free variables) and let
us consider the intuitionistic version G, AY of G, A¥.
If the sentence

(1) A, KON <, tw EVw® A(u, k, v, w)
is proved in
GnAY + AC +T,

where AC is the axiom schema of full choice and I is a set of analytical principles taken from the

following list!3

e The fundamental theorem of calculus

e Fejér’s theorem on the uniform approximation of 2r—periodic continuous functions by trigono-
metric polynomials

e Attainment of the maximum of f € C([0,1]¢,IR) on [0, 1]¢

e Mean value theorem for integrals

e Cauchy—Peano existence theorem for ordinary differential equations
e Brouwer’s fixed point theorem for continuous functions f : [0,1]¢ — [0,1]¢

e The axiom schema of comprehension for negated formulas
CA? = Vo <, a? 10N\y? (By = 0 > ~A(y))
then one can extract from the proof a bound ® such that
2) Nt k°Nv <, tu kVw <o duk A(u, k, v, w)
is true in the full type structure S and
(i) @ is a polynomial in u*, k (in the sense above), if n = 2,

(ii) @ is elementary recursive in u™ k, if n = 3.

121t should be noted however that for the results discussed so far a verification in e.g. PA¥ is possible in principle:
Our methods developed in this paper yield verification proofs in PAY + A+b-AC, where A is a set of sentences
having the form (%) /\xl\/y < sm/\zvo and b—AC the schema of bounded choice from [34] (see also chapter 2
below). Using results from [33] one can reduce () to an e—weakening, which is provable in PA“ for our examples,
and thereby eliminate b—AC from the verification proof. Since also all universal axioms we use are provable in PA%
we obtain a verification in PA“. We will not go into details of this in the present paper.

13Here continuous functions f : [0, 1]d — IR are always understood to be endowed with a modulus of uniform
continuity.
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Thus even in the presence of the highly non—constructive and impredicative comprehension schema
CA_ (note that GoAY+CA_ has the proof-theoretic strength of full classical simple type theory
as can be seen via negative translation) one obtains reasonable bounds as long as the underlying
arithmetical theory only uses intutionistic logic** (This is in contrast to the corresponding classical
theory which has the same provably recursive functions as simple type theory).

If A is restricted to a certain set I' which in particular includes all sentences in prenex normal
form where the universal quantifiers have types < 1 and the existence quantifiers have types < 2
and if 7 <1 and CA_ is replaced by

CAY, - Vo <op AP 10\yP (Py =0 0 <> B(y)), where B is V-free,

then the result above also holds if the following principles are added to r

e Every pointwise continuous function G : [0,1]¢ — IR is uniformly continuous on [0, 1]¢ and
possesses a modulus of uniform continuity

e [0,1] ¢ IR? has the (sequential form of the) Heine-Borel covering property

e Dini’s theorem: Every sequence G,, of pointwise continuous functions :[0,1]% — IR which
increases pointwise to a pointwise continuous function G : [0, 1]d — IR converges uniformly on

[0,1]? to G and there exists a modulus of uniform convergence

The last two principles may even be strengthened by allowing arbitrary (not necessarily open balls)
in the Heine-Borel property and omitting the monotonicity assumption in Dini’s theorem. These
strengthened versions which can easily be refuted classically do not have constructive counterex-
amples.

These results cannot be extended to intuitionistic proofs relative to PCM1 (or even PCM2 and

the other principles discussed under (II)) since PCM 1 itself is a AV-sentence € T'; but (for general
(2,)) there is no computable bound on Vin PCM1.

We now indicate very briefly the proof-theoretic methods used in the proofs of the results
sketched so far.

The main proof-theoretic tool used for the results on (I) is a monotone version of Godel’s functional
interpretation which is based on a suitable notion of majorizability. This method was introduced in
[39] for PA¥ and is now applied to our theories G, A¥. In addition to the features of this method
developed in [39] we make essential use of the fact that this interpretation allows to extract bounds
® which have a very simple term structure. This fact (which is also of central importance for (II))
enables us to measure the growth of these bounds in usual mathematical terms using only logical

141 addition to pure intuitionistic logic one may use the so—called independence—of-premise schema for negated
formluas

1P, : (WA — \/ypB) — \/yp(—'A — B) (y not free in A),

which does not hold intuitionistically. Also note that CA- implies the tertium-non-datur schema for negated
formulas.

A different kind of a theory which adds a non—constructive principle (more precisely the so—called limited principle
of omniscience) to an intuitionistic theory is presented in [18]. Friedman shows that his system ALPO is conservative
over Peano arithmetic PA.



normalization (i.e. A-reductions).

Within G2 A% we develope a special representation of real numbers and continuous functions which
has the property that many basic facts for these notions can be expressed as purely universal sen-
tences /\gl, EOAO (u, k) (which sometimes requires strengthened quantitative versions of these facts
together which an enrichment of data). Since universal sentences have a very simple monotone func-
tional interpretation they can be treated simply as axioms. In particular such sentences contribute
to the growth of bounds at most via majorants for the terms used in their formalization but not by
their proofs.

At some occasions we introduce new constants ¢ of type 1 or 1(0) to GA¥ (e.g. for sin, cos) together
with universal axioms. Since these constants have majorants ¢* by closed terms in GoA“ and ’¢*
majorizes ¢’ is a purely universal sentence (for the types 1,1(0)), the addition of such constants

contributes to the growth of bounds only via c¢*.
One of the most important properties of the monotone functional interpretation is that sentences
having the form

(%) /\x‘s\/y < sal\z" 4y

also have a very simple direct (i.e. even without negative translation) monotone functional in-
terpretation (whereas they usually do not have a direct Godel functional interpretation by any
computable functionals and even the Godel functional interpretation of their negative translation'®
cannot be satisfied by primitive recursive functionals in the extended sense of Godel’s calculus 7).
The relevance of this is due to the fact that some central theorems of analysis, e.g. the attainment
of the maximum of F' € C([0,1]¢,1R) on [0, 1]¢, are not purely universal but can be expressed in the

logical form ().

Nevertheless there still are important analytical theorems, e.g. Dini’s theorem, which do not have
the form (x). In order to treat such theorems in the context of GoA“ we introduce a new ax-
iom F~ which has the form () and implies combined with AC!%—qf the following principle of

YY—boundedness

Ay © (AkOAz <, ykV20 A,y k, 2) — Vol ARO, 2t

¥0-UB™ :
! (A (zi <o yki) — V<o xk A((mn),y, k,2))),
1<gn
where A € ¥ and
zk, if k <n

(@m)(k) := .
0%, otherwise.

Using X{-UB~ one can give very short proofs (even more simple than the usual ones) of Dini’s
theorem (together with a modulus of convergence), the uniform continuity of every pointwise con-
tinuous function F : [0,1]¢ — R (together with a modulus of uniform continuity), the (sequential)
Heine-Borel property of [0, 1]¢ and the existence of a continuous strictly increasing inverse function
for every strictly increasing continuous function F': [0,1] — IR.

F~ is not true in the full type structure S“ of all set—theoretic functionals but only in the type
structure M of all so-called strongly majorizable functionals which was introduced in [4]. However

15Note that the negative translation of (x) is a weakening of () (intuitionistically).
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F~ can be eliminated proof-theoretically from the verification of a bound ® extracted from a proof
which uses F'~. For 7 < 2

Mw ': /\Qlyko/\v ST t@k\/w SO (I)QEA(H, Evvaw)
implies
89 = At B2 N\o <, tukVw <o duk A(u, k, v, w)

and thus for a classical verification of ® no F'~—elimination is needed.
This also holds for a strengthened version F' of F'~ which proves the uniform continuity of every

function F' : [0,1]? — IR which is given by a functional @' This does not contradict the

existence of discontinuous functions since the existence of a functional ®'() which represents a
discontinuous function requires comprehension over functions which is not available in our systems

(Of course within G, A% one can express discontinuous functional dependencies

Nz e lRV!y € R A(z,y) which describe uniquely determined discontinuous functions).

The proofs of our results on (II), i.e. on PCM2, the Bolzano—Weierstrafl principle and so on,

form the proof-theoretically most complicated part of this paper. Let us motivate what proof—
theoretic tools are needed for these results for the most simple example PCM2:

The reduction of an instance of PCM?2 to the corresponding instance of PCM1 in a proof of

a Nut/\v <; tu\/woA(rsentence requires the transformation of a given proof of

(1) AutNo <, tu(\/hl/\ko/\m, m > hk(|(Euv)m — (Euv)m| < %) — \/wvo(um,w))

into a proof (within a theory which is not stronger w.r.t. the growth of extractable bounds) of

(2) At <. tu(/\ko\/no/\m, m > n(|(uv)y, — (Euv)m| < %-1-1) — \/wOAO(u,v,w)),

where ((§uv)n)n€]N is a (bounded monotone) sequence in IR.°

More general we are looking for a proof—theoretic procedure which produces a proof for
(3) A= Nt No <, tu\/y?/\x(f . Vyg/\mg\/wWAo(u, VY1, Tl - vy Yl Ty W),
from a given proof of the Herbrand normal form A¥ of A, where

(4) AH = /\ul/\v <r tu/\hh DR hk\/y?a s ’ygv w” AO(Uﬂ)yyl, h’lylv <o Yk h’kyl s yk7w)

H.—
A=

(Ag is quantifier—free and contains only u,v,y,z,w free, t is a closed term of G,A“ and 7,y are

arbitrary finite types).
For

(5) B := At No <, tuVEARN m, i, w((m,m >n = |[(§uwv)m — (Ewv)m| ) = Bo(u,v,w))

< -
T k+1

16This transformation is possible for an arbitrary sequence £uv of real numbers. The assumption that this sequence
is bounded and monotone is used only to ensure the constructability of a functional which satisfies the (negative
translation of the) monotone functional interpretation of the implicative premise in (2).
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(which is just a prenex normal form of (2)) this would yield the passage from (1) to (2).

However such a proof-theoretic procedure does not exist. In fact for every fixed number k£ one can
construct an arithmetical sentence A such that

GoAY + A but GRAY + T+AC—of I A, where T is as above.

This phenomenon (a special case of which was noticed firstly in [35] ) will be studied in detail in
chapter 10 below.
On the other hand, if A satisfies a monotonicity condition

/\ul/\v ST tU/\$173}17~-~7$kafk7y1a§17---ykagk
k
Mon(A) := ( N (& <oz ANTi >0 Yi) /\VWVAO(UW,yl,CEl’ ey Yhs Ty W)
=1

= Vo Ao, 0,1, 81, s s 0)),
then such a transformation is possible. In fact in chapter 10 we will show
(6) GLAY + Mon(A) F Aut Ao <, tu/\hl, ce hk\/yl <o Vyuh... \/yk <o \I/kuﬁ\/wVAgl — A,
where Uy, ..., Uy are arbitrary closed terms (of suitable types) of G, A%.

Thus if A¥ is proved within a theory 7¢ for which the extractability of such bounds ¥y, ..., U,

on \/yl, ..., Yk 1s guaranteed, e.g. for 7% : =G, A + '+ AC—qf, then one can construct a proof of
A (in a theory which is closely related to 7).
The relevance of this result follows from the fact that

G2A“ - Mon(B) for B from (5) abovel7,

and thus a proof of (2) can be transformed into a proof of (1) thereby replacing the analytical
implicative premise

VR AR Am, i > hk(|(€uv)pm — (€uv)p| < L)
k+1
by the arithmetical premise
NN ROAm, m > n(](§uv)m — (§uv)pm| < %—i-l)

It is not always as obvious as in the case of PC M2 to what arithmetical principle a certain
analytical premise may be reducible. E.g. for 31im sup(x,,) the construction of the monotone arith-
metical principle L(z,) € II2 is quite complicated. Nevertheless the reduction of 3limsup(z,) to
L(zy,) is faithfull since GoA“ + Jlimsup(z,) = L(z,).

For the Bolzano—Weierstral principle BW things are even more complicated since we are not
able to construct a monotone arithmetical sentence whose Skolem normal form implies BW and

which is implied by BW. In order to capture BW we first investigate the axiom I19-CA of 19—
comprehension. We show that every single instance II9-CA(g) of this axiom follows (in G2A%) from
a suitable instance PCM2(t(g)) of PCM?2 and therefore can be reduced to PCM1(t(g)). Using a

suitable sequence of instances of I19-CA combined with the axiom F~ discussed above we are able

7m, 7, w can be coded into a single variable w’ of type ~.
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to prove every single sequence of instances of BW.

The treatment of the Arzela—Ascoli lemma is similar although technically more involved. The de-
termination of the growth caused (potentionally) by the use of instances of the last two principles
thus uses results from almost all parts of this paper.

Our results on (III), i.e. on analytical proofs relatively to the intuitionistic theories G, A% are

based on new monotone versions of the well-known 'modified realizability’ and 'modified realiz-
ability with truth’ interpretations.

In chapter 1 the theories G,,A“ and several variants and extensions are introduced. Further-
more the growth of the definable functionals of these theories is measured.
Chapter 2 developes the method of monotone functional interpretation for G, A“ and applies it

for the extraction of uniform bounds from proofs in (analytical extensions of) G, A“.

Chapter 3 deals with the representation in GoA“ of the basic objects and concepts of anal-
ysis as e.g. real numbers, continuous functions f : R? — IR, uniformly continuous functions
f:10,1]¢ — IR, maximum and sum of variable length for sequences of real numbers, sup fz and

z€[0,1]

T

[ f(z)dz (z € [0,1]) for f € C[0,1]. We discuss the impact of enrichments of data on the logical
0

form of the basic properties of these objects and quantification over them (A summary of these
results can be found at the end of chapter 3).

In chapter 4 we show that various criteria for convergence of series can be proved in GoA“ even
in quantitative versions. Chapter 5 treats (in the context of GoA“) the trigonometric functions
sin, cos, tan, arcsin, arccos, arctan as well as the restrictions exp,, and Iny of exp and In to the interval
[—k, k] for every fixed number &k (The unristricted versions of these functions can be introduced in
G3AY).

In chapter 6 we investigate in the context of GoA“+ ACH0—qf the fundamental theorem of calcu-
lus, Fejér’s theorem, and the (local and global) equivalence between sequential and e—4 continuity
of real functions.

Chapter 7 shows that various important non—constructive theorems of analysis as e.g. the at-
tainment of the maximum of f € C([0,1]¢,IR), Brouwer’s fixed point theorem, Cauchy-Peano’s
existence theorem and mean value theorems have monotone functional interpretations which can be
fulfilled by terms of GoA“. Furthermore the axioms F' and F~ are introduced. These axioms com-
bined with AC1%—qf yield principles of uniform-¥{-boundedness which are used to derive e.g. Dini’s

theorem, the (sequential) Heine-Borel property for [0,1]%, the existence of an inverse function for

2

every strictly increasing function f € C[0, 1] and so on. Also we introduce a generalization WKLZ,,

of the binary Konig’s lemma WKL to sequences of trees in a higher type formulation which can be
used in GoA¥ (The usual formulation of WKL in the literature uses already for its formulation a
coding functional which is available only in G3A“). WKL2,, can be derived in GoA¥ + F~+ACH0-

seq
gf. Finally we show how to eliminate F'~ from proofs of /\ul/\v <, tquVAofsentences which
yields conservation results for WKLieq.
Chapter 8 applies monotone versions of modified realizability interpretations for the proof of the
results on (III) discussed above.

In chapter 9 we study versions of induction which go beyond quantifier—free induction. E.g.
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we discuss the rule of X{-induction. Furthermore we show the equivalence of the axiom of (-
induction ¥Y-TA and PCM1. In particular we construct a functional y in GoA“ such that
G2AY = PCM1(x(g)) — X9-TA(g) and determine the rate of growth caused (potentionally) by

the use of PCM1.
Chapter 10 is devoted to the elimination of Skolem functions from monotone premises in given
proofs thereby replacing analytical premises by suitable arithmetical ones. In particular we prove

(6) above.

In chapter 11 results from the chapters 1,2,3,4,7,9 are combined with the method developed in
chapter 10 to determine the contribution to the growth of bounds by single (sequences of) instances
of PCM2, the existence of a greatest lower bound for every sequence of reals which is bounded
from below, I19-CA and IIY~AC (and their arithmetical consequences A3-IA and :9-collection),
the Bolzano~Weierstraf property for bounded sequences in IR?, the Arzela—Ascoli lemma and the
existence of limsup for bounded sequences in IR.

In chapter 12 we first notice that our results on II9-CA imply as a corollary the fact that the re-
striction II{~CA~ of II{-CA without function parameters produces only primitive recursive growth
(relative to G, A¥+AC—qf). We show that various theorems on II9-CA~ stated by Mints and Sieg
n [46], [57] are incorrect. A discussion of the errors in their proofs exhibits that our result on

IY-CA~ cannot be obtained (at least not straightforeward) from their proofs.
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1 Subsystems of primitive recursive arithmetic in all finite
types

1.1 Classical and intuitionistic predicate logic PL* and HL* in the lan-
guage of all finite types

The set T of all finite types is defined inductively by
(1) 0 € T and (it) p,7 € T=7(p) € T.

Terms which denote a natural number have type 0. Elements of type 7(p) are functions which map

objects of type p to objects of type 7.
The set P C T of pure types is defined by

(1) 0 € P and (i) p e P = 0(p) € P.

Brackets whose occurrences are uniquely determined are often omitted, e.g. we write 0(00) instead
of 0(0(0)). Furthermore we write for short 7py ... p; instead of 7(pg)...(p1). Pure types can be
represented by natural numbers: 0(n) := n+1. The types 0,00,0(00),0(0(00)) ... are so represented
by 0,1,2,3.... For arbitrary types p € T the degree of p (for short deg(p) ) is defined by deg(0) := 0
and deg(7(p)) := max(deg(7),deg(p) + 1). For pure types the degree is just the number which
represents this type. Functions having a type whose degree is > 1 are usually called functionals.
The language L£(HL*) of HL® contains variables x,y”, 2, ... for each type p € T together with

corresponding quantifiers Nar , Vyp as well as the logical constants A, V,— and an equality relation
=g between objects of type 0. Furthermore we have a propositional constant L (”falsum”). Negation
as a defined notion: =A := A — 1. Finally £L(HL*) contains 'logical’ combinators II, . and X5 , -
of type prp and 76(pd)(Tpd) for all p, 7,6 € T.

HL¥ has the usual axioms and rules of intuitionistic predicate logic (for all sorts of variables) plus the
equality axioms for = (e.g. see [67] ). Equations s =, t between terms of higher type p = Opx ... p1

are abbreviations for the formula /\x‘l’l, co @ (smy Lo =0 tzy .. xg).

II, -, %s5,,~ are characterized by the corresponding axioms of typed combinatory logic:

0,7
I, ;z’y" =, z and X5, r2yz =, x2(yz) where € Tpd,y € pd, z € 4.
Furthermore we have the following quantifier—free rule of extensionality

AO — 8§ =p t
Ay — r[s] =; rlt]

QF-ER : , where Ay is quantifier—free.

Classical predicate logic in all finite types PL* results if the tertium—non—datur schema AV —A is

added to HL. The enrichment of HL* (resp. PL“ ) obtained by adding the extensionality axiom
(Bp) : Na? oy 270 (w =, y — 22 = 2y)

for every type p is denoted by E-HL* (resp. E-PL¥).

Remark 1.1.1 UsingIl, . and X5, ; one defines (e.g. as in [67] ) \-terms XaP .t [z] for each term

t7[zP] such that

HL® = (Axf.t7[x])s? =, t[s]. In particular one can define a combinator IT, = = \x”,y™.y such that
I, .aPy™ =, y (E.g. take II' := I(XIII) for 3,11 of suitable types).

Notational convention: Throughout this paper Ay, By, Cy, ... always denote quantifier—free for-
mulas.



1.2 Subsystems of arithmetic in all finite types corresponding to the
Grzegorczyk hierarchy

In the following we extend PL“ and HL® by adding certain computable functionals and the schema
of quantifier—free induction. The following definition from [54] is a variant of a definition due to
[1] and can be used for a perspicuous definition of the well-known Grzegorczyk hierarchy from [22]
(see def.1.2.26 ).

Definition 1.2.1 For each n € IN we define (by recursion on n from the outside) the n-th branch
of the Ackermann function A, :IN x IN = IN by

Ao(z,y) :=y (Here and in the following ©' stands for the successor Sx of x),

z, ifn=20
Apti(z,0):=1¢ 0, ifn=1
1, ifn>2,

An—i—l(xa y/) = An(xa An+1($a y))

ex

Remark 1.2.2 1) Al(xay) =z+y, A2(xay) =Ty, A3($,y) = mya A4($,y) = xx" (y times)'

2) For each fized n € IN the function A, is primitive recursive. But: A(x) := Az(x,x) is not
primitive recursive.

We now define the Grzegorczyk arithmetic G,A“ of level n in all finite types and their
intuitionistic variant G, AY :

L(G,A¥) is defined as the extension of £(PL) ¢) by the addition of function constants S (suc-
cessor), maxJ®®, mind?®, A3%0, ... A% and functional constants ®{1, ... @Y1 ;901 (hounded p-

operator), R, € p(p0)(p00)p0 (for each p € T). Furthermore we have a predicate symbol <.
In addition to the axioms and rules of PL¥ the theory G, A“ contains the following:

1) <gaxioms: z <oz, # <oyVy<ox, x<oyAy<oz—z g2
S—axioms: Sz =¢ Sy = x =¢y, -0 =¢ Sz, x <g Sx.
(max) : maxo(z,y) >0, maxo(z,y) >0y, maxo(z,y) =¢  V maxo(x,y) =o y.

)
)
4) (min) : ming(z,y) <o z, ming(z,y) <o y, ming(x,y) =¢ = V ming(z,y) =¢ y.
) The defining recursion equations for Ay, ..., A, from the definition 1.2.1 above.
)

Defining recursion equations for ®q,..., ®,:

;f0 =0 fO
(I)if.'lﬁ/ =0 Ai,l(fa:’, (I)fo) for 4 Z 2

and

®, f0 = fo
Dy fo' =g maxo(fz', Py fx).



(For ¢ > 1, ®; is the iteration of the ¢ — 1-th branch A;_; of the Ackermann function on the
f—values fO0,..., fx for variable x).

y<ox A fOP%y =00 — fo(ufr) =00,
7) (o) = q Yy <o pnfx — fry #0,
o fr =00V (fx(uwfz) =0 O A ppfz <o x)
(These axioms express that ppfr = miny <o x(fzy =¢ 0) if such an y < z exists and = 0

otherwise).

8) Defining recursion equations for Rp (bounded and predicative recursion, since only type—0—

values are used in the recursion):

R, 0yzvw =¢ yw

Rpx'yzvy =0 mino(z(Rpacysz)xw, vIw),

where y € p=0pp ... p1, w=w{" ... w*, z € p00, v e po.

9) All N, N, N _true purely universal sentences /\QAO (z), where z is a tuple of variables
whose types have a degree < 2 (Here B denotes the set of all set-theoretic functions : A — B).
G,AY is the variant of G, A“ with intuitionistic logic only.
If we add (E) = U,{(E,)} to GoA¥,G,A¥ we obtain theories which are denoted by E-G,A®,
E-G,AY.
G, R¥ denotes the set of all closed terms on G, A“.

Remark 1.2.3 1) The functionals ®1, P2 and O3 have the following meaning:
By fr = max(f0, f1,..., fx), Bofz = Yo fy, Bsfa = [Ty fu.

2) Our definition of G,A“ contains some redundances (which however we want to remain for
greater flexibility of our language): E.g. ®; (i > 1) can be defined from A;, R, ming and
With fM .= \o.®; fx prop.1.2.16 and 1.2.18 below imply ®; fx < ®;fMx < A;(fM+1,2+1).
Hence ®; can be defined by R using Ai(fM + 1,24+ 1) as boundary function v.

3) The aziom of quantifier—free induction
(1) /\flvﬂﬁo(fo =0 0A Ny < 2(fy =00 — fy' =00) = fr =0 0)
can be expressed as an universal sentence /\fl, 20 Aqg by prop.1.2.6 below and thus is an axiom
of G,AY. (1) implies every instance (with parameters of arbitrary type) of the schema of
quantifier—free induction

QF-IA : Na®(40(0) A Ny < 2(Ap(y) = Ao(y')) — Ao())

since again by prop.1.2.6 there exists a term t such that tx =¢ 0 > Ag(x): QF-IA now follows
from (1) applied to f :=t.



4)

Because of the azioms in 9), our theories are not recursively enumerable. The motivation for
the addition of these sentences as axioms is two—fold:

(i) As G. Kreisel has pointed out in various papers, proofs of N—true universal lemmas have
no impact on bounds extracted from proofs using such lemmas. For the methods we use for
the extraction of bounds (e.g. our monotone functional interpretation) this applies even for
arbitrary universal sentences /\pro where p may be an arbitrary type. Taking such sentences
as axioms usually simplifies the process of the extraction of bounds enormously. The reason

for our restriction to those sentences for which p < 2 is that on some places in this paper we
deal with principles which are valid only in the type structure M* of the so—called majorizable

functionals (see chapter 7 below) but not in the full type structure S“ of all set—theoretic
functionals. Since both type structures coincide up to type 1 and for the type 2 the inclusion
M4 C 8% holds, the implication S¥ = Nar Ay = M© E Nz Ay is obvious if p < 2. The same
holds if we replace M®“ by the type structure ECF of all extensional continuous functionals
over N (see [67] for details on ECF).

(ii) Many important primitive recursive functions as sg,3g,|x — y| and so on are already
definable in G1A“. However the usual proofs for their characteristic properties (which can
be expressed as universal sentences) often make use of functions which are not definable in
G1A¥ (as e.g. x-y). Thus we would have to carry out the boring details of a proof for these
properties in Gy AY.

Using Ry the following primitive recursive functions can be defined easily in G1A%:

1)

2)

3)

4)
5)
6)

Definition 1.2.4

prd(0) =9 0

prd(x’) =¢ x (predecessor),

59(0) =0 0 55(0) =0 1 (1:=50)
sg(z') =0 1, 59(2") =0 0,
r=0=¢x

x =y =o prd(z ~y),
| — y| =0 max(z ~y,y ~x) (symmetrical difference),
e(xz,y) =o sg(|x —y|) (characteristic function for =),

0(x,y) =0 59(|x — y|) (characteristic function for #).

Remark 1.2.5 Because of the universal axioms in 9), the theory Gy AY proves the usual properties

of the functions max, min, prd, sg,sg, = |z — y|,e and ¢, e.g.

sg(z) =02 =0, 5g(z) =0z #0, sg(x) <1, 5g(z) <1, prd(z) <z =1,
lt—yl =0 2z=y, c=0Vz=S(prd(z)), max(z,y) =0+ 2z=0Ay =0,
min(z,y) =0z =0Vy=0.



Proposition: 1.2.6 Let n be > 1. For each formula A € L(G,A%) which contains no quantifiers
except for bounded quantifiers of type 0 one can construct a closed term ta in G, A“ such that

GnAL; [ /\x’l’l,...,wzk(tAxl...xk =00 & A(ml,...,xk)),
where 1, ...,z are all free variables of A.

Proof: Induction on the logical structure of Ay using the remark above. Bounded quantifiers are
captured by p:

GnAY - Vy <o 2Ao(2,y,a) (ay Ag(z, piy(Ay-ta,xya, x), a).

Proposition: 1.2.7 Let n > 1, Ay(z) € L(G,A%), where x = " ... 2" are all free variables of

Ao, and 1371 15PEPY are closed terms of GnA®. Then there exists a closed term ®°k-P1 ip
G, A% such that

tiz, if Ao(z)

GrAY F /\g bz =
tax, if 7 Ao(z).

Proof: Define t} := \y°, u®.tox, t§ := Mul.toz. One easily verifies that ® := )\g.f%p(tAog)tlt’Qt’Q’g
with ¢4, as in the previous proposition and p = Opy, . .. p1 fulfils our claim.

Definition 1.2.8 (and lemma) For n > 2 we can define the surjective Cantor pairing function j

(“diagonal counting from below’) with its projections'® in G, R“:

minu <o (7 + y)? + 3z + y[2u =¢ (z +y)? + 3z + y] if existent

0,0 20
(2%, y°) =
0°, otherwise, *°

j1z :=minz < z[\/y < z(j(z,y) = 2)],

Joz :=miny <g z[\/a: < z(j(z,y) = 2)].

Using j, j1,j2 we can define a coding of k—tuples for every fixed number k by

vi(zo) == 20, v*(20,71) = j(z0,21), V" (20,... 28) = j(20, VF(21,...,28)),
i10(j2) " HNa), ifl<i<k
vE(zy, ... 1) = jre(g2)™ @), #1< (if k> 1)
(72)" (@), if1<i=k
One easily verifies that vF(V*(z1,...,xx)) = z; for 1 <i <k and v*(v¥(z),...,vf(z)) = .

Finite sequences are coded (following [67] ) by
(=0, (xo,...,z1) = Sk, " (x0,...,21))).

Using R one can define functions lth, II(k,y) € G,RY such that for every fized k,n

Ty, fy<m
Ith(()) =0, ith({zo,...,xr)) =k+1, I(z,y) = if x ={xoy ..., Tm)-

0°, otherwise

18For detailed information on this as well as various other codings see [63] and also [13] (where j is called *Cauchy’s
pairing function’).

90ne easily shows that (z +y)? + 3z + y is always even (This can be expressed as a purely universal sentence, i.e.
as an axiom in G, A“). Hence the case ’otherwise’ never occurs and therefore 2j(x,y) = (z +y)2 + 3z +y for all z,y.



Define

0%, ifx =90
Ith(z) := fe=o
Jji(z 1)+ 1, otherwise,

09, if lthe = 0
(z,y) =04 jio(jo)¥(z=1), if 1 <y < lth
(j2)'™ (y), if 1 <y = lthe

We usually write (x), instead of II(x,y).
In order to verify that (x,y) is definable in GoR“ it suffices to show that the variable iteration
pry = (J2)¥(x) of ja is definable in GoR¥. This however follows from the fact that pxy < x for all

x,y. Thus we can define pxy by R using \y.x as bounding function.
For n > 3 we can code initial segments of variable length of a function f in G,A“, i.e. there is a

functional @ € GsR“ such that @ fr = (f0,..., f(x - 1)):20
As an intermediate step we first show the definability of

f0 = f0
f.’E, = j(fxa fx,)a where 3(1’,y) = ](y,x)
in Gz3R*: One easily verifies (using j(x,xr) < 4x?) that for < 4% (fM:v)TC for all x. Hence

the definition of f can be carried out by R using )\x.43m/ (fo’)Qw € G3R“ as bounding func-

tion. fx means J(...7(5(f0, f1), f2)... fx). Hence fx = (A\y.f(z=y))z has the meaning
J(f0,5(f1,f2)),..., fx))...). We are now able to define &, € GzR”:

0% ifx=0
<I><>f:v = /\
(fz)x + 1, otherwise,
where
z, ify=20
Jry =

fly=1), otherwise.

We usually write fa for ®y fx. Furthermore one can define a function x in GsR“ such that
<£L’0,...,$k> * <y07"'aym> = <£L’(),... ;xkayOa--~aym>~
Define
n*m = ®(fnm)(lth(n) + lth(m)), where
(n)k, if k <lth(n)
(fnm)(k) :=

(M) = 1thns Otherwise.

200f course we cannot write (f0,..., f(z = 1)) for variable x. However the meaning of @y fx can be expressed via
(q)()fm)y = fy forally <z (and =0 for y > z).



Note that @ and * are not definable in GoR“ since their definitions involve an iteration of the

polynomaal j.

Definition 1.2.9 Between functionals of type p we define relations <, (’less or equal’) and s-maj,

(’strongly magjorizes’) by induction on the type:
r1 <o 22 := (21 <o T2),
21 <pp w9 1= NP (21y <, 220);
T* s—majy, v :=z* >¢ x,
T s-maj,, T = /\y*f’,yp(y* s-maj, y — r*y* s-maj, 7Y, 1Y)

Remark 1.2.10 ’‘s—maj’ is a variant of W.A. Howard’s relation 'maj’ from [26] which is due to
[4]. For more details see [34].

Lemma: 1.2.11 G; AY proves the following facts:

1) =, 2" NT =,z Nz" s-maj, x — T s-maj, T.

2) x* s-maj, ¥ — x* s-maj, z* ([4]).

3) Ty $-maj, T2 A xy s-maj, r3 — 1 s-maj, 3 ([4]).
4) x* s-maj, v Ax >,y — x" s-maj, y.

5) For p=71pi...p1 we have

a* s-maj, @ < Nyfyn oy e

k
(‘/\1(%-* $=Maj,, Yi) = TYY ... Y M TY1 .. Yk, TY1 yk>
i

6) x* s—maj; T <> ¥ monotone Az* >; z,
where x* is monotone iff /\u,v(u <o v = x*u <o z*V).
7) ¥ s-majy T — \yt.a*(Pry) > x.

Proof: 1)-4) follow easily by induction on the type (in the proof of 3) one has to use 2) ). 5)
follows by induction on k using 2) (for details see [34] ). 6) is trivial. 7) follows from /\y1(<1>1y

s—majiy).

Remark 1.2.12 In contrast to >, the relation s-maj, has a nice behaviour w.r.t. substitution (see
5) of the lemma above). This makes it possible to prove results on majorization of complex terms
simply by induction on the term structure. For types < 2 (which are used in our applications to
analysis) we can infer from a majorant to a ’real’ >-bound by 6) and 7) of lemma 1.2.11.

Next we need some basic properties of A; which are formulated in the following lemmas (since these
properties are purely universal we only have to verify their truth in order to ensure their provability
in G,AY for j < n):



Lemma: 1.2.13 Assume j > 1. Then /\x/\y > 1(Aj(x,y) > x)

Proof: j-Induction: j =1: Aj(z,y)=z+y > x.
jr—j+1: y-induction: Aj41(z,1) = Aj(z, Aj+1(z,0)) =

Ai(z,0)=z+0>2z,if j=1
= j—I.H.
Aj(z,1) > z,ifj>2.

j—I.H.
y—=y+1l: Aja(ry+1) =45, Ajn(ry) = =
—_——
>z (y—I.H.)
Lemma: 1.2.14 For all j € IN the following holds:
Na &y, 53 > > LA >y — Ai(#,§) > Aj(@,y)).

Proof: j-Induction. For j = 0,1,2 the lemma is trivial. j — j + 1: To begin with we verify (for
x > 1) by y—induction

(%) /\y(Aj+1(x,y +1) > Aj1(z,y))

1.2.13 j>2
I. Aj+1(§€, 1) > xz>1"'= Aj+1(1‘,0).)
j—I.H.
My=y+1: Aj(r,y+2) =A@ Ay +1) > Aj(r, Ajpa(r,y) = Aja(zy + 1).
—_———
y—1I.H.
>Aj(zy)

(*) implies

(+x) NyN\G > y(Ajia(2,5) > Ajir (@, y)).

Again by y—induction we show (for £ >z > 1):

(k% 5) Ny(Aj1(E, ) > Aja(2,9) -

y=0: Ajii—definition! y— y+1:
3 ~ B j—I.H.
Aj+1 (-%',y + 1) = A]‘(l‘, Aj-‘rl('r7 y) ) > Aj(m7Aj+1(l‘7y)) = Aj+1($, Y+ 1)
—_——
>Ajt1(zy) (y—1.H.)

(%) and (* x *) yield the claim for j + 1.

Lemma: 1.2.15 If j > 2, then \y(A4;(0,y) <1).

Proof: j-Induction: The case j = 2 is clear.

j—I1.H.
Aj1(0,0) =1, Aj11(0,y +1) = 4;(0,4;41(0,y)) < L

Proposition: 1.2.16 ®; s-maj ®; for all j > 1.



Proof: Assume f* s-majif Ax* >¢x. j=1:
®q f*r* = max f*y > max fy = @, fx.
y<az* y<w

j > 2: By induction on z* we show
JAvTAYY <a*(Q;f " >0 O fx) -

ot =0: &0 = £*0 > f0 = B, 0.
1.2.13,1.H.
2 %;f0
P f*(x" +1) = A (f* (2" + 1), 05 f2") ¢ :
> Aj1(f(x+1),®;fx) = ®; fx+1)
Ad!: o*-1LH. yields ®; f*z* > @, fx. Because of f* s—maj f it follows that f*(z* + 1) > f(x + 1).
Case 1: f(x+1) > 1. Then ’!" follows from 1.2.14 .
Case 2: f(x+1) =0: 2.1 f*(*+1) = 0. Then /\y < z* 4+ 1(f*y = fy = 0) and therefore
O f*(a +1) =B, f(x+1).
2.2 f*(z* +1) > 1: For j > 3 lemma 1.2.15 yields A;_1(f(z +1),®,fx) < 1.
By lemma 1.2.13 we have A;_;(f*(z* + 1), ®; f*2*) > 1, if &;f*2* > 1 (If 0 = ¢; f*2* > O, fx,
then A;_1(f(x+1),®,fx) < A;j_1(f*(z* + 1), ®; f*x*) follows immediately from the definition of
Aj_q).
The case j = 2 is trivial.

Lemma: 1.2.17 For every j > 1 the following holds:
/\f(f monotone A f >1— /\q:(Aj(fx,x—i— 1) >0 @, fx)).

Proof: The case j = 1 is trivial. Assume j > 2. We proceed by induction on z:

fO=®;f0for j =2

Aj(fO,l) = Aj_1(fO,Aj(fO,0)) = 1.2.13
Aj_l(f(), ].) > fO = <1>ij for 7> 2.

Aj(flz+1),2+2) = A1 (flz+1), A;(f(x + 1),z + 1)) fxlzzml Ai 1 (f(z 4+ 1), Aj(fr,z +1))(1.2.14)
P A L+ 1), 8 f0) = i f (4 1),

Proposition: 1.2.18 For all j > 1: M\f,z.A;(fr + 1,2+ 1) s-maj ;%' .

Proof: Assume f* s-maj f and z* >g . By prop.1.2.16 we know ®;(f* + 1)a* >o @, fu.
L.1.2.11 6) yields that f* 4+ 1 is monotone. Hence — by 1.1.2.17 ,1.2.14 — A;(f*(«*) + 1,2* + 1) >
Aj(fr+1,24+1),2;(f" + 1)z*.

Lemma: 1.2.19 If Aj(x,y) := max(4;(z,y),1). Then A} s-maj A;.
Proof: For j < 2 the lemma is trivial. Assume j > 3: We have to show
Na iy, §(3 > 2 NG >y — AS(E§) > A5 (2,1), Aj(2,9)) :

If x > 1 this follows from 1.1.2.14.
Assume z = 0. By 1.1.2.15 /\y(A;(O,y), A;(0,y) <1) and therefore

Nz, g,y (A3(7,9) > A5(0,), A;(0,y)) (since A%(z,7) > 1).

21For j = 1 the more simple functional Af, z.fz already majorizes ®1.



Definition 1.2.20 1) The subset G, R* CG,R” denotes the set of all terms which are built up
from U, 7,55 .7y Aoy - ..y An, 00,8, prd, ming and maxg only (i.e. without ®1,...,®,, R,, or
fis)-

2) GnR”[®4] is the set of all term built up from G, R“ plus ®;.

Proposition: 1.2.21 For alln > 1 the following holds: To each term tP € G, R* one can construct
by induction on the structure of t (without normalization) a term t*? € G, RY such that

G A7 Ft° s—maj, t.

Proof: 1. Replace every occurrence of f%p in t by G,, where
Gy = \r,y, z,v, w. maxo(yw, v(prd(z), w)).

G, is built up from II, ¥ (which are used for defining the A-operator) and the monotone functions
maxg and prd. One easily verifies that

(i) G, > R, and (ii) G, s-maj G,,.

Together with 1.1.2.11 (i) and (ii) imply G, s-maj R,.
2. Replace all occurrences of ®4,...,P,, u, in t by

O =\, w.fo, ;= Af,x. Aj(fr+ 1,z +1) for i > 2, yj = \f,z.2.
By prop. 1.2.18 we conclude
GpAY @7 s—maj ®; A, s—maj pp.

3. Replace all occurrences of Ay,..., A, int by A5,..., A.
The term ¢t* which results after having carried out 1.-3. is € G,R¥. t* is constructed by replacing
every constant c in ¢ by a closed term s} such that s} s-maj c. Since ¢ is built up from constants

only this implies (using lemma 1.2.11.1),5) t* s—maj t.

Corollary to the proof:

Since A\z%.2° s-maj; prd and A; s-maj maxg, ming, the term ¢* can be constructed even without
prd, maxg and ming. However estimating maxg by A; may give away interesting numerical informa-
tion. For the extraction of bounds from actually given proofs we may use not only max or min but
any further functions which are convenient for the construction of a majorant which is numerically
as sharp as possible.

The majorizing term t* constructed in prop.1.2.21 will have (in general) a much simpler form than
t since t* does not contain any higher mathematical functional but only the ’logical’ functionals II
and ¥. In the following we show that if ¢* has a type p with deg(p) < 2, than it can be simplified
further by eliminating even these logical functionals. This will allow the exact calibration of the
rate of growth of the definable functions of G, A% and will be crucial also for our elimination of
monotone Skolem functions in chapters 10 and 11 below.

Proposition: 1.2.22 Assume deg(p) < 2 (i.e. p = 0py...p1 where deg(p;) <1 fori=1,...,k)
and t’ € G, R¥. Then one can construct (by logical’ normalization, i.e. by carrying out all possible

I1, ¥ -reductions) a term tjz*, ..., a?*] such that
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1) ﬂxl, ..., &) contains at most x1 ..., xy as free variables,
2) tlxy,. ..,z is built up only from x1, ...z, Ao, ..., An, ST, 00, prd, ming, maxg,
3) GnA‘;J [ /\a’,‘lljl, . ,.’Egk(ﬂl‘l, N ,.’Bk] =0 t.’l?l .. .a:k).

Proof: We carry out reductions IIst ~» s and Ystr ~» sr(tr) in tx;...x as long as no further

such reduction is possible and denote the resulting term by f[:cl, ..., 2k]. The well-known strong
normalization theorem for typed combinatory logic ensures that this situation will always occur
after a finite number of reduction steps. Since Ilzy = x and Xayz = x2(yz) are axioms of G, A¥
the quantifier—free rule of extensionality yields

GrAY F /\xfl,...,xgk(ﬂml,...,xk] =0 tT1 ... Tk).

It remains to show that ﬂml, ..., 2] does not contain the combinators II, 3 anymore:

Assume that #[z;, . . ., z}] contains an occurrence of ¥ (resp. II). Then ¥ (IT) must occur in the form
%, Xty or Btyto (11, II¢1) but not in the form Xty tats (resp. It1t2) since in the later case we could have
carried out the reduction Xt1tats ~ t1t3(tats) (resp. IItytg ~ t1) contradicting the construction of
t. All the terms s = ¥, St1, Styto, I1, ITt; have a type whose degree is > 1. Hence s can occur in t
only in the form r(s), where r = X, Xity, Yit4t5, II or IIt4 since these terms are the only reduced ones
requiring an argument of type > 1, which can be built up from z*,... z%*, ¥, 10, 4,,58',0° and
maxg (because of deg(p;) < 1). Now the cases r = Xt t5 and r = IIt4 can not occur since otherwise
r(s) would allow a reduction of ¥ resp. II. Hence r(s) is again a II, X—term having a type of degree
> 1 and therefore has to occur within a term ' for which the same reasoning as for r applies etc.

.... Thus we obtain a contradiction to the finite structure of .

Remark 1.2.23 Proposition1.2.22 becomes false if deg(p) = 3: Define p := 0(0(000)) and t* :=

AJ;O(OOO).m(HO,O). Then tz =¢ x(Ilp o) contains I but no Il-reduction applies.

Corollary 1.2.24 Assume deg(p) < 2 (i.e. p=0py...p1 where deg(p;) <1 fori=1,...,k) and
tP € G,R¥. Then one can construct (by majorization and subsequent ’logical’ normalization) a

term t*[z", ..., x*] such that
1) t*[x1,..., 2k contains at most xy ..., x) as free variables,
2) t*[x1, ..., xx) is built up only from z1,..., 2y, Ao, ..., An, S, 0° prd, ming, maxg,

3) GpAY F Axy, ..., wpt*[ze, ..., 2] s—maj t.

Proof: The corollary follows immediately from prop.1.2.21 and prop.1.2.22 (using lemma 1.2.11

(1))

The use of the concept of majorization combined with logical normalization has enabled us to
majorize a term t of type < 2 by a term ¢* which does not contain any functionals of type > 1.

This allows the calibration of the rate of growth of the functions given by ¢! € G,R% in usual
mathematical terms without any computation of recursor terms (which would require the
reduction of closed number terms to numerals):

11



Definition 1.2.25 ([22] ,[564]) The function f(z,y) is defined from g(x), h(z,y,z) and j(z,y) by
limited recursion if

f(z,0) =0 g(x)
flzy+1) =0 h(z,y, f(z.,y))
f(&a y) SO ‘7(23 y)

Definition 1.2.26 (n-th level of the Grzegorczyk hierarchie) For each n > 0, E" is defined
to be the smallest class of functions containing the successor function S, the constant—zero function,
the projections Ul (1, ...,xn) = x;, and An(z,y) which is closed under substitutions and limited
Tecursion.

Remark 1.2.27 Grzegorczyk’s original definition of E™ uses somewhat different functions gy (x,y)
instead of Ay (x,y). Ritchie ([54] ) showed that the same class of E™ of functions results if the gy,
are replaced by the (more natural) A, (which are denoted by f, in [54] ). See also [13] for a proof
of this result.

Proposition: 1.2.28 Assume t' €G,R“. Then one can construct a function f; € " such that

/\mo(tx <o ftx) and every function f € E™ can be defined in G, R”, i.e. there is a term t} € G, R”

such that /\xo(fx =tx).
In particular for n = 1,2,3 the following holds:

tl € GiRY = Je1,c0 e N G1AY + /\xo(tx <o 1z + ¢c2) (linear growth),
tt € GoRY = Jk,c1,c0 € N GoAY F /\xo(tx <o c12® + ¢o) (polynomial groth),
tl € G3RY = Jk,ce N: G3AY - /\xo(tx <o 2§%), where 28 = a,2§, = 2%

(finitely iterated exponential growth).

More generally, if t* (where p =0(0)...(0)), defines an m—ary function:
~———

m—times

tP € Gi1RY = Jc1, .. yeme1 € N GLAY + /\x(l), cony @2 (tz <o 121+ oo F CnTm + Ct1),s

0 € GoR® = Ip € Nz1,...,xm] 1 GoAY - Na(tz <o pa),

tP € G3R* = dk,c1,..., 2, € IN: GSA;U F /\g(tg <o 221I1+”'+Cm$m).
The constants c¢;, k € IN in can be effectively written down for each given term t.

Proof: To t' we construct #[z] (according to cor.1.2.24 and the corollary to the proof of 1.2.21 )
such that t[z] is built up from z°,0° and Ao, ..., A,, and \z.t[z] s maj, tz. The later property
implies /\z° (t}x] >o tz). By [54] (p. 1037) we know that Ay, ..., A, € £". Since £ is closed under
substitution it follows that f, := Az.t[z] € £".

For the other direction assume f € £". Since G,R“ contains S, A\z.0°, the projections UF and

A, and it is closed under substitution (because A-abstraction is available) and limited recursion

(because of R) it follows that f is definable in G, R¥.
We now consider the special cases n = 1,2, 3:

12



n = 1: Assume t” € G;R¥ where p = 0(0)...(0). ¢[z9,..., 2% ] is built up from 0°, Ay and A; only.
—_——
m

Both Ag(x1,22) =0 21+ 1-29+ 1 and Ay(z1,22) =1-21 4+ 122 + 0 are functions having the
form c1x1 + coxo + ¢3 or — more generally — c121 + ... + ¢ + ck41. Since substitution of such
functions again yields a function which can be written in this form it follows that #[z, ..., zm,] =
121+ ... + Ty + 41 for suitable constants ¢, ..., cpy1-

n = 2: Assume t? € GoR¥. t[z1,...,x,,] is built up from 0°, Ay, A1, Ay. Since Ay, A; and A, are
polynomials (in two variables) and substitution of polynomials in several variables yields a function
which can be written again as a polynomial, it is clear that ﬂxl, coyTm] = p(x1, ..., 2y) for a

suitable polynomial in IN[z1,...,2,,]. In the case m = 1, p(z) can be bounded by c;2* + ¢y for

suitable numbers cq, cs.
n = 3: Assume t” € GsR¥. For all z,y the following inequalities hold:

(%) As(z+2,y+2) > As(z,y), A1(x,y), Ao(z, y), 2. Replace in ﬂxl, .+, Ty] all occurrences of 0 by
2 and all occurrences of A;(x,y) with ¢ < 2 by As(x 4+ 2,y + 2) and denote the resulting term by
ty, ..., o)

(%) together with the monotonicity of As(x,y) in z,y for ,y > 2 yields

/\xl,...mm(f[xl,...,xm] > ﬂxl,...,xm] > tml...xm).
t[r1,..., 2] is built up from x1,...,2,,+2 and Az only. Let k be the number of Az-occurrences
in t[z1,...,2m]. Then [z1,...,2,,] can be bounded by y, where yo := 0, yp = y¥* and y :=
max(z1,...,%m,) + 2. By [44] we have y; < 2%, where 27 = 1 + ... + 2,, and 2%, — 225, Hence

/\1(2% > tg) .

Remark 1.2.29 This proposition provides a quite perspicuous characterization of the rate of growth
of the functions which are definable in G,A“. Of course for concrete terms t the bounds given for
n =1,2,3 may be to rough. To obtain better estimates one will use combinations of any convenient

functions like e.g. max, min (instead of replacing them by = +y) and (for n = 3) the growth of t
will be expressed using max, min, Ag, A1, As and As and not Az allone. Thus one can treat also all
intermediate levels between e.q. polynomial and iterated exponential growth.

The estimates for n = 1,2, 3 generalize to function parameters as follows: Let t'(!) € G,,R¥, then
tf! can be bounded by a linear (polynomial resp. elementary recursive) function in f* where

f* s—maj f. By 'tf'x% is linear (polynomial, elementary recursive) in f,x’ we mean
that tfx =¢ t[z, f] for all z, f, where t[z, f] is a term which is built up only from z, f,0°, S, +
(z, f,0°,8%, 4, resp. x, f,0°, 8, +,-,(-))). In particular this implies that if f* is a linear (poly-
nomial, elementary recursive) function then ¢f* can be written again as a linear (polynomial, ele-
mentary recursive) function. This holds even uniformly in the following sense (which we formulate
here explicitly only for the most interesting polynomial case):

Proposition: 1.2.30 Let t'(V) € GyR¥. Then one can construct a polynomial ¢ € IN[z] such that

For every polynomial p € IN[z]
one can construct a polynomial r € IN[x] such that

AFU(f <ip = NaO(tfz <o r(2))) and deg(r) < q(deg(p))
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This extends to the case where t has tuples fi,..., ft,29,...,20 of arguments with f1,..., fr <1 p
and r € W(zq,..., 2.

