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technique, INRIA and Université Paris-Sud – FRANCE .
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1 Introduction

This paper investigates the complexity of the extraction algorithms for effec-
tive data (such as programs and bounds) from proofs provided by Gödel’s
functional (Dialectica) interpretation and its monotone variant. The subject
of extracting programs from proofs already has a long history. The techniques
used can be roughly divided in two categories according to whether they are
based on cut-elimination, normalization and related methods or on so-called
proof interpretations. The latter typically make use of functionals of higher
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type. Prominent proof interpretations are realizability interpretations, partic-
ularly Kreisel’s [38] modified realizability (see [54] for a survey) and Gödel’s
functional interpretation (first published in [22], see [3] for a survey). The
no-counterexample interpretation (n.c.i.) due to Kreisel [36,37] is sometimes
viewed as a simplification of the functional interpretation (it uses only types
of degree ≤ 2). In fact n.c.i. is not a real alternative since it has a bad behav-
ior with respect to the modus ponens rule MP. This is overcome only if MP is
interpreted by functional interpretation (see [33]).

Cut-elimination, normalization and the related ε-substitution method glob-
ally rebuild the given proof thereby increasing its length in a potentially non-
elementary recursive way. Hyper-exponential lower-bound examples were pro-
vided by Statman [52], Orevkov [41,42] and Pudlak [44] – see also [56] and
the more recent [16–18]. In contrast, proof interpretations extract witnessing
terms by recursion on the given proof tree which remains essentially unchanged
in its structure. The latter techniques consequently enjoy full modularity: the
global realizers of a proof can be computed from realizers of lemmas used in
the proof. This suggests a radically lower complexity of the procedure and a
radically smaller size of the extracted programs. Even though the latter would
not be in normal form 4 they can be used substantially in many ways without
having to normalize them. One merely exploits properties which can be estab-
lished inductively over their structure with the use of logical relations (like,
e.g., Howard’s [27] notion of majorizability).

Both (modified) realizability and functional interpretations are applicable to
a vast variety of formal systems and provide characterizations of their prov-
ably total programs. They had originally been applied to arithmetic in all
finite types. They were subsequently adapted to various fragments thereof all
the way down to weak systems of bounded arithmetic [8,32,43] or – more re-
cently – the poly-time arithmetic of [47,48]. They were extended to analysis
[13,39,51], type theories [20] and fragments of set theory [6]. Gödel’s functional
interpretation was recently adapted to yield an extraction of Herbrand terms
from ordinary first-order predicate logic proofs [19].

Realizability and functional interpretations cannot be directly applied to clas-
sical systems. A canonical manner of interpreting classical proofs would be to
first translate them to intuitionistic proofs via a so-called negative translation
and to subsequently apply intuitionistic proof interpretations. However this
fails for (modified) realizability since it extracts empty programs from negative
formulas. The problem can be partly overcome by using an additional inter-
mediate interpretation, the so-called Friedman-Dragalin A-translation [11,15]
and its variants [9] 5 . Unlike realizability interpretations, functional inter-

4 Normalization would bring back the aforementioned complexities.
5 See, e.g., [5,40] for examples of program extractions using this approach. One
drawback of this method is the limited modularity feature: only a restricted class
of lemmas can be used to build the input proof. In contrast, the techniques based
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pretations are sound for the so-called Markov principle and therefore feature
extraction of programs from arbitrary proofs in fairly rich classical systems,
like Peano arithmetic in all finite types PAω (see also Section 5). Hence the
need for an intermediate translation is avoided when using functional interpre-
tations. Moreover, monotone functional interpretation can extract programs
from proofs T ` ∀xρ∃yτRec(x, y) in highly unconstructive systems T which
contain, e.g., the binary König lemma. Here τ is an arbitrary finite type, ρ is
a finite type of degree (aka level) at most 1 and Rec(x, y) is a specification
which must 6 be decidable if T is classical (we actually take it quantifier-free).
This gives functional interpretations the ability of extracting programs and
other effective data (such as numerical bounds) under certain conditions from
ineffective proofs (proof mining). Proof mining based on the monotone func-
tional interpretation has already produced important results in computational
analysis and has helped to obtain new results in mathematical analysis (see
[35]).

