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1 Introduction

In recent years (though influenced by papers of G. Kreisel going back to the 50’s, e.g. [75–77]) as
well as subsequent work by H. Luckhardt ([83, 84]) and others an applied form of proof theory sys-
tematically evolved which is also called ‘Proof Mining’ ([73]). It is concerned with transformations of
prima facie ineffective proofs into proofs from which certain quantitative computational information
as well as new qualitative information can be read off which was not visible beforehand. Applications
have been given in the areas of number theory ([83]), combinatorics [2, 36, 100, 101], algebra ([23–26,
21, 22]) and, most systematically, in the area of functional analysis (see the references below). In
particular, general logical metatheorems ([55, 35, 65]) have been proved which guarantee a-priorily
for large classes of theorems and proofs in analysis the extractability of effective bounds which are
independent from parameters in general classes of metric, hyperbolic and normed spaces if certain
local boundedness conditions are satisfied. Unless separability assumptions on the spaces involved
are used in a given proof, the independence results from parameters only need metric bounds but no
compactness ([35, 65]). The theorems treat results involving concrete Polish metric spaces P (such
as IRn or C[0, 1]) as well as abstract structures (metric, hyperbolic, normed spaces etc.) which are
axiomatically added to the formal systems as kind of ‘Urelements’. It is for the latter structures
that we can replace the dependency of the bounds from inputs involving elements of these spaces
by hereditary bounds (‘majorants’) of such elements which in our applications will be either natural
numbers or number theoretic functions. So we can apply the usual notions of computability and
complexity for type-2 functionals and do not have to restrict ourselves to instances of these struc-
tures which are representable in some effective way or would carry a computability structure. The
latter is only required for the concrete Polish metric spaces where we rely on the usual ‘standard
(Cauchy) representation’.

Obviously, certain restrictions on the logical form of the theorems to be proved as well as on the
axioms to be used in the proofs are necessary (for a large class of semi-constructive proofs the re-
strictions on the form of the theorems can largely be avoided, see [34]). These restrictions in turn
depend on the language of the formal systems used as well as the representation of the relevant
mathematical objects such as general function spaces. The correctness of the results, moreover, de-
pends in subtle ways on the amount of extensionality properties used in the proof which has a direct
analytic counterpart in terms of uniform continuity conditions.

The applications which we discuss in this survey include a number of new qualitative existence
results in the area of nonlinear functional analysis which follow from the metatheorems but so far
did not have a functional analytic proof. Applying the extraction algorithm provided by the proofs
of the metatheorems to these results yields the explicit quantitative versions stated below and at
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the same time direct proofs which no longer rely on the logical metatheorems themselves ([10, 33,
62, 64, 69, 70, 66, 81]).

The page limitations of this paper prevent us from formulating precisely the various logical metathe-
orems and the formal systems involved and we refer to [65, 35]. We will rather give a comprehensive
presentation of the effective bounds obtained with the help of this logical approach in analysis (often
all the qualitative features of the bounds concerning the (in)dependence from various parameters
as well as some crude complexity estimates are guaranteed a-priorily by logical metatheorems) and
refer for information on the logical background as well as for the proofs of these bounds to the
literature.

Notations: Q∗
+ and IR∗

+ denote the sets of strictly positive rational and real numbers respectively.

The bounds presented below are all obviously effective if stated for ε ∈ Q∗
+. Sometimes it is more

convenient to state them (and to formulate the various moduli involved) for ε ∈ IR∗
+. It will, nev-

ertheless, always be straightforward to make the use of e.g. dxe effective by restricting things to
rational ε (and corresponding moduli formulated for rationals).

2 Logical metatheorems

In this section we give an informal presentation of the main metatheorems on which the applications
reported in this paper are based (details can be found in [65, 35]).

Definition 1. 1) The set T of all finite types over 0 is defined inductively by the clauses

(i) 0 ∈ T, (ii) ρ, τ ∈ T ⇒ (ρ → τ) ∈ T.

2) The set TX of all finite types over the two ground types 0 and X is defined by

(i) 0, X ∈ TX , (ii) ρ, τ ∈ TX ⇒ (ρ→ τ) ∈ TX .

3) A type is called small if it is of degree 1 (i.e. 0 → . . .→ 0 → 0) or the form ρ1 → . . .→ ρk → X
with the ρi being 0 or X.1

The theory Aω for classical analysis is the extension of the weakly extensional Peano arithmetic in
all types WE-PAω by the schemata of quantifier-free choice QF-AC and dependent choice DC for
all types in T (formulated for tuples of variables).
The theories Aω[X, d]−b and Aω [X, d,W ]−b result2 by extending Aω to all types in TX and
adding axioms for an abstract metric (in the case of Aω [X, d]−b) resp. hyperbolic (in the case of
Aω[X, d,W ]−b) space. Aω[X, d,W,CAT(0)]−b is the extension by an abstract CAT(0)-space. Analo-
gously, one has theories Aω [X, ‖ ·‖] with an abstract non-trivial real normed space added (as well as
further extensions Aω [X, ‖ · ‖, C] resp. Aω [X, ‖ · ‖, C]−b with bounded resp. general convex subsets
C ⊆ X which we will, however, due to lack of space not formulate here). Our theories also contain
a constant 0X of type X which in the normed case represents the zero vector and in the other cases
stands for an arbitrary element of the metric space. For details on all this see [65, 35].

Real numbers are represented as Cauchy sequences of rationals with fixed rate 2−n of convergence
which in turn are encoded as number theoretic functions f 1, where an equivalence relation f =IR g
expresses that f1, g1 denote the same real numbers, and ≤IR, <IR, | · |IR express the obvious relations

1 In [35] a somewhat bigger class of types of so-called degree (1, X) is allowed. However, for the applications
presented in this paper the small types suffice which simplifies the statement of the metatheorem below.

2 The index ‘−b’ indicates that in contrast to the corresponding theories in [65] we (following [35]) do not
require the metric space to be bounded.
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and operations on the level of these codes. Here =IR,≤IR∈ Π0
1 whereas <IR∈ Σ0

1 . Again details can
be found in [65].

‘Weakly extensional’ means that we only have Spector’s quantifier-free extensionality rule. In par-
ticular, for the defined equality x =X y :≡ (dX(x, y) =IR 0IR), we do not have

x =X y → fX→X(x) =X f(y)

but only from a proof of s =X t can infer that f(s) =X f(t). This is of crucial importance for our
metatheorems to hold. Fortunately, we can in most cases prove the extensionality of f for those
functions we consider, e.g. for nonexpansive functions, so that this only causes some need for extra
care in few cases (for an extensive discussion of this point see [65]).

Definition 2. For ρ ∈ TX we define ρ̂ ∈ T inductively as follows

0̂ := 0, X̂ := 0, ̂(ρ→ τ) := (ρ̂→ τ̂ ),

i.e. ρ̂ is the result of replacing all occurrences of the type X in ρ by the type 0.

Definition 3 ([35]). We define a ternary majorization relation &a
ρ between objects x, y and a of

type ρ̂, ρ and X respectively by induction on ρ as follows:3

– x0 &a
0 y

0 :≡ x ≥IN y,
– x0 &a

X yX :≡ (x)IR ≥IR dX(y, a),
– x &a

ρ→τ y :≡ ∀z′, z(z′ &a
ρ z → xz′ &a

τ yz) ∧ ∀z′, z(z′ &a
�

ρ z → xz′ &a
�

τ xz).

For normed linear spaces we choose a = 0X .

Definition 4. A formula F in L(Aω [X, . . .]−b) is called ∀-formula (resp. ∃-formula) if it has the
form F ≡ ∀aσFqf (a) (resp. F ≡ ∃aσFqf (a)) where Fqf does not contain any quantifier and the
types in σ are small.

In the following Sω = 〈Sρ〉ρ∈T refers to the full set-theoretic type structure of all set-theoretic
functionals of finite type.

Theorem 1 ([35]).

1) Let ρ be a small type and let B∀(x, u), resp. C∃(x, v), be ∀- and ∃-formulas that contain only
x, u free, resp. x, v free. Assume that the constant 0X does not occur in B∀, C∃ and that

Aω[X, d]−b ` ∀xρ(∀u0B∀(x, u) → ∃v0C∃(x, v)).

Then there exists a computable functional4 Φ : S �

ρ → IN such that the following holds in all
nonempty metric spaces (X, d): for all x ∈ Sρ, x

∗ ∈ S �

ρ if there exists an a ∈ X s.t. x∗ &a x
then

∀u ≤ Φ(x∗)B∀(x, u) → ∃v ≤ Φ(x∗)C∃(x, v).

If 0x does occur in B∀ and/or C∃, then the bound Φ depends (in addition to x∗) on an upper
bound IN 3 n ≥ d(0X , a).

2) The theorem also holds for nonempty hyperbolic spaces Aω[X, d,W ]−b,
(X, d,W ) and for Aω[X, d,W,CAT(0)]−b, where (X, d,W ) is a CAT(0) space.

3) The theorem also holds for non-trivial real normed spaces Aω[X, ‖ · ‖], (X, ‖ · ‖), where then ‘a’
has to be interpreted by the zero vector 0X in (X, ‖ · ‖) and 0X is allowed to occur in B∀, C∃.

3 Here (x)IR refers to the embedding of IN into IR in the sense of our representation of IR.
4 Note that for small types ρ the type

�

ρ is of degree 1. So Φ essentially is a type-2 functional : ININ
→ IN.
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Instead of single variables x, u, v and single premises ∀uB∀(x, u) we may have tuples of variables
and finite conjunctions of premises. In the case of a tuple x we then have to require that we have a
tuple x∗ of a-majorants for a common a ∈ X for all the components of the tuple x.