Proof: Let p € N[z]. Since p is monotone, f < p implies p s—maj f. Let ﬂf, x| be constructed
to tf according to prop.1.2.22 and the corollary to the proof of prop.1.2.21. Then ﬂp, x] >0 tfx
for all f <y p and ﬂp, x] is built up from x,0°, Ag, A; and p only. As in the proof of prop.1.2.28

one concludes that f[p, x] can be written as a polynomial 7 in 2. The existence of the polynomial ¢
bounding the degree of r in the degree of p follows from the fact that the degree of a polynomial
p1 € N[z1,...,z,] obtained by substitution of a polynomial ps for one variable in a polynomial p3

is < deg(p2)-deg(ps)-

1.3 Extensions of G, A%

Definition 1.3.1 1) Let G A¥ denote the union of the theories Gn A for alln > 1 and Goo AY

1ts intuttionistic variant.
E-Goo A% and E-G AY are the corresponding theories with full extensionality.

G RY is the set of all closed terms of these theories, i.e. GoRY := |J GpR“.
nelN

2) PRAY s the theory obtained from Goo A by adding the Kleene—recursor operators ép (on
which S. Feferman’s theory PA N is based on; see [11] ):

R,0y2v = yv
R, (Sz)yzv =0 2(R,wyzv)zy,

where y € p,z € p00 and v =v{* ... vL* are such that yv is of type 0.

Correspondingly we have the theories PRAY, E-PRA¥ and E-PRAY .
The set of all closed terms of PRA¥ is denoted by PR".

Thus PRAY is equivalent to PA” M-all true Nz Ag—sentences for p < 2. We now show that the same
theory results if we only add the (unrestricted) iteration functional ®,; together with the axioms

®,:0yf =0y
Qux'yf =o [(Puzyf) iePuryf = Ty

instead of R:
We define R, through one intermediate step:

Firstly we show that }A%p can be defined from ®, where

0y f =0y
da'yf =0 f(Pzyf)z  (f €0(0)(0)).

One easily verifies that ﬁp can be defined as

ﬁp = Az, y, 2, 0.0z (yu) (A, 23221 290).
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® in turn is definable using Py This follows from the fact that for fx =
max(®y (Ay1. @1 (Ay2. fy1y2)w)z, 2') (= max (fy1y2,2")) one has ‘I%'téﬂyf >0 i)xyf for all z,y, f.

Y1,Y2>0
Thus using ®;; as a bound in the recursion one can define ) by the bounded recursor operator R.
Put together we have shown that ép is definable in PRA®. Since on the other hand ®;; is trivially

definable using R our claim follows.

On the level of type 1 the theories PRAY and G, A% coincide: The functions given by the closed
terms of type level 1 of both theories are just the primitive recursive ones: For PRA% this follows

from [11]. Since G, A¥ is a subtheory of PRAY it suffices to verify that all primitive recursive
functions are definable in it. This however follows immediately from prop.1.2.28 and the well-know

fact (due to Grzegorczyk) that the class of all primitive recursive functions is just the union of all
e,
In contrast to this, both theories differ already on the type—2-level:

Proposition: 1.3.2 The functional ®;; is not definable in Gy AY, i.e. there is no termt € Gy R”
such that t satifies (provable in Goo A¥) the defining equations of ®;;.

Proof: Assume that ®;; is definable in G, A%. Then there exists an n such that ®;; is already
definable in G,A“. On the hand from the proof above we know that within G, A% + ®,; the

unbounded recursors Ep and therefore all primitive recursive functions (in particular A, 41 ) are
definable. Hence A, 1 could be defined in G,,A“ contradicting prop.1.2.28, since A, 11 cannot be
bounded by a function from " (see [54] ).

Finally we introduce the theory PA“ which results from PRA® if

1) Ep is replaced by the Godel-recursor operators IR, characterized by

R,0yz =,y
R,x'yz =, z(R,xyz)x, where y € p,z € pOp,

2) the schema of full induction

(1A) : A(0) A N\z(A(z) = A(2')) = NzA(z)

is added.

The set of all closed terms of PA¥ is denoted by T (following Godel).

PA¥ is the intuitionistic variant of PA“. E-PA“, E-PAY are the corresponding theories with
full extensionality (E).

In this chapter we have introduced a hierarchy G1A¥, GoA¥, ..., PRAY of subsystems of arithmetic

in all finite types PA“. Furthermore we have determined the growth of the functionals t'(*) which
are definable in these theories. In particular for n < 3 it turned out that ¢ can be majorized by a
term t* of type 1(1) such that

t* f129 is a linear function in f,z, if n = 1,

t* f120 is a polynomial function in f,z, if n = 2,

t* f120 is an elementary recursive function in f,z, if n = 3,

15



and in the case n = 2, for every polynomial p' there is a polynomial r! such that t*fx <o rz for
all f <y p.

In the following chapters these theories (in particular GoA“) will be used as base theories to measure
the impact on the growth of provably recursive functionals of many analytical principles.
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2 Monotone functional interpretation of G, A*, PRA“ ,PA%
and their extensions by analytical axioms: the rate of
growth of provable function(al)s

2.1 Godel functional interpretation
Definition 2.1.1 The schema of the quantifier—free axiom of choice is given by
ACPT —qf : /\x”VyTAo(x,y) — \/YT’J/\:B'”AO(x,Ym),

where Ag is a quantifier—free formula of the respective theory.

AC—qf:= | {AC"T—qf}.

p,TET
If
GnAY NP Vym Ay (2, y),
then
GnAY + ACPT—qf + VY™ \ar Ag(2, V).

In order to determine the growth which is implicit in the functional dependency Nar VyT’ we have

to determine the rate of growth of a functional term which realizes (or bounds) Vy o' Let A’
denote one of the well-known negative translations of A (see [43] for a systematical treatment) and
AP be the Godel functional interpretation of A (as defined in [43] or [67] ).

AP has the logical form

VaMyAp(z,y,a).

where Ap is quantifier—free, z,y are tuples of variables of finite type and a is the tuple of all free

variables of A. For our theories this functional interpretation holds:

Theorem 2.1.2 Let I' be a set of purely universal sentences F = /\u”Fo(u) € L(G,A¥) and
n € INU{oo} (n>1). Then the following rule holds

G,AY + T+ AC—qf + A= 3t € G,R” such that
G AY + T F Ny (&) (ta,y, a)) .

t can be extracted from a given proof
(An analogous result holds if G, A”, G, R”, G, A7 are replaced by PRAY, IGT%W, PRAY or PAY, T,
PA).

Proof: For PA“ the proof is given e.g. in [67]. The interpretation of the logical axioms and rules
only requires the closure under A-abstraction, definition by cases and the existence of characteristic

functionals for the prime formulas. All this holds in G, R“ and PR”. The interpretation of the
universal axioms is trivial.
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Corollary 2.1.3 LetT' be as above and Ao(z,y) is a quantifier—free formula which has only z,y as

free variables. Then

G A +T + AC-of + NaVyAo(z,y) = 3t e G,R* such that:
GnA;'J +T'F /\ﬁAO(Ea tﬁ)

(Analogously for PRAY and PAY).

By the well-known elimination procedure for the extensionality axiom (E) one may replace G, A%
by E-G,, A% if the types of z are < 1 and the types in AC—qf are somewhat restricted:

Corollary 2.1.4 Assume that (¢ = 0AB < 1) or (a = 1A B =0), and z = 2f*,..., 2" where
pi <1 fori=1,...,k. Then

E-GpA® +T 4+ AC™? gf - NaVyAg(z,y) = 3t € G, R such that :
GnAY +T F NaAo(z, o)

(Analogously for E-PRA% and E-PA¥ ).

Proof: The corollary follows from the previous corollary using the elimination of extensionality
procedure as carried out in [43] and observing the following facts:

1) The hereditary extensionality of R, (i.e. Ex(R) in the notation of [43] ) can be proved by
(QF-TA). Similarly for ®;. The heriditary extensionality of u;, follows easily from the axioms
Hb-

2) (ACHO—qf), is provable by bounded search using yu; and prop. 1.2.6 .

3) For F €T the implication F' — F, holds logically.

2.2 Monotone functional interpretation

In [39] we introduced a new monotone functional interpretation which extracts instead of a

realizing term t for \/y in cor.2.1.3 a ’bound’ ¢* for ¢ (in the sense of s—maj, which for types < 2
provides a >—bound by lemma 1.2.11.7). This is sufficient in order to estimate the rate of growth
of t. The construction of t* does not cause any rate of growth in addition to that actually involved
in a given proof since besides the terms from the proof only the functionals max,?? and ®; are
used (For the theories G, A% even ®; is not necessary for the construction of ¢* but only for the
very simple transformation of ¢* into a >-bound for type < 2 by lemma 1.2.11 ). This has been
confirmed in applications to concrete proofs in approximation theory where t* could be used to
improve known estimates significantly (see [37] ,[38] ,[39] ). In most applications in analysis the

formula AzVyA(z,y) (A € 29) will be monotone w.r.t. y, i.e.
Ny, s (y2 = y1 A Az, 1) — Az, y2)),

and thus the bound t* in fact also realizes ’\/y’ (This phenomenon is discussed in [39] ).
The monotone functional interpretation has various properties which are important for the following
but do not hold for the usual functional interpretation:

Zmax,,(21?, 25") = MyP. max, (z1y, T2y).
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1) The extraction of t* by monotone functional interpretation from a given proof is much easier
than the extraction of ¢ provided by the usual functional interpretation: E.g. no decision of
prime formulas and no functionals defined by cases are needed for the construction of ¢* (but
only for its verification) since the logical axioms A —+ AA A and AV A — A have a simple
monotone functional interpretation (whereas these axioms are the difficult ones for the usual
functional interpretation). Because of this also the structure of the term ¢* is more simple
than that of ¢, in particular t* € G,R“ whereas t € G, R“.

2) The bound t* obtained by monotone functional interpretation for V27 in sentences
Nty <, sx\/zTAo(x, y, z) does not depend on y, i.e. ANy <, saVz <, Ao(z,y,2)
(Here 7 < 2 and s is a closed term).

The most important property of our monotone functional interpretation however is
the following

3) Sentences of the form

(%) /\x“’\/y <s sx/\z"Ao(x, Y, 2)

have a simple monotone functional interpretation which is fulfilled by any term s* such that
s* s—maj s (see [39] ). This means that sentences () although covering many strong non—
constructive analytical theorems which usually do not have a functional interpretation in the
usual sense (not even in T) (as we will see in chapter 7 below) do not contribute to the growth

of the bound t* by their proofs but only by the term s and therefore can be treated simply as
axioms.

Definition 2.2.1 (bounded choice) The schema of ’bounded’ choice is defined as

(b-AC™") - /\Zpé(/\x5\/y <, Zz Alz,y,Z) — Vy <ps Z/\JSA(JS,Y:E, 2)),
b-AC := (b-AC*P) L.
U {eacn;

(a discussion of this principle can be found in [34] ).

Theorem 2.2.2 Let A be a set of sentences having the form AuVo <s tu/\w”Fo(u, v,w), where
t € Go,RY. Then the following rule holds

From a proof G, A¥ + A+AC—qf - (A)

one can extract by monotone functional interpretation a tuple ¥ € G, R“ such that

G AY + A+b-AC + (¥ satisfies the monotone functional interpretation of (A)),

where (A)' denotes the negative translation of A.

In particular for Ao(x,y,z) containing only x,y,z free and s € G, R¥ the following rule holds for
T <2:

From a proof G, A + A+ AC—qf + /\;z:l/\y < sx\/zTAO(x, Y, 2)
by monotone functional interpretation one can extract a ¥ € G, R”[®1] such that

G AY + A+ b-AC + Nat Ny <, saVz <, U Ao(z,y,2).
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U 45 built up from 09, 1°, max,, ®; and majorizing terms®3 (for terms t occurring in those quantifier

azioms N\eGz — Gt and Gt — VaGa which are used in the given proof) by use of A—abstraction

and substitution.
If 7 <1 (resp. 7 =2) then ¥ has the form ¥ = Az WozM (resp. ¥ = Azt y* . WorMyM ) where

aM .= &z and Uy does not contain P4

(An analogous result holds for PRA%, PA¥).
Corollary 2.2.3 For 1 <n < 3 the following holds (for Ag(z°,y?,2°) containing only x,vy,z free)

GuA” + A+ AC—of = Na"Ny <, 52V A0 (,y,2) =

ey, € N: GRAY + A+ 0-AC + /\xo/\y <, saVz <o 1z +co Ap(z,y,2), ifn=1
Jk,c1,c0 € N GoAY + A+ 0-AC + /\xo/\y <, szVz <o c1z¥ + ¢y Ao(z,y,2), if n=2
Jk,ce IN: Gz3AY + A+ b-AC + /\xo/\y <, sz Vz <o 2§"Ao(z,y, 2), if n = 3.

This generalizes to the case /\xo,il/\y <, sxfc\/zvo : One obtains a bound which linear (polyno-
mially, elementary recursive) in x°, & in the sense of chapter 1 forn =1 (n = 2,n = 3) and for
n =2 prop.1.2.30 applies.

Remark 2.2.4 1) For 6,p <1 the theory G, A“ may be strengthened to E-G,A“ in thm.2.2.2
and cor.2.2.8 if AC—qf is restricted as in 2.1.4 .

2) Theorem 2.2.2 and cor.2.2.3 generalize immediately to tuples x,y,z of variables instead of

x,y, 2, if b-AC is formulated for tuples. Furthermore instead of \/wTAo we may also have

\/zT\/z'AO where 2’ is of arbitrary type: It still is possible to bound Ve,

Remark 2.2.5 Cor.2.2.3 is a considerable generalization of a theorem due to Parikh ([49] ): Parikh
shows for a subsystem (called PB) of the first order fragment of Gy A¥: If PB- /\x\/A(:zz7 y) (where
A contains only bounded quantifiers and only x,y as free variables) then there is a polynomial p

such that PB- NaVy < p(x) Az, y).

Proof of thm.2.2.2 : For PA“ the theorem is proved in [39] . We only recall the treatment of A:
The negative translation ——Nur—==Vo <5 tu/\w”ﬂ—'Fo of D := NuVo < tul\w F} is intuitionisti-
cally implied by D. The functional interpretation transforms D into

pP = Vv < thuw Fo(u, Vu,w). Let t* be such that t* s—maj ¢. Then (by lemmal.2.11.4)
V <t — t* s—smaj V. Hence t* satisfies the monotone functional interpretation of D (provable by

DP and thus in the presence of b-AC by D). The same proof applies to PRA¥. For G,A“ one
has to use prop.1.2.21 to show that the majorizing terms for the terms occuring in the quantifier
axioms can be choosen in G,R¥ (and not only in G,R%).

Proof of cor.2.2.3 : The corollary follows immediately from thm.2.2.2 and prop.1.2.28 using the

embedding 2% — Ay%.z° of type 0 into type 1. The assertion for the case /\xo, :El/\y <, sa:i‘\/zvo
follows using prop.1.2.21, the corollary to its proof and prop.1.2.22.

23Here t*[a] is called a majorizing term if Aa.t* s—maj Aa.t, where g are all free variables of ¢.
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Remark 2.2.6 The size of the numbers k, cy, co,c in the cor.2.2.8 above depends on the depth of
nestings of the functions +, - resp. ¥ occuring in the given proof. Such nestings may occur explicitly
by the formation of terms like (x - (x - (...))) by substitution or are logically circumscribed. In the
later case they are made explicit by the (logical) normalization of the bound extracted by monotone
functional interpretation. The process of normalization may increase the term depth enormously (In
fact by an example due to [55] even non—elementary recursively in the type degree of the term). This

corresponds to the fact that there are proofs of \/ono(x) —sentences such that the term complexity

of a realizing term for Va0 is not elementary recursive in the size of the proof (see [72] ). However
such a tremendous term complexity is very unlikely to occur in concrete proofs from mathematical
practice: Firstly the parameter which is crucial for this complexity (the quantifier—complezity resp.
the type degree of the modus ponens formulas) is very small in practice, lets say < 3. Secondly even

complex modus ponens formulas are able to cause an explosion of the term complexity only under
very special circumstances which describe logically the iteration of a substitution process as in the

example from [72] (we intend to discuss this matter in detail in another paper). Hence if a given

proof does not involve such an iterated substitution process the degree of the polynomial bound in
cor.2.2.3 will essentially be of the order of the degrees of the polynomials occuring in the proof and
if the proof uses the exponential function 2% (without applying it to itself) it will be a polynomial in
2%, Hence the results of this paper which establish that main parts of analysis can be developed in a
system whose provable growth is polynomial bounded also apply in a relativised form to proofs using
e.g. the exponential function.

(From the proof of thm.2.2.2 it follows that b—AC is needed only to derive

F.=Vv <y t/\u'y,w"Fo(u,Vu,w) from F := N Vo <s tu/\w"Fo(u,v,w).24 Hence if in the
conclusion A is replaced by A := {1*:‘ :F € A} then b—AC can be omitted. In particular this is the
case if each F' € A has the form Vv < t/\w Fy(v,w) since F' = F for such sentences.

Combining the proof of thm.2.2.2 with the proof of thm.2.9 from [33] one can strenghten the

theorem by weakening bfAC(f/\) to b—AC—qf, i.e. b—AC restricted to quantifier—ree formulas:
As in the proof of thm.2.9 in [33] one shows that

GpA” + AC—f + Au“’, WV <4 tu Fo(u,v,Wo) — N Vo <5 tu\w" Fy.

Thus A can be replaced by A= {/\u, wVu <tuFy:Fe A} without weakening of the theory.
Since the implication
/\u, wVo < tuFy(u, v, Wo) — Vv < Au, I/V.tu/\u7 W Fy(u, VulW, W(VuW))

can be proved by b-AC-qf (u, W can be coded into a single variable in G, A% for n > 2)2° the proof
of the conclusion of thm.2.2.2 can be carried out in

GpAY + A 4+ b-AC—qf
and thus a fortiori in

GnAY + A+ b-ACf.

24Thus in particular only b-AC restricted to universal formulas (b*AC*/\) is used.
25For n = 1 one has to formulate b-~AC—qf for tuples of variables.
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However replacing A by A may make the extraction of a bound more complicated since it causes a
raising of the types involved. Since we are interested in an extraction method which is as practical
as possible and yields bounds which are numerically as good as possible but not (primarily) in
the proof-theoretic strength of the theory used to verify these bounds we prefer the more simple
extraction from thm.2.2.2 .

Similarly to thm. 2.12 in [33] we have the following generalization of thm.2.2.2 to a larger class of
formulas:

Theorem 2.2.7 Let A be as in thm.2.2.2 , p1,p2 € T arbitrary types, 11,72 < 2, Ao(z,y,2,a,b)

a quantifier—free formula containing at most x,y, z,a,b free and s,r € G, RY. Then the following
rule holds:

G A + A+ AC—qf + /\zl/\y <o szVzr1A\a <, rasz\/bT2Ao(x,y, z,a,b)

2

= by monotone functional interpretation 3V, Uy € G, R?[P4] :
E-G,A” + A+ b-AC + /\xl/\y <o szVz <5 U12M\a <ps razVb <;, Vox Ao(z,vy,2,a,b).

Uy, Uy are built up as U in thm.2.2.2 . (An analogous result holds for PRA“ and PA% ).
Proof: Since the implication

/\xl/\y <o szVzr1N\a <ps rxz\/szAo(x, Y, z,a,b) —
/\xl/\y <, se\A <pom rszTl,szAO(%y, z, Az, b)

holds logically the assumption of the theorem implies

G,AY + A+ AC—qf + /\J;l/\y <, sz\A <pori raVzm 0 Ag(x,y, 2, Az, b).

P1
By thm.2.2.2 and remark 2.2.4 2) one can extract (by monotone functional interpretation) terms

Uy, ¥y € G,R¥ [®4] such that

/\xl/\y <p se\A <pom reVz <A \Illzv\/b <r, Uox Ag(z,y,z,Az,b).

As in the proof of 2.12 in [33] (using the fact that lemma 2.11 from [33] also holds for
E-G,A¥Y+ b-AC) one concludes the assertion of the theorem.

Theorem 2.2.8 All of our results on G,AY (G,AY, E-G,A“, E-G, AY) and G,R“ remain valid
if these theories are replaced by G, AY[x] (GnAY x|, E-GnA%[x], E-G,AY[x]) and G, R¥[x], where

for a theory T, T[x] is defined as the extension obtained by adding a tuple x of function symbols
X5 with deg(p;) <1 together with

(1) arbitrary purely universal azioms /\SCTA()(I') on x, where T <2
plus axioms having the form
(2) x* s—maj x for x* € G, R?,

where (1),(2) are valid in the full type structure S* under a suitable interpretation of x (GnR*|[x]
denotes the set of all closed terms of the extended theories).
In particular the bounds extracted in thm.2.2.2, 2.2.7 and cor.2.2.3 are still € G, R“[®4].
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Proof: The theorem follows immediately from the proofs above (observing that also (2) is purely
universal) if one extends the construction of ¢* in the proof of prop.1.2.21 by the clause

"Replace all occurrences of x; in ¢ by x;’. Since the majorizing terms x; are € G,R" this also holds
for t*.

Remark 2.2.9 The reason for the restriction to deg(p;) < 1 in the theorem above is that the
addition of symbols for higher type functionals x in general destroys the possibility of elimination
of extensionality since Ex(x) may not be provable (and cannot be added simply as an axiom since
it is not purely universal). Also (2) is no longer purely universal if deg(p;) > 2.

By theorem 2.2.8 the extension by symbols for majorizable functions has no impact on the bounds
extracted from a proof. This is the reason why in the following chapters at some places we will

make free use of such extensions (e.g. we will add new function symbols for sin and cos in chapter
5) and will denote the resulting theories also by G, A% etc.

By cor.2.1.3 and thm.2.2.2 we can extract realizing functionals respectively uniform bounds for

AV Ag-sentences (in the later case even for the more general sentences from thm.2.2.7 ). Since
the theories G, A% are based on classical logic it is in general not possible to extract computable

realizations or bounds for /\V/\Aofsentencesz Let us consider e.g.
(+) /\xOVyO/\zO(ny V —Pxz),

which holds by classical logic. If Pxy := Txxy, where T is the Kleene T—predicate, then any upper
bound f on y, i.e.

/\xOVy <o fx/\zO(sz V —Pzz)

can be used to decide the halting—problem (and therefore must be ineffective): For h which is defined
primitive recursively in f such that

0, if \/y < fax(Tzzy)
1 otherwise

one has hx =0 < \/yTaja:y for all z.
T is elementary recursive and can therefore be defined already in GzA¥.

If one generalizes (+) to tuples of number variables then — by Matijacevic’s result on Hilbert’s loth
problem— there is a polynomial Pz y whith coefficients in IN such that there is no tuple ¢, ...,

of recursive functions (for y =y ...yx) with

/\zvyl <tz... Vyk < tkz/\g(sz =0V -Pzz=0).

Since P € G3R* and GoR® allows the coding of finite tuples of natural numbers one can define
already in GoR* a predicate P such that there is no recursive bound on y in (+).

The use of non—constructive /\\/—dependencies as in (4) is a characteristic feature of classical logic.

If intuitionistic logic is used the situation changes completely: In chapter 8 we will show that even
in the presence of a large class of non—constructive analytical axioms (including as a special case
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arbitrary AutVo < su/\wTAofsentences) one can extract uniform bounds ¥ € G,,R¥ on z in sen-

tences /\xl/\y < tzVz A(z,y, z), which are proved in G, A% from such non—constructive axioms,
where A is an arbitrary formula ( containing only z,y, z free). This extraction is achieved by a
new monotone version of modified realizability.

Although in the case of theories based on classical logic it is not always possible to extract effec-

tive bounds for /\x\/yA(x, y)—sentences when A is not purely existential, one may obtain relative
bounds :
By AC%%—qf and classical logic

(1) /\xOVyO/\zO(Pa:y V - Pzz)
is equivalent to

(2) A, fVy(Pay v ~Px(fy))
and a bound on y in (2) is given by

Uz f := maxq(0, f0) = fO

since?6

(Pz0V —Px(f0)) vV (Pz(f0) Vv —~Px(ff0)).

For a more complex situation let us consider

F = (/\xo\/yo/\zvo(x,y,z) — /\uOVUOBo(u,v)) ,

which is —by ACO0- A and prenexing— equivalent to
F .= /\fl,u\/x,z,v(Ao(x,fx,z) — Bo(u,v)).

Fisa /\\/Fofsentence. Thus v (and also x,z) can be bounded by a functional Yuf in u, f with ¥ €
G,RY if F' is proved in G, A% + A+AC—qf. V¥ is an effective bound relatively to the oracle f.

By raising the types one can replace F by a different (and more complex) /\\/Fofsentence F which

is more closely related to F' in that the equivalence of F' and F can be proved using only AC%0—gf:

F < (V@QAxO,fle(gc, dxf, f(Dzf)) — NuVuBy(u, v))
o No, Ve, frv(Ao(z, ®af, f(Paf)) = Bolu,v)) =: F.

If F is proved in G,,A“+AC—qf, then one can extract from this proof a term t € G,,R“ such that

t®u realizes *Vo'. If F is proved in G,A“ + A+AC-qf one obtains (using monotone functional

interpretation) a term t* € G, R such that for every ®* which majorizes ®, t*®*u is a bound for
v:

®* s—maj ¢ — (/\x,on(x7<me7f(<I>xf)) — AV < % Bo(um)) .

26 More generally fz is an upper bound where z is a variable.
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In this chapter we have determined the growth of uniform bounds ®u k on Var (where v < 2) for
sentences

(+) Nut, KN <, tu Vw4027

(and also the more general sentences from thm. 2.2.7 ) which are provable in G, A¥+ axioms A
having the form /\x5\/y <, sx/\z”Bo.
In particular, for v = 0 and n < 3 we have bounds ® such that

®u k is a linear function in ™, k (where u := A\ maxq(u0, ..., ux)), if n = 1,
®u k is a polynomial function in M, k for which prop.1.2.30 applies, if n = 2,

du k is an elementary recursive function in v, k, if n = 3.

These results will be used in the following chapters (besides other proof-theoretic methods) to

determine the growth of extractable bounds from proofs which may use various genuine analytical
theorems.

27Here u, k denote tuple of variables of type 1,0.
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3 Real numbers and continuous functions in GyAY:
Enrichment of data

3.1 Representation of real numbers in GyA¥

Suppose that a proposition /\:z:\/yA(x,y) is proved in one of the theories T from the previous
chapters, where the variables z,y may range over IN,ZZ, @, R or e.g. C[0,1] etc. What sort of
numerical information on ’Vy’ relatively to the ’'input’ z can be extracted from a given proof
depends in particular on how z is represented, i.e. on the numerical data by which x is given:

Suppose e.g. = that is a variable on IR and real numbers are represented by arbitrary Cauchy
sequences of rational numbers x,, i.e.

(1) AOVROAm, 7 > n(|m — | < %-i-l)

Let us consider the (obviously true) proposition

2) Az e RVie N < ).

Given z by a representative (z,,) in the sense of (1) it is not possible to compute an [ which satisfies
(2) on the basis of this representation, since this would involve the computation of a number n

which fulfils a (in general undecidable) universal property like A, > (|, — xm| < 1): Define
now [ := [|z,|] + 1.

If however real numbers are represented by Cauchy sequences with a fixed Cauchy modulus,
eg. 1/(k+1),ie.

- 1
(3) /\m,m > k(\mm — | < m),

then the computation of [ is trivial:
L= ® (o)) = Tlaol] + 1.

® is not a function : IR — IN since it is not extensional: Different Cauchy sequences (x,), (Z,)
which represent the same real number, i.e. lim, . (z, — Z,) = 0, yield in general different num-
bers ® ((zy,)) # ® ((Z,,)). Following E. Bishop [5] , [6] we call ® an operation : IR — IN. This
phenomenon is a general one (and not caused by the special definition of ®): The only computable
operations IR — IN, which are extensional, are operations which are constant, since the computabil-
ity of ® implies its continuity as a functional?® : NN — IN and therefore (if it is extensional w.r.t.
=R ) the continuity as a function IR — IN.

The importance of the representation of complex objects as e.g. real numbers is also indicated
by the fact that the logical form of properties of these objects depends essentially on the represen-
tation:

If (x,,),(Z,) are arbitrary Cauchy sequences (in the sense of (1)) then the property that both

sequences represent the same real number is expressed by the II9—formula
1
(4) NN Am, i > n(|Zm — T| < m)

28 An operation ® : IR — IN is given by a functional : INN — IN (which is extensional w.r.t. =1!) since sequences
of rational numbers are coded as sequences of natural numbers.
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For Cauchy sequences with fixed Cauchy modulus as in (2) this property can be expressed by the
(logically much simpler) T19—formula
(5) /\k(m — Tl < i).
T k+1
For Cauchy sequences with modulus 1/(k + 1) (4) and (5) are equivalent (provably in GoAY). But
for arbitrary Cauchy sequences (4) does not imply (5) in general.

If (x,) C @ is an arbitrary Cauchy sequence then AC%? applied to

ANV Am, i > C ] <
kVn m,m_n(|xm xm‘_k—i—l)

yields the existence of a function f! such that

. 1
/\k/\m,m > fk(|xm — | < m)

For m,m > k this implies |z f, — 2 fm| < k—}H (choose k' € {m,m} with fk' < fm, fm and apply
the Cauchy property to m’ := fm,m' := fm), i.e. the sequence (zn)nen is a Cauchy sequence
with modulus 1/(k + 1) which has the same limit as (2, )nenN.

Thus in the presence of AC%Y (or more precisely the restriction ACOO-A of ACOO to 19—formulas)

both representations (1) and (2) equivalent. However AC%0-A is not provable in any of our theories
and the addition of this schema to the axioms would yield an explosion of the rate of growth of
the provably recursive functions. In fact every a(< gp)-recursive function is provably recursive in

CoA“+ ACO%9-/\. This follows from the fact that iterated use of AC%%-A combined with classical
logic yields full arithmetical comprehension

CAar = VAN (f2 =0 0 A(2)),

where A is an arithmetical formula, i.e. a formula containing only quantifiers of type 0. CA,,
applied to QF-IA proves the induction principle for every arithmetical formula. Hence full Peano—

arithmetic PA is a subsystem of GoA¥+ ACO0-A\

As a consequence of this situation we have to specify the representation of real numbers we choose:

Definition 3.1.1 A real number is given by a Cauchy sequence of rational numbers with modulus
1/(k+1).

The reason for this representation is two—fold:

1) As we have seen already above any numerically interesting application of the extraction of a
bound presupposes that the input is given as a numerical reasonable object. This is also the
reason why in constructive analysis (in the sense of Bishop) as well as in complexity theory
for analysis (in the sense of H. Friedman and K.-I. Ko, see [31] ) real numbers are always
endowed with a rate of convergence, continuous functions with a modulus of continuity and
so on. Also in the work by H. Friedman, S. Simpson and others on the program of so—called
‘reverse mathematics’, real numbers are always given with a fixed rate of convergence.
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2) For our representation of real numbers we can achieve that quantification over real numbers
is nothing else then quantification over NN i.e. /\xl, Vyl. Because of this many interesting

theorems in analysis have the logical form AVFE, (see [39] for a discussion on that) so that
our method of extracting feasible bounds applies.

1) and 2) are in fact closely related: If real numbers would be represented as arbitrary Cauchy

sequences then a proposition Na € IR\/y € IN A(z,y) would have the logical form
/\xl(/\k\/n/\mﬁb — \/yOA),

where (x) /\k\/n/\mFo expresses the Cauchy property of the sequence of rational numbers coded
by 2!. By our reasoning in chapter 2 we know that we can only obtain a bound on y which depends
on z together with a Skolem function for (x). But this just means that the computation of the

bound requires that x is given with a Cauchy modulus.
As concerned with provability in our theories like G, A“+AC—qf the representation with fixed
modulus is no real restriction: In chapter 11 we will show in particular that the a proof of

Nan) (VN Am, > fl(|2m — &) < %H) — Vi)

can be transformed into a proof of

1
/\(zn)(/\k\/n/\m, m > n(|em, — Tm| < m) — \/yOA).
within the same theory (i.e. without any use of AC%?) for a large class of formulas A.
In particular we show that for every definable Cauchy sequence the assertion of the existence of a
Cauchy modulus is conservative (i.e. it does not cause any additional rate of growth).

The representation of IR presupposes a representation of @: Rational numbers are represented
as codes j(n,m) of pairs (n,m) of natural numbers n, m. j(n,m) represents

the rational number —2— if n is even
m+17 ’

the negative rational — 25 if n is odd.

By the surjectivity of our pairing function j from chapter 1 every natural number can be conceived
as code of a uniquely determined rational number. On the codes of @, i.e. on IN, we define an
equivalence relation by
Jjina Jing
_ 2

2
ny = No ‘= — = =
1=@ ™2 Jon1+1  jome +1

if jinq,jine both are even

and analgously in the remaining cases, where ¢ = ¢ is defined to hold iff ad =¢ ¢b (for bd > 0).
On IN one easily defines functions | - |q, +q,—q, @ :q,maxqg, ming € GoR¥ and (quantifier—free)
relations) <q, <q which represent the corresponding functions and relations on Q. In the following
we sometimes omit the index @ if this does not cause any confusion.

Notational convention: For better readability we often write e.g. %4—1 instead of its code j(2, k)

in IN. So e.g. we write z° <q k%rl for x <q j(2,k).
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By the coding of rational numbers as natural numbers, sequences of rationals are just functions
f! (and every function f! can be conceived as a sequence of rational numbers in a unique way). In

particular representatives of real numbers are functions f! modulo this coding. We now show that
every function can be conceived as an representative of a uniquely determined Cauchy sequence of

rationals with modulus 1/(k 4+ 1) and therefore can be conceived as an representative of a uniquely

determined real number.?9
To achieve this we need the following functional

Definition 3.1.2 The functional )\fl.fe Go R is defined such that

fn, if Nk, m,m <, n(m,m >0 k = |fm—q fm| <q k%rl)
fn= f(ng —1) for ng := minl < n[\/k,m,m <o l(m,m >0 k Alfm —q [ >q 757))
otherwise.
One easily verifies (within GoA¥) that
1) if f! represents a Cauchy sequence of rational numbers with modulus 1/(k + 1), then
/\no(fn =0 ]/C\n)v
2) for every f! the function frepresents a Cauchy sequence of rational numbers with modulus
1/(k+1).
Hence every function f gives a uniquely determined real number, namely that number which is

represented by f. Quantification Az € R A(x) (\/x € IR A(z)) so reduces to the quantification
/\flA(f) (\/flA(f)) for properties A which are extensional w.r.t. = below (i.e. which are really

properties of real numbers). Operations ® : R — IR are given by functionals o) (which are
extensional w.r.t.=;). A real function : IR — TR is given by a functional ®'(!) which (in addition) is
extensional w.r.t. =g . Following the usual notation we write (z,,) instead of fn and (Z,) instead

of fn
In the following we define various relations and operations on functions which correspond to the
usual relations and operations on IR for the real numbers represented by the respective functions:

Definition 3.1.3 1) (z,) =R (#n) := N (|7% —q T4l <q 727);
2) (zn) <R (@n) = VEO (T — Tk >q 57);
3) (2n) <w (#n) = ~(F0) <q (@n);
4) (@) +w (Fn) = @ans1 +@ T2nt1);
5) (#n) =R (En) = (Bant1 —q Fant1);
6) |(zn)lr = (1Znla);

7) (@) (En) = @atniy @ Tagnin), where k= [maxq(|zo| + 1, o] + 1)];

29A related representation of real numbers is sketched in [3] .

29



8) For (z,) and I° we define

o)L m | F@esnans 507, # B >0 0
(ming (Z(n41)@+1)2> l;—ll)_l), otherwise;

9) maxmg ((‘rn)a (‘%n)) = (maXQ (i\na u%n))a ming ((xn)a (‘%n)) = (minQ (‘/r\na /j\n)) .
One easily verifies the following

Lemma: 3.1.4 1) (z,) =r (T,) resp. (z,) <r (Zn), (xn) <r (Z,) hold iff the correponding
relations hold for those real numbers which are represented by (), (Z,).

2) Provably in GoAY, (z,) +mr (Zn), (@n) —r (@n), (zn) m (&n), maxg ((zn), (Zn)),
ming ((z,), (Zn)) and |(z,)|r also represent Cauchy sequences with modulus 1/(k + 1) which
represent the real number obtained by addition (subtraction,...) of those real numbers which
are represented by (), (Zn). This also holds for (z,)~% if |(zn)|R >R H% for the number

| used in the definition of (x,)~*. In particular the operations +Rr,—R etc. are extensional
0

w.r.t. to =R and therefore represent functions®C.
3) The functionals +R, —R, R, maxr, ming of type 1(1)(1), |- |r of type 1(1) and ()~* of type
1(1)(0) are definable in GaR®.

Proof: The lemma is easily proved using the following hints: Ad =r: If AV (|Zx —q Tl <q kiJrl)
then the Cauchy sequences (x,), (£5,) clearly have the same limit. If Vo (1Zk —q Ty >q kiﬂ) then

An > k(|&n —q Zul >q 7i7) (since (Z,), (Z,) have the Cauchy modulus -17). Hence (), (Z,)

have different limits.
Ad -g: Because of |ca — db| = |(c — d)a+ (a —b)d| < |c—d| - |a| + |a — | - |d| one has for m,m > n:
|To(m+1) '52(m+1)k —qQ |Za(m+1) 'EZ(m+1)k‘ <

[Zo(m+1)k —@ T2em+)k] - F + [T2(me 1)k —@ Topmtnyn] -k <

1 1 1
2(n+t1)k+1 k+ 2(n+1)k+1 k< n+l°

That the definition of (x,)~! is correct is proved using
11 1

777 = pa Ip — q| (for p,q # 0) and | max(p,r) — max(q,7)| < |p — ¢|.

Rational numbers ¢ coded by r, have as canonical representative in IR (besides other representatives)

the constant function An®.r,. One easily shows that
Nk (|(2,) =R An.ag| <m L)
T k+1
for every function (z,,).
Notational convention: For notational simplicity we often omit the emmbedding @ — IR, e.g.
! <R 9" stands for x <g An.y°. From the type of the objects it will be always clear what is meant.

30The functional ()~ is extensional for all I and (zn), (yr) such that |(zn)|R, |(yn)|R > 14%1
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If (fn)new of type 1(0) represents a k%rlfCauchy sequence of real numbers, then f(n) :=
]?3(”“)(3(71 + 1)) represents the limit of this sequence, i.e.

Nk(|fe —w fI <w m)

(One only has to show that le f. But this follows from
| Faman) B(m + 1)) —q Fapnen B0h +1))] <
| f3m1)B(m +1)) =r famiy| + | Famr1) =R Faemany| + | Famrn) —wr om0+ )] < 5520y

for m,m > n).
Representation of R? in GoAY:

For every fixed d we represent R? as follows: Elements of R? are represented by functions f1

in the following way: Using the construction f from above, every f! can be conceived as a rep-
resentative of such a d-tuple of Cauchy sequences of real numbers, namely the sequence which is
represented by

—_

(VE(f),...,v3(f)), where ve(f) == vl (fx).

. 5‘\ . . 1 d
Since the v{"( f) represent Cauchy sequences of rationals with Cauchy modulus 7771 elements of IR
are so represented as Cauchy sequences of elements in Q¢ which have the Cauchy modulus k%rl
w.r.t. the maximum norm || f!||max := maxm ([ (f)|®,---, [V5(f)|r)-

Quantification /\(xl, ..., xq) € R so reduces to /\flA(z/f(f), ...,v3(f)) for R-extensional prop-
erties A (likewise for \/)

The operations +a, —d, - - . are defined via the corresponding operations on the components, e.g.
ol eyt = vi(vis +r vy, .. v 4w vdYy).

Sequences of elements are represented by (f,,) of type 1(0).

Representation of [0,1]C IR in G2 AY

We now show that every element of [0,1] can be represented already by a bounded function
fe{f:f<1 M}, where M is a fixed function from G3R“ and that every function from this
set can be conceived as an (representative of an) element in [0,1]: Firstly we define a function

q € GoR¥ by

minl < n[l =q n], if0<gn<ql
q(n) ==
0%, otherwise.

It is clear that every rational number € [0, 1] N @ has a unique code by a number € ¢(IN) and

An? (g(g(n)) =0 g(n)). Also every such number codes an element of € [0,1] N Q. We may conceive
every number n as a representative of a rational number € [0,1] N @, namely of the rational coded
by g(n).

In contrast to IR we can restrict the set of representing functions for [0,1] to the compact (in the
sense of the Baire space) set f € {f: f <1 M}, where M(n) :=j(6(n+1),3(n+1) —1):
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Each fraction r having the form m (with ¢ < 3(n 4+ 1)) is represented by a number k& < M (n),

ie. k < M(n)Aq(k) codes r. Thus {k:k < M(n)} contains (modulo this coding) an
for [0,1].
We define a functional Af.f € GoR¥ such that

1
s et

F(k) = q(io), where io = pi <o M(k)[\j <o M(F)(IFB(k+1)) —q a(i)] Za [fB(k + 1)) —q a(i)])]

f has (provably in GyA%) the following properties:
DRVTE)
2) AF10 <k f<m 1).
3) Af{0<m f<r 1 f=nrJ)
9 AP =m f).

Proof: 1) /\fl(]% =, f) follows easily from the definition of f.
/\fl(f =, f): Assume m,m >q n. |f(3(m +1)) —q f(3(m + 1) < ﬁ and the fact that

{q(i) : i <o M(n)} contains a ﬁfnet for [0,1] imply that |f(m) —q f(m)] < n%rl (here one

has to disinguish the cases f(S(m +1) in [0,1] or not in [0,1]), so f has the appropriate Cauchy
modulus.

2) follows again immediately from the definition of f.

3) follows from 1). 4) follows from 2) and 3).

By this construction quantification Nz e [0,1] A(z) and Vz e [0,1] A(z) reduces to quantification
having the form A f <1 M A(f) and V f < M A(f) for properties A which are =g -extensional (for
f1, f2 such that 1 <g f1, fo <gr 1), where M € GoR“ . Similarly one can define a representation
of [a,b] for variable a!,b' such that a <R b by bounded functions {f* : f <; M(a,b)}. However
by remark 3.1.5 below one can easily reduce the quantification over [a,b] to quantification over
[0,1] so that we do not need this generalization. But on some occasions it is convenient to have
an explicit representation for [—k, k] for all natural numbers k. This representation is analogous to
the representation of [0, 1] except that we now define My (n) := j(6k(n + 1),3(n + 1) — 1) as the

bounding function. The construction corresponding to Af. f is also denoted by f since it will be
always clear from the context what interval we have in mind.

Representation of [0,1]? in GyAY

Using the construction f ~ f from the representation of [0,1] we also can represent [0,1]¢ for
every fixed number d by a bounded set {f1 < Md} of functions, where My : v4¢(M, ..., M) €
GoRY for every fixed d:

f(< M,) represents the vector in [0,1]? which is represented by ((vif),...,(v4f)). If (in the

other direction) fi,..., fq represent real numbers z1,...,24 € [0,1], then f := yd(fl, .. .,fd) <
vi(M, ..., M) represents (z1,...,xq) € [0,1]% in this sense.
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Remark 3.1.5 For a,b € R with a <g b, quantification \x € [a,b] A(x) (\/x € [a,b] A(z))

reduces to quantification over [0,1] (and therefore —modulo our representation— over {f : f <3 M})

by A e [0,1] A(Aa+(1—A)b) and analogously for Va. This transformation immediately generalizes
to [a1,b1] X -+ X [ag, bg] using A1, ..., Ag.

3.2 Representation of continuous functions f : [0,1]? — R by number
theoretic functions

Functions f : [a,b] — IR (a,b € R,a < b) are represented in G, A¥ by functionals ®!(*) which are
=R—extensional:

/\ﬂﬁl’yl(al <R T,y <r D' Az =Ry — Pz =R Dy).

Let f : [a,b] = IR be a pointwise continuous function. Then (classically) f is uniformly continuous
and possesses a modulus w : IN — IN of uniform continuity, i.e.
).

A,y € labl.k e Nz —y| < - = |fz = fyl <

1
(k) +1 k+1

In G,, A% this reads as follows

(+) Nyt K0! <p 2,y <R DA |z —m Y| <m -

_ dr — Pyl <

1)

Thus quantification over continuous functions : [a,b] — IR corresponds in G, A“ to quantification
over all '™ ! which fulfil (+).

In the following we show how this quantification over objects of type level 2 can be reduced to type—
l—quantification and how the condition (+) can be eliminated so that quantification over continuous
functions on [a, b] corresponds exactly to (unrestricted) quantification over f!. We do this first for
a = 0,b =1 and reduce the general case to this situation. Finally we generalize our treatment to

functions on [0,1]¢ (and [a1,b1] X ... X [aq, ba))-

Let f:[0,1] — IR be a uniformly continuous function with modulus of uniform continuity wjy.

f is already uniquely determined by its restriction to [0,1] N @. Thus continuous functions f :
[0,1] — IR can be conceived as a pair (f,,wy) of functions f, : [0,1]N Q — R, wy : IN — IN which
satisfy

— |fr$_ fry‘ < L)

(*)/\kelN,x,ye[OJ]ﬂQﬂm—ylSW < E

(See also [70] and [6]).

Remark 3.2.1 To represent a continuous function f € C[0,1] as a pair including a modulus of
uniform continuity is a numerical enrichment of the given data which we use here for reasons
which are similar to the endowment of real numbers with a Cauchy modulus: As we will see below

quantification over C[0,1] so reduces to quantification over functions of type 1. Furthermore many

functions on C[0,1] as e.g. fol f(x)dx or sup f(x) are given by functionals € GaR¥ in these
z€[0,1]

data (see paragraph 3 and 4 below). This has as a consequence that many important theorems on
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continous functions have the logical form of azioms T' or A in the theorems of chapter 2. Also many
sentences /\f e o, 1]/\x € ]R/\y € [0, 1]\/2 e IN A(f,z,y, z) have the logical form /\fl,scl/\y <1
MV 20 fl(f,x, Y, z) with Ae %9 so that theorem 2.2.2 applies yielding bounds on V2 which depend
only on f,x (if [ is represented with a modulus of continuity).

In chapter 7 we will extend E-G,A“ by an axiom F~ having the form of the sentences € A in
thm. 2.2.2 (and therefore not contributing to the rate of growth) which implies that every pointwise
continuous function f : [0,1] — TR is uniformly continuous and possesses a modulus of uniform

continuity. Hence under F~ the enrichment by such a modulus does not imply a restriction on the
class of functions. We also formulate a stonger axziom F of this type which even implies that every

function f :[0,1] — IR which is given by a functional ®'Y) is uniformly continuous and possesses
a modulus of uniform continuity. This is not contradictory to the existence of mon—continuous

functions since the proof of the existence of a functional ® representing such a function would
require higher comprehension which is not available in our theories.

Modulo our representation of @ and IR, f, is an object of type 1(0) (i.e. a sequence of number
theoretic functions). Quantification over continuous functions on [0,1] reduces to quantification over
all pairs (19, w") (and therefore by suitable coding to quantification over all functions of type 1)
which satisfy (x) by substituting Az'. f(z)R for (f,w) in the matrix where f(z)R := ler{:O f(@(w(k)))
(AKC.f(Z(w(k))) is a Cauchy sequence of real numbers with modulus k%rl and so its limit is definable
in GQAw).

For the program carried out in this paper it is of crucial importance to be able to eliminate the
implicative premise (*): Let us consider the theorem of the attainment of the maximum of a
continuous function on [0,1]

Af e C0,1]Vao € [0,1)\z € [0,1](f(z0) > fa).

Without the need of the implicative premise (x) on (f,w) this theorem would have (using our
representation) the logical form

/\fl\/xo <4 MNAz! A(f,xo,x),

where A € I19, i.e. the logical form of an axiom A in the theorems 2.2.2 and 2.2.7 and corollary

2.2.3 from chapter 2. Similarly many other important non—constructive theorems would have the
logical form of an axiom A and thus do not contribute to the rate of growth of the uniform bounds
extracted from proofs which use these theorems.

In fact below we will show that the premise (*) can be eliminated by constructing functionals

\ill, Uy € GoRY such that the following holds

1) If (f1(©, w?) fulfils (x), then f =) ¥1 fw and s fw is also a modulus of uniform continuity
for f.

2) For every pair (f1(©),w!) the pair (¥ fw, Uy fw) satisfies (x).
By this construction the quantification
AW ((#) = A(f.w))

reduces to

AP wb) AT fw, Ts fuw)
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(and likewise for \/) for properties A which are extensional in the sense of =¢g 1.

In the following we write more suggestively f,,,w for Uy fw, Uy fw.

The underlying intuition for the following definition is roughly as follows: If f is uniformly continu-
ous with modulus w, then f,(n) := f(n). In the case that the continuity property is violated at the
first time at a point n, then we define f,, as a simple polygon using the f—values on the previous
points:

Definition 3.2.2 For 1O w! we define fuw,wy as follows:

— —

F(n), if Ao(f,w,n) = Nm,m <o o, (3n)\k <o n2
< soyrr — (Flam)k —q (f(am))k| < 237)

. (la(m) —a q(im)

Dno,f(1), for ng <o n minimal such that = Ao(f,w,ng), otherwise,
(:}(377/), Zf A()(f?wa n)

w (Tl) =0 N .
! maxg ((maxo { “'f(q;)i_gg;qj)

O]+ 154 %0 @000 £ 4} ) - (04 1.6

for ng <o n minimal such that ~Ao(f,w,ng), otherwise,

(here | ...|(1) is the value of the sequence |...| at 1) where

Pno,f 18 the polygon defined by f(q0), ..., f(¢(®u(3(no ~1)))),

@ (k) =0 maxq(k,1)? - (max;< w(i) + 1), wy(n) :==ws(5(n+1)) and

D, (n) =0 j(2(0(n) + 1),0(n) + 1) (Note that 0,1 are coded by 0,5(2,0) <g @, (3(ng ~1))).

Remark 3.2.3 f,, and wy are definable in G2 R (as functionals in f,w) since Ay can be expressed

quantifier—free and py, 5 can be written as

flai) —w f(q))

qt—q q7 @

Dno.f(n) =1 f(qi) +mr
where i,j <o Dy, (3(no =1)) are such that gi <q gn A (|qi —q qn| minimal) A qj >q qn A (l¢j —q qn|
minimal) (If q(n) =q 1, then pp, s(n) =1 f(q(n))).

Lemma: 3.2.4 1) k1 >0 ko — L:J(kl) >0 (:J(kQ)
2) (k) >0 k and &(k) >0 w(k).