A natural question that arises is whether such applications which were ob-
tained by hand could be automated or at least computer aided by implement-
ing functional interpretations. In order to evaluate the feasibility of such a tool
it is important to investigate the complexity aspects of functional interpreta-
tions. In the present paper we obtain upper bounds on the size of the terms
which express the extracted programs. The interpretation algorithms only
write down the extracted terms, proceeding by recursion on the structure of
the input proof, see Section 3. It follows that their running time is proportional
with the size of the extracted terms. Hence we obtain the time complexity of
the extraction algorithms as a consequence of our quantitative analysis. Let
n denote the size of the input proof P and m denote the maximal size of a
formula of P . Due to the modularity of functional interpretations, these al-
gorithms feature an almost linear time complexity, namely O(m2 · n) even for
classical and analytical proofs. The almost refers to the fact that m is much
smaller than n in most practical cases. In any case this time complexity is at
most O(n3), a result previously obtained by Alexi in [1] for an ad-hoc program-
extraction technique for intuitionistic proofs only. Since the design of Alexi’s
technique was driven by the optimal-time-overhead issue, cubic is probably
the best worst-time-complexity one can expect from any program-extraction
technique. We also give upper bounds on depths of the resulting verifying
proofs – this is interesting for quantitative conservation results. In particular
we obtain the feasibility of WKL–elimination for Π0

2–sentences over primitive
recursive arithmetic 7 in all finite types by means of syntactic translations.

on the Dialectica interpretation feature full modularity: the input proofs may use
arbitrary lemmas. See also [24] for applications of a form of recursive realizability.
6 This restriction is generally unavoidable for classical proofs but is not necessary
for intuitionistic proofs.
7 This had been shown for a second–order fragment independently in [23] and [2],
in the latter by means of a formalized forcing technique.
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Our technique is immediately implementable and in addition provides a term
extraction procedure from analytical proofs. A program-extraction module
based on Gödel’s functional interpretation was implemented by the first au-
thor in the proof-system MINLOG [49]. An experimental comparison between
the performance of this and the existent refined A-translation [5] extraction
module is reported in [25]. The newer module performs better in that case.

There exists a research line in extractive proof theory which is aimed at charac-
terizing the classes of proofs from which programs belonging to certain com-
plexity classes are extracted. Usually the feasible complexity classes are of
interest, particularly poly-time, see e.g. [8,47]. The issue of characterizing the
complexity of provably total function(al)s of a theory is completely separate
from the present paper’s topic. We are here concerned more with the perfor-
mance of the extraction algorithm rather than with the one of the extracted
programs.

The monotone variant of Gödel’s functional interpretation was developed by
the second author in [31]. It takes into account that most applications of
functional interpretation in recent years both to concrete proofs in numerical
analysis and to conservation results do not actually use terms which realize
the Gödel functional interpretation but terms which majorize 8 (some) realiz-
ers. Monotone functional interpretation extracts majorizing terms which are
simpler than the actual realizers produced by functional interpretation. This
is due to the much simpler treatment of CT∧, see Proposition 3.22 and the
paragraph following Definition 4.16. Also the treatment of induction axioms
is much simpler, see Section 5. Moreover, the upper bound on the depth of the
verifying proof is better in the monotone case if the underlying logical system
fairly supports monotone functional interpretation, see Remark 4.19 .

1.1 Outline of the main results

We introduce the weak base system EILω, a short for “(weakly extensional)
extended intuitionistic equality logic in all finite types”. EILω contains only
the tools which are strictly necessary for carrying out the functional interpre-
tation even for the most rudimentary intuitionistic systems. We present upper
bounds for the following quantitative measures of realizing/majorizing terms
t extracted from proofs P in both semi-intuitionistic 9 and classical systems
based on EILω up to the analytical system PAω+AC0+WKL :

• the maximal degree (arity) of a subterm of t, denoted mdg (mar) ;

• the depth of t, denoted d (assuming a tree representation of terms) ;

8 Majorization is understood in the sense of Howard [27] mentioned before.
9 Here semi-intuitionistic means intuitionistic plus a version of Markov’s principle
MK and independence of premises for universal premises IP∀, see Section 3.1 for
details.
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• the size of t, denoted S and defined as the number of all constants and
variables used to build t .

