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§1. Introduction. A central theme of proof theory is expressed by the fol-

lowing question:

‘What parts of ordinary mathematics (in particular of analysis) can be carried

out in certain restricted formal systems?’

The relevance of this question is twofold:

1) Foundational relevance: suppose a formal system TPA allows one to

formalize a great amount of mathematics but can be shown (by restricted

means) to be a conservative extension of first order Peano Arithmetic PA,

then that part of mathematics has an arithmetical foundation (partial

realization of H. Weyl’s program, see S. Feferman’s discussion in [8]).

If we work in a system TPRA which can be shown (finitistically) even to

be conservative over Primitive Recursive Arithmetic PRA and identify

(following [36]) PRA with finitism, then the parts of mathematics which

can be carried out in TPRA have a finitistic foundation (partial realization

of D. Hilbert’s program, see e.g. [34]).

2) Mathematical relevance: here the guiding question is

‘What more do we know if we have proved a theorem by restricted means

than if we merely know that it is true?’ (G. Kreisel)

The aim is to get additional mathematical information out of the fact

that a certain theorem S has been proved by certain restricted means.

Such additional information may be the extractability of a realizing con-

struction for an existential statement or of an algorithm or a numerical

bound for a ∀∃-theorem by unwinding the given proof.

Both motivations are of course closely related and research on them has mu-

tually influenced each other: e.g. a proof of a Π0
2-theorem carried out in a
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system which can be (effectively) reduced to PRA allows one to extract at

least a primitive recursive algorithm. In the other direction, e.g. our analysis

of proofs in approximation theory (which used the principle of the attainment

of the maximum of f ∈ C[0, 1], see [20]) led us to an elimination procedure of

weak König’s lemma WKL over a variety of subsystems of arithmetic in all fi-

nite types thereby contributing to ‘1)’ above (see [19]). Likewise our treatment

of e.g. the Bolzano-Weierstraß principle in [26] via an elimination technique

of Skolem functions yielded also new conservation results for comprehension

principles ([27]).

However, there are also important differences due to the different points em-

phasized in 1) and 2):

Whereas there are hardly foundational (understood in the sense of Hilbert)

reasons to study systems weaker than PRA, merely primitive recursive algo-

rithms and bounds are in most cases much too complex to be of any mathemat-

ical value. So on the one hand further restrictions are needed to guarantee the

extractability of mathematically more interesting data whereas on the other

hand e.g. proofs of large classes of lemmas (having a certain logical form)

can be shown not to contribute to the complexity or growth of algorithms or

bounds extracted from proofs of theorems using these lemmas. Hence such

lemmas can be treated simply as axioms (no matter how non-constructive

their proofs might be) in the course of the analysis of a given proof. Also,

for successful unwindings the complexity of the proof transformations used is

critical. It has turned out that methods using functionals of finite type like ap-

propriate versions of Gödel’s functional interpretation or modified realizability

combined with tools like negative translation and/or the Friedman-Dragalin

translation are most useful (in particular compared to techniques which try to

avoid any passage through higher types, see [28]).

Whereas we have focused on ‘2)’ in several publications (see [21],[20],[24]

among others), this paper addresses ‘1),’ to which S. Feferman has contributed

so profoundly. We study mathematical strong, but nevertheless PRA-redu-

cible, systems in all finite types, emphasizing the need of third order variables

already for a faithful formalization of continuous functions between Polish

spaces. We investigate the relationship between the direct representation of

continuous functions (which is possible in the presence of third order vari-

ables but not in systems based on the language of second order arithmetic)

with their representation via certain codes used in the second order context

of reverse mathematics (short: r.m.-codes). It turns out that not even a fi-

nite type extension of a second order system like RCA together with the ax-

iom of quantifier-free choice suffices to prove that every continuous function
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Φ : ININ → IN has an r.m.-code. So the encoding used in reverse mathematics

tacitly yields a constructively enriched representation of continuous functions.

More precisely, already for continuous functions f : ININ → IN, the repre-

sentation used in reverse mathematics entails the existence of a (continuous)

modulus of pointwise continuity functional. In the presence of arithmetical

comprehension, the difference between both representations disappears, since

the existence of such a modulus of pointwise continuity can be proved using

arithmetical comprehension and QF-AC1,0. For the restriction of continuous

functionals Φ : ININ → ININ to the Cantor space one can show using WKL

that such a code exists. This follows from a construction due to D. Normann
which recently was communicated to the author. So in the presence of WKL,

the constructively enriched encoding of continuous functions used in reverse

mathematics can be shown to be faithful (i.e. not to be a genuine enrichment)

for functions on the Cantor space (and more generally on compact Polish

spaces). It remains open whether this is true also without WKL. The higher

order context of our systems also allows one to investigate the relation between

ε-δ-continuity and sequential continuity of functions (in reverse mathematics,

the use of r.m.-codes by definition enforces ǫ-δ-continuity). It turns out that a

form of quantifier-free choice (available in our systems) suffices to prove even

the local pointwise equivalence between both concepts.

These types of results can not even be formulated in a second order setting.

The use of higher order (at least third order) variables is therefore necessary

to address the question of how closely various representations of anaytical ob-

jects correspond to their ordinary mathematical definitions and to develop a

general theory of representations.

Let us recall very briefly some of the history of research on ‘1)’. As Feferman

pointed out in [7], ‘Hermann Weyl initiated a program for the arithmetical

foundation of mathematics’ in his book ‘Das Kontinuum’ ([40]). In this book,

Weyl observed that large parts of analysis can be developed on the basis of

arithmetical comprehension. This theme was further developed in the 50’s

by P. Lorenzen among others. In the late 70’s Feferman [5] and G. Takeuti [37]

independently designed formal systems based on arithmetical comprehension

in the framework of higher order arithmetic which are conservative over PA.

For this property it is important that the schema of induction is restricted to

arithmetical formulas only.1 Work on the program of so-called reverse math-

ematics by H. Friedman, S. Simpson and others has shown that almost all of

1As was shown by Feferman in [5], the corresponding system with full induction is proof-
theoretically stronger than PA. In [37], Takeuti considers in addition the variant where
no parameters (except arithmetical parameters) are permitted in the schema of arithmetical
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the mathematics that can be developed based on arithmetical comprehension

at all can also be carried out if induction is restricted in this way. This work

uses a second order fragment ACA0 (formulated in the language of second or-

der arithmetic) of the system from [5] (which is formulated in the language of

functionals of all finite types). Via appropriate representations and codings of

higher objects (like continuous functions between Polish spaces) a great deal of

mathematics can be developed already in ACA0 (see [35] for a comprehensive

treatment).

Feferman’s system, however, allows a more direct treatment of such objects

and their mathematics and also contains a strong uniform (‘explicit’) version

of arithmetical comprehension via a non-constructive µ-operator. These fea-

tures hold in an even stronger form for theories with flexible (variable) types

which were developed successively by Feferman in his framework of explicit

mathematics in [4],[6],[7] culminating in a formal system called W (where ‘W’

stands for ‘Weyl’) which was shown to be proof-theoretically reducible to and

conservative over PA in [11]. The enormous mathematical power and flexibil-

ity of the system W led Feferman in [9] to the formulation of the thesis that

all (or almost all) scientifically applicable mathematics can be developed in

W.
In the late 70’s, H. Friedman observed that large parts of the mathematics

that can be carried out in ACA0 are already formalizable in a subsystem

WKL0 which instead of the schema of arithmetical comprehension is based

on the binary König’s lemma (for quantifier-free trees) WKL and Σ0
1-induction

only (see again [35] for a comprehensive treatment of ordinary mathematics

in WKL0). This fact is of foundational relevance since WKL0 can be proof-

theoretically reduced to and is Π0
2-conservative over PRA (H. Friedman (1976,

unpublished) and [33]; for a historical discussion which in particular points out

various errors in the literature on WKL see [23] (p.69)).

In [19] we introduced an extension (in the spirit of Feferman’s PA-conservative

system from [5] mentioned above) of WKL0 to all finite types and proved

among other things that this extension still can be proof-theoretically reduced

to PRA and is Π0
2-conservative over PRA.

Although this extension is already much more flexible than the system WKL0,

the use of WKL still requires a complicated encoding of analytical objects.