Remark 1. From the proof of Theorem 1 two further extensions follow:

1) The language may be extended by a-majorizable constants (in particular constants of types 0
and 1, which always are uniformly majorizable) where the extracted bounds then additionally
depend on (a-majorants for) the new constants.

2) The theory may be extended by purely universal axioms or, alternatively, axioms which can be
reformulated into purely universal axioms using new majorizable constants if the types of the
quantifiers are small.

Using these extension, the theorem above can be adapted to other structures such as uniformly
convex normed spaces or inner product spaces ([35]) as well as to uniformly convex hyperbolic
spaces, δ-hyperbolic spaces (in the sense of Gromov) and IR-trees in the sense of Tits (see [81]).

A crucial aspect of theorem 1 is that the bound Φ operates on objects of degree ≤ 1, i.e. natu-
ral numbers or n-ary number theoretic functions so that the usual type-2 computability theory as
well as well-known subrecursive classes of such functionals apply here irrespectively of whether the
metric and normed spaces to which the bounds are applied come with any notion of computability
or not. Since we included the axiom of dependent choice (and so also countable choice and hence
full comprehension over numbers) in our systems, the functional Φ extracted will be in general a
bar recursive functional in the sense of Spector [97]. However, if (as usually is the case) only small
fragments of this are used, e.g. if in addition to basic arithmetic only the weak König’s lemma WKL
is used, then the bound will be primitive recursive in the sense of Gödel’s T ([40]) if full induction
is used resp. primitive recursive in the ordinary sense of Kleene if only Σ0

1 -induction is used. If not
even full Σ0

1-induction is used then in many cases even polynomial bounds (in the data) can be
expected (see [55, 58–60]).
The proof of theorem 1 provides an algorithm (based on (monotone) functional (‘Dialectica’) inter-
pretation [40, 97, 57, 43]) for the extraction of Φ.

In the concrete applications theorem 1 is used via various applied corollaries of which we give an
example now:

Definition 5. Let (X, d) be a metric space. A mapping f : X → X is called nonexpansive (short
‘n.e.’) if

∀x, y ∈ X(d(f(x), f(y)) ≤ d(x, y)).

Corollary 1 ([35]). Let C∃ be an ∃-formula and P,K Polish resp. compact metric spaces in stan-
dard representation by Aω-definable terms (see [55] for a precise definition). If Aω [X, d,W ]−b proves
a sentence

∀x ∈ P∀y ∈ K∀zX , z̃X , c0→X , fX→X
(
f nonexpansive → ∃vINC∃

)

then there is a computable functional Φ(gx, b, h) s.t. for all x ∈ P, gx ∈ ININ representative of x,
b ∈ IN, h ∈ ININ

∀y ∈ K∀z, z̃ ∈ X∀c : IN → X∀f : X → X
(
f n.e. ∧ d(z, f(z)), d(z, z̃) ≤ b ∧ ∀n(d(z, c(n)) ≤ h(n)

→ ∃v ≤ Φ(gx, b, h)C∃

)

holds in any nonempty hyperbolic space (X, d,W ).

Proof (sketch): The fact that P,K have a standard representation by Aω-terms essentially means
that ∀-quantification over P resp. K can be expressed as quantification ∀x1 resp. ∀y ≤1 N where N
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is a fixed simple (primitive recursive) function depending on K. Here the number theoretic functions
encode Cauchy sequences (with fixed rate of convergence) of elements from the countable dense sub-
set of P resp. K on which the standard representations are based. We now apply theorem 1 with
a := z. For this we have to construct &z-majorants for x1, y1, zX , z̃X , c0→X and fX→X :

x∗ := xM := λn.max{x(i) : i ≤ n}, y∗ := NM , z∗ := 00, z̃∗ := b, c∗ := hM ,
f∗ := λn0.n+ b.

For f∗ we use that

d(x, z) ≤ n→ d(f(x), z) ≤ d(f(x), f(z)) + d(f(z), z) ≤ d(x, z) + d(f(z), z) ≤ n+ b.

Note that the majorants only depend on x, b, h. �

3 Applications of proof mining in approximation theory

Let (X, ‖ · ‖) be a (real) normed linear space and E ⊆ X a finite dimensional subspace. By a
standard (ineffective) compactness argument each x ∈ X possesses at least one element yb ∈ E of
best apprxomation, i.e.

‖x− yb‖ = inf
y∈E

‖x− y‖ =: dist(x,E).

In some important cases (see further below) yb is uniquely determined

∀x ∈ X∀y1, y2 ∈ E(‖x− y1‖, ‖x− y2‖ = dist(x,E) → y1 = y2)

which can be written as follows

∀x ∈ X∀y1, y1 ∈ E∀k ∈ IN∃n ∈ IN(‖x− y1‖, ‖x− y2‖ ≤ dist(x,E) + 2−n → ‖y1 − y2‖ < 2−k),

where (using the representation of real numbers mentioned above)

‖x− y1‖, ‖x− y2‖ ≤ dist(x,E) + 2−n → ‖y1 − y2‖ < 2−k

is equivalent to a Σ0
1 -formula.

Every best approximation yb ∈ E clearly satisfies ‖yb‖ ≤ 2‖x‖ (since otherwise 0 ∈ E would be a
better appoximation). Hence we can replace above the space E by the compact subset Kx := {y ∈
E : ‖y‖ ≤ 2‖x‖}. Now suppose that one has a computable bound Φ(x, k) (depending on a suitable
representation of x) for ‘∃n ∈ IN’ that is independent of y1, y2 ∈ Kx, i.e.

∀x ∈ X∀y1, y1 ∈ Kx∀k ∈ IN(‖x− y1‖, ‖x− y2‖ ≤ dist(x,E) + 2−Φ(x,k) → ‖y1 − y2‖ < 2−k).

We call such a Φ a modulus of uniqueness. Then any algorithm for computing 2−n-best approxi-
mations yn ∈ Kx, i.e. ‖x − yn‖ ≤ dist(x,E) + 2−n can be used to compute yb with any prescribed
precision since

∀k ∈ IN (‖yΦ(x,k) − yb‖ < 2−k).

If we use K̃x := {y ∈ E : ‖y‖ ≤ 5
2‖x‖} instead of Kx, then by an easy argument a modulus

of uniqueness on K̃x can be extended effectively to the whole space E. So we now always refer
to moduli of uniqueness on all of E and – for convenience – use q ∈ Q∗

+ instead of 2−k with
Φ(x, q) ∈ Q∗

+. The next proposition further indicates the relevance of this notion:

Proposition 1 ([55]). Let (X, ‖ · ‖) be a real normed linear space, E ⊆ X a finite dimensional
subspace. Assume that every x ∈ X possesses a uniquely determined best approximation in E and
that the operation Φ is a modulus of uniqueness. Then the following holds
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1) 1
2 · Φ is a modulus of pointwise continuity for the projection P : X → E which maps x ∈ X to
its best approximation yb ∈ E, i.e.

∀x, x0 ∈ X, q ∈ Q∗
+

(
‖x− x0‖ ≤

1

2
Φx0q → ‖Px−Px0‖ ≤ q

)
.

2) If Φ is linear in q,i.e. Φxq = q · γ(x), then γ(x) is a ‘constant of strong unicity’, i.e.

∀x ∈ X, y ∈ E
(
‖x− y‖ ≥ ‖x− yb‖ + γ(x) · ‖y − yb‖

)
,

where yb is the best approximation of x in E,
3) For γ(x) as in ‘2)’ we get that λ(x) := 2

γ(x) is a pointwise Lipschitz constant for P, i.e.

∀x, x0 ∈ X
(
‖Px−Px0‖ ≤ λ(x0) · ‖x− x0‖

)
.

In the following, we discuss two specific best approximation problems. Let C[0, 1] be the space
of all continuous real valued functions on [0, 1] and Pn the subspace of all polynomials of degree
≤ n. We consider best approximations of f ∈ C[0, 1] by polynomials in Pn w.r.t. the maximum
norm ‖f‖∞ := sup

x∈[0,1]

|f(x)| (called best Chebycheff approximation) as well as w.r.t. the L1-norm

‖f‖1 :=
∫ 1

0 |f | (also called ‘approximation in the mean’). Even in the latter case we represent C[0, 1]
as a Polish space w.r.t. the metric induced by ‖ · ‖∞ since it is not complete w.r.t. ‖ · ‖1. The usual
so-called standard representation of (C[0, 1], ‖·‖∞) is constructively equivalent to the representation
of f via its restriction to the rational numbers in [0, 1] and a modulus ω : Q∗

+ → Q∗
+ of uniform

continuity of f , i.e.

∀x, y ∈ [0, 1]∀ε ∈ Q∗
+(|x− y| < ω(ε) → |f(x) − f(y)| < ε)

so that the bounds will depend on ω.

Since in this section we do not use abstract classes of metric spaces but (in addition to IR) only the
concrete Polish metric space (C[0, 1], ‖ · ‖∞) the applications in this section are instances already of
the older metatheorems from [55].

We first consider the case of best Chebycheff approximation: A well-known theorem in so-called
Chebycheff approximation theory states that every f ∈ C[0, 1] possesses a unique polynomial
pb ∈ Pn of best approximation in the ‖ · ‖∞-norm, i.e. a polynomial in Pn such that ‖f − pb‖∞ =
dist∞(f, Pn) := inf

p∈Pn

‖f − p‖∞. Both the existence as well as the uniqueness of pb are established

by classical arguments which make use of the theorem that continuous real valued functions attain
their minimum on compact spaces, i.e. use the ineffective weak König’s lemma WKL (see [95]).
By (the algorithm implicit in) our general metatheorems from [55] it is guaranteed that the unique-
ness proof, nevertheless, allows one to extract a (primitive recursively) computable modulus of
uniqueness (even of relatively low complexity), a concept which – under the name of strong unicity
– plays an important role in approximation theory (see [18]). By proposition 1 such a modulus of
uniqueness provides a stability rate for the Chebycheff projection which assigns to f ∈ C[0, 1] the
unique polynomial pb of best approximation in Pn. Furthermore, it can be used to compute pb and
to (upper) estimate its computational complexity (see [55] for all this). In [56] the following explicit
moduli (also for the case of general Haar spaces) were extracted from the classical uniqueness proof
due to [102]:

Theorem 2 ([56]). Let

Φ(ω, n, ε) := min

{
ε/4,

⌊
n
2

⌋
!
⌈

n
2

⌉
!