We also give upper bounds on the depth 10 of the verifying proof and time over-
head of the extraction algorithm, here denoted ∂v and θ respectively. For the
extraction procedure we consider both the usual [22] and the monotone variant
[31] of functional interpretation. We first consider a binary-tree representation
for terms, see also Footnote 35. Such a representation is more intuitive and
therefore provides a better exposition of the bounds for mdg, mar. However
it turns out that the same extracted terms have smaller size if represented in
a more economic manner using pointers 11 , see Section 3.4 . Since their defi-
nition does not depend on the term representation, the bounds for mdg and
mar still hold. From Section 3.4 on it is tacitly assumed that terms are repre-
sented in the economic manner. A representation for types becomes necessary
only at the moment that we are interested in the space/time overhead of the
extraction algorithm, see Section 3.5 . Let us denote by ∂ the depth and by
Si , Sc, Sm the size (in the sense of Definition 3.33) of P and for a formula A by

• vdg (var) the maximal degree (arity) of a variable occurring in A ;

• id (fd, ld) the implication (forall, logical) depth of A, namely the maximal
number of → (∀, all logical constants) on a path from root to leaves in the
usual tree representation of A; by fid :≡ max{fd , id} ;

• qs the number of all quantifiers (including 12 ∨) of the universal closure of A ;

• ls the number of all ∀,∃,∧,∨,→,⊥, = and free variables of A .

We prove that (relative to our underlying deductive framework EILω)

• mdg and mar do not depend on ∂; the difference between mdg (mar) and
the maximal degree (arity) of a variable occurring in an axiom of P is linear
(quadratic) in the maximal complexity of an axiom of P ;

• d is linear in the maximal logical size ls of an axiom of P and ∂ ;

• S is linear in the size of P (here we use the economic representation of
terms); also exponential in ∂ and in the logarithm of the maximal logical
size ls of an axiom of P (in contrast to the former, this holds for both the
economic and the binary-tree representation of terms) ;

• ∂v is linear in ∂ and the maximal complexity of an axiom of P .

More precisely, for semi-intuitionistic proofs P we have the following situ-
ation (below “FI” means “functional interpretation”) :

10 Proofs are represented as trees, see also the last paragraph of Section 1.2 .
11 It would be possible to extract other terms which have the same smaller size also
in the case of binary-tree representation for terms, but the bounds for mdg, mar
would no longer hold in such a case – see also the remarks following Theorem 3.37 .
12 We must count ∨ among the quantifiers because functional interpretation treats
disjunction as an existential quantifier.
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usual FI monotone FI

mdg O(1) + vdg + id O(1) + vdg + id

mar O(1) + var + qs · id O(1) + var + qs · id

d O(ld) + qs · ∂ O(1) + qs · ∂

S O(Si) , O(ls · qs ∂
 ) O(Sm) , O(qs ∂

 )

∂v O(ld + ∂) O(qs + ∂)

θ O(qs · ls · Sm) O(qs · ls · Sm)

where vdg, var, id, qs, ls are maxima taken over all the axioms of P 13

of vdg, var, id, qs and ls respectively and ld, ls are maxima of ld, ls taken
over contractions A → A ∧ A of P .

For classical proofs P a preprocessing double–negation translation must be
employed, see Section 4.1. The above upper bounds must be adapted to take
it into account. The situation changes as follows. There exists k ∈ IN constant
(independent of P) such that (below “FI” means “functional interpretation”) :

usual FI monotone FI

mdg vdg + O(fid) vdg + O(fid)

mar var + O(qs · fid) var + O(qs · fid)

d O(ls · ∂) O(qs · ∂)

S O(Sc) , O(ls · qs k·∂
 ) O(Sm) , O(qs k·∂

 )

∂v O(ls + ∂) O(qs + ∂)

θ O(qs · ls · Sm) O(qs · ls · Sm)

where vdg, var, qs, ls are maxima taken over all the axioms of P of vdg,
var, qs and ls respectively and fid is the maximum of fid over all the for-
mulas of P .

