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Abstract. This paper is part of a case study in proof mining applied
to non-effective proofs in nonlinear functional analysis. More specifically,
we are concerned with the fixed point theory of nonexpansive selfmap-
pings f of convex sets C in normed spaces. We study Krasnoselski and
more general so-called Krasnoselski-Mann iterations which converge to
fixed points of f under certain compactness conditions. But, as we show,
already for uniformly convex spaces in general no bound on the rate
of convergence can be computed uniformly in f . However, the itera-
tions yield even without any compactness assumption and for arbitrary
normed spaces approximate fixed points of arbitrary quality for bounded

C (asymptotic regularity, Ishikawa 1976). We apply proof theoretic tech-

niques (developed in previous papers) to non-effective proofs of this reg-

ularity and extract effective uniform bounds (with elementary proofs)

on the rate of the asymptotic regularity. We first consider the classical

case of uniformly convex spaces which goes back to Krasnoselski (1955)

and show how a logically motivated modification allows to obtain an
improved bound. Moreover, we get a completely elementary proof for a
result which was obtained in 1990 by Kirk and Martinez-Yanez only with
the use of the deep Browder-Göhde-Kirk fixed point theorem.

In section 4 we report on new results ([29]) we established for the general

case of arbitrary normed spaces including new quantitative versions of

Ishikawa’s theorem (for bounded C) and its extension due to Borwein,

Reich and Shafrir (1992) to unbounded sets C. Our explicit bounds also

imply new qualitative results concerning the independence of the rate of
aymptotic regularity from various data.

⋆ Basic Research in Computer Science, Centre of the Danish National Research Foun-
dation.
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1 General introduction

This paper (and its companion [29]) is another case study in the project of

‘proof mining’ 1 in analysis by which we mean the logical analysis of mathe-

matical proofs (typically using non-effective analytical tools) with the aim of

extracting new numerically relevant information (e.g. effective uniform bounds

or algorithms etc.) hidden in the proofs.2

Many problems in numerical (functional) analysis can be seen as instances of

the following general task: construct a solution x of an equation

A(x) :≡ (F (x) = 0),

where x is an element of some Polish (i.e. complete separable metric) space

(typically with additional structure) and F : X → IR (usually F will depend

on certain parameters a which again belong to Polish spaces). Quite often the

construction of such a solution is obtained in two steps:

1) One shows how to construct (uniformly in the parameters of A) approximate

solutions (sometimes called ‘ε-solutions’) xε ∈ X for an ε-version of the

original equation

Aε(x) :≡
(
|F (x)| < ε

)
.

2) Exploiting compactness conditions on X one concludes that either (x 1
n
)n∈IN

itself or some subsequence of it converges to a solution of A(x).

The first step usually is constructive. However, the non-effectivity of the second

step in many cases prevents one from being able to compute a solution x̂ of

A effectively within a prescribed error 1
k , i.e. to compute a function n(k) such

that dX(xn(k), x̂) < 1
k . In many cases X := K is compact and x̂ is uniquely

determined. Then (xn) itself converges to x̂ so that no subsequence needs to be

selected. However, the problem of how to get a-priori bounds (in particular not

depending on x̂ itself) on the rate of convergence of that sequence remains. In

numerical analysis, often such rates are not provided (due to the ineffectivity of

the proof of the uniqueness of x̂).3

In a series of papers we have demonstrated the applicability of proof theoretic

techniques to extract so-called uniform moduli of uniqueness (which generalize

1 The term ‘proof mining’ (instead of G. Kreisel’s ‘unwinding of proofs’) for the activity
of extracting additional information hidden in given proofs using proof theoretic tools
was suggested to the author by Professor Dana Scott.

2 For a different case study in analysis in the context of best approximation theory
see [21],[22]. For other kinds of logical analyses of specific proofs see [33] and [36].

3 In interesting critical discussion of this and related issues can be found in [32].
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the concept of strong unicity as used e.g. in Chebycheff approximation theory)

from non-constructive uniqueness proofs and to use them to get effective rates

of convergence (e.g. [25], [21],[22],[23],[30] for concrete applications to approxi-

mation theory).

In this paper we carry out a logical analysis of examples for the first of the

two steps mentioned above in situations where an effective solution of 2) is not

possible (mainly due to the lack of uniqueness) and already the fact that the

sequence yn := x 1
n

yields better and better approximate solutions is proved non-

constructively (using sequential compactness).

These applications to 1) fall under (an extension of) the same general logical

scheme as our previous applications to 2). In a series of papers ([23],[24],[25],[27]

among others) we have developed general meta-theorems which guarantee the

extractability of uniform bounds from proofs which are allowed to make use of

substantial parts of analysis. In particular, we specified situations where (due to

the fact that only weak forms of induction are used) exponential and even polyno-

mial bounds are guaranteed. Furthermore, these results show that many lemmas

used in such proofs do not need to be analysed (since they do not contribute

to the bound) because of their logical form. The proofs of these meta-theorems

actually provide an extraction algorithm (based on certain proof-theoretic trans-

formations of the specific proof to be analyzed). So applied to a given proof p

in analysis we get another proof p∗ which provides more numerical information.
When this transformation is carried out explicitly we obtain a new ordinary
mathematical proof of a stronger statement which no longer relies on any logical
tools at all. Of course, the general proof-theoretic algorithm will usually be used
only as a guideline but not followed step by step in the actual construction of

p∗ (unless this is necessary).

The special case of our general meta-theorems which is relevant for the present
paper has the following form:
Let X be a Polish space, K a compact metric space and A1 a purely existential
property. If a theorem of the form

(∗) ∀n ∈ IN∀x ∈ X∀y ∈ K∃m ∈ INA1(n, x, y, m)

has been proved in certain formal systems T for (fragments of) analysis, then

one can extract a computable uniform bound Φ(n, x)4 for ∃m, i.e.

(∗∗) ∀n ∈ IN∀x ∈ X∀y ∈ K∃m ≤ Φ(n, x)A1(n, x, y, m).

An important feature of the bound Φ(n, x) is that it does not depend on y ∈ K.

Typically, ∃mA1 is monotone in m so that the bound Φ(n, x) actually realizes
4 This bound (as well as the logical form of A1) will in general depend on the specific

representation of x ∈ X used in T .
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the quantifier. In [25] we have specified a system PBA of polynomially bounded

analysis which guarantees that Φ(n, x) will be a polynomial. If we add the ex-

ponential function to PBA we obtain a system EBA which guarantees that Φ

uses at most a finite iteration of exp (so if exp is not iterated at all the bound

will be exponential in n relative to x). Whereas for our first application in the

present paper (theorem 4 below) this result for PBA is already sufficient for

providing the general logical framework, our analysis of a proof from [4] carried

out in theorem 7 needs an extended version due to the use of a principle used in
that proof which is not available in PBA or EBA. Whereas these systems con-
tain quite some parts of non-constructive analysis, principles based on sequential
compactness are not included. The significant and highly non-trivial impact of
such principles for the extraction of bounds has been determined completely in

[27] and [28]. We only discuss the results for the particular simple case of the

principle

PCM(ak) :≡ [∀n(0 ≤ an+1 ≤ an) → ∃a ∈ IR+( lim
n→∞

an = a)]

of convergence for bounded monotone sequences (an)n∈IN of reals, as it is this

principle which is used in the proof from [4] we are going to analyse. In systems

like PBA, real numbers are represented as Cauchy sequences of rational numbers

with fixed rate of convergence. Because of this representation PCM(an) is a fairly

strong principle equivalent to

(+) ∀n
(
0 ≤ an+1 ≤ an) → ∃f : IN → IN∀k, m

(
m ≥ f(k) → af(k)−am ≤

1

k + 1

)
.