3) w(3-k)>03-wk)+3 fork>1.

Proof: 1) and 2) follow immediately from the definition of &.
k>1
~ S gr2 . : S 212 . : 2
3) w(3k) > 9k (I?ggw(z) +1) >3k (I?Sagcw(z) +1) + 6k
k>1

>
> 3k? i =3-@ .
> 3k (rlngagw(z)—i-l)—i-?) 3-w(k)+3
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Lemma: 3.2.5 If f1) represents a uniformly continuous function F : [0,1] — IR with a modulus
wb of uniform continuity, i.e.
A, k(lgm —q am| <q s = 1f(am) —w fgn)] <m 7).,

then fo, =1(0) [ and wy is also a modulus of uniform continuity for F.

Proof: The first part of the lemma follows from the definition of f,, observing that the case
‘otherwise’ never occurs because of the assumption, since

. 1 143.<2.4 1
m el S ZT S Ly
implies that
— — 2 3

|(f(gm))k —q (f(gm))k| < |f(gm) —w f(gm)| + 1SR T

1.3.2.4
Furthermore wy(n) = @(3n) >¢ w(n). Hence together with w also w; and thus a fortiori wy is a
modulus of uniform continuity.

Lemma: 3.2.6 For every pair (10, w') the following holds:
fu represents a uniformly continuous function : [0,1]NQ — R and wy is a modulus of uniform
continuity for this function, i.e.

1

- |fw(qm) R fw(qmﬂ < m)

1
Am, i, k(lgm —q gin| < ————
m,m, (lqm Q qm' = wf(k)—|—1

: 5 = 1
Proof: Let m,m,k € IN be such that |gm —q gm| < FTIOESE
We may assume that gm >q gm.

Case 1: Ag(f,w,gm). Then also Ag(f,w,gm) since the monotonicity of ®,(3n) and n? implies

n1 >o na A Ao(f,w,n1) = Ao(f,w,na).
Hence f(gm) =r fuo(gm) and f(gm) =r fu(gm). By ws(k) >¢ @(k), k the assumption on m,m, k
yields

(+) lgm —q qm| < =

1 1
— —  and —0 g < ——.
S 1 ™ () lm —q 0] < g

(++) implies that k <o (gm)? (Because of ja(gm), ja(gm) <o gm, the (distinct) fractions coded

q
by gm,qm have denominaters a,b <o gm. Thus |£ — 2| > L > (q;l)z). Furthermore gm, gm <

®,,(3(gm)). Hence (+) and Ao (f,w, gm) yield (using /\xo(q(qx) =0 qx))

— — 3

(lam)k —q (flam)h| < =

and therefore

| fulgm) —r fu(gm)| =r [f(gm) —r f(gn)] < Pl

Case 2: ~Ag(f,w, qgm).
2.1 k >g ng :=minn <y gm-Ag(f,w,n):
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In this case we have f,(¢m) =R Pno,f(gm) and f,(gm) =R Pn,,f(gm) (In the case Ag(f,w,qm)
we have gm < ng < ®,(3(ng — 1)) and so f,(¢m) = f(¢n) is one of the f-values used in defining
Pno,f)- Since @y is a modulus of uniform continuity for p,, s for k > ng, the assumption on m,m
implies

1

‘fw(qm) R fw(qm)| < m

2.2 1<k <gno: Then Ay(f,w, k) and therefore W¢(k) = @(3k). Since all fractions m

with i <o @(3(no—1))+1 have a code <y ®,,(3(no—1)), the maximal distance between two adjacent

breaking points of p,,  is < Hence there are m*, m* <¢ ®,,(3(ng — 1)) (i.e. ’breaking

1
@(3(no—1))+1"
points’ of the polygon p,, r next to m,m satisfying (2) below) such that

2 1.3.2.4 3 1.3.2.4 3
< <

and

(2) | Prg,(@M") =R Prg, 1 (@m™) | ZR | Prg,£(@71) =R Py, f(gm) |-
— ——

=mf(gm*) =mf(gm*) =r fu(gm) =m fu(qm)
Since Ag(f,w,no — 1) and k <q (no — 1)2, (1) and (2) imply

2) _ _

w(gm) —wr fu(gm)] < |flgm*) —r f(gm*)| <|(f(gm*))k —q (f(gm*)k| + 737
)

Put together we have shown that in both cases (for k > 1)

5

= |fulgm) —r fo(gm)| < ——.

— | <
lgm —q qn| < = P

wy(k) +1

Hence wy is a modulus of uniform continuity for f,,.

Since every pair ( fl(o),wl) can be conceived now as a representation of a uniformly continuous
function [0,1] N @ — IR, namely that function which is represented by (Ui fw,Usfw) (where
Ui fw = f,o0q ¥sfw = wy).31 And every function g' can be conceived as a pair (f,w) by
g (MK2 n%.(j19)(j(k,n)), j2g) (where j;g := A\z.j;(g9x)), so g' represents the continuous function
(W19, Uag), where U1g := U1 (A0, n0.(j19) (G (k,n)), jog) and Wag := Wy (A, n0.(j19) (i (k,n)), j29).
Since every pair (f,w) can be coded by a function ¢, every uniformly continuous function

[0,1] N Q — IR is represented by some function g. Together with ¥, also the ¥, are in GoR¥.
Now we define the continuation on full [0, 1]:

Definition 3.2.7 The functional A\g',z'.g(z)r € GoRY is defined by

—

(9(2)R)(K°) :=0 U19(2(V29(3(k + 1))))(3(k + 1)), Z is the construction used in our representation
of [0,1].

31By switching from f,, to f. o ¢ we can formulate the continuity of ¥ fw now as

/\m,ﬁz(O <qm,m<g 1A|Im—qm| < W = |(T1fw)(m) —r |(F1fw)(m)| < k%rl)’ i.e. without mentioning

g anymore.
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Remark 3.2.8 g(x)r represents the value of the function € C[0,1], which is represented by g,
applied to the real € [0,1], which is represented by x.
Notation: If a function € C[0,1] is given as a pair (f19,w') we also use the notation f(x)r in

order to avoid the need of spelling out the coding (f,w) — g*.

Remark 3.2.9 Quantification over Cla,b] (where a < b) reduces to quantification over C[0,1] by
feCla,b] = g:=Ae.f(a(l — )+ bx) € C[0,1] and
g€ Cl0,1] = f:= Ar.g(i=%) € Cla, b].

a

In [32] and [37] we used a different representation of the space C[0, 1] (following [8] ) based on the
Weierstrafl approximation theorem: A function f € C[0,1] was represented as a Cauchy sequence
w.rb. || - [Joo (with modulus 1/(k 4 1)) of polynomials with rational coefficients. Then we applied

a construction, similarly to f used in our representation of IR above, to ensure that every function

f* could be conceived as such a Cauchy sequence.
However this representation is not convenient for our theory GoA¥ since the coding of an arbitrary

sequence of polynomials requires the coding of finite sequences of natural numbers (the codes of the
coefficients) of variable length which can be carried out in GzAY but not in GoA¥. Furthermore in
practice the computation of an approximating sequence of polynomials to a given function is quite
complicated (and even more when one deals with functions in several variables as we will do below)
whereas for most functions occurring in mathematics a modulus of continuity can be written down
directly. Hence it is much more useful to extract bounds which require as a function input only
the function endowed with a modulus of uniform continuity than an approximating sequence of
polynomials. In our applications to approximation theory we always obtained bounds in functions

with a modulus of continuity. Because of this we conjectured in [37] that this will always hold for
extractions of bounds from concrete proofs. By our new representation of C[0, 1] this conjecture is
theoretically justified: From a proof of a sentence

/\f € Clo, I]Vyo A(f,y), where A € X9

we obtain a bound on y in a representative of f in our sense, i.e. in f endowed with a modulus of
uniform continuity.

The construction of f,,ws looks quite complicated. However if f is already given with a mod-
ulus w (as in concrete applications) then f, does not change anything and wy;(n) is just a slight
modification of w and the proof of this (3.2.5 ) is almost trivial. The complicated clause in the
definition of f,,,wy is needed only to ensure that an arbitrary given pair (f,w) is transformed into a

continuous function. The quite complicated proof of lemma 3.2.6 is not relevant for the extraction
process since the statement of this lemma is a purely universal sentence and therefore an axiom of
GoAY.

For the construction of f, and wy we have made use of the fact that the values fz, fT of f on
two points x < Z can be connected by a line given by the simple function

(¥) py := fo+ %(y —z)

which extends f from {z,Z} to [z, Z]. We have used the following properties of p:

1) min(fz, %) < py < max(fz, f) for z,% € [z, Z].
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2) pr = fx and pZ = fZ.
3) p has a (simple) modulus of uniform continuity € GoR* (in fact a Lipschitz constant) on [z, Z].

In the following we generalize this construction to the d-dimensional space [0,1]¢ and obtain (for
every fixed d) a representation of C([0,1],IR) by the functions of type 1.

(%) can be written also in the following form:

Let y € [z,Z]. Then y = (1 — A)z + A% with A = £=2 € [0,1] and py = (1 — \)fz + \fZ.

Tr—x

This formulation of p easily generalizes to the dimension d:
Let us consider an d-dimensional rectangle (i.e. a regular parallel epipthed) in [0,1]¢ defined by

d
1
Kyp = {ye[OJ]d:/\(xigyini—l— )}7

i1 n;+1
where z = (z1,...,24) € [0, 1]¢ andglcigl—n,#+1 fori=1,...,dand n:=nq,...,nq.
d
Vxﬂ = {(xl,...,xd) € [O,l}dli_/\l(xizxi\/l‘izl‘i—‘rni_’_l)} =: {61,...,62(1},

denotes the set of vertices of K .
We now define a construction by which a function f defined on V., is continued on the whole

rectangle K, p:

where \; := A(y;) := (yi — 2:)(n; +1). #A(z,n,y) = 24.

Definition 3.2.10 p(z,n,y) = XA(x,n,y).

Remark 3.2.11 For every fixzed number d the function p is definable in GoR“.

Qd
Lemma: 3.2.12 1) p equals f on the vertices of Ky n: N (p(z,n,e;) = fe;).

i=1
2) min(fei,..., feoa) < p(x,n,y) < max(fei,..., fega) for ally € Ky .
3) p(x,n,-) is Lipschitz continuous on Ky, w.r.t. ||[(y1,- .-, Yd)||max == max ly;| with Lipschitz
- i=1,...,

constant A(x,n) := max([max(fey,..., fega) —min(fey, ..., fesa)]- (maxg(ny,...ng)+1)d, 1).

Proof: 1) Let (Z1,...,%Tq) € Ky n. Then

Ti=x; > NT;) =1 - A@) =1ANT;) =0

and
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Hence

f@1, . Ta) = MNT1) .- MZa) - (@1, -, %) € Az, n,T), where T := (Ty,...,Zq)-

All other elements Xll e ~X:i - f(@,..., 7)) € A(z,n,T) are = 0 since at least one factor X; =0.
Hence p(z,n,Z) = fZ.

2) Let y € Ky n. Then A(y;),1 — A(y;) € [0,1] for i = 1,...,d. Define M := max(fei, ..., fega).
Then

d
EA(x,n,y)§M~E{)\( /\Xyz = A(v:) /\(yi)=1—A(y¢))}=M~

Analogously one shows the inequality min(fey, ..., feqd) < TA(z,n,y).
3) We show that for every ¢ > 0 and every fixed ¢ with 1 <i <d and all y,...,yq4,2 € [0,1]

€ €
(+) (lys — 2l < z.m) = |p(z, 0, (Y1, - - Ya)) — P(T, 0, (Y1, -5 Yim1,2,Yis -+ -5 Ya))| < E)'
This implies the claim of the lemma since for (yi,...,ya), (71,--.,%a) € [0,1]%
N . N N €
(Y1, ya) = (G5 Ga) [lmax = [[(¥1 — G1)s - (Ya — Fa)[[max < Az, n)
implies
d €
lyi = 8l < v
i=/\1( S )
and therefore (by (+))
|p($’ﬂ7 (y17 cee 7yd)) 7p(x7ﬂa (gh s 7gd)|
d
S 2:1 |p(m7ﬂa (gly e 7z}i—17yiayi+17 e 7yd)) _p(x7ﬂ7 (gla e agi7yi+17 e ,Z/d))|
i=
<d-(5) ==
For notational simplicity we assume that ¢ = 1 (for an arbitrary ¢ = 1,...,d the proof proceeds
analogously):

lyr — 2| < o implies for My1) = (y1 —z1)(n1 + 1), A(2) = (z — x1)(ng + 1):

Ay1) = A(2)| < (ng+1) - W <e-c

(0)
where ¢ := (max([max(fey,..., fega) — min(feq,..., fesa)] - d,1/(max(n;) +1)))~*

We may assume that A(y1) > A(2):

_ _ d _ _
Z{)\Q'...-)\d~f(x1,$2,...7.%‘d) : /\ [()\z =1-XNAT; :LUZ')\/()\Z‘ =MAT; =2 + nlil)]}’
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_ _ a _
Z{)\Q)\df($1,x2,,$d) /,\2[()\1 :1—)\2/\fl :xz)\/()\z :)\Z/\fz :xz+m1+1)]}»

1=

where T; = x1 + ﬁ

(1) (1= A1) - Y —(1= A=) Y < =(My1) = A(2)) - min(fer, ..., fea).

(@) Aw) -3~ A=) -3 < (M) — Az)) - max(fer, ..., fesa)

and Put together (0),(1) and (2) yield

> A, n,y) — YAz, n, (2,92, -, Ya))

=Ay) -2+ (1= Ay) - X (A=) - X -1 =A(=)-X)

= My X =AE) D)+ (1=A) - X -1 =) -X)

< (A(y1) = \(2)) - (max(feq, ..., fega) —min(fer,. .., feqa)) < E.

AnalOgOHSIy: Z A(Z,Q, (Z> Y2, .. 7yd)) - Z A(l’,@, y) < %

d
—

0)...(0)

is transformed into a representative of a function € C([0,1]¢,IR) together with a modulus of

Using p one can now define constructions fi and w]lc such that every pair (f 1(0)“'(0),w1)

uniform continuity wy (w.r.t. to || - |lmax). In the definition of f,(n1,...,nq) we test whether

the continuity property is satisfied for all mq,mq,...,mg,mg <o P, (3(max(ni,...,nq))) and

d
k <o maxg(ni,...,ng)?%. BEvery ’lattice’ in [0,1]% N Q% coded by {(ml, ceomg) s N\ (my <o k’)}
i=1

defines a decomposition of [0,1]¢ into d-dimensional rectangles. Using our construction p we are
able to continue the restriction of f on the vertices of each rectangle to a function on the whole
rectangle. By carrying out this for every rectangle we obtain a function on the whole space [0, 1]%
which coincides with f on the ’lattice’ points and is Lipschitz continuous with the maximum of
the Lipschitz constants of the functions on all single rectangle (This follows from the fact that two
functions corresponding to rectangles which have a face in common coincide on this face). Using
this function instead of the polygon in definition 3.2.2 one obtains a representation analogously to
fu,wy also for functions € C([0,1]¢,R) (together with a corresponding application (-)ga)-

3.3 The functionals maxy, +Rr for sequences of variable length

b
and sup fz ,[ f(z)dr in GoAY
z€la,b] a

b

For the computation of sup fz and [ f(z)dx for f € Cl[a,b] we need the maximum and the sum of
z€la,b] a

a sequence of real numbers of variable length, i.e. maxg {f(r;) : ¢ < k} and f(ro) +r ... +r f(7%)
for a sequence of rational numbers r;. For the construction of such operations in GoR* we need a
special form of our representation of real numbers:

The computation of the addition of a sequence of x real numbers ay, . .., a; requires the addition of

corresponding sequences of the n—th rational approximations ag(n), ..., a,(n) of these real numbers
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(for all n). For this we need the computation of a common divisor of @y(n),...,a,(n). However the
size of such a common divisor will (in general) have an exponential growth in 2 and therefore is not
definable in GoR* but only in G3R“. This difficulty is avoided by modifying representatives f of real
numbers to representatives f’ such that f =R f’ and the n—th rational approximation f'n of f’is a
(code of a) fraction with a fixed denominator. We choose 3(n + 1) + 1 as this denominator in order

to ensure the right rate of convergence such that ]?’ =; f’. For the computation of maxg (ag, ..., as)
this modification is (although not necessary) very convenient.
Definition 3.3.1
. " £ 0 541
mink <o j1(f(3(n+1)))- (3(n+1) +1) {3(n+ 71 Se fB(n+1)) <q 3(n+1>+1}
if it exists and j1(f(3(n + 1))) is even

Jri=o ¢ mink <o ju(F3(n+ 1) B0+ 1) +1) [5orir <a FG(+1)) <@ st
if it exists and j1(f(3(n +1))) is odd

0%, otherwise.

() = j(fr,3(n +1)).
Remark 3.3.2 Together with /\f.f also \f.f and therefore \f.f' are definable in GoR®.
Lemma: 3.3.3 GL4Y /\fl(f’ =R f)-

Proof: The case 'otherwise’ does not occur since by our coding of rational numbers®?

—i1(fB(n+1))) =1 <q 2f(3(n+1))) <q j1(fB(n+1))).

Hence

~

|f'(n) —q fB(n+1))| < 1 for all n € IN.

3(n+1)+

It therefore suffices to show that f’ has the right rate of convergence, i.e. f’ =1 f’: Assume
m,m > k. Then

<

1 1
3(m+1)+1 = 3(k+1)+1

IN

1
1 1 !/ _ !~
S0 < sarn (o m e Sl = g +1°

[F(B3(m +1)) —q FB3(m + )| < g1
Definition 3.3.4 x',¢'") € GoR¥ are defined such that (provably in Gy AY)

0 1, if Vm <o n(n =g 2m)
XN~ =o

0, otherwise.

32Here we simply write j1 (ﬂ3(n +1))) instead of the code of this natural number as an element of Q.
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and

max (g(i) - x(gi)), if Vi <o k(x(gi) =0 1)
Yo'k = =P
riréllglg(z)7 otherwise.
Definition 3.3.5 ®paxy € GoR¥ is defined by
Doy = ALK 005 (Y(A0. 51 ((fi)'n), k), 3(n +1)).
Lemma: 3.3.6

G2A(;J F /\k,O) fl(O) ((I)maxmfo 13 fo A cDmaXJRf(k + 1) 13 maX]R((I)maX]Rfkv f(k + 1))) .

Proof: For notational simplicity we write ®,,, instead of ®yaxy, in the following.

(P, f0)(n) =0 j(51((f0)'n),3(n+ 1)) =¢ (f0)'n and therfore ®,,f0 =r (f0) =r fO.

k+1: Case 1) Vi<k:+1( (71((fi)'n)) = ) :

3 ma (((7i)'m) - xGr (7)), 30+ 1)

= (maso (mae (5 (C73)m) X ((F9)), 1 (1K + 1))m) X (6 + 1)) 3(a -+ 1)
—q maxg (F(max(+) 300+ 1)), 3 (G (O + 1)n) - xCG(((k + 1Y), 3+ 1)

—q maxq (P fh)n, (f(k+1))'n).

Hence @, f(k + 1) =g maxg (P, fk, f(k+1)).

(Ad !: Case a) Vi< E(x(j1((fi)'n)) =1):

j(rlngalzc(. ..),3(n+1)) =¢ (®.fk)n, hence ](I}lga]g(( .),3(n+1)) =q (Bmfk)n .

Case 8) Ni < k(x(j1((fi)'n)) = 0):
(1) (P fE)n =0 j(xggjl((ﬂ) n),3(n+1)) <q 0,

(2) j(%gg(. .),3(n+1)) =04(0,3(n+1)) =q 0.

Since j1((f(k + 1))'n) is even, it follows that
(3) 3 (1 ((fk +1)'n) - x(r((f(k +1))n)),3(n + 1)) =0 j (71 ((f(k +1))n),3(n +1)) =q 0.

(1)=(3) imply ).
Case 2) i < k+1(x(j1((fi)'n)) = 0): Similarly!
Since the statement of lemma 3.3.6 is purely universal it is an axiom of GoAY.

Lemma: 3.3.7 1) GoAY - /\fl(o),mo,ﬁzo (m >0 M = Praxp f1 >R Prmaxy f170 fﬁz)

2) GoA“+ACOO—qf b NF1O mOVE <o m(fk =R Praxg f1).
Proof: 1) follows by induction on m using lemma 3.3.6 . Since 1) is purely universal it is an axiom
of GoAY.
2) Assume Ak <o m(fk < Pmaxyfm). Then

Nk <o mVIO(fk <i Prmaxg fr — H%)
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By AC%%—qf one obtains a function x' such that

1
Ak < - .
k_O m(fk <R (I)maX]Rfm Xk+1)
Put ly := inga;c xk. Then Ak <o m(fk < Pmaxrfm — ﬁ) and therefore
— — 2
(1) Nk <o m((FE)(6(l0 +1)) < (Pmax ) (6(l0 + 1)) — 57— ).
3([0 + 1)

One easily verifies that
(2) a',b! <R ¢! = maxpg(a,b) <R c.
Using this and the previous lemma one shows by induction on m that

(3) Ak <o m(fk <r ¢) = Praxy fm <i c.
(From this and the implication

2 1
)ka<IR,¢maX]Rfm7IR,3

(FR)(6(10 +1)) <q (P fm)(6(l0 + 1)) —a 3 ST

(lo+1

one concludes

Ak <o m((FF)(6(l0 + 1)) <@ (Pana f) (6(l0 + 1)) —q 57275) —

(I)maxm,fm SR (Pmaxm fm — R 3(T1+1)7

which is purely universal and hence an axiom of GoA¥. (1) and (4) imply

1

(bmax S cI)max N N
e ATy

which is a contradiction.

Remark 3.3.8 1) The tedious proofs for the two lemmas above have no impact on the extraction
of bounds: Lemma 3.3.6 and 3.3.7 1) are purely universal sentences. Since we have proved
their truth they are treated as azioms. Lemma 3.3.7 2) (although not being universal) has the

logical form /\x\/y < sx/\on of an axiom € A and therefore is treated as an axiom by our
monotone (but not by the ususal) functional interpretation. The same is true for the next
lemma.

2) ®ing fm can be defined from ®maxy fm by := —RPmaxy (/\k.(—]Rfk), m).

Using @umaxy,, we are able to define sup f(z) for f € C[0,1]:
z€(0,1]

Definition 3.3.9 @;L(&))[UJ] € GoRY is defined as follows

(I)l(l) = )‘fla nq@maxm (\Plf7 h(\I’Qf(3(n + 1))))(3(71 + 1))v

Supjg 1)

where hn := j(2n,n) and U1, Vs € GoRY are the functionals used in the representation of C[0,1].
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Lemma: 3.3.10

GoA? FAf € C10,1](Ax € [0,1)(@supy, £ >m f2) ANV € [0,1](Paupy, , f —m f2 < %H

Proof: In the following we write ®; instead of Ppyaxy, -

1) ©f = MO @y (Uyf, h(Vafk)) is a Cauchy sequence of real numbers with Cauchy modulus
1/(k + 1) (This implies that @;&;)[m] f represents the limit of this sequence):

Assume m >g m >¢ k: The monotonicity of Usf (see lemma 3.2.4 ) implies Uy fm >¢ s frn and
therefore (by 3.3.7 and the monotonicity of h) ® fm >R ®fm. By induction on [ we show

() N0 (@ (W1 f, h(0a fii) +1) <m @ frin + %H :

The case [ = 0 is trivial. [ + 1:

Oar(1f, (o frm) + 1+ 1) ER maxg(Par (W f, A(Wofiir) + 1), U1 f(R(Wafri) + 1 + 1))).

I.V. 1
SIR‘I)fm"Fm

Thus it remains to show that
1

Uy f(W(Vafm) +1+1) <g ®fm+ T

(From our represention of [0,1] N @ (which used the function ¢) it follows that there exists an
1 <g h(¥qfm) such that
i) — h(Wq frr l+1) <g ————
|4(i) —q a(h(P2fm) +1+1)| <q T
and therefore
1

m+

3.3.7
Uy (MW fm)+1+1) <r Ui fi+ TSR O+ frn +

E+1’

m+
which completes the proof of (x).
Since s fm > Uy frn implies h(Pofm) >¢ h(Pyfrn), this yields

B fim = pg (U f, h(Va fm)) <p @ frin + %H

which completes the proof of the Cauchy property.
2) Psupyy,,f 2R f(2)r for all 2 € 0,1]. We know that

(@) [f (@) —m VoS (@(V2fR)) < 7=

where Z is the construction used in the representation of [0,1], and

) Vi o 102760+ 1) (1)~ aE(E2I0) <0 g7

for all k£ € IN.
i <o h(Vaf(3(k+1))) implies @7 (U1 f, A(¥2f(3(k+1)))) >r V1 fi (see lemma 3.3.7 ). It follows

that

. 1
Psupoy fE =@ V1fi— m
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and therefore

Psupyy /2R P1fi— (‘3(k+11)+1 + %ﬂ)
(b) -

>R U1 f(3(V2/k) — (gpdyer + 7i1)
(a)

>r f(@)r ~ (g1 + m1)

for all £k € IN. Put together this yields our claim.
3) AoV <4 M(q)sup[oﬂl]f -r f(z)r < n%rl), where M is the boundedness function from the

representation of [0,1]:

ip :=mini <g h(¥2f(3(n + 1))) such that
Nj <o h(W2f(3(n+1))) (T2F1) 3+ 1)) 2q (¥17)(B(n+1))).

We show by induction on k that

(+) /\ko(q)M(\Illfa k) <m V1fio + %)

and therefore a fortiori

which implies —by 1)— that

1
(+++) sup[g 1 f <IR \IjleO‘F?

k=0: ®p (01 f,0) =R U1 /0 <g ¥y fip+ W by the definition of ig. k + 1:
Opr(Uyf k4 1) 5 maxg(®ar (U1 f, k), Uy f(k+1)).
—_————
S]R\I’lfi()‘f‘%“

To show Wy f(k+ 1) <g ¥y fip + 7,+1

Vi <o h(U2f(3(n + 1)) (|q<k +1) —q q(ir)| <q %f<3<n1+ 1) + 1> '

Hence

1

Uifje wrVYflk+1D| <g ——m
|V fie —m Ui f(k+ )|_]R3(n+1)+1

Together with Wy fjr <gr V1 fig+ ﬁ we obtain ¥y f(k+1) <g ¥ fip+ —, which completes
the proof of (+) and so of (+ + +).

Since (+++) is purely universal its truth implies its provability in GoA¥. Our claim follows immedi-

T

ately from (+++) since the rational number € [0, 1]NQ which is coded by ¢(io) has a representative
z as a real number and so x =g T <1 M.
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In the following chapters we make liberal use of the usual mathematical expressions ’ sup fz’
z€]0,1]

and 'f € C[0,1]’ and go back to the details of the actual representation of these notions in GoA¥
only when this is needed to determine the logical form of a sentence which involves these notions.

For a function f € C[a,b] we can express sup fz as sup fxz, where fz = f((1—2)a+ xb).
z€[a,b] z€[0,1]

For the definition of the sum of a sequence of real numbers of length z we need the following
constructions.

Definition 3.3.11 The functionals ¢,(,& € GoR® are defined such that

n, if Vm < n(n = 2m)

C”O =0
0, otherwise.
~ 0 n+1, ifVmSn(anm—i—l)
(n” =o
0, otherwise.
n-m, ifn>m
&n’m® =g !

m-=n =1, otherwise.
Using these functions we are now able to define a variable summation:
Definition 3.3.12 &5, € GoR" is defined as

Py = MO RO 005 (€ ( éC(jl[(fi)’(a(k,n))}%
where a(k,n) :=2(k+ 1)(n+1).

.:C(jl [(fi) ((k,m))])), 3(a(k,n) + 1)),

K2

Lemma: 3.3.13
GaA? - A\ 1O K0 (s fO = fON By f(k+ 1) =) sy fk +r F(k+1)).

Proof: We do not give a formalized proof in GoAY by induction on k but show informally that
Py fk=f0+Rr ... +r fk (and hence the assertion of the lemma) is true. Since the lemma is a
purely universal statement it therefore is an axiom of GoA¥. By the definition of the construction
f — f" and our coding of rational numbers we conclude:

(=) zk: CULI(F1) (2(k+1)(n+1))])
VLPT(C)Q(k+1)(n+1)+1)+1
(fin) 2k +1)(n+1)) +q ... +q (fi)'(2(k + 1)(n + 1)), where {31,...,4}(C {0,...,k}) are the

indices of the positive fractions.

= 2X the rational which is represented by

k
(=) Y- UL (2(k+1) (n+1))))
l??(°2(k+1)(n+1)+1)+1
(fOY2(k+1)(n+1)),....(fE) 2K+ 1)(n+1)).
Case 1) ¥ >( X: Then j(£(2,%),3(2(k+ 1)(n+ 1) + 1)) represents the fraction

i.e. the fraction which is represented by
(fOYQ2k+1)(n+1)+q ... +q (fE)(2(k+ 1)(n+ 1)).

Analogously, — = 2x the sum of the negative fractions among

-5

3(2(k+1)(7§+1)+1)+17
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Case 2) ¥ <o X: Analogously!

Since (fi)'(2(k +1)(n+1)) is a 1/(2(k 4+ 1)(n + 1))—approximation of fi, the rational

(f0) (2(k+1)(n+1))+q...+q (k) (2(k+1)(n+1)) is a 1/2(n+1)-approximation of fO0+r...+r fk.
Hence @y, fk has the Cauchy modulus 1/(n+1), i.e. @;\Rfk =1 ®x,, fk, which concludes the proof
of the lemma.

Using @y, we now define the Riemann integral fol f(z)dz for f € C[0,1]:

wy(n)

Let S,, = W . »_220 f(m) denote the n-th Riemann sum (where wy is the modulus of

uniform continuity from the representation of f). One easily follows from the usual proof of the
convergence of the sequence of Riemann sums that (S,),cn is a Cauchy sequence with Cauchy

modulus 2/(n 4 1) (which converges to fol f(z)dz). Therefore we define:

Definition 3.3.14 1) &5 € Gy RY is defined as
Do = Af1,n05(2, ¥afn) r Pry (A.(V1)(5(2i, Uafn)), Yafn).

2) &y € GoRY is defined as
O = AfL,n . [@sf(2(3(n+ 1)) + 1)](3(n+1)).

Proposition: 3.3.15 ®;f! represents the real number fol F(z)dz, where F is the function € C[0,1]
which is represented by f.

Proof: Since j(2i, U5 fn) codes W and W, is a modulus of uniform continuity for the function

: [0,1] N Q@ — IR which is represented by ¥y, ®g is just the n—th Riemann sum for the function
represented by f. As we have mentioned already above, these Riemann sums S,, form a Cauchy
sequence with modulus 2/(n+1). Hence (S2p41)nen is a Cauchy sequence with modulus 1/(n+1).
®; f represents the limit of this sequence.

In the following we use the usual notation fol f(x)dx instead of ®;.

Proposition: 3.3.16 The following properties of fol are provable in GoAY (f, fn,g9 € C[0,1],A €
R):

1) fo (f +9)@)de = [) f(x)dx+ [} g(x)da.
2) Jy- Hl@)de = A [y fx)da.

3) f<g— [y fw)de < [y gx)da.

4 |fy F@da| < [} |fl(@)de < )|l

5) o0 p o [ p@)de > [ f(2)da.

Proof: 1t is clear from the ususal proofs in analysis that 1)-5) are true. Since 1),2) and 4) are
purely universal, they are axioms of GoAY. 3) can be transformed into a purely universal sentence

o | ' flad < / " mas(f,g) (@)
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The proof of the equivalence of 3) and 3)’ uses the extensionality of fol, which follows immediately
from 4) and thus is also provable in GoA¥. 5) follows from 1),2) and 4).

Our definition of fol easily generalizes to fj F(x)dx for F € Cla,b] (a < b). Let F be given as
a pair (', w), where ¥ represents a function : [a,b] — IR which has the modulus of uniform

continuity w. Then a representative of f; F(z)dz can be computed in ¥,w,a,b by a functional in

GoR¥“. For this one has to replace the partition

0 wn)+1
wn)+1"7"" "wln)+1

of [0,1] by the partition

g, - . -, g(w(n)+1), Where a; :=a +Rri(b—a) Rr and N>k >b—a,

kE(w(n) +1)
of [a, b] which also has mesh < 1/(w(n) + 1).

We can define also a functional ®;. € GR® such that ®;. (xl,al,\lll(l),wl) represents the in-
tegral [ Wadz if W represents a function [a,b] — IR (a < b), which is uniformly continuous with

modulus w, and z € [a, b]:

<I>[:(x1,a1,\111(1),w1) = lim Sy(z,a,¥,w),
n—00

where

T —RAa
n+1

Sp(= Sp(z,a,¥,w)) = ‘®RPx(N.V(a+Rri(z —Ra)- ),n+1).

]Rn—i—l

(From our reasoning above it is clear that (S,,) is a Cauchy sequence which converges to f; Vrdz.

In order to be able to define lim,, .., S, in GaR“ we have to construct a Cauchy modulus for this
sequence in GoR*. This however is possible since

z k
S — Updr| < ——
‘ k(w(n)+1) /a €T $| = n+1
where k € IN such that £ > =z — a.

The formula

c b b
/f(x)da:+/ f(x)dx:/f(x)dxfora<c<b

is purely universal and hence an axiom of GoAY.

Summary of the main features of our representation of basic analytical notions

1) Rational numbers are coded by natural numbers with corresponding relations =q, <q, <q
and operations | - |q,+q, —q, q on the codes.

2) Sequences of rational numbers are represented by number—theoretic functions.

49



3) Real numbers are given as Cauchy sequences of rational numbers with fixed
Cauchy modulus T}H and are therefore represented by functions f' with a corresponding
equality relation =R.
Using the construction f! +— J/c\l every function can be conceived as a representative of a real
number, namely the real number which is represented by f
Using this construction we have relations =g, <gr€ I1Y, <g € X} and operations +R, —R, - - - €
G2RY¥ on all functions f! which correspond to the usual relations and operations on IR.

Quantification over reals so reduces to A f 1A(]?), V f 1A(fA) for =g—extensional properties

A.

4) Elements of RY are represented by functions f1: f represents the d-tuple of real numbers

which is represented by (vif,...,vef).

5) The closed unit interval [0, 1] is represented by {f! : f <; M} (for a suitable M € GoR¥)
using a construction f — f such that 0 <g f <g 1 and 0 <g f <r 1 — f =g f. Hence
quantification over [0, 1] reduces to /\f <1 M A(f), Vf <1 M A(f) for properties A which
are =R-extensional. Similar for [0, 1]%.

Quantification over [a,b] ([a1,b1] X ... X [aq, bg]) is reduced to quantification over [0, 1] ([0, 1]¢)
by a convex transformation.

6) Functions f : IR — IR (f : [a,b] — IR) are given by functionals ®') which are =R
extensional.
Continuous functions f : [0,1] -+ IR endowed with a modulus w' of uniform con-

tinuity can be represented as pairs of type-1-objects ( fr1 (0),w1), where f, represents the
restriction of f on [0,1] N Q. Using the functionals Wi, U5 € GoR“ every function f! rep-
resents such a pair (U f, U5 f) and hence using the application (-)r a uniformly continuous
function : [0,1] — IR. Thus quantification over C[0, 1] reduces to AfAAz!.f(2)g, Vo f)
for =c(o,1j-extensional properties A. This generalizes to C([0,1]%).
Quantification over Cl[a, b] (C([a1,b1] X ... X [ag,ba])) is reduced to quantification over C|0, 1]
(€([0,1)%)).

7) Maximum and sum for sequences of real numbers of variable length are given by

functionals @iﬁﬁi‘l(o”, @12(0)(1(0)) € GoRY.

1
8) sup fz, [ fazdx for f € C0,1] are given by functionals ®gp, 7 € GoRY in the representa-
z€[0,1] 0

tives of f.

The definition of sup fz for f € C[a,b] reduces to sup fz for suitable f € C[0, 1].
z€[a,b] z€[0,1]

J fadx for f € Cla,b],x € [a,b] is given by a functional ®;» € GeR¥ in ml,al,bl,Q)}(l),wl,

1)

where @} represents f and w is a modulus of uniform continuity for this function.

The representation of all these notions can be carried out in G,,A“ for n > 2. The basic properties

50



of [, fxdz and SUPge(q,p) f2 (for f € Cla,b]) and the variable maximum and sum for sequences of

real numbers are expressible as purely universal sentences (or follow relatively to GoA“+AC%Y—qf
easily from such sentences) and therefore contribute to the growth of bounds extractable from proofs

which use these notions and their properties only by majorants € GoR® for the terms used in our
representation. More general this holds for sentences having the form

() Nf e c(0,1)?),z €[0,1],y e R,k € m(golfxyﬁ“* pofryk = g3 fryk " pafryk),
<R <R

where the ¢; € GoR® represent functionals C([0,1]¢) x [0,1] x R x IN — IR, since (modulo our
representation) sentences (x) are equivalent to purely universal sentences.
In particular, from a G, A“+AC-qf-proof of a sentence

(—1—)/\@1&0/\@ <, thV’LUOAO relatively to sentences (x) which may be used as lemmas one can

extract (using cor.2.2.3 ) a uniform bound /\gl,ko/\v <, tgk\/w <o xuk Ag such that

M

(i) x is a polynomial in u™ k (where uM := Az°. maxq(u0,...,uz)) for which prop. 1.2.30

applies, if n = 2,
(ii) x is elementary recursive in u™ k, if n = 3.

Using our representation many sentences in analysis have the form (4), in particular sentences of
the form

(++) Af e C([0,1]%),z €e R,y € [0,1]"Vk € N A(f, z, v, k),

where A € £ and the bound y only depends on (representatives of) f,z but not on y. In [37],[38]
and [39] we study interesting examples of sentences (++).
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4 Sequences and series in GoAY: Convergence with moduli
involved

By our representation of real numbers by functions f! (see chapter 3), sequences of real numbers

are given as functions f1(© in G2AY¥. We will use the usual notation (a,) instead of f. In this
chapter we are concerned with the following properties of sequences of real numbers:

1) (an) is a Cauchy sequence, i.e.

1
AV ROAm, > —Ran| <gp ——).
n’N\m,m >¢ n(|am R 7| <R k:+1)
2) (ay) is convergent, i.e.
Val AV Am >0 n(\am -Rral <gr m)

3) (ay) is convergent with a modulus of convergence, i.e.

1

Val’hl/\ko/\m 20 hk(‘am — 1R a‘ S]R m)

4) (ay) is a Cauchy sequence with a Cauchy modulus, i.e.

1

Vhl/\ko/\m,m 20 hk(|am —R aml SIR m)

One easily shows within GoAY that
4) < 3) = 2)—=1).

Using

ACO’(L/\O : /\:EO\/yO/\zOAO(x, Y, z) — \/fl/\xo7 Ao (z, fz, 2)
one can prove that 1) — 4) (and therefore 1) <+ 2) <> 3) < 4)).

However, as we already have discussed in chapter 3, the addition of ACO7(L/\O to GoAY would make
all a(< gg)-recursive functions provably recursive.

Thus since we are working in GoA“ we have to distinguish carefully between e.g. 1) and 4). In
chapters 9-11 we will study the relationship between 1) and 4) in detail and show in particular that
the use of sequences of single instances of 4) in proofs of Nt Av <, tquQAofsentences relatively
to e.g. GoAY + A+AC—qf (where A is defined as in thm.2.2.2) can be reduced the use of the same
instances of 1).

For monotone sequences (a,) the equivalence of 2) and 3) (and hence that of 2) and 4)) is already
provable using only the quantifier—free choice AC%0—qf:
Let (a,,) be say increasing, i.e.

(1) An®(an <m ani1),
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and a' be such that
1

ACY9—gf applied to
1
/\ko\/no( |an - a\ <R m)
ey
yields
1
\ 1/\ 0 .
h*N\k (|ahk a| <]Rk+1),
which gives
1
Vhl/\ko/\m 20 hk(‘(lm - Cl| <R m),

since —by (1),(ii)— anx < amn < a for all m >g hk. (Here we use the fact that /\n(an <R Gp+1) —
/\m, m(m > m — as <R am). This follows in GoA“ from the universal sentence

(+) /\az.()o),n, l(/\k < n(ap(l) <q app1(l) + l_%l) — N, < n(m >m— ap <R am+ l‘%)) (+)

is true (and hence an axiom of GoA“) since ax(l) <q ax+1(l) + Hil — ar <R Qgp+1 + l%)

If one of the properties 1), ...,4) —say ¢ € {1,...,4}— is fulfilled for two sequences (ay,), (b,), then
i) is also fulfilled (provably in GoA¥) for (an +m, bn), (an — & bn), (an '’ bn) and (if b, # 0 and
b, — b # 0) for (Zﬂ), where in the later case the modulus in 3),4) depends on an estimate I € IN

such that [b| > ;35 (The construction of the moduli for (ay +® bn), (@n —R bn); (an ‘R bn), (3)

from the moduli for (a,), (b,) (for i=3,4) is similar to our definition of + R, —R, R, (-)"* given in

chapter 3.

The most important property of bounded monotone sequences (a,) of real numbers is their conver-
gence. We call this fact ’principle of convergence for monotone sequences’ (PCM). Because of the
difference between 1) and 4) above we have in fact to consider two versions of this principle:

(PCM1) Na( et (An(c <m ant1 <m an)
— /\]{jo\/no/\m7ﬁl >0 n(|am — IR aml <R ﬁ)%

/\aé_()o)7 cl (/\no(c <R Gn+1 <R an)

(PCM2)
= VRIARO Am, i >0 hk(Jam —r anl <k £7)).

Both principles cannot be derived in any of the theories G, A“ + A+AC—qf. They will be examined
thoroughly in the chapters 9 and 11 below where the exact rate of growth of provable functionals
is determined which may result from the use of PCM1 and PCM2 in proofs. In chapter 11 we will
also study the rate of growth which is caused (potentionally) by the Bolzano—Weierstrafl principle.

By lemma 3.3.13 there is a functional élz(n(i)(l(o)) € G2R¥ such that @y, (a.))n is the partial sum
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n n
> ag. Thus within GoR® we can form the sequence s,, = > ay of partial sums for the
k=0 k=0

sequence (ay,).

Criteria for convergence of series in Gy AY

As far as the Cauchy criterion is concerned our remarks above on the relationship of 1) and
2) apply.
The Leibniz criterion is provable in GoA¥+AC%%—f in its strongest quantitative version:

Nan) € R(AR(0 < angr < an) ANEOVROAm >0 n(ay, < £15)

I
(L) i mo A
— \/hl/\ko/\m,m >0 hk:<| ;)(_1)1ai _ ;}(_Uzai' < %ﬂ))
(L) follows from the simple observation that
n+k ) n .
| > (=1)"a; — > (=1)"a;| = lant1 — (@nt2 — ant3) — (@nta — @nys) — ... | < apy1 and the above
i=0 i=0

proof for the existence of a modulus of convergence for a convergent monotone sequence by AC—qf.
Remark 4.1 1) AC®°—qf is needed only to prove the ezistence of a modulus h' such that
A Am >, hk(apm < k—il) (which can be done since (a,) is decreasing to 0). If (ay) is

already given with such a modulus, then the proof of (L) needs no AC%?—gf.

2) In various calculus textbooks the Leibniz criterion is proved as a consequence of PCM. How-
ever this proof (as it stands) does not provide any information on the rate of convergence of

S™(=1)%a; relatively to the rate of the convergence a,, — 0, since PCM is non—constructive.
The comparison test for series is also provable in a quantitative form within GoAY+AC%9—gf:

o)
Let (ap), (cn) C IR be such that /\no(|an| < ). If > ¢; converges in the sense of 2) or 3) or 4),
i=0

oo oo
then > |a,| (and a fortiori > a,) converges with a modulus of convergence, i.e. it converges in
i=0 i=0

(oo}
the sense of 3),4) and so a fortiori in the sense of 2). If Y ¢; converges in the sense of 1) (i.e. the

=0
o0
sequence of its partial sums is a Cauchy sequence), then the same holds for > a;. All this follows
i=0

immediately from the ususal proof of the comparison test and the fact that by AC%%—qf one obtains

[ee]
a modulus of convergence for the monotone sequence of the partial sums of > ¢; if this series fulfils
i=0

2). If > ¢; satisfies 3) or 4) we do not need AC—qf.
i=0

In order to treat the quotient criterion we have to introduce the geometric series in GyAY:

For this purpose we introduce (according to theorem 2.2.8 ) a new constant P1(?)(®) to G,A% (which
is majorized by a suitable term €GoA%) whose intended meaning is that Pz°n® represents ¢" (as
a real number) for the rational number ¢ which is coded by z, if |¢] < 1. The following purely
universal sentences are true assertions about P (under this interpreation) and are therefore taken
as axioms in GoAY U {P} (which we denote also by G2A¥ in the following):
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1) A0 n%(|z| <q 1 — |Pzn| <g 1).

2) Aa®, 40 n%(|a|, |yl <q 1 — |Pan —g Pyn| < n- |z — y|)*.
This is true since the absolute value of the derivative n-2"~! of 2™ is bounded by n on [—1, 1].

3) Na®(P20 =g 1A (jz| <q 1 — Pzl =g x)).

4) /\mo,no,mo(|x| <@ 1 — Pz(n+¢m) =g Pzn-r Pxm).

By 2), using the application (-)r, P extends to a continuous function [—1, 1] x IN — IR, represented

(.
by a functional of type 1(0)(1), which we denote also by P. The axioms 3),4) imply
Az! (Pzl =R 1A (Jz| <r 1 — Pzl =R 2)),
/\xl,no,mo(|x| <mr 1= Pz(n+m) =g Pzn g Pzm).

In contrast to 3),4) (or the case |z| <R 1) these propositions are not € II{ but € I3 and therefore
cannot be treated directly as axioms.

Since we use Pzn® only for |z| <q 1, we are free to extend this function on @ by stipulating

5) /\xo(\x| > 1 — Pzn=p1).

Similar to our representation of [0,1] where we used the construction f such that f =r f and
f <y M, we can represent [—1,1] with a corresponding construction f and a function M € GoR¥.
Hence we may assume that

6) P <1(0)(0) Ax¥ nO M.

Because of 6) P can be majorized by a term € GoR¥ (namely by any majorant M* € GyR¥ for
M) so that theorem 2.2.8 applies.

Remark 4.2 1) Within GoAY + A+AC—qf one can not prove that
(%) /\xl,nO(O <rz <g 1— Pzn >R 0),

since this would yield e.g. for x = % the exponential growth ﬁ > 2" (hence contradicting
cor.2.2.3 ). One easily verifies that Gs AY F ().

2) Within GsAY one can define the 2™ as a function in x € R and n € IN on whole R.

Using P we are now able to define the geometric series via the sum formula:

).

1 —R P:L’(TL+ 1)

(1) Az n%(jz| < 1= Pak =g e

k=0

Note that (1) can be transformed (by intuitionistic logic) into a purely universal sentence, i.e. an
axiom of GoAY.

o0
In order to obtain the convergence of . Pzxk to ﬁ we need the convergence Pxn "= 0 which
k=0

can be expressed in a quantitative form as a purely universal sentence:3*

k+1 1
2) Az, n?, kO 1A T | Pan| <p ——).
(2) Nat,n® K (|z] <m n>]R17x_>| xn\_RkJrl)

33Here and below we write simply n for the code j(2n,0) of n as a rational number.
34See also [42] for a derivation of this modulus by a (variable) Herbrand disjunction for (PCM1).
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Together with (1) this yields

n
(3) Azt 0 kO(j2] < 1 AR >R kel 11 = > Pak - P )-
L l-prz |1—= P 1—2' = k41

The quotient criterion now follows as usual together with an explicit rate of convergence in 6 € (0, 1)
such that |ap41/a,| < 0 (for all n € IN).

[e.e]
G2A¥ proves the divergence of the harmonic series ) % in the sense that the sequence of
n=1

k
its partial sums s; 1= Y % is not a Cauchy sequence: This follows immediately from the universal
n=1
1

axiom |sor — sk > k- 5 = & (G2A“(+A+AC—qf) does not prove that the harmonic series diverges
to infinity: see chapter 9!).

oo

In chapter 9 below we need the convergence of 3 m in GoAY. This follows from the uni-
n=1
k 00

versal axiom nz=:1 ﬁ =R kiﬂ, which implies nz=:1 m =r 1 with hk := k as a modulus of

convergence.

We have seen in this chapter that within G,A“4+AC—qf (for n > 2) one can treat infinite se-

quences and series of real numbers and establish the comparison test, the Leibniz criterion and the
quotient criterion. The last two criteria can be proved even in a quantitative version, i.e. together
with a modulus of convergence. This also holds for the comparison test, if the series of the majoriz-
ing sequence is given together with its limit. Thus the results on the growth of bounds extracted
from proofs stated at the end of chapter 3 extend to proofs which use these principles for series.

Furthermore the function ™ in € IR and n € IN can be introduced for = € [0, 1] in GoA“ and for
unrestricted x in GzA«.

If a sequence (x,,) is definable in G,,A“ together with a modulus of convergence for the sequence of
its partial sums, then > :° z, is definable in G, A%.

The principle of convergence for bounded monotone sequences of real numbers is not provable
in G,A“+AC—qf, not even in its weak form PCM1 which asserts the Cauchy property for such
sequences. We will discuss PCM1 in chapter 9 where we determine its impact on the growth of
bounds.

In chapter 11 we investigate the full principle of convergence of bounded monotone sequences PCM2
which asserts the existence of a limit (together with a modulus of convergence) and show that single
arithmetical families of instances of PCM2 can be reduced to instances of PCM1 (this requires quite
complicated proof-theoretic methods which are developed in chapter 10).
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5 Trigonometric functions in GAY¥: Moduli and universal
properties

5.1 The functions sin, cos and tan in GyAY

In the following we introduce the functions sin , cos axiomatically by adding to G2 AY new function

constants Py, Peos 0Of type 1(0) which represent the restriction of sin and cos to @. Then the Lip-

schitz continuity of sin, cos is used to continue these functions to IR (If we would introduce sin, cos

directly as functions on IR, this would require new constants for functionals of type 1(1). In order

to express their extensionality by universal axioms we also would have to make use of the Lipschitz

continuity, since uniform continuity is just a uniform quantitative version of extensionality).

The following purely universal assertions on the function constants ®g;,, P05 €xpress true proposi-

tions on sin, cos and are therefore taken as axioms in GoAY U { gy, Peos} (which we also denote by
GQA:J)

1) Az%(@gn) =1 Pnw <1 M A (Beos) =1 Pest <1 M A =1 < B, Deou < 1), where
M' € GoR¥ is the boundedness function from the representation of [—1,1] (one may take
M :=An%.5(6(n+1),3(n+1) —1) see [0, 1]).