13 In fact it is sufficient to consider only the axioms of the transformed proof Ptr ,
see Definition 3.8 . The same holds for the subsequent definitions as well, including
the classical case.
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Since they are not produced by functional interpretation, we normally do not
count the terms t1, t2 which appear in prime formulas t1 = t2 of contractions
A → A ∧ A and the quantifier axioms terms as part of the realizing terms. We
rather consider them as “black boxes” and use their type and free variables
information only (see Definition 3.10). From a programming perspective, they
may be considered as subprograms residing in libraries and made accessible
to the extracted program via references. The bounds for the usual functional
interpretation actually hold also if we take into account the terms mentioned
above provided that instead of ld, ls one uses wd, respectively ws, where

• wd is the whole depth of A, assuming a tree representation of A where tree
representations of the terms occurring in A are linked from the correspond-
ing leaves of the usual tree representation of A ;

• ws is the whole size of A, i.e., the number of all logical constants of A plus
the number of all occurrences of variables and constants in A .

For mdg and mar also the maximal degree, respectively arity of constants oc-
curring in contraction and quantifier axioms terms must be taken into account.
For more details see Remark 3.28 .

1.2 Notational conventions

The symbols :≡ and ≡ belong to the meta-level and mean equal by definition
to and is identical to respectively. The symbol = is used by abuse for equality
in both meta-level and formal systems. For a set M we let M≤ω :≡ ∪n≤ω Mn .
The symbol IN denotes the set of natural numbers. For a function f : M ′ 7→ IN
and M ⊆ M ′ , M finite, we let f(M) :≡ max{f(m) |m ∈ M} . An enumer-
ation S1, . . . ,Sn denotes an ordered tuple abbreviated S . We denote by {S}
the set corresponding to S , by |S| the length of S and by S ′,S ′′ the concate-
nation of S ′ and S ′′ . If {S} ⊆ M ′ we abbreviate by f(S) :≡ f({S}) . If p is
a permutation of {1, . . . , n}, Sp abbreviates the tuple Sp1 , . . . ,Spn .

Let k0 ∈ IN be a sufficiently large constant (k0 ≡ 10 suffices for our purposes)
14 . For a labeled tree 4 we denote by ∂(4) the depth of 4 plus k0 ; by ∂L(4)
the L depth of 4 (here L is a meta–variable for labels), i.e., the maximal
number of L labels on a path from root to leaves plus k0 ; by Lv(4) the set of
labels of leaves of 4 and by Vt(4) the set of labels of all vertices of 4 .

A (formal) proof in some logical system is a tree whose vertices are labeled

14 The meta–constant k0 is only needed for technical reasons. It just helps to in-
crease the readability of the numerous upper–bound expressions from the sequel.
We consider that is clarifies the exposition when including k0 unchanged in the
various computations rather than combine (and therefore loose its trace) an actual
constant. The indication k0 ≡ 10 just gives a hint of the order of magnitude of k0 .
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with formulas, such that the leaves are labeled with axioms and assumptions
and any parent vertex is labeled with the result of the application of an in-
stance of some rule to the labels of its sons. The edges which connect the
parent vertex with its sons are labeled with the name of the corresponding
rule. We denote by L(·) the labeling function on vertices and edges. We call
a proof complete if all its leaves are labeled with axioms only. Notice that
an incomplete proof is complete in the system extended with its assumptions
as axioms. We will denote proofs by ` or , possibly with bounds on the
depth attached, such as `n for a proof of depth at most n, n ∈ IN .

2 The weak base system EILω

In the following we introduce the system EILω 15 which forms in a sense a weak
base system containing exactly the tools needed to carry out the functional
interpretation. It extends intuitionistic logic in finite types with appropriate
combinators 16 , a cases operator D and some very basic arithmetic needed to
define characteristic functionals for quantifier-free formulas. We also include
C. Spector’s quantifier-free rule of extensionality ER0, see Section 2.3 . This
allows an as extensional as possible treatment of higher type equality in the
context of functional interpretation 17 – see also [34] .