Because of the existence of the ‘Cauchy modulus f ’, ‘∀(a)n PCM(an)’ is equiv-

alent to the principle of so-called arithmetical comprehension which potentially

creates bounds of huge complexity when added to systems like PBA, EBA (see

[28]). What we showed in [27] is that things are quite different when PCM(an)

is only applied to sequences (an) in a given proof of a theorem (∗) which can

be explicitly defined in terms of the parameters n, x, y of (∗). Then, relative to

PBA and EBA, the use of PCM(an) can be reduced to its arithmetical version5

PCMar(an) :≡

[
∀n

(
0 ≤ an+1 ≤ an) → ∀k∃n∀m

(
m ≥ n → an − am ≤

1

k + 1

)]
.

By further proof theoretic considerations, the use of PCMar can even be reduced

to that of its so-called ‘no-counterexample interpretation’ (or ‘Herbrand normal
5 Because of (+), PCM(an) essentially is the so-called Skolem normal form of

PCMar(an). In general it is NOT possible (in a context like PBA or EBA) to
reduce the use of the Skolem normal form of an arithmetical principle A to A itself.
The fact that this IS possible for PCMar makes profound use of the fact that this
principle satisfies a strong monotonicity property, see [26].
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form’) PCMH
ar(an) :≡

[
∀n

(
0 ≤ an+1 ≤ an) → ∀k, g∃n

(
g(n) ≥ n → an − ag(n) ≤

1

k + 1

)]
.

The computational significance of this reduction is, that in contrast to the quan-
tifier dependency ‘∀k∃n’ in PCMar, which in general has no computable bound,

the quantifier ‘∃n’ in PCMH
ar can be bounded (uniformly in k, g and an upper

bound N ∈ IN of a0) by Ψ̂(k, g, N) := max
i≤(k+1)N

Ψ(i, g), where Ψ(k, g) is the

k-times iteration of g applied to 0, i.e.

Ψ(0, g) := 0, Ψ(k + 1, g) := g(Ψ(k, g))

(see [27] for details on all this). We like to stress, that this quantitative bound

for PCMH
ar(an) only depends on (an) via an upper bound N ≥ a0 whereas a

bound for ∃n in PCMar(an) of course has to depend on (an). So the reduction

from PCMar(an) to PCMH
ar(an) also provides an important independence from

(an) which will play a crucial role in our proof of corollaries 3 and 4 below.

We have seen that the use of PCM(an) for definable (an) contributes to the

bound Φ in (∗∗) by Ψ̂ . By finite iteration, Ψ (and hence Ψ̂) is able to produce

arbitrary primitive recursive growth rates. However, in practice it will usually
only be applied to some fixed functions g which can explicitly be defined in terms
of the parameters of the problem. It is the construction of these functions which
plays a crucial role in the process of proof mining. This fact is clearly reflected

in the bounds we obtain in theorem 7 and corollary 3 below (see the definition

of α̂ in these results).6

We have discussed the logical background of our results in order to convince
the reader, that these results are instances of a general scheme for proof mining.
Once one is familiar with this scheme, one can produce improvements of existence
theorems of the kind we illustrate here using examples from fixed point theory
also in other areas of analysis.

6 In the concrete application in this paper it is mainly the reduction from PCMar to
PCMH

ar which plays a significant role in the proof mining. The (in general much more
complicated) reduction from PCM to PCMar is almost straightforward. However,
we expect that this will be different for other examples. In any case, we believe that
the fact that our applications to concrete proofs reflect crucial steps of the general
proof-theoretic reduction and are instances of a general meta-theorem (which at least
under an additional compactness assumption predicts the type of results we obtain),
makes it justified to call them genuine applications of logic in the sense discussed in
[10].
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2 Applications to the fixed point theory of nonexpansive

mappings

In this paper we will analyse proofs from the fixed point theory of nonexpansive
mappings f : C → C for certain sets C in normed spaces X .

Definition 1. Let (X, ‖ · ‖) be a normed linear space and S ⊆ X be a subset of

X. A function f : S → S is called nonexpansive if

(∗) ∀x, y ∈ S
(
‖f(x) − f(y)‖ ≤ ‖x − y‖

)
.

Whereas the fixed point theory for mappings with Lipschitz constant < 1 (i.e.

contractions) is essentially trivial (even from a computational point of view)

because of the well-known Banach fixed point theorem, the fixed point theory
for nonexpansive mappings has been one of the most active research areas in
nonlinear functional analysis from the 50’s until today. Let us indicate how the
picture known for contractions breaks down for nonexpansive mappings:

1) Whereas in Banach’s fixed point theorem no boundedness conditions are

necessary, fixed points of a nonexpansive mapping will not exist unless the

set C is at least bounded: take X := C := IR and f(x) := x + 1.

2) Even when C is compact (and therefore fixed points exist by the fixed point

theorems of Brouwer and Schauder), they are not uniquely determined: take

X := IR, C := [0, 1] and f(x) = x.

3) Even when the fixed point is uniquely determined, it will in general not be

approximated by the Banach iteration xn+1 := f(xn): take X := IR, C :=

[0, 1], f(x) := 1 − x and x0 := 0. Then xn alternates between 0 and 1.

The early history of the fixed point theory for nonexpansive mappings rests on
two main theorems which both use a geometric assumption on the normed space
X , namely that it is uniformly convex:

Definition 2 ([6]). A normed linear space (X, ‖ · ‖) is uniformly convex if

∀ε > 0∃δ > 0∀x, y ∈ X
(
‖x‖, ‖y‖ ≤ 1 ∧ ‖x − y‖ ≥ ε → ‖

1

2
(x + y)‖ ≤ 1 − δ

)
.

A function η : (0, 2] → (0, 1] providing such a δ := η(ε) > 0 for given ε > 0 is a

modulus of uniform convexity.

The following fundamental existence theorem for fixed points of nonexpansive
mappings and uniformly convex Banach spaces was proved independently by

Browder, Göhde and Kirk (note that no compactness assumption is made in

this result):
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Theorem 1 ([5],[13],[17]). Let (X, ‖ · ‖) be a uniformly convex Banach space,

C ⊆ X a non-empty convex closed and bounded subset of X and f : C → C a
nonexpansive mapping. Then f has a fixed point.

Remark 1. In 1975, a counterexample showing that the assumption of X being

uniformly convex in theorem 1 cannot be omitted was found (see [7], p. 37).