2) /\x07y07 qO(‘x —Q y‘ SQ q— |<I)sinl' R (I)siny| SIR q N ‘(I)cosx R (I)cosy| <R q)
(2) (together with 1)) asserts that ®g, and P represent functions : ® — [—1,1] which are
Lipschitz continuous on @ with Lipschitz constant A = 1).

3) /\-730 ((I)sin(_Q-r) =R “RPsinT A (I)cos(_Qx) =R ‘I)cosx)7 Peos0 =m 1.

4) N0, 30 (Psin(® +q ¥) =R (Psin®) ‘R (Peosy) +R (Peos?) ‘R (Psiny) A
Peos (2 +q ¥) =R (Peos®) ‘R (Peosy) —R (Psin) ‘R (Psiny))-
/\mo, 0 (q)sinz R Psiny =2+ <I>Cos(“"+2‘“) ‘R <bsin(z72Qy) A
Dos® —R Peosy = —2 - (I)sin(zg@y) ‘R @sin(#))'

2
5) Na0(0 <q [a] — |22 — 1| <g 120,
This proposition on sin (which is proved e.g. in [15] ) provides a quantitative version of the

sinez 30

proposition *3%* "=~ 1. Ounly by this quantitative strengthening the proposition becomes

purely universal (and therefore an axiom of GoAY).

Because of axiom 2) there are unique continuous extensions of the functions : @ — IR, which are

represented by @y, Peos, to the whole space IR. These extensions are represented by

LW 1 = A0 D (R(3(k + 1)) (3(k + 1)),

sSin

BLMD gl = N0 Do (Z(3(k 4 1)))(3(k + 1)).

cos

Remark 5.1.1 1) It is well-known that 2)-5) already characterize sin, cos (see e.g. [24] ).

2) By the azioms 1) @y and Peos are magorizable by Az n®.j(6(n +1),3(n+1) — 1) € GaR*.
Hence thm.2.2.8 applies.
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3) In G3A“ we can define constants ., DL, which satisfy (provable in GsAY) —1 <
.z, o

Sin cos

and cos. If we now define Pgpx := (CIJ’ x) and DPeosx = (

Sll’l

x <1 and 2)-5) above using the usual definition via the Taylor expansion of sin

x) (where \yl.j € GoRY i
the construction corresponding to our representation of [—1,1] such that § <1 M, y =r § zf
“1<ry<r 1, and -1 <R § <r 1 for all y*), then these functionals satisfy 1)-5).

COS

In the following we will write ®@gi,,Peos also for <i>sim ®.os since from the type of the argument it

will always be clear wether ®g;,,Pcos or their extensions Py, Peos are meant.

In the following we will introduce & (and thus 7) as the uniquely determined zero of the func-

tion cos on [0, 2]. This is possible since @cos0 =R 1, Peos2 <R —= and

(z —q 9)2)

(%) /\xo,yo (0 QY <qQT<q2— PeosT R Peosy <R — 18

are true purely universal assertions on cos (see below for the verfication of (x)) and hence axioms
of GoA¥.

(%) is a uniform quantitative version of the strict monotonicity of cos on [0,2]. This strict mono-
tonicity implies the uniqueness and hence (by a general meta—theorem from [37] ) the effectivity of
the uniquely determined zero of cos [0,2]. This can be seen also directly as follows: The quantita-
tive monotonicity (x ) immediately yields a modulus of uniqueness (in the sense of [37] ) w € GaRY,

namely w(n) := EHCESE and thus the computability of the zero of cos in GoR¥ U ®g:

(n—i—l
Let 2,z € [0,2] be such that

1 1
| cos T |, | cOs T | < FICEE and therefore | cos x,, — cos z7| < IECESIES
Then —by (%)= |Zm — zm| < n+1’ i.e. wis a modulus of uniqueness. We define a partition of [0, 2]
by
wiim ——fori=0,...,636(n+1)2

3-36(n + 1)2

and compute for each i a rational 1/(6 - 36(n + 1)?)—approximation y; of | cos z;|. Next we compute
an i, such that

lyi,| =min{|y;[ :i=0,...,6-36(n+1)*}.
It follows

1 2 1
|cos(z;, )] <  min  |cosz;| + inf |cosz|+

— < < .
i<6-36(n+1)? 3-36(n+1)2 ~ z¢0,2] 3-36(n+1)2 " 36(n+1)2

Hence (z;,) is a Cauchy sequence in [0, 2] with Cauchy modulus 1/(n 4+ 1). (x;,) can be computed
by a term t! in GoR¥ U ®¢os. Therefore we may define 7 :=; 2 -y t.

The following propositions on 7, ®gin, Peos are purely universal and therefore axioms of GoAY:

1) 2 <m 7 <m 4, Beos(E) =m0

98



2) /\xl (@Cos(fﬂ +R 27‘() =R Peost A (I)Sin(.fﬂ +R 27T) =R Pginz A
Deos (1‘ +Rr 77) =R —Pcos® A (I’sin(x +R 77') =R —PsinT A

(I)cosx =R (I)sin(g —IR I) N (I)sinx =R (bcos(% — R .’IJ))

3) Uniform quantitative strict monotonicity:
A =\2
/\Sﬂo,yo((o SQ Yy SQ x gQ 4 — CI)cos(i’) — R q)cos(g) gIR *%) A
P ~\2
( -2 SQ Yy SQ X SQ 2 — (I)sin(j;) — IR (I)sin(g) ZIR %))7
where Z := ming(z,7), £ := ming(z,7/2) and z := maxgr(z, —7/2).

3) implies (together with 1) and the continuity of cos, sin):

3)’ /\xl’yl((o SRYSRT SR T = Peos(2) —R Peos(y) <m _%)

_ 2
(-2 <ry<mrZz <R 5 = Psn(z) R Psin(v) >R %))

The reason for our somewhat complicated formulation 3) instead of 3)" is that 3) is in I1{ (in contrast
to 3)).

Proof of 3)’ (and hence of 3) and (x) above):

Since sinz > £ for all z € [0,2] (see e.g. [15] ), we obtain for all z,y such that 0 <y <z < J:

m+y)sin(u) < _2(1‘—|—y)(13 _y) < _(aj _y)2.

2 7~ 6 6 18

cosx — cosy = —2sin(

Because of cosz = —cos(m — ), the claim follows for 2,y € [0, 5] and z,y € [5,7]. Now assume
that z > § Ay < 5: Then

2
COST — COSY = COST — COS 5 +COoS 5 — cosy < —2(952376y2) < - (fzé’) . Put together this yields the
claim for [0, 7].
By sinz = —cos(§ + x) the corresponding claim for sin follows.

Remark 5.1.2 The proof of 3)’ above can be conceived as an instance of cor.2.2.3 (of course a very
simple one): When formalized within GoA® | the strict monotonicity of cos has (modulo a suitable
prenexation) the logical form

1 1
(+) /\xvy <1 Mﬂ'vko\/no(z R Y+ m = PeosT — Peosy <R 7n+1 )

=:Aex?(modulo prenexation)

Since (+) is provable in GoA¥, cor.2.2.3 implies the extractability of a polynomial pk providing a
bound on n which does not depend on x,y. Since A is monotone w.r.t. n, this bound in fact realizes

‘\/n’, ie.

1
GoAY - Nayy € [0, 7], KO (2 > 3 Deost — Peosy <R — .
A7 Ay € 07K (@ 20 g+ 7 > Booet — Buony <k~ )
Our proof of 3)” yields pk := 18(k + 1)2. The majorization used in this proof to eliminate the
dependence on x,y is simply the inequality

1

—) > (z—y)?2 > - >
(z+y)(r—y)>(x—-y) > Yt T 2 T

1
mformz
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is represented by a term @t;g € G2RY U {®gip, Peos} such

The tangent function tanz := S

that

1 m 1 Dginz
Nt n0(-Z <RT<R - — — Bpantn =R —0).
woni( - gt SR SR g~ ooy 7 e = g )

5.2 The functions arcsin, arccos and arctan in GyAY

Z] with the 'modulus of uniform strict

As we have seen above, sinz is strictly monotone on [, §

monotonicity’ w(e) := 12. Since sinz has the Lipschitz constant A =1,

[
18
Ny e -1, 1]\/30 €[5, 3](sinz = y) implies

(%) /\y el-1,1],n e ]N\/rn e{q,-. .,qln}(|sinrn y| < - 1)

where {q1,...,q,} C [-5,5]NQisal/(n+1)net for [-7F, 7]. Similarly to the function M used in
our representation of [0, 1] one constructs a function M, € GoR® such that {i : i <o M n} contains
(modulo our coding of @) such a 1/(n + 1)-net (e.g. Myn :=j(8(n+1),n)). (%) implies

T T 3
/\y <1 M, nO\/q <o Mﬂn((_i)(n) + <q ¢ <q (2)(n) - A |(I)smq —R y| <rR ——

n+1 n—+1

e )35

and therefore

- T 1
Ay <, M,n°Vq <o Man((-Z <o (Z A(@y —o in)| < .
v <0 MV <o Man(-3)00) + —— <@ 4 Za (5)0) — — 5 A|@ana) () 0 50)] <o ——~
Bounded p—search provides a functional Pl e GoR¥ U {®sin} such that
T 1 ~ T ~ 5
Ny <, M,n0((=Z <o Uyn <g (Z)(n) — A | Bain (B
v <o Mo (5)0) + — 5 <a Fyn <q (5)00) = — 5 A Ban(Tym)(0) —q 70)| <o ——)
and therefore
T 1 T ~
Ny <, M,n0((=Z <o Uyn <o (Z)(n) — A B (Tyn) —m 7] <
v <0 M®((=3)0) + — <o yn <q (5)(0) = —— APl Fyn) e §l <m — )
Hence for Uyn := Uy(7-36(n + 1)?)
1

Ny € [-1,1],n € N(|®gn (¥yn) —g ] < ———— ).

Yy [ ’ }7”’ (| sm( yn) ]Ry| 36(n—|— 1)2)

(From the fact that w(e) is a modulus of strict monotonicity for sin we obtain that (Tyn),cn is a
Cauchy sequence in [—7, 7] with Cauchy modulus 1/(n 4+ 1): Suppose that m,m >¢ n, then

1

Dgin (U — Oin (Tym)| < |Pgin (¥ -y § — Pgin (Tym 1 L 1\2
| Psin (Pym) (Wymn)| < [®sin(Pym) — G| + (7 (Tym)| < 18(n + 1)2

and therefore |Tym —q Tym| < n+1
Hence ®@,,csiny := Py represents the inverse function of sin on [—g, g] and is uniformly continuous
on [—1, 1] with w as a modulus of uniform continuity.

The inverse arccos of cos on [0, 7] is defined analogously.
Similarly to arcsin, arccos one can finally define arctan in GoA¥.

35Here again A\y'.§ € GaRY is the construction corresponding to our representation of [—1,1] such that § <1 M,
y=Rr §if -1 <ry<m 1, and —1 <R § <R 1 for all y.
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5.3 The exponential functions exp, and exp in G2A¥ and G3AY

Since all terms t! € GoR“ are bounded by a polynomial (prop.1.2.28 ) it is clear that exp can neither
be defined in GoAY nor can exp be represented by a new function constant which is majorized by a
term from GoR®“. However for every fixed number n >y 1 we can introduce the restriction of exp
to [-n,n](C IR) by such a constant. This means that we can deal locally with exp in G2A¥ and
e.g. may use exp for the solution of ordinary differential equations etc.

We add to GoAY a function constant @é&%)n which is intended to represent the restriction of exp on

[-n,n]N Q. Since exp is Lipschitz continuous on [—n,n] with a Lipschitz constant e.g. A := 3", we

have the following universal axioms on @é,((%)n in GoA¥36
(]-) /\xO (q)cxp"x =1 (I)cxpnx <1 M, AO <r (I)cxp”x <r 371)’

where M, is the boundedness function used in the representation of [0,3"] (e.g. M, (k) :=
j(6-3"(k+1),3(k+1)—1)).%7

q
(2) Na®,4°,¢°(—n <q 2,y <g n A |z —q yl <q 3~ [Poxp, 7 —R Pexp, Yl < )
As in the case of gy, by (2) we can extend ®ey, to a constant i)elﬁ,(é,)n € GoR“ which represents
the continuation of the function represented by ®eyp —to [-n,n]. As for gy, we will denote this
extension also by ®exp . The most important properties of exp (restricted on [—n,n]) can be

expressed by purely universal sentences and thus are axioms of GoA¥:

(3) /\xovyo( -—n SQ ) SQ X SQ n— / ((bexpnt)dt =R (bexpnx — IR (I)expny)v q)expno =R 1a
Yy

(4) /\xoa yo( —-n SQ z,Y,x +Q Y SQ n — (bexpn (37 +(Q y) =R q)expn (LL') ‘R (bexpn (y))

By the continuity of ®eyp , (3) and (4) immediately generalize to real arguments. Furthermore by
the theorem that the derivative of fox f(z)dx is f (which we will discuss in the next chapter in the
context of GoA¥), (3) implies

(3) /\xl(—n <Rz <RN— @gxpnx =R Pexp, ), where ' denotes the derivative.

In contrast to GoAY we can define the unrestricted exponential function in GzA¥ as usual via the

exponential series:3® one easily defines the sequence of partial sums of this series for rational argu-

ments. From the quotient criterion one gets the convergence of this series together with a modulus
of convergence. By the continuity of this series in z € IR with the modulus

w(z,n) = 3=+, (n+ 1) we can continue it on R.

36 As in the case of ®gi, and Peos we denote (according to the discussion in connection with thm.2.2.8 ) GQA;” (@]
{@1(0) } also by G2AY

exp"L

37For notational simplicity we identify in the following the natural number n with its code j(2n,0) as a rational
number, e.g. we write ¥ <q n instead of z0 <q j(2n,0) in order to express that the rational number which is coded
by « is < the natural number n.

38In particular we can define a term ®exp, in GsAY which satisfies (provably) (1)—(4).
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Analogously to the definition of arcsin we can define the inverse function In, of exp, using the

fact that e.g. w(e) :=e-37" is a modulus of strict monotonicity for exp,, on [—n,n].

In this chapter we have seen that sin,cos can be introduced relatively to GoA“ via new con-

stants @ii(r?), @éég) and purely universal axioms which express the usual (characterizing) properties
of sin,cos. tan and the inverse functions arcsin, arccos, arctan of sin, cos,tan as well as 7 can be
defined in GoAY using Pgin, Peos. Furthermore for each fixed n € IN the restriction exp,, of the

exponential function exp to [—n, n] can be introduced relatively to GoA¥ via a new constant @é,((%l

and its characterizing properties can be expressed as universal axioms. Thus by theorem 2.2.8 the
use of sin, cos, tan, arcsin, arccos, arctan, = and the local use of exp only contributes to the growth of
provably functionals by majorants € GyR* for the constants q)ii(r? ), fbéég), @éﬁ%{l and the terms used
in the formulation of their universal axioms and in the definition of 7, arcsin, arccos, arctan. Hence
the results stated at the end of chapter 3 on polynomial growth of bounds extractable from proofs
relatively to GoA“ (resp. finitely iterated exponential growth in case of GsA“) extend to proofs
which use (besides the analytical tools discussed in chapter 3 and 4 above) also these trigonometric
functions and exp,, and their usual properties. The result on finitely iterated exponential growth
also applies in the presence of the unrestricted exponential function.
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6 Analytical theorems which can be expressed as universal
sentences in G,AY or follow from AC"!—qf

In the previous chapters 3-5 we have seen that many basic special functions as e.g. sin, cos etc.
and functionals as sup, f: etc. can be introduced in GoA“ and their characteristic properties can

be expressed as universal sentences (which are treated as axioms). As we have discussed in chapters

1,2 such universal axioms have a trivial functional interpretation and monotone functional inter-
pretation. In particular their proofs are irrelevant and do not contribute neither to the extraction
of bounds nor to the bounds itself (that is why we have taken universal sentences as axioms>?).
Only the terms (respectively their majorants) used to formulate these axioms may contribute to
the growth of the bounds. Since we have used only terms which (are polynomials or) can be ma-
jorized by polynomials of degree < 3, the order of growth which may result from the use of these
function(al)s and their basic properties is quite low.*"

In this chapter we show that the same holds for some basic analytical theorems by reducing them
(in fact strengthening them) to universal sentences or a simple application of AC%1—qf. Since AC—qf
also has a trivial functional interpretation and monotone functional interpretation this is as good

as a reduction to a universal sentence.

6.1 Fundamental theorem of calculus

In this paragraph we consider the following theorem
Theorem 6.1.1 (Existence of a primitive function) Let f € Cla,b], where a < b, and define

F(z):= [ f(t)dt for x € [a,b]. Then F'(x) = f(z) on [a,b], where F' denotes the derivative of F.

We now verify that this theorem can be written as a purely universal sentence in GoA¥ (and
therefore is an axiom in GoAY):
Firstly we express the definition of the derivative as sequential limit

(1) lim F(I—Fh})L—F(x) @)

h—0
|h|>0

in the form

1 1
2) AkVn/\ b (jz—y| < —— —y)— (F(z) = F))| < —— - [z — ).
(2) n/\y € [a,b](|z s g 2 @)@ —y) = (Fl) - F)l < o le yl)
Remark 6.1.2 (2) trivially implies (1) relatively to GoAY whereas the proof of the implication
(1) — (2)’ needs classical logic and AC*1 - qf (the proof is analogously to the proof of the equivalence
of sequential continuity and e—d—continuity which we will discuss in detail in paragraph 3 of this
chapter).

39 At least up to type—2-variables. However we use only such axioms where the types of the universal quantifiers
are < 1.

40Mainly we have used polynomials of degree 2 as j(z,y) or the modulus of monotonicty ¢2/18 for sin, cos or the
functions from the representation of C[0,1]. Only in the representation of the inverse 1/z for a real number z with
|z| > 0 we used a polynomial of degree 3.
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In order to write (2) as a universal sentence we need a modulus of convergence. However the usual
proof of (2) immediately yields such a modulus (in fact even a uniform one, i.e. a modulus which
does not depend on ), namely any modulus wy of uniform continuity for f works:

|z —yl).

) My € (12 =] < g = @) =) = (F@) = FO) <

=:A

Since <g€ XY and <ge I1Y, the formula A is (when formalized in G2A%) equivalent to a purely
universal formula. By our representation of Cf[a,b] from chapter 3, quantification over Cla, b] (and

over [a, b]) reduces to quantification over f!. Hence (3) can be expressed in GoA® as a sentence

AfLA with A € TI9.

Remark 6.1.3 In constructive analysis the relation ’f is uniformly differentiable on [a,b] with

derivative [’ is defined as

Val Ak sy € (12 =] < —isg = 17 @)= 9) = (@) = F)] € -l =)
(see e.g. [70] ).
This is a uniform quantitative version of differentiation which classically is equivalent to the usual

one but not constructively. From our treatment of the fundamental theorem of calculus we obtain in
G2AY as a corollary the differentiability in this strong sense of many basic functions. We illustrate

this by a simple example:

The formalization of Nz € [0,7]( [y cos(t)dt = sin(z)) " in GoAY is a purely universal sentence and
hence taken as an axiom. Therefore Go AY proves that sin is uniformly differentiable (on [0,7] and
hence on IR because sin is 2m—periodic) with derivative cos and the modulus a(k) =k (since cos is
Lipschitz continuous with A :=1).

The theorem on the existence of a primitive function is sometimes called ’first part’ of the funda-
mental theorem of calculus, where the 'second part’ of this theorem refers to the proposition that

every primitive function for f € Cfa,b] differs from F' only by an additive constant. This second

part follows immediately from the mean value theorem of differentiation which will be discussed in
the first paragraph of the next chapter.

Both parts of the fundamental theorem of calculus together yield f(z) = f(a) + [ f'(t)dt for all

functions f € Cfa,b] with derivative f’ € Cla,b]. From this one obtains in GoAY for every fixed
number k the Taylor formula for k£ + 1-times continuously differentiable functions f with the inte-
gral form of the error term by the usual inductive procedure (In order to formulate this formula for
variable k we need the functions Ak.k! and Ak.z* which are definable in G3AY but not in GoA%).

The Taylor formula with the Lagrange error term follows from this as usual by the mean value
theorem of integration which will be considered in chapter 7.

6.2 Uniform approximation of continuous functions by trigonometric
polynomials

Let f € C[—m, 7] be a continuous function with the modulus wy of uniform continuity and assume

f(m) =r f(—m). It is well-known that f can be approximated uniformly (i.e. w.r.t. the norm
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Iflloo := sup |fz|) by trigonometric polynomials

x€[—m,m]

Z ay, - cos(kx) + by, - sin(kx)),
k=1

where ag, br, € IR.

In order to express this theorem in GoAY as a universal sentence we have to define (within GoR¥) a
sequence of approximating polynomials as a functional in f,w; together with a modulus of conver-
gence. This can be achieved by a theorem due to Fejr (more precisely by the proof of this theorem
as it is given e.g. in [53] ):

Theorem 6.2.1 (Fejr) Let 0,,(f, ) := Z S(k, f,x), where

=

S(n, f,x) =9+ i (ak - cos(kx) + by, - sin(kx)) and

=1 ff cos(kt)dt, by :=L1 [ f(t)sin(kt)dt.

Then lim o,(f,z) = f(z) uniformly on [—m,x].

n— oo

:&gﬁl

Remark 6.2.2 Usually theorem 6.2.1 is formulated for 2m—periodic continuous functions f : IR —
IR. This version follows immediately from our formulation (which is more suited to formalize this
theorem as a universal sentence) by the fact that sin, cos are periodic with period 2.

By the results from the chapters 3-5 on the definability of variable sums of real numbers, the Riemann
integral and sin, cos, 7w in GaRY U {®@gn, Peos} and our representation of functions f € C|—m, 7]
and real numbers by functions f1,z' we know that o, (f,x) can be defined as a functional ®, €
GaR® U {®gin, Peos} in n, f1, 2t

The proof of theorem 6.2.1 from [53] (pp.129-131) yields
1

Na € [=m7)(jon (f,2) = F@)] < 5=7),
if ng is sufficiently large such that
2. M; 1

7 no(sin (1/(wy (2(k + 1)) + 1)) P TTES

o > 8(k + 1) My
~ o (sin (1/(wr(2(k + 1)) + 1)))2’

where My > || f|loo and wy : IN — IN is a modulus of uniform continuity for f.

(From the fact that w(e) := % is a modulus of strict monotonicity for sin on [-7, 7] D [0,1] (as

we have proved in chapter 4) we obtain

1
6wy (2(k + 1)) +1)*

m-sin (1/(wr(2(k +1)) +1)) >

Hence for ¥ € G3R% defined as

U fk = 48(k + )My - (wp(2(k + 1)) +1)%
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we have

1

(+) Af € Cl=m,zl,m,n € N(m >0 Ufn A f(=7) =R f(x) = [om — flloo < —)

(4) is equivalent to

(+) S €l by nm 20 Wanlf (—m)—f )] <w g = lom(D—7lle Sm —+17);

where fz:= fx+ (BE5) (f(—=m) = f(m)).

By our representation of C[a, b] from chapter 3, Nf e C[—m, w] reduces to 'Af'. Furthermore by
the definability of || f||o in GoR* (and the computability of an upper bound IN 3 My > || f||; see
also chapter 3) and the remark above, we conclude that (4+)" (in contrast to (4)) has the logical

form /\fl,ﬂoAO (when formalized in GoA%) and thus is an axiom of GoAY.

6.3  An application of AC%'—qf

A function IR — IR in GoAY is given by a functional F*) which is extensional w.r.t. =g (for
short: F': IR — IR), i.e.
Nat,y' (= Fr=p F
v,y (z=ry— Fz=r Fy).

As usual F is called sequentially continuous in z iff

1(0) [ 1 _ . _
/\x(.) (lim z, =g z — nh_)rrgo F(z,) =R F(z)),

n— oo
where ("11_{1;0 Ty =R T) = Ak ROAm >, n(|xm —r x| < k%rl)

F'is called e—é6—continuous in z iff

NV (|2~ ) < n%l = |F(@) ~m P < ).

Proposition: 6.3.1 The theory GoAY+ACY! —qf proves

AF® R - RAz (Fzs sequentially continuous in x <> F is e-§—continuous in x)

Proof: «’: Obvious!
’—’: Suppose that F' is not e-d—continuous in z, i.e.

(=) VAV (2 —m gl <m %ﬂ ME@) =m POl > ).

E:AGZ?

By our coding of pairs of natural numbers and numbers into functions one can express \/ylA in the
form Vy!Ay. Hence AC%1—qf applied to (%) yields

1
\/ko’€1(o)/\n0(|x “REN| <m — AN|F(z) —r F(én)| >r m),

ie. ({n)nen represents a sequence of real numbers which converges to z. But
- lim F(én) =R F(z) and thus F' is not sequentially continuous in x.
n—oo
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Remark 6.3.2 1) The the proof of the implication +’ needs no AC*'—qf and can be carried
out even in the intuitionistic theory Go AY. On the other hand it is known that the implication
'— 7 is not provable in elementary intuitionistic analysis: See [{7] for details on this. The

weaker “global’” implication 'F is sequentially continuous on IR — F is e-d—continuous on R’
can be proved in elementary intuitionistic analysis if a certain principle of local continuity is

added which (although classically incorrect) is of interest in intuitionistic mathematics (see
[70] ,[66] and also [48] for a discussion on this point).

2) The use of AC*L—qf in the proof of
AF:R->RAz e IR(F sequentially continuous in © — F e-d—continuous in :L')

is unavoidable since this implication is known to be unprovable even in Zermelo—Fraenkel
set theory ZF (and a fortiori in GoA®): see [27] ,[25] and [12] (However the weaker global

implication (see 1) can be proved without choice; see [70] (7.2.9)).

The results of this chapter imply that the statements on the growth of extractable bounds stated
at the end of the previous chapter extend without any changes to proofs which may use in addition
to the analytical principles studied in chapters 3-5 also

1) the fundamental theorem of calculus

2) Fejer’s theorem on the uniform approximation of 2r—periodic continuous functions by trigono-
metric polynomials

3) the equivalence (local and global) of e-6 —continuity and sequential continuity of F: R — IR
inz elR.
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7 Axioms having the logical form A2°Vy <, sz\27 Ay(z, v, 2)

So far we have considered basic properties of special functions and functionals in analysis as well
as analytical theorems which can be expressed as purely universal sentences or follow from such
sentences by the use of AC—qf. These theorems therefore have both a trivial functional interpretation
and a trivial monotone functional interpretation and contribute to the growth of bounds (if they
contribute at all) only by their term structure but not by their proofs.

In this chapter we deal with sentences which have the much more general form

(%) /\x‘“/y <, sx/\zTAo(x,y, z)

of the axioms A in the theorems 2.2.2, 2.2.8 and the cor.2.2.3 . Although all the sentences of this
type which we consider in this chapter have no direct usual functional interpretation by computable
functionals at all (and for the most interesting ones even their negative translations have no func-
tional interpretation in Godel’s T) they have a simple direct (i.e. without negative translation)
monotone functional interpretation by very simple functionals € GoR“. In particular their proofs
do not matter for the extraction of uniform bounds but only the growth of majorants for the terms
needed to formulate these sentences which is very low (mainly polynomially of degree 2).

In §1 we show that the following theorems of analysis can be expressed as sentences (x) with
s € GoR¥ and AO S £(G2Aw)41:

1) Attainment of the maximum of f € C([0,1]¢,IR) on [0, 1]¢.

2) Mean value theorem of integration.*?

3) Cauchy—Peano existence theorem for ordinary differential equations.
4) Brouwer’s fixed point theorem for continuous functions : [0, 1]¢ — [0, 1]¢.

In §2 we introduce new axioms F' and F'~ which both have the form (%) and are true in the type
structure of all strongly majorizable functionals (which was introduced in [4] ) but are false in the
full set— theoretic model. Thus, whereas F, F~ do not contribute to the construction of bounds
extracted from a proof, the verification of these bounds so long uses these axioms. However F~
can be eliminated from the verification proof by further proof-theoretic transformations (which do
not effect the bounds themselves) so that the bounds extracted can also be verified without F~.
For bounds of type < 1 this is also possible for proofs using F'. The importance of the F, F'~ rests
on the fact that they imply combined with AC*%—qf (which also has a trivial monotone functional
interpretation) relative to GoA“ many important analytical theorems in there direct formulation
(i.e. without any special representation) which do not have the form () by themselves: In §3 we
show that F'~ implies

5) Every pointwise continuous function G : [0,1]¢ — IR is uniformly continuous on [0,1]¢ and
possesses a modulus of uniform continuity.

6) [0,1]% € IR has the (sequential form of the) Heine-Borel covering property.

41 These theorems which are formulated here only for [0, 1]¢ generalize to variable rectangles [a1,b1] X ... X [ag, bg],
where a; < b; fori=1,...,d.
42The mean value theorem of differentiation does not have this logical form but can easily be derived from 1) as

in its usual proof.

68



7) Dini’s theorem: Every sequence G, of pointwise continuous functions :[0,1]¢ — IR which
increases pointwise to a pointwise continuous function G : [0, 1]d — IR converges uniformly on

[0,1]? to G and there exists a modulus of uniform convergence.

8) Every strictly increasing pointwise continuous function G : [0,1] — IR possesses a uniformly
continuous inverse function G~ : [G0,G1] — [0,1] together with a modulus of uniform
continuity.

As a consequence of this we obtain the following result: If /\xo/\y < sx\/zvo(gn7 Yy, z) is proved in
G2 A% plus the theorems 1)-8), then one can extract from the proof a polynomial p which provides
a uniform bound on "V 2’ (which does not depend on y), i.e. /\xo/\y <, szVz <o p(x) Aoz, y, 2).
If = has the type 1 one obtains a polynomial relatively to = (in the sense of prop.1.2.30 ).

By 5) our representation of f € C([0,1]% R) which presupposes that f is endowed with a modulus
of uniform continuity does not impose any restriction on the domain of functions in the presence of
F~ and ACH0¢f.

It is well-known that the existence of a function G : [0, 1] — IR, represented by a functional O

which is not continuous can be proved only by an instance of arithmetical comprehension over
functions

CAL. - vtbo(l)/\fl(fbf =0 0 <> A(f)), where A is an arithmetical formula.

Since C AL, implies C'A,, it in particular makes all a(< gq)-recursive functions provably recursive
(when added to G2A®). Since we deal with theories which do not contain C' AL, it is consistent to
assume as an axiom that all functions G : [0,1]% — IR, which are given explicitely by a functional

®'(M  are uniformly continuous.*® This is achieved by the axiom F:

GoA¥ + F+ACH"—qf proves: Every function G : [0,1]% — IR is uniformly continuous and pos-
sesses a modulus of uniform continuity.

The use of F' (which does not contribute to the bounds extracted) has the nice property that
continuous functions G : [0,1]? — TR are nothing else then functionals ®'(\) which are extensional
w.r.t. =[ ¢ and =g (and thus represent a function : [0, 1] — IR). This simplifies the formaliza-

tion of given proofs and thereby the extraction of bounds from these proofs. Moreover the proofs
of 5)-8) (which now hold for arbitrary functions G, G,,) become more simple.

(From the work on the program of so—called 'reverse mathematics’ (see [16],[17],[60],[61], [56] )
it is known that 1) and 3)—6) are provable in a subsystem RCAo+WKL of second—order arithmetic
which is based on the binary Koénig’s lemma and YX{-induction (see chapter 9)**. The provably
recursive functions of RCAy+WKL are just the primitive recursive ones. This was firstly proved by
H. Friedman in 1979 (in an unpublished paper) using model-theoretic methods. Later on W.Sieg

gave a proof-theoretic treatment of this result using cut—elimination (see [57] ).45 In [33] we proved

43The restriction ’given explicitely by a functional’ is essential. Of course we can formulate functional dependencies
in e.g. G2A“ which describe a discontinuous functional: E.g. we can prove
/\fl\/!azo([\/y(fy =0)— fa=0A Nz <z(fz #0)A [/\y(fy # 0) = 2 = 0]) and = does not depend continuously
on f, but we cannot show the existence of a funtional ®°(1) which maps f to .

441n fact this work shows that 1) and 3)-6) actually are equivalent to WKL over the base theory RCAg. From this
it follows that these theorems have no functional interpretation in Goédel’s T.

450ne should mention also [14] where the conservativity of a special version of WKL over a system of second—order
arithmetic whose provably recursive functions are polynomial time computable is established by model-theoretic
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the conservativity of WKL over the finite type theories PRA“ and PA“ even for higher type sen-

tences /\xl/\y <, sx\/zTAo(x, y, z), where p, T are arbitrary types. Moreover we gave a perspicuous
method for the the extraction of bounds from proofs using WKL and arbitrary axioms (x) by a
new combination of functional interpretation with majorization which, in [39], was simplified even
further to the monotone functional interpretation (see chapter 2). In [37], [38] this was applied
to concrete proofs in best approximation theory yielding new numerical estimates which improved
known estimates significantly (see [39] for a discussion of these results). In [37] we also gave a de-
tailed representation of IR, C[0, 1] and more general complete separable metric spaces and showed
that e.g. 1) (for d=1), 2) and 3) as well as some more specific theorems from approximation theory
have the logical form (x). However we did not determine the growth of the terms needed in the
formalization of these theorems as axioms (x). Only by our much more involved representation of
C[0,1] and its generalization to C([0,1]¢,IR) and the explicit definition of the basic function(al)s of
analysis in the chapters 3 and 5 we are now able to show that 1)-4) can be expressed as axioms ()
in GoAY .

Since 5)-8) do not have the logical form (x) one has to consider their proofs. The proofs of 5)
and 6) using WKL (relative to RCAy) require a tedious coding technique. In particular pointwise
continuous functions have to be coded as a complicated set of quadruples of rational numbers (see
[60] ). Although working in the more flexible language of finite types makes it much easier to speak
about such functions (namely as functionals of type 1(1)) this does not help as long as one has

to use WKL as the basic principle of proof. In fact even the formulation of WKL itself uses the
coding of sequences of variable length and therefore cannot be carried out in GoA“. The motivation

for our axioms F', F'~ was to formulate a more general higher type version of WKL which can be
formulated and applied without the need of coding up objects like functions [0,1] — IR. This
allows very short proofs for 5)-8) in GoA“ + F~+ACH0—qf. In §2 we will study the relationship

between F'~ and (a generalization of) WKL (to sequences of trees) in great detail.

7.1 Examples of theorems in analysis which can be expressed as
NatVy < sx\2%1 Ay-sentences in GyAY

Example 1:
a) Attainment of the maximum of f € C([0,1]%,IR) on [0,1]%:

(1) Af e c([o, 1]d,R)Va:0 €[0,1]%(fao = sup fx).

z€[0,1]4
(1) is equivalent to
(2) Af € (0,114, R)Vag € [0,1]An® (fzo > fra),
where (7, )nen enumerates a dense subset of [0,1]¢ (e.g. [0,1]4 N Q%).

Modulo our representation of C([0,1]¢,1R), [0, 1]¢ and IR, the formalization of (2) in GoA% has the
following logical form

/\fl\/xo <1 l/d(M,...,M)/\no(f(mo)]Rd >r Uifn),

Sy

methods.
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where M := An.j(6(n +1),3(n + 1) — 1) is the boundedness function from the representation of
[0,1], Wy is the functional used in the representation of C([0,1]%,IR) and (-)ga the corresponding
application.
Hence (for each fixed number d) theorem (1) is an axiom € A in theorems 2.2.2 ,2.2.7 ;2.2.8 and
corollary 2.2.3 . This generalizes to functions f € C([a1,b1] X ... X [aq, ba], R), where a; < b; for
i=1,....d

b) Mean value theorem of differentiation: Assume a < b.

(f(b)—f(a)
b

—a

/\f € Cla,b](f differentiable in (a,b) — Vag e (a,b) = f'(z0)).

This theorem does not have the logical form /\:cl\/y <3 sx/\zoAO by itself since there are unbounded
quantifiers hidden in Vz, € (a, b) because
Va e (a,b) A(z) & Vi e [a,b](a < x < bA A(z))
and <g€ Y.
However the usual proof of the mean value theorem using the above theorem on the attainment of

the maximum can easily be formalized in GoA“ so that the mean value theorem also does not go
beyond polynomial growth.

Example 2: Mean value theorem of integration

Af.geClo1)(p>0— Vag e o, U(/f(fl?)%ﬁ(x)dfﬂ = f(=o) - /w(z)dx))~
0 0

Formalized in GoAY this theorem has the following logical form:

Art otV < M(®;(f-¢") =r f(@o)r ‘& P1),

e’

where ¢ is the code of the pair (Az". maxq(0, ¥1¢z), ¥2¢) into a single function (i.e. ¢ repre-
sents the positive part of the function represented by ¢) and f- ™ is a representative of the product

of the functions represented by f and ™. Again this generalizes to [a,b] instead of [0, 1].

Example 3: Cauchy—Peano existence theorem

Let F(z,y) be a continuous function on the rectangle R := {(x,y) : |z — £| < a, |y — 0| < b} C IR?,
where a,b € Ry \ {0}, (£,1) € R?. Furthermore assume that My := sup |F(z,y)| > 0 and define
(z,y)eR

a := min(a, MLF) Then (one version of) the Cauchy—Peano existence theorem says (see e.g. [9] )

There exists a continuously differentiable function G : [§ — o, & + o] — [ — b, + b] such that

(%)
Az € ¢ — o€+ a](G'(2) = F(x,G(x))) AG(€) =1
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By the fundamental theorem of calculus, (x) is implied by

There exists a function G € C([§ — o, & + af, [n — b, + b]) such that

)Y Avele—actal (G(z) =n+ ZF(t, G(t))dt)

(%) immediately implies
(1) A € €~ a,¢ + ] (G()] < b+ [nl) and (2) Aa.y € [¢ — 0. + 0] (|G(@) - Gly)| < M- | — y]).

Hence we can (x%) write in the form

Nen) e R%a,b € R,k € N(a,b > 15 — AF e C(R,R)(Mp > 127 —
(xx%)  VGilg—aé+a] = m—bn+tA\z,y el —a,i+al
(1G() — G(y)| < Mp - o — y| A Gl(x) = + ng(t, Gtydt))).

(% % %) can be formalized in GoA¥ in the following way

Aetnt,al b1 k0 (a,b > iy — AFY(Mp >w iy — VG <o) MM (x7b)
() 1 (A2°,3°0 <q 2,y <@ 1 = (G2~ Gy| <m 20Mp - |o —q y|) A (n— b <m Gz <g n+b))
M (Gea(Hm = 1 +r ®pz (A F(12(2, Gea(@)r)w2))))) s 4

where xnb =¢ ((|7]|/—|—\]R b)(1)]+147 , Mk == Anl.j(6k(n +1),3(n + 1) — 1) and G¢q(zh)r =
G(W)R and #! ;= maxpg (£ — a, ming (2, £ + a)).

The fact that (4) expresses (%) in Go A% follows from our representation of R, R?, R, C(R, R), f;
and the following observations: Let G be a function [£ — «, & + o] — [ — b, + b] which is Lipschitz
continuous with constant Mp. Then Gz := G((¢ — a)(1 — z) + (£ + a)x) is a function : [0,1] —
[n — b,n + b] which is Lipschitz continuous with constant 2a - Mp. Because of this continuity G is
already determined by its restriction on [0,1] N Q. Such a function is represented in GoA¥ by a
function G*(©). Since |G(z)| < || + b we may assume that Gz° <; M(xnb) (By our representation
of [~k,k](C IR) there is a construction x! — & <; Mk such that —k <g 7 <R k for all ! and
T =R v if -k <R = <R k.*® Thus we can achieve that Gax® <; M(xnb) simply by switching to
Gz. Now A21.Ge o (2)R just represents the original function G. In the other direction one only has
to observe that any G'(°) such that

Na® 420 <q 2,y <q 1 = (|Gz —r Gy| <m 20Mp - |z —q y|) A (n — b < Gz <p n+b))

represents a function [0,1] — [ — b,n + b] with Lipschitz constant 2a - My and hence that Ge¢ o
represents a continuous function : [§ — «, &+ a] — [n—b,n + b).

46For notational simplicity we omit here the modulus of uniform continuity for Az.F(v2(z, G¢ o (z)r)) which can
be easily computed from the moduli of F,G.

477297 denotes the least natural number which is an upper bound for the rational number coded by = (One easily
shows that [-] € G2R“). Hence xnb is a natural number which is an upper bound of the real number (represented

by) |n| +r b.
48Here we simply write k as representative of the natural number & in IR.
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It is clear that (+) has (modulo a shift of the existential quantifiers hidden in >R into the front of

the implication) the form /\QVG <1(0) sg/\ng, where z, z are tuples of variables whose types are
<1 and s € GoR".

Example 4: Brouwer’s fixed point theorem

Theorem 7.1.1 (Brouwer’s fixed point theorem)
Every continuous function F : [0,1]¢ — [0,1]¢ has at least one fived point, i.e. there exists an
zg € [0,1]% such that F(xo) = zo.

For every fixed number d continuous functions F : [0,1]¢ — [0,1]¢ can be represented in GoA¥ as
d-tuples of continuous functions Fj : [0,1]¢ — [0, 1] and therefore as d-tuples of number-theoretic

functions f}. Hence Brouwer’s fixed point theorem has (formalized in GoA%) the logical form

d —
/\fll,,f(}\/xo Sl l/d(M7...,M) /\ (fi(mO)IRd =R (Vid$0)),

=1

ey

where M := An.j(6(n 4+ 1),3(n + 1) — 1) is the boundedness function from our representation of
[0,1]. This generalizes to any rectangle [a1,b1] X ... X [aq, bg] (with variable aq,b1,...,aq,bq such
that a; < b; for i = 1,...,d) instead of [0, 1]¢.

7.2 The axiom F and the principle of uniform boundedness

In [39] we introduced the following axiom:*°

Fo := No? y Vo <; yM\z <1 y(@2 < @yp).

F, states that every functional ®? assumes its maximum value on the fan {z! : z <; y} for each y'.

This is an indirect way of expressing that ® is bounded on {z! : z <; y}:
By = /\<I>2, yl\/zo/\z <1 y(Pz <g x).

Fy immediately implies By: Put z := ®yg. The proof of the implication By — Fp’ uses the least
number principle and classical logic:

If z is a bound for ®z on {z! : 2 <; y} then there exists a minimal bound zy and therefore a zg

such that zp <; y A ®z9 =¢ 2o (since otherwise sup Pz < xg, contradicting the minimality of
{z1:z<0y}

no).

Our motivation for expressing By via Fj is that Fy —in contrast to Bo— has (almost) the logi-
cal form AzVy < s2/\z Ay of an axiom € A in theorems 2.2.2,2.2.7, 2.2.8 and cor.2.2.3 . This is
the case because Fj contains instead of the unbounded quantifier Vg0 only the bounded quanti-

fier ’Vyo <1 ¥y’ (of higher type). The reservation ’almost’ refers to the fact that there is still an

491 [39] this axiom is denoted by F instead of Fp. In this paper we reserve the name F for a generalization of this
axiom which will be introduced below.
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unbounded existential quantifier in Fy hidden in the negative occurrence of 'z <; y’. However this
quantifier can be eliminated by the use of the extensionality axiom (E). By (E), Fp is equivalent to

Fy = /\@Q,yl\/yo <4 y/\z1 (@(minl(z, y)) <o @yo) (see lemma 7.2.7 below).

This use of extensionality does not cause problems for our monotone functional interpretation since
the elimination of extensionality procedure applies: Because of the type—structure of Fy the impli-

cation "Fy — (Fp).’ is trivial.

Fy is not true in the full type structure S“ of all set—theoretic functionals:

Definition 7.2.1

S() =uw,
S (p) := {all set-theoretic functions x : S, — S;},
SYi= U S,

peT

where ’set-theoretic’ is meant in the sense of ZFC.%°
Proposition: 7.2.2 S“ [£F.
Proof: Define

51 the least n such that yn =¢ 0, if it exists
Py =
0°, otherwise.

® is not bounded on {z! : z <; Az°.1°} since ®(1,x) =g =, where

].U, if k<gx

(1, 2)(k) :=

0°, otherwise.

On the other hand Fj is true in the type structure M of all strongly majorizable set—theoretic
functionals, which was introduced in [4] :

Definition 7.2.3
Mo =w, ¥ ssmaj, v :=2",r €cwAz* > x;
T SMaj () T =2, T € MM A /\y*,y € My(y* s=maj, y — x*y* s-maj, 2y, vy),
My = {x e MM Var e Mﬁ/["(x* $=Majy () x)} ;
MY = J M,

peT

(Here MM denotes the set of all set-theoretic functions: M, — M, ).

Proposition: 7.2.4 M“ = F,.

50The following proposition also holds if we omit the axiom of choice since only comprehension is used for the
refutation of Fjy.
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Proof: Tt suffices to show that M¥ |= By: ® € M implies the existence of a functional * € My
such that ®* s-maj, ®. Hence ®*yM >, &z for all y', 2! such that y >; z (yMa° := m<ax(yi)).
i<z

For our applications in this paper we also need a strengthening F of Fj, which generalizes Fj
to sequences of functionals and still holds in M¥:

Definition 7.2.5
F = A\g20) 410V, <1(0) yA\EONz <4 yk(Pkz <o Pk(yok)).

F implies the existence of a sequence of bounds for a sequence ®2(9) of type-2-functionals on a
sequence of fan’s:

Proposition: 7.2.6
G1A% - F — No2O ytOVVIARNL <) yk(Dkz <o xk).

Proof: Put xk := ®(yok)k for yo from F.

Similarly to Fj also F' can be transformed into a sentence F having the logical form
/\:I:Vy < sal\z Ap:

Lemma: 7.2.7
E-GiAY F F F = A@Q(O),yl(o)\/yo <1(0) y/\ko,zl (®k(miny (2, yk)) <o Pk(yok)).

Proof: '—’ is trivial. '« follows from z <; yk — min;(z,yk) =1 z by the use of (E).

Because of this lemma we can treat F' as an axiom € A in the presence of (E). In order to ap-
ply our monotone functional interpretation we firstly have to eliminate (E) from the proof. This
can be done as in cor.2.1.4 and remark 2.2.4 since F' — (F)..

Theorem 7.2.8 Assume that n > 1. Let A be a set of sentences having the form

AV <5 tul\w" By, wheret € G, RY and v, < 2,0 <1 such that S¥ = A. Furthermore let s €
GnRY and Ay € L(G,AY) be a quantifier—free formula containing only x,y, z free and let o, 5 € T
such that (« =0AB<1) or (a« =1AB=0), and 7 < 2. Then the following rule holds:

E-GoA® + F+ A+ ACB—gf F NNy <, s2Ver Ao(x,y,2)

= by elimination of (E) and monotone functional interpretation 3¥ € G, R [®4] :
GuAY + F+ A+ b-AC + /\xl/\y <, szVz <, Uz Ao(z,y,2)

= M@ 8% = NatN\y <y saVz <, Ua Ag(,y, 2).5

U 4s built up from 09, 1°, max,, &1 and majorizing terms°? for the terms t occurring in the quantifier

azioms NaGz — Gt and Gt — VaGax which are used in the gwen proof by use of A—abstraction
and substitution.
If 7 <1 then U has the form U = Azt . Uoz™, where 2™ := &1 and Uy does not contain ®;

(An analogous result holds for E-PRA“ ,E-PA% ).

51Note that the conclusion holds in ¥ although S* }F.
52Here t*[a] is called a majorizing term if Aa.t* s-maj Aa.t, where a are all free variables of .
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Proof: By lemma 7.2.7 and elimination of extensionality the assumption yields
GpAY + F+ A+ AC*Pgf + /\ml/\y <3 sa VT Ao(z,y, 2).

By thm.2.2.2 there exists a ¥ € G,,R* [®,] satifying the properties of the theorem such that
GrAY + F+A+Db-AC + /\xl/\y <1 szVz <, Uz Ag(z,y,2).

;From [34] and the proof of prop.7.2.4 we know that M* |= PA“ 4+ F+b-AC and therefore

M® = G,A” + F+b-AC. Note that every S“—true universal sentence /\x”Ao(x) with deg(p < 2)

as well as every sentence from A is also true in M%. This follows from Sy = My, S; = M7 and
Sy D Mo. Hence

MY = G,AY + F+ A+b-AC
and therefore

M? = Na'Vy <y s2Vz <, Uz Ag(z,y,2).
Since 7 < 2 this implies
SY E NatVy <y saVz <, VzAp(z,y,2).

Remark 7.2.9 It is the need of the (E)-elimination that prevents us from dealing with stronger
forms of F', where yo may be given as a functional in ® and y, since for such a strengthened version
the interpretation (F). would not follow from F (without using (E) already). The same obstacle
arises when F' is generalized to higher types p > 1:

F, .= A¢0907ypOVy0 <,0 y/\ko/\z <, yk(®kz <o Pk(yok)).
E,, which still is true in MY, will be used in the intuitionistic context studied in chapter 8 below.

In our applications of F' we actually make use of the following consequence of F+ACH9—qf:

Definition 7.2.10 The schema of uniform YY—boundednes is defined as

Ny © (AkO Az <y ykV 20 A(z,y, k, 2)

»¢-UB:
! — \/Xl/\k’o/\x <4 yk\/z <o xk A(z,y,k,2)),

where A = \/éAO (1) and 1l is a tuple of variables of type 0 and Ag is a quantifier—free formula (which
may contain parameters of arbitrary types).

Proposition: 7.2.11 Assume that n > 2.
GpAY+ACYH —qf - F — XV-UB.

Proof: Nk°\z! <; yk V20 A(z,y, k, z) implies

NOALV 20, 40 (zv <o ykv — A(x,y,k,2)). Thus using the fact that k,z as well as z,v,l can
be coded together in GoA¥, one obtains by AC10—qf the existence of a functional ®3(°) such that
NNz <1 yk A(z,y, k, ®kz). Proposition 7.2.6 yields

\/Xl/\ko/\x <1 yk(xk >¢ Pkx).
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Remark 7.2.12 In the proof above we have made use of classical logic for the shift of the quantifier
on v as an existential quantifier in front of the implication. Nevertheless we will make use of the
principle of uniform boundedness (and even generalizations of this principle) in the intuitionistic
context studied in chapter 8. This is possible since instead of classical logic we could have used also

(E) to derive Nk, zV 2 A(miny (z, yk), y, k, 2) and (E) does not cause any problems intuitionistically.