While working on ‘2)’ mentioned above and investigating what parts of anal-

ysis produce only provable recursive function(al)s which can be bounded by

polynomials (see [24] for a survey) we faced the problem that already the

comprehension. In this case the resulting system is conservative over PA even in the presence
of the full schema of induction.
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formulation of WKL involves coding devices of exponential growth. That is

why we introduced a non-standard axiom F which together with some form of

quantifier-free choice proves a strong principle of uniform boundedness Σ0
1-UB

which allows one to give short proofs of the usual WKL-applications in analysis

relative to very weak (polynomially bounded) systems (see [23],[25]) but does

not contribute to the growth of provably recursive functionals. This axiom

as well as the principle of uniform boundedness is ‘non-standard’ in the sense

that it is not true in the full set-theoretic type structure. Nevertheless all of

its analytic (i.e. second order) consequences are true. In [23] we also studied a

restricted version F− of F which yields a correspondingly restricted version of

uniform boundedness which is sufficient for many applications (although more

complicated to use, see [25]) but which allows a very easy proof-theoretical

elimination. In section 3 of this paper we show that in the presence of the

axiom of extensionality and a form of quantifier-free choice, F actually is im-

plied by F− so that in this context (which we use throughout this paper) the

F−-elimination applies to proofs based on F as well. The proof of this fact

uses an argument due to Grilliot [14]. The result allows one to construct a

PRA-reducible finite type system T ∗ which is based on Σ0
1-UB. The relevance

of this is due to fact that T ∗ allows one to develop the analysis of continu-

ous functions between Polish spaces treating such functions directly as certain

type-2-functionals and to prove all the usual WKL-consequences known from

reverse mathematics without the passage through the encoding of such objects

used in reverse mathematics and without formulating explicitly any continuity

assumptions.

In section 5-7 we show that Σ0
1-UB not only allows one to give shorter (coding-

free) proofs for usual WKL-applications but also allows one to prove new –

classically valid – third order principles which are not derivable from WKL. We

develop a non-collapsing hierarchy Φn-WKL+ of extensions of WKL. Basically,

Φn-WKL+ extends WKL from binary trees which are given by quantifier-free

predicates to binary trees which are given by formulas belonging to a larger

class Φn (see section 5 below for details). Φ0-WKL+ is equivalent to WKL,

but for n ≥ 1, Φn-WKL+ is not even provable in E-PAω+QF-AC1,0 + µ (here

µ is Feferman’s non-constructive µ-operator mentioned above). Nevertheless,

Φn-WKL+ is provable in T ∗ for all n ∈ IN so that by the results mentioned

before the whole hierarchy can be reduced proof-theoretically to PRA.

One might also ask for an explicit version (with flexible types) of such systems

based on (extensions of) WKL. However, things are quite delicate in this

case as for the uniform (‘explicit’) version UWKL of WKL (analogously to the

uniform version of arithmetical comprehension given by µ), the strength of the
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resulting system crucially depends on the amount of extensionality available

(see [30]).

§2. Description of the theories E-GnAω, E-PRAω and E-PAω. The

set T of all finite types is defined inductively by

(i) 0 ∈ T and (ii) ρ, τ ∈ T⇒ τ(ρ) ∈ T.

Terms which denote a natural number have type 0. Elements of type τ(ρ) are

functions which map objects of type ρ to objects of type τ .

The set P ⊂ T of pure types is defined by

(i) 0 ∈ P and (ii) ρ ∈ P⇒ 0(ρ) ∈ P.

Brackets whose occurrences are uniquely determined are often omitted, e.g.

we write 0(00) instead of 0(0(0)). Furthermore we write for short τρk . . . ρ1

instead of τ(ρk) . . . (ρ1). Pure types can be represented by natural numbers:

0(n) := n + 1.

Our theories T used in this paper are based on many–sorted classical logic for-

mulated in the language of functionals of all finite types plus the combinators

Πρ,τ , Σδ,ρ,τ which allow the definition of λ–abstraction.

The systems E-GnAω (for all n ≥ 1) are introduced in [23] to which we refer

for details. E-GnAω has as primitive relations =0,≤0 for objects of type 0,

the constant 00, functions min0, max0, S (successor), A0, . . . , An, where Ai is

the i–th branch of the Ackermann function (i.e. A0(x, y) = y′, A1(x, y) =

x+ y, A2(x, y) = x · y, A3(x, y) = xy , . . . ), functionals of degree 2: Φ1, . . . , Φn,

where Φ1fx = max0(f0, . . . , fx) and Φi is the iteration of Ai−1 on the f–

values for i ≥ 2, i.e. Φ2fx =
x∑

i=0

fi, Φ3fx =
x∏

i=0

fi, . . . . We also have a

bounded search functional µb and bounded predicative recursion provided by

recursor constants R̃ρ (where ‘predicative’ means that recursion is possible only

at the type 0 as in the case of the (unbounded) Kleene-Feferman recursors R̂ρ).

In this paper our systems always contain the axioms of extensionality

(E) : ∀xρ, yρ, zτρ(x =ρ y → zx =τ zy)

for all finite types (x =ρ y is defined as ∀zρ1

1 , . . . , zρk

k (xz1 . . . zk =0 yz1 . . . zk)

where ρ = 0ρk . . . ρ1).

In [23] we had in addition to the defining axioms for the constants of our the-

ories all true sentences having the form ∀xρA0(x), where A0 is quantifier–free
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and deg(ρ) ≤ 2, added as axioms.2

By ‘true’ we refer to the full set–theoretic model Sω . In given proofs of course

only very special universal axioms are used which can be proved in suitable

extensions of our theories. Nevertheless one can include them all as axioms
if one is only interested in the applied aspect ‘2)’ discussed above, since they

(more precisely their proofs) do not contribute to the provable recursive func-

tion(al)s of the system. In particular this covers all instances of the schema of

quantifier-free induction. In this paper, however, we include only the schema

of quantifier-free induction to E-GnAω instead of taking arbitrary universal

axioms, since we are interested in proof-theoretical reductions.

E-PRAω results if we add the functional

Φit0yf =0 y, Φitx
′yf =0 f(x, Φitxyf)

to E-G∞Aω :=
⋃

n∈ω E-GnAω. The system E-PRAω is equivalent to Fefer-

man’s system E-P̂A
ω
|\ from [5] since Φit allows (relative to E-G∞Aω) to define

the predicative recursor constants R̂ρ (see [23]).

E-PAω is the extension of E-PRAω obtained by the addition of the schema

of full induction and all (impredicative) primitive recursive functionals in the

sense of [13].

The schema of full choice is given by

ACρ,τ : ∀xρ∃yτA(x, y)→ ∃Y τ(ρ)∀xρA(x, Y x), AC :=
⋃

ρ,τ∈T

{ACρ,τ}.

The schema of quantifier-free choice QF-ACρ,τ is defined as the restriction

of ACρ,τ to quantifier-free formulas A0.
3

Remark 2.1.

E-PRAω+QF-AC0,0 ⊢ Σ0
1-IA, ∆0

1-CA, where

Σ0
1-IA: ∃y0A0(0, y) ∧ ∀x0

(
∃y0A0(x, y)→ ∃y0A0(x

′, y)
)
→ ∀x0∃y0A0(x, y),

and

∆0
1-CA: ∀x0

(
∃y0A0(x, y)↔ ∀y0B0(x, y)

)
→ ∃f1∀x0(fx = 0↔ ∃y0A0(x, y)

)
,

with A0, B0 quantifier-free (parameters of arbitrary types allowed).

Hence the system RCA0 from reverse mathematics (see [35]) can be viewed

as a subsystem of E-PRAω+QF-AC0,0 by identifying sets X ⊆ IN with their

characteristic function.

2The restriction deg(ρ) ≤ 2 has a technical reason discussed in [23].
3Throughout this paper A0, B0, C0, . . . denote quantifier-free formulas.
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The theory T +µ results from T if we add the non-constructive µ-operator µ2

to T together with the characterizing axiom

µ(f) =





the least x such that f(x) =0 0, if ∃x0(f(x) =0 0)

0, otherwise.

Notation: For ρ = 0ρk . . . ρ1, we define 1ρ := λxρ1

1 . . . xρk

k .10, where 10 := S0.