We first carry out a full quantitative analysis for the functional interpretation
of an extension EILω

++AC+IP∀+MK 18 of EILω into the quantifier-free fragment
of EILω . Due to the modularity of functional interpretation this analysis imme-
diately relativizes to further extensions of EILω with certain axioms like, e.g.,
induction. Suppose that we consider an additional (closed) axiom A . Let us
add to EILω new constants c of appropriate types and the axiom 19 ∀yAD(c, y)
expressing that c satisfies the functional interpretation of A . The quantitative
analysis for the functional interpretation of EILω

++AC+IP∀+MK immediately
relativizes to this extension. Functional interpretation now provides realizing
terms t[c] built up out of the EILω-material and c . The complexity analysis for
the extended theory is then completed by determining actual terms s which
satisfy the functional interpretation ∃x∀yAD(x, y) of A and the complexity of
the verifying proof ` ∀yAD(s, y) .

15 Acronym for “(weakly extensional) extended intuitionistic logic in all finite types”.
16 These allow the definition of λ-terms, see Definition 2.12 .
17 Most applications of functional interpretation have been based on such an exten-
sional variant. For sentences containing only variables of type 0 or 1 the use of full
extensionality is admissible since the elimination-of-extensionality procedure from
[39] is applicable.
18 AC is the Axiom of Choice, IP∀ is Independence of Premises for universal premises.
MK is a variant of Markov’s principle, see Section 3.1 . For EILω

+ see Definition 3.10 .
19 Here ∃x∀yAD(x, y) is the functional interpretation of A, see also Section 3 .
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There are two possible ways of handling λ-abstraction in a system like EILω .
We could treat λ-abstraction either as a primitive concept or as defined by
combinators. The treatment via combinators provides a finer complexity anal-
ysis and reflects more faithfully the actual functional interpretation of a Hilbert-
style axiomatization 20 of intuitionistic logic which we have – following Gödel’s
original formulation – used for EILω . The combinators and projectors we use
are more flexible than the usual Σ and Π first introduced by Schönfinkel
in [46]. Our Σ provide in particular extensions of Schönfinkel’s Σ to tuples
(see Definition 2.4) and our Π are extensions of Schönfinkel’s Π to tuples.
This is natural since we use tuples of variables throughout our formulation
of functional interpretation. The design of our Σ and Π is made according
to the actual constructs required by functional interpretation while keeping
the benefits of the usual Σ and Π . The latter allow one to avoid any notion
of bound variables in terms and are the most convenient in connection with
logical relations 21 . Our Σ and Π are in fact definable in terms of usual Σ
and Π, though at the expense of a rather artificial increase in the length of
the verifying proof. The upper bound on the size of the extracted terms would
nevertheless still hold with such a definition, see Remark 3.30 .

2.1 The type structure FT

The set FT of all finite types is inductively generated by the rules

(i) o ∈ FT

(ii) If σ, τ ∈ FT then (στ) ∈ FT.

Intuitively type o represents the set of natural numbers and (στ) represents
the set of functions which map objects of type σ to objects of type τ. There
are many alternative notations in the literature for (στ), like for example
τ(σ), (σ)τ, (σ → τ). We make the convention that concatenation of types is
right associative and consequently omit unnecessary parenthesis, writing δστ
instead of (δ(στ)) . It can immediately be verified by induction over FT that
each σ ∈ FT has the form σ1 . . . σno with n ≥ 0 . We abbreviate by :

20 In a natural deduction context, it might be more natural to treat λ-abstraction as
a primitive concept. Natural deduction formulations of functional interpretation are
provided by Diller-Nahm [10] (see also [45,53]) and Joergensen [28]. In the former
all definitions by cases for the realizing terms of contractions are postponed to the
end by collecting all candidates and making a single final global choice. In the latter
choices are local and one has to apply a so-called “contraction lemma” for each of
them, i.e., whenever more than one copy of an assumption gets cancelled. In any
case, the analysis carried out in the present paper can immediately be adapted to
a system with λ-abstraction included as primitive construct, see Remark 3.30 .
21 One example of a logical relation is Howard’s majorizability which plays a key
role in most applications of functional interpretation [3,31,35].
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• σ the ordered tuple of types σ1, . . . , σn

• στ the type σ1 . . . σnτ .