2(n+ 1)
· (ωn(ε/2))

n
· ε

}
,
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with

ωn(ε) :=





min

{
ω
(

ε
2

)
, ε

8n2d 1
ω(1)

e

}
, if n ≥ 1

1, if n = 0.

Then Φ is a common modulus of uniqueness for all f ∈ C[0, 1] which have the modulus of uniform
continuity ω, i.e. for all n ∈ IN. More precisely, we have

∀p1, p2 ∈ Pn; ε ∈ Q∗
+

( 2∧

i=1

(‖f − pi‖∞ − dist∞(f, Pn) < Φ(ω, n, ε)) → ‖p1 − p2‖∞ ≤ ε
)
.

Moreover if dist∞(f, Pn) > 0 and l ∈ Q∗
+ such that l ≤ dist∞(f, Pn) and

Φ̃(ω, n, l) :=

⌊
n
2

⌋
!
⌈

n
2

⌉
!

2(n+ 1)
· (ωn(2l))n ,

then Φ̃(ω, n, l)·ε is a modulus of uniqueness for f which is linear in ε and so Φ̃(ω, n, l) (by proposition
1) is a ‘constant of strong unicity’.

Remark 2. 1) The most important aspect of Φ, Φ̃ above is that these bounds do not depend on
p1, p2. This is guaranteed by the metatheorems in [55] since one can – as discussed above –
restrict things to the bounded (and hence compact) subset K̃f,n := {p ∈ Pn : ‖p‖∞ ≤ 5

2‖f‖∞}
of the finite dimensional space Pn.

2) Instead of the term d 1
ω(1)e in the definition of ωn we may use an arbitrary upper bound M ≥

‖f‖∞. Actually the result is proved in this form in [56]. Using the construction f 7→ f̃ , f̃(x) :=
f(x) − f(0) (using that dist∞(f, Pn) = dist∞(f̃ , Pn)) one sees that one may assume without
loss of generality that f(0) = 0. With this assumption d 1

ω(1)e is an upper bound of ‖f‖∞ which

reduces the dependence of the bound on f to just ω.

3) Our constant of strong unicity tends to 0 as n → ∞. Except for the trivial case where f ∈ Pn

this is unavoidable by a deep result in [32].

The modulus of uniqueness in theorem 2 is significantly better than the one implicit in [53, 54] (see
[56] for a comparison).

The existence of a unique element of best approximation to f ∈ C[0, 1] extends from Pn−1 :=
LinIR{1, x, . . . , x

n−1} to general so-called Haar spaces H := LinIR{φ1, . . . , φn}, i.e. n-dimensional
subspaces of C[0, 1] which have the unique interpolation property, i.e.

∀φ ∈ H∀x ∈ [0, 1]
( n−1∧

i=1

(xi < xi+1) ∧

n∧

i=1

(φ(xi) = 0) → φ ≡ 0
)
.

The tuple (φ1, . . . , φn) of functions in C[0, 1] is called a Chebycheff system over [0, 1].
Let φ := (φ1, . . . , φn) be a Chebycheff system over [0, 1], φ(x) :=

(
φ1(x), . . . , φn(x)

)
∈ IRn, ‖φ‖ :=

sup
x∈[0,1]

‖φ(x)‖2, where ‖ · ‖2 denotes the Euclidean norm on IRn.

β, γ, κ : (0, 1
n ] → IR∗

+ are defined by

β(α) :=





inf
x∈[0,1]

|φ1(x)|, if n = 1

inf

{
| det(φj(xi))| : 0 ≤ x1, . . . , xn ≤ 1,

n−1∧
i=1

(xi+1 − xi ≥ α)

}
, if n > 1
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and

γ(α) := min




‖φ‖,

β(α)

n
1
2 (n− 1)!

n∏
i=1

(1 + ‖φi‖∞)




, κ(α) := γ(α)−1 · ‖φ‖

for α ∈ (0, 1
n ]. Since φ is a Chebycheff system it follows that β(α) > 0.

H := LinIR(φ1, . . . , φn); ωφ denotes a modulus of uniform continuity of φ. EH,f := dist∞(f,H).

Lemma 1 ([6, 7]).

1) Suppose that A ⊂ C[0, 1] is totally bounded, ωA is a common modulus of uniform continuity for
all f ∈ A and M > 0 is a common bound M ≥ ‖f‖∞ for all f ∈ A. Then

ωA,H(ε) := min




ωA(

ε

2
), ωφ




ε · β( 1
n )

4Mn
3
2 (n− 1)!

n∏
i=1

(1 + ‖φi‖∞)








is a common modulus of uniform continuity for all ψb − f where f ∈ A and ψb is the best
approximation of f in H.

2) Assume 0 < α ≤ 1
n and

n−1∧
i=1

(xi+1 − xi ≥ α) (x1, . . . , xn ∈ [0, 1]) for n ≥ 2. Then

∀ψ ∈ H, ε > 0
( n∧

i=1

|ψ(xi)| ≤
γ(α)

n · ‖φ‖
· ε→ ‖ψ‖∞ ≤ ε

)
.

Theorem 3 ([56]). Let A,ωA,H , γ, κ be as in lemma 1 and EH,A := inf
f∈A

EH,f . Then

ΦAε := min

{
ε

4
,
1

2

γ
(
min{ 1

n , ωA,H( ε
2 )}
)

n · ‖φ‖
· ε

}
= min

{
ε

4
,

ε

2nκ
(
min{ 1

n , ωA,H( ε
2 )}
)
}

is a common modulus of uniqueness (and a common modulus of continuity for the Chebycheff pro-
jection in f) for all f ∈ A.

For lH,A ∈ Q∗
+ such that lH,A < EH,A and 0 < α ≤ min{ 1

n , ωA,H(2 · lH,A)} we have γ(α)
n·‖φ‖ (resp.

2nκ(α)) as a uniform constant of strong unicity (resp. Lipschitz constant) for all f ∈ A.

The bounds in theorem 3 are significantly better than the ones obtained in [6–8] (see [56] for a
detailed comparison). The (ineffective) existence of a constant of strong unicity was proved first in
[86]. The existence of a uniform such constant (in the sense above) was established (again ineffec-
tively) first in [42]. The local Lipschitz continuity of the projection is due to [31].

If the Haar space contains the constant-1 function then, using again the transformation f 7→ f̃ ,
with f̃(x) := f(x) − f(0), one can even eliminate the dependence of the bounds on M ≥ ‖f‖∞ and
conclude:

Theorem 4. Let {φ1, . . . , φn} be a Chebycheff system such that
1 ∈ H :=LinIR(φ1, . . . , φn) and let ω : IR∗

+ → IR∗
+ be any function. Then

ΦH(ω, ε) := min

{
ε

4
,

ε

2nκ
(
min{ 1

n , ω
H( ε

2 )}
)
}
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with

ωH(ε) := min




ω(
ε

2
), ωφ




ε · β( 1
n )

4d 1
ω(1)en

3
2 (n− 1)!

n∏
i=1

(1 + ‖φi‖∞)








is a common modulus of uniqueness (and a common modulus of continuity for the Chebycheff pro-
jection) for all functions f ∈ C[0, 1] which have ω as a modulus of uniform continuity.

As a corollary we obtain that for arbitrary Haar spaces having the constant function 1 the continu-
ity behavior of the Chebycheff projection is uniform for any class of equicontinuous functions which
generalizes a result of [79] for the case of (trigonometric) polynomials.

We now move to best approximations of f by polynomials in Pn w.r.t. the L1-norm ‖f‖1 :=∫ 1

0
|f(x)|dx, so-called best ‘approximation in the mean’.

Theorem 5 ([45]). Let f ∈ C[0, 1] and n ∈ IN. There exists a unique polynomial pb ∈ Pn of degree
≤ n that approximates f best in the L1-norm, i.e.

‖f − pb‖1 = inf
p∈Pn

‖f − p‖1 =: dist1(f, Pn).

Since C[0, 1] is not complete w.r.t. the norm ‖f‖1 we still use the representation w.r.t. ‖f‖∞ in which
the norm ‖f‖1 can easily be computed. As a result of this we again have to expect our modulus
of uniqueness to depend on a modulus ω of uniform continuity of f. Again, both the existence
and the uniqueness part are proved using compactness arguments which are equivalent to WKL.
Despite of this ineffectivity, using the algorithm implicit in the logical metatheorems from [55] the
following result was extracted from the ineffective uniqueness proof due to [17] (the extractability of
a primitive recursive modulus of uniqueness again is a-priorily guaranteed by logical metatheorems,
see [55]):

Theorem 6 ([72]). Let

Φ(ω, n, ε) := min{
cnε

8(n+ 1)2
,
cnε

2
ωn(

cnε

2
)},

where

cn := bn/2c!dn/2e!
24n+3(n+1)3n+1 and ωn(ε) := min{ω( ε

4 ), ε
40(n+1)4d 1

ω(1)
e
}.