Definition 2.2. 1) Between functionals of type ρ we define the relation ≤ρ:




x1 ≤0 x2 :≡ x1 ≤ x2,

x1 ≤τρ x2 :≡ ∀yρ(x1y ≤τ x2y);

2) minρτ (xρτ
1 , xρτ

2 ) := λyτ . minρ(x1y, x2y), with min0 from above.

In the following we will need the definition of the binary (‘weak’) König’s

lemma as given in [39]:

Definition 2.3 (Troelstra(74)).

WKL:≡





∀f1

(
T (f) ∧ ∀x0∃n0(lth n =0 x ∧ fn =0 0)

→ ∃b ≤1 λk.1∀x0(f(bx) =0 0)
)
, where

Tf :≡ ∀n0, m0(f(n ∗m) =0 0→ fn =0 0)∧∀n0, x0(f(n ∗ 〈x〉) =0 0→ x ≤0 1)

(i.e. T (f) asserts that f represents a 0,1–tree).

§3. On two non-standard principles. In this section we in particular prove

a new conservation result for the non-standard axiom F which was introduced
first in [23]4 (and has been applied e.g. in [25]):

F :≡ ∀Φ2(0), y1(0)∃y0 ≤1(0) y∀k0∀z ≤1 yk
(
Φkz ≤0 Φk(y0k)

)
.

We call this axiom ‘non-standard’ since it does not hold in the full set-theoretic
type structure Sω . Nevertheless its use can be eliminated from certain proofs

thereby yielding classically true results. This has been discussed extensively

in [23] to which we refer for further information. In that paper we mainly

made use of a weaker version F− of F which allows a direct proof-theoretic

elimination whereas the elimination of F was based on a model-theoretic ar-
gument. In this paper however we need the full version F . We show – using

an argument known as Grilliot’s trick in the context of recursion theory for

the countable functionals (see [14])5 – that in the fully extensional context of

4A special case of F was studied already in [21] and called also F in that paper but F0

in [23].
5This argument recently has had a further proof-theoretic applications in [30] and [31].



FOUNDATIONAL AND MATHEMATICAL USES OF HIGHER TYPES 9

theories like E-PRAω+QF-AC1,0, F− actually implies F . This allows one to

apply the proof-theoretic elimination of F− to F thereby strengthening results

in [23].

We apply F via one of its consequences, the following principle of uniform

Σ0
1-boundedness:

Definition 3.1 ([23]). The schema6 of uniform Σ0
1–boundedness is de-

fined as

Σ0

1–UB :





∀y1(0)

(
∀k0∀x ≤1 yk∃z0 A(x, y, k, z)

→ ∃χ1∀k0∀x ≤1 yk∃z ≤0 χk A(x, y, k, z)
)
,

where A ≡ ∃lA0(l) and l is a tuple of variables of type 0 and A0 is a quantifier–

free formula (which may contain parameters of arbitrary types).

Proposition 3.2 ([23]). Let T :=E-GnAω (n ≥ 2), E-PRAω or E-PAω. Then

T +QF-AC1,0 + F ⊢ Σ0
1-UB.

Proposition 3.3 ([23]). E-G3A
ω + Σ0

1-UB ⊢ WKL.

Σ0
1-UB implies the existence of a modulus of uniform continuity for each ex-

tensional Φ1(1) on {z1 : z ≤1 y} (where ‘continuity’ refers to the usual metric

on the Baire space ININ):

Proposition 3.4 ([23]).

E-G2A
ω + Σ0

1-UB ⊢

∀Φ1(1)∀y1∃χ1∀k0∀z1, z2 ≤1 y
( ∧

i≤0χk

(z1i =0 z2i)→
∧

j≤0k

(Φz1j =0 Φz2j)
)
.

Remark 3.5. The argument above can actually be used to show that a se-

quence of functionals Φ
1(1)
i has a sequence of moduli of uniform continuity on

a sequence of sets {z : z ≤1 yi}.

As mentioned above, in [23] we mainly studied a weaker version

F− :≡

∀Φ2(0), y1(0)∃y0 ≤1(0) y∀k0, z1, n0
( ∧

i<0n

(zi ≤0 yki)→ Φk(z, n) ≤0 Φk(y0k)
)

(where, for zρ0, (z, n)(k0) :=ρ zk, if k <0 n and := 0ρ, otherwise) of F and

gave a proof-theoretic elimination procedure for the use of F− which – relative

6Σ0

1
-UB can be written as a single axiom. However the schematic version is easier to

apply.
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to so-called weakly extensional variants WE-GnAω+QF-AC of our systems E-

GnAω+QF-AC1,0+QF-AC0,1 – applies for quite general classes of formulas. In

the presence of the full extensionality axiom (E) we got corresponding results

if the types involved were somewhat restricted. We now show that in the

presence of (E), F is already implied by F− and so that these results extend

to F as well.

Proposition 3.6. E-G2A
ω+QF-AC1,0 + F− ⊢ F.

Proof: We argue in E-G2A
ω+QF-AC1,0 +F−. It is clear that F follows from

F− if

(1) ∀Φ2∀f1∃n0
(
Φ(f) = Φ(f, n)

)
.

So let’s suppose that on the contrary there exist Φ2 and f such that

(2) ∀n0
(
Φ(f) 6= Φ(f, n)

)
.

Then for fi := f, i + 1 we have

(3) ∀i0∀j ≥ i
(
fj(i) =0 f(i)

)

and

(4) ∀i0
(
Φ(f) 6= Φ(fi)

)
.

Define Ψg1 :=0





1, if Φ(g) 6= Φ(f)

0, if Φ(g) = Φ(f).
Then

(5) ∀i, j
(
Ψ(fi) =0 Ψ(fj) 6= Ψ(f)

)
.

Now one can apply an argument from [14], which can be formalized in E-G2A
ω

(see [30] for details on this and a further proof-theoretic application of that

argument), to derive

(6) ∃ϕ2∀g1
(
ϕ(g) = 0↔ ∃x(gx = 0)

)

from (3) and (5). (6), however, contradicts F− (relative to E-G2A
ω+QF-

AC1,0), since F− implies that every Φ2 is bounded on the set of all functions

g, n with g ≤1 1, n ∈ IN, whereas QF-AC1,0 together with (6) yields the

existence of a functional µ such that

(7) ∀g1
(
∃x0(gx = 0)→ g(µ(g)) = 0

)
,

which obviously is unbounded on this set. 2
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Theorem 3.7. Let ∀f1, x0∃y0A0(f, x, y) be a sentence of the language of T

where T :=E-GnAω (n ≥ 2), E-PRAω or E-PAω. Then the following rule

holds





T + QF-AC1,0+QF-AC0,1 + F ⊢ ∀f1, x0∃y0A0(f, x, y)

⇒ one can extract a closed term Ψ001 of T such that

T ∗ ⊢ ∀f1, x0A0(f, x, Ψfx),

where T ∗ :=E-G3A
ω if T =E-G2A

ω and := T , otherwise.

In particular, if T =E-G2A
ω (E-G3A

ω resp. E-PRAω) and if ‘f ’ is not present,

then Ψx is bounded by a polynomial in x (is an elementary recursive resp.

primitive recursive function in x).

Proof: The theorem follows from proposition 3.6 together with theorem 4.21

from [23]. 2

§4. Continuous functions: direct representations versus codes. A

functional Φ1(1) is continuous at x1 if

∀k0∃n0∀y1
( n∧

i=0

(xi =0 yi)→

k∧

j=0

(Φxj =0 Φyj)
)
.

Φ is continuous if it is continuous at every x.

Using a suitable so-called standard representation of complete separable metric

(‘Polish’) spaces X (which in turn relies on a representation of real numbers as

Cauchy sequences of rational numbers with fixed rate of convergence), elements

of X can be represented by number-theoretic functions x1 and, moreover, every

such function can be considered as a representative of a uniquely determined

element of X (see [2] and [20] for details). On these representatives we have a

pseudo metric dX . The elements of X can be identified with the equivalence

classes w.r.t. x =Y x :≡ (dX(x, y) =IR 0). Functions G : X → Y between

Polish spaces therefore are just given by functionals Φ
1(1)
G which respect =X

, =Y , i.e.

∀x1, y1(x =X y → ΦGx =Y ΦGy).

ΦG represents a continuous function G : X → Y if

∀x1∀k0∃n0∀y1
(
dX(x, y) ≤IR

1

n + 1
→ dY (ΦGx, ΦGy) ≤IR

1

k + 1

)
.