Another fundamental theorem in the fixed point theory for nonexpansive map-

pings is the following result due to Krasnoselski, which shows that (under an

additional compactness condition, which by the Schauder fixed point theorem

guarantees the existence of a fixed point) a fixed point of f can be approximated

by a special iteration sequence:

Theorem 2 (Krasnoselski [31]). Let K be a non-empty convex closed and

bounded set in a uniformly convex Banach space (X, ‖ · ‖) and f a nonexpansive

mapping of K into a compact subset of K. Then for every x0 ∈ K, the sequence

xk+1 :=
xk + f(xk)

2

converges to a fixed point z ∈ K of f .

Remark 2. Due to a much more general result from [16], which we will discuss

below, the assumption of X being uniformly convex is actually superfluous in
theorem 2.

We will show below that there cannot be an effective procedure to compute
a rate of convergence of the iteration in the Krasnoselski fixed point theorem
uniformly in f and the starting point x ∈ K of the iteration. This already

holds for the special case of X := IR and K := [0, 1] and the fixed starting

point x0 := 0 as there exists no computable function F from the set of all

nonexpansive functions f : [0, 1] → [0, 1] into [0, 1] which computes uniformly

in f a fixed point of f (this is closely related to the fact that such a function

F cannot be continuous with respect to the maximum norm ‖f‖∞). Logically,

this ineffectivity in Krasnoselski’s theorem corresponds to the fact the statement

that (xk)k∈IN converges is Π0
3 .

On the other hand if we consider the weaker question of how far we have to go
in the iteration to obtain an ε-fixed point, then we notice that the logical form
of the statement

(∗) ∀k ∈ IN∃n ∈ IN
(
‖xn − f(xn)‖ <

1

k + 1

)

is Π0
2 (assuming that real numbers are represented as Cauchy sequences with

fixed rate of convergence so that <IR∈ Σ0
1). That is why we are able to extract
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an algorithm for n in (∗) uniformly in x0 and f (if X, C have a computable

representation).

The following crucial monotonicity property holds (see lemma 2 below):

‖xm+1 − f(xm+1)‖ ≤ ‖xm − f(xm)‖

Hence the formula

‖xn − f(xn)‖ <
1

k + 1

is equivalent to

∀m ≥ n
(
‖xm − f(xm)‖ <

1

k + 1

)
.

Thus any bound on (∗) provides a rate of convergence for

(∗∗) ‖xn − f(xn)‖
n→∞
→ 0,

where (∗∗) is called the asymptotic regularity of (xn) (we will see below that

this asymptotic regularity holds without any compactness assumption).

Let us assume for the moment that C := K itself is compact. Then the standard

proof (as given in e.g. [3]) of the Krasnoselski fixed point theorem (more precisely

of its consequence (∗∗) above) directly fits into the general extraction scheme

discussed above. Besides basic arithmetical reasoning only the existence of a

fixed point y ∈ K of f (which follows from the Schauder fixed point theorem) is

used to show (∗). Since the statement

(a) ∃y ∈ K
(
‖f(y) − y‖ = 0

)

has the logical form of those assumptions which do not contribute to the growth
of extractable bounds and which furthermore can be reduced to their ε-weakening

(b) ∀ε > 0∃y ∈ K
(
‖f(y)− y‖ < ε

)

and since furthermore the starting point x0 ∈ K belongs to a compact set and
the set of all nonexpansive mappings f : K → K is also compact, we know

a-priori that the extractability of a uniform bound (of low complexity) for n in

(∗) which does not depend on x0 or f (but only on ε and a modulus of uniform

convexity) is guaranteed and its verification only uses (b). The actual extraction

shows that instead of the compactness only the boundedness of K is needed.

This is even true for the reduction of (a) to (b) which allows furthermore to

remove the assumption on K being closed (and X being complete), since the

existence of approximate fixed points (but not of fixed points) can be shown

without these assumptions. This, of course, is a-posteriori information which was
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not guaranteed by a general logical result. Nevertheless, the a-priori information
provided for the special case with K being compact prompted the search for
such uniform bounds. As a result we get for an arbitrary convex bounded subset

C ⊂ X a uniform bound for (∗) depending only on ε, a modulus of uniform

convexity η of X and an upper bound for the diameter of C. The bound itself
is not new: for the special compact case it is essentially already contained in

Krasnoselski’s original paper ([31]) and was proved for the case of closed bounded

convex sets in [18] using the deep Browder-Göhde-Kirk fixed point theorem. We

nevertheless carry out the analysis because it shows two phenomena:

1) the possibility of replacing the existence of fixed points by the existence of

ε-fixed points which permits a completely elementary verification of the bound

(without assuming X complete or C closed), which does not even rely on the

Schauder fixed point theorem used by Krasnosleski in the compact case. Even
the qualitative asymptotic regularity had been obtained before only either with
the use of the Browder-Göhde-Kirk fixed point theorem or as a corollary of a
much more general result due to Ishikawa which we discuss below.

2) There is a logical modification of the proof from [3] which makes use of

the above mentioned no-counterexample interpretation PCMH
ar of PCMar and

allows the use of a certain multiplicative property typically satisfied by moduli

η, by which we obtain (for such moduli) a numerically better result. As a special

instance of this we get a bound which is polynomial in ε of degree p for the spaces

Lp with p ≥ 2 (a result which (for this special case only) was first obtained in

1990 in [18] by an ad hoc calculation).7 For X := IR, C := [0, 1] we even get a

linear bound (see also [18], p.192).

We now move on to vast extensions of Krasnoselski’s fixed point theorem. In

[16] it is shown that Krasnoselski’s fixed point theorem even holds without the

assumption of X being uniformly convex and for much more general so-called
Krasnoselski-Mann iterations

xk+1 := (1 − λk)xk + λkf(xk),

where λk is a sequence in [0, 1] which is divergent in sum and satisfies

lim sup
k→∞

λk < 1.

Furthermore, [16] establishes that for such iterations

(I) lim
k→∞

‖xk − f(xk)‖ = 0,

where X is an arbitrary normed linear space, C any bounded convex subset of
X and f : C → C is nonexpansive.

7 For p = 2, no better bound is known. For p ≥ 3 a better bound was only obtained
by the extremely complicated work of [1].
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In [4], a generalization of this result to the case of unbounded convex sets C is

proved:

(II) lim
k→∞

‖xk − f(xk)‖ = rC(f),

where
rC(f) := inf

x∈C
‖x − f(x)‖

will in general be strictly positive. Note that (by lemma 1 below) rC(f) = 0 for

bounded convex C. Hence (II) entails (I) as a special case.