Then Φ(ω, n, ε) is a modulus of uniqueness for the best L1-approximation of any function f in C[0, 1]
having modulus of uniform continuity ω from Pn, i.e. for all n and f ∈ C[0, 1] :

∀p1, p2 ∈ Pn; ε ∈ Q∗
+ (

2∧

i=1

(‖f − pi‖1 − dist1(f, Pn) ≤ Φ(ω, n, ε)) → ‖p1 − p2‖1 ≤ ε),

where ω is a modulus of uniform continuity of the function f. Note that again Φ only depends on f
only via the modulus ω.

The uniqueness of the best L1-approximation was proved already in 1921 ([45]). In 1975, Björnest̊al
[3] proved ineffectively the existence of a rate of strong unicity Φ having the form cf,n ε ωn(cf,n ε),
for some constant cf,n depending on f and n. In 1978, Kroó [78] improved Björnest̊al’s results
by showing – again ineffectively – that a constant cω,n, depending only on the modulus of uniform
continuity of f and n exists. Moreover, Kroó proved that the ε-dependency established by Björnestal
is optimal. Note that the effective rate given above has this optimal dependency.
The effective rate of strong unicity given above allows one for the first time to effectively compute
the best approximation. An upper bound on the complexity of that procedure is given in [88].
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4 Effective computation of fixed points for functions of contractive type

There is a long history on extensions of Banach’s well-known fixed point theorem for contractions
to various more liberal notions of contractive type functions. The results usually are of the same
shape as Banach’s theorem, i.e. they state that the functions under consideration have a unique
fixed point and that the Picard iteration (fn(x))n∈IN of an arbitrary starting point converges to this
fixed point. However, in contrast to Banach’s theorem, in general no explicit rates of convergence
can be read off from the (often ineffective) proofs.
The oldest of these results are due to Edelstein [28] and Rakotch [90].

Definition 6 ([28]). A self-mapping f of a metric space (X, d) is contractive if

∀x, y ∈ X(x 6= y → d(f(x), f(y)) < d(x, y)).

Theorem 7 ([28]). Let (X, d) be a complete metric space, let f be a contractive self-mapping on
X and suppose that for some x0 ∈ X the sequence (fn(x0)) has a convergent subsequence (fni(x0)).
Then ξ = lim

n→∞
fn(x0) exists and is a unique fixed point of f .

Rakotch observed that when contractivity is formulated in the following uniform way (which in the
presence of compactness is equivalent to Edelstein’s definition but in general is a strictly stronger
condition) then it is possible to drop the assumption of the existence of convergent subsequences.

Definition 7 ([90]). 5 A selfmapping f : X → X of a metric space is called uniformly contractive
with modulus α : Q∗

+ → (0, 1) ∩ Q if

∀ε ∈ Q∗
+∀x, y ∈ X(d(x, y) > ε→ d(f(x), f(y)) ≤ α(ε) · d(x, y)).

Theorem 8 ([90]). Let (X, d) be a complete metric space and let f be a uniformly contractive self-
mapping on X (i.e. f has modulus of contractivity α), then, for all x ∈ X, ξ = lim

n→∞
fn(x) exists

and is a unique fixed point of f .

Example 1. The functions f : [1,∞) → [1,∞), f(x) := x + 1
x and f : IR → IR, f(x) := ln(1 + ex)

are both contractive in the sense of Edelstein but not uniformly contractive in the sense of Rakotch.
The function f : [1,∞) → [1,∞), f(x) := 1 + lnx is uniformly contractive in the sense of Rakotch
but not a contraction.

From the essentially constructive proof in [90] one obtains (as predicted by a general logical metathe-
orem established in [34]) the following bound (see also [9] for a related result):

Theorem 9 ([34]). With the conditions as in the previous theorem we have the following rate of
convergence of the Picard iteration from an arbitrary point x ∈ X towards the unique fixed point ξ
of f :

∀x ∈ X∀ε ∈ Q∗
+∀n ≥ δ(α, b, ε)(d(fn(x), ξ) ≤ ε),

where

δ(α, b, ε) =
⌈

log ε−log b′(α,b)
log α(ε)

⌉
for

b′(α, b) = max(ρ, 2·b
1−α(ρ) ) with IN 3 b ≥ d(x, f(x)) and ρ > 0 arbitrary.

Remark 3. 1) Note that the rate of convergence depends on f, x only via α and an upper bound
for d(x, f(x)).

5 This definition is taken from [34] and slightly more general than Rakotch’s original definition.
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2) Instead of the multiplicative modulus of uniform contractivity α one can also consider an additive
modulus η : Q∗

+ → Q∗
+ s.t.

∀ε ∈ Q∗
+∀x, y ∈ X

(
d(x, y) > ε→ d(f(x), f(y)) + η(ε) ≤ d(x, y)

)

and construct a rate of convergence in terms of η (see [34]).

Instead of starting from a constructive proof one also could take an ineffectice proof of fn(x) → 0
and first extract an effective bound Φ such that

∀x ∈ X∀ε ∈ Q∗
+∃n ≤ Φ(α, b, ε)(d(fn(x), fn+1(x)) < ε)

using theorem 1 (which is possible since ‘∃n(d(fn(x), fn+1(x)) < ε)’ is purely existential).
Since the sequence (d(fn(x), fn+1(x)))n is nonincreasing this yields

∀x ∈ X∀ε ∈ Q∗
+∀n ≥ Φ(α, b, ε)(d(fn(x), fn+1(x)) < ε).

One then extracts (using again theorem 1) a modulus Ψ of uniqueness from the uniqueness proof.
Similarly to our applications in approximation theory, these two moduli Φ, Ψ together then provide
a rate of convergence towards the fixed point (for details see [73]).

In the fixed point theorems due to Kincses/Totik ([46]) and Kirk ([49]) which we discuss next, only
ineffective proofs were known so that an approach as outlined above had to be anticipated. However,
due to the lack monotonocity of (d(fn(x), fn+1(x)))n in these cases, this approach would not yield
a full rate of convergence. Nevertheless, this problem could be overcome and, in fact, recent work
of E.M. Briseid ([15]) shows that under rather general conditions on the class of functions to be
considered (satisfied in the two cases at hand for uniformly continuous functions) theorem 1 can
be used to guarantee effective rates of convergence of (fn(x))n towards a unique fixed point from a
given ineffective proof of this fact.

In [92, 93], 25 different notions of contractivity are considered starting from Edelstein’s definition.
The most general one among those is called ‘generalized contractivity’ in [10, 11]. If only some iterate
fp for p ∈ IN is required to satisfy this condition, the function is called ‘generalized p-contractive’:

Definition 8 ([92]). Let (X, d) be a metric space and p ∈ IN. A function f : X → X is called
generalized p-contractive if

∀x, y ∈ X
(
x 6= y → d(fp(x), fp(y)) < diam {x, y, fp(x), fp(y)}

)
.

Theorem 10 (Kincses/Totik,[46]). Let (K, d) be a compact metric space and f : K → K a
continuous function which is generalized p-contractive for some p ∈ IN. Then f has a unique fixed
point ξ and for every x ∈ K we have

lim
n→∞

fn(x) = ξ.

Guided by the logical metatheorems from [55, 63, 65], Briseid ([10]) (i) generalized theorem 10 to
the noncompact case (similar to Rakotch’s form of Edelstein’s theorem) and (ii) provided a fully
effective quantitative form of this generalized theorem:

Definition 9 ([10, 11]). Let (X, d) be a metric space, p ∈ IN. f : X → X is called uniformly
generalized p-contractive with modulus η : Q∗

+ → Q∗
+ if

∀x, y ∈ X∀ε ∈ Q∗
+(d(x, y) > ε→ d(fp(x), fp(y)) + η(ε) < diam {x, y, fp(x), fp(y)}).

It is clear that for compact spaces and continuous f the notions ‘generalized p-contractive’ and
‘uniformly generalized p-contractive (with some modulus η)’ coincide.
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Theorem 11 ([10, 11]). Let (X, d) be a complete metric space and p ∈ IN. Let f : X → X be
a uniformly continuous and uniformly generalized p-contractive function with moduli of uniform
continuity ω and uniform generalized p-contractivity η. Let x0 ∈ X be the starting point of the
Picard iteration (fn(x0)) of f and assume that (fn(x0)) is bounded by b ∈ Q∗

+. Then f has a unique
fixed point ξ and (fn(x0)) converges to ξ with rate of convergence Φ : Q∗

+ → IN, i.e.

∀ε ∈ Q∗
+∀n ≥ Φ(ε)(d(fn(x0), ξ) ≤ ε),

where

Φ(ε) :=

{
pd(b− ε)/ρ(ε)e if b > ε,
0, otherwise

with

ρ(ε) := min

{
η(ε),

ε

2
, η(

1

2
ωp(

ε

2
))

}
.

For a discussion of the logical background of this result see [10].

Another notion of contractivity was recently introduced by Kirk and has received quite some interest
in the last few years:

Definition 10 ([49]). Let (X, d) be a metric space. A selfmapping f : X → X is called an asymp-
totic contraction with moduli Φ,Φn : [0,∞) → [0,∞) if Φ,Φn are continuous, Φ(s) < s for all s > 0
and

∀n ∈ IN∀x, y ∈ X(d(fn(x), fn(y)) ≤ Φn(d(x, y)),

and Φn → Φ uniformly on the range of d.

Theorem 12 (Kirk,[49]). Let (X, d) be a complete metric space and f : X → X a continuous
asymptotic contraction. Assume that some orbit of f is bounded. Then f has a unique fixed point
ξ ∈ X and the Picard sequence (fn(x)) converges to ξ for each x ∈ X.

The following definition is essentially due to [33] (with a small generalization given by [12]) and
was prompted by applying the method of monotone functional interpretation on which the logical
metatheorems mentioned before are based to Kirk’s definition.