This definition is just the usual ε-δ–definition of continuous functions. One

could also consider to define continuity as sequential continuity. In the presence
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of QF-AC0,1 (which is included in all the systems we consider in this paper)

both definitions are equivalent as we will show now.

As usual G : X → Y is called sequentially continuous in x iff

∀x
1(0)
(·)

(
lim

n→∞
xn =X x→ lim

n→∞
ΦG(xn) =Y ΦG(x)

)
,

where ( lim
n→∞

xn =X x) :≡ ∀k0∃n0∀m ≥0 n(dX(xm, x) ≤ 1
k+1 ).

Proposition 4.1. The theory E-G3A
ω+QF-AC0,1 proves that for all func-

tions G : X → Y and points x ∈ X :

G is sequentially continuous at x↔ G is ε–δ–continuous at x.

Proof: ‘←’: Obvious!
‘→’: Suppose that G is not ε–δ–continuous at x, i.e.

(∗) ∃k0∀n0∃y1
(
dX(x, y) <IR

1

n + 1
∧ dY (ΦG(x), ΦG(y)) >IR

1

k + 1︸ ︷︷ ︸
≡:A∈Σ0

1

)
.

By coding pairs of natural numbers and numbers into functions one can express

∃y1A in the form ∃y1A0. Hence QF-AC0,1 applied to (∗) yields

∃k0, ξ1(0)∀n0
(
dX(x, ξn) <IR

1

n + 1
∧ dY (ΦG(x), ΦG(ξn)) >IR

1

k + 1

)
,

i.e. (ξn)n∈IN represents a sequence of elements of X which converges to x. But

lim
n→∞

ΦG(ξn) 6=IR ΦG(x) and thus G is not sequentially continuous at the point

represented by x. 2

Remark 4.2. The use of QF-AC0,1 in the proof of ‘→’ in the proposition

above is unavoidable already for X = Y = IR since in this case the implication

is known to be unprovable even in Zermelo–Fraenkel set theory ZF, see [16],[15]

and [12].

We now discuss the indirect representation of continuous functions G : X →

Y between Polish spaces X, Y via codes g as used in the context of reverse

mathematics (see definition II.6.1 in [35]). Since reverse mathematics takes

place in the language of second-order arithmetic (instead of a language with

higher types), the direct representation of such continuous function which is

available in our systems is not possible. We will show that provably in E-

G3A
ω+QF-AC1,0, for every such code g there exists a direct representation in

our sense of the function coded by g, but that the reverse direction in general is

not even provable in E-PAω+QF-AC. The latter phenomenon is due to the fact

that the indirect representation of continuous functions G via codes g tacitly
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yields a constructive enrichment of the direct representation of G by a modulus

of pointwise continuity. To be more specific, let us consider the special case

X = Baire space, Y = IN (with the usual metrics). Then the existence of a code

g for a continuous functional Φ2 is (relative to E-G3A
ω+QF-AC1,0) equivalent

to the existence of a continuous modulus of pointwise continuity functional Ψ2

for Φ2 which in turn is equivalent to the existence of an associate of Φ in the

sense of the Kleene/Kreisel countable functionals.

Definition 4.3. 1) α1 is a neighborhood function if

(a) ∀β1∃n0
(
α(βn) > 0

)
and

(b) ∀m, n
(
m ⊑ n∧α(m) > 0→ α(m) = α(n)

)
, where ‘m ⊑ n’ expresses

the (elementary recursive) predicate that the sequence encoded by m

is an initial segment of the one encoded by n.

2) α1 is an associate of Φ2 if

(a) ∀β1∃n0
(
α(βn) > 0

)
and

(b) ∀β, n
(
n least s.t. α(βn) > 0→ α(βn) = Φβ + 1

)
.

Without loss of generality we may assume that an associate of Φ2 is a neigh-

borhood function, since otherwise we define

α̃(n) :=





α(m), for m shortest initial segment of n s.t. α(m) > 0, if ∃.

0, otherwise.

Proposition 4.4. E-G3A
ω+QF-AC1,0 proves (uniformly in Φ2) that the fol-

lowing properties are pairwise equivalent:

1) ∃f(f is an r.m.-code of Φ), where ‘r.m.’ abbreviates ‘reverse math’.7

2) ∃α1(α is an associate of Φ),

3) ∃ω2
Φ

(
ωΦ is a continuous modulus of pointwise continuity for Φ

)
.

Proof: ‘1)→ 3)’: Let f be a r.m.-code of Φ2. Since Φ is total, we have8

∀β1∃a0, r0, b0, s0
(
d(β, λi.(a)i) <IR 2−r ∧ (a, r)f(b, s) ∧ 2−s <Q 1

)

and hence

∀β1∃a0, r0, b0, s0, l0
(
d(β, λi.(a)i) + 2−l <IR 2−r ∧ (a, r)f(b, s) ∧ 2−s <Q 1︸ ︷︷ ︸

≡:∃v0A0(f,β,a,r,b,s,l,v)

)
,

7By ‘r.m.-code’ we here refer to definition II.6.1 in [35] specialized to Â := ININ and

B̂ := IN. We identify the set Φ in that definition with its characteristic function f .
8As in reverse mathematics we represent real numbers as Cauchy sequences with fixed

rate of convergence. As a consequence of this, <IR∈ Σ0

1
. Analogously to [35](II.6.1) we write

(a, r)f(b, s) as abbreviation for the Σ0

1
-formula ∃n0(f(a, r, b, s, n) =0 0).
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where A0 is quantifier-free. By quantifier-free induction and QF-AC1,0 we

obtain a functional X2 such that

∀β
(
Xβ minimal s.t. A0(f, β, ν6

1 (Xβ), . . . , ν6
6 (Xβ))

)
.

It is clear that X is continuous9 and that Φβ = ν6
3(Xβ). With X , also

ωΦβ :=Q 2−ν6

5
(Xβ)

is continuous. One easily verifies that ωΦ is a modulus of pointwise continuity

for Φ.
‘3) → 2)’: Let ωΦ be a continuous modulus of pointwise continuity for Φ2.

Then

(1) ∀β, γ
(
β(ωΦβ) =0 γ(ωΦβ)→ Φβ =0 Φγ

)

and

(2) ∀β∃n0
(
ωΦ(β, n) ≤ n

)

(where β, n is the continuation of βn with 0).

Define

α(n) :=





Φ(λi.(n)i) + 1, if ωΦ(λi.(n)i) ≤ lth(n)

0, otherwise.

(2) yields

∀β∃k
(
α(βk) > 0

)
.

Assume that α(βk) > 0, then – by (1) and the definition of α – ωΦ(β, k) ≤

k ∧Φ(β, k) = Φβ and therefore α(βk) = Φβ + 1.

‘2)→ 1)’: Let α be an associate for Φ. By the remark above we may assume

that α is a neighborhood function. Define an r.m.-code f for Φ by

(a, r)f(b, s) :≡ α((λi.(a)i)r) > 0 ∧ |(α((λi.(a)i)r) − 1)− b| < 2−s.

This is a quantifier-free (and hence Σ0
1-)predicate (which we identify with its

characteristic function). It is straightforward to verify that f satisfies the

properties of an r.m.-code and that f is a code for Φ. We omit the tedious

details. 2

Remark 4.5. For the equivalence between 2) and 3), see also [2] (p.143, E.8).

9Here we use the fact that A0(f, β, a, r, b, s, l, v) can be written as
tA0

(f, β, a, r, b, s, l, v) =0 0 for a suitable closed term tA0
of E-G3Aω and that every

closed term t2 of E-G3Aω is provably pointwise continuous.
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Theorem 4.6. E-PAω+QF-AC1,0+QF-AC0,1 does not prove that every con-

tinuous functional Φ2 has an r.m.-code (i.e. that Φ is continuous in the sense

of reverse mathematics).

Proof: In [32](6.4) a type-structure A = 〈Ak〉k∈IN over ω is constructed with

the following properties:

(i) E2|\A1 /∈ A2, where E2(f
1) = 0↔ ∃x(fx = 0);

(ii) A is closed under computation in the sense of Kleene’s schemata S1-S9.