In section 4, we will report on results from [29] which for the first time provide a

quantitative analysis of (II) (see theorem 7). These results were obtained as an

instance of our general result on the extractability of bounds from proofs using

PCM(ak) for a sequence (ak)k∈IN which is definable in the parameters of the

problem. In the case at hand (ak)k∈IN is just (‖xk − f(xk)‖)k∈IN. By specializing

the resulting bound to the case where C is bounded we get a uniform bound for

(I) which only depends on ε, an upper bound dC for the diameter d(C) of C and

some rather general information on (λk) (see corollary 3). In particular the bound

is independent of f , the starting point x0 and the space X . Such uniformity
results are of great interest in the area of nonlinear functional analysis. In the
final section of this paper we discuss the long history of partial results towards

our new full uniformity result from [29].

These applications clearly show the usefulness of logical proof mining even if one
is not primarily interested in quantitative results like the numerical quality of

the bounds (or the bounds extractable happen to be too large to be useful in

practice) but is interested in new qualitative results on the independence of the

quantity in question from certain input data.8

3 Effective uniform bounds on the Krasnoselski iteration

in uniformly convex spaces

We start by showing that the rate of convergence of the Krasnosleski iteration in

Krasnolselski’s fixed point theorem is in general not computable (uniformly in

the input data). We then show in the main part of this section that, in contrast

to this negative result, one can obtain computable rates of convergence (of low

complexity) for the asymptotic regularity of xn, i.e. for ‖xn − f(xn)‖ → 0. This

8 For another instance of this see our explicit uniform constants of strong unicity for
Chebycheff approximation which were extracted in [21],[22] from classical uniqueness
proofs for the best Chebycheff approximation (known already since about 1905-
1917). These constants in particular imply the existence of a common constant of
unicity for compact sets K of functions f ∈ C[a, b], if inff∈K dist(f,H) > 0 (H
a Haar space), a fact that was proved in approximation theory only in 1976 and
non-effectively (see [15]).
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is even true without any compactness, closedness or completeness assumptions
on the convex set C or the space X .

Let (X, ‖ · ‖) be a uniformly convex normed space, K ⊂ X a compact and

convex set and f : K → K. By the Krasnoselski fixed point theorem we know

that the Krasnoselski iteration (xn) converges to a fixed point of f . We now show

that already for X := IR, K := [0, 1] and a very simple class of nonexpansive

mappings f , no rate of convergence for (xn) (starting from x0 := 0) can be

computed uniformly in f .

Theorem 3. There is no Turing machine Mα which uniformly in α : IN →

{0, 1} as an oracle computes a number m such that

∀j ≥ m
(
|xj − xm| <

1

2

)
,

where

x0 := 0, xn+1 :=
xn+fλα (xn)

2 and

fλα
(x) := λαx + 1 − λα, where λα :=

∞∑
i=0

α(i)2−i−1.

Proof: Assume that there is a Turing machine Mα which computes an m sat-
isfying

∀j ≥ m
(
|xj − xm| <

1

2

)
.

One easily verifies that

(1) λα < 1 ⇒ xn → 1 ⇒ xm ∈ [12 , 1] and
(2) λα = 1 ⇒ ∀n(xn = 0) ⇒ xm = 0.

Since with m also xm is computable uniformly in α and one can decide whether

xm ∈ [ 12 , 1] or xm = 0, one can decide uniformly in α whether λα < 1 or λα = 1,

i.e. whether ∃n(α(n) 6= 1) or ∀n(α(n) = 1), which is impossible. ⊣

Remark 3. The representation of λ ∈ [0, 1] via α in the proof above is very

strong in that it provides a rather special Cauchy sequence of rationals with
fixed rate of convergence which in general cannot be uniformly computed in an
arbitrary Cauchy sequence of rationals with fixed rate of convergence. However,
this makes the non-computability result even stronger in that not even this
strong representation of the input allows one to compute a fixed point.

Definition 3. Let (X, ‖·‖) be a normed linear space, S a subset of X, f : S → S

and ε > 0. A point x ∈ S is called an ε-fixed point of f if ‖x − f(x)‖ ≤ ε.

Lemma 1. Let (X, ‖ · ‖) be a normed linear space, let ∅ 6= C ⊆ X be convex

with bounded diameter d(C) < ∞ and let f : C → C be nonexpansive. Then f

has ε-fixed points in C for every ε > 0.
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Proof: Since the lemma is trivial for ε > d(C), we may assume that ε ≤ d(C).

To reduce the situation to the Banach fixed point theorem we use the following

well-known construction (see e.g. [4] but also [13]): ft(x) := (1 − t)f(x) + tc for

some c ∈ C and t ∈ (0, 1]. ft : C → C is a contraction and therefore Banach’s

fixed point theorem applies. Note furthermore that the completeness assumption
in Banach’s theorem is needed only to guarantee the existence of a limit of the

Cauchy sequence (fn
t (c))n∈IN, where fn

t denotes the n-times iteration of ft, which

is not necessary to ensure that fn
t (c) is an ε-fixed point of ft for sufficiently large

n and hence (for t := ε/d(C)) a 2ε-fixed point of f . That is why we do not have

to assume that X is complete or that C is closed. ⊣

The following lemma belongs to the ‘folklore’ of the subject. We include its
simple proof for the sake of completeness.

Lemma 2. Let (X, ‖ ·‖) be a normed linear space, let C ⊆ X be a convex subset

of X and let f : C → C be a nonexpansive function. Let x0 ∈ C be arbitrary and

define xk+1 := xk+f(xk)
2 . Then

∀k
(
‖xk+1 − f(xk+1)‖ ≤ ‖xk − f(xk)‖

)
.

Proof:

‖xk+1 − f(xk+1)‖ = ‖ 1
2xk + 1

2f(xk) − f(1
2xk + 1

2f(xk))‖ =
‖(1

2xk − 1
2f(xk)) + (f(xk) − f(1

2xk + 1
2f(xk)))‖ ≤

‖ 1
2xk − 1

2f(xk)‖ + ‖f(xk) − f(1
2xk + 1

2f(xk))‖ ≤
‖ 1

2xk − 1
2f(xk)‖ + ‖xk − (1

2xk + 1
2f(xk))‖ =

1
2‖xk − f(xk)‖ + 1

2‖xk − f(xk)‖ = ‖xk − f(xk)‖.

⊣

Quantitative analysis of the proof of theorem 2 in [3]:

We now give two quantitative versions of the consequence

(∗) ∀k ∈ IN∃n ∈ IN
(
‖xn − f(xn)‖ <

1

k + 1

)

of theorem 2 discussed in the previous section. The first one follows directly the

proof of the theorem as given in [3]. The second one uses a logical modification of

that proof which is motivated by our general elimination procedure for PCMar.
This second analysis allows to take into account in a very easy way a property
which is satisfied by many moduli of uniform convexity, e.g. for all spaces Lp

with p ≥ 2, which makes it possible to improve the results obtained from the
first, direct analysis for such spaces.