Definition 11 ([33, 12]). A selfmapping f : X → X of a metric space (X, d) is called an asymptotic
contraction in the sense of Gerhardy and Briseid if for each b > 0 there exist moduli ηb : (0, b] →
(0, 1) and βb : (0, b] × (0,∞) → IN such that the following hold

1) There exists a sequence of functions φb
n : (0,∞) → (0,∞) such that for each 0 < l ≤ b the

function βb
l := βb(l, ·) is a modulus of uniform convergence for (φb

n)n on [l, b], i.e.

∀ε > 0∀s ∈ [l, b]∀m,n ≥ βb
l (ε)(|φ

b
m(s) − φb

n(s)| ≤ ε).

Furthermore, if ε < ε′ then βb
l (ε) ≥ βb

l (ε
′).

2) For all x, y ∈ X, for all ε > 0 and for all n ∈ IN with βb
ε(1) ≤ n we have that

b ≥ d(x, y) ≥ ε→ d(fn(x), fn(y)) ≤ φb
n(ε)d(x, y).

3) For φb := lim
n→∞

φb
n we have

∀ε ∈ (0, b]∀s ∈ [ε, b](φb(s) + ηb(ε) ≤ 1).



13

As shown in [33] (see also [12]) every asymptotic contraction in the sense of Kirk is also an asymp-
totic contraction in the sense of Gerhardy and Briseid (for suitable moduli). Moreover, as shown in
[12], in the case of bounded and complete metric spaces, both notions coincide and are equivalent
to the existence of a rate of convergence of the Picard iterations which is uniform in the starting
point (as the one presented below).

Guided by logical metatheorems Gerhardy [33] not only developed the above explicit form of asymp-
totic contractivity but also extracted from Kirk’s proof an effective so-called rate of proximity
Ψ(η, β, b, ε) such that

(fn(x))n bounded by b → ∀ε > 0∃n ≤ Ψ(η, β, b, ε)(d(fn(x), ξ))

for the unique fixed point ξ of f. For functions f which in addition to being continuous asymptotic
contractions (with moduli η, β) are quasi-nonexpansive (see the final section of this paper) this
already yields a rate of convergence towards the fixed point since (d(fn(x), ξ))n is non-increasing in
this case. Building upon Gerhardy’s result Briseid [12] gave an effective rate of convergence in the
general case:

Theorem 13 ([12]). Let (X, d) be a complete metric space and f a continuous asymptotic contrac-
tion (in the sense of Gerhardy and Briseid) with moduli η, β. Let, furthermore, b > 0. If for some
x0 ∈ X the Picard iteration sequence fn(x0) is bounded by b, then f has a unique fixed point ξ and

∀ε > 0∀n ≥ Φ(η, β, b, ε)
(
d(fn(x0), ξ) ≤ ε),

where

Φ(η, β, b, ε) :=

max{k(2Mγ + β( ε
2 )(δ) +Kγ − 1), (k − 1) · (2Mγ + β( ε

2 )(δ) +Kγ − 1) +Mγ + 1},

with k :=

⌈
ln ε−ln b

ln(1−
η(γ)

2 )

⌉
, Mγ := Kγ ·

⌈
ln γ−ln b

ln(1−
η(γ)

2 )

⌉
, Kγ := βγ

(η(γ)
2

)
,

δ := min{ ε
2 ,

η( ε
2 )

2 }, γ := min{δ, δε
4 }.

Using results from [33] it is shown in [13] that Picard iteration sequences of asymptotic contractions
always are bounded so that the corresponding assumption in Kirk’s theorem 12 is superfluous (see
also [98, 14]). Moreover, [13] gives an effective rate of convergence which does not depend on a bound
b on (xn) but instead on (strictly positive) lower and upper bounds on d(x0, f(x0)).

5 Fixed points and approximate fixed points of nonexpansive functions

in hyperbolic spaces

Already for bounded metric spaces we cannot even hope that nonexpansive functions have approx-
imate fixed points. This is due to the fact that (in contrast to functions of contractive type treated
above) we can always change a given metric d to a bounded one by defining the truncated met-
ric D(x, y) := max{d(x, y), 1} without destroying the property of nonexpansiveness: e.g. consider
the bounded metric space (IR, D) where D(x, y) := max{|x− y|, 1} and the nonexpansive function
f(x) := x+1. Then inf{D(x, f(x)) : x ∈ IR} = 1. In the case of bounded, closed and convex subsets
C of Banach spaces, nonexpansive mappings always have approximate fixed points (see e.g. [61]
for an easy proof of this fact) but in general they have no fixed points (see [96]). Moreover, as the
example f = idX shows, if a fixed point exists it will in general no longer be unique and even in cases
where a unique fixed point exists, the Picard iteration will not necessarily converge to the fixed point
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and may even fail to produce approximate fixed points: consider e.g. f : [0, 1] → [0, 1], f(x) := 1−x.
Then for each x ∈ [0, 1] \ { 1

2} the iteration sequence fn(x) oscillates between x and 1 − x and so
stays bounded away from the unique fixed point 1

2 . This is the reason why one considers so-called
Krasnoselski-Mann iterations (xn)n∈IN (see below) which make use of a concept of convex combina-
tion which exists in normed spaces but also in so-called hyperbolic spaces. Even in cases where (xn)
converges to a fixed point one can no longer hope for an effective rate of convergence. In fact it has
been shown that already in almost trivial contexts such effective rates do not exist (see [66]). This
failure of effectivity is largely due to the non-uniqueness of the fixed point (and hence the absence
of a modulus of uniqueness in the sense of section 3). However, in many cases one can extract from
the proofs effective rates on the so-called asymptotic regularity

d(xn, f(xn)) → 0,

which holds under much more general conditions than the ones needed to guarantee the existence
of fixed points. As mentioned above, we need somewhat more structure than just a metric space to
define the Krasnoselski-Mann iteration:

Definition 12 ([47, 38, 91, 65]). (X, d,W ) is called a hyperbolic space if (X, d) is a metric space
and W : X ×X × [0, 1] → X a function satisfying

(i) ∀x, y, z ∈ X∀λ ∈ [0, 1]
(
d(z,W (x, y, λ)) ≤ (1 − λ)d(z, x) + λd(z, y)

)
,

(ii) ∀x, y ∈ X∀λ1, λ2 ∈ [0, 1]
(
d(W (x, y, λ1),W (x, y, λ2)) = |λ1 − λ2| · d(x, y)

)
,

(iii) ∀x, y ∈ X∀λ ∈ [0, 1]
(
W (x, y, λ) = W (y, x, 1 − λ)

)
,

(iv)

{
∀x, y, z, w ∈ X,λ ∈ [0, 1](
d(W (x, z, λ),W (y, w, λ)) ≤ (1 − λ)d(x, y) + λd(z, w)

)
.

Remark 4. The definition (introduced in [65]) is slightly more restrictive than the notion of ‘space
of hyperbolic type’ as defined in [38] (which results if (iv) is dropped) but somewhat more general
than the concept of ‘space of hyperbolic type’ as defined in [47] and – under the name of ‘hyperbolic
space’ – in [91]. Our definition was prompted by the general logical metatheorems developed in [65]
and appears to be most useful in the context of proof mining (see [65, 35] for detailed discussions).
Moreover, our notion comprises the important class of CAT(0)-spaces (in the sense of Gromov)
whereas the concept from [47, 91] only covers CAT(0)-spaces having the so-called geodesic line
extension property. With axiom (i) alone the above notion coincides with the concept of ‘convex
metric space’ as introduced in [99].

In the following we denote W (x, y, λ) by (1 − λ)x ⊕ λy.
In this section (X, d,W ) always denotes a hyperbolic space and (λn) a sequence in [0, 1) which is

bounded away from 1 (i.e. lim supλn < 1) and divergent in sum (i.e.
∞∑

i=0

λi = ∞). f : X → X is a

selfmapping of X. Furthermore, given an x ∈ X , the sequence (xn) refers (unless stated otherwise)
to the so-called Krasnoselski-Mann iteration of f , i.e.

x0 := x, xn+1 := (1 − λn)xn ⊕ λnf(xn).

Theorem 14 ([44, 38]). Let (X, d,W ) be a hyperbolic space and f : X → X nonexpansive. Then
for all x ∈ X the following holds:

If (xn) is bounded, then d(xn, f(xn)) → 0.

Theorem 15 ([4]). Let (X, d,W ) be a hyperbolic space and f : X → X be a nonexpansive function.
Then for all x ∈ X the following holds:

d(xn, f(xn)) → rX (f) := inf
y∈X

d(y, f(y)).
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The quantity rX(f) is often called ‘minimal displacement of f on X.

As shown in [35], corollary 1 a-priorily guarantees that the proofs of the previous two results allow
one to extract effective bounds on both theorems depending only on those parameters the concrete
bounds in theorems 16 and 19 below depend which are extracted in this way. We start with theorem
15: Since (d(xn, f(xn))) is non-increasing, theorem 15 formalizes as either

(a) ∀ε > 0∃n ∈ IN∀x∗ ∈ X(d(xn, f(xn)) < d(x∗, f(x∗)) + ε)

or
(b) ∀ε > 0∀x∗ ∈ X ∃n ∈ IN(d(xn, f(xn)) < d(x∗, f(x∗)) + ε).

Trivially, (a) implies (b) but, ineffectively (using the existence of rX (f)) also the implication in the
other direction holds. Only (b) meets the specification in the metatheorem.

In the following, let α : IN × IN → IN be such that6

∀i, n ∈ IN
(
α(i, n) ≤ α(i+ 1, n)

)
and

∀i, n ∈ IN
(
n ≤

i+α(i,n)−1∑

s=i

λs

)
.

Let k ∈ IN be such that λn ≤ 1 − 1
k for all n ∈ IN.