(iii) there exists a Φ ∈ A2 such that Φ has no associate in A1. By (ii), A is a

model of the restriction of E-PAω+QF-AC1,0 to the fragment with pure types

only. Modulo the well-known reduction to pure types (see [38](1.8.5-1.8.8)),

E-PAω+QF-AC1,0 therefore has a model in which there exists a functional

Φ2 which has no associate and therefore – by the previous proposition – no

r.m.-code f . Nevertheless, all functionals Φ2 of type 2 are continuous: one

could use here an argument due to [14] to show that the existence of a non-

continuous functional in A2 would contradict (i). However, it requires some

care to verify that this argument (which usually is formulated for the full

type-structure) relativises to A. We therefore use directly the construction of

A which is based on a certain type-2 functional F : ININ → IN (constructed by

L. Harrington using a complicated priority construction, see [32](4.21)) which

has the following properties

(i) F is continuous (and therefore has an associate in ININ),

(ii) F |\REC is not computable (in the sense of S1-S9) and therefore has no

recursive associate,

(iii) 1-sc(F ) =REC, where 1-sc(F ) is the set of functions computable in F .

A1 :=REC, Ak+1 := {Φ : Ak → IN : Φ computable in F |\REC.}

It is clear that every Φ ∈ A2 is continuous.

As a further consequence of this, QF-AC0,1 reduces in A to QF-AC0,0 since

∀x0∃f1A0(x, f)→ ∀x0∃y0A0(λi.(y)i). So A |= QF-AC0,1. 2

The next proposition shows that in the presence of arithmetical comprehension

Π0
∞-CA : ∃f1∀x0

(
f(x) = 0 ↔ A(x)

)
, where A is arithmetical with arbitrary

parameters, every continuous function on ININ has a code in the sense of reverse

mathematics:

Proposition 4.7. E-PRAω+QF-AC1,0 + Π0
∞-CA proves that every continu-

ous functional Φ1(1) has an r.m.-code (i.e. that Φ is continuous in the sense

of reverse mathematics).
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Proof: Let Φ1(1) be pointwise continuous. Then

(+)∀f1, x0∃y0∀i0, j0
(
Φ(x, fy ∗ λk.(i)k) =0 Φ(x, fy ∗ λk.(j)k)

)
,

where (a0 ∗ f1)(k) := (a)k for k < lth(a) and := f(k − lth(a)) otherwise.

By Π0
∞-CA there exists a function χ such that

∀x0, a0
(
χ(x, a) =0 0↔ ∀i, j

(
Φ(x, a ∗ λk.(i)k) =0 Φ(x, a ∗ λk.(j)k)

))
.

Hence (+) can be written as

∀f, x∃y
(
χ(x, fy) =0 0

)
.

By QF-AC1,0 and QF-IA we obtain a functional ω̃(f, x) such that

∀f, x
(
χ(x, f(ω̃(f, x)) =0 0 ∧ ∀z < ω̃(f, x)

(
χ(x, fz) 6= 0

))
.

By the pointwise continuity of Φ one easily verifies that

ω(f, x) := max
i≤x

(ω̃(f, i))

is a (pointwise continuous) modulus of (pointwise) continuity of Φ. The claim

now follows with proposition 4.4. 2

Proposition 4.8. E-PAω+QF-AC+‘all continuous functionals Φ1(1) have an

r.m.-code’ is Π1
∞-conservative over E-PAω+QF-AC0,0.

Proof: Formalizing the fact that the extensional continuous functionals ECF

form a model of the first theory and the proof for the faithfulness of this model

for the analytical fragment (see [38](2.6.5-2.6.12)), a proof of A ∈ Π1
∞ in the

first theory translates into a proof of [A]ECF (and hence of A) in E-PAω+QF-

AC0,0. 2

Corollary 4.9. E-PAω+QF-AC+‘all continuous functionals Φ1(1) have an

r.m.-code’ proves neither Π0
∞-CA nor WKL.

Proof: The corollary follows from proposition 4.8 and the fact that the

hereditarily effective operations HEO form a model of E-PAω+QF-AC0,0 (see

[38](2.4.11,2.6.13,2.6.20)) but not of WKL (and hence a-fortiori not of Π0
∞-

CA). 2

The fact that the representation of continuous functions in reverse mathemat-

ics via codes goes together with a constructive enrichment is used in many

proofs of basic properties of continuous functions in the system WKL0. So

the question arises whether WKL is sufficient to prove the same results for

our direct representation. We discuss this for simplicity again for the case of
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continuous functions Φ : ININ → IN. As we have seen above, reverse mathe-

matics treats Φ via an associate α1. This representation allows one to prove

the uniform continuity of Φ on the Cantor space of all 0-1-functions by WKL

as follows. Define a binary tree by

f(n) :=





1, if ∀i < lth(n)

(
(n)i ≤ 1

)
∧ α(n) > 0

0, otherwise.

Since we may assume that α is a neighborhood function, f satisfies T (f). The

contraposition of WKL applied to f yields

∀β ≤1 1∃x0(α(βx) > 0)→ ∃x∀β ≤1 1(α(βx) > 0),

i.e. Φβ = α(β min n[α(βn) > 0])− 1 is uniformly continuous on {β : β ≤1 1}.

This argument can be adopted to real functions encoded as in reverse mathe-

matics to show in that context that e.g. every continuous function f : [0, 1]→

IR is uniformly continuous. Together with QF-AC0,0 one even gets a modulus

of uniform continuity (see proposition 4.10).

In our direct type-2-treatment of continuous functions Φ : ININ → IN as func-

tionals Φ2 satisfying

∀f1∃n0∀g1(fn = gn→ Φf = Φg),

the binary tree to which we have to apply König’s lemma in order to prove

the uniform continuity of Φ on {f : f ≤1 1} is given by

Tree(n) :≡ ∃g, h ≤1 1
( ∧

i<lth(n)

(g(i) = (n)i = h(i)) ∧ Φg 6= Φh
)

which no longer is quantifier-free and apparently does not possess a character-

istic function in E-PAω+QF-AC1,0 which would be necessary to apply WKL

right away. However, a construction due to D. Normann10, which easily can be

formalized in our setting, shows that WKL allows one to prove the existence

of a characteristic function χT for Tree(n) (for pointwise continuous function-

als Φ). Applying then WKL to ‘χT (n) = 0’ yields the uniform continuity

(and – together with QF-AC0,0 – even a modulus of uniform continuity) of

the restriction of Φ1(1) to the Cantor space. In particular this implies that

this restriction has an r.m.-code, but note that even the proof of this corollary,

which doesn’t mention the uniform continuity of Φ, uses WKL.

10We are grateful to Professor Dag Normann for communicating this construction to us.
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Proposition 4.10. E-PRAω+QF-AC0,0+WKL proves that if the restriction

of a functional Φ1(1) to the Cantor space 2ω is pointwise continuous then it

has a modulus of uniform continuity.

Proof: We prove the proposition in two steps. We first show (using QF-AC0,0

and WKL) that the modulus of uniform continuity can be constructed if we

have a characteristic function χT for

(1) T (k0, n0) :≡ ∃g, h ≤1 1
( ∧

i<lth(n)

(g(i) = (n)i = h(i)) ∧Φ(g, k) 6= Φ(h, k)
)

and then show the existence of χT using again WKL.

Let χT be such that

(2) ∀k, n
(
χT (k, n) = 0↔ T (k, n)

)
.

By WKL and (2), we have

(3) ∃k∀n∃f ≤1 1 T (k, fn)→ ∃k∃f ≤1 1∀n T (k, fn).

In E-PRAω, ‘∃f ≤1 1(χT (k, fn) = 0)’ can be written as a quantifier-free

formula A0(k, n). Hence using QF-AC0,0 and (2), (3) implies

(4) ∀h1∃k∃f ≤1 1 T (k, f(hk))→ ∃k∃f ≤1 1∀n T (k, fn).

Contraposition of (4) together with the assumption of the pointwise continuity

of Φ|2ω yields

(5) ∃h1∀k∀f ≤1 1¬T (k, f(hk)).

Hence h̃(k) := maxi≤k(hi) is a modulus of uniform continuity of the restriction

of Φ to the Cantor space.