$9-UB together with classical logic implies the existence of a modulus of uniform continuity for
each extensional ®1(1) on {zl : z <y y} (where ’continuity’ refers to the usual metric on the Baire
space IN™):

Proposition: 7.2.13 For n > 2 the following holds

G A“ + 30 UB F
/\<I>1(1),y1 (ezt(@) — le/\kO/\Zl,ZQ <4 y( N (215 =0 221) = N\ (®Pz1j =0 @zgj))),

i<oxk i<ok
where ext(P) = /\Z%’Z%(zl =1 29 = $z; =1 Dz9).
Proof: /\21,2’2 <1 y(Zl =1 22 — (132’1 =1 ‘1)2:2) implies

/\21722 Sl y/\ko\/’ﬂo( /\ (212 =0 ZQZ) — /\ ((I)le =0 @Zg]))

1<on J<ok

By 2Y-UB (using the coding of z1, 22 into a single variable) we conclude

VAt AROAz, 20 <4 y( /\ (217 =0 221) — /\ (®z1j =0 P22j)).

i<oxk J<ok

Remark 7.2.14 The weaker axviom Fy instead of F proves ¥)-UB only in a weaker version which
asserts instead of the bounding function x' only the existence of a bound n° for every k°. This

is sufficient to prove that every ®'V) is uniformly continuous but not to show the existence of a
modulus of uniform continuity.

For many applications a weaker version F~ of F' is sufficient which we will study now for the
following reasons:

1) F~ has already the logical form /\m\/y < sx/\zAO of an axiom € A and needs (in contrast
to F) no further transformation. This simplifies the extraction of bounds and allows the
generalization to higher types (see thm.7.2.20 below).

2) F~ can be eliminated from the proof for the verification of the bound extracted in a simple
purely syntactical way (see thm.7.2.20 ) yielding a verification in Gpax(3,n)AY. In particular
no relativation to M is needed. For F' such an elimination uses much more complicated tools
and gives a verification only in HA¥ and only for 7 < 1 in thm.7.2.8 (see [39] ).

Definition 7.2.15
F= = \p20) 10V <1(0) y/\ko,zl,no( A (zi <o yki) = ®k(z;m) <o Pk(yok)), where, for

i<on

2P, (z;m)(K°) ==, 2k, if k <o n and := 0?, otherwise (It is clear that A\z,n.(z;n) € GoR*).
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Remark 7.2.16 Since F~ is a weakening of F (to finite’ sequences) it is also true in M*“. By
the proof of prop.7.2.2 F~ does not hold in S“.

Lemma: 7.2.17
GLA? F F= = N2 ylOVZIOARD 21 n0( A (zi <o yki) — Bk(z7) <o xk).

1<on
Definition 7.2.18 The schema ¥9-UB~ is defined as the following weakening of ¥9-UB:

/\yl(o)(/\ko/\x < ykV20 Alz,y, k, z) — VytAgO, 21, n®
(A (wi <o yki) — Vz < xk A((T,m),y, k, 2))),

1<on

»0-UB :

where A € 9.

Proposition: 7.2.19 For each n > 2 we have
GpAY+ACY —¢f - F~ — E&LUBT

Proof: Analogously to the proof of prop.7.2.11 using lemma 7.2.17 instead of prop.7.2.6.

Theorem 7.2.20 Assumen >1, 1 <2, s €G,R¥. Let Ao(x,y,z) € L(GL A% ) be a quantifier—free
formula containing only x,y, z as free variables. Then the following rule holds:

G ,AY & AC-¢fd F~ + /\xl/\y <, szVar Ao(z,y, 2)
= by monotone functional interpretation IV € G, R [®1] such that
Gmax(g,n)Af F /\ml/\y <, szVz <, Uz Ag(z,y, 2).

U is built up from 0°,1°, max,, ®; and majorizing terms for the terms t occurring in the quantifier

azioms N\eGz — Gt and Gt — VaGx which are used in the giwen proof by use of A—abstraction
3

and substitution.®
If 7 <1 then ¥ has the form ¥ = Xzt oM | where M := &2 and ¥y does not contain ®;.

For p < 1, GuAY®AC—qfF~ can be replaced by E-G,AY+AC™P —qf+F~, where a, B are as in
thm.7.2.8 . A remark analogous to 2.2.4 applies. Furthermore on may add azioms A (having the
form as in thm. 2.2.2) to G,A*©AC-qfF~. Then the conclusion holds in Guax(3,n)AY + A+b-
AC.

An analogous result holds for PRAY and PA% with ¥ € PR’ resp. € T.
Proof: The assumption implies

GpAY + ACf F (VY <2020 10 yAp, §1(0) j0 31 0
(A (i < gki) — Dk(Z,n) <o OE(YBFk)) — Nat Ny <, saVzmAg(,y, 2)),

<n
and therefore

GnAY + AC—qf FAY <@, yyN\a' Ny <, s2V O, 5,k 7,m,2(..).

53Here @ means that F~ and AC-qf must not be used in the proof of the premise of an application of the
quantifier—free rule of extensionality QF-ER. G, A“ satisfies the deduction theorem w.r.t & but not w.r.t +.
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By theorem 2.2.2 and a remark on it we can extract ¥y, U5 € G,R¥[®;] such that

GuAY FAY < 2@, yyN\at Ny <, saV @, 5,k 2Vn <o W12V <, Uoa(. ).
Hence

GnAY F Ax (VY <2020 41O yAd 51 10, 21 An <o 12
(A (Fi < gki) — Ok(Z,n) < DK(YOGE)) — Ny <, s2Vz <, Wz dg(z,y, 2)).

<n
It remains to show that

G3AY F AngVY < A020) 410 yAp 51© 10 51 An < ng
(A (Zi < gki) — ®k(Z,n) < k(Y Dgk)) :

i<n

Define

Y =\, 9,k,ng. max @k((minl()\i.(j)i,gjk),no).
J<o(Fk)no

One easily shows (using the fact that ®.y € G3R®) that Y is definable in G3zAY. In the same way

we can define (using pp)

Y = \®,§,k,ng. min [(I)k;((minl()\i.(j)i,gjk),no) = Y®gkno| .
J<o(gk)no

For every ng we now put

Y = \®, 7, k. (miny (Xi.(Y ®gkno)i, Gk), no).

We now show that F'~ implies (relatively to G;A“+ACH0—f) a generalization of the binary ("weak’)
Konig’s lemma WKL:

Definition 7.2.21 (Troelstra(74))

WKL:= \f! (T(f) A NaOVRO(ith n =g z A fn=¢ 0) = Vb <y Me.1A20(f (b)) = 0)),

where Tf := An® mO(f(nm) =g 0 — fn =g 0) A /\no,xo(f(n x(x)) =00 = 2 <o 1) (i.e. T(f)

asserts that f represents a 0,1-tree).

In the following we generalize WKL to a sequential version WKL, which states that for every
sequence of infinite 0,1-trees there exists a sequence of infinite branches:

Definition 7.2.22
AFrO(AROT(fE) A NONRO(1th n =¢ 2 A fkn =4 0))
— Vb <y (0) M2, 01RO, 20(fE((Bk)z) =) 0)).
This formulation of WKL and WKL, (which is used e.g. in [68] and [57],[59] and in a similar way
in the system RCA( considered in the context of 'reverse mathematics’ with set variables instead

of function variables) uses the functional ® bz = bz which is definable in G, A% only for n > 3

and causes exponential growth. Since we are mostly interested in polynomial growth and therefore
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in systems based on GoA* we need a different formulation WKL2,  of WKL;., which avoids the

seq
coding of finite sequences (of variable length) as numbers and can be used in Go A% and is equivalent
to WKL, in the presence of the functional ® . This is achieved by expressing trees as higher

type (> 2) functionals which are available in our finite type theories:

Definition 7.2.23

A010 (A0 20Vh <, An®.10 A (Dk(B,7)i =0 0)
WKL?,, = ( B i=0
— Vb <) AR, n0 1ARO, 20(Dk (B, )z =0 0)).

Proposition: 7.2.24
G3AY = WKLZ,, < WKLgeq.

seq

Proof: '—’: Define ®k°b'2" := fk(br) and assume /\kOT(fk) and (+) Nk, x\/n(lth n=xAfkn=
0). It follows that

Nk, zVb < An.1 /m\(cbk(a)i =, 0)
=0

(Put b := Xi.(n); for n as in (4)).
Hence WKL2_ yields

seq
Vb < e, n 1Nk, 2(®k(bk, z)z =0 0),
i.e.
Vb < Ak, n ANk, z(fR((F)z) =0 0).
<’ Define

Fhn = Ok (Ni.(n),)(Ith n), it N\j < th n((®k(Ni-(n);, )j =0 0) A (n); < 1)

19, otherwise.

The assumption Ak, 2Vb <3 An®.1° A (®k(b,i)i =¢ 0) implies
i=0

/\k, x\/n(lth n=xA fkn =0). Since furthermore T'(fk) for all k (by f—definition), WKL, yields
Vb <0y Me, n AR, 20 (fR((BR)z) = 0),

ie.
Vb < e, n 1Nk, 2(®k(bk, z)z =0 0).

Theorem 7.2.25
Go A+ ACOY —¢f - 29-UB~ — WKLgeq.

Proof: Assume that

No <0y AR, i 1VE?, 20 (D (BF, ) # 0).
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By 2Y-UB~ it follows that (since the type 1(0) can be coded in type 1):

(#) Vao\b <10y M, 0. 1VE, 2 <o 20 (®k( (bk, 7o),z ) #0 0).
N——
S
Assume AKO, 20Vb! (A (bi <o 1A Dk(B,3)i =0 0)). AC*!qf yields
=0

NPVt O AR ( ;\(bki <o 1 A ®k(bk, )i =0 0))

=0

[ pp— - x
Since bk, =1 (bk, x),i for i < x and bk,z <y Ai.1 if A (bki <o 1) this implies
=0

Na®Vb <0y Ak, i.1\k /\ (Ok(Dk, 1)i = 0),

=0

which contradicts (x).

Together with prop.7.2.19 this theorem implies the following
Corollary 7.2.26 Let n > 2. Then

GrAY ® ACH —qf® AC*! ¢f® F~ + WKL?

seq*

2
seq*

Hence theorem 7.2.8 and theorem 7.2.20 capture proofs using WKL In particular (combined with

cor.2.2.8 ) we have the following rule

E-GoA¥ + AC™P —qf +WKL§EQ [ /\xo/\y <1 sx\/zoAO(x,y, 2)
= J(eff )k, c1,co € IN such that
G3 AY + /\xo/\y <4 szVz <o c12F +co Ag(m,y, 2),
where s € GoR* and Ag is a quantifier—free formula of GoAY which contains only x,y,z as free
variables and (a =0A B <1) or (a =1AB=0).

Remark 7.2.27 WKL?,  does not imply F~ since S* = WKL2,,, but S FF~.

seq seq’
7.3 Applications of F+AC'"? (resp. F~+AC!) relatively to G, A%

Application 1:
Proposition: 7.3.1 For every fixed number d the following holds:
1) GoA“+ACYY + F proves:

Every function F : [0,1]¢ — IR is uniformly continuous and possesses a modulus of uniform
continuity.

2) GaAY+ACH + F~ proves:
Every pointwise continuous function F : [0,1]7 — TR is uniformly continuous and possesses a
modulus of uniform continuity.
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Proof: 1) Formulated in GoA¥ the assertion above reads as follows:
If ') (note that we do not need the complicated representation of C'([0,1]%,IR) from chapter 3)
represents a function [0,1]¢ — IR, i.e.
d
/\x%,x%( A (0 <) vi(z1), v (z2) <R 1 A vi(21) =R v (13)) = @21 =R P3), then @ is uniformly
i=1
continuous on [0, 1]d and possesses a modulus of uniform continuity.
By the representation of [0,1] from chapter 3 we can restrict ourselves to representatives x! of
elements of [0, 1]d which satisfy Vfl(ac) <y Mfori=1,...,d(where M := An.j(6(n+1),3(n+1)—1)).
d

Ny, 2y <4 vi(M, .. .7M)(/\(V§1(:E1) =g vi(z2)) = P71 =R Pi2)
i=1

is equivalent to®*

1 1
A\ <1 (M, M)AV RO (|31 —pa @ <R —— — |®F) — P —
w1, w9 < v (M, .., M) n° (1|21 R T2llmax SR g 2 831 R Ith<1Rk+1),

E:AEE&J

where || - |[max denotes the maximum metric®® on IRY.
Since z1, 72 can be coded together, ¥{~UB (which is derivable by prop.7.2.11 ) yields (using the
monotonicity of A w.r.t. n)

1
k+1)'

Vxl/\arl,xg Sl Vd(M, .. 7]\4)/\]€0(H.”I}1 —IR4 jQHmax <

= @7 —r PAo|R <
S il |®T) —r PT2|R

2) Using X9-UB~ instead of ¥9-UB in the proof of 1) one obtains

e —— 1 _— B 1
\/Xl/\l'l,xQ Sl I/d(M, .. '?M)/\l07kO(H(xl,l)f[ﬁd(l?»l)”max S W — |©(£L’1,l)*ﬂ:{®(l’2,l)|ﬂ:{ < m)

Since ||(z,1) —ge T||max < k%_l for I > 3(k 4 1), this together with the pointwise continuity of &

implies the claim .

This result generalizes also to variable rectangles [a1,b1] X ... X [ag,bg] instead of [0,1]% (where
a; <b;fori=1,...,d).

Remark 7.3.2 (to the proof prop.7.3.1) In the proof above we actually used only ¥9-UB (resp.

Y0-UB~ ) and classical logic (more precisely Markov’s principle).

Corollary 7.3.3 GoAY+AC0 ¢f+F proves: Every ®'V) which represents an unrestricted func-

tion R — TR is pointwise continuous on RY and possesses a modulus of pointwise continuity
operation.

54Here  is a shortage for v¢(v(z1),..., Vj(md)).

55Tnstead of || - |max We can also use e.g. the euclidean metric on IR? thereby obtaining a modulus of continuity
w.r.t. this metric. However, since both norms on IR? are contructively equivalent, a modulus of uniform continuity
w.r.t. one norm can be easily transformed into a modulus for the other norm.
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Proof: ;From the proof of 1) above we obtain a function y'(®) such that y(m) is a modulus of
uniform continuity for ® on [~m,m]¢ by applying ©{-UB to
1
AP Ny, o <y v4 (M (m), ..., M(m)NOVRO (|21 —ga 22 ]max < 7 |02 R Pl < ),

ex?

where M (m) := An.j(6m(n+1),3(n+ 1) — 1) is the boundedness function from our representation

of [-m,m].
Now define £°1) € GoR¥ by £(z!) := maxo(((ulg—(;))(l)] +2,..., [(Vg—(;))(lﬂ + 2). The natural
number £(z!) is an upper bound for |z!|max + 1. Hence wx! := MkO.x(&(x), k) is a modulus of

pointwise continuity in x, since ||z — y||max < m implies that ||2||max, [|¥|lmax < &(2).

Remark 7.3.4 The modulus of pointwise continuity w(z', k%) is only an operation (see chapter 3)

and not a function of  as an element of RY (but a function of x € INN as an representative of
such an element) since it is not extensional w.r.t. =pa.

Application 2: Sequential form of the Heine—Borel covering property of [0,1]? and other
compact spaces

Let B.(zo) := {y € R%: ||zo — y||z < €} denote the open ball with center zo € IR? and radius &
( w.r.t. the euclidean norm).

Proposition: 7.3.5 G A% + X9-UB~ (and therefore GoA® + F~+ACY0—qf) proves that every

sequence of open balls which cover [0,1]? contains a finite subcover.
Proof: We have to show
W) Af:IN =R\ {0} Ag: N = [0,1]%(Az € [0,1]4VE € N(z € By (gk))
— VioAz € [0,1)4VE < ko(z € By (gk))).
When formalized in GoA¥ (1) has the form (compare application 1 above)

AFrO g O (NO(f1 > 0) ANa <y v2(M, ..., M)VE(|T —a gkl 5 <m FF)

2
) = VE)Ae < vi(M, ..., M)VE <o ko(|F —ge gk 5 <m fF)).

Using 29-UB~ and the fact that <g€ X{ we obtain

Ao gt O (ANO(f1 > 0) ANz <y v4(M, ..., M)VE(||E —a gkl <m f)

= VIdAz < v (M,..., M)AV m <o ko(|(@o7) —pa gkl 5 <m fk— 757)-

(3)

Since H(.T,:’I’L) —Re Z|lmax < ﬁ for n > 3(k + 1), (3) implies (2) which concludes the proof.

Similarly one shows this result for [a1,b1] X ... X [aq,bs] and also for other compact spaces as
eg Kq.):={f€C[0,1]:|fllec <cA f has Lipschitz constant A\}: We have already verified in our
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treatment of the Cauchy—Peano existence theorem in example 3 above that K. » can be represented
by a bounded set of functions f! so that £-UB applies.
Application 3: Attainment of the maximum value for f € C([0,1]¢,IR)

Proposition: 7.3.6 1) GoA¥ + X9-UB+AC* —¢f (and therefore GoA“ + F+ACY—qf) proves:

Every function F :[0,1]¢ — R attains it mazimum value on [0,1]%.

2) GoA® +X0-UB~+AC*"O—¢f (and therefore GoA® + F~+ACH?—qf) proves:

Every pointwise continuous function F : [0,1]¢ — IR attains it mazimum value on [0,1]%.

Proof: In view of prop.7.3.1 and the remark to its proof we only have to show 2). Assume
1) Vo : [0,1] = RAz € [0,1]?Vr € [0,1] N Q% (®x < &r)).
The proposition /\z € [0, 1]d\/r € 0,1]*N Q%(®x < ®r) has the following logical form

2) Nz <y v4(M, ..., M)Vn®(@F <g ®(AK°.q(n))),

ex?

where ¢ € GoRY is an enumeration of [0,1]4 N Q.
¥0-UB~ applied to (2) yields

Vo Az <1 v4(M, ..., MYNOVn <q ng(®(z,1) <r PN .q(n))).
By lemma 3.3.7 2) there exists an ny; < ng be such that

B(A.q(n1)) =r maxy (P(AEY.q(0)),..., 2(AE .q(no))).

Since there exist x1,1° such that x <; v4(M,..., M) and (z,]) =r M\k".q(n1) we obtain a contra-
diction to (1). Hence

3) A& : [0,1] = RVz € [0,1]Ar € [0,1]% N Q% (0 > &r)),
which implies

Ao . 0,1]¢ — IR(® pointwise continuous — Vz e [0, 1]d/\y € [0,1]%(®z > dy)).

Application 4: Dini’s theorem

Proposition: 7.3.7 1) G2AY + X9-UB (and therefore GoA¥ + F+ AC“—qf) proves: Every
sequence ®,, of functions : [0,1]% — IR which increases pointwise to a function ® : [0,1]? — IR

converges uniformly on [0,1]% to ®, and there exists a modulus of uniform convergence.

2) GoAY +X9-UB~ (and therefore Go A + F~+ACY0—qf) proves: Every sequence ®,, of point-
wise continuous functions : [0,1]¢ — R which increases pointwise to a pointwise continuous

function ® : [0,1]2 — IR converges uniformly on [0,1]¢ to ®, and there exists a modulus of
uniform convergence.
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Proof: By the assumption we have

1
ANz € 0,14V (®z — Bz <k m)

Similarly to the proof of prop.7.3.6 one obtains using X{-UB

Vi 'Ak®Az € 0,114V <o x(k)(®z — Ppz <g m)

Since (P, )ne is increasing this implies

1

(%) Vy'Ak°Az e [0, 1]d/\n >0 X(k)(Px — @2 <i Pl

)7

which concludes the proof of 1).
By %{-UB~ we obtain (*) only for a dense subset of [0,1]%. However this implies (x) if ®,,,® are

assumed to be pointwise continuous on [0, 1]%.

Application 5: Existence of the inverse function of a strictly monotone function

Proposition: 7.3.8 1) G2A¥ + X0-UB (and therefore GoA¥ + F+ACYC—qf ) proves:
Every strictly increasing function ® : [0, 1] — IR possesses a strictly increasing inverse function

O~1: [®0,®1] — [0, 1] which is uniformly continuous on [®0, ®1] and has a modulus of uniform
continuity.

2) GoA¥ +X9-UB~ (and therefore Go A + F~+AC“—qf) proves:
Every strictly increasing pointwise continuous function ® : [0,1] — IR possesses a strictly
increasing inverse function ®=1 : [®0, ®1] — [0, 1] which is uniformly continuous on [®0, ®1]
and has a modulus of uniform continuity.

Proof: The strict monotonicity of ® implies

1 1
1) A 0, JAEOVRo(z >y + —— — D2 > By + ——).
(1) N\z,y € [0,1] n(x_y+k+1—> x> y+n+1)
Modulo our representation of [0,1], ® and >R, >r (1) has the logical form

1 1
A <1 MAEVRO (3 >R 5 — = Oz Py 4+ —— ).
T,y <y n(x_]Ry—th—l—l T >R y—|—n+1)

E:AEE?

By X{-UB we obtain (using the monotonicity of A w.r.t. n) a modulus of uniform strict mono-
tonicity, i.e.

1 1
2) V'Az,y <) MAKY (2 >R §+m —— — ®F >R O
(2) Vx'No,y <4 (EF2ry+R o7 = T >R y+xk+1)
(If we use X9-UB~ only instead of %-UB we obtain the restriction of (2) to a dense subset of [0, 1]
which implies (2) if @ is assumed to be pointwise continuous).
Analogously to our definition of the inverse functions of sin, cos in chapter 5 (where we used the
modulus w of uniform strict monotonicity) one now shows the existence of the inverse function ®~1

and the fact that x is a modulus of uniform continuity for ®~! on [®0,®1]. That ®~! again is
strictly increasing is clear.
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Remark 7.3.9 ;From the proofs of applications 1)-5) it is clear that the propositions can be proved
already in GoA® ® FOACHO—qf (resp. G2AY ® F~®ACHC—qf) instead of GoA“ + F+ACH—qf
(GoAY + F~+ACH0—¢f ).

The applications 1-5 show that F~ combined with AC'%—qf allows to give very short proofs for
important theorems in analysis. In these proofs one can treat continuous functions ® : [0,1] — IR
simply as functionals of type 1(1) (which are =y ;ja, =r—extensional) without the need of the quite
complicated representation of C([0,1]¢,R) from chapter 3.°6 Moreover the applications 1-4 gener-
alize to other compact spaces K instead of [0,1]? as long as the elements of K can be represented
by {f!: f <t} for a suitable term t.

Since the formulation of the examples 1-4 uses only terms which are majorizable in GoA“ and
the applications 1-5 (for continuous functions) can be carried out in G,A¥ + F~+ACH—¢f for all
n > 2 we can conclude (using the results obtained so far):

If a sentence (—f—)/\gl,ko/\v < thVwOAO is proved in G,A“+AC—qf plus the analytical tools
developed in chapters 3-6 plus

1) Attainment of the maximum of f € C([0,1]¢,IR) on [0, 1]¢

2) Mean value theorem of integration

3) The mean value theorem of differentiation

4) Cauchy—Peano existence theorem for ordinary differential equations

5) Brouwer’s fixed point theorem for continuous functions f : [0,1]¢ — [0, 1]¢

6) Every pointwise continuous function G : [0,1]¢ — IR is uniformly continuous on [0,1]¢ and
possesses a modulus of uniform continuity

7) 0,1]¢ C IR? has the (sequential form of the) Heine—Borel covering property

8) Dini’s theorem: Every sequence G, of pointwise continuous functions :[0,1]¢ — IR which
increases pointwise to a pointwise continuous function G : [0, 1] — IR converges uniformly on

[0,1]¢ to G and there exists a modulus of uniform convergence

9) Every strictly increasing pointwise continuous function G : [0,1] — IR possesses a uniformly
continuous strictly increasing inverse function G=1 : [G0, G1] — [0, 1] together with a modulus
of uniform continuity

as lemmas one can extract a uniform bound /\gl,ko/\v < t%\/w <o xuk Ag such that

M

(i) x is a polynomial in uM k (where uM := Az°.maxq(u0,...,uz)) for which prop. 1.2.30

applies, if n = 2,

(ii) x is elementary recursive in uM k, if n = 3.

56Because of this, application 3 is usefull although this theorem can be treated directly as an axiom when one uses
our representation of C([0, 1]¢, R).
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8 Relative constructivity

In the previous chapters we studied various analytical principles in the context of theories
GL,AY+AC—qf (mainly for n = 2) whose underlying logic is the usual classical logic and applied
the meta—theorems from chapter 2 to determine the growth of provably recursive functionals. As
we already have discussed at the end of chapter 2, the use of classical logic has the consequence
that the extractability of an effective (and for n = 2 polynomial) bound from a proof of an AV a-
sentence is (in general) guaranteed only if A is quantifier—free. In this chapter we study proofs
which may use non—constructive analytical principles as e.g. Brouwer’s fixed point theo-
rem, Cauchy-Peano existence theorem, attainment of the maximum of f € C([0,1]¢,R) and so
on, but apply these principles only in the context of the intuitionistic theories (E)-G, A¥.
The restriction to intuitionistic logic guarantees the extractability of (uniform) effective bounds (€

G, R¥) for arbitrary AV A-sentences. Furthermore instead of analytical axioms A having the form
/\:1:5\/y <, sx/\zTAo (z,y, z) we may use more general sentences as axioms, e.g. arbitrary sentences

having the form (x) v (A — Vy <, sx—B), where A, B are arbitrary formulas (such that (x) is
closed). The methods by which such extractions are achieved are monotone versions of the so—called
'modified realizability’ interpretations mr and mrt. Modified realizability was introduced in [41]
and is studied in great detail in [67] and [69] (to which we refer).>” In [67],[69] these interpretations
are developed for theories like E-HA“. However both interpretations immediately apply also to our
theories E-G,AY:

The interpretation of the logical part can be carried out using only 11, -, 35 , -,37, 0° and definition
by cases which is available in E-G, A¥. The non-logical axioms can be expressed (using up and
min(z,y) = 0 <> & = 0V y = 0) as purely universal sentences (without V) which are trivially
interpreted (with the empty tuple of realizing terms).

Whereas the usual modified realizability interpretation extracts tuples of closed terms t = tq,...,%
such that ¢t mr A (where A is a closed formula, the types of ¢; and the length & of the tuple depends
only on the logical form of A, and ’z mr A’ (in words 'z (modified) realizes A’) is a formula defined

by induction on A) we are interested in majorants of such realizing terms, i.e. ¢j,...,¢; such that
k
(+) \/xl, e, Tk /\ (t;" s—maj x; A x mr A).
i=1

By saying that ’'t* fulfils the monotone mr—interpretation of A’ we simply mean that ’t* fulfils
(+) (analogously for the 'modified realizability with truth’ variant mrt of mr).’® For E-G, A%

such terms t* can be obtained by applying at first the usual mr—interpretation and subsequent
construction of majorants for the resulting terms by proposition 1.2.21. As in the case of functional

interpretation it is also possible to extract such majorizing terms directly from a given proof (i.e.
without extracting ¢ at first). However the simplification achieved in this way is not as significant
as for the functional interpretation since no decision of prime formulas is needed for the mr—
interpretation (in contrast to usual functional interpretation, where this is avoided only by our
monotone variant) and it will be therefore not studied further.

The monotone mr—interpretation is closed under deduction as the usual mr—interpretation. Hence
in order to treat the extension of E-G, A% by new axioms, we only have to consider what terms

57In [70] *mrt’ is denoted by 'mq’.
58This variant has the property that z mrt A implies A; see [70], [69] for information on this.
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are needed to fulfil their monotone mr—interpretation (and what principles are necessary to verify
them). We will show that for an axiom (%) any majorant s* for s satisfies its monotone mir—
interpretation (provably in E-G, A% + (x)+b-AC), whereas such axioms in general do not have a
usual mr-interpretation by computable functionals at all. So sentences (x) contribute to extractable
bounds only by majorants for the terms occuring in their formulation but not by their proofs. That
is why we conceive them as axioms (if they are true in S¥ or —as F— in M%).

Definition 8.1 ([67]) The independence—of-premise schema IP- for negated formulas is defined

as59

IP. : (=A— Vy*B) - Vy?(~A = B),
where y is not free in A.

Notational convention 8.2 In the theorems of this chapter we consider always closed formu-
las, i.e. e.g. in the theorem below A, B,C resp. D contain (at most) z, (x,y), (u,v) resp. (u,v,w)
as free variables.

Theorem 8.3 Let s,t be € G, RV, A,B,C,D € L(E-G,A¥). Then the following holds:
E-GoAY + Nad(A = Vy <, sz=B)(+AC+IP-) - N Ao <., tu(~C — Vu?D)
= 3 (eff.) ¥ € G, R?[®1] such that
E-G,AY + Vy <ps s/\x(A — - B(z,Yx))(+AC+IP-) + JAVRYAYS <5 tuVw <, Vu(-C — D)
= E-G,AY + b-AC+ /\x‘s(A — \/y <, st—B)(+AC) - Aut Ay <5 tuVw <o Yu(~C — D).
An analogous result holds for E*PRA‘{’,?]\?UJ and E-PAY, T instead of E-Gp,AY, G, R*[®4].
Proof: By intuitionistic logic one shows
VY—|—\(Y <sA /\x(A — =B(z,Y1))) ¢ \/Y(Y <sA /\x(A — —B(z,Yx)))
and
VY (v <saNa(A = -B(z,Ya))) - Ne(A - Vy < sz=B(z,y)).
Hence the assumption gives
E-G,AY + VY ——(Y < s A A2(A = =B(z,Yz)))(+ACHP-) - Nl Ao <, tu(-C — VuwD).

By prop.1.2.21 we can construct a term s* €G,R“ such that E-G,A¥ |- s* s—maj s.
T :=E-G,AY + Vy < s/\m(A — —B(x,Yx)) proves

(+) Vu(s* s—maj u A u mrt(\/f/ﬂ—'(f/ <sA ALU(A — ~B(z, Yx)))) :

By the definition of mrt and the easy fact that (z mrt —=F) <> —=F (and z is the empty sequence)
for negated formulas one shows

u mrt (fo—m()} <sA /\x(A — —\B(a:,ffx)))) < =(u< s A /\w(A — =B(z,ux))).

59Tn [67] IP- is denoted by IP¥.
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(4) now follows by taking u := Y since s* s—maj s As > Y implies s* s-maj Y (see lemma 1.2.11 ).
Thus 7 (+AC+IP_-) has a monotone mrt—interpretation in itself by terms €G,R“. In particular
(by the assumption) one can extract ¥ = ¥y,..., ¥y € G,R* such that®

T(+ACHIP.) - Vx(g s-maj x A x mrt (/\u/\v < tu(-C — VwQD(w))))

Let t* €G,RY be such that E-G,,AY F t* s—maj t.
The following implications hold in E-G,A¥:

X mrt (/\u/\v < tu(=C — \/wQD(w))) —

/\u/\v(v <tuA—C — xouv...xruv mrt D(xjuv)) — (because z mrt D — D)

Au, v(v < tu A —C — D(xi1uv)) i sfgaj x

Nul\o < tu( Ay" O™ (M )yM >5 xquv A (-C = D(xauv))) —
Y=

Nul\v < tuNVw <, Yu(-C — D(w)).

It remains to show that

E-GnA“ +(b-AC) +Az(4 = Vy < s2-B) = VY < sA\z(4 - —~B(z, V1)) :

/\x(A - Vy < sz—B) &) /\x(A — VyﬁB(m,minp(y, sz)))
class-ogic /\a:\/y(A — —B(min,(y, sz)))
- NaVy < sz(A — —B(z,y))
PRy < sAw(A = -B(x, V).

Corollary 8.4 (to the proof) 1) IfA= —A is a negated formula, then the conclusion can be
proved in EfGnAf—f—b-AC—&—/\m(A — \/y < sz B)+IP-(+AC).

2) If the variable x is not present (i.e. if we only have closed azioms A — \/y < sB(y), then
the conclusion can be proved without b-AC.

3) Instead of a single axiom /\a:(A — \/y < sx—B) we may also use a finite set of such axioms.
Definition 8.5 ([67]) A formula A € L(E-G,AY) is called V- free (or ’'negative’) if A is built up

from quantifier—free formulas by means of /\,—>,ﬂ,/\ (i.e. A does not contain V' and contains v

only within quantifier—free subformulas®).

Definition 8.6 ([67]) The subset I'y of formulas € L(E-G,AY) is defined inductively by

1) Quantifier—free formulas are in T'y.

k
60Here ¥ s-mayj X means /\ (U; s—maj x;)-
i=1
61 Troelstra distinguishes between negative formulas which are built up from the double negation ——P of prime
formulas (instead of the arbitrary quantifier—free formulas in our definition) and V*free formulas where P instead of
——P may be used. Since our theories have only decidable prime formulas both notions coincide with our definition.
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2) AABET, = AANB,AvB, Nz A Vz AeT.
3) If A is V-free and B €Ty, then (\/QA — B)eTly.
Definition 8.7 ([67]) The independence—of-premise schema for foree formulas is defined as
IPy; : (A— Vyr B) — \/yf’(A — B),
where A is foree and does not contain y as a free variable.

Theorem 8.8 Let A, D be € T’y and B, C denote \/ffree formulas; s,t € G, R*. Then the following
rule holds

E-G,AY + Nad(A = Vy <, sz B) + AC+IPy s + Nt \v <., tu(C — Vw2 D(w))

=3 (eff.) ¥ € G, R”[®4] such that

E-GoAY + VY <5 s\w(A = B(z,Yz) F Nt No <, tuVw <, Wu(C — D(w))

= B-GpA” + b-AC+ Nt (A — Vy <, sz B)F NutN\o <, tuVw <, Wu(C — D(w)).

An analogous result holds for EfPRA‘f,F}\Bw and E-PAY, T instead of E-G,AY, G, R”[®].

Proof: Since quantifier—free formulas can be transformed into formulas tx =g 0, we may assume

that the V-free formulas B, C do not contain V. The assumption of the theorem implies
(%) T = E-GnAY + VY < sA\a?(A — B(z,Y)) + AC+IPy s - AN <, tu(C — Vw?D(w)).

We now show that 7 has a monotone mr-interpretation in 7~ := T \ {AC,IPys} by terms €
G,R¥. For E-G, A} + AC+IP; this follows from the proof of the fact that E-HA“ + AC+IP\ s
has a mr—interpretation in E-HA“ (see [69]) combined with our remarks in the introduction of
this chapter and prop.1.2.21 (The mr—interpretation of AC+IP\ ¢ requires only terms built up from
I1, X). Next we show that

Tk \/u(s* s-maj u A u mr (\/Y < s/\a:(A — B(z,Yx)))) :
Since for V-free formulas (x mr B) = B (z being the empty sequence) the mr—definition yields
u mr (VY < sN\az(A — B(z,Yx))) <> u < sA /\z(\/g(y mr A) = B(z,uzx)).

The right side of this equivalence is fulfilled by taking u := Y since \/y(y mr A) — A (because of
the assumption A € T'1). Hence 7 has a monotone mr—interpretation in 7~ by terms € G,R¥.
Therefore (%) implies the extractability of terms ¥ = ¥4,..., U, € G,R¥ such that

Vx(g s—maj x A x mr (/\u/\v < tu(C — \/wD(w))))
The following chain of implications holds in E-G,,AY¥:
c v—free
%

X mr (/\u/\v < tu(C — Vw D(w)))

Au,v(v < tu A C = xouv . .. xpuv mr D(yiuv)) "=

Nu, v, (v <tuAC — D(x1uv)) Y1 s xa
Nul\o < tu( Ayt UM (tuM)yM >4 yquv A (C — D(xauv)) —

Nul\v < tuVw <y Tu(C = D(w)),
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where t* € G,,R* such that E-G,,AY - ¢t* s—maj t and
U= \u, y. UMt uM)yM € G,R [®4].
As in the proof of the previous theorem one shows

E-G,AY+(b-AC) FAz(A - Vy < sz B) = VY <sN\z(4 = B).

Corollary 8.9 (to the proof) 1) If A = —A is a negated (resp. \/—free) formula, then the
conclusion can be proved in E-G,AY+IP- + (b-AC) + /\x(A — \/y < sz B)
(resp. E-GnAY+IPys + (b-AC) + Na(A — Vy < sz B)).

2) If the variable x is not present, i.e. if only azioms A — \/y < sx B(y) are used (A €T1,B V-
free), then the conclusion can be proved without b-AC.

3) Instead of a single axiom /\x(A — Vy < sx B(y)) we may also use a finite set of such axioms.

Remark 8.10 For every foree formula A of our theories the equivalence A <> ——A holds intu-
itionistically (since the prime formulas are stable). So the allowed azioms in thm.8.3 include the
axioms allowed in thm.8.8.

Although theorem 8.8 is weaker than theorem 8.3 in some respects (e.g. A, D have to be in I'7) it
is of interest for the following reason:

Despite the fact that the schema AC of full choice may be used in the proof of the assumption, the
proof of the conclusion uses only b-AC instead of AC. This has the consequence that the conclusion

is valid in the model M% | if /\x(A — Vy < sz B) holds in M* (although M* F=AC, see [34] ). Let
us e.g. consider the theory E-G,AY + F+AC, where F' is the axiom studied in chapter 7 §2. Since

F has the form /\x(A - Vy < sz B) (with A(:=0=0) €I'; and B foree) of an allowed axiom
in thm.8.8 (and a fortiori in thm.8.3 ) we can apply thm. 8.8 and obtain the following rule

E-GnAY + F+AC + AulAv <4 tu(C = Vw2 D(w))
= 3 (eff.) ¥ € G,R¥[®] such that
E-GpAY + F+(b-AC) + AulAv <1 tuVw <5 Tu(C — D(w)).

The conlusion of this rule implies (see the proof of thm.7.2.8 )
M = Nt Ao <1 tuVw <, Tu(C = D(w)).

If all positively occuring /\xpfquantiﬁers and all negatively occuring prfquantiﬁers in this formula
have types p < 1 and if all other quantifiers have types < 2, then we can conclude (since M; = &;
and My C Ss)

SY E At No <; tuVw <, Vu(C — D(w)).

Hence the bound ¥ is classically valid although it has been extracted from a proof in a theory which
classically is inconsistent:

Claim: E-G,AY + F+ACF 0= 1.
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Proof of the claim: Consider
Af <1 Az 1VRO(VEO(fk = 0) = fn = 0),

which holds by classical logic. AC yields the existence of a functional WY such that
Af < Az 1(VEO(fk = 0) = F(Tf) =0).

F applied to ¥ implies (prop.7.2.6 )

Vo Af <1 Az.1Vn <o ng(VEO(Fk = 0) = fn = 0),

which —of course— is wrong.

The (intuitionistically consistent) combination of F' and AC (instead of AC—qf only, which we
have used in the classical setting of chapter 7) can be used to prove strengthened versions of various
classical theorems which may have non—constructive counterexamples, but no constructive ones.
These proofs rely on the fact that F' and AC prove a very general principle of uniform boundedness
for arbitrary formulas:

Proposition: 8.11
E-G,AY + F+ AC +
Ny ©) (/\ko/\x < yk\/zoA(:c,y, k,z) — Vit ANz <, gV <o vk Az, y,k,2)),
where A is an arbitrary formula of L(E-G, A% ).

Proof: Similarly to the proof of prop.7.2.11 using remark 7.2.12.

Example 1: Pointwise convergence implies uniform convergence or ’Dini’s theorem

without monotonicity assumption’6?

E-G2AY + F+AC JAV [0,1]% — R(®P,, converges pointwise to ® —

®,, converges uniformly on [0,1]¢ to ® and there exists a modulus of convergence).

Proof: By the assumption we have

AKON2 € [0, 1]d\/n0/\l >0 n(|<I):C —®z| < %_’_1)

By prop.8.11 and the fact that Na e [0, 1]%" has the form Na <1 M’ in our representation of [0, 1]¢
one obtains

\/Xl/\ko/\x e [o, 1]d\/n <o Xk/\l >0 n(|Pz — x| < m)

and therefore

1
Vit AROAz € (0,191 >4 xk(|@2 — 12 < ——).
kE+1
62This principle has been studied in [2] in a purely intuitionistic context, i.e. without our (in general non—
constructive) axioms /\ac(A — \/y < swﬂB),/\:v(C — Vy < sz D).
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Remark 8.12 1) The usual counterexamples to the theorem above do not occur in E-G, AY
since they use classical logic to verify the assumption of pointwise convergence: E.g. consider

the well-known ezample ®,,(z) := max(n—n?(z— L[,0) (n >1). The proof that ®,, converges
pointwise to 0 requires the instance Na € [0,1)(z = 0V z > 0)’ of the tertium-non-datur
schema, which cannot be proved in E-G,AY.

2) Note that the monotonicity assumption of Dini’s theorem has been used in our treatment in

chapter 7§38 just to eliminate the universal quantifier AY >0 n’ which reduces the application
of the general principle of uniform boundedness to an application of its restriction X9-UB to

Y90 —formulas (since < can be replaced by <).

Example 2: Heine-Borel property for [0,1]? and sequences of arbitrary (not necessarily
open) balls

E-GoAY+AC + FHAf:IN - Ry Ag: IN = [0, 1)¢AR!
(Az € [0,1)VE (hk = O A ||z — k|| < fk) V (hk # O A ||z — gkl g < fk)) —
VioAz € [0,114VE <o ko((hk = O A ||z — gk||z < fk)V (hk # 0 A & — gkl|g < f))).

Proof: Similarly to the proof of the Heine-Borel property in chapter 7 §3, but note that now
9-UB would not suffice since there is a universal quantifier hidden in ’||x — gk||g < fk’.

Examples of sentences having (in E-G;AY) the form G = /\x(A - Vy < sz—B) or
H= /\x(C’ — \/y < sz D) where D is V-_free and C € I';:

1) All sentences having the form /\x5\/y < sx/\zTAo(ac,y,z) are axioms G, H, in particular

the examples 1)-4) from chapter 7 §1: Attainment of the maximum of f € C([0,1]¢,IR),

mean value theorem of integration, Cauchy—Peano existence theorem, Brouwer’s fixed point
theorem.

2) The generalization of the axiom F' to arbitrary types p:
F, = N0 OV, <0 yNEONz <, yk(Dk= <o Dk(yok))

has the form of an axiom H (and so a fortiori of G) since AVEIAP <, yk(Pkz <o Pk(yok))’
is V-free.

3) Our generalization WKL2,, of the binary Kénig’s lemma WKL has the form H (and therefore

seq

G) since its implicative premise ’/\ko, 2°Vb <4 An0.10 A (®k(b,i)i = 0)” is in T;.
i=0

4) The ’double negation shift’ DNS : Az-—-A — ~=/\z A has the form G and —if A is V—free—
the form H.
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5) The "lesser limited principle of omniscience’ is defined as:%3

LLPO : Af'VE <o 1([k =0 — An(f/(2n) = 0)] Ak =1 —= An(f/ (2n+1) =0))),

where

, 1, if fn=1ANk < n(fk £ 1)
fin:=

0, otherwise.
LLPO can be formulated also in the following equivalent form
/\xl,yl\/k‘ Sol(k=0—=2<mrylAlk=1—=y<Rrx]).
LLPO has the form of an axiom G, H (see [7] for a discussion of LLPO).

6) Comprehension for negated (resp. vffree) formulas:
car . Vo <op AP 10M\yP (Py =0 0 <> ~A(y)), where A is arbitrary,
CA‘\)/f . Vo <op )\xp.lo/\y”(q)y =0 0+ A(y)), where 4 is V- free.
By intuitionistic logic we have
ﬁﬁ/\y" (q)y =00« ﬁA(y)) > /\yp (<I)y =00« ﬁA(y)).

Hence C A? is (equivalent to) an axiom G.

CACf is an axiom H since together with A also /\yp (<I>y =0 0 < A(y)) is V-free.

Remark 8.13 1) In order to express the examples 1)-4) from chapter 7 §1 as azioms G, H
we do mot have to use the quite complicated representation of f € C([0,1]¢,IR) from chapter
3: Since an implicative premise A € T'y is now allowed (in contrast to the axioms € A in
the classical setting), the (purely universal) implicative assumption (x) expressing that w is a
modulus of uniform continuity for f (which had to be eliminated by the constructions ¥y, Uy
in chapter 3) does not cause any problems.

2) WKIL2,, does not have the form of an aziom € A and therefore has to be derived from F and

seq

AC—qf in the classical context of chapter 7. In E-G,AY it can be treated directly as an axiom.
3) DNS and LLPO follow of course from classical logic but are not derivable in E-G,AY.

4) F, and AC prove a principle of uniform boundedness for the type p:

UB, : /\y”o (/\ko/\x < kazOA(x,y, k,z) — \/Xl/\ko/\x <, yk\/z <o xk A(z,y, k, z))

63Usually one quantifies over all functions < 1 which are =1 in at most one point. This is achieved by our
transformation f — f’.
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5) One easily shows that LLPO is implied by CAlvf.

6) CA® added to E-G,, A? yields the aziom schema of induction for arbitrary negated formulas
JA. : =A0) ANz (~A(z) = —A(z + 1)) = NaP-A(x) :

Apply (QF-IA) to the characteristic function of =A(x°) which exists by CA°..

Likewise E-G,AY + C’Agf proves induction for arbitrary \/ffree formulas (IAy;) . Whereas
in the classical theories E-Gn A% the restricted schemas IA- and IAyy are equivalent to the
unrestricted schema of induction, which (for n > 2) makes every a(< eg)—recursive function

provably recursive, IA-, and IAy s do not cause any growth of provable functionals when added
to the intuitionistic theories E-G, Ay .

One real limitation for applications of the theorems 8.3 and 8.8 is due to the fact that the Markov
principle

MY /\:z:(A VoA) A ~-Vza-Vza
is not an allowed axiom, not even in its weak form
My, : ==Va%4y(z) — ValAy(z),

where A is a quantifier—free formula.
In fact the addition of M, would make the theory E-G,A¥+AC+F+IP_, inconsistent:

E-GnAY + M, +IP_+ Af <; Az AV (==Vn(fn = 0) — fk = 0).

Together with AC and F this gives a contradiction.

As we have discussed in [39] many AV-sentences in classical analysis come from sentences

(1) Az € X(Fz =R 0 = Gz =R 0)

by prenexation to
(2) JAVRS X/\kOVnO(|F:E| < S — |Gz| < L%
“n+1 k+1
what intuitionistically just needs M, (Here X is a complete separable metric space and F,G : X —

IR are constructive functions).
We now prove a theorem which covers M“ but still allows the extraction of bounds for arbitrary

AV _sentences. The price we have to pay for this is that the allowed axioms have to be restricted
to the class A from the theorems in chapter 2 (and that we can use only the quantifier—free rule of
extensionality instead of (E)).

Definition 8.14 ([67])
172 Na(Av-A) A (Ne A= VyB) = VyA\z A - B),

where y is not free in A.
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Theorem 8.15 Lets,t € G, R, Ay, By be quantifier—free and C be an arbitrary formula (respecting
the convention made before thm.8.8 ). Then

GnAY+ACHIP] + M* + /\x5Vy <, sx/\z'YAo F AulAw <, tu(/\a"Bo — \/wQC)
= by monotone functional interpretation one can extract ¥ € G, R?[®1] such that

GnAY+ACHIP] + M* + /\x5Vy <, sx/\z"’Ao - Aut Ny <, tuVw <9 \I/u(/\a"Bo — C(w)).
An analogous result holds for PRAf,]/D—]\%w and PAY, T instead of G,AY, G R [®4].

Proof: As an abbreviation we define 7:=G, AY+AC+IPy + M¥ + /\x5Vy < se\27 Aq. By the
assumption and IP§ we obtain

TH /\u,v\/w(v <tuANa By — C(w)).

Monotone functional interpretation extracts a term ¥ € G,R% such that

T.=T7+Vy < s/\x,z Ao(z, Yz, 2) F
Vx(\il s—maj x A /\u/\v(v <tuANa By — C(xuv))P).

By [67] (3.5.10) we have T = AP « A for all formulas A. Hence

T \/X/\u/\v < tu( Myt oM (u™M)y™ >y yuw A (/\a By — C(Xuv))),

Vy:=

and thus
T+ ANul\v < tuVw <5 \Ilu(/\a By — C’(w)).
Since AC implies
/\m‘s\/y <, sx/\z"’Ao ~Vy <ps s/\x‘s, 27 Ao(z, Y, 2),
the proof is finished.
Let us summarize now the main consequences of the results obtained in this chapter on the growth
of uniform bounds which are extractable from proofs in classical analysis:
If a proof of a sentence
(1) /\QI,EO/\v <, thVwOA

uses in the intuitionistic context of E-G,AY+AC only the analytical tools developed in chap-
ters 3-6 (except the equivalence between e—d—continuity and sequential continuity) plus the (non—

constructive!) principles
1) attainment of the maximum of f € C([0,1]¢,IR) on [0, 1]¢

2) mean value theorem of integration
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3) Cauchy—Peano existence theorem for ordinary differential equations
4) Brouwer’s fixed point theorem for continuous functions : [0, 1]¢ — [0, 1]¢
5) the schema of comprehension for negated formulas CA_,

then one can extract from this proof (using thm.8.3, prop.1.2.22) a bound
2) N, k0 N\w <, tukVw <o xuk A

such that (2) is true in the full type structure S* and

M

i

M
k

(i) x is a polynomial in u (where uM := A2°. maxq(u0,...,uz)) for which prop. 1.2.30

applies, if n = 2,
(ii) x is elementary recursive in u™ k, if n = 3.

The most important feature of this result is that the restriction to the intuitionistic theory G,A%
instead of G, A“ ensures (even relatively to the non—constructive theorems 1)-5) above) the ex-
tractability of such bounds for arbitrary formulas A (instead of quantifier—free ones only).

For A € I'; such that all positively occurring Nar (resp. negatively occuring \/xp) in A have
types < 1 and all other quantifiers in A have types < 2, p < 1 and 5) replaced by the schema of
comprehension for V_free formulas we may use even the axiom F' from chapter 7 in the proof of
(1) and still obtain (using thm.8.8 ) a x with the properties above. This covers proofs using the
uniform continuity of every pointwise continuous function : [0,1]¢ — IR and Dini’s theorem and the
(sequential) Heine-Borel property for [0,1]? (the last two principles even in strengthened versions
which can be refuted in the presence of full classical logic).
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9 Applications of logically complex induction in analysis and
their impact on the growth of provably recursive func-
tion(al)s

By logically complex induction we mean instances of induction (or closely related schemas as

bounded collection, see chapter 11 below) which go beyond quantifier—free induction QF-IA. One

of the weakest induction principles which is stronger than QF-TA is the rule of X{-induction:

VySAO(O, v) , A0 (Vy?Ao(m,yl) — Vyng(x’,yg))
AoV y0 Az, y)

Y-IR

)

where Ag is a quantifier—free formula.

Assume now that
CauA®(+A + ACaf) - Vi 4o(0,90) A N\ (Vi Ao(,g1) = ViAo (o', y2)).
and therefore
GoA®(+A + ACqf) F Vyd40(0,y0) A Na®, 49Vl (Ao(z,y1) — Ao(a’,y2)),
where A as in 2.2.2. By functional interpretation (or by monotone functional interpretation and
bounded search) one can extract terms s,t € G, R* such that G, A¥(+A+b-AC) proves
(x) Ao(0, sa) A Naz,y1 (Ao(z,y1) — Ao(@', tazyr)),

where g are the parameters of Ag. A realizing term for the conclusion /\xVon(x, y) of X¢-IR is
constructed by an iteration of ¢:

One easily verifies (using only QF-TA) that Az Ag(z, faz).