Definition 2.1 For a type we define :

• the arity by ar(o) :≡ 0 and ar(στ) :≡ ar(τ) + 1 ;

• the degree by dg(o) :≡ 0 and dg(στ) :≡max{dg(σ) + 1 , dg(τ)}
and for a tuple of types we define

• the arity by ar(σ) :≡ max{ar(σ1) , . . . , ar(σn)} ;

• the degree by dg(σ) :≡ max{dg(σ1) , . . . , dg(σn)} .

Then dg(στ) = max{dg(σ) + 1 , dg(τ)} and ar(στ) = ar(τ) + |σ| .

2.2 Intuitionistic Equality Logic over FT (IELω)

Our formalization of IELω below is a slight modification of the axiomatic cal-
culus for multisorted intuitionistic predicate logic used by Gödel in his original
paper on functional interpretation [22]. The only differences are :

(1) The syllogism and expansion are formulated as axioms instead of rules.
Gödel’s formulation with rules was designed to ease the formulation of
the soundness proof for the functional interpretation. Nevertheless for the
quantitative analysis it is more convenient to use the axiom versions of

(a) the expansion rule
A → B

C ∨ A → C ∨B
, since the formula C may

introduce realizing terms of arbitrary complexities; also the formula
complexity of the conclusion is higher than that of the premise ;

(b) the syllogism rule
A → B , B → C

A → C
, which would force us to consider

the sum of quantitative measures of both premises when computing
upper bounds for quantitative measures of the conclusion. We can

immediately notice that the mere Modus Ponens
A , A → B

B
avoids

such a situation, since the formula complexity of the premise A → B
upper bounds that of the conclusion B .

(2) The quantifier rules and axioms are formulated with tuples of variables
since we use tuples throughout the functional interpretation .

The language of IELω[C] contains, aside from the constants C, the following :

• denumerably many variables which we denote by letters x, y, z, u, v, w, pos-
sibly capitalized or adorned with subscripts; x :≡x1, . . . , xn denotes a tuple
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of variables; in the same context we use x as metavariable for an individ-
ual element of x; each of the variables is associated a unique sort (mostly
called type) which is an element of FT, such that there exist denumerably
many variables for each sort; we possibly indicate the type of a variable by
carrying it as a superscript, like xσ and then we denote xσ :≡ xσ1

1 , . . . , xσn
n ;

• a binary predicate constant =o for equality between objects of type o ;

• logical constants ⊥, ∧, ∨, →, ∀x and ∃x (for each variable x) .

Each of the constants in C is sorted as well, with the type possibly indicated
as superscript. We often do not indicate C and write IELω when the set of con-
stants is either clear from the context or not relevant. We use l as metavariable
for both variables and constants.

The terms of IELω are sorted, with their types possibly indicated in super-
scripts and are inductively generated from variables and constants according
to the rule that if tστ and sσ are terms then (ts)τ is a term. Terms are de-
noted by letters s, t, r, possibly adorned with subscripts; tuples of terms are
denoted like t :≡ t1, . . . , tn ; in the same context we use t as metavariable for
an individual element of t . We denote by V(t) the set of variables occurring
in t and write t[x] to indicate that {x} ⊆ V(t) . If V(t) = ∅ we say that t is a
closed term. We make the convention that concatenation of terms is left asso-
ciative and consequently omit unnecessary parenthesis, writing rst instead of
((rs)t) . When writing down an expression it is always assumed that the terms
are well-formed, i.e. the types are fitting. For tσ we denote by typ(t) :≡σ and by

• ar(t) :≡ ar(σ) the arity of t ;

• dg(t) :≡ dg(σ) the degree of t .

For a term we define

• the depth by d(l) :≡ 0 and d(ts) :≡ max{d(t) , d(s)}+ 1 ;

• the size by S(l) :≡ 1 and S(ts) :≡ S(t) + S(s) .