We now show (applying again WKL) the existence of χ satisfying (2) using a

construction due to D. Normann. We first notice that because of the pointwise

continuity of Φ|2ω it suffices to show the existence of χ such that11

(6) ∀k∀n ∈ 2<ω
(
χ(k, n) = 0↔ ∀i ∈ 2<ω(Φ(n ∗ λj.(i)j , k) = Φ(n ∗ 01, k))

)
,

11Here n ∗ f is defined as in the proof of proposition 4.7 above.
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where ‘n ∈ 2<ω’ denotes the primitive recursive predicate ‘n is the code of a

finite 0-1-sequence’. Primitive recursively in k, n, Φ we define a tree as follows:

(7) Tk,n(q) :=




0, if q ∈ 2<ω∧
(
∀i ∈ 2<ω(lth(i) ≤ lth(q)→ Φ(n ∗ q ∗ 01, k) = Φ(n ∗ i ∗ 01, k))

∨∃q̃ ∈ 2<ω∃l ≤ lth(q)[q = q̃ ∗ 0(l) with lth(q̃) minimal s.t.

Φ(n ∗ q̃ ∗ 01, k) 6= Φ(n ∗ 01, k)]
)

1, otherwise.

For every k ∈ IN, n ∈ 2<ω, Tk,n is an infinite binary tree. So WKL yields the

existence of an infinite path f ≤1 1 in that tree. One easily verifies (using

again the pointwise continuity of Φ|2ω) that

(8) ∀i ∈ 2<ω(Φ(n ∗ λj.(i)j , k) = Φ(n ∗ 01, k))↔ Φ(n ∗ f, k) = Φ(n ∗ 01, k).

In E-PRAω one can code the sequence of trees Tk,n into a single infinite binary

tree T such that any infinite path g of that tree (which by WKL exists) yields

a whole sequence λk, n.fk,n of infinite paths in Tk,n (for n ∈ 2<ω; see [30] for

details) and hence – in view of (8) – the characteristic function χ satisfying

(6) which concludes the proof. 2

Corollary 4.11. E-PRAω+QF-AC0,0+WKL proves that the restriction of

every continuous functional Φ1(1) to the Cantor space has an r.m.-code.

Open problems:

1) Does corollary 4.11 hold without WKL?

2) Does theorem 4.6 hold with WKL added?

§5. Generalization of WKL to more complex trees: Φ∞-WKL+. The

discussion before proposition 4.10 above as well as the proof of that proposi-

tion, showed that a direct application of a König’s lemma-based argument to

prove the uniform continuity of a pointwise continuous functional Φ1(1) on 2ω

would require a form of the binary König’s lemma for trees given by predicates

of the form T (n) ≡ ∃g ≤1 1A0(g, n) with quantifier-free A0 (allowing arbitrary

parameters of higher type). In the particular application in 4.10, WKL plus

QF-AC was sufficient to reduce this to a quantifier-free tree predicate (so that

WKL could then again be applied to that tree). But this was possible only

because A0(g, n) was pointwise continuous in g. However, without this con-

tinuity assumption, the corresponding extension of WKL to trees of the form
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above still results in a classically valid form of König’s lemma. Since Σ0
1-UB

allows one to prove the (uniform) continuity of every functional Φ1(1) on 2ω,

this more general form of WKL can be derived from Σ0
1-UB and hence is PRA-

reducible. This obervation can be largely extended to develop a whole strict

hierarchy of extensions of WKL which are not derivable from WKL but which

all can be shown to be proof-theoretically reducible to PRA.

Definition 5.1. 1) A ∈ Φn if

A ≡ ∀f1 ≤1 s1[a]∃f2 ≤1 s2[a] . . . ∀(d)fn ≤1 sn[a]∀x0A0(a, f1, . . . , fn, x),

where A0 is quantifier-free and a contains all free variables of A and si

(which may have arbitrary types). The fi must not occur in a.12

2) A ∈ Ψn if

A ≡ ∃f1 ≤1 s1[a]∀f2 ≤1 s2[a] . . . ∃(d)fn ≤1 sn[a]∀x0A0(a, f1, . . . , fn, x),

where A0 and si as above.

3) The classes Φ−
n and Ψ−

n result if we restrict ourselves to parameters a of

type level ≤ 1 in A0 and si.

Remark 5.2. One could also allow further universal number quantifiers ∀x0

(but no existential quantifiers) to occur in between the bounded function quan-

tifiers in the definition of Φn. The results of this paper easily extend to this

slightly generalized case. However, for notational simplicity we restrict our-

selves to the definition of Φn as stated above.

Definition 5.3. The generalization of WKL to Φn-trees is given by

Φn-WKL : ∀n0∃f ≤1 1∀ñ ≤ n A(fñ)→ ∃f ≤1 1∀n0A(fn),

where A(k0) ∈ Φn (with arbitrary further parameters of arbitrary types). Ψn-

WKL is defined analogously. Φ∞-WKL:=
⋃

n∈ω{Φn-WKL}.

The next proposition shows that in the absence of parameters of types ≥ 2

(and so in particular in a second-order context) there is no point in considering

Φn-WKL instead of WKL.13 For its proof we need the following

Lemma 5.4. Let A0(a, g1, y0) be a quantifier-free formula of T :=E-GnAω

(n ≥ 3), E-PRAω or E-PAω containing (in addition to g, y) only parameters

a of type levels ≤ 1 and let s be a term of T containing at most a as free

12Here ∀d = ∃, ∃d = ∀.
13This is in sharp contrast to the case where arbitrary parameters are allowed as we will

see below.
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variables. Then one can construct a Π0
1-formula B(a) of T (containing only a

free) such that

T + WKL ⊢ ∀a
(
B(a)↔ ∃g ≤1 s[a]∀y0A0(a, g, y)

)
.

Proof: For T =E-PRAω and T = E-PAω this follows from (the proofs of)

proposition 4.14 and corollary 4.15 in [19]. The use of the modulus t̃xyk of

pointwise continuity in y used in the proof of proposition 4.14 in [19] can

easily be replaced by a modulus t̂xk of uniform continuity on {y : y ≤1 sx}.

For closed t ∈E-GnAω such a modulus t̂ can be constructed in E-GnAω by

the method of [18] since the majorization argument used there is available in

E-GnAω as was shown in [23]. 2

Proposition 5.5. Let m, n ≥ 0. Over T :=E-GkAω (k ≥ 3), E-PRAω or

E-PAω the following principles are equivalent:

(i) WKL, (ii) Φ0-WKL, (iii) Ψ0-WKL, (iv) Φ−
m-WKL, (v) Ψ−

n -WKL.

Proof: We first show the following

Claim: Let A(a) be a Φ−
n (or Ψ−

n ) formula containing only parameters a of

type degree ≤ 1. Then one can construct a Π0
1-formula B(a) such that

T + WKL ⊢ A(a)↔ B(a).

Proof of the claim: We proceed by meta-induction on n:

n = 0 : In this case A ∈ Π0
1 and so B := A suffices.

n→ n+1 : Case 1: A ∈ Φn+1. Then A(a) ≡ ∀f ≤1 s[a] Ã(a, f), where Ã ∈ Ψn.

By the induction hypothesis there exists a formula B̃(a, f) ≡ ∀y0B̃0(a, f, y) ∈

Π0
1 with

T + WKL ⊢ A(a)↔ ∀f ≤1 s[a]∀y0B̃0(a, f, y).

Let tB̃0
be a closed term of T such that

T ⊢ ∀a, f, y
(
tB̃0

(a, f, y) =0 0↔ B̃0(a, f, y)
)
.

From results in [18] (using for the case of E-GkAω also [23]) it follows that

one can construct a closed term t̂B̃0
of T such that t̂B̃0

(a, y) is (provably in T )

a modulus of uniform continuity for λf.tB̃0
(a, f, y) on {f : f ≤1 s[a]}. Using

this modulus, ∀f ≤1 s[a] B̃0(a, f, y) can be written as a quantifier-free formula

and hence ∀f ≤1 s[a]∀y B̃0(a, f, y) as a Π0
1-formula B̂(a). So

T + WKL ⊢ A(a)↔ B̂(a).
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Case 2: A(a) ∈ Ψn+1. Then A(a) ≡ ∃f ≤1 s[a] Ã(a, f) with Ã(a, f) ∈ Φn. By

I.H. there exists a formula B̃(a, f) ≡ ∀y0B̃0(a, f, y) ∈ Π0
1 with

T + WKL ⊢ A(a)↔ ∃f ≤1 s[a]∀y0B̃0(a, f, y).