In general £ ¢ G,R*: E.g. if n > 2 and tazy := A,(a,y),sa := 1 (where A, is the function from
def. 1.2.1 ). Then tax = A,41(a,x) but A, 1 ¢ G,R® by prop.1.2.28 and the well-known fact
that 4,1 € £". On the other hand we have f € PR’ (eT) if s,t € PR’ (s,t €T), since ®;; can

be defined in PR~ and T.
If X9-1R is restricted to formulas A which contain only number parameters a (i.e. free variables of

type 0), then t can be defined in G, R¥ if s, € G,R¥. Let Y9-TR~ denote this restriction.
If the upper formulas of X{-IR~ are provable in G,,A¥(+A+AC—qf) for n > 2, then the conclusion

is provable in G, 1A% (+A+b-AC) together with a term € G,,11R“ which realizes /\x\/y Ap.

We now give a (very simple) example of an application of £{-IR~ in analysis, where such a speed
up of growth (in our example from GoR¥ to G3R¥) actually happens:

Claim:
GoAY +X0-IR™ F 3 § =00, ie.
k=1

GoA® + 201IR™ F An®VmO(s,, = ) 1>k ).
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Proof: n:=0: Put m:=1. n+— n+ 1: Assume s,, > n. Because of so, — s, > % we obtain

Sam = (Sam — Sam) + (Sam — 8m) + Sm > n + 1. {-IR™ now yields /\n\/m(sm SR N).

In this example s is 1 and tm := 4m. Hence tn = 4.
;From that well-known fact that lim (3., ¥ —In(n)) = C (where C' = 0,57721 ... is the Euler—
n— oo

i=17
Mascheroni constant) it is clear that any function f which realizes (or —what is equivalent— is a

bound for) /\n\/m(sm > n) has to have exponential growth.

We now come back to the principle (PCM1)

"Every decreasing sequence (a,) C IR which is bounded from below is a Cauchy sequence’,
which we mentioned already in chapter 4. We show that, relatively to Go A%, the principle (PCM1)
implies the axiom of ¥%-induction (and is implied by this axiom relatively to GzA“)

291A = Ag® (VyP(g0y = 0) A Na® (Vi (gay =0 0) = Vi (g2"y =0 0)) — Na®Vy° (gzy = 0)).

Remark 9.1 This aziom is (relative to G, AY) equivalent to the schema of induction for all X9-

formulas in L(G,AY) : Let \/yOAO(g, y) be a XV—formula (containing only x as free variables).
Then by prop. 1.2.6 there exists a term ta, € GpR“ such that

GnA? F Na(VyPAg(z,y) = Vi (tzy = 0)).
Proposition: 9.2 One can construct functionals ¥, V5 € GoRY such that:
1) G3A% proves
Nat(© (/\ko [Vyo(\PlakOy =0 0) A Nz (\/yo(\Illakxy =0 0) = \/yo(\Illak:x’y =0 0)) —
/\xo\/yo(\lllak‘xy =0 0)] — [/\nO(O <R a(n + 1) <R an)
— NV Am > n(lam —r an| <g %_H)])

2) G2 A¥ proves

/\9000([/\%0(0 <m Wag(n+1) <m Pagn <m 1) > NOVnOAm o n(|Usgm —g Uagn| <m 7))
= [Vy2(g0y =0 0) A Nz (V0 (gzy =0 0) — V2 (ga'y =0 0)) — Na®Vy(gay =, 0)])-

Proof: 1) Assume that /\nO(O <mr a(n+1) <R an) and
VAV > n(lam —g an| >r %ﬂ) By X{-TA one proves that

—

(+) An®ViOAj <o n((6); < (0)41 A (a((@);) —r a((8)141))(B(k + 1)) >q m)

Let C € IN be such that C' > ag. For n:=3C(k+ 1), (+) yields an ¢ € IN such that

1

Aj < 30k + 1) (@((@);) ~r al(D)51) >m 3577
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3C(k+1)—1
Hence a((i)o) > > (a((9);) —w a((i);+1)) >r C which contradicts the assumption
=0

<.

/\n(an < (). Define

—

0, if Aj <o n((0); < ()41 A (a((8);) —m al(6);1)) 30k + 1)) >q 55877)

1, otherwise.

Uyakni :=g

2) Define Uy € GoR¥ such that Uogn =g 1 —Rr Z

i z+1)7 where x € G2R* such that

, 1, if VI <o n(gil =0 0)
xXgnt =o
0, otherwise.

From ; m =1 (which is provable in G3AY as we have seen in chapter 4) it follows that

/\nO(O <R \Ilgg(n =+ 1) <R \Ifggn <R 1).

By the assumption there exists an n, for every = > 0 such that

/\m,ﬁl > nx(\\llzgm —r Pagmn| <

1
x(z + 1))

Claim: /\:E(O <T<gx— (\/y(giy =0) < Vy < ng(gZy = 0))):

Assume that \/lo(g;%l =0)A Ni < ng (g2l # 0) for some & > 0 with Z < .
Subclaim: Let [ be minimal such that gzly = 0. Then [y > n, and

1
Uog(max(lp, 7)) <m PYag(max(lp,Z) — 1) —r ErD
max(lo,Z) ( (l0,7))i
Proof of the subclaim: i) z; % contains i(é_l) as an element of the sum, since

9%l = 0 and therefore xg(max(lp, Z))Z = 1.
. max(lo,%)—1 xg(max(lo,z)—1)i
Case 1. & > lp: Then max(lp,Z) —1=2—-1< Z.

Case 2. ly > &: Then max(lp,Z) — 1 =y — 1. Since [y is the minimal ! such that gzl = 0, it follows
that

does not contain as an element of the sum:

1
F(@+1)

Ni < max(lg, Z) — 1(gZi # 0) and thus yg(max(lp,z) — 1)z =0,

which finishes case 2.
Because of

xg(max(lo, &) — 1)i # 0 — xg(max(lp, ¥))i # 0
,1) and ii) yield
max(lo,z)—1

xg(max(lp,Z) — 1)i 1
2 i(i+1) iz +1)

max(lo,Z)

Z xg(max(lo, )i
i(i+1) -

i=1
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which concludes the proof of the subclaim (Note that the assertion of the subclaim is purely uni-
versal. Hence its provability in GoA¥ is also clear now).
The subclaim implies

max(lp,Z) — 1 > ng A |[Pag(max(ly, ) —r Y2g(max(ly, ) — 1) > et

However this contradicts the construction of n, and therefore concludes the proof of the claim.
Assume

(a) Vyo(g0yo = 0).

Define ® € GoRY such that

dgiy — | T Soulgi = 0], if Vi <o y(gig =0 0)
0%, otherwise.

By the claim above and (a) we obtain for y := max(n,, yo):

(0) N <o 2(Vilgig =0 0) + g2(Rgiy) =0 0).
QF-TA applied to Ag(z) := (ga(Pgry) =0 0) yields

g0(@g0y) = 0) A Nz < z((g2(®gzy) = 0 — gi' (Pgi'y) = 0) — ga(Pgay) = 0.
(From this and (a), (b) we obtain

Viyo(g0yo = 0) ANE < 2(Vi(g75 = 0) = Vi(g#'5 = 0)) — Vi(gzg = 0).

Corollary 9.3
G3AY - X0 -TA < (PCM1).

Remark 9.4 1) ;From the proof of prop.9.2 it follows that 2) is already provable in the intu-
itionistic theory G2AY. In particular

Gy AY F (PCM1) — X0 -IA.

The other implication X3-IA — (PCM1) cannot be proved intuitionistically since (PCM1)
implies the non—constructive so—called ‘limited principle of omniscience’ (see [45] for a dis-

cussion on this).

2) Prop.9.2 provides much more information than cor.9.8 . In particular one can compute (in
G2 AY ) uniformly in g a decreasing sequence of positive real numbers such that the Cauchy
property of this sequence implies induction for the ¥9—formula A(x) := Vy(gaty =0). The
convers is not so explicit (due to the non—constructivity of this implication) but ¥y provides
an arithmetical family Aj(x) := Vy(\Illakxy =0) of X9—formulas such that the induction

principle for these formulas classically implies the Cauchy property of the decreasing sequence
of positive reals a.
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We now determine the rate growth of uniform bounds for provably recursive functionals which may
be caused by the use of (PCM1) in proofs:
Using the construction a(n) := maxp (0, ngn(a(z))) we can express (PCM1) in the following logically

more simple form%4

1

(1) /\al(O)/\ijVnO/\m >0 n(d(n) R d(m) <R m)

(If a'©) fulfils /\n(O <m a(n+1) <R a(n)), then /\n(&(n) =R a(n)). Furthermore
/\n(O <mr a(n+1) <R a(n)) for all a*(®). Thus by the transformation a ~ @, quantification over

all decreasing sequences C IR reduces to quantification over all al(o)).
By AC%0—qf (1) is equivalent to
(2) /\al(o), ko,gl\/no (gn >on — a(n) —r a(gn) <gr m)

We now construct a functional ¥ which provides a bound for Vn, ie.

1
R
Let C(a) € IN be an upper bound for the real number represented by @(0), e.g. C(a) := (a(0))(0)+1.
We show that

Vakg = z-<nc1%f§k/ (@ii0g) (= i<%1(a:1}§k’ (9°(0)) satisfies (3) (provably in PRA%):

Claim: Vi < C(a)k' (9(g°0) > g0 — a(g'0) —r a(g(g'0)) <m 717)-

Case 1: Vi< C(a)k'(g(g%0) < g*0): Obvious!

Case 2: N\i < C(a)k'(g(g'0) > ¢°0): Assume /\i < C(a)K'(a(g0) —r a(9(g'0)) >r 727)-

Then @(0) —r a(g°@* 0) > C(a), contradicting a(n) € [0,C(a)].

In contrast to (2) the bounded proposition (3) has the form of an axiom A in thm.2.2.2 ,2.2.7 and

(3) /\al(o), ko,gl\/n <o Wakg(gn >0 n — a(n) —r a(gn) <

cor.2.2.3. Hence the monotone functional interpretation of (3) requires just a majorant for ¥. In
particular we may use ¥ € PR’ itself since ¥ s—maj V.

Thus from a proof of e.g. a sentence /\J;O/\y <, sx\/zOAo(Jc, y,2) in GLAY + A+ (PCM1)+AC—qf
we can (in general) extract only a bound ¢ for z (i.e. Nal\y < s2Vz < ta Ao(z,y, z)) which is

defined in IST%W since the definition of ¥ uses the functional ®;; which is not definable in G, R¥
(see chapter 1). If however the proof uses (3) above only for functions g which can be bounded by

terms in GxR®, then we can extract a t € Guax(k+1,n)R” since the iteration of a function € GxR*
is definable in Gi41R¥ (for k > 2).

The monotone functional interpretation of the negative translation of (1) requires (taking the quan-
tifier hidden in <R into account) a majorant for a functional ® which bounds ’\/n’ in

(3) /\al(O)’kO’gl’hl\/n(gn >n— cﬂﬁ)(hn) - &@z)(hn) < A Jlr 7T h(n?—&— 1).

64Here we use that /\no (a(n +1) <g an) — /\nO ((I)min]R (a,n) =R an). This follows in GgA% from the purely
universal sentence

(+) /\auo),n,k(/\z < n((a(l/Jr\l))(k) <q (al)(k) + 7o7) = [ ®ming (6,n) —k an| <m %) (+) is true (and

hence an axiom of G2A%) since (a(l/-—l—\l))(k) <q (r;l)(k) + ki—'—l —a(l+1) <gr al + ki—&-l
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However every @ which provides a bound for (2) a fortiori yields a bound for (3)" (which does not
depend on h). Hence U satisfies (provably in PRA%) the monotone functional interpretation of the
negative translation of (1).

In this chapter we have considered principles which may have a significant impact on the rate
of growth of extractable bounds:

An instance of the ¥{-induction rule (without function parameters) may increase the growth of a
bound by one level in the G,,R¥-hierarchy (for n > 2) by a (single) iteration process. In particular
if the upper formulas of this rule are derivable in GoA“ the growth of any bound for the conclusion

!
may be exponential. This has been demonstrated using the example % 2

n=1
The axiom of ¥-induction may contribute to the growth of bounds by the iteration functional
®;;. Relatively to GzA“, X{-TA is equivalent to the Cauchy property of bounded monotone se-
quences in IR (PCM1) which contributes to the growth by a term which fulfils the monotone

1

functional interpretation of its negative translation, namely ¥ := \a'(® k0 ¢'. max (@itiOg),

i<C(a)k’
where IN 5 C(a) >r a(0).
In the important special case where (3) above is applied only to g := S in a given proof, one has
VakS < C(a) - k' and the results on polynomial growth stated at the end of chapter 7 apply.
In general only the existence of a primitive recursive bound is guaranteed (this is unavoidable since

$9-TA suffices to introduce all primitive recursive functions when added to GoA“).
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10 Elimination of Skolem functions of type 0(0)...(0) in
higher type theories for monotone formulas: no addi-
tional growth

There are central theorems in analysis whose proofs use arithmetical instances of AC, i.e. instances
of

AC,, : /\xOVyOA(x,y) — Vfl/\on(x,fx),
where A € 112, is not quantifier—free. Examples are the following theorems

1) Every bounded monotone sequence of real numbers has a limit (or equivalently —as we have
seen in chapter 4— every bounded monotone sequence of reals has a Cauchy modulus: PCM2).

2) For every sequence of real numbers which is bounded from above there exists a least upper
bound.

3) The Bolzano—Weierstrafl property for bounded sequences in R4 (for every fixed d).
4) The Arzela—Ascoli lemma.

We will investigate these theorems (w.r.t. to their contribution to the rate of growth of uniform
bounds extractable from proofs which use them) in chapter 11 below and discuss now only (PCM2)
in order to motivate the results of the present chapter:

(PCM2) /\aé()())’ c! (/\no(c <R An+1 <R Gn)
= VRN Am, 170 >0 hk(lam —r am| <m 577))

follows immediately from

(PCMI) : /\a:(L'()O)’ Cl (/\nO(C <r An+1 <R an)
— NOVROAm, m > n(|am —Rr am| <R l%i-l))

by an application of AC,,. to

0

A= /\m,mZnﬂam —R tn| <R ) e I135.

k+1
It is well-known that a constructive functional interpretation of the negative translation of AC,, re-
quires so—called bar recursion and cannot be caried out e.g. in Gédel’s term calculus T (see [64] and
[43] ). In fact AC,, is (using classically logic) equivalent to CA,,.+AC%%—qf and therefore causes
an immense rate of growth (when added to e.g. GaA%) as we have already discussed in chapter 3
§1. ;From the work in the context of ’reverse mathematics’ (see e.g. [61] ) it is known that 1)-4)
imply CA,, relatively to a (second order version) of ]Sylw[\JrACO’quf. In the next chapter we show
that this holds even relative to GoA¥.

In contrast to these general facts we prove in this chapter a meta—theorem which in particular
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implies that if (PCM2) is applied in a proof only to sequences (a,) which are given explicitely in
the parameters of the proposition (which is proved) then this proof can be (effectively) transformed
(without causing new growth) into a proof of the same conclusion which uses only (PCM1) for
these sequences. By this transformation the use of AC,, is eliminated and the determination of
the growth caused (potentially by (PCM2)) reduces to the determination of the growth caused by
(PCM1) which we have already carried out in chapter 9.

More precisely our meta—theorem has the following consequence:

Let 7% :=G,,A“ + A, where A is the set of axioms from thm.2.2.2 and cor.2.2.3. Then the following
rule holds

T + AC—qf +Au v <, tu(\/hl/\ko/\m,ﬁz >0 hk(|()€17u)m —r (xuv);| < =5)
— \/wTAO(u, v,w))

= there exists a ® € G,,A” such that

T¥ +Db-AC F (/\ul/\v <, tu(/\k;o\/no/\m, m >o n(\(%)m R (%)M < =5)
— VwTAo(u,v,w)))

A® fulfils the monotone funct. interpr. of the negative trans. of ( .. )

In contrast to (PCM2) the (negative translation of the) principle (PCM1) has a simple constructive
monotone functional interpretation which is fulfilled by the functional ¥ defined at the end of
chapter 9. Because of the nice behaviour of the monotone functional interpretation with respect to

the modus ponens one obtains (by applying ® to ¥) a monotone functional interpretation of
AN <, tu\/wTAo(u, v, W)

and so (if 7 < 2) a uniform bound ¢ for Vw, ie.
AAY: <, tuVw <; &uAo(u,v,w).

If A = () then no b—AC is needed.

Let us assume now for simplicity that A = () and consider the following general situation:

For
F .= /\x?\/y? . /\x%\/ygFo(xl,yl, e Xy Uk, Q)

where z,y, a are all free variables of I, we define the Skolem normal form FS of F by
FS = \/fl, .. .,fk/\x(l), o2 Fo(xr, iz, - Ty fa1 - .- Tk, @)

If we could prove that

TY(+AC—qf) Nt N\ <, tu(FS(u,v) — V’LUTA()(U,’U,U),Q)) =

79 F At Ao <, tu(F(u,v) — \/wTAo(u,U,w,g)),

then (for A = 0) (1) would follow as a special case.
(2) in turn is implied by

(3) T“(+ACqf) - G = T¥ + G,
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where
Gt .= At N\ <, tu/\hl7 . hk\/y(l), A y,g,wTGo(u,uyl, hiy1, Y2, hoy1ya, - -« Uk REYL -« - Yk, W)
is the (generalized)®> Herbrand normal form of
G = Nt A\o <, tu\/y?/\aﬁ? . \/yg/\xg\/wTGo(u, Vy YLy Ty v oy Yky Ty W)

Since Aut/A\v < p tu(F(u,v) — \/wTAO) can be transformed into a prenex normal form G whose

Herbrand normal form is logically equivalent to Au/\v < tu(F(u,v) — Von), (2) is a special

case of (3).

Unfortunately (3) is wrong (even without AC—qf) for 7% =G, A%, PRA“ and much weaker theo-
ries. In fact it is false already for the first order fragments of these theories augmented by function
variables. For (the second order fragment of) PRA + X9-TA this was proved firstly in [35] (thereby
detecting a false argument in the literature). Below we will prove a result which implies this as a
special case and refutes (3) also for G, A% (and their second order fragments).

On the other hand (3) is true for 7% =G, A% (but remains false for 7 =PRAY) if G satisfies a
certain monotonicity condition (see def.10.6 below) which is fulfilled e.g. in (1). This result will be
used in the next chapter to determine the growth caused by instances of

1) Principle of convergence of bounded monotone sequences (PCM2).

2) Least upper bound for bounded sequences of real numbers.

3) Bolzano—Weierstrafl principle for bounded sequences in R<.

4) Arzela—Ascoli lemma.

5) The existence of limsup and liminf for bounded sequences in IR.

6) The restriction of AC,, and CA,, to IIJ formulas: I1Y-AC, T19-CA.

We now prove a result which in particular refutes (3) (even without AC—qf) for G, A (with n > 2),
GooA¥ and PRAY:

Let GoA™ be the first-order part of GoA“ augmented by function variables and a substitution rule

SUB : M

A(g)

G2A™ contains the schema of quantifier—free induction with function parameters .

Proposition: 10.1 Let A € I be a theorem of (first order) Peano arithmetic PA. Then one can

construct a sentence A € 19, such that

GoAT AP and GyA +H A A.

65The Hebrand normal form is usually defined only for arithmetical formulas, i.e. if u,v,w are not present. In this
case it coincides with our definition. In G2 At below, u,v,v do not occur and the h; are free function variables.
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Proof: If PA A, then there are arithmetical instances (without function parameters) of the

induction schema such that for their universal closure F Tyevos Fk

k
GoAT = N\ F; — A,

i=1

since PA C GoA™ + 119 ~TA~, where 119 ~TA~ is the induction schema for all arithmetical formulas
without function variables.

k
Let B be any prenex normal form of (A (y; =0 0 > F;(;)) — A), where F; denotes the induction
i=1
formula of F}, then
A= Vg,xl,...,mk/\yl,...,yk B(X1y e Tk, Y1y - -5 Yk)

is a prenex normal form of
/\Q,xl,...,xk\/yl,...,yk/\ ;=0 Fi(z;)) — A,

where a are the (number) parameters of the induction formulas F;. Because of
Go A+ /\g,xl,...,xk\/yl,...,yk /\ ;=0 Fi(x;)),

we obtain
GoAF A A
Since A is logically implied by
C = \/g,x17...7mk B(zy,...,xk, f1azy ... 2, ..., frazy ... Tk),
it remains to show that GoAT - C:
Assume /\g,xh...,xk _/k\l (figajl oxp = 0 & Fz(:nl)) Quantifier—free induction applied to
Ao(z:) := fi(a,0,.. Om_O ...0) = 0 yields F;. Hence

k
G2A+ = /\g,xl,...,xk /\ (figajl xp =04 Fl(xl)) — A,

i=1
ie. GoAT - C.
Corollary 10.2 (to the proof) Let GoA be the first order fragment of Go AT (i.e. Go AT without

function variables and the rule SUB) and let G2 A[f1, ..., fx] denote the extension of GaA which is
obtained by adding new function symbols f1,..., fx which may occur in instances of QF-IA. Then

Alfi,.- - il B AP and GoA - A A (with A, A as in the proof above), where f1,..., fi are the

function symbols used in the definition of AH.
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Corollary 10.3 1) For each n € IN one can construct a sentence A € 119 such that
GoA“ - A" but GooAY +X0-TA € PRAY + X0 1A W A.
2) For each n € IN one can construct sentences A € I, and /\zo\/yOBo (z,y) € 1Y such that

GoA” - AP but GoAY + A+ Na®VyOBy(z,y),
where fx := miny[By(z,y)] is not w,—recursive.

Proof: 1) Let A € L(PA) be an instance of X9 ;~IA which is not provable in PRA® +X9-TA (such
an instance exists since every w,1-recursive function is provably recursive in GoA* + £ L1 TA,
but in PRA + X2-TA only w,-recursive functions are provably recursive and there are w;,1—
recursive functions which are not w,-recursive). Construct now A as in prop.10.1 . It follows that
GoA“ - A" but PRAY 4+ %0 -TA I A.

2) follows from prop.10.1 and the fact that every a(< eg)-recursive function is provably recursive
in PA.

The reason for the provability of AH in prop.10.1 is that the schema of quantifier—free induction is
applicable to the index functions used in defining A”. This always is the case in the presence of the

1
substitution rule SUB or /\' —elimination in theories like G2 A“ where quantification over functions
is possible.

In the following we show that the same phenomenon occurs if QF-IA is restricted to formulas
without function variables (we call this restricted system GzA) but instead of this new func-
tional symbols ®pax , are added (for each number n € IN) together with the axioms

(max,n) : N\ (¥ <o xi) = fy <o Pmax,nfL,

~.

1=1

where f is an n—ary function variable.
(max) = U,(max,n).

Remark 10.4 (max, 1) is fulfilled by the functional ®1 fo = max(f0,..., fx) from G,A*. By A-
abstraction and finite iteration of ®1 one can easily define a functional satisfying (max,n) (Hence

GnA+(max) is a subsystem of G, A%). This is the reason for calling this aziom (max). Of course
xX

x —
instead of ®1 one could also use ®afr =3 fi,®s3fr = [] fi or & fx = fu.
i=0 i=0

Proposition: 10.5 Let A € 1% be a theorem of PA. Then one can construct a sentence Ac 9,
such that

G2 A + (max) + AT gnd GoA + A A
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Proof: Since PA I A there are arithmetical instances (without function parameters) of the induc-

tion schema such that for their universal closure F' Ty, Fy,

k
GoA b /\ Fi — A

=1

Lets consider now the so—called collection principle
cp : Ai° (/\x <o i:\/yOF(a:,y,Q) = VeAe <o 5:\/y <0 % F(Jc,y,g)),

where x,y, a are all free variables of F. This principle has been studied proof-theoretically in [51]
and also in [57]. By [57] (prop.4.1 (iv)) one can construct for every instance F' of £0-TA instances
F; of 39 ,,—CP (i.e. CP restricted to £, ,—formulas) such that /\F — F. From the proof in [57]

(which uses only QF-TA and the function +) it follows that GoA F A F; — F. Let Fy,..., F, denote
such instances of CP whose universal closures imply Fi, ..., Fj. F; has the form
F; = (/\:1: <o f\/yOGi(x,y,g) = VeAr < aEVy <z Gi(x,y,g)).

Thus
l
(1) GoA + Na, & /\ Nz; <o ic\/y? Gi(x,yi,a) — Ve, < ;U\/yl < 2 Gi(w,y5,0)) = A.
Consider now
l
B = (/\Q,.’i‘,xl, o ,xl\/yl, Yl /\ (/\uz < .f?\/lel(u“w“Q) — (Z‘l <T— Gi(mi,yi72))) — A)
i=1
and
l
= (/\ /\ul < x\/wl Gi(uj,wi,a) = (v; < T — Gi(mi,yi,g))) — A).

Let CP" be an (arbitrary) prenex normal form of C. Then

A— = (A
Bp = vg7x7x17'"’xl/\y17"',ylcp <x7x17"'7xl?yl7"'7ylﬂg)

is a prenex normal form of B.
We now show i) GoA+(max) + (BP")H and ii) GoA - BP" + A.
i) Define

B EVg,gE,ml,.. , o CP" (2,21, ..., 2y, fraZxy ... ¢y, ..., flaZzy ... 2, 4).

The implication B — (BP")H holds logically. Hence we have to show that GoA+(max) + B:

B is logically equivalent to

l
(2) /\g,fc /\ (/\uz < f\/wiGi(ui7wi7g) — /\gcl(a:z < T — Gi(zy, fiaZz .. .xhg))) — A.
i=1

H;:=
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By (max) applied to f;, /\mz(xl < & — Gi(xy, fiaZx ... x1,a)) implies
\/zl/\xl < :%\/yi < z;Gi(zi, yi,a). Thus

GQA‘F(HI&X) |_H1—>Fz fOI‘ZZI,l

By (1),(2) this yields GoA+(max) F B. ii) We have to show that GoAF B <+ A. This follows
immediately from the fact that

l
/\ij;vl.lv' . 'axl\/ylw - Yl /\ (/\uz < :’vasz(uzawzag) — (xz <T— Gz(x“ylvg)))
i=1

holds logically.

Prop.10.1 and prop.10.5 show that for theories like G, A% the Herbrand normal form A of a
formula A is in general much weaker than A with respect to provability in G, A“ (compare cor.10.3
). This phenomenon does not occur if A satisfies the following monotonicity condition:

Definition 10.6 Let A € L(G,A%) be a formula having the form
A= Nt Ny <; tu\/y?/\x? .. Vyg/\xg\/wVAo(u, Vy Y1y Ty - ey Yky Thoy W),

where Ao is quantifier—free and contains only u,v,y,z,w free. Furthermore let t be € G, R* and

T,y are arbitrary finite types.

1) A is called (arithmetically) monotone if

/\ul/\v ST tu/\xlvi‘la---axk7fkayl7gla"'yk7gk
k
Mon(A) := ( A (& <o xi AT >0 yi) A Vw’YAo(%Myl,xl, ey ks Ty W)
i=1

— \/’LU’YAQ(U,’UJJl,.le, - ,gjk,fck,w)>.
2) The Herbrand normal form AY of A is defined to be

AT = Nty <. tu/\h‘fl, e hﬁ‘"’\/y?, ce YD wY

Ao(u, v, 91, 1Y, -« Yk, PEYL - - - Yk, w), where p; = 0(0)...(0).
—_———

%

AN

Theorem 10.7 Let ¥q,...,V, € G,R*”. Then

k
G A® + Mon(A) AutAw <, tu/\hl, cel hk< N\ (h; monotone)

i=1
— Vi <o Wrub... Vy, <o \Ifkuﬁ\/w“/Aéf) = 4,

>

(zi >0 yi) = hiz >0 hiy).
) Y

where (h; monotone) := /\xl, ey T YLy e e ,yi(
J
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Theorem 10.8 Let A be as in thm.10.7 and A be as in thm.2.2.2 and let A’ denote the negative
translation of A%. Then the following rule holds:

G AY+AC-qf + A+ AT A Mon(A) =
G AY + A+ b-AC + A and
by monotone functional interpretation one can extract a tuple ¥ € GnR” such that

GrAY+b-AC+ A F U satisfies the monotone functional interpretation of A’.

Proof of theorem 10.7 : We assume that

k
Nt Ao <; tu/\hl, el hk( /\(h, monotone) — \/yl, e <o \Iluﬁ\/w’VAéi)
i=1

(This assumption follows from the implicative premise in the theorem by taking Yuh :=
maxg(Vquh, ..., Vruh)). By cor.1.2.24 and the corollary to the proof of prop.1.2.21 one can con-
struct a term ¥*[u, h] such that

1) W*[u, h] is built up from u, h, Ao, ..., An, S, 0% maxg only (by substitution).
2) Au, h.U*[u, h] s—maj V.

1) in particular implies

1*) Every occurrence of an h; € {ha, ..., hx} in W*[u, h] has the form h;(ry,,...,7y,), i.e. h; occurs
only with a full stock of arguments but not as a function argument in the form s(h;r,, ...ry,) for
some [ < j.

By 2), /\ul(uM s—maj u) and (h; monotone — h; s—maj h;) we have

k
2*) GRLAY Aul\ny, ..., hi( A\ (h; monotone) — U*[uM k] > Yuh).

i=1 -

(Note the the replacement of h; by th = AT1,...,%;. max h(Z1,...,&;), which would make the
T <z

monotonicity assumption on h; superfluous, would destroy property 1*) on which the proof below

is based. This is the reason why we have to assume h; to be monotone. In order to overcome this
assumption we will use essentially the monotonicity of A).

Let r1,...,7; be all subterms of W*[uM | h] which occur as an argument of a function € {hy, ..., hy}
in U*[uM h] plus the term U*[u | p] itself.
Let 75[a1,...,aq,] be the term which results from r; if every occurrence of a maximal hy, ..., hy—
subterm (i.e. a maximal subterm which has the form h;(s1,...,s;) for an i = 1,... k) is replaced
by a new variable and let ay,...,aq, denote these variables. We now define
Fjai...aq; = max ( max rjlay, ..., aq,],a1,. .. ,aqj).
alpsay
aq; Sag

66Here we can use any of the various negative translations. For a systematical treatment of negative translations
see [43].
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(7j can be defined in G, R* from 7; by successive use of ®1).
By the construction of 7; we get

G,AY - ()\g.fjg s-maj Aa.rj[ag,. .. 7aqj]) A /\Q(Fjg >0 Q15 .., 0q;)-

Since U*[uM, h] is built up from 7, h and uM only (by substitution) and (h; monotone — h; s-maj

hi), uM s-maj u, this implies

(h; monotone) — W[uM, h] > U*[uM h] >4 Yuh),

=.

G A Nuy by,

i=1

where W[u™, h] is built up as ¥*[u?, ] but with 7a; ... a,, instead of 7jas, ..., aq,].

Summarizing the situation achieved so far we have obtained a term W[u™ h] such that
(o) At Ao <, tu/\ﬁ(ﬁ monotone — \/yl, ok <o @[UM,Q]\/w“’AéI).

(B) hi,...,hx occur in W[u™ h] only as in 1*), i.e. with all places for arguments filled and not as
function arguments themselves.

(7) For W[uM h] and all subterms s which occur as an argument of a function hy,...,h; in
W[uM, h] we have S[aq,...,a4] >0 ai,...,a,, where S results by replacing every occurrence of
a maximal hy, ..., hxy—subterm in s by a new variable a;.

In the following we only use («)—(y) and Mon(A).

JFrom now on let 71,...,7; denote all subterms of W[uM, k] which occur as an argument of a
function € {hy,...,h} in U[uM h] plus W[uM, h] itself. M := {ry,...,r;} (This set formation is
meant w.r.t. identity = of terms and not =¢, i.e. ’s € M’ means 's=r; V... Vs=r).

We now show that we can reduce "V, ..., yp < W[uM h]"in (a) to a disjunction with fixed length,
namely to the disjunction over M:

AYRAY: <, tu/\ﬁ(ﬁ monotone on M — Vsl, ..., 8 € MV

Ao(u,v,sl, h1$1, ceey Sk, hksl .. sk,w))

Proof of (1): Let hq,...,hr be monotone on M. We order the terms r; w.r.t. <. The resulting

ordered tuple depends of course on u, hq, ..., hi. For notational simplicity we assume that
r1 <o ... <o r;. We now define (again depending on u, h) functions iLl, ceey Ry by
hayV .. y) = hi(rj,, .74, ), where
1, if Yq So T1
Jyg =8 J+1L ifr; <oyg <orjs1
, if r; <g Yq-

Since [ (and therefore the number of cases in this definition of &;) is a (from outside) fixed number

depending only on the term structure of T[UM ,h] but not on w, h, the functions h; can be defined
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uniformly in u, A within G,A“. On M, h; equals h;.
By the definition of h; and the assumption that hq, ..., h; are monotone on M we conclude

(a) hi,...,hy are monotone everywhere.

By (B) we know that hy,...,hs occur in W[uM h] only in the form h;s;...s; for certain terms
$1,...,8; € M. Hence we can define the h—depth of a term s € M as the maximal number of
nested occurrences of hy,...,hy in s and show by induction on this rank (on the meta-level):

) ‘/l\l(m =¢ 7i), where 7; results if in r; € M the functions hyq, ..., hy

;;e replaced by hi, ..., hy everywhere. In particular @[UM,ﬁ] =0 U[uM, h).

By (), (a) and (b) it follows (for all u',v < tu and all h which are monotone on M) that
(¢) \/yl7 ook <o W[uM,ﬁ]Vw'YAo(u,v,yl, l~11y1, e Uk izkyl YR, W).

Let y1,...,yx <o U[uM, h] be such that (¢) is fulfilled. Because of hiy; ...y = hi(rj, - -s74,.)

this implies
(d) Vw'YAo(UJ, v, Y1, thjyl yeoos Yk hijyl yeeey ijk s w)

With y, < rj, for ¢ = 1,....k (since y; < WuM h] < r; ~because of U[uM h] € M and the

yg—assumption— the case 'y, > 1’ does not occur) and Mon(A) we conclude
VuﬂAo(u, Y ST P BN (110 BRI A w)
and therefore
(e) \/sl, ..., 8L € MVuﬂAo(u, U, 81,181, Sky R8T ... SE, W).
This concludes the proof of (1) (from (), (8)) which can easily be carried out in G,A%, i.e.

GrAY F Mon(A) A (@) — (1).

k
We now define N := |J N;, where N; := {h;(s1,...,8i) : 81,...,8; € M} (Again this set is meant
i=1
w.r.t. identity = between terms). With the terms in N we associate new number variables according
to their h—depth as follows: Let p the maximal h—depth of all terms € N.
1. Let t € N be a term with h-depth(t) = p. Then t — y}, if t € N;.

2. Let t € N be a term with h—depth(t) = p — 1. Then ¢ — y2, if t € N;.

p. Let t € N be a term with h—depth(¢) = 1. Then t + ¢, if t € N;.
This association of variables to the terms in N has the following properties:

(i) Terms s1,s2 € N with different h—-depth have different variables associated with.
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(ii) If 51,82 € N have the same h—depth, then the variables associated with s; and sy are equal
iff 1,80 € N; forani=1,..., k.

For r € M U N we define 7 as the term which results if every maximal h-subterm occurring in r

is replaced by its associated variable. Thus 7 does not contain hq,...,hg. For r € N, 7 is just the
variable associated with r. M := {7 :r € M}.

We now show that (1) implies a certain index function—free (i.e. hq,...,hp—free) disjunction ((2)
below):

For ¢ with 2 < g < plet 7{,... ,??Lq be all terms € M whose smallest upper index 7 of a variable

y; occurring in them equals ¢ (i.e. there occurs a variable y;I in the term and for all variables y,

occurring in the term, ¢ > ¢ holds). Since for r € M the h-depth of hi(r) € N is strictly greater

than those of subterms of 7, there are no terms 7 € M containing a variable yJ1 ?’fﬂ, . ,ﬁlﬁl
denote those terms € M which do not contain any variable yj at all.
We now show that (1) implies (for all v and for all v < tu)
1 1. . +l l +1 1 +l
/\y17~'-ayka"~ayf7"'7y2( /\ (ygaayg>?(1] a"'?gz;:pﬁ 7"')”7;:;1’(@11 yeen Y
=1,..., —1
(2> (11:1,',“,;7711
— \/ VuﬂAo(u,v,gl,hlsl,...7§k,hksl...sk,w)).
;\1,...,TS\IC€M
Assume that there are values yi,...,yp;...;y7, ..., y} such that
+1 1 ~ptl 1, g+l +1
(+) /\ (vi,....yl > 71 ,...??Ljﬂ,ﬁf R AITIYT AR T/ Ak
q=1,..., p—1
i=1,....p—q
and
/\ ﬁ\/w’YAo(u,v,fs\l,hlsl,...,§k,hk31...sk,w).

/;1,“‘,/3\1“E1/\j
We construct (working in G, A%) functions hy, ..., hy which are monotone on M and satisfy

/\517 ...,8, € M-V Ao(u,v,81, 0181, .., Sky AES1 .. Sg, W)
yielding a contradiction to (1): Define for i = 1,...,k

min i(q)—1 . i - i
y, st 1f\/??11,...,1'"\?i € M((z1,...,2:) =0 (?ﬁ,,ﬁl))
hi(mla cee axi) =

0%, otherwise.%7

We have to show:

(i) The h; are well-defined functions : IN x ... x IN — IN and the definition above can be carried
_‘/_/

out in G, A%.

(ii) ¥ =¢ r for all r € M UN (for these hy,...,hg).

6TFor rj_i € M we have q; > 2 since e.g. hirj, (€ N) has an h—depth which is strictly greater than those of subterms
k2

inrj,.
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(iii) hq,...,hy are monotone on M (and hence —by (ii)— on M).

Ad (i): Consider (7%,...,7%) and (7%,...,7%). We show that y"™=i=i(@)=1 o mimcs(@)=1

"o Ji g’ Ji v
1 i =41 ~Gi\.
implies (7 jl,...,rji) #+ (7“31,...,7‘31_).
We may assume min (¢;) < min (¢;). Let lp be such that ¢, = mm (ql) A1 <y <i. 71 contains
1<I<i 1<i<i T

a variable yglo for some d = 1, ..., k. By the property () of \I/[u , ﬁ] this implies

(a0 <@ _ ) _
Aqlo >yglo >0 DA;ILZ;) and thuS( 77/;%)#(;:1117’?@)

Hence h; can be defined in G,,A“ by a definition by cases which are pairwise exclusive.
Ad (ii): (ii) follows from the definition of hq,..., ki by induction on the h—depth of .

Ad (iii): Assume /\ (79 <o Aq’) Let ly (1 <y <1) be such that ¢, = filllg(ch) By contraposition
=1 SEs

of the implication established in the proof of (i) one has: 1rmn (q1) > 112121(51)
SEs

Case 1: 1rnin (¢1) = min (). Then (by h;—definition)

<i<i 1<1<i
b (79 ~q;\ __ ,min(g)—1 __  min(g)—1 _ b =41 ~4i
(P LT = =y, =hi(7S!,... 7).

Case 2: q, = 1Inin (@) > min () = g;, (where 1 <o, lp <1i). Then

<I<i 1<I<i
qy—1 (+) g -1 G qi
hi(Fir, . T8 =g <y, zh,(?gll,,i"g)
Hence hy, ..., hy, are monotone on M and therefore (by (ii)) on M, which concludes the proof of

(2) from (1) A () A (B) A (7). Since (1) follows (in G,A%) from Mon(A) A (a) A (B), and
F=NtNo <, tu/\@(@ monotone — \/yl, ok <o \Iluh\/w'YAgI)

implies (in G,A%) (a)—(7), we have shown altogether

(3) GpA® + Mon(A) -

q q - 7atl U pptl 1 ,qt+l g+l
F%[vgtu/\ A iyl > ,..A;ILLZ, R R AN T AR 1) )
=1,..., —1
‘l1=1 ..... qu
— \/ \/’LU'YA()(’U, v, sl,hlsl,...,sk,hksl...sk,w) .
;\1,...,SkEM

It remains to show that (3) implies
(4) GL,AY + Mon(A) F F — A.

We prove this by a suitable application of quantifier introduction rules: We start with the variables
with smallest upper index, i.e. yi,..., y,ﬁ Under these variables we first take those of maximal

lower index, i.e. with y,i: We split the assumption

q q - g+l +1 ~ptl +1 g+l q+l
(+) /\ (yl,...,yk>r1 7...?$Lq+l7r1 ,...,ﬂ;pﬂ,yl N T )

q=1,...,p—1
I=1,...,p—q
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as well as the disjunction

—

d._ ~ ~
A= \/ \/wVAO(u,v,sl,hlsl,...,sk,hksl...sk,w)

~ ~ o~
S1,..,8,EM

into the part in which y} occurs and into its y;—free part:

1+l o~ +1 1 !
F— [U Stu/\l:1 /\p_1 (yi >7+ ,...,T}Lﬁl,?’f ,...,Wﬁﬁl,y}*‘ R Ve
/ T . T .
(5) A (...) —>\/\/w”fAO(u,v,sjl,hlsjl,...,si,y,ﬁ,w)\/ \/()
N—— J j’
yi—free part of (+) ~—

yi—free part of A%

y;. does not occur at any place other than indicated. Hence N-introduction applied to y; yields:
!/
6) F = Nytlo <tun Nwh > .. 0n N\ () =V VAol oybw) v V]
l ] j/
Using Mon(A) this implies

!
(1) F = [o<tun N\ (.) = Nb \/ Vo Aoy w) v V)]
j i
(Proof: In (6) put g} :=  Juax (yi, 7t ?jlﬂl,ﬁﬂ, ... ,?fl;“jl,yﬁl, T + 1 for g

(6) then gives

Fa@gmAAk)%VVW%pW%mvvpﬂ.

j/
Mon(A) and \/ VuﬂAo(. -y, w) imply \/ \/uﬂAO(. . Yp,w), since g}, > y}. Now A-introduction
J J
applied to y} and shifting /\y,i in front of \/, which is possible since yi occurs only in this disjunction,

proves (7)).

Again by Mon(A) we obtain \/ NtV w Ao (..., gk, w) from Ay} V Vv Ao(... gt w):
J J
Assume /\ Vy,i/\w'y—\Ao(. .y Yt ,w). Then \/y /\ \/yi <o y/\w'y—\AO(. ., Yt ,w). Using Mon(A) this
j J
implies \/y /\ /\w'y—\Ao(. RTRTR
Hence (7) ir;plies

F— [v <tunN(.)— \/ Vx/\waAMu,v@{, hls{, ol hk,ls{ ... sf;fl,x,y,w)
J

(8)
v\((...)].

Next we apply the same procedure to the variable yi _; and then to y;._, and so on until all y{,...,yi

are bounded. We then continue with y,%, y,il and so on. This corresponds to the sequence of
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quantifications used in the usual proofs of Herbrand’s theorem in order to show that there is a
direct proof from the Herbrand disjunction of a first order formula to this formula itself: By taking

always variables of minimal upper index it is ensured that any variable to which the A-introduction
rule is applied occurs in the disjunction \/ Ay only at places where it is universal quantified in the
original formula A. By quantifying under these variables firstly the one with maximal lower index
one ensures that a universal quantifier is introduced only if the quantifiers which stand behind this
one in A have already been introduced. In addition to these two reasons for the special sequence of
quantifications there is in our situation another (essentially used) property which is fulfilled only if

variables which have minimal lower index are quantified first: If y; has minimal index 4 (under all
variables which still have to be quantified), then y; occurs in the implicative assumption (+) only
in the form ’y§ > (...y;:ffree...)’. So we are in the situation at the begining for y,ﬁ and are able to
eliminate this part of (+) which is connected with y; altogether using Mon(A) (as we have shown
for y}).

Finally we have derived

(9) F — [v < tu — \/ \/x?/\y? e ng/\y,g\/uﬂAo(u, VL, YLy - -y Ty Yk W)
and therefore (by contraction of \/)
(10) F — [v < tu — \/x?/\y? . Vm%/\yg\/w'yzﬁlo(u,v,xl,yl, ey Ty Yk, W)

which (by A-introduction applied to u,v) yields
(11) F — A.

Remark 10.9 The proof of thm.10.7 also works for various other systems 7 and domains of terms
S than G, A“ and G,,R“. What actually is used in the proof is:

1) Every term ¥” € S with deg(p) < 2 has a majorant W*[h'] such that

(i) T+ Ar.¥*[h] s—maj P,
(ii) U*[R] is built up only from h and terms € S of type level < 1 (by substitution).

2) Sis (provably in T) closed under definition by cases, A —abstraction and contains the variable
maximum—functional ®;.

Condition 1) is a sort of an upper bound for the complexity of 7,S. E.g. 1) is not satisfied if
S contains the iteration functional ®;;. In the next chapter we will show that thm.10.7 becomes
false if G,,R* is replaced by PR’ (see also remark 10.12 ). Since ®;; is on some sense the simplest
functional for which 1) fails, this shows that the upper bound provided by 1) is quite sharp. 1)
essentially says that %% can be majorized by a term ¥*[2°, h!] which uses h only at a fixed number
of arguments, i.e. there exists a fixed number n (which depends only on the structure of ¥* but not
on x, h) such that for all h,z the value of of U*[z, h] only depends on (at most) n—-many h—values.
Let us illustrate this by an example: ®;hax = max(h0,...,hz) depends on x + 1-many h—values
but is majorized by ®*hz := hx for monotone h which for every x depends only on one h—value,
namely on hz. If a term ¥ has a majorant which satisfies 1) we say that ¥ is majorizable with
finite support. One easily convinces oneself that ®;; is not majorizable with finite support.

2) is a lower bound on the complexity of 7,5, which also is essential. E.g. take 7 := £? and
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S := {0}, where £? is first-order logic with =g, <o extended by quantification over functions and

two constants 0°,1°. Consider now
G = Ve \yOV20, FL(Fy(f,2) = Aol ),

where Fo(f,z) = (fz=0A0%1) and Ag(z,y) = (y#0Az ==z — L). Then
£2+ Ng*Va, 2 <o OV F(Fo(f, 2) = Ao(z, gz)) A Mon(G), but L21 G,

i.e. thm.10.7 fails for £2,5. If however £? is extended by A-abstraction, then G becomes derivable

since we can form f := Az0.10.
Corollary 10.10 Let A be as in def.10.6 and thm.10.7, n > 2. Then
1) GpAY & F~ @ AC-qf F A" = GraxnnAY + Mon(A) - A.
In particular

GoAY ©F~ @ ACqf F A= Guaxns)A” + Mon(A) F A.

2) GnAY @WKL2,, ® AC—qf = A" = Grax(n,3)A” + Mon(A) F A.

In particular

GnAY ®WKLZ,, ® AC—qf b A= Guax(nz)A” + Mon(A) - A.

seq

If T <1 (in A) then G,A® ® F~® AC—qf can be replaced by E-G,A® + F~+AC*8—qf (with
(a=0AB<1)or(a=1AE=0)).

Proof: 1) By thm.7.2.20 G,A¥ @ F~ @ ACqf + AF implies the extractability of a ¥ € G,R¥
such that

Gmax(n,3)A” F ATAY <, tu/\@\/yl, o Uk <o Yuh Agl.

Theorem 10.7 now yields Gpax(n,3A* + Mon(A) = A.
2) follows from 1) by cor.7.2.26.

Proof of theorem 10.8 :

GnAY + A+AC—qf = AH implies (by thm.2.2.2) the extractability (by monotone functional in-
terpretation and the remarks after 2.2.6) of terms ¥ := ¥y,...,¥; € G,R¥ such that ¥ satisfies

the monotone functional interpretation of (A*)’ provably in G,A% + A, where
A= {VY <ps sN\ad, 2"EFy(z, Yz, 2) NatVy <, sx/\z"Fo(x, y,z) € A}. From these terms U; one

constructs (as in the proof of thm.2.2.2) uniform bounds ¥; € G,R* on \/yi which depend only on
u and h:

(1) GL,AY + NEEAYAYS < tu/\ﬁ\/yl <o Viuh... \/yk <o \i/kuﬁ\/w Ag .

AH.B.=
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The assumption assumption G,A* + A+AC—qf - Mon(A) implies (by monotone functional in-
terpretation, since Mon(A) is implied by the monotone functional interpretation of its negative
translation) that

(2) G,AY + A + Mon(A).

Theorem 10.7 combined with (1) and (2) yields (using that each sentence € A follows from the
corresponding sentence in A by b-AC)

GpAY + A+ b-AC F A.

Again by thm.10.7 and the assumption G,A“ + A+AC—qf - Mon(A) we have
G,AY + A+ ACqf HATP 5 4
and therefore using (1)
GnAY + A+ACof - A.
The second part of the theorem now follows by monotone functional interpretation, since A also is
a set of allowed axioms A in thm.2.2.2.
For our applications in the next chapter we need the following corollary of theorem 10.8:

Corollary 10.11 Let Az®VyO0Az204q(ul,v7, 2.y, z) € L(GoA®) be a formula which contains only
u, v as free variables and satisfies provably in G, A +A+AC-qf the following monotonicity property:

(*) /\u,v,m,i,y,ﬂ(i <oz A 2-7 >0 Yy A /\ZOAO(%U,%CU,Z) — /\ZOAO(U7’U7j7yaZ))a

(i.e. Mon(Vx/\y\/zﬁAO)). Furthermore let Bo(u,v,w?) € L(G,A%) be a formula which contains
only u,v,w as free variables and v < 2. Then from a proof

GpAY + A+ AC—qf + ARAVS <; tu(\/fl/\x, z Ao(u,v,z, fx,z) — \/uﬂBO(um,w)) A (%)
one can extract a term x € GpR* such that

G AY + A+ b-AC + Nt No <, tu\w* (U™ satisfies the mon.funct.interpr. of
/\xo,gl\/yOAo(u,v,:c, v,9Yy)) — Vauw < xu¥* Bo(u,v, w))%.

Proof: We may assume that v = 2. The property Mon(F) for
F =Nt No <, 1V 22 NyoV 20, 2 (Ao(u,v,2,y,2) = Bo(u,v,w))
follows logically from the monotonicity assumption (). By the assumption of the corollary we have

CnAY + A+ ACqf - F¥ + Mon(F).