General logical preliminaries:

Let us for the moment assume that K itself is compact. In Bonsall’s [3] proof of
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theorem 2, the following is established (where x0 := x, xk+1 := (xk + f(xk))/2

is the Krasnoselski iteration starting from x):

∀x, y ∈ K∀ε > 0
(
f(y) = y ∧ ∀k(‖f(xk) − xk‖ ≥ ε) → lim

n→∞
‖xn − y‖ = 0

)

and hence

∀x, y ∈ K∀ε > 0
(
f(y) = y ∧ ∀k(‖f(xk) − xk‖ ≥ ε) → ∃n(‖xn − y‖ < ε)

)
,

where the existence of a fixed point y ∈ K is derived from the Schauder fixed
point theorem. This can be rephrased in the following form

∀x, y ∈ K∀ε > 0∃k, n, l ∈ IN(
‖f(y) − y‖ ≤

1

l + 1
∧ ‖f(xk) − xk‖ ≥ ε → ∃ñ ≤ n(‖xñ − y‖ < ε)

)

︸ ︷︷ ︸
∈Σ0

1

.

By our general results on the extractability of uniform bounds we know a priori

(using the compactness of K as well as of the space of all nonexpansive mappings

f : K → K) that we can extract bounds K(ε), N(ε), L(ε) (and hence because

of the monotonicity in k, n, l of the formula above, which follows from lemma 2,

also realizations) for k, n, l which are independent of x, y ∈ K and f and only

depend on ε > 0 (and a modulus of uniform convexity η of X). Since we may

assume that L(ε) > 1
ε and since by the nonexpansivity of f

‖f(y)− y‖ ≤ ε ∧ ‖xñ − y‖ ≤ ε → ‖f(xñ) − xñ‖ ≤ 3ε,

this yields

∃n ≤ max
(
K(ε), N(ε)

)(
‖f(xn) − xn‖ ≤ 3ε

)
,

and so again by lemma 2

∀n ≥ max
(
K(ε), N(ε)

)(
‖f(xn) − xn‖ ≤ 3ε

)
.

Thus we have obtained a uniform bound and at the same time reduced the as-
sumption ‘∃y ∈ K(f(y) = y)’ to ‘∀ε > 0∃y ∈ K(‖f(y) − y‖ < ε)’. In particular,

as the bound does not depend on y, the computation of such an approximate
fixed point and hence an analysis of the proof of its existence is not needed.
The actual extraction of the bound carried out below reveals that such uniform
bounds K, N, L even exist when the compactness assumption on K is replaced
by the boundedness of K. Since by lemma 1 the existence of approximate fixed

points (but not of fixed points) in this much more general setting is even guar-

anteed for spaces X which are not complete, we can remove this assumption as
well and the result is proved without appeal to any fixed point theorem other

than Banach’s (actually only its ε-version):
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Theorem 4 (Direct analysis of Bonsall’s [3] proof of theorem 2).

Let (X, ‖ · ‖) be a uniformly convex normed space with modulus of convexity

η : (0, 2] → (0, 1] and C ⊆ X be a non-empty convex set with

d(C) := sup
x1,x2∈C

‖x1 − x2‖ ≤ dC ∈ Q∗
+.

Let f : C → C be a nonexpansive function.
Define for arbitrary x ∈ C

x0 := x, xk+1 :=
xk + f(xk)

2
.

Then

∀x ∈ C∀ε > 0∀k ≥ h(ε, dC)
(
‖xk − f(xk)‖ ≤ ε

)
,

where h(ε, dC) :=
⌈

ln(4dC)−ln(ε)
η(ε/(dC+1))

⌉
for ε < dC and h(ε, dC) := 0 otherwise.

Proof: The theorem is trivial for ε ≥ dC . So we can assume that ε < dC . By

lemma 1, f has ε-fixed points xε ∈ C, ‖f(xε) − xε‖ < ε for every ε > 0. Let

δ > 0 be such that δ < min(1, ε
12h(ε,dC) ) and let y ∈ C be a δ-fixed point of f ,

i.e.

(1) ‖y − f(y)‖ < δ.

Assume that

(2) ‖xk − f(xk)‖ = ‖(xk − y) − (f(xk) − y)‖ > ε.

Then

(3)

∥∥∥∥
xk − y

‖xk − y‖ + δ
−

f(xk) − y

‖xk − y‖ + δ

∥∥∥∥ >
ε

‖xk − y‖ + δ
≥

ε

dC + 1
.

Because of

(4) ‖f(xk) − y‖
(1)

≤ ‖f(xk) − f(y)‖ + δ ≤ ‖xk − y‖ + δ,

we have

(5)

∥∥∥∥
xk − y

‖xk − y‖ + δ

∥∥∥∥ ,

∥∥∥∥
f(xk) − y

‖xk − y‖ + δ

∥∥∥∥ ≤ 1

and therefore

(6)

∥∥∥∥
1

2

(
xk − y

‖xk − y‖ + δ
+

f(xk) − y

‖xk − y‖ + δ

)∥∥∥∥ ≤ 1 − η(ε/(dC + 1)).
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Hence

(7)

{
‖xk+1 − y‖ = ‖ 1

2 (xk + f(xk)) − y‖ = ‖ 1
2 (xk − y + f(xk) − y)‖ ≤(

1 − η(ε/(dC + 1))
)
(‖xk − y‖ + δ).

Therefore, if (2) holds for all k ≤ k0 := h(ε, dC) − 1 then

(8)






‖xk0+1 − y‖

≤
(
1 − η(ε/(dC + 1))

)k0+1
‖x0 − y‖ +

k0+1∑
i=1

(1 − η(ε/(dC + 1)))i · δ

≤
(
1 − η(ε/(dC + 1))

)k0+1
· dC + (k0 + 1)δ

≤
(
1 − η(ε/(dC + 1))

)k0+1
· dC + ε

12 .

We now show that

(9)
(
1 − η(ε/(dC + 1))

)k0+1
· dC ≤

ε

4
.

Proof of (9): If η(ε/(dC + 1)) = 1, then the claim holds trivially. Otherwise, (9)

is equivalent to

k0 + 1 ≥
ln(ε/4dC)

ln(1 − η(ε/(dC + 1)))
.

Since ln(1) = 0 and d
dx ln(x) = 1

x ≥ 1 for all x ∈ (0, 1], we get

− ln(1 − η(ε/(dC + 1))) ≥ η(ε/(dC + 1)).

Together with − ln(ε/4dC) = log(4dC) − ln(ε) this yields (9).

(8) and (9) together imply

(10) ∀k ≤ h(ε, dC) − 1
(
‖xk − f(xk)‖ > ε

)
→ ‖xh(ε,dC) − y‖ ≤

ε

3
.

Since f is nonexpansive and y is an ε
3 -fixed point of f the right-hand side of the

implication yields ‖xh(ε,dC) − f(xh(ε,dC))‖ ≤ ε. So

(11) ∃k ≤ h(ε, dC)
(
‖xk − f(xk)‖ ≤ ε

)

and hence by lemma 2 above

(12) ∀k ≥ h(ε, dC)
(
‖xk − f(xk)‖ ≤ ε

)
,

which concludes the proof of the theorem. ⊣
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Theorem 5 (Analysis of a modification of Bonsall’s [3] proof of thm.2).