By the lemma, there exists a Π0
1-formula B̂(a) such that

T + WKL ⊢ B̂(a)↔ ∃f ≤1 s[a]∀y0B̃0(a, f, y).

So again

T + WKL ⊢ A(a)↔ B̂(a)

with B̂ ∈ Π0
1. This finishes the proof of the claim.

The claim implies that

T + WKL ⊢ Φ−
m-WKL↔ Ψ−

n -WKL

for all m, n ≥ 0. Since trivially Φ−
0 -WKL ↔ Φ0-WKL, it therefore remains to

show that

T ⊢ Φ0-WKL ↔ Ψ0-WKL ↔ WKL.

Φ0-WKL≡ Ψ0-WKL holds by definition. It is an easy exercise to show that

WKL↔ Φ0-WKL which we leave to the reader. 2

In the presence of higher type parameters, however, we get non-collapsing

hierarchies of principles Φn-WKL and Ψn-WKL, as we will show now.

Definition 5.6. We define the classes of formulas Π1,b
n and Ψ1,b

n simultane-

ously by induction on n:

(i) A ∈ Π1,b
0 = Σ1,b

0 , if A is quantifier-free;

(ii) if A(f) ∈ Π1,b
n , then ∃f ≤1 1 A(f) ∈ Σ1,b

n+1;

(iii) if A(f) ∈ Σ1,b
n , then ∀f ≤1 1 A(f) ∈ Π1,b

n+1.

A may contain arbitrary parameters (of arbitrary types).

Remark 5.7. Π1,b
n ⊆ Φn and Σ1,b

n ⊆ Ψn.

Definition 5.8. 1) The schema of Π1,b
n -comprehension is given by

Π1,b
n -CA : ∃g1∀x0(gx = 0↔ A(x)),

where A(x) ∈ Π1,b
n and may contain arbitrary parameters (of arbitrary

types) in addition to x. Σ1,b
n -CA is defined analogously but with Σ1,b

n

instead of Π1,b
n .
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2) The schema of Π1,b
n -choice for numbers is given by

Π1,b
n -AC0,0 : ∀x0∃y ≤0 1 A(x, y)→ ∃g ≤1 1∀xA(x, gx),

where A(x, y) ∈ Π1,b
n and may contain arbitrary parameters.

Proposition 5.9. Let T :=E-PAω. Then

T + Φn+1-WKL ⊢ Π1,b
n -CA

(Likewise for Ψn+1-WKL).

Proof: We use the following tree-predicate from [39]:

Ã(k) :≡






(k)lth(k)−· 1 ≤ 1 ∧ ((k)lth(k) −· 1 = 0→ A(lth(k)−· 1))∧

((k)lth(k) −· 1 = 1→ ¬A(lth(k)−· 1))
)
, if lth(k) > 0

true, otherwise.

For A ∈ Π1,b
n , Ã(k) can be written as a Φn+1-formula. By induction on n we

can prove in E-PAω that

∀n0∃f ≤1 1∀ñ ≤ nÃ(fñ).

Φn+1-WKL therefore yields the characteristic function for A(n). 2

Proposition 5.10. E-PAω + Π1,b
n -CA+µ contains (modulo a canonical em-

bedding which doesn’t change the first order part) the second order system

(Π1
n-CA) known from reverse mathematics.14

Proof: Systems formulated in the language of second-order arithmetic with

set variables like (Π1
n-CA) can be embedded in (suitable) systems formulated

in the language of functionals of all finite types by representing sets X by their

characteristic functions χX and replacing formulas ‘t ∈ X ’ by ‘χX(t) =0 0’.

In doing so and using the fact that the presence of µ allows one to absorb

an arbitrary arithmetical quantifier-prefix in front of a quantifier-free formula

with arbitrary parameters uniformly in these parameters, the comprehension

schema of (Π1
n-CA) reduces to Π1,b

n -CA above. 2

The two propositions above show that the systems E-PAω+QF-AC1,0+QF-

AC0,1 + µ + Φn-WKL (and similar with Ψn-WKL) form a non-collapsing hi-

erarchy which as n increases eventually exhausts full second-order arithmetic.

Together with the result due to Feferman that E-PAω+QF-AC1,0+QF-AC0,1+

µ can be reduced proof-theoretically to (Π0
1-CA)<ε0

15 and hence is proof-

theoretically much weaker than (Π1
1-CA), it in particular follows that for n ≥ 2,

14In the notation of [35], (Π1
n-CA) is the system Π1

n-CA0+full induction.
15This follows from [5] together with elimination of extensionality (see also [1]).
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Φn-WKL and Ψn-WKL are underivable in E-PAω+QF-AC1,0+QF-AC0,1 +µ.

The next proposition sharpens this further:

Proposition 5.11. E-PAω+QF-AC1,0+QF-AC0,1 + µ 0 Φ1-WKL.

Proof: One easily verifies that E-PAω + Φ1-WKL proves Π1,b
1 -AC0,0 which in

the presence of µ yields the so-called Σ1
1-separation principle (see [35]). Hence

(again by [35]) the subsystem ATR of second order arithmetic, whose proof-

theoretic strength is much higher than that of (Π0
1-CA)<ε0

, is contained in

E-PAω+QF-AC1,0+QF-AC0,1 + µ + Φ1-WKL. 2

In ‘(4)’ in the proof of proposition 4.10 we used a slightly more general form

of WKL which, however, could be derived from WKL by the use of QF-AC0,0.

For our extensions Φn-WKL (n > 0), quantifier-free choice does not seem to

be sufficient to do the same trick. This suggests to generalize Φn-WKL as

follows:

Definition 5.12. Let A(a0, k0) ∈ Φn (with arbitrary parameters).

Φn-WKL+ : ∀h1∃a0∃f ≤1 1∀ñ ≤ h(a)A(a, f ñ)→ ∃a∃f ≤1 1∀n0A(a, fn)

(Ψn-WKL+ is defined analogously with A ∈ Ψn.)

It is an easy exercise to show

Proposition 5.13. E-G3A
ω+QF-AC0,0 ⊢ Φ0-WKL↔ Φ0-WKL+.

§6. PRA-reducible theories. We now show that F (and in fact Σ0
1-UB)

suffices to prove the whole hierarchy Φ∞-WKL+:

Proposition 6.1. Let T :=E-GkAω (k ≥ 3), E-PRAω or E-PAω. Then

T + QF-AC1,0 + F− ⊢ Φ∞-WKL+.

Proof: Because of proposition 3.6 it suffices to show that

T + QF-AC1,0 + F ⊢ Φ∞-WKL+.

The idea of the proof is to use proposition 3.4 (together with propositions 3.2

and 3.3) to show similarly to the argument in the proof of proposition 5.5

that every A ∈ Φn (or ∈ Ψn) can be written as a Π0
1-formula B. Whereas

in the proof of proposition 5.5 we could use the fact that for every term t2[a]

of T containing only variables a of type ≤ 1 one can construct a modulus of

uniform continuity on {x : x ≤1 b} (uniformly in a and b), we have to use

proposition 3.4 in the presence of arbitrary parameters. The latter provides

such a modulus of uniform continuity only uniformly in number parameters
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but not uniformly in function parameters f unless the latter are themselves

restricted to a compact set {f : f ≤1 b} (in which case a modulus that is

independent of f does exist). However this is just the case in the situation at

hand since all function variables f1, . . . , fn of A ∈ Φn which are not parameters

are bounded. So all we need is

(∗)





∀Φ, a∃α1∀x0, z0

(
λf.(Φxzfa)0 is uniformly continuous for all

f1 ≤1 s1[x, a], . . . , fn ≤1 sn[x, a] with modulus αxz
)
,

where a are all the remaining free variables of si (which may have arbitrary

types).16

(∗) is implied by

(∗∗)





∀Φ, a, b1(0)∃α1∀x0, z0

(
λf.(Φxzfa)0 is uniformly continuous for all

f1 ≤1 b1x, . . . , fn ≤1 bnx with modulus αxz
)
.

But this follows in T + Σ0
1-UB (and therefore in T +QF-AC1,0 + F by propo-

sition 3.2) similarly to the proof of proposition 3.4. Since by proposition 3.3

also WKL is available in this theory, we can argue as in the proof of the claim

in the proof of proposition 5.5 and show that for A(x) ∈ Φn (with arbitrary

additional parameters)

T + Σ0
1-UB ⊢ ∃Φ∀x0

(
A(x)↔ ∀z0(Φxz =0 0)

)
.