6815 satisfies the mon. funct.interpr. of /\x, g\/on (u,v,z,y, gy)’ is meant here for fixed u, v (and not uniformly
as a functional in wu,v), i.e. v\IJ(\I/* s—maj ¥ A /\x,ng(u7 v, T, \I/xg,g(\Il:vg))).
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(From this we conclude by thm.10.8 that
G,AY + A +b-AC I x satisfies the monotone funct.interpr. of F,

for a suitable tuple ¥ of terms € G, R* which can be extracted from the proof.

F’ is intuitionistically equivalent to
/\u/\v < tuﬁﬁ\/mo/\yoﬁﬁ\/z, w(Ao — Bo)

of F' (This follows immediately if one uses the negative translation which is denoted by * in [43] ).
By intuitionistic logic the following implication holds

F = Nul\v <, tu(/\aﬁﬁ\/y/\z Ao(u,v,x,y, 2) — -V By (u,v,w)).

Hence from Y we obtain a term which satisfies the monotone functional interpretation of the right

side of this implication. In particular we obtain a term ¥ € G,R“ such that

Gr,AY + A+ b-AC + VW()? s—maj W A Nul\v < tu\w
(/\myg Ao (u,v, 2, Vag, g(Vag)) — Bo(u,v, WuU\II)))

Define x € G,R¥ by x := Aul, ¥, yt.xuM (t*uM)UyM | where t* € G,RY is such that
GpAY - t* s=maj t. Then

Aul\v < tu\w* (V\D(\II* s—maj ¥ A /\ac,g Ao(u,v,z, Vag, g(Vzg)))
~Vu <o xu¥* Bo(u,v,w)),

since ¥ s—maj W and ¥* s—maj ¥ imply Aul\v < tu(xyu¥™* >9 Wuv¥).

Remark 10.12 In §3 of the mnext chapter we will show that cor.10.11 does not hold for
PRA® PR’ ,PRA® (or GnA® + X0-TA, PR, GoA® + S0-IA) instead of GnA® ,GoR®, G,A®
(even for A=10).

Since the proof of cor.10.11 from thm.10.8 as well as the proof of thm.10.8 from thm.10.7 extends
to these theories it follows that also the theorems 10.7 and 10.8 do not hold for them. The proof

of thm.10.7 fails for ¥ € PR’ since PR contains functionals like ®;4 which are not majorizable
with finite support (see also remark 10.9 ). The proof of thm.10.8 fails for PRA® + X9-IA since the

(monotone) functional interpretation of X-IA requires ®;; and thus thm. 10.7 is not applicable.

The mathematical significance of corollary 10.11 for the growth of bounds extractable from given
proofs rests on the following fact: Direct monotone functional interpretation of

G,AY + A+ ACqf + Nt Ay <; tu(\/fl/\x, z Ao(u,v,, fx,z) — VuﬂBo(u,uw))

yields only a bound on Va which depends on a functional which satisfies the monotone functional
interpretation of (1) V f Az, z Ag or if we let remain the double negation in front of V (which comes

from the negative translation) (2) -V f/\a:,z Ap. However in our applications the monotone
functional interpretation of (1) would require non—computable functionals (since f is not recursive)
and the monotone functional interpretation of (2) can be carried out only using bar recursive
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functionals. In contrast to this the bound x only depends on a functional which satisfies the
monotone functional interpretation of /\x\/y/\z Ao(z,y,2): In our applications such a functional

can be constructed in PR .
In particular the use of the analytical premise

\/fl/\l', ZA()

has been reduced to the arithmetical premise

/\mo\/yo/\zo Ap.

121



11 The rate of growth caused by sequences of instances of
analytical principles whose proofs rely on arithmetical
comprehension

In this chapter we apply the results from the previous chapter in order to determine the impact

on the rate of growth of uniform bounds for provably Nt N\ <, tu\/wVAofsentences which may
result from the use of sequences (which however may depend on the parameters of the proposition

to be proved) of instances of:
1) (PCM?2) and the convergence of bounded monotone sequences of real numbers.

2) The existence of a greatest lower bound for every sequence of real numbers which is bounded

from below.
3) IY-CA and T19-AC.
4) The Bolzano—Weierstrafl property for bounded sequences in R¢ (for every fixed d).
5) The Arzela—Ascoli lemma.

6) The existence of limsup and liminf for bounded sequences in IR.

11.1 (PCM2) and the convergence of bounded monotone sequences of
real numbers

Let a*(® be such that /\nO(O <g a(n+1) <R an)®
(PCM?2) implies

VRIAK®, m®(m > hk — a(hk) —r a(m) < %ﬂ)'

1

(a(hk))k is a Cauchy sequence with modulus 775 whose limit equals the limit of (a(m))nen. The

existence of a limit ag of (a(m)),, now follows from the remarks below lemma 3.1.4 : agk :=

(a(h(3(k+1))))(3(k+1)). Thus we only have to consider (PCM2). In order to simplify the logical
form of (PCM2) we use the construction a(n) := maxm(O,rngn(a(i)) from chapter 9 (recall that

this construction ensures that @ is monotone decreasing and bounded from below by 0. If a already
fulfils these properties nothing is changed by the passage from a to a).

1
(PCM2)(a'®) := VIR, m® (m >o hk — a(hk) —g a(m) <m m).
We now show that the contribution of single instances (PCM2)(a) of (PCM2) to the growth of

uniform bounds is (at most) given by the functional Yakg := Iél?,)ik (<I>itz'()g) (where
i<C(a)k’

IN 5 C(a) > a(0)) from chapter 9:

69The restriction to the lower bound 0 is (convenient but) not essential: If /\no(c <gr a(n +1) <R an) we may
define a’(n) := a(n) —g c. (PCM?2) applied to a’ implies (PCM?2) for a. Everything holds analogously for increasing
sequences which are bounded from above.
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Proposition: 11.1.1 Let n > 2 and By(u*,v™,w") € L(G,A¥) be a quantifier—free formula which
contains only u',v™,w" free, where v < 2. Furthermore let £,t € G,R* and A be as in thm.2.2.2.

Then the following rule holds
G A + A+ AC-qf + NutNo <, tu((PCM2)(uv) — Vuw By(u, v, w))
= Aeff)x, X € GnR” such that
G, AY + A+ b-AC + Nt N\ <, tu/\@*((@* satifies the mon.funct.interpr. of
Ak, g*Vnl(gn > n — (€uv)(n) —r (Cuv)(gn) <mr =) — Vw <, Xul* By(u, v, w))
and
G AL + A+ b-AC + NutNv <, tu\W* (" satifies the mon. funct.interpr. of
Nal©) ko,gl\/no(gn >n—a(n) —ra(gn) <m ﬁ)) - Vuw < xu¥l* By(u,v,w))
and therefore

PRAY + A+ b-AC + At No <, tuVw <, xu¥ By(u,v,w),

where ¥ := Aa, k, g. %?%k (®i1i0g) and C(a) := (a(0))(0) + 1.
i<C(a)k’

If A =0, then b-AC can be omitted from the proof of the conclusion. If T <1 and the types of the
quuantz'ﬁers in A are < 1, then G, A¥ + A+AC—qf may be replaced by E-G,A* + A4+ACP —¢f,
where a, B are as in cor.10.10.

Proof: The existence of x follows from cor.10.11 since

GoA” F Na O Nk, k. iu(k <o k A7 >0 n AN >0 n(@(n) —r a(m) <g ziy)

— Nm =g w(a(R) —g a(m) <g =)

U fulfils the monotone functional interpretation of
/\al(o)7k07gl\/n0(gn > n — an) —r a(gn) <gr %ﬂ) (see the end of chapter 9) and hence
U(¢* (uM, t*uM)) satisfies the monotone functional interpretation of

Ak, "Vl (gn > n — (fuv)(n) —r (Euv)(gn) <m %_’_1), where £* s-maj £ At* s—maj t.

x is defined by x = Au, U*.xu(¥*(&* (u, t*ul))).

Remark 11.1.2 1) The computation of the bound X in the proposition above needs only a func-

tional U* which satifies the monotone functional interpretation of

— — 1
(+) AR, g™V (g > n = (€a0) (1) —m (€00)(9m) <m 1 )-

For special £ such a functional may be constructable without the use of ®;;. Furthermore for

fized u the number of iterations of g only depends on the k—instances of (+) which are used

in the proof.

2) If the given proof of the assumption of this proposition applies U only to functions g of low
growth, then also the bound xu¥V is of low growth: e.g. if only g := S is used and type/w = 0,

then xu¥ is a polynomial in uM .
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Corollary to the proof of prop.11.1.1:

The rule

GpAY + A+ ACqf F A No <, tu(V PN Am, i > FR(|(Euv) () —R (Euv)(m)] < 25) —
\/w'yBo(u, v, w))

=

GnAY + A +b-AC +AuAv <, tu(/\k\/n/\m, m > n(|(Euwv)(m) —r (Suv)(m)| < 25) —
\/w'yBo(u, v, w))

holds for arbitrary sequences (£uv)*(®) of real numbers. The restriction to bounded monotone se-

quences §z~w is used only to ensure the existence of a functional ¥ which satisfies the monotone
functional interpretation of (4) above.

We now consider a generalization (PCMZ*)(a%,()O)(O)) of (PCM2)(a'(®)) which asserts the existence

of a sequence of Cauchy moduli for a sequence a; of bounded monotone sequences:

(PCM2) (0l ") = VRNOND, K N o bt () (bhl) —m (an)(m) <me ).

Proposition: 11.1.3 Let n, Bo(u,v,w),t, A be as in prop.11.1.1. t,£ € G, R*. Then the following

rule holds

G AY + A+ AC—qf + Nt No <, tu((PCM2*)(§uv) — \/w’VBo(u, v, w))

= (eff.)x € GLR” such that

G, AY + A+ b-AC + Nt N\ <, tu/\\Il*((\I/* satifies the mon. funct.interpr. of

Aat®© 10, gV (gn > n = AL < k(@) (n) —m (@) (gn) <m 7)) = Ve <, xul* Bo(u, v, w))
= PRAY + A+ b-AC + NN\ <, tuVw <, xu¥’ By(u,v,w),

here O’ := Aa, k, g. $;4i0 dIN 3 C(a, k) > (a0)(0), . .., (ax)(0)).
where a,k,g i<0(33€(k+1)2( +i0g) an (a, k) > maxr((ap)(0) (ar)(0))
If A =0, then b—AC can be omitted from the proof of the conclusion. If T < 1 and the types of the
\/fquantiﬁers in A are < 1, then G, AY + A+AC-qf may be replaced by E-G, A + A+AC*P —¢f,

where o, B are as in cor.10.10.

As in prop.11.1.1 we also have a term X which needs only a U* for the instance a = Euv.

Proof: The first part of the proposition follows from cor.10.11 since (PCM2*)(a) is implied by

VR A Am >0 i\l <, k((zl/)(hk) R @(m) <R %4_1)

and

GoA” = Aaf P ONE, &y, (k<o kA7 >0 n A Am >0 <o k((a)(n) —r (ar)(m) <m 7)

— Nin > i <o k((a)(R) —m (ar)(m) <m ﬁ))
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It remains to show that W’ satisfies the monotone functional interpretation of
/\al(o)(o),ko,gl\/no(gn >n—Ni< k((ar)(n) — (ar)(gn) < %ﬂ))
Assume

1

Ni < Cla, k) (k + 1)%(g(g°0) > ¢°0 A VI < k((a1)(g°0) — (@) (g(g"0)) > m))~

Then

Ni < C(a, k)(k + 1) (9(¢g°0) > ¢'0) and
Vi< k\/j(/\i < Cla,k)(k+1)=1((j)i < (j)it1 < Cla, k)(k + 1)?)A
Ni < Cla,k)(k +1)((a)(g90) — (a)(g(g¥0)) > 11))

and therefore

Vi< kVj(Ni < Cla,k)(k+1) =1(g9+10 > g00 A (@) (9970) - (@) (99+10) > ;)
/\g(g(j)c(a,k)(k+1)—'l(0)) > g(j)c(a,k)(k+1)i1(0)
Aar) (g eemn =1(0)) = (@) (g(gPewn e =1(0)) > gl ).

Hence

) . — — 1
Vi< kViNi < Cla, k) (k +1)(g9710 > gD:0 A (a1)(g970) — (@) (g9 +10) > m),

which contradicts (a;) C [0, C(a, k)].

11.2 The principle (GLB) ’every sequence of real numbers in IR, has a
greatest lower bound’

This principle can be easily reduced to (PCM2) (provably in GoA%):

Let a'(®) be such that /\nO(O <r an). Then (PCM2)(a) implies that the decreasing sequence
(@(n))n C Ry has a limit @§. It is clear that G is the greatest lower bound of (a(n)), C Ry. Thus
we have shown

GnAY F Na'© ((PCM2)(a) — (GLB)(a)).

By this reduction we may replace (PCM2)(&uv) by (GLB)(uv) in the assumption of prop.11.1.1.
There is nothing lost (w.r.t to the rate of growth) in this reduction since in the other direction we
have

GnAY + ACO0 gf +Na'® ((GLB)(a) — (PCM2)(a)) :

Let a'(® be as above and ag its greatest lower bound. Then ag = lim @,. Using AC%%—qf one
n—oo

obtains (see chapter 4) a modulus of convergence and so a Cauchy modulus for (a(n))n.
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11.3 TI%-CA and II-AC
I0-CA(f10) .= \/gl/\aro (97 =0 0 > /\yo(fxy =0 0)).
(Note that iteration of /A f1(O)(IT9-CA(f)) yields CAqy).

I9-CA can also be reduced to (PCM2)(a):

Proposition: 11.3.1
GoA“ + N 1O (PCM2)(AnC. Wy f'n) — TIY-CA(F)),

where Wo € G2 R is the functional from prop. 9.2.2) such that ¥afn =R 1-R Y, 1’&]:111) and
i=1

X € GaR“ such that

, { 19,if Vi <o n(fil =0 0)
xJfni=o

0%, otherwise, and
fh =Xz, y5g9(fay).
Proof: ;From the proof of prop.9.2.2) we know
(1) An%(0 <g o f'(n+1) <g af'n)

and

(z+1)

AT 0((/\m,ﬁ1 >n = [Uaf'm—g Vo f'm| <r g0py) —
(2) B . 3 .
/\x(O <oZT <o — (\/y(f/xy =0) < \/y <on(f'7y = 0))))

By (1) and (PCM2)(An®. Wy f'n) there exists a function h' such that

A >0 0Am, i 2o ha ([ f'm —, Vo f '] <m —

(x+1) )
Hence by (2)
Aa >0 0(Vy(f'ay = 0) < Vy <o ha(f'zy = 0)).

Furthermore, classical logic yields Vzo(zo = 0 « /\y(ny =0)). Define

zp, if z =0
gr =
ohf'z, otherwise,

where

ohfr e { 10, if Vy < ha(fxy =0)

0°, otherwise.

It follows that /\wo(gx =0+ /\y(fxy =0)), i.e. II9-CA(g).
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Remark 11.3.2 Proposition 11.8.1 in particular implies that relatively to G3A“ the principle

(PCM?2) implies CAqyr. For a second order version RCAq of ﬁ?leACO"qu (instead of GoA¥)
this implication is stated in [17]. A proof (which is different to our proof) can be found in [61].

Prop.11.1.1 combined with prop.11.3.1 yields

Proposition: 11.3.3 Let n, Bo(u,v,w),&,t, A be as in prop.11.1.1. Then the following rule holds

G A® + A+ AC-qf + NutNo <, tu(T19-CA(Euv) — Vw Bo(u, v, w))
= 3(eff.)x € GLR” such that
G AY + A+ b-AC + NN\ <, tu/\\ll*((\lf* satifies the mon. funct.interpr. of
Nat©), ko,gl\/no(gn >n—a(n) —ra(gn) <m k%rl)) — Vu <, xu¥* By(u,v,w))
= PRAY + A+ b-AC + Nt N\v <, tuVw <, xu¥ By(u,v,w),

here ¥ := Aa, k, g. ®,+i0g) .
where a, k,g Krg(agy( 41 g)

If A =0, then b-AC can be omitted from the proof of the conclusion. If T < 1 and the types of the

\/fquantiﬁers in A are < 1, then G, A¥ + A+AC—qf may be replaced by E-G,AY + A4+ACP —¢f,
where «, B are as in cor.10.10.

As in prop.11.1.1 we also have a term x which needs only a g+ for an instance a := Cuv (where ¢
is a suitable term in GoR¥).™0
We now consider I1{—instances of AC,,:

I9-AC(fHOOO) .= Ai° (/\xo\/yo/\zo(flxyz =0 0) — Vg Az, 2(flz(gz)z =0 0)).
9-AC(f) can be reduced to I19-CA(g) by

Proposition: 11.3.4
GoAY + ACOO—gf + AfHOOO) (19 -CA(f') — T¢-AC(f)),

where f' = M0 20 f(U3(v), Vs (v), V3 (v), 2).
Proof: By I19-CA(f’) there exists a function k' such that
/\vo(hv =0 < Nz(flvz =0)).
hlzy := h(v3(l,z,y)). Then
/\l,x,y(ﬁlwy =0+« /\z(flxyz =0)).
ACY0—gf applied to /\x\/y(ﬁlxy =0) yields Vg, 2(flx(gx)z = 0).
As a corollary of prop.11.3.3 and prop.11.3.4 we obtain

Corollary 11.3.5 Proposition 11.3.3 also holds with TI9-AC(&uv).

70¢ is defined as the composition of WUy from prop.11.3.1 and &.
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Arithmetical consequences of [IY"-CA(f) and I1{—AC(f)

Using TI9-CA(f) we can prove (relatively to GoA“) every instance of AJ-TA with fixed function
parameters:

VS (/\xo (\/uo/\vo(flxuv =0 0) & NaOVi (glaan =, 0)) —
AS-TA(f, g) = [\/u/\v(fl()uv =0)A /\x(\/u/\v(fl:z:uv =0)— \/u/\v(flx'uv =0))
— /\x\/u/\v(fl;mw = 0)])

Define f' := X% 0. f(v3 (i), v3(i),v3(i),v) and ¢' = X% v°.35g(g(v3 (i), v3(4), v3(i),v)). We now
show

Proposition: 11.3.6
G A + AC™—qf - Nf,g( TI9-CA(f') ANTIS-CA(g') — AS-TA(f,g)).

Proof: IY-CA(f’) and I19-CA(g’) imply the existence of functions hy, hy such that
hilzu =¢ 0 & /\v(flacuv =0 0) and holzu =¢ 0 < \/v(glmuv =0 0).

Assume now that
N (VP N (flauo =4 0) & Na®Va (glzis =, 0)).

Then
Na(Vu(hilzu = 0) & Na(holza = 0)).

With classical logic this yields

/\x\/zo( [/\a(hglmﬂ =0)—=2z=0A[z=0— \/u(hllxu =0)]).

ex?

By AC%%—gf we obtain a function o such that
/\m(am =0+ \/u(hllacu =0)).

AJ-TA(f, g) now follows by applying QF-IA to Ag(z) := (ax = 0).

Next we show that ITI9-instances (with fixed function parameters) of the so—called ’collection

principle’™!

cp : Nz <o z\/yoA(z,a},y) — \/yo/\:i? <o m\/y <o YoA(z, Z,y).
are derivable from IT9—AC-instances.

9-CP(f) := /\lo,a:O (/\;E < a:\/yo/\zo(flx;%yz =00) — Vyo/\i < m\/y <o yo/\z(flaci"yz = 0))

"IFor a detailed discussion of this principle and its relation to induction see [52].
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Proposition: 11.3.7
Gy A“ = Np(Me-AC(f') — T9-CP(f)),
where f' such that f'iZyz = 0 <> (T < v3(i) — f(3(i),v32(i), T, y,2) =0 0).

Proof: TIY-AC(f’) yields
AI°, 20 (/\;% < x\/y/\z(flecyz =0) — VirAi < x/\z(flm?(hi)z =0)).

Define yo := 1 + ®1hx (Recall that &1hz = m<ax(hi)).

We conclude this paragraph by showing that cor.10.11 is false when G,A*, G,R*, G,AY¥ are
replaced by GnA® + X0-TA, PR, G,A® + X0-TA or PRA“, PR, PRAY:
It is well-known that there is an (function parameter—free) instance G of II9-TA such that

GoAY + S9-TA + G+ Aa®Viy0 Ay (z, ),

where /\x\/y < fx Ao(z,y) implies that f has the growth of the Ackermann function.

Let B(20) := /\uo\/voBU (a®,u,v, ) be the induction formula of G, where By(a, u, v, z) contains only
a,u,v,z as free variables. By applying II{-CA(f) to f :=38gotp,, where tp, is the characterictic
function of By, G reduces to an instance of L{-TA. Hence

GoAY + S0-TA +TI9-CA(f) = NaVy Ag(z,y).

If cor.10.11 would apply to GoA“ + X9-TA and PR” we would obtain (by the proof of prop. 11.3.3)
aterm s € PR such that /\x\/y < sx Ag(x,y). This however would contradict the well-known

fact that every s' € PR is primitive recursive.
The same argument applies to PRA“ since PRAY+AC%? —f - S9-TA (see e.g. [32],pp.8-9).

11.4 The Bolzano—Weierstrafl property for bounded sequences in IR? (for
every fixed d)

We now consider the Bolzano-Weierstra$ principle for sequences in [—1,1]¢ ¢ R?. The restriction

to the special bound 1 is convenient but not essential: If (z,) C R? is bounded by C' > 0, we

define z/, := é -z, and apply the Bolzano—Weierstraf§ principle to this sequence. For simplicity
we formulate the Bolzano— Weierstrafl principle w.r.t. the maximum norm || - ||max. This of course
implies the principle for the Euclidean norm || - ||z since || - ||z < Vd - || - [|max-

We start with the investigation of the following formulation of the Bolzano—Weierstraf3 principle:

1

BW : /\(:cn) C [-1, 1}‘1\/1: € [—1,1]d/\k0’m0\/n >0 m(Hx — Ty |lmax < m),

i.e. (x,) possesses a limit point x.
Later on we discuss a second formulation which (relatively to G, A%) is slightly stronger than BW:

Na,) € [-1,1]Va € [-1,12V 1 (A0 (fn <o f(n+1))

BWT : 1
/\/\kO(Hx — T pkllmax < TH»’
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i.e. (x,) has a subsequence (zf,) which converges (to =) with the modulus k%rl

Using our representation of [—1,1] from chapter 3, the principle BW has the following form

1

d
1(0 1(0 _ __
/\xl( ),...,xd( )\/al,...,ad <4 M/\k;o,mo\/n >0 m/\ (\ai —r Zn| <gr m),

i=1

BW (z21(9)):=

where M and y* — ¢ are the constructions from our representation of [—1,1] in chapter 3. We now
prove

(¥) GoA + ACYOgf - F~ — Az} @, 239 (1) CA(xaz) = BW(2)),
for a suitable y € GoRY:

BW (z) is equivalent to

d
1
0 ~ —_—
(1) Val, ..y Qq Sl M/\k‘ \/n >0 k‘l:/\1 (|(J,z —R $Z7’L| S]R m)

which in turn is equivalent to
; 3
2) Var, ... a0 <1 MAKVn > ki/\1 (lask —o @@)(k)] <o 7)-
Assume —(2), i.e.
’ 3
3) Na, ..., aq <1 MVEOAn > k\/1 (lask —q (@m)(k)] >q m),

Let x € GoR“ be such that

GoA” /\xi(o), . ,x(li(o)/\lo, n®(xain =¢ 0

d
[n >0 vyt (1) — ,\_/1 (1) —q (@in) (Vi ()] >q m])

9-CA(xz) yields the existence of a function h such that

d
__ 3
(4) A9, 15 K0 (Rl ak =0 0 ¢ An >0k \/ (1l —¢ (@) (k)] >q le).

i=1
Using h, (3) has the form
(5) Nay, ..., aq <1 MVEO(h(ak, ..., adk, k) =0 0).
By X{-UB~ (which follows from AC*Y—qf and F~ by prop. 7.2.19 ) we obtain

d
6) VioAar, ... aa <1 MAmOVE <o keAn >0 &k \/ (@) (k) —q @) (k)] >q k%l)

i=1
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and therefore

d
(7) Vko/\ah ..y Qq Sl M/\mo/\n >0 ko \/ (|(a:?n) — 1R m| >R
i=1

1
/ﬂo—i—l).

Since |a;, 3(m + 1) —r @i| <mr miﬂ (see the definition of y — ¢ from chapter 3) it follows

d
- __ 1 .
(8) Vko/\al, v ag <4 MAn >0 koi:\/l (|ai —R Zin| >R m), ie.
VioAar, ... _1, 1A - _1
(9) ko (al, ,(ld) c [ 1, 1] n >o kO(”Q gn”max > Q(k‘o T 1))

By applying this to a := (ko + 1) yields the contradiction [lz(ko + 1) — z(ko + 1)|lmax > 35571y
which concludes the proof of (x).

Remark 11.4.1 In the proof of (*) we used a combination of IIY~CA(f) and X{~UB~ to obtain a
restricted form I9~UB~| of the extension of X{~UB~ to II{—formulas:

Af <y sVnOAKO Ao (t0[£), n, k) —

Im-uB—| :
FOB N VoA s <1 sAm®Vi <o no KO A ([Tl k).

where k does not occur in ¢[f] and f does not occur in A(0,0,0).

9-UB~| follows by applying TI9-CA to An,k.ta,(a n® k®), where tu, is such that
ta,(a% n% k%) =5 0 <> Ag(a®,n° k), and subsequent application of X{-UB~.

9-CA and X9-UB~ do not imply the unrestricted form II9-UB~ of II9-UB~|\:

/\f <1 s\/no/\kzvo(f,n,k‘) —

m)-uB-
! \/no/\f Sl s/\mo\/n So noAkvo((m),n, k)

since a reduction of TIY-UB~ to L{-UB~ would require a comprehension functional in f:

(+) VOAFL n0(@fn =0 0 5 Ak°Ag(f,m, k).

In fact II{-~UB~ can easily be refuted by applying it to Af < )\x.l\/no/\ko(fk =0— fn=0),
which leads to a contradiction. This reflects the fact that we had to use F~ to derive X{~UB~, which
is incompatible with (+) since ®+ACH%—qf produces (see above) a non-majorizable functional,

whereas F'~ is true only in M%.

Next we prove
(k%) GoAY + ACYOqf + /\xi(o), e 7x111(0) (£9-TA(xz) A BW(z) = BW T (z))
for a suitable term x € G3R¥, where

/\lo(\/yo(fl()y =0 0) A /\mo(\/y(flmy =0) — \/y(fl:c’y =0))

0 =
SYIA(f) = - NaVy(fizy = 0)).
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BW (z) implies the existence of ay,...,aq <3 M such that

d
(10) A,V > m A\ (1,205 + 1)k +2) —q @)k + 1)k +2))] <a 7)-
Define (for x}(o), e ,x(li(o), 19,...,19)

F(z,l,k,m,n):=
(zn is the m—th element in (z(1)); such that /\ (Il; —q (@n)(2(k + 1)(k + 2))| <q k%_l))

=1

One easily verifies that F(x,l, k,m,n) can be expressed in the form \/(LOFO@7 L, k,m,n,a), where
Fj is a quantifier—free formula in £(G2A%), which contains only z,(, k,m,n, a as free variables. Let
X € GoR¥ such that

X(lvl,kvmvnaa) =00« FO(gaLkaman»a)

and define x(z,q,m,p) == X(z,{"(q), ..., v511 (q), m, j1(p), j2(p)).
Y9-TA(xz) yields

) Ny gk (Vo Pz, Lk, 0,n) ANm(VoF (2,1, k,m,n) — VaF(z, L k,m',n))
— /\m\/nF(LL k,m,n)).
(10) and (11) imply
Nk, mVn(gn is the m—th element of (z(l)); such that

/d\ (lai(2(k + 1)(k +2)) —q @in)(2(k + 1)(k + 2))| <q 757))-

i=1

(12)

and therefore

/\k\/n(gn is the k—th element of (z(l)); such that

A (1 20k + 1)k +2) —q @20k + Dk +2)] <q 29)).

i=1

(13)

By AC%%—qf we obtain a function g' such that
/\k(g(gk) is the k—th element of (z(l)); such that

A (0 + 1)k +2)) —q (a(gh) 20k + 1)k +2)] <a £5))-

i=1

(14)

We show
(15) Nk(gk < g(k + 1)) :
Define Ag(zl, k) := '/j\ (la;(2(k +1)(k+2)) —q (z:l)(2(k + 1) (k +2))| <q %4—1) Let I be such that
Ao(zl, k +1). Because of
ja:(2(k + 1)(k +2)) —q (2:) (2(k + 1)(k + 2))| <
Ao(zl,k+1)
64205+ 2) (b +3) —q G0+ 2+ )] + s S
)

k+2 t sy = k+17
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this yields Ag(zl, k). Thus the (k+1)-th element a2l such that Ag(zl, k+1) is at least the (k4 1)-th
element such that Ag(zl, k) and therefore occurs later in the sequence than the k-th element such
that Ag(zl, k), i.e. gk <g(k+1).

It remains to show

d
— 1
(16) Ak /:\ (I —w 2:(fk)| < ). where fh = g(2(k + 1) :
This follows since

(1a:(2(k + 1)(k +2)) —q (z:(gk))(2(k + 1) (k + 2))| <

>a

@577
N k+1

~.
Il

implies

(ai —m z1(gk)| <R —— + 2 < 2
TR SR e Tk )kt 2) 41 k1)

~.

Il
-

K2

(15) and (16) imply BW ¥ (z) which concludes the proof of (sx).

Remark 11.4.2 One might ask why we did not use the following obvious proof of BW™*(z) from
BW (z):

d
Let a be such that NeVn > & A (|éi —RZn| <R k%rl) ACY0¢f yields the existence of a function

=1
g such that

d

Nk(gk > kA N (la; —w z:(gk)| <m
i=1

1
i)

Now define fk := g¥*1(0). Tt is clear that f fulfils BW™ ().

The problem with this proof is that we cannot use our results from chapter 10 in the presence of the
iteration functional ®;; (see §3 above) which is needed to define f as a functional in g. To introduce
the graph of ®;; by XL-TA and AC—qf does not help since this would require an application of ¥9—
TA which involves (besides z) also a as genuine function parameters. In contrast to this situation,
our proof of BW(z) — BW¥(z) uses 2-IA only for a formula with (besides z) only k,ak as
parameters. Since k (as a parameter) remains fixed throughout the induction, a only occurs as the
number parameter ak but not as genuine function parameter. This is the reason why we
are able to construct a term y such that X9-TA(yz) A BW (z) — BW T (z).

Using (%) and (**) we are now able to prove

Proposition: 11.4.3 Let n > 2 and By(u*,v™,w") € L(G,A¥) be a quantifier—free formula which

contains only u',v™,w" free, where v < 2. Furthermore let §,t € GRR” and A be as in thm.2.2.2.
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Then the following rule holds

GnA® + A+ AC-qf + Nt No <, tu(BW (cuv) — Vu By (u, v, w))

= (eff.)x € GLR” such that

Gmax(n’g)A(: +A+b-AC F Nt Ny <; tu/\\II*((\II* satifies the mon. funct.interpr. of
Nat©), ko,gl\/no(gn >n—a(n) —ra(gn) <m k%rl)) — Vu <y xu¥l* By(u,v,w))

= PRAY + A+ b-AC F N \o <, tuNVw <, xu¥ By(u, v, w),

here ¥ := Aa, k, g. P,4i0g) .
where a,k,g i<1é'121>§k’( ) g)

If A =0, then b-AC can be omitted from the proof of the conclusion. If T <1 and the types of the

quuantiﬁers in A are < 1, then G, AY + A+AC—qf may be replaced by E-G, A + A+AC*P —¢f,
where a, B are as in cor.10.10.

As in prop.11.1.1 we also have a term X which needs only a U* for an instance a := Cuv (where ¢
is a suitable term in GaRY).

Proof: By (x),(x*) and the proof of prop.11.3.6 there are functionals ¢1, @2 € GoR® such that
GoAY + ACHOqf FF™ — AQ(H?*CA(@lg) AY-CA(paz) — BWH(2)).

Furthermore
GoAY FTIY-CA(¢ f1 f2) = TIY-CA(f1) ATI{-CA(f2),

where

fl(j2x7y)a if jlz =0
¢f1f2x0y0 =0
f2(jozx,y), otherwise.

Hence

GoA® + ACYOgf + F~ — N (I9-CA(psz) = BW (),
for a suitable p3 € GoR“ and thus

GpAY + A+ ACqf FF~ = Nu'Ao <, tu(T19-CA(p3(¢uv)) = Vu By).
By the proof of thm.7.2.20 we obtain

GpAY + A+ (x) + ACqof FAuAv <, tu(T19-CA(ps(¢uv)) — Vu By),
where

A= {\/Y <05 s\, 2TAo(x, Yz, 2) : /\z\/y < sa\z74, € A},

() 1= A VY < 202 1O yAp 72O 10 21 \n <g no( \ (Zi < i) — Pk(Z,n) < Ph(Y Djk)).

<n

Prop.11.3.3 (with A’ := A U {(x)}) yields the conclusion of our proposition in G,A% + A + (x)+
b-AC and so (since, again by the proof of thm.7.2.20, G3A¥ = (x) ) in Gaxs,n)AY + A+ b-AC.

Remark 11.4.4 Analogously to (PCM2*) one can generalize BW™*(z) to BW*(z(,), where

BW*(g(_)) asserts the existence of a sequence of subsequences for a sequence of bounded sequences.
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11.5 The Arzela—Ascoli lemma

Under the name ’Arzela—Ascoli’ lemma’ we understand (as in the literature on ’reverse mathemat-
ics’) the following proposition:

Let (f;) C C[0, 1] be a sequence of functions™ which are equicontinuous and have a common bound,
i.e. there exists a common modulus of uniform continuity w for all f; and a bound C' € IN such that
[I/illco < C. Then

(i) (fi) possesses a limit point w.r.t. || - ||o which also has the modulus w, i.e.

Ve co)(AAmVn > m(||f - fn

1
oo < m) A f has modulus w);

(ii) there is a subsequence (fg) of (f;) which converges with modulus k%_l

As in the case of the Bolzano—Weierstrafl principle we deal first with (7). The sligthly stronger
assertion (ii) can then be obtained from (i) using X9-TA(f) analogously to our proof of BW ™ (x)
from BW(z). For notational simplicity we may assume that C = 1. When formalized in G, A%,
the version (7) of the Arzela—Ascoli lemma has the form

(fl(o , W ) = (f() <1(0) /\lo 0 MA

H?BF(fl,m,,u,v):E/\aOFo(fl,m,u,v,a):E

1 1
® om) +1 = |fiu —r fiv] <m ﬁ)

= Vg <10y .M (A, 0P (g,m,u,0) ANV >0 k(IAab g(@)m = A fu(@)mlle < £57))).

A, m0, w0, v O(lqu —q qv| <q

Here M,q and y' + 7 are the constructions from our representation of [—1,1] in chapter 3. For

notational simplicity we omit in the following ().
A-A(f,w) is equivalent to™

Joy < 1900 M A /\lo,mo,uo,vOF(fl,m,u,v) — \/g <1(0) )\n.M(/\m,u,vF(g,m,um)/\
w(k)+1

NN > k /\ (lo(zmIr(E) —a fo(Gasmmr(B)] <o 737))-
Assume —~A-A(f,w), i.e. fiy < MO nOM A /\l,m,u,vF(fl,m,u,v) and

/\g <1(0) An. M(/\m u,v F(g,m,u,v) —

(1) w(k)+1 _
ViAn(n >0 k — v+ (19(GmIr(F) —@ folgmmr(E)] > k%)))-

Let « be such that

w(k)+1

0 70 .0 i 5
a(l” k" n") =00 In>k— l); — —— r(k)| >0 ——) |
72The restriction to the unit interval_[O, 1] is convenient for the following proofs but not essential.
73For better readability we write LU(TL)-FI instead of its code.
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9-CA(c’) (where o'in := a(j1i, joi,n)) yields the existence of a function h such that
hlk = 0 < Nn(a(l,k,n) = 0).

Hence

) h(Xi.g( k)H)IR(k)(w(k)Jrl),k) =00«
2 k)+1
Mnsok v (9(smmIm k) — Folsrim)m(E)] >q 127)-

(1),(2) and X9-UB~ yield (using the fact that g can be coded into a type-1-object by ¢'z° :=
9(j1, j2x))

\/ko/\g’ <4 /\x.M(jlx)/\lo (/\m,u,v,a < koFo(Ax,y.(¢, D) (§ (2, ), m,u,v,a) —

3) Wk +1 | .
Vi< koMn> ko V(100D G ) arirm k) —e fulagbmmn®)] >0 25)).

=0

and therefore using

gmn, if m,n <1

gmn =
007 otherwise, and g1 =1(0) )\x,y((gl)’,r)(](x,y)) for r > J(l'vy)
Vio/Ag <1(0) A M (/\m,u,v,a < koFo(gi,m,u,v,a) —
(4) w(k)+1 ;
Vie< koAn> ko V- (I v () —a faGairom ()] >a g21))-

By putting g := fr,+1 and [° := 3(c + 1), where ¢ is the maximum of ky + 1 and the codes of all

w(%ﬂl for i <w(k)+ 1 and k < ko, (4) yields the contradiction
w(k)+1 ; ; .
< ko \:/0 (o1 (G 77 ®) —@ frona (G ®) >0 77)

o can be defined as a functional £ in f(.),w, where £ € G2R“. Since the proof above can be carried

out in GzA“+ACH0—qf™ (under the assumption of F~ and II9-CA(£(f,w)) using prop.7.2.19 ) we
have shown that

G3AY + ACHOgf F F~ = AfOO I I-CAE(f,w)) = A-A(f,w)).

Analogously to BW™ one defines a formalization A~A™(f,w) of the version (ii) of the Arzela—Ascoli
lemma. Similarly to the proof of BW (z) — BW T (z) one shows (using 9-TA (x(f,w)) for a suitable
X € GoRY) that A-A(f,w) = A-AT(f,w). Aanalogously to prop.11.4.3 one so obtains

Proposition: 11.5.1 For n > 3 proposition 11.4.3 holds with BW ™ (&uv) replaced by A-A(Euv) or
A-AT(Euv).

74We have to work in G3A¥ instead of G2A“ since we have used the functional Oy fx = fx.
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11.6 The existence of limsup and liminf for bounded sequences in R
Definition 11.6.1 a € R is the limsup of (x,) C R iff

(#) NEO(AmVn >0 m(ja — 2| < %H) AVING >0 1(z; <a+ %ﬂ))'
Remark 11.6.2 This definition of limsup is equivalent to the following one:
() a is the greatest limit point of (x,,).
The implication (x) — (xx) is trivial and can be proved e.g. in GoA“. The implication (x*) — (x)
uses the Bolzano—Weierstraf$ principle.
In the following we determine the rate of growth caused by the assertion of the existence of lim sup
(for bounded sequences) in the sense of () and thus a fortiori in the sense of ().

We may restrict ourselves to sequences of rational numbers: Let (9 represent a sequence of real

numbers with /\n(|zn| <m C). Then y,, := Z,(n) represents a sequence of rational numbers which

is bounded by C' + 1. Let a' be the limsup of (y,), then a also is the limsup of z. Hence the

existence of lim sup z,, follows from the existence of lim sup y,,. Furthermore we may assume that
C=1.

The existence of limsup for a sequence of rational numbers € [—1,1] is formalized in G, A“ (for
n > 2) as follows:

1 1
Jlimsup(z') := Val/\ko(/\m\/n >0 m(la —r Z(n)| <mr m) AVINj >, (2(§) <m a+ m)),
where #(n) := maxq(—1, ming(zn,1)). In the following we use the usual notation #, instead of

v

We now show that Jlimsup(z!) can be reduced to a purely arithmetical assertion L(z!) on

z' in proofs of ARV <, tu\/w”’Aofsentences:

1
L(z') = NV >o kNK >0 1V jN\g,r >0 j /\mm(K >om,n >0l = |2y’ —q 27| <q k7—|-1)7
Lo(z,k,l,K,q,r):=
where z}" := maxq(Zm, - - ., Tm+q) (Note that Lo can be expressed as a quantifier—free formula in

GrAY).
Lemma: 11.6.3 1) GoAYF Mon(\/k/\lVK/\j\/q,r(l >k—K>IANgr>jA-Lo).
2) GoA” + Nat (Flimsup(z) — L(z)).

3) Gy A% /\xl((L(x)s — Jlimsup(z)).
(The facts 1)-3) combined with the results of chapter 10 imply that Ilimsup(Euv) can be
reduced to L(Euv) in proofs of sentences Nt Av <; tqu’YAO, see prop. 11.6.4 below).

1) G3A® +29-TA + Nal L(z).
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Proof: 1) is obvious.
2) By Jlimsup(zt) there exists an a' such that

1

(1) NOARNVR >om(la —Rr Tm| <mr el

)
and

(2) AROVING >0 1(2; < a+ 1)

Assume —L(x), i.e. there exists a ko such that

(3) A > ko\/K > l/\j\/q,r zj\/m,n(K >m,n>1A |xf1” —qxy| > T 1).
0

Applying (2) to 2kg + 1 yields an ug such that

4 Nj > ug(z; < S——

@) A > ol <m ot )
(3) applied to I := maxg(ko, ug) + 1 provides a Ky with

(5) Ko > up A /\j\/q,r > j\/m,n(Ko >m,n > ug Alzy —q zy| > T 1).

0

(1) applied to k := 2kg + 1 and m := Ky yields a dy such that
(6) do > Ko A (la— ay| < ).
o= 2(]{30 + 1)

By (5) applied to j := dy we obtain

(7> KOZUO/\dO>KO/\(|a*IRi.d0|Sm)/\

Var = doVm.n(10 = mon = o n 2 —q 221 > )

Let q,r, m,n be such that

1
ko+1°

(8) q,r > do N Ko >m,n > ug Az —q x| >

©)

Then " > T4, > a — since m < Ky < dy < m + ¢q. Analogously: z > a —

_1 _1
2(ko+1) 2(ko+1) "

On the other hand, (4) implies ", z}! < a + m Thus |z" —q 27| < ﬁ which contradicts
(8)-

3) Let f, g be such that L?® is fulfilled, i.e.

Ne(fk > kANK > fRNgr > gk K

/\m,n(K >m,n > fk— |zt —q 27| <q k%’_l))

(%)

We may assume that f, g are monotone for otherwise we could define
ME = maxo(fO0,...,fk),gMkK = maxo{gzy: v <o kAy <o K} (f™,gM can be defined in
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G1R® using ®; and A\-abstraction). If f, g satisfy (x), then f™ g™ also satisfy (*).
Define

bR mini(f (k) <o i <o f(k) + gk(fk) A& =q &)y ], if existent
=0
0%, otherwise.

h can be defined in GoA“ as a functional in f,g. The case ’otherwise’ does not occur since
Am, q\/i(m <ot <om+qgAZ; =g maxq(Lm, ..., Tmtq))-

By the definition of h we have (+) Znr =q xa:(fk) for all k. Assume that m > k. By the
monotonicity of f, g we obtain

fm >0 fkAgm(fm) >0 gk(fm) >0 gk(fk).
Hence (*) implies

1
o m
W) 125 pm) =@ Tymrmy| < 577

and

1
fk fk
() |2k ) =@ Tgppmy| < E 1

and therefore

2
ko gm
B) 1 gksm) —@ Tgmesmy| < 757

Thus for m,m > k we obtain
5 4
fm f
() |2 g m) —@ Tgrin ] < Er1
For h(k) := h(4(k + 1)) this yields

1

(5) Nk, > k(27,, —¢ #5,0] < 1)

Hence for a :=; Am".%;, = we have @ = a, i.e. a represents the limit of the Cauchy sequence (&;, ).

Since h(k) = h(4(k +1)) > f(4(k + 1)) (2) 4(k + 1) > k, we obtain

1

(6) NEk(h(E) > k A%, —w o] <mr 1)

i.e. a is a limit point of z.
It remains to show that

(7) NEVIN >0 1(2; <m a + k%rl) :

Define c(k) := g(4(k + 1), f(4(k + 1))). Then by (x)

1
No.r > JAGH+D) _ o pf@kr) < 1
g, > c(k) (| @ 7 < T 1))
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(e
a(k) =@ Ty(a(kt1), s (4(k+1)))

and therefore

Ad = k) (1] 4 —q o) < ).

' ) 1
Nj > c(k) (% pakrn) s <q alk) + m)

which implies

Nj > e(k) + f(4(k + 1)) (& <m a+ 4(k1+1) + kil)'

Thus (7) is satisfied by | := ¢(2(k + 1)) + f(4(2k + 1) + 1).

4) Assume —L(x), i.e. there exists a kg such that

N > kOVKZZAqu,TZij,n K>mn>IAlz" —q "] > .
U R
0

We show (using $9-1A on [°):

(++) AL 2o 1V (1th(i) = L AN < 11((0); < (0)1) ANGL T <110 # 5 = Eay, —o ), | > — ).
Ag(i,l):E
I =1: Obvious.
I — [+ 1: By the induction hypothesis their exists an ¢ which satisfies A (i,1).
Case 1: /\j < l;l\/a/\b > a(|§cb —Q *’E(i)jl > Wil)
Then by I19-CP there exists an ag such that
/\j<l*1/\b>a0(|f(, —Q .f(i).| > 1 )
- I ko+1
Hence
i’ =i * (maxg(ao, (1); -1) + 1) satisfies Ag(i',1 + 1).
Case 2: — Case 1. Let us assume that Z;), < ... < i(i)lil (If not we use a permutation of

(1)oy---,(i);21)- Let jo <o I +1 be maximal such that

1
D) ANiaVn >0 m(ld, —o 0. | < .
(W) AV 2o |0 ¢ Z,, | < -27)

(The existence of jy follows from the least number principle for II—formulas II-LNP: Let j; be
the least number such that (I =1) —j; satisfies (1). Then jo = (I =1) =j1).
The definition of jy implies

1
k0+1))'

Nj <1135 > jo = Val\b > a(liy, —q i@, | >
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Hence (again by I1{-CP)

1

(2) Va1 > ]0/\_7 < l;l(j > jo — /\b > a1(|fb —qQ i‘(i)j| > m))

Let ¢ € IN be arbitrary. By (+) (applied to [ := maxg(ko,c) + 1) there exists a K such that

1

(3) /\qu,r > j\/m,n(Kl >m,n > cko Azl —q 2] > ——).
a ko +1

By (1) applied to 7 := K there exists a u > K such that [T, —q @), | < ﬁ
(3) applied to j := w yields ¢, r,m,n such that

1
Az ™ o
x x Z)Jo ko 1

1
(5)q,r2u/\K1Zm,nZC,ko/\|x;n—Qx:f|>kOJrl 0Ty

>q &

(since m,n <u<m-+gq,n+r).
Because of m,n > ¢, ko this implies the existence of an a > ¢, kg such that &, > f(i)jo' Thus we

have shown
(6) AeVa >0 ¢, ko(Za > i(i)jo)'

For ¢ := maxq(ax, (i), -1)+1 this yields the existence of an oy > ay, (7); - 1, ko such that &, > &
Let K,, be (by (+)) such that

i)jo .

1
ko—i—l)’

(7) /\j\/q,r > j\/m,n(KQ1 >m,n > a1(> a1, ko) Aoy’ —q 2| >

(6) applies to ¢ := K,, provides an ap > K,, such that Z,, > Z(;), . Hence (7) applied to j := az

J

yields q,r, m,n with

1 y
(8) ;7 > ag AN Koy 2myn > a1 Az —q 27| > m/\fqnvfc? 2@ Tas-

Since m,n > aq > aq, (i); -1, (8) implies the existence of an ag > (4); -1, a1 such that

1
ko+1°

(9) (fa3 >Q .'Iv?(i)jo +

Since Z(;), < O for j < jo, this implies

J

(10) /\] < jo(Fas >q (i), + ko + 1)'

Let j <1-=1be > jo. Then by (2) and a3 > a1: [Ta; —q Zi),| > ﬁ Put together we have shown

1

(11) ag > (i)l—'l /\/\.7 < Z;1(|j§a3 —Q i(’)]' > ko + 1)

Define i’ := i x {ag). Then Ag(i,1) implies Ag(i',1 + 1), which concludes the proof of (++).

(++) applied to I := 2(ko + 1) + 1 yields the existence of indices ig < ... < iy(y+1)

such that \i(i)j—Qi‘(i)j,\ > Flﬂ for 7,5 < 2(ko+1)Aj # j', which contradicts /\jo(—l <q &; <q 1).
Hence we have proved L(x). This proof has used X{-IA, II9~CP and II3-LNP. Since II3-LNP is

equivalent to X9-TA (see [52]), and ITI)—CP follows from X9-TA by [51] (where CP is denoted by M),
the proof above can be carried out in GzA* + X9-TA.
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Proposition: 11.6.4 Let n > 2 and By(u*,v™,w") € L(G,A¥) be a quantifier—free formula which
contains only u',v™,w" free, where v < 2. Furthermore let £,t € G,R* and A be as in thm.2.2.2.

Then the following rule holds
GnAY + A+ AC—qf + NN\ <, tu(3lim sup(§uv) — \/w"fBo(u, v, w))
= J(eff)x € Gn,R” such that
GpAY + A+ b-AC + NutNo <. tu/\g*((g* satifies the mon. funct.interpr. of
the negative translation L(Euwv)" of L(§uv)) — Vuw < xu¥* By(u,v,w))
= J¥ € T; such that
PAY + A+ b-AC + Nt Ao <, tuVw <., Wu By(u, v, w).

where T is the restriction of Gédel’s T which contains only the recursor R, for p =1 (see chapter
2). The Ackermann function (but no functions having an essentially greater order of growth) can
be defined in Tj.

If A =0, then b-AC can be omitted from the proof of the conclusion. If T <1 and the types of the

quuantiﬁers in A are < 1, then G, AY + A+AC—qf may be replaced by E-G, A + A+AC*P —¢f,
where a, B are as in cor.10.10.

Proof: Prenexation of Aul/\v <, tu (L(éuv) — VwBy(u, v, w)) yields
G = Nut Ny <, tu\/k/\l\/K/\qu,r,w[(l >kNK>INgr>j— Lo)) — Bo(u,v,w)]
Lemma 11.6.3.1) implies
(1) GoA” F Mon(G).
The assumption of the proposition combined with lemma 11.6.3.3) implies
(2) GLAY + A+ AC—qf + AutNo <, tu(L(fuv)S — \/w”’Bo(u, v, w))
and therefore
(3) GLAY + A+ ACqf FGH.
Theorem 10.8 applied to (1) and (3) provides the extractability of a tuple ¢ € G, R such that
(4) GhAY + A+ b-AC t (¢ satisfies the monotone functional interpretation of G').
G’ intuitionistically implies
(5) N\ <, tu(L(uv) — ~=VwBy(u, v, w)).
Hence from ¢ one obtains a term ¢ € G,R® such that (provably in G,A; + A + b-AC)
(6) \/1/)(@ s—maj ¥ A ATAVES tu/\g(/\b(L(guv)’)D — Bo(u,v, Yuva))),

where \/Q/\Q(L(guv)’)D is the usual functional interpretation of L(fuv)’.