Under the same hypotheses as in theorem 4 we obtain

∀x ∈ C∀ε > 0∀k ≥ h(ε, dC)
(
‖xk − f(xk)‖ ≤ ε

)
,

where h(ε, dC) :=

⌈
4·dC

ε·η( ε
dC+1

)

⌉
for ε < dC and h(ε, dC) := 0 otherwise.

Moreover, if η(ε) can be written as η(ε) = ε · η̃(ε) with

(∗) ∀ε1, ε2 ∈ (0, 2]
(
ε1 ≥ ε2 → η̃(ε1) ≥ η̃(ε2)

)
,

then the bound h(ε, dC) can be replaced (for ε < dC) by

h̃(ε, dC) :=

⌈
2 · dC

ε · η̃( ε
dC+1 )

⌉
.

Proof: By lemma 1, f has ε-fixed points xε ∈ C, ‖f(xε) − xε‖ < ε for every
ε > 0.
Let δ > 0 be such that δ < min(1, ε

3 , ε
12 · η(ε/(dC + 1))) and let y ∈ C be a

δ-fixed point of f , i.e.

(1) ‖y − f(y)‖ < δ.

Assume that

(2) ‖xk − y‖ ≥
ε

3
and

(3) ‖xk − f(xk)‖ = ‖(xk − y) − (f(xk) − y)‖ > ε.

As in the proof of theorem 4 one shows that

(4)

∥∥∥∥
1

2

(
xk − y

‖xk − y‖ + δ
+

f(xk) − y

‖xk − y‖ + δ

)∥∥∥∥ ≤ 1 − η(ε/(dC + 1)).

Hence

(5)






‖xk+1 − y‖ = ‖ 1
2 (xk + f(xk)) − y‖ = ‖ 1

2 (xk − y + f(xk) − y)‖ ≤

‖xk − y‖ + δ − (‖xk − y‖ + δ) · η(ε/(dC + 1))
(2)

≤
‖xk − y‖ + δ − ε

3 · η(ε/(dC + 1)) ≤ ‖xk − y‖ − ε
4 · η(ε/(dC + 1)).

Define

nε :=

⌈
dC

ε
4 · η(ε/(dC + 1))

⌉
=

⌈
4 · dC

ε · η(ε/(dC + 1))

⌉
.

If (2), (3) both hold for all k ≤ nε, then (5) yields

(6) ‖xnε+1 − y‖ < ‖x0 − y‖ − dC ,
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which contradicts the choice of dC by which ‖xk − y‖ ∈ [0, dC ] for all k ∈ IN.

Hence

(7) ∃k ≤ nε

(
‖xk − y‖ ≤

ε

3
∨ ‖xk − f(xk)‖ ≤ ε

)
.

By the choice of δ,(1) and the nonexpansivity of f , the first disjunct also implies

that ‖f(xk) − xk‖ ≤ ε and so by the preceding lemma

(8) ∀k ≥ nε

(
‖xk − f(xk)‖ ≤ ε

)
.

The last claim in the theorem follows by choosing y ∈ C as a δ-fixed point of f

with δ < min(1, ε
3 , ε

2 · η̃(ε/(dC + 1))) and the following modifications of (4), (5)

to

(4)∗
∥∥∥∥

1

2

(
xk − y

‖xk − y‖ + δ
+

f(xk) − y

‖xk − y‖ + δ

)∥∥∥∥ ≤ 1 − η(ε/(‖xk − y‖ + δ)).

(5)∗






‖xk+1 − y‖ = ‖ 1
2 (xk + f(xk)) − y‖ = ‖ 1

2 (xk − y + f(xk) − y)‖ ≤
‖xk − y‖ + δ − (‖xk − y‖ + δ) · η(ε/(‖xk − y‖ + δ)) =

‖xk − y‖ + δ − ε · η̃(ε/(‖xk − y‖ + δ))
(∗)

≤ ‖xk − y‖ + δ − ε · η̃(ε/(dC + 1))
≤ ‖xk − y‖ − ε

2 · η̃(ε/(dC + 1))

(note that we can apply η to ε/(‖xk − y‖ + δ) since (3) and

‖f(xk) − y‖
(1)

≤ ‖f(xk) − f(y)‖ + δ ≤ ‖xk − y‖ + δ

imply

ε ≤ ‖xk − y‖ + ‖f(xk) − y‖ ≤ 2(‖xk − y‖ + δ)

and therefore
ε/(‖xk − y‖ + δ) ∈ (0, 2]).

⊣

If we disregard for a moment the diameter estimate dC in the bounds in theorems

4 and 5 and put ε := 2−n, then we see that the bound from theorem 4 essentially

is n/η(2−n), whereas the first bound in theorem 5 is only about 2n/η(2−n). If,

however, η(ε) can be written as ε · η̃(ε) with η̃ satisfying (∗), then theorem 5

roughly gives 1/η(2−n) which is better than the bound from theorem 4. It is this

fact that we will use in the example below to obtain a polynomial bound for Lp

(p ≥ 2) which is of degree p.

Examples: It is well-known that the Banach spaces Lp with 1 < p < ∞ are

uniformly convex (this was first proved in [6], see also [20]). For p ≥ 2, the

following explicit modulus ηp of uniform convexity was obtained in [14]

ηp(ε) := 1 − (1 − (ε/2)p)1/p.
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One easily shows (using the derivative of x1/p) that (for ε ∈ (0, 2])

ηp(ε) ≥
εp

p2p
.

Hence εp

p2p is a modulus of convexity as well. Since

εp

p2p
= ε · η̃p(ε)

with

η̃p(ε) =
εp−1

p2p

satisfying (∗) in the theorem above, we obtain the following

Corollary 1. Let p ≥ 2, C ⊆ Lp a non-empty convex subset with d(C) ≤ dC ∈

Q∗
+, f : C → C nonexpansive and (xk)k∈IN defined as in the theorem. Then

∀x ∈ C∀ε > 0∀k ≥

⌈
dCp(dC + 1)p−12p+1

εp

⌉ (
‖xk − f(xk)‖ ≤ ε

)
.

Note that the bound in corollary 1 only depends on p, ε and an upper bound dC

of d(C) but not on x ∈ C or f .

For the case X := IR, C := [0, 1], theorem 5 even gives a linear bound, since ε/2

is a modulus of uniform convexity in this case and η̃(ε) := 1
2 satisfies (∗).

Remark 4. Our result in corollary 1 can easily be improved by replacing (dC +1)

by (dC + δ) for any δ > 0 and so in the limit by dC . In [18], using a direct

calculation based on the modulus of uniform convexity for Lp, essentially the

same result is obtained (only with a better constant as the factor ‘p2p+1’ is

missing). For a linear bound in the case [0, 1], [18] refers to an unpublished

result of J. Alexander. Note, however, that our bounds in these examples were
derived just as special instances of the general bound in theorem 5.

4 Effective uniform bounds on the Krasnoselski-Mann

iteration in arbitrary normed spaces

In this section we discuss some of the results from [29]. Throughout this section,

(X, ‖ · ‖) will be an arbitrary normed linear space, C ⊆ X a non-empty convex

subset of X and f : C → C a nonexpansive mapping.