Corollary 1 predicts a uniform bound depending on x, x∗, f only via b ≥ d(x, x∗), d(x, f(x)) and on
(λk) only via k, α (see [35]):

Theorem 16 ([70]). Let (X, d,W ) be a hyperbolic space and (λn)n∈IN, k, α as above. Let f : X → X
be nonexpansive and b > 0, x, x∗ ∈ X with d(x, x∗), d(x, f(x)) ≤ b. Then for the Krasnoselski-Mann
iteration (xn) of f starting from x the following holds:

∀ε ∈ Q∗
+∀n ≥ Ψ(k, α, b, ε) (d(xn, f(xn)) < d(x∗, f(x∗)) + ε),

where
Ψ(k, α, b, ε) := α̂(d2b · exp(k(M + 1))e−· 1,M),
with M :=

⌈
1+2b

ε

⌉
and

α̂(0,M) := α̃(0,M), α̂(m+ 1,M) := α̃(α̂(m,M),M) with
α̃(m,M) := m+ α(m,M) (m ∈ IN).

Definition 13 ([48, 70]). If (X, d,W ) is a hyperbolic space, then f : X → X is called directionally
nonexpansive (short ‘f d.n.e’) if

∀x ∈ X∀y ∈ seg(x, f(x))
(
d(f(x), f(y)) ≤ d(x, y)

)
,

where
seg(x, y) := { W (x, y, λ) : λ ∈ [0, 1] }.

Example 2. Consider the convex subset [0, 1]2 of the normed space (IR2, ‖ · ‖max) and the function

f : [0, 1]2 → [0, 1]2, f(x, y) :=

{
(1, y), if y > 0
(0, y), if y = 0.

f is directionally nonexpansive but discontinuous at (0, 0) and so, in particular, not nonexpansive.

6 One easily verifies that one could start with any function β : IN → IN satisfying n ≤

β(n)�

s=0

λs and then

define α(i, n) := max
j≤i

(β(n + j) − j + 1) to get an α satisfying these conditions. However, this would in

general give less good bounds than when working with α directly. See [62, 70] for more information in this
point.
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Theorem 16 generalizes to directionally nonexpansive mappings. The additional assumption needed
is redundant in the case of nonexpansive mappings:

Theorem 17 ([70]). The previous theorem (and bound) also holds for directionally nonexpansive
mappings if d(x, x∗) ≤ b is strengthened to d(xn, x

∗
n) ≤ b for all n.

The next result is proved in [64] for the case of convex subsets of normed spaces but the proof
immediately extends to hyperbolic spaces. We include the proof for completeness. It applies corollary
1 to a formalization of theorem 15 which corresponds to the Herbrand normal form of (a) and
constructively has a strength in between (a) and (b). Here x∗ is replaced by a sequence (yn) and we
search for an n such that

d(xn, f(xn)) < d(yn, f(yn)) + ε,

i.e. (b) is just the special case with the constant sequence yn := x∗. As predicted by corollary 1 we
get a quantitative version of the following form:

Theorem 18. Under the same assumptions as in theorem 16 the following holds: Let (bn) be a
sequence of strictly positive real numbers. Then for all x ∈ X, (yn)n∈IN ⊂ X with

∀n ∈ IN(d(x, f(x)), d(x, yn) ≤ bn)

and all ε > 0 there exists an i ≤ j(k, α, (bn)n∈IN, ε) s.t.7

d(xi, f(xi)) < d(yi, f(yi)) + ε,

where (omitting the arguments k, α for better readability)

j((bn)n∈IN, ε) := max
i≤h((bn)n∈IN,ε)

Ψ(k, α, bi, ε/2)

with

h((bn)n∈IN, ε) := max
i<N

gi(0), g(n) := Ψ(k, α, bn, ε/2), N :=

⌈
6b0
ε

⌉
.

Here Ψ is the bound from theorem 16 and gn(0) is defined primitive recursively:
g0(0) := 0, gn+1(0) := g(gn(0)).
Instead of N, we can take any integer upper bound for 6b0/ε.

Proof: By theorem 16 we have that

(1) ∀n ∈ IN
(
d(xg(n), f(xg(n))) < d(yn, f(yn)) +

ε

2

)
,

where g(n) := Ψ(k, α, bn, ε/2). Let N :=
⌈

6b0
ε

⌉
and l := max

i<N
gi(0). Using that

(2) d(y0, f(y0)) ≤ d(y0, x) + d(x, f(x)) + d(f(x), f(y0)) ≤ 2d(y0, x) + d(x, f(x)) ≤ 3b0

we now show that

(3) ∃i < N
(
d(y(gi(0)), f(y(gi(0)))) ≤ d(y(gi+1(0)), f(y(gi+1(0)))) +

ε

2

)
:

Suppose not, then for all i < N

d(y(gi+1(0)), f(y(gi+1(0)))) < d(y(gi(0)), f(y(gi(0)))) −
ε

2

7 Recall that whereas (yn) is an arbitrary sequence of points in X, (xn) denotes the Krasnoselski-Mann
iteration of f starting from x.



17

and, therefore,

d(y(gN (0)), f(y(gN (0)))) < d(y0, f(y0)) −N
ε

2

(2)

≤ 3b0 −N
ε

2
≤ 0,

which is a contradiction and finishes the proof of (3).
Let i be as in (3). Then by (1) we get for p := gi(0)

(4) ∀n ∈ IN
(
d(xg(p), f(xg(p))) < d(yg(p), f(yg(p))) + ε

)
,

where p ≤ l. Hence the theorem is satisfied with j((bn)n, ε) := max
i≤l

g(i). a

The next theorem gives a uniform quantitative version of the theorem of Ishikawa [44] as generalized
by Goebel and Kirk [38] to hyperbolic spaces.

Theorem 19 ([70, 68]). Let (X, d,W ) be a nonempty hyperbolic space and f : X → X a nonex-
pansive mapping, (λn)n∈IN, α and k be as before. Let b > 0, x, x∗ ∈ X be such that

d(x, x∗) ≤ b ∧ ∀n,m ∈ IN(d(x∗n, x
∗
m) ≤ b),

where (x∗n) is the Krasnoselski-Mann iteration starting from x∗. Then the following holds

∀ε > 0∀n ≥ h(k, α, b, ε)
(
d(xn, f(xn)) ≤ ε

)
,

where
h(k, α, b, ε) := α̂(d10b · exp(k(M + 1))e − 1,M)), with
M :=

⌈
1+4b

ε

⌉
and α̂ as before.

Next we generalize the previous theorem (for x∗ := x) to directionally nonexpansive functions.

Theorem 20 ([70]). Let (X, d,W ) be a nonempty hyperbolic space and f : X → X a directionally
nonexpansive mapping. Let (λn)n∈IN, α, k be as before.
Let b > 0 and x ∈ X such that

∀n, k,m ∈ IN
(
d(xn, (xk)m) ≤ b

)
,

where
(xk)0 = xk , (xk)m+1 = (1 − λm)(xk)m ⊕ λkf((xk)m).

Then the following holds

∀ε > 0∀n ≥ h(k, α, b, ε)
(
d(xn, f(xn)) ≤ ε

)
,

where
h(k, α, b, ε) := α(0, 1) + α̂∗(d2b · α(0, 1) · exp(k(M + 1))e − 1,M), with

M :=
⌈

1+2b
ε

⌉
and α̂∗(0, n) := α̃∗(0, n), α̂∗(i+ 1, n) := α̃∗(α̂∗(i, n), n) with

α̃∗(i, n) := i+ α∗(i, n),
α∗(i, n) := α(i+ α(0, 1), n) (i, n ∈ IN).

Remark 5. Note that for constant λk := λ we have (xk)m = xk+m so that the assumption d(xn, xm) ≤
b for all m,n suffices.

Previously known existence and uniformity results in the bounded case:8

8 I.e. the case of bounded convex subsets in the normed case resp. bounded hyperbolic spaces.
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– Krasnoselski(1955,[74]): Uniformly convex normed spaces X and special constant λk = 1
2 , no

uniformity.
– Browder/Petryshyn(1966,[16]): Uniformly convex normed spaces X and constant λk = λ ∈

(0, 1), no uniformity.
– Groetsch (1972,[41]): X uniformly convex, general (λk), no uniformity (see also below).
– Ishikawa (1976,[44]): General normed space X and general (λk), no uniformity.
– Edelstein/O’Brien (1978,[29]): General normed space X and constant λk := λ ∈ (0, 1). Unifor-

mity w.r.t. x0 ∈ C (and implicitly, though not stated, w.r.t. f).
– Goebel/Kirk (1983,[38]): General hyperbolic X and general (λk). Uniformity w.r.t. x0 and f.
– Kirk/Martinez (1990,[51]): Uniformity w.r.t. x0, f for uniformly convex normed spaces X and

special constant λk := 1/2.
– Goebel/Kirk (1990,[39]): Conjecture: no uniformity w.r.t. C.9

– Baillon/Bruck (1996,[1]): Uniformity w.r.t. x0, f, C for general normed spaces X and constant
λk := λ ∈ (0, 1).

– Kirk (2000,[48]): Uniformity w.r.t. x0, f for constant λk := λ ∈ (0, 1) for directionally nonex-
pansive functions in normed spaces.

– Kohlenbach (2001,[62]): Uniformity w.r.t. x0, f, C for general (λk) for nonexpansive functions in
the normed case.

– K./Leustean (2003,[70]): Uniformity w.r.t. x0, f, C for general (λk) for directionally nonexpansive
functions in the hyperbolic case.

Theorem 14 by Ishikawa [44] and Goebel and Kirk [38] has the following consequence in the compact
case:

Theorem 21 ([44, 38]). Let (X, d,W ) be a compact hyperbolic space and (λn), f, (xn) as in theorem
14. Then (xn)n converges towards a fixed point of f for any starting point x0 := x ∈ X of the
Krasnoselski-Mann iteration (xn).