Let U™ satisfy the monotone functional interpretation of L(uv)’ then

(7) Vg(g* s—maj a A /\Q(L(«fuv)’)D).
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Hence for such a tuple a we have

(8) Aut.gu(t*u)¥* s-maj tuva for v < tu
(Use lemma 1.2.11. ¢* in G,,R“ is a majorant for t).
Since v < 2 this yields a >3 bound xu¥™* for Yuva (lemma 1.2.11 ).
The second part of the proposition follows from lemma 11.6.3.4) and the fact that G, A¥ + X9-1A
has a monotone functional interpretation in PAY by terms € Ty (By [52] £9-TA has a functional
interpretation in T;. Since every term in T; has a majorant in Ty, also the monotone functional
interpretation can be satisfied in T1).
Remark 11.6.5 By the theorem above the use of the analytical aziom Ilimsup(Euv) in a given

proof of Nut N\ <; tu\/w”Bo can be reduced to the use of the arithmetical principle L(§uv). By
lemma 11.6.5.2) this reduction is optimal (relatively to GaA“).

In this chapter we have determined the impact of sequences of instances /\ZOB(guvl) of the

following analytical principles AYRIO):! (z) on the growth of bounds for sentences
(+) At N0 <, tu kVu® 4,
extractable from proofs using such instances:

1) the convergence of bounded monotone sequences in IR,
2) the existence of a greatest lower bound for sequences in IR which are bounded from below,

3) the existence of a convergent subsequence for bounded sequences in le,
4) the Arzela—Ascoli lemma,
5) the existence of lim sup and lim inf for bounded sequences in IR.

We have shown that the use of sequences of instances /\ZOB(fuvl) of 1)-4) in a proof of (+)
(relatively to G, A“+AC—qf+ the analytical principles discussed in chapters 3-7) can be reduced
to a suitable sequence /\ZOPCMl(guvl) of instances of the arithmetical principle PCM1 (i.e.
the Cauchy property of bounded monotone sequences in IR) studied in chapter 9.7> So the results
on the growth of bounds stated at the end of chapter 9 apply. In particular the contribution of
AI°PCM1(€unl) and even \al(® PCM1(a) is not stronger then ®;; and hence a primitive recursive

bound is always guaranted (this is in contrast to the use of the full universal closure /\xl(O)B(m) of
the principles 1)—4) which are equivalent to CA,, and therefore make all a(< &¢)-recursive functions
provably recursive). However for special §~ and if ®;; is applied only to g := S (see the discussion
at the end of chapter 9) one still may obtain polynomial bounds (for n = 2 and 1)-3)).

These results also apply to instances of II9-CA and its arithmetical consequences (relatively to
GnAY+AC—f) AJ-TA and I19-CP.

Instances of 5) also can be reduced to corresponding instances of a certain arithmetical princi-
ple L € TI2. L can be proved using X3-TA which suffices to prove the totality of the Ackermann
function (but not of functions having an essentially greater order of growth). So w.r.t. its impact
on the growth of provably recursive functions, 5) is the strongest tool used in standard analysis.

"5For 1)-3) this works for all n > 2 and for 4) if n > 3.
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12 False theorems on IIY-CA~ and ¥)-AC™ in the literature

By II{-CA~ and %9-AC~ we denote the schemas of II-comprehension and %9—choice for formulas
without parameters of type > 1, i.e.

m)-CA~ Vf/\a:o(fx =00« /\yvo(x,y,go)), (only x,y,a free in Ap),
YO-ACT /\aco\/yo\/zo/\vvo(ac,y7 z,v,a°) = Vf/\x\/z/\v Ao(z, fz,2z,v,a),
where only x,y, z,v, a occur free in Ag(x,y, z,v,a).

As a special case of cor.11.3.5 we have

Proposition: 12.1 Let vy < 2 and Ag(u',v™,w") contains only u,v,w as free variables; t € G, R“.
Then the following rule holds

GoAY @ AC-—qf @ TI9-CA~ @ X9-AC + Nu\v < tuVw By(u, v, w)
= JU ¢ PR’ such that
PRAY + Aur Ao <, tuVw <4 Yu By(u,v,w).

If T < 1, we may replace G, AY ® AC—qf ®TI)-CA~ & X9-AC~ by
E-G,AY+AC*P —qf +119-CA~ + X9-AC~, where (a =0AB<1) or (a=1AL=0).
In particular

B-Gp A+ ACP—qf +T19-CA~ + 29-AC~ + Nu®VoO R(u, v)
= 3 primitive recursive function @ :

Au R(u, pu) is true,

where R is a primitive recursive relation. If in the definition of G, A¥ the universal axioms 9) are
replaced by the schema of quantifier—free induction one has PRA F R(u,u)

(Note that this proposition also holds for n = co. Since all primitive recursive functions (but not all
primitive recursive functionals of type 2!) can be defined in Goo AY (see chapter 1) we may assume
that Goo A D PRA).

Proof: The proposition follows from cor.11.3.5 using the fact that ©9—AC~ can be derived from
I9-AC~ (using pairing) and the fact that there is a ¢ € G,R¥ such that &(z,y,2,v,a) =¢ 0

Ag(x0, 40,29, 00, a%). Thus I{-AC~ follows from I1{-~AC(¢) for a term & without parameters of
type > 1.

In this final chapter we diccuss the two treatments of TI9~CA~ and X9-AC~ in the literature due
to Mints [46] and Sieg [57], which are carried out in the context of a second—order fragment BT

of PRA“ and which state some conservativity results. By constructing counterexamples to these
results we show the incorrectness of these treatments. Furthermore a weakening of their results

which is correct by our prop.12.1 does not follow by the proofs in [46] and [57].

Let BT denote the extension of primitive recursive arithmetic PRA to the second—order theory which
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results if function variables and (two-sorted) classical predicate logic with quantifiers for number
variables as well as for function variables are added and the schema of quantifier—free induction
QF-IA is extended to this language, i.e. instances of QF-IA in BT may contain function variables.

Furthermore BT contains (at least™ ) the functionals ®1 fz = max(f0,..., fz), ®ofz =>7_ fi,
O fr= fx and p, together with their defining equations. Finally we have the schema of so—called
‘explicit definition’ in BT:

VfAa(fz = t[z]), where t is a term of BT.

(In our theories G, A these schema is superfluous because of the defininability of A—operators by
means of IT and ¥).

Both Mints ans Sieg are not very explicit on the inclusion of primitive recursive functionals in BT

"The formalization of PRA being examined by us contains variables for the positive intergers ...,
and for unary number—theoretic functions f, g, h, ... . Functors are constructed from the functional
variables and the constants J, ; (projection), Z (function identically equal 0), and s (addition of 1)
with the aid of substitution and primitive recursion formulas. Terms are constructed from objective
variables and 0 with the aid of the functors’ ([46], p.1488)" .

"The base theory for subsystems is formulated in £2 and is called (BT); it includes the axioms
of (QF-TA) (but possibly with second—order parameters in the defining equations for primitive re-
cursive functions and the instances of IA) and the schema for explicit definitions of functions ED

(3)(Var) f = tafa]..” ([57), p37).

Since Mints explicitely uses the functional ®; and both Mints and Sieg use the functional &

for the formulation of WKL, it is clear that genuine primitive recursion in function arguments is
allowed. Here ’genuine’ means primitive recursion which depends on a variable number of values

of the function arguments as in ®; (i = 1,2,...) or ®(y. Such primitive recursive functionals can
not be obtained from primitive recursive functions by substitution of number terms (which may
contain function variables) for number variables (an example for the later e.g. is the functional
®fr = x + fa which is not genuine in our sense).

The iteration functional ®;:xyf = f*(y) is also a (genuine) primitive recursive functional. However
it has quite different properties than @, ®,... and @y as we have seen in chapter 2 and chapter 9.

Since it is not clear to us whether Mints or Sieg intend to include ®;; in BT, we treat the theories
BT and BT+®;; seperately. It turns out that our refutations apply in an even stronger sense when
®,; is added to BT.

Let TI9-TR~ denote the rule of induction for II9—formulas without function parameters. In

761f further primitive recursive functionals of type 2 (in the sense of [29] ) are added our refutation of the results
stated in [46] ,[57] applies a fortiori. Prop.12.3 and prop.12.5 below as well as their corollaries even hold when BT
does not contain any of these funcionals at all.

"TNote that the restriction to unary function variables is no real restriction since coding of finite tuples of numbers
is possible in BT.
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[46] the following theorem is stated

If BT + I9-IR™ + 9-CA~ - AaVy Ag(, ),
(1) then there is a primitive recursive function ¢ such that

PRA + Az Ap(z, px).

(Here Ag(z,y) € L(PRA) contains only z,y free).

Remark 12.2 Mints uses (1) to show the I19—conservativity of WKL restricted to primitive recur-
sive trees when added to BT+II3-IR™ + II9-CA~ over PRA (In fact Mints claims to have proved
the conservativity of full WKL, which however does not follow from (1) since the derivation of WKL
from TI9-CA is possibly only when function parameters are allowed to occur in 119-CA. This has
already been noticed in [57] p.65).

In [57] various generalizations of (1) are stated:

(2) ([57], thm.5.8): Let I' be a set of £3-sentences in £2. Then BT+X9-AC™ +113-IR~+WKL+T

is conservative over BT+ for I13-sentences.

(3) ([57], cor.5.9): Let I be a set of ¥9—sentences in £2. Then BT+I1{-CA~ +II9-IR~+WKL+T
is conservative over BT+I" for II-sentences. Consequently BT+I19-CA~ + II3-IR~+WKL
is conservative over PRA.

These theorems are also stated in a generalized hierarchy version in [57] (5.13,5.14).

In contrast to these claims we now show:

Proposition: 12.3 BT+IIJ-IR™ + II9-CA~ proves the totality of the Ackermann function and
therefore is not conservative over PRA.

Corollary 12.4 (1),(2) and (3) above (even when I' = (), WKL is dropped and conservativity is

claimed only for T1I9-sentences) are wrong. This applies a fortiori to BT+®;.
Proposition: 12.5 BT+IIY-CA~ is not I13-conservative over the first order fragment of BT+®;;.

Corollary 12.6 The I13-conservativity assertion in (2), (3) is wrong when T' = 0 and WKL, TI3—
IR~ are dropped (for both theories BT and BT+®;; ).

Proof of prop.12.3: Let Von(x, y) be a X{—formula of BT which does not contain any function

variable. By II{~CA~ there exists a function g such that Nz (92 =0« \/on(x, y)). Since function
variables are allowed to occur in instances of QF-IA we can apply QF-IA to Fy(z,g) := (gx = 0)
and obtain

\/y Ao (0,y) A /\m(\/y Ao(z,y) — \/y Ao(z',y)) — /\x\/y Ao(z,y).

Hence every function variable free instance of 9-IA, i.e. every instance of ¥9-TA~ can be proved
in BT+I19-CA~. On the other hand it is known (see [51] ) that there is an instance of ¥9-TA~
which together with an application of TI3-IR ™ proves the totality of the Ackermann function (This
fact is mentioned e.g. in [57](!) note 16).
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Proof of prop.12.5: By the proof of prop.12.3 every instance of X{-TA~ is provable in BT+I1{—
CA~. Since every instance of 3{-TA~ can be logically transformed into a prenex normal form € T3
it suffices to show that there is such an instance — lets call it A— with BT+®;; If A: We first notice
that BT+®;; is conservative over the first order fragment BT’ of BT: Every model of BT’ can be
extended to a model of BT+®,; by letting range the function variables over all primitive recursive
functions. It is known from [40] (see also [51], cor.to thm.1) that there exists an instance A of

$9-TA~ such that BT I A.

Corollary 12.7 (to the proofs of prop.12.3 and 12.5) Prop.12.3 and 12.5 also hold if the
functionals ®1, P2, @y are omitted from BT.

In the proofs of prop.12.3 and prop.12.5 we essentially used the fact that in BT function variables
may occur in instances of QF-TIA. Let QF-TA~ be the restriction of QF-IA to formulas without
function variable and BT~ the restriction of BT which results if QF-IA is replaced by QF-TA~.
Within BT~ we are not able to derive the usual properties of functionals like ®1,®5 or ®(y from

their defining equations. Thus in order to deal with WKL (as formulated in [46] ,[57] ) we have to
add the axiom

() Nayly <@ = (Fo), = fy),
which is provable in BT.

Proposition: 12.8 1) BT~ + (x) + I3-IR™ + II\-CA~ proves the totality of the Ackermann
function.

2) BT~ + (¥) + II0-CA~ is not I13-conservative over the first order fragment of BT+®,;.

Proof: Let A(z) be a X{—formula without function variables: By I1{~CA~ there exists a function

f < Az.1 such that /\x(fx =0 ¢ A(z)). By (%) there exists a number y —namely y := fa’ — for
each a such that

Ne <a((y)e = (Fa')e = fe A [(fz=0AA(z)) V (fo =1 A-A(2))))
and therefore

(1) Az < a(((W)e = 0A A@)) V (1) = 1A -A(@))).
By QF-TA~ we have

(2) W)o =0A Nz < a((¥)e =0— Y)w =0) = (¥)a =0.
(1) and (2) yield

(3) 4(0) ANz < a(A(z) — A()) — A(a).

Hence BT~ + () +II{~CA~ proves every instance of X{~IA~. 1) and 2) now follow from the proofs
of prop.12.3,12.5.

As we already have mentioned above there is a further negative result if ®; is added to BT.
Then even without II-TR~ the principle £3-AC~ is not conservative over PRA:
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Proposition: 12.9 BT+®;; + X9-AC~ proves every (function parameter free) I19—consequence of

$9-TA~ and hence is not conservative over PRA.

Corollary 12.10 For BT+®;; instead of BT (2) is false already with respect to 119-conservativity
even when TI9-IR~, WKL and T' are omitted.

Proof of prop.12.9: Let us consider an instance

\/x/\y Ap(0,z,y) A /\z(\/x/\y Ao(z,z,y) = Vx/\y Ao, x, y))
— NValy Ao(z,y, 2)

of £9-TA~. By II{~CA~ (which follows from ©9-AC~) there exists a function g such that
(2) /\z,az(gzx =0+« /\y Ao(z,z,y)).

Using g, (1) reduces to an instance of ¥9-TA. One easily shows that BT+®;,+AC%%—qf - L9-TA
(see e.g. [32] ). Hence

(3) BT+I)-CA™ + &, +AC*0qf - %J-TA™.

Since $9-TA~ (which is equivalent to TI3-TA~ relatively to BT, see e.g. [57] ) proves the totality
of the Ackermann function, the theory BT+II{-CA~ + ®;;+AC® —f is not I19—conservative over
PRA.

We now show that BT+®;; +X9-AC™ proves every I13— consequence of BT+I1{-CA~ +®;;+AC%0-
qf (together with (3) this concludes the proof of the proposition): Suppose that

(4) BTHIN-CA~ + &, +ACY0—of + AuVo Fy(u,v), where Fj contains only u, v free.
For notational simplicity let us assume that only one instance

(5) Vol\a(gz = 0 Ny Ag(,y))
of I9~CA~ is used in the proof of (4). Let h be a new function constant with the axiom

(%) /\x, y(—|A0(m, hz)V Ay(z, y))
It is clear BT+(x) F (5). Hence

(6) BT + (%) + @y + AC*O—gf - AuVv Fy(u,v).

By functional interpretation there exists a term t[h] in the set of all closed terms of BT+ (x) + ®;;
such that™®

(7) BT + (%) + &y - Nu Fy(u, t[h]u).

"8More precisely one obtains a functional ¥[h] € PR’ [h] such that PA” N+ (%) proves (7). By normalization one
eliminates the higher type levels in W[h] and realizes that ¥[h] reduces to a functional ¢[h] which is primitive recursive

in h in the sense of [29]. Finally one verifies that PA” |+ (%) is conservative over the first order part (BT+(*) + ®;¢)’
of BT+(*) + ®;+ (more precisely the first order part of BT plus the defining equations for all functions which are
primitive recursive in h) for arithmetical sentences. This follows from the fact that every model of (BT+(x) + ®;;)’

can be extended to a model of PA" N + (*) by letting range the variables for functionals over all functionals which

W
are primitive recursive (in the sense of PR ) in h.
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Hence
(8) BT + @y + VaA\a,y(=Ao(z, ha) v Ag(z,)) F NuVo Fy(u,v)
and therefore

(9) BT + &y + 3-AC™ F AuVo Fy(u, v).

We now discuss where the errors in the proofs of (1)-(3) in [46] and [57] occur:

Mints reduces QF-TA to the rule of quantifier free induction

Bo(O) s Bo(.ﬁ) — Bo(l‘/).

QF-IR : Ae Bofe)

This can be done by applying QF-IR to
Ao(a) = Bo(0) ANy < 2(Boly) — Boly)) = Bo(a).

In order to express Ay as a quantifier—free formula one has to eliminate the bounded quantifier
Ay < z. Since By may contain function variables (e.g. Bo(z) := (fx = 0)) this elimination requires
the use of a primitive recursive functional as e.g. ®; or &3 (Mints uses @2 to express bounded
quantification in a quantifier free way). If now By involves a function g which results from I1{-CA~
then the corresponding instance of QF-IA is reduced to a g—free instance of II9-IR by replacing g
by its graph (which ’is described in the form of a TI3—formula’ ([46] p.1490)). Then Mints applies a
previous result that BT is closed under TI9-IR which finishes his proof.

The problem with this argument is that the elimination of g only works in this way if g occurs
everywhere in the form g¢(¢) in By but not if g occurs also as a function argument ®1g or ®g. In

the later case one first has to reduce expressions like ®1gx = y to Ni <z(y>gi)A Vj <z(y=gj)

and to eliminate g from the result. However the bounded quantifiers Ni <z, V j < x now stand in
front of the IIY—formula which results from the g—elimination. In contrast to bounded quantifiers in
front of quantifier—free formulas these bounded quantifiers can not be neglected in BT. In fact to
express e.g. Vy < ALY By as a II9-formula requires I19-CP which implies ¥¢-IA (and combined
with II9-IR proves the totality of the Ackermann function).

Sieg uses a sort of e—terms to reduce theories like BT+II{—CA~ + IIY-TR~ to certain ’operator
theories’ IIJ-OT?2+QF-ACq + II3-IR. He also does not treat the (genuine) primitive recursive func-
tionals in his definition of the number terms of OT?: If one adds here the clause 'If f is a function
term and ¢ a number term then ®ft¢ is a number term’ (where e.g. ® = ®; or = ®(y) one gets
problems with the interpretation of the operator theories: The reduction of OT? to fragments of
second order arithmetic via the 7,,—translation no longer works in the way presented in [57] (2.2). It
is not even clear how to define the v—depth of ®(vz.(Ap(z)), t) anymore. Besides this in Sieg’s proof

of 5.8 one has to understand II§ w.r.t. £(OT?%) and not with respect to £(Z) (as is claimed by Sieg):
Since function parameters are allowed to occur in QF-IA, in particular the functions obtained from

$9-AC, may occur in QF-TA. Therefore the reduction of X3-ACy to OT?+QF-AC only works

if in the schema of quantifier—free induction of OT? v—terms (which are used in the reduction of
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$9-AC; to QF-ACy) are allowed to occur. However the 7,,—translation of such instances of QF-TA

requires (according to Sieg’s remarks on p.45) already I19-IA which proves the totality of the Ack-
ermann function.

Finally both arguments by Mints and Sieg do not establish (as they stand) the following weak-
ening of (1) which is a corollary of our prop.12.1:

If BT +19-CA~ F AzVy Ag(z, ),
(1)/ then there is a primitive recursive function ¢ such that

PRA F Az Ap(z, px).

(Here Ao(x,y) € L(PRA) contains only z,y free. This result also follows if all the functionals ®;
with ¢ € IN from G., A% are added to BT but not if ®;; is added: compare prop.12.9 .) Since
the reduction of I1{-~CA~ to II3-IR by Mints uses %-CP which proves (combined with II3-IR)
the totality of the Ackermann function it is not possible to obtain (1)’ using his argument. The
failure of Sieg’s proof has nothing to do with II9-IR and its straightforward correction needs IT9-TA
(which is not conservative over PRA) already for the treatment of BT+I19-CA~. In any case both
methods (even if they can be corrected to yield (1)’) are not usuable for our results on finite type
theories from chapter 11, since they rest on the elimination of function symbols f by their graphs
which is not possible if a proof applies for instance variables of type 2 to these function symbols as
it is possible in our context (e.g. we may use f as the bounding function of the fan in the axiom F
from chapter 7).
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13 Summary of results on the growth of uniform bounds

In this paper we have considered proofs of sentences”

(+) Aut, kN0 <, tu kV w? Ag(u, k, v, w) (where 5 < 2)

in various parts of classical analysis, more precisely in G,A“ + I'+AC—qf, where I' is a set of
analytical theorems. Using proof-theoretic methods we are able to extract uniform bounds ¢ on

V" which do not depend on v such that
(++) N, k0N <, twkVw <, duk Ao(u, k, v, w)
holds classically®® | i.e. is true in the full set-theoretic type structure S%.
In chapter 2 (see thm.2.2.2 and the remark on it) we have shown in particular that

Theorem 13.1 Let A be a set of sentences having the form /\x5Vy <, sa:/\z"Bo(a:,y,z), where

seG,RY. Let A()(yl,ko, v, wY) contain only u = u%, oul k= k% . k? and v, w as free variables,

s g
where v < 2. Then the following rule holds:

GuA® + A+ACqf + Nt KMo <, tu kVw? Ag(u, kv, w)
= one can extract a term ® € G, R* such that

G, AY + A+ b-AC + /\gl,ko/\v <, tgk\/w <y Puk Ao(u, k,v,w).

If A =0, then b-AC is not needed in the conclusion.
For v <1 (y=2), ® has the form Au, k.ouMEk ()\%E,yl.(i)ngyM) , where ® €G,R* and by the
results from chapter 1 (prop.1.2.21, the cor. to the proof of 1.2.21 and prop.1.2.22) we have:

Forn=1: &uMk (@ngyO resp. CngEyM) is a linear function in u™ k
(@™, k,y° resp. u™, k,y™)

Forn=2: ®uMk (@QM@yU resp. i)gMEyM) is a polynomial in u™, k
(W™, k,y° resp. u™, k,yM)

Forn = 3: CflgME (if’ngyo resp. igMEyM) is an elementary recursive

function in QMaE (@kaa yO resp. y]waka yM)

We recall that by definition ¢ ilgo is a linear function (polynomial resp. elementary recursive

function) in f, z if there is a term ﬂi, z] of type 0 containing only f := f{,..., f and 2 := a9,..., 2}
free such that

(i) /\L&(tig =0 t|f,z]) and

7Sometimes we have formulated (for notational simplicity) only the case /\ul instead of /\yl, k°. However using
suitable coding the general case reduces to the special one in GpAY for n > 2 (Also all of our proofs immediately
generalize to tuples without the need of any coding).

80For the mathematical significance of sentences (4) and of such uniform bounds see [37],[38], [39] and the discussion
at the end of chapter 3 of the present paper. We recall that Ag, Bo, ... always denote quantifier—free formulas.
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(ii) ﬂi,g] is built up from 007x?,...,m9,f11,...,f,;l,Sl,—i— (or Oo,x(l)7...,x?,fll,...,fil,517—|—,-

0 .0 0 f1 1 gl 0,0
resp. 0%, 29, ..., 2%, fi,..., f, 8%+, Az®, y”.2¥) only.

In particular if ¢ fz is a polynomial in ™z, then for every polynomial p € IN[z] the function A\z.tpx

can be written as a polynomial in IN[z]. Moreover (by prop.1.2.30 ) for t'1) € GoR there exists a

polynomial ¢ € IN[z] (depending only on the term structure of ¢) such that

For every polynomial p € IN[z]

one can construct a polynomial r € IN[x] such that

/\f1 (f <ip— /\xo(tfa: <o T(JJ))) and deg(r) < q(deg(p)).

The cases n = 2 and n = 3 are of particular interest since within GoA“ many of the fundamental
notions of the analysis of continuous functions can be treated but some as e.g. the unrestricted
exponential function exp need GgA¥.

Let us consider the following analytical properties, principles and theorems:

I. °

II. °

_1,|

Basic properties of the operations +, —, -, (+) - |, max, min and the relations =, <, <

for rational numbers and real numbers (which are given by Cauchy sequences of rationals
with fixed Cauchy rate, see chapter 3 §1 for details).
Basic properties of maximum and sum for sequences of real numbers of variable length

(see chapter 3 §3).

Basic properties of uniformly continuous®' functions f : [a,b]? — R, sup fz and
z€la,b]

[ f(z)dx for f € Cla,b] where a < b (see chapter 3 §2,3).

The Leibniz criterion, the quotient criterion, the comparison test for series of real num-
bers. The convergence of the geometric series together with its sum formula. The

nonconvergence of the harmonic series. (But not: The Cauchy property of bounded
monotone sequences in IR or the Bolzano—Weierstrafl property for bounded sequences in
IR). See chapter 4 for details.

Characteristic properties of the trigonometric functions sin, cos, tan, arcsin, arccos, arctan
and of the restrictions exp, and lny of exp,In to [k, k| for every fixed number k.

Fundamental theorem of calculus.

Fejér’s theorem on uniform approximation of 27—periodic uniformly continuous functions
f IR — IR by trigonometric polynomials.

Equivalence (local and global) of sequential continuity and e—-d—continuity for f : R — IR.

Attainment of the maximum of f € C([a,b]?,IR) on [a, b]?.
Mean value theorem of differentiation.

Mean value theorem for integrals.

81Uniformly continuous is meant always endowed with a modulus of uniform continuity. In the presence of III.
below we can prove the uniform continuity (with a modulus) of pointwise continuous functions f : [a,b]¢ — IR.
Thus together with III. we have I. also for pointwise continuous functions. Instead of [a, b}d we may also have

[al,bl] X .o,

X [ag, bg] where a; < b; for i =1,...,d.
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e Cauchy—Peano existence theorem.
e Brouwer’s fixed point theorem for uniformly continuous functions f : [a,b]? — [a, b]%.
(See chapter 7 for precise formulations of these principles).
III. e Uniform continuity (together with the existence of a modulus of uniform continuity) of
pointwise continuous functions f : [a,b]? — IR.
e Sequential form of the Heine Borel covering property of [a,b]¢ ¢ RY.

e Dini’s theorem: Every sequence (G,,) of pointwise continuous functions G,, : [a,b]? — R
which increases pointwise to a pointwise continuous function G : [a,b]? — IR converges

uniformly on [a,b]? to G and there exists a modulus of uniform convergence.

e Every strictly increasing pointwise continuous function G : [a,b] — IR possesses a uni-
formly continuous strictly increasing inverse function G~! : [Ga, Gb] — [a, b)].

e Konig’s lemma WKLgeq for sequences of binary trees.

(See chapter 7 for precise formulations of these principles).

In the chapters 3-6 we have shown that GoAY+AC%!qf proves the analytical facts summerized
under I. so that theorem 13.1 applies with A = ().

In chapter 7 §1 we have shown that the principles II. can be expressed in the language of GoA%

as sentences (x) NaVy <1 sz\29/1By € A or follow relatively to GaA“+AC%—qf from such sen-
tences. In the following let A denote the finite set of these sentences (x) used in chapter 7 §1. One
clearly has S = A. Hence by thm.13.1 we obtain the following results for v < 2 and n > 2:

From a proof

GnAY+AC—qf+I+IT F Aul, kv <, tu EVw Ao (u, k, v, w)

one can extract a bound ® €G,,R“ such that ® has the form as in thm.13.1 and
GnAY + A+b-AC + /\Q17E0/\U <, tgk\/w <, Puk Ao(u, k,v,w)

and therefore

8 = Nt E°N\o <, tu kVw <., ®uk Ag(u, k, v, w).

In particular (for v = 0):

du k is a polynomial in ©™, k if n = 2 and

®u k is an elementary recursive function in uM, k if n = 3.
The theorems III. can be proved in GoAY@ACH—qf ®F~ (see chapter 7 §2,3).
Hence for n > 2

GrnAY+AC—gf+I+ITRIT F At Ao <, tu kVw Ag(u, k, v, w)
implies

GuA“+ACof + AF F~ = At k°No <, tu bV Ag(u, k, v, w)

Thus combined with the proof of thm.7.2.20 we obtain
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Theorem 13.2 Let n > 2 and v < 2. Then the following rule holds:

From a proof

GnAY+ACgf+I+TISIIT F Aul, kv <, tu kVw Ag(u, k, v, w)

one can extract a bound ® € G, R“ such that ® has the form as in thm.13.1 and
Ginax(ns)AY + A4+b-AC Nl kN0 <, tukVw <, uk Ag(u, k, v, w)

and therefore

8% = Nt KON <, tu kVw <y Puk Ao(u, k,v,w).

In particular (for v=10):

duk is a polynomial in u™M,k if n =2 and
du k is an elementary recursive function in uM,k if n = 3.

(In the case n > 3 the proof of the assumption may use also e.g. the unrestricted exponential func-
tion exp and the unrestricted logarithm In.)

For <2 the conclusion
8 = Nt k0N <, twkVw <, uk Ao(u, k, v, w)
holds even when G, AY+AC—qf+I+IIDIII is replaced by G, A¥+AC—qf+I14+I114I11.

For 7 <1 (which is the most important case for applications) (+) holds also for

E-G,A*+ACH0—qf + ACO 1 —qf + I4+1I+11T
instead of

GnAY+AC—qf +I+IIGIIL

A result analogous to (+) holds for PRA”,I/D-]\%, PRAY and PAY,T, PAY instead of G,AY, G,R¥,
Gmax(n,S)A;'u'

Proof: In view of the comments above it remains to show the special assertions for 7 < 2 and
T<1:

For 7 < 2 the elimination of F'~ is not needed for a classical verification of ® since F'~ has the
logical form of an axiom A in thm.13.1 and

M® = GL,AY + A+b-AC+F~ (see chapter 7 §2) and thus
MY E /\QI,EO/\’U <, tgk\/w <, ®uk A¢(u, k, v, w) which implies
89 = Nt BN\ <, tu kVw <, Quk Ao(u, k,v, w)

(since 7,y < 2 and v < tu k is majorized by t*uM k, where t* is a majorant of t).
For 7 <1 we argue as follows:

E-GpAY+ACH—gf + ACO —qf +T+TT4111 F (...)
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implies
E-G,AY+ACH—gf+ACOLof+A F F~ — (...)

since E-G,,A“ satisfies the deduction theorem w.r.t. 4. Elimination of extensionality now yields
GpAY+ACHO—f+ACOLgf+A FF~ — (...)

(Note that the sentences in A used to derive IT only have variables of type < 1 and that (F'~). is
implied by F~). Now one proceeds as in the proof of (+).

Growth caused by (function parameter—free) applications of the ¥{—induction rule
YI-TIR:

JFrom chapter 9 it follows that a single application of X{-IR™ may increase the growth of the
bound @ in thm.13.2 by one level in the hierarchy (G, R*),en. Thus if the proof of
Nt K°N\o <, tu EVwY Ag(u, k, v, w)

uses besides G,A“+AC—qf and I-1II a single application of L-IR~ whose upper formulas are
provable in GyA“+AC—qf plus I-1II (£ > 2), then only a bound ® €Gyax(n,k+1)RY is guaranteed

(In chapter 9 we have presented an example from analysis where such a speed up actually happens).

Growth caused by the axiom of X{—induction YY-TA and the Cauchy property of
bounded monotone sequences in R (PCM1):

In chapter 9 we have shown that G3A“ proves the equivalence of X{-TA and (PCM1). The impli-
cation (PCM1) — X9-TA holds even in GoA% and we have constructed a functional y € GoR“ such
that PCM1(x(g)) — X9-TA(g) (see prop.9.2).

According to the results in chapter 9 the contribution of PCM1(z,) (where (z,) is a decreasing

sequence of positive real numbers®? ) to the growth of bounds is given by a functional ¥ such that
1
(1) /\k;o’gl\/n <o \I/((J;n),k,g)(gn >0 N = Tn —R Tgn <R m)

A functional ¥ which satisfies (1) is given by

2V ((xn), k,q9) =
QW) k)= max
i times
where g*(x) is the i—th iteration of g (i.e. ¢(...(gx)...) and IN 5 C(zg) > zp (e.g. C(zp) :=

Since this functional ¥ satisfies (provably in PRA“) the monotone functional interpretation of the
negative translation of PCM1 we have

82The restriction to the special lower bound 0 is convenient but of course not essential. Analogous results hold for
increasing sequences (zy) which are bounded from above.
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Theorem 13.3 Let n > 2 and v < 2. Then the following rule holds:

From a proof

GnA“+AC—qf+(POM1)+THISIT F Aul, £°N\v <, tu kVu Ag(u, k, v, w)

one can extract a bound ® €G, R¥[V] (where U is defined as in (2) above) such that
PRAY + A+b-AC + /\gl,ko/\v <, tgk\/w <, Puk Ao(u, k,v, w)

and therefore

8 = Nt KN\ <, tu kVw <., ®uk Ag(u, k, v, w).

In particular ® is a primitive recursive functional in the sense of [30].
The special assertions for 7 <2 and 7 < 1 from thm.13.2 hold analogously.

This result is valid also for PRA%, }/DT%, PRAY and PA“,T, PAY instead of G, A¥, G, R*[¥], PRAY.

Since X{-TA (and so PCM1) suffices to introduce every primitive recursive function relative to

G,AY (for n > 2) in general only a primitive recursive bound is guaranteed. However in concrete
proofs in analysis usually PCM1 is not used iterated and so ® will have only W—depth’ 1. In this
case Ak.Quk has a growth of type Gax(n,k)+1R® for input functions u having growth of type GxR*.

A particular important special case is where (1) is applied only to g := S. Then ¥((z,),k,g) <

C(z0)- (k+1) contributes only polynomial (in fact quadratic) growth and thus for n = 2 one obtains

a bound ®u k which is polynomial in v, k in this situation.

Growth caused by single (sequences of) instances of analytical principles involving

arithmetical comprehension:

In chapter 11 we have studied the following principles:

1) The Cauchy property together with the existence of a Cauchy modulus (which implies

the convergence) for bounded monotone sequences (z,,) in IR (short: PCM2(x,,))%3
2) The existence of a greatest lower bound for sequences (x,) C IRy (short: GLB(x,,))

3) Comprehension for I19—formulas
IY-CA(f1©) .= Vgt Az® (92 =0 0 > /\yo(fxy =0 0))
4) Choice for ITIY—formulas

-AC(f1O0) .= /\xo\/yo/\zo(fxyz =00) — Vo' Az, z(fx(gr)z =0 0)

5) The Bolzano—Weierstraf principle for bounded sequences (z,,) C R? for every fixed number

d (short: BW (z,,))3*

83For simplicity we may consider only decreasing sequences in R .

84Tn chapter 11 we have distinguished between two versions of this principle (called BW and BW ). BW asserts
the existence of a limit point whereas BW ™ asserts the existence of a convergent subsequence of (x,). Since both
principles have the same impact on the growth of bounds (which however is more difficult to prove for BW ) we

now denote both versions by BW. Similarly for A-A in 6) below.
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6) The Arcela—Ascoli lemma for bounded equicontinuous sequences (f,) C C[0,1]

(short: A-A(fr)).

Whereas the universal closure of these principles (i.e. /\(wn)(PCM2(xn)) in the case of PCM?2)

implies full arithmetical comprehension and thus makes every a(< ep)-recursive function provably
recursive when added to G, A% for n > 2 (see chapter 11) this does not happen if only single
sequences of instances (which may depend on the parameters u, k,v) of these principles are used

in a proof of /\g, E/\v <; tgk\/uﬂAO, ie.
Nu, ko <, tuk(N°(PCM2(¢ukol)) — Vu' Ay),

where £ is a closed term of G, A¥.
More precisely we have the following theorem

Theorem 13.4 Letn > 2 and 7,7 < 2, £ €G, R (of suitable type). Then the following rule holds

From a proof

GpA“+AC qfHIHIHIL F Aut, K°No <, tu k(NI (POM2(Eu kol)) — Vw? Ag(u, k, v, w))

one can extract a bound ® € G, R such that

Gmax(n, 3)A + A+ F~+b-AC + /\u1 ko/\v <;tu k/\\If*((\Il* satisfies the mon.funct. interp. of
Na* @O k0 gNpO(gn > n — NI < k((@)i(n) —r (a)i(gn) <m 527))) = Vw <, duk¥*Ay)

and

SY E A, K°N\v <, tu kVw < QukVAg(u, k,v,w),

where ¥ := Aa, k, g. max (¢°(0)), N > C(a, k) > maxr((aop)(0),...,(ax)(0)) and a(n) :=
i<C(ak)(k+1)2

maxp (0, EI%ITILI r(a(i))).

In fact ® (more precisely a slight variant of ®) only needs (instead of ¥* as input) a functional T+
which satisfies the monotone functional interpretation of the instance N°.Eu kvl of Na 0 0(...)"
If only a single instance PCM2(&u kv) is used then even a functional U™ which satisfies the mono-
tone functional interpretation of /\k,g\/n(gn >n — (5@1})(71) R (SEEU)(gn) <R %ﬂ) is suffi-

cient.

This result also holds for NI°(GLB(¢ukol)), NO(TI)-CA(¢ukol)), NO(TI9-AC(Eukol)),

/\ZO(BW(SQEUZ)) and (for n > 3) also for /\lo(AfA(égEvl)) instead of /\ZO(PCM2 Eukvl))
(€ €G,RY of suitable type).®®

For 7 < 1: GuAY+AC—qf+I+II+III may be replaced by E-G,, A“+ACH0—qf+ACO 1 —qf+1 +II+I11.

Proof: As in the proof of thm.13.2 the assumption yields that

G A“+ACqf+A + F~ + Aul kAo < tu k(N°(PCM2(¢u kol)) — Vo Ag(u, k, v, w)).

85Then U* has to satisfy the monotone functional interpretation of the instance A.&'u kvl of ’/\al(o)(‘))(. ..)for a
suitable ¢/ €G,R¥.
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The conclusion (for AVE (PCM2(&u kvl)) now follows from prop.11.1.3, the fact that M* = G, A+
A+ F~+Db-AC (see chapter 7) and the fact that (as in the proof of thm.13.2)

M = Nt BN <, tu kVw <, ®uk Ag(u, k, v, w) implies

89 = N E°N\o <, tu kVw <., duk Ag(u, k, v, w).

The assertions for the other principles follow from 11.2 and the propositions 11.3.3,11.3.4,11.4.3
and 11.5.1 (More precisely from the proofs of these propositions some of which are formulated

only for single instances &uv instead of sequences MC.£uvl. However the proof e.g. for BW re-
duces every instance BW(f) to an instance PCM2(tf) and hence AW (BW (€ukul)) reduces to

AV (PCM2(§/QEUZ)) and so to PCM2*(¢"ukv) for a suitable &' ¢” €G,R¥ so that prop.11.1.3

applies. Similar for the other principles).

Remark 13.5 1) Instead of /\ZO(PCM2(§QEUZ)) we may also use a strengthened wversion

PCM?2* which asserts the existence of a sequence of Cauchy moduli for the sequence )\IO{@Z
of monotone sequences (see prop. 11.1.3).

2) For G, A“+AC—qf+I4+II®III instead of G, AY+AC—qf+I+II+I1T we can eliminate F~ from
the conclusion and may have an arbitrary type T as in thm.13.2.

3) In the theorem above we may also have the conjunction /\lO(PCMQ(&gEvZ)) A

A (GLB({ggEvZ)) A ... of sequences of instances of the principles treated in this theorem

(for &1,&s,... €G,RY) since a (fized) finite number of sequences of instances of PCM2 can
be coded into a single sequence of such instances.

4) In thm.18.4 we may add also single sequences of instances of AY—IA and I{-CP since they
follow from suitable sequences of instance of I~CA and 119-AC (see chapter 11). But note
that the theorem becomes false if the full axiom X9-IA is added: Using suitable instances
of TIY-CA one can prove (in the presence of X{-IA) ¥9-IA~ which suffices to establish the
totality of the Ackermann function. In particular the theorem does not hold for PRA”,?R,
PRAY instead of G, AY, G,R¥, G, AY since PRAY+AC—qf proves ¥9-IA.

Finally we have investigated the following principle w.r.t. its impact on the growth of bounds

7) For every bounded sequence (z,) C IR there exists the limsup (short: Ilimsup(z,)).
For simplicity we restrict ourselves to sequences in @ N [—1,1] (In chapter 11 we have seen
that the general case can be reduced to this).
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Theorem 13.6 Letn > 2 and 7,7 < 2, £ €G, R¥ (of suitable type). Then the following rule holds:

From a proof

Gp,AY + AC—qf +I4+II+IIT + /\gl,ko/\v <, tg@(El lim sup(&u kv) — \/uﬂAo(y, kv, w))

one can extract a bound x € G,R¥ such that

GrAY + A+ F~ +b-AC + /\gl,go/\v <, tgk/\g* ((g* satifies the mon. funct.interpr. of
the negative translation L(Eukv)’ of L(¢uwkv)) — Vauw <, xuk¥* Ao(u, k,v, w))

and wn particular one can construct a bound ® € Ty such that

PAY + A+ F~ +b-AC F Aul, kN <, tukVw <, duk Ao(u, k, v, w)

and

8¢ = Nt k0N <, tukVw <y Puk Ag(u, k,v,w),

where

1

Liat) = AV > kK 20 1V i\, r 2 j\m,n(K 20 mon 201 |t —q 27| <q 7).

with z* := maxq (Tm, - - -, Tmiq) and
Ty is the restriction of Godel’s T which contains only the recursor R, for p =1 (see chapter 2).

The Ackermann function (but no functions of essentially greater order of growth) can be defined in
T;.

Proof: As in the proof of thm.13.2 the assumption implies that
GpAY + ACqf +A+F~ F /\gl,ﬁo/\v <, th(EI lim sup(§u kv) — VuﬂAo(g, k,v, w))
The theorem now follows from prop.11.6.4 using that
M® = PAY + A+ F~+b-AC and the fact that
M = Nt BN <, tu kVw <, ®uk Ag(u, k, v, w) implies
89 = At B2 N\o <, tukVw <, @uk Ao(u, k, v, w).
By lemma 11.6.3.2) the reduction of Jlimsup(&u kv) to L(&u kv) is sharp. Since it is very unlikely
that L(z,) has a monotone functional interpretation without Ry, the principle 3lim sup seems to be

the strongest principle (w.r.t. its impact on growth) used in the standard parts of classical analysis
of continuous functions.

Growth of functional dependencies for logically complex formulas in (non—constructive)
analytical proofs relatively to the intuitionistic theories E-G, A{:

Let A be the set of the following theorems and principles:36

861n 1)-4) continuous functions on [a, b]¢ are always understood to be endowed with a modulus of uniform continuity.
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1) Attainment of the maximum of f € C([a, b]?, R)

2) Mean value theorem for integrals

3) Cauchy—Peano existence theorem

4) Brouwer’s fixed point theorem for uniformly continuous functions f : [a,b] — [a, b]?

5) The generalization WKLZ_, of the binary Kénig’s lemma WKL
6) The ’double negation shift’ DNS : Nz——=A = Nz A
7) The ’lesser limited principle of omniscience’
LLPO : A y'VE <o 1([(k=0—> 2 <py]Alk=1—y <R 2]

8) Comprehension for negated formulas:
CA?P . Vo <op )\scp.lo/\yp (<I>y =00« ﬂA(y)), where A is arbitrary.

Theorem 13.7 Let v < 2, n > 2, t € G,RY and C,D arbitrary formulas of E-G,A“ such that
/\gl,ko/\v <, t@k(—C — Vw’YD(g, E,v,w)) is closed. Then the following rule holds

From a proof

E-G,AY+AC + TP + A + Nt , E°N\o <, tuk(~C = V' D(u, k, v, w))
one can extract a bound ® € G, R* such that

E-G,A+AC + A Nt BN <, tukVw <, duk(-C — D(u, k,v,w))
and therefore

8¢ = Aut, B N\o <, tukVw <, Puk(-C — D(u, k,v,w)).

An analogous result holds E-PRAY, PR, E-PRA“ and E-PA%.T, E-PA* instead of E-GpA%
G R®, B-GnA“.

Proof: The theorem follows immediately from thm.8.3 and the fact that the sentences in A can

be expressed in the logical form /\x(A — \/y < sx—B) as we have seen in chapter 8.

Let B consist of the following theorems and principles:
1) Attainment of the maximum of f € C([a, b]¢, R)
2) Mean value theorem for integrals
3) Cauchy—Peano existence theorem
4) Brouwer’s fixed point theorem for uniformly continuous functions f : [a,b]¢ — [a, b]¢

5) The generalization WKL2,_,_ of the binary Konig’s lemma WKL

seq
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6) The ’double negation shift’ DNS : Na—=A — =Nz A

7) The ’lesser limited principle of omniscience’

LLPO : Na! y'VE <o 1(k=0—> 2 <py|Alk=1—y < 2])
8) Comprehension for V-free formulas:

CA@f . Vo <op Aacp.lo/\yp(<1>y =0 0 <+ A(y)), where A is V- free
9) The generalization of the axiom F' to arbitrary types p:

F, = N0 o0V, <0 yNONz <, yk(Dkz <o Dk(yok))

10) Every pointwise continuous function F : [a,b]? — IR is uniformly continuous (together with a
modulus of uniform continuity)

11) Every sequence of continuous functions F, : [a,b]? — IR which converges pointwise to a

continuous function F : [a,b]¢ — IR converges uniformly on [a,b]? (together with a modulus
of convergence)

12) Every sequence of balls (not necessarily open ones) which cover [a,b]¢ contains a finite sub-
covering.

Theorem 13.8 Letn > 2, v,7 < 2, C be \/ffree and D € T'y such that /\gl,ko/\v <, th(C' —
Vw’YD) is closed, where t € G, R¥. Suppose that all positively occuring Nar (resp. negatively

occuring \/a:p) in C — VwD have types < 1 and all other quantifiers have types < 2. Then the
following rule holds:

From a proof

E-G,AY+AC + IP,; + B F Aul, ki°No <, tuk(C — V' D(u, k, v, w))
one can extract a bound ® € G, R such that

E-G,A“+b AC + B~ F Aul, i°Nv <, tukVw <, ®uk(C — D(u, k, v, w))
and

8 = Nt KMo <, tukVw <, ®uk(C — D(u, k, v, w)),

where B~ := B\ {10),11),12)}.

An analogous result holds EfPRA‘;’,]/-’]\?, E-PRA® and E-PA?,T, E-PA“ instead of E-G,A? ,
G R, B-Gy A

Proof: The first part of the theorem follows from thm.8.8 , the fact that the principles 1)-9) from

B have the logical form Nz (G — \/y < szH) (where G € T'y and H is foree) and the fact that
principles 10)-12) follow from AC and F relatively to E-GoA¥ (see chapter 8).
Since M* = E-G,,AY+b-AC+ B~ the conclusion holds in M* and so (since 7,7 < 2) in S¥.
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Remark 13.9 As a special corollary of thm.13.8 one obtains the consistency of
E-G,AY+AC+IP, ;4 B which is not obvious since (due to 10)-12)e B) the corresponding classical
theory is inconsistent.

In this paper we have studied the impact of many analytical theorems on the growth of extractable
bounds. Moreover we have developed general methods to determine this impact. These methods
can be applied to many further analytical tools. In practice one will try to apply them directly

to the analytical lemmas G which are used in a concrete given proof (even if these lemmas can
be proved e.g. in G, A% plus analytical theorems whose contribution to growth has already been
determined) because this may avoid the need of analyzing the whole proof of G (e.g. if G can be
reduced to a sentence \z? \/y <, sx/\z”AO then the proof of G is not relevant for the construction

of the bound but only for its verification) and will in general provide better bounds.
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Errata (1998):

P.ii: delete footnote 2.

P.2, 1.14: ‘addition of 0° and of’ instead of ‘addition of’

P.2,1.23: add ‘v <oy Ay <oz <1 =0y

P.8, Prop.1.2.16 must be modified into ‘f* > 1 A f* ssmaj f Az* >g 2 — @, f*2* >¢ ®,;fz’. In
the proof of 1.2.16, the case 2.1 (whose treatment is incorrect) now falls away. The proof of 1.2.18
(which is the only application of 1.2.16) remains unchanged.

p.19, 1-9: ‘+ A’ instead of ‘+ (A")’

P.21, 1.-12: ‘strengthen’ instead of ‘strenghten’

P.25, 1.7: ‘max(u;0,...,u;x)’ instead of ‘max(u0, ..., ux)’
P.29, 1.-5: ‘<R’ instead of ‘<g’

P.30, L-11: *|Z2(m 1) - 53”2(m+1)k —qQ T2(m+1)k 'ﬂ%z(mﬂ)kr

P.30, 1.-4: ‘An.zy’ instead of ‘An.xy’

P.43, Def.3.3.1: add ‘k even’ and ‘k odd’ to the 1st and 2nd case resp.
P.76, 1.11,13: ‘N\z'/\y < sz’ instead of ‘A\2tVy <; sz’

P.76, 1.-12: ‘boundedness’ instead of ‘boundednes’

P.77, 1.10: ‘G,,A“®AC"-gf’ instead of ‘G, A“+ACHO-qf’

P.81, Prop.7.3.1: ‘AC*%-qf’ instead of ‘ACH?’

P.88, 1.3: ‘E-G,,A“’ instead of ‘E-G, A%’

P.105, 1.13, “T*’ instead of ‘T*’

P.106, footnote 5: ‘Herbrand’ instead of ‘Hebrand’

P.117, 1.9: ‘upper index’ instead of ‘lower index’

P.117, 1.-14: ‘under S, definition ...” instead of ‘under definition...’
P.117, 1-8: “U*[z°, ']’ instead of ‘W*[z°, h']’

P.118, 1.-11: ‘\/w"’Ag’ instead of ‘Af'

P.121, 1.2: ‘interpretation of the negative translation of’ instead of ‘interpretation of’
P.124, 1.6: ‘G, A“’ instead of ‘G, Ay’

P.126, last line: ‘TI9-CA(f)’ instead of ‘TI9-CA(g)’

P.127, 1.10: ‘G, R’ instead of ‘GoR“’

P.134,1.12: ‘G,R*’ instead of ‘GoR*’

P.138, 1.3: ‘%,,’ instead of ‘%,,’

P.150, 1.11: ‘II9-CP’ instead of ‘¥9-CP’

P.158, 1.1: ‘PRA%’ instead of ‘G, A%’

P.158, 1.3,4: ‘®u k)’ instead of ‘Puk’

P.161, 1.1: add ‘for Vi_free A
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