We consider the so-called Krasnoselski-Mann iteration (which is more general
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than the Krasnoselski iteration and due to Mann [34]) generated starting from

an arbitrary x ∈ C by

x0 := x, xk+1 := (1 − λk)xk + λkf(xk),

where (λk)k∈IN is a sequence of real numbers in [0, 1]. For the background infor-

mation on this iteration and related references see [4].

Lemma 3 ([4]). For all k ∈ IN and x ∈ C :

‖xk+1 − f(xk+1)‖ ≤ ‖xk − f(xk)‖.

For the results in this section we assume (following [4]) that (λk)k∈IN is divergent

in sum, which can be expressed (since λk ≥ 0) as

(A) ∀n, i ∈ IN∃k ∈ IN




i+k∑

j=i

λj ≥ n



 .

We also assume (again as in [4]) that

(B) lim sup
k→∞

λk < 1.

Define
rC(f) := inf

x∈C
‖x − f(x)‖.

Theorem 6 ([4]). 9 Suppose that (λk)k∈IN satisfies the conditions (A) and (B).

Then for any starting point x ∈ C and the Krasnoselski-Mann iteration (xn)

starting from x we have

‖xn − f(xn)‖
n→∞
→ rC(f).

By lemma 1, the theorem implies

Corollary 2 ([16],[11],[4]). Under the assumptions of theorem 6 plus the ad-

ditional assumption that C has bounded diameter d(C) < ∞ the following holds:

‖xn − f(xn)‖
n→∞
→ 0.

Remark 5. In [11] it is actually shown that one can choose n in the corollary

independently of x ∈ C and f . Whereas in [11] a complicated functional theo-

retic embedding into the space of all nonexpansive mappings is used to derive
this uniformity statement, it trivially follows from our quantitative analysis in

9 With the additional assumption that λk is bounded away from zero, this result is
also proved in [35].
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corollary 3 below which even provides an explicit effective description of such a
uniform n. For a more restricted iteration the existence of a bound n indepen-

dent of x was also obtained by [8] using, however, also a universal embedding

theorem (due to Banach and Mazur). The use of non-trivial functional theoretic

arguments in [11] and [8] to obtain the (ineffective) existence of a uniform n

clearly indicates that the authors were not aware of explicit effective uniform

bounds hidden in the proof of lim
k→∞

‖f(xk)−xk‖ = 0 as given e.g. in [11] and its

generalization in [4].10

We will now show how the proof of theorem 6 as given in [4] fits under the

general schema of logical proof mining discussed in the introduction. The actual

extraction of the bound itself will be carried out in [29].

General logical form of the quantitative analysis of the proof of theo-

rem 6 in [4]:

As we have discussed above, we only can expect to be able to extract a bound

∀x∃y ≤ Φ(x)A(x, y) from a non-constructive proof if A is a purely existential

formula. Since the statement in theorem 6 involves two implicative assumptions

on (λk)k∈IN as well as the existence of rC(f), it prima facie does not have the re-

quired form. However, it can be reformulated so as to have the right logical form

by enriching the input (λk)k∈IN, f, x, ε by additional data K ∈ IN, α : IN×IN → IN

and x∗ ∈ C.
Let us first examine conditions (A) and (B) on (λk)k∈IN :

An explicit version of (A) asks for a function α : IN × IN → IN realizing the

existential quantifier, i.e.

(Aα) ∀n, i ∈ IN




i+α(i,n)∑

j=i

λj ≥ n



 .

(B) states the existence of a K ∈ IN such that

λk ≤ 1 −
1

K

from some index k0 on. Since k0 only contributes an additive constant to our
bound we may assume for simplicity that k0 = 0. So let

(BK) ∀k ∈ IN
(
λk ≤ 1 −

1

K

)
.

We now formulate the theorem more explicitly as follows:

(∗)

{
∀(λk) ∈ [0, 1]IN∀f : C → C∀x, x∗ ∈ C∀K, α∀ε > 0∃n ∈ IN(
f nonexpans. ∧ (Aα) ∧ (BK) → ‖xn − f(xn)‖ < ‖x∗ − f(x∗)‖ + ε

)
.

10 For a more detailed discussion, see the final section of this paper.
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Note that by lemma 3, (∗) immediately implies theorem 6.

By our representation of real numbers by which ≤IR∈ Π0
1 and <IR∈ Σ0

1 , the

implication

(f nonexpansive ∧ (Aα) ∧ (BK) → ‖xn − f(xn)‖ < ‖x∗ − f(x∗)‖ + ε
)

is equivalent to a purely existential formula. The proof of (∗) only uses tools

formalizable in EBA plus the principle PCM(‖xk − f(xk)‖) (discussed in the

introduction) applied to (‖xk − f(xk)‖)k∈IN and a complicated inequality due to

[11]. This inequality can be treated just as another purely universal implicative

premise and does therefore not increase the logical complexity of the theorem

(nor does its proof need to be analysed). Since, furthermore, the Hilbert cube

[0, 1]IN is a compact space, our general results discussed in the introduction

guarantee (at least for complete separable X and definable C)11 the existence

of an effective bound for n which does not depend on (λk) directly but which

may possibly depend on K, α, x, x∗, f, ε and γ. This information on what type
of result we should look for is a significant application of our logical approach to
the specific proof of theorem 6 which would not have been visible without the
reformulation of the theorem focusing on its logical form.
We also know a-priori from our general logical meta-theorem, that a uniform
bound on n which does not depend on x, x∗ ∈ C, γ > 0 or f is extractable if C is

compact (and hence has bounded diameter). For the bound actually extracted,

the dependence on x, x∗, f, γ can already be eliminated as soon as we have an

upper bound on the diameter d(C) of C. This stronger uniformity result is a-

postiori information we get for free just by examining the extracted bound.

The extraction itself will be published in another paper [29]. We present here

only the results:

Theorem 7 ([29]). Let (X, ‖ · ‖) be a normed linear space, C ⊆ X a non-

empty convex subset and f : C → C a nonexpansive mapping. Let (λk)k∈IN be a

sequence in [0, 1] which is divergent in sum and satisfies

∀k ∈ IN
(
λk ≤ 1 −

1

K

)

for some K ∈ IN.
Let α : IN × IN → IN be such that

∀i, n ∈ IN
(
α(i, n) ≤ α(i + 1, n)

)
and

11 The actually extracted bound will in fact turn out to be valid for arbitrary normed
linear spaces X and convex subsets C ⊂ X. Note that the convexity assumption on
C is purely universal.
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∀i, n ∈ IN
(
n ≤

i+α(i,n)−1∑

s=i

λs

)
.