By theorem 14, the completeness of the space and the continuity of f, the conclusion of theorem 21
is equivalent to the property of (xn) being a Cauchy sequence. That property is Π0

3 and so of too
complicated a logical form to allow for an effective bound in general. In fact, as shown in [66] there
is no effective bound (uniformly in the parameters) even in the most simple cases. However, we can
extract an effective bound on the Herbrand normal form

(H) ∀k ∈ IN, g ∈ ININ∃n ∈ IN∀i, j ∈ [n;n+ g(n)](d(xi, xj) < 2−k)

of the Cauchy property which classically is equivalent to the latter. Here [n;n + g(n)] denotes the
set of all natural numbers j with n ≤ j ≤ n+ g(n). Note that ‘∀i, j ∈ [n;n+ g(n)](d(xi, xj) < 2−k)’
is equivalent to a purely existential formula.

Since
λnd(xn, f(xn)) = d(xn, xn+1)

the asympotic regularity d(xn, f(xn)) → 0 property is equivalent to the special case of (H) with
g ≡ 1 (for seqences (λn) which are bounded away from 0). So (H) is a generalization of asymptotic
regularity which for general g fails in the absence of compactness whereas asymptotic regularity only
needs the boundedness of X (or rather of the sequence (xn)). Our effective bound on (H), therefore,
will depend on a modulus of total boundedness of the space (see [68] for a detailed discussion).

Definition 14. Let (M,d) be a totally bounded metric space. We call γ : IN → IN a modulus of total
boundedness for M if for any k ∈ IN there exist elements a0, . . . , aγ(k) ∈M such that

∀x ∈M∃i ≤ γ(k)
(
d(x, ai) ≤ 2−k

)
.

9 By uniformity w.r.t. C it is meant that the bound depends on C only via an upper bound on the diameter
of C.
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Definition 15. Let (M,d) be a metric space, f : M →M a selfmapping of M and (xn) an arbitrary
sequence in M . A function δ : IN → IN is called an approximate fixed point bound for (xn) if

∀k ∈ IN∃m ≤ δ(k)
(
d(xm, f(xm)) ≤ 2−k

)
.

Of course, an approximate fixed point bound only exists is (xn) contains arbitrarily good approxi-
mate fixed points.

Theorem 22 ([66]). Let (X, d,W ), (λn), f, (xn) be as in theorem 14 and k ∈ IN, g : IN → IN, δ :
IN → IN and γ : IN → IN. We define a function Ω(k, g, δ, γ) (primitive) recursively as follows:

Ω(k, g, δ, γ) := max
i≤γ(k+3)

Ψ0(i, k, g, δ),

where 


Ψ0(0, k, g, δ) := 0

Ψ0(n+ 1, k, g, δ) := δ

(
k + 2 + dlog2(max

l≤n
g(Ψ0(l, k, g, δ)) + 1)e

)
.

If δ is an approximate fixed point bound for the Krasnoselski-Mann iteration (xn) starting from
x ∈ X and γ a modulus of total boundedness for X, then

∀k ∈ IN∀g : IN → IN∃n ≤ Ω(k, g, δ, γ)∀i, j ∈ [n;n+ g(n)]
(
d(xi, xj) ≤ 2−k

)
.

We now extend the previous theorem to asymptotically nonexpansive functions (though only in the
context of convex subsets C of normed linear spaces (X, ‖ · ‖):

Definition 16 ([37]). Let (X, ‖ · ‖) be normed space and C ⊂ X a nonempty convex subset. f :
C → C is said to be asymptotically nonexpansive with sequence (kn) ∈ [0,∞)IN if lim

n→∞
kn = 0 and

∀n ∈ IN∀x, y ∈ X
(
‖fn(x) − fn(y)‖ ≤ (1 + kn)‖x− y‖

)
.

In the context of asymptotically nonexpansive mappings f : C → C, the Krasnoselski-Mann iteration
starting from x ∈ C is defined in a slightly different form as

(+) x0 := x, xn+1 := (1 − λn)xn + λnf
n(xn).

Definition 17. An approximate fixed point bound Φ : Q∗
+ → IN is called monotone if

q1 ≤ q2 → Φ(q1) ≥ Φ(q2), q1, q2 ∈ Q∗
+.

Remark 6. Any approximate fixed point bound Φ for a sequence (xn) can effectively be converted
into a monotone approximate fixed point bound for (xn) by

ΦM (q) := Φm(min k[2−k ≤ q]), where Φm(k) := max
i≤k

Φ(2−i).

We now assume that C is totally bounded.

Theorem 23 ([66]). Let k ∈ IN, g : IN → IN, Φ : Q∗
+ → IN and γ : IN → IN. Let f : C → C be

asymptotically nonexpansive with a sequence (kn) such that IN 3 K ≥
∞∑

n=0

kn and N ∈ IN be such

that N ≥ eK . We define a function Ψ(k, g, Φ, γ) (primitive) recursively as follows:

Ψ(k, g, Φ, γ) := max
i≤γ(k+log2(N)+3)

Ψ0(i, k, g, Φ),
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where (writing Ψ0(l) for Ψ0(l, k, g, Φ))





Ψ0(0) := 0
Ψ0(n+ 1) :=

Φ

(
2−k−log2(N)−2/(max

l≤n
[gM (Ψ0(l))(Ψ0(l) + gM (Ψ0(l)) + log2(N)) + 1])

)

with gM (n) := max
i≤n

g(i).

If Φ is a monotone approximate fixed point bound for the Krasnoselski-Mann iteration (xn) (defined
by (+)) and γ a modulus of total boundedness for C then

∀k ∈ IN∀g : IN → IN∃n ≤ Ψ(k, g, Φ, γ)∀i, j ∈ [n;n+ g(n)]
(
‖xi − xj‖ ≤ 2−k

)
.

Remark 7. The previous two theorems even hold for arbitrary sequences (λn) in [0, 1]. However, in
order to construct approximate fixed point bounds one will need extra conditions.
For uniformly convex spaces and (λn) bounded away from both 0 and 1 an approximate fixed point
bound Φ for asymptotically nonexpansive mappings will be presented in the last section.

We will now show that the qualitative features of the bounds in theorem 16 and 19 can be used
to obtain new information on the approximate fixed point property (AFPP) for product spaces.
A metric space (M,ρ) is said to have the AFPP for nonexpansive mappings if every nonexpansive
mapping f : M →M has arbitrarily good approximate fixed points, i.e. if inf

u∈M
ρ(u, f(u)) = 0.

Let (X, d,W ) be a hyperbolic space and (M,ρ) a metric space with AFPP for nonexpansive map-
pings. Let {Cu}u∈M ⊆ X be a family of convex sets such that there exists a nonexpansive selection
function δ : M →

⋃
u∈M Cu with

∀u ∈M
(
δ(u) ∈ Cu

)
.

Consider subsets of (X ×M)∞ (with the metric d∞((x, u), (y, v)) :=
max{d(x, y), ρ(u, v)})

H := {(x, u) : u ∈M,x ∈ Cu}.

If P1 : H →
⋃

u∈M

Cu, P2 : H → M are the projections, then for any nonexpansive function T : H →

H w.r.t. d∞ satisfying
(∗) ∀(x, u) ∈ H

(
(P1 ◦ T )(x, u) ∈ Cu

)

we can define for each u ∈M the nonexpansive function

Tu : Cu → Cu, Tu(x) := (P1 ◦ T )(x, u).

We denote the Krasnoselski-Mann iteration starting from x ∈ Cu and associated with Tu by (xu
n)

((λn) as in theorem 14).

rS(F ) always denotes the minimal displacement of F on S.

Theorem 24 ([71]). Assume that T : H → H is nonexpansive with (∗) and supu∈M rCu
(Tu) <∞.

Suppose there exists ϕ : IR∗
+ → IR∗

+ s.t.

∀ε > 0 ∀v ∈ M ∃x∗ ∈ Cv

(
d(δ(v), x∗) ≤ ϕ(ε)∧
∧ d(x∗, Tv(x

∗)) ≤ sup
u∈M

rCu
(Tu) + ε

)
.

Then
rH(T ) ≤ sup

u∈M
rCu

(Tu).
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Theorem 25 ([71]). Assume that there is b > 0 s.t.

∀u ∈M∃x ∈ Cu

(
d(δ(u), x) ≤ b ∧ ∀n,m ∈ IN(d(xu

n, x
u
m) ≤ b).

Then rH (T ) = 0.

Corollary 2 ([71]). Assume that there is a b > 0 with the property that

∀u ∈M
(
diam(Cu) ≤ b

)
.

Then H has AFPP for nonexpansive mappings T : H → H satisfying (∗).

As a special case of the previous corollary we obtain a recent result of Kirk (note that for Cu := C
being constant, we can take as δ any constant function : M → C):

Corollary 3 ([50]). If Cu := C constant and C bounded, then H has the approximate fixed point
property.

6 Bounds on asymptotic regularity in the uniformly convex case

Prior to Ishikawa’s paper [44] the fixed point theory of nonexpansive mappings was essentially
restricted to the case of uniformly convex normed spaces ([74, 16]). Although Ishikawa showed that
the fundamental theorem 14 holds without uniform convexity the case of uniformly convex spaces
is still of interest for the following reasons (among others):

– As shown by Groetsch [41] (see below) in the uniformly convex case the conditions on (λn) in
theorem 14 can be weakened to

∞∑

i=0

λi(1 − λi) = ∞

which is known to be optimal even for the case of Hilbert spaces (for general normed spaces it
is still open whether this condition is sufficient).

– The bounds extracted from proofs using uniform convexity are often better than the ones known
for the general case (see below; a notably exception is the optimal quadratic bound from [1] for
the case of general normed spaces and constant λk = λ ∈ (0, 1)).