The subterm relation is defined as the reflexive transitive closure of
{(s, ts), (t, ts)} . We denote by s ≤ t the fact that s is a subterm of t . It
is obvious that ≤ is a partial order relation. Let mdg(t) :≡ max{dg(s) | s ≤ t}
and mar(t) :≡ max{ar(s) | s ≤ t} . We notice that :

• dg(t) ≥ dg(ts) , hence mdg(r) = maxl≤r dg(l)

• ar(t) ≥ ar(ts) , hence mar(r) = maxl≤r ar(l)

We will abbreviate by t(s) :≡ t s1 . . . sm and t(s) :≡ t1(s), . . . , tn(s) .

The formulas of IELω are inductively generated from prime formulas so =o to

and ⊥ according to the rule that if A and B are formulas then (A ∧B),
(A ∨B), (A → B), (∀xA) and (∃xA) are formulas. Equivalence and negation
of formulas are defined as A ↔ B :≡ ((A → B) ∧ (B → A)) and respectively
¬A :≡ (A → ⊥). The expressions ∀x, ∃x abbreviate ∀x1 . . . ∀xn and ∃x1 . . . ∃xn
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respectively. Equality between the terms s and t of type σ = σ1 . . . σno (with
1 ≤ n) is just an abbreviation for ∀xσ1

1 . . . xσn
n (s x1 . . . xn =o t x1 . . . xn), where

the variables x1, . . . , xn do not occur in s or t . Non–equality (or difference)
between terms s and t is defined by s 6= t :≡¬(s = t) . We abbreviate by
s = t :≡ (s1 = t1), . . . , (sn = tn) – hence a tuple of formulas.

We denote formulas by letters A, B, C, possibly adorned with subscripts or su-
perscripts. In order to avoid unnecessary parenthesis we make the convention
that ∀x, ∃x, ¬, ∧, ∨,→,↔ is the decreasing order of precedence and that→ is
right associative. We call a formula quantifier-free if it does not contain ∀,∃,∨ .
The subscript 0 always indicates a quantifier-free formula, such as A0, B0, C0 .
We denote by Vf(A), Vb(A), V(A) the set of free, bound, respectively all vari-
ables occurring in A and write A(x) to indicate that {x} ⊆ Vf(A) . We de-
note by C(A) the set of constants occurring in A and by vdg(A) :≡ dg(V(A)),
var(A) :≡ ar(V(A)), cdg(A) :≡ dg(C(A)) and car(A) :≡ ar(C(A)) . We denote
by dS(·) the S-depth of a formula which is defined for S ⊆ {∀,∃,∧,∨,→} by

• dS(s =o t) :≡ dS(⊥) :≡ k0 (see Section 1.2 for the definition of k0)

• For Q ∈ {∀,∃}, dS(Qx A) :≡

 dS(A) + 1 , if Q ∈ S
dS(A) , if Q 6∈ S

• For 2 ∈ {∧,∨,→}, dS(A2B) :≡

 max{dS(A) , dS(B)}+ 1 , if 2 ∈ S
max{dS(A) , dS(B)} , if 2 6∈ S

For a formula A we define the following :

• the logical constants depth by ld(A) :≡ d∀,∃,∧,∨,→(A) ;

• the whole depth by wd(A) :≡ d′∀,∃,∧,∨,→(A) ; here d′ differs from d just in

d′S(s =o t) :≡ k0 + max{d(s) , d(t)} ;

• the implication depth id(A) :≡ d
→(A) and the forall depth fd(A) :≡ d

∀(A) ;
here d differs from d just in d

S(A0) :≡ k0 ;

• the forall/implication depth by fid(A) :≡ max{fd(A) , id(A)} ;

• the quantifier size, denoted qs(A), is the number of quantifiers (including
∨) occurring in A, when A is a closed formula and the quantifier size of its
universal closure in the general case ;

• the logical constants size, denoted ls(A), is obtained by adding to qs(A) the
number of ∧,→,⊥, = occurring in A ;

• the whole size, denoted ws(A), is obtained by adding to ls(A) the number
of all occurrences of variables and constants in A .