Hence for all n ∈ IN

(∗ ∗ ∗)T + Σ0
1-UB ⊢ Φ0-WKL+ → Φn-WKL+

and therefore (using propositions 3.3,5.5 and 5.13)

T + QF-AC0,0 + Σ0
1-UB ⊢ Φn-WKL+

and therefore by proposition 3.2

T + QF-AC1,0 + F ⊢ Φn-WKL+,

which concludes the proof. 2

Corollary to the proof of proposition 6.1:

T + QF-AC0,0 + Σ0
1-UB ⊢ Φ∞-WKL+

Theorem 6.2.

1) E-G3A
ω+QF-AC1,0+QF-AC0,1 + Σ0

1-UB is Π0
2-conservative over EA,

2) E-PRAω+QF-AC1,0+QF-AC0,1 + Σ0
1-UB is Π0

2-conservative over PRA,

16Here ‘z’ is the variable from the Π0

1
-kernel of A (which of course can be merged together

with x).
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3) E-PAω+QF-AC1,0+QF-AC0,1 + Σ0
1-UB is conservative over PA.

Proof: We first prove 3): Let A be a sentence of PA which is provable in

E-PAω+QF-AC1,0+QF-AC0,1 + Σ0
1-UB and hence (using proposition 3.2) in

E-PAω+QF-AC1,0+QF-AC0,1 + F . Then the Herbrand normal form AH ≡

∀f∃yA0(f, y) of A (we may assume that A is in prenex normal form) is provable

there a-fortiori. Hence by theorem 3.7

E-PAω ⊢ ∀f A0(f, Ψ(f))

for suitable closed terms Ψ of E-PAω. Thus

E-PAω ⊢ AH .

By [17](thm.4.1) we can conclude that17

PA ⊢ A.

1) and 2): For Π0
2-sentences A the argument above applies equally to E-G3A

ω

(resp. E-PRAω) yielding E-G3A
ω ⊢ A (resp. E-PRAω ⊢ A). The conclusion

now follows from the fact that E-G3A
ω (resp. E-PRAω) is Π0

2-conservative

over EA (resp. PRA). 2

Theorem 6.3.

1) E-G3A
ω+QF-AC1,0+QF-AC0,1+Φ∞-WKL+ is Π0

2-conservative over EA,

2) E-PRAω+QF-AC1,0+QF-AC0,1 + Φ∞-WKL+ is Π0
2-conservative over

PRA,

3) E-PAω+QF-AC1,0+QF-AC0,1 + Φ∞-WKL+ is conservative over PA

Proof: The theorem follows from theorem 6.2 and the corollary to the proof

of proposition 6.1. 2

Remark 6.4. The purely proof-theoretic proofs of theorems 6.2 and 6.3 also

yield corresponding proof-theoretic reductions.

Theorems 6.2.2) and 6.3.2) yield two new mathematically strong PRA-

reducible and Π0
2-conservative extensions of PRA. One of these systems

T ∗ := E-PRAω+QF-AC1,0+QF-AC0,1 + Σ0
1-UB

is a non-standard system in the sense that the full set-theoretic type structure

Sω is not a model of T ∗.

17Warning: this argument does not apply to the subsystems E-PRAω, PRA; see [17] for
a counterexample to this.
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Analysing the greater mathematical strength of T ∗ (w.r.t. to derivable conse-

quences which are true in Sω) in terms of generalizations of WKL to logically

more complex binary trees, we developed the subsystem

T := E-PRAω+QF-AC1,0+QF-AC0,1 + Φ∞-WKL+

which has Sω as a model.

There is also a different route to design PRA-reducible systems which is based

on E-G∞Aω instead of E-PRAω. Although E-G∞Aω contains all primitive

recursive functions and primitive recursive functionals of every Grzegorczyk

level n, it does not contain all ordinary Kleene-primitive recursive function-

als of type 2, in particular it does not contain Φit. As a consequence of

this, E-G∞Aω+QF-AC0,0 does not prove the schema of Σ0
1-induction. As we

have shown in [26],[27] and [29], one can add to E-G∞Aω+QF-AC1,0+ QF-

AC0,1 function parameter-free schematic forms of e.g. Π0
1-comprehension, the

Bolzano-Weierstraß principle for sequences in [0, 1]d, the Arzela-Ascoli lemma

etc. and still obtain a PRA-reducible system (whereas the addition of any

of these principles to E-PRAω would make the Ackermann function provably

total). This result was obtained via a certain Σ0
2-generalization of the prin-

ciple Σ0
1-UB− mentioned in the proof of proposition 3.6. Using the results

of this paper we can even allow a corresponding generalization of the princi-

ple Σ0
1-UB instead. As a consequence of this and the fact that Φ∞-WKL+

follows from Σ0
1-UB already relative to E-G∞Aω, we may add Φ∞-WKL+ to

the principles listed above without losing PRA-conservation. This results in a

mathematically fairly strong system (note that E-G∞Aω+QF-AC0,0 contains

– identifying sets X ⊆ IN with their characteristic function – the weak base

system RCA∗
0 from reverse mathematics and see remark X.4.3 in [35]) which

is incompatible with the systems studied in this paper. A detailed treatment

of this theme, however, has to be postponed for another paper.

The results of this paper and [30] suggest to propose the following extension of

the program of reverse mathematics to finite types: Replace the base system

RCA0 by its finite type extension RCAω
0 := E-PRAω+QF-AC1,0. This sys-

tem can be shown to be conservative over (an inessential variant with function

variables instead of set variable of) RCA0. So for second order statements

A, B (i.e. the type of statements which can be discussed in the framework of

currently existing reverse mathematics) nothing is lost if we prove an equiva-

lence between A and B relative to RCAω
0 instead of RCA0. However, the richer

language allows one to consider new statements (in their direct formulation)
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which can not even be expressed in RCA0 and to apply reverse mathematics

to them as well. As an example, we can recast a result from [30] as a result in

reverse mathematics in this extended sense:

‘Relative to RCAω
0 , the uniform weak König’s lemma UWKL and the existence

of Feferman’s µ-operator are equivalent’.

Likewise, the equivalence between µ and strong uniform versions of analytical

theorems like the attainment of the maximum of f ∈ C[0, 1] can be obtained.

This theme is devloped further in [31].
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[1] Avigad, J., Feferman, S., Gödel’s functional (‘Dialectica’) interpretation. In: [3], pp.

337-405 (1998).

[2] Beeson, M.J., Foundations of Constructive Mathematics. Springer Ergebnisse der

Mathematik und ihrer Grenzgebiete 3.Folge, Bd.6., Berlin Heidelberg New York Tokyo 1985.

[3] Buss, S.R. (editor), Handbook of Proof Theory. Studies in Logic and the Foundations

of Mathematics Vol 137, Elsevier, vii+811 pp. (1998).

[4] Feferman, S., A language and axioms for explicit mathematics. In: Crossley, J.N.

(ed.), Algebra and Logic, pp. 87-139. Springer Lecture Notes in Mathematics 450 (1975).

[5] Feferman, S., Theories of finite type related to mathematical practice. In: Barwise, J.

(ed.), Handbook of Mathematical Logic, pp. 913-972, North-Holland, Amsterdam (1977).

[6] Feferman, S., Working foundations. Synthese 62, pp. 229-254 (1985).

[7] Feferman, S., Weyl vindicated: Das Kontinuum seventy years later, in: Cellucci, C.,

Sambin, G. (eds.), Temi e prospettive della logica e della filosofia della scienza contem-

porance, vol. I, pp. 59-93 (1988), CLUEB, Bologna. Reprinted (with minor additions) in

[10].

[8] Feferman, S., Infinity in mathematics: Is Cantor necessary?. In: G. Toraldo di Francia

(ed.), L’infinito nella scienza, Istituto della Enciclopedia Italiana, Rome, pp. 151-209 (1987).

Reprinted (with minor additions) in [10].

[9] Feferman S., Why a little bit goes a long way: Logical foundations of scientifically ap-

plicable mathematics. In PSA 1992, Vol.2 (Philosophy of Science Association, East Lansing),

pp. 442-455. Reprinted (with minor additions) in [10].

[10] Feferman, S., In the Light of Logic. Oxford University Press, 340 pp. (1998).
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