– Only in the uniformly convex case corresponding results for more general classes of functions
such as asymptotically nonexpansive functions and (weakly) quasi-nonexpansive functions are
known (see below).

Definition 18 ([19]). A normed linear space (X, ‖ · ‖) is uniformly convex if for any ε > 0 there
exists a δ > 0 such that

∀x, y ∈ X
(
‖x‖, ‖y‖ ≤ 1 ∧ ‖x− y‖ ≥ ε→ ‖

1

2
(x+ y)‖ ≤ 1 − δ

)
.

A mapping η : (0, 2] → (0, 1] providing such a δ := η(ε) > 0 for given ε ∈ (0, 2] is called a modulus
of uniform convexity.

Theorem 26 ([41]). Let C be a convex subset of uniformly convex Banach space (X, ‖ · ‖) and let

(λn) be a sequence in [0, 1] with
∞∑

i=0

λi(1 − λi) = ∞. If f : C → C is nonexpansive and has at least

one fixed point, then for the Krasnoselski-Mann iteration (xn) of f starting at any point x0 ∈ C the
following holds:

‖xk − f(xk)‖
k→∞
→ 0.
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We now give a quantitative version of a strengthening of Groetsch’s theorem which only assumes
the existence of approximate fixed points in some neighborhood of x (see [65, 81] for a discussion on
how this fits under the logical metatheorems):

Theorem 27 ([64]).
Let (X, ‖ ·‖) be a uniformly convex normed linear space with modulus of uniform convexity η, d > 0,
C ⊆ X a (non-empty) convex subset, f : C → C nonexpansive and (λk) ⊂ [0, 1] and γ : IN → IN
such that

∀n ∈ IN
( γ(n)∑

k=0

λk(1 − λk) ≥ n
)
.

Then for all x ∈ C which satisfy that for all ε > 0 there is a y ∈ C with

‖x− y‖ ≤ d and ‖y − f(y)‖ < ε,

one has
∀ε > 0∀n ≥ h(ε, d, γ, η)

(
‖xn − f(xn)‖ ≤ ε

)
,

where h(ε, d, γ, η) := γ
(⌈

3(d+1)
2ε·η( ε

d+1 )

⌉)
for ε < 2d and h(ε, d, γ, η) := 0 otherwise.

Moreover, if η(ε) can be written as η(ε) = ε · η̃(ε) with

ε1 ≥ ε2 → η̃(ε1) ≥ η̃(ε2), for all ε1, ε2 ∈ (0, 2], (1)

then the bound h(ε, d, γ, η) can be replaced (for ε < 2d) by

h̃(ε, d, γ, η̃) := γ

(⌈
d+ 1

2ε · η̃( ε
d+1)

⌉)
.

For a Hilbert space one can take as modulus of uniform convexity η(ε) := ε2/8 and hence the bound
in theorem 27 applies with η̃(ε) := ε/8. If, moreover, λn := λ ∈ (0, 1) for all n then we can take
γ(n) := dn/(λ(1 − λ))e. So for the case of Hilbert spaces and constant λ we obtain a quadratic
bound in ε.

In [82], Groetsch’s theorem and its quantitative analysis from [64] is extended to uniformly convex
hyperbolic spaces. The bounds obtained are roughly the same as in theorem 27 but now also apply
e.g. to the important class of CAT(0)-spaces which are uniformly convex with the same modulus as
in the Hilbertian case. Hence as a corollary the following quadratic bound follows:

Theorem 28 ([82]). Let (X, d) be a CAT(0)-space, C ⊆ X a nonempty convex subset whose di-
ameter is bounded by d ∈ Q∗

+. Let f : C → C be nonexpansive and λ ∈ (0, 1). Then

∀ε ∈ Q∗
+∀n ≥ g(ε, d, λ)(d(xn, f(xn)) < ε),

where (xn) is the Krasnoselski-Mann iteration starting from x0 := x ∈ C and

g(ε, d, λ) :=

{
1

λ(1−λ)

⌈
4(d+1)2

ε2

⌉
, for ε < 2d

0, otherwise.

In the following, C ⊆ X is a convex subset of a normed linear space (X, ‖ · ‖).

Definition 19 ([94]). f : C → C is said to be uniformly λ-Lipschitzian (λ > 0) if

∀n ∈ IN∀x, y ∈ C
(
‖fn(x) − fn(y)‖ ≤ λ‖x− y‖

)
.
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Definition 20 ([27]). f : C → C is quasi-nonexpansive if

∀x ∈ C∀p ∈ Fix(f)
(
‖f(x) − p‖ ≤ ‖x− p‖

)
,

where Fix(f) is the set of fixed points of f.

Example 3. f : [0, 1) → [0, 1), f(x) := x2 is quasi-nonexpansive but not nonexpansive.

Definition 21 ([89]). f : C → C is asymptotically quasi-nonexpansive with kn ∈ [0,∞)IN if
lim

n→∞
kn = 0 and

∀n ∈ IN∀x ∈ X∀p ∈ Fix(f)
(
‖fn(x) − p‖ ≤ (1 + kn)‖x− p‖

)
.

Definition 22 ([69, 35]).

1) f : C → C is weakly quasi-nonexpansive10 if

∃p ∈ Fix(f)∀x ∈ C
(
‖f(x) − f(p)‖ ≤ ‖x− p‖

)

or – equivalently –

∃p ∈ C∀x ∈ X
(
‖f(x) − p‖ ≤ ‖x− p‖

)
.

2) f : C → C is asymptotically weakly quasi-nonexpansive if

∃p ∈ Fix(f)∀x ∈ C∀n ∈ IN
(
‖fn(x) − fn(p)‖ ≤ (1 + kn)‖x− p‖

)
.

Example 4. f : [0, 1] → [0, 1], f(x) := x2 is weakly quasi-nonexpansive but not quasi-nonexpansive.

For asymptotically (weakly) quasi-nonexpansive mappings f : C → C the Krasnoselski-Mann iter-
ation with errors is

(++) x0 := x ∈ C, xn+1 := αnxn + βnf
n(xn) + γnun,

where αn, βn, γn ∈ [0, 1] with αn + βn + γn = 1 and un ∈ C.

Relying on previous results of Opial, Dotson, Schu, Rhoades, Tan, Xu and – most recently – Qihou
we have

Theorem 29 ([69]). Let (X, ‖ · ‖) be a uniformly convex normed space and C ⊆ X convex. (kn) ⊂
IR+ with

∑
kn <∞. Let k ∈ IN and αn, βn, γn ∈ [0, 1] such that 1/k ≤ βn ≤ 1−1/k, αn+βn+γn = 1

and
∑
γn < ∞. f : C → C uniformly Lipschitzian and asymptotically weakly quasi-nonexpansive

and (un) be a bounded sequence in C. Then the following holds for (xn) as defined in (++) for an
arbitrary starting point x ∈ X:

‖xn − f(xn)‖ → 0.

Unless f is nonexpansive we in general cannot conclude (in contrast to the situation in theorems 14
and 15) that (‖xn − f(xn)‖)n∈IN is non-increasing which is needed to reduce the logical complexity
of the convergence statement from Π0

3 to Π0
2 . That’s why we can apply our metatheorems only to

the Herbrand normal form to get the following result (see [69]) for an extended discussion on how
the metatheorems apply here and to a large extent predict the general form of the result):

10 The same class of mappings has recently been introduced also in [30] under the name of J-type mappings.
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Theorem 30 ([69]). Let (X, ‖·‖) be uniformly convex with modulus of convexity η, C ⊆ X convex,
x ∈ C, f : C → C, k, αn, βn, γn, kn, un as before with

∑
γn ≤ E,

∑
kn ≤ K, ∀n ∈ IN(‖un − x‖ ≤ u)

and E,K, u ∈ Q+. Let d ∈ Q∗
+ and (xn) as in theorem 29.

If f is λ-uniformly Lipschitzian and

∀ε > 0∃pε ∈ C

(
‖f(pε) − pε‖ ≤ ε ∧ ‖pε − x‖ ≤ d ∧
∀y ∈ C∀n ∈ IN

(
‖fn(y) − fn(pε)‖ ≤ (1 + kn)‖y − pε‖

)
)
,

then
∀ε ∈ (0, 1]∀g : IN → IN∃n ≤ Φ∀m ∈ [n, n+ g(n)] (‖xm − f(xm)‖ ≤ ε) ,

where
Φ := Φ(K,E, u, k, d, λ, η, ε, g) := hi(0), where

h(n) := g(n+ 1) + n+ 2,

i =
⌈

3(5KD+6E(U+D)+D)k2

ε̃η(ε̃/(D(1+K)))

⌉
,

D := eK(d+EU), U := u+ d,

ε̃ := ε/(2(1 + λ(λ + 1)(λ+ 2))).

Remark 8. 1) Specializing theorem 30 to g ≡ 0 yields

∀ε ∈ (0, 1]∃n ≤ Ψ (‖xn − f(xn)‖ ≤ ε) ,

where

Ψ := Ψ(K,E, u, k, d, λ, η, ε) := 2
⌈

3(5KD+6E(U+D)+D)k2

ε̃η(ε̃/(D(1+K)))

⌉
,

D := eK(d+EU), U := u+ d,

ε̃ := ε/(2(1 + λ(λ + 1)(λ+ 2))).

2) As in the quantitative analysis of Groetsch’s theorem above one can replace in the bound in
theorem 30 η by η̃ if η can be written in the form η(ε) = εη̃(ε) with η̃ satisfying

0 < ε1 ≤ ε2 ≤ 2 → η̃(ε1) ≤ η̃(ε2).

3) For asymptotically nonexpansive mappings with sequence (kn) in IR+ such that
∑
kn ≤ K the

assumption ‘uniformly Lipschitzian’ is automatically satisfied by λ := 1 +K since K ≥ kn for
all n.
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