Let (xn)n∈IN be the Krasnoselski-Mann iteration

xn+1 := (1 − λn)xn + λnf(xn), x0 := x

starting from x ∈ C. Then the following holds

∀x, x∗ ∈ C∀ε > 0∀n ≥ h(ε, x, x∗, f, K, α)(‖xn − f(xn)‖ < ‖x∗ − f(x∗)‖ + ε),

where

h(ε, x, x∗, f, K, α) := α̂(⌈2‖x − f(x)‖ · exp(K(M + 1))⌉−· 1, M),

with M :=
⌈

1+2‖x−x∗‖
ε

⌉
and

α̂(0, M) := α̃(0, M), α̂(m + 1, M) := α̃(α̂(m, M), M) with
α̃(m, M) := m + α(m, M) (m ∈ IN)

(Instead of M we may use any upper bound IN ∋ M̃ ≥ 1+2‖x−x∗‖
ε ). Likewise, we

may replace ‖x − f(x)‖ by any upper bound).

Corollary 3 ([29]).

Under the same assumptions as in theorem 7 plus the assumption that C has a

positive12 bounded diameter d(C) < ∞ the following holds:

∀x ∈ C∀ε > 0∀n ≥ h(ε, d(C), K, α)
(
‖xn − f(xn)‖ ≤ ε

)
,

where

h(ε, d(C), K, α) := α̂(⌈2d(C) ·exp(K(M +1))⌉−1, M), with M :=

⌈
1 + 2d(C)

ε

⌉

and α̂ as in the previous theorem.

Remark 6. The behaviour of the bound in corollary 3 w.r.t. d(C) can be im-

proved as follows: if d(C) is different from 1 we renorm the space by the mul-

tiplicative factor 1
d(C) . Then h(ε, 1, K, α) gives the rate of the asymptotic regu-

larity w.r.t. this new norm and hence h( ε
d(C) , 1, K, α) for the original norm.

Corollary 4 ([29]). Let d, ε > 0, K ∈ IN and β : IN → IN an arbitrary function.

Then there exists an n ∈ IN such that for any normed space X, any non-empty

convex set C ⊆ X such that d(C) ≤ d, any nonexpansive function f : C →

12 For d(C) = 0 things are trivial.
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C, any sequence λk ∈ [0, 1 − 1
K ] satisfying n ≤

β(n)∑
s=0

λs (for all n ∈ IN) and

any starting point x0 ∈ C of the corresponding Krasnoselski-Mann iteration the
following holds

∀m ≥ n
(
‖xm − f(xm)‖ < ε

)
.

Corollary 5 ([29]). Let (X, ‖ · ‖), C, d(C), f be as in corollary 3, k ∈ IN, k ≥ 2

and λn ∈ [ 1
k , 1 − 1

k ] for all n ∈ IN. Consider the Krasnoselski-Mann iteration

xn+1 := (1 − λn)xn + λnf(xn) starting from x0 := x ∈ C. Then the following

holds:

∀x ∈ C∀ε > 0∀n ≥ g(ε, d(C))
(
‖xn − f(xn)‖ ≤ ε

)
,

where

g(ε, d(C)) := kM · ⌈2d(C) exp(k(M + 1))⌉ with M :=

⌈
1 + 2d(C)

ε

⌉
.

5 Evaluation of the results of the case study

We have seen that there are interesting proofs in non-linear functional analysis

(and specifically in fixed point theory) which fall under general proof theoretic

results on the extractability of uniform bounds we had obtained in previous
papers.
We applied these results to essentially two proofs

1) A standard proof from [3] (from the year 1962)13 of the well-known Kras-

noselski fixed point theorem.

2) A proof from [4] (which contains as a special case a proof from [11] from 1982)

for a general result on the asymptotic behaviour of the Krasnoselski-Mann

iteration in arbitrary normed spaces (generalizing a result from Ishikawa

[16]).

Results on 1): Logical analysis of a proof from 1955/62 yielded uniform bounds

together with an elementary verification for arbitrary bounded convex sets C.
Under slightly less general conditions and with the use of the deep Browder-
Göhde-Kirk fixed point theorem our result in theorem 4 was obtained only in

1990 ([18]) (The compact case is due already to Krasnoselski). Moreover, a logical

modification of the proof using PCMH
ar (with g(n) = n+1 as the Herbrand index

function in ‘∀g’ of PCMH
ar(an)) allowed to improve this bound under a further

condition usually satisfied by moduli of uniform convexity (theorem 5). Applying

13 Krasnoselski’s original proof from 1955 is very similar to that as far as we can judge
from the Russian text.
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this general bound to Lp (p ≥ 2) resulted in a polynomial bound of degree p (a

result which for this special case was obtained in [18] by an ad hoc calculation).

For X := IR and C := [0, 1] we even get a linear bound out of our general result

(see also [18], p.192).

Results on 2): The logical analysis of the proof in [4] (resp. [11]) carried out in

[29] provides the first effective bound for Ishikawa’s theorem on the asymptotic

behaviour of general Krasnoselski-Mann iterations in arbitrary normed spaces

X and for bounded sets C (corollary 3). Moreover, our bound is uniform in

the sense that it only depends on the error ε and an upper bound dC of the

diameter of C (and some quite general data from the sequence of scalars λk used

in defining the iteration). I.e. it is independent of the normed space (X, ‖ · ‖).

the starting point x0 ∈ C of the iteration, the nonexpansive function f and
C-data other than dC . Moreover, it is to a certain extent independent of λk.

Our result has a long history of partial results: In [8] the ineffective existence of

a bound which is independent of x0 was shown in the special case of constant

λk = λ. In [11] the non-effective existence of a bound independent of x0 and f

was shown for the case of general λk (both [8] and [11] use non-trivial functional

theoretic embeddings to obtain these uniformities. Recently, W.A. Kirk ([9])

found an interesting application of this uniformity). In [18] the non-effectivity of

all these results is explicitly mentioned and it is stated that ‘it seems unlikely that

such estimates would be easy to obtain in general setting’ (p.191) and therefore

in [18] only the special ‘tractable’ (p.191) classical case of uniformly convex

spaces is studied (see the discussion in remark 4 above). Not even the ineffective

existence of bounds which, moreover, only depend on C via dC (corollary 4), was

known before and actually in [12] (p.101) conjectured as ‘unlikely’ to be true

(by the same authors whose proof of ‖xk − f(xk)‖ → 0 in [11] does yield such

a bound by logical analysis!). Only in the special case of λk := λ ∈ (0, 1) being

constant, a uniform (and in fact optimal quadratic) bound was recently obtained

using extremely complicated computer aided proofs involving hypergeometric

functions (see [1], where once more the non-effectivity of all known proofs of the

full Ishikawa result is emphasized). Subsequently, only for the even more special

case of λk := 1
2 a classically proved result of that type has been obtained (see

[2]). This result, of course, is – for that highly special case – numerically better

than the exponential bound we obtain in [29] for the much more general case

of λk ∈ [ 1
n , 1 − 1

n ] (n ≥ 2). The authors stress, however, that their method as
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it stands does not apply to non-constant sequences (λk). 14 Our bound for the

general case of unbounded C treated in [4] (theorem 7) is apparently all new.

Acknowledgment: I am grateful to Professor Jeff Zucker and my Ph.D. student
Paulo Oliva for spotting a number of misprints and minor inaccuracies in an
earlier version of this paper.
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