13



We present below the axioms and rules of IELω :

Logical axioms

CT∨ :

CT∧ :

A ∨ A → A

A → A ∧ A
(contraction)

WK∨ :

WK∧ :

A → A ∨B

A ∧B → A
(weakening)

PM∨ :

PM∧ :

A ∨B → B ∨ A

A ∧B → B ∧ A
(permutation)

SYL : (A → B) ∧ (B → C) → (A → C) (syllogism)

EPN : (A → B) → (C ∨ A → C ∨B) (expansion)

EFQ : ⊥ → A (ex falso quodlibet)

QA∀ :

QA∃ :

∀zA(z) → A(s)

A(s) → ∃zA(z)
(quantifier axioms)

We denote by QA :≡ QA∀+ QA∃ . At QA, s is free for z in A
and the substitution is simultaneous.

For instances B(s) of QA which involve the constants s , we define the

• term depth of B(s) by td(B) :≡ d(s) ;

• term size of B(s) by ts(B) :≡ Σs∈sS(s) .

Logical rules

MP : A , A → B ` B (modus ponens)

EXP : A ∧B → C ` A → (B → C) (exportation)

IMP : A → (B → C) ` A ∧B → C (importation)

QR∀ :

QR∃ :

B → A ` B → ∀zA

A → B ` ∃zA → B
(quantifier rules)

We denote by QR :≡ QR∀+ QR∃ . At QR, z is not free in B .
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Equality axioms

REF : x =o x (reflexivity)

SYM : x =o y → y =o x (symmetry)

TRZ : x =o y ∧ y =o z → x =o z (transitivity)

Recall that `n , with n ∈ IN, denotes a deduction of length at most n .

Remark 2.2 There exists k ∈ IN constant such that for all σ :
Higher–order equality

REF[σ] : IELω `k x =σ x (reflexivity)

SYM[σ] : IELω `k x =σ y → y =σ x (symmetry)

TRZ[σ] : IELω `k x =σ y ∧ y =σ z → x =σ z (transitivity)

Given a set of rules (axioms are comprised as rules with empty premise) Rl

whose formulas contain the constants C, we denote by IELω[Rl] the system
IELω[C] extended with the rules in Rl. We sometimes abbreviate IELω[Rl] with a
different denotation (like EILω below) and then (IELω[Rl])[Rl′] :≡ IELω[Rl ∪ Rl′].

2.3 EILω – Extended Intuitionistic Equality Logic over FT

Multisorted weakly extensional extended intuitionistic equality logic over FT,
which we denote by EILω, is obtained by extending IELω with exactly the ele-
ments which are strictly necessary to carry out functional interpretation even
for IELω. The language of EILω contains the following constants :

• the zero constant 0 ≡ Oo of type o and for each type ρ ≡ σo the higher–order
zero constant Oρ which is defined by the axiom

AxO : Oρ(z
σ) = 0

(hence for any type there exists at least one constant)

• the successor constant S of type oo which is defined by the axioms

AxS : Sx 6= 0 and Sx = S y → x = y

• the boolean constants ν, I, E all of type ooo which are defined by the axioms

Axν : (x = 0 ∧ y = 0) ↔ ν x y = 0

AxI : (x = 0 → y = 0) ↔ Ix y = 0

AxE : x = y ↔ Ex y = 0

• for each n, i ∈ IN with i ≤ n and types σ ≡ σ1, . . . , σn, the decision constant
Dσ

i of type oσ σσi which is defined by the axioms (below |z| = |z′|)
AxD : x = 0 → Dσ

i (x, z, z′) = zi and x 6= 0 → Dσ
i (x, z, z′) = z′i
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• for each choice of the following

- n,m ∈ IN and n :≡n0, n1, . . . , nm ∈ IN and n :≡n1, . . . , nm ∈ IN such that
n0, n1, . . . , nm ≤ n and n1, . . . , nm ≤ n

- permutations p :≡ p0, p1, . . . , pm and p :≡ p1, . . . , pm of {1, . . . , n}
- types τ, σ ≡ σ1, . . . , σn and δ ≡ δ1, . . . , δm

the combinator constant Σ
σ,δ,τ,m
p,p,n,n which is defined by the following axiom

AxΣ : Σ
σ,δ,τ,m
p,p,n,n (x, y, z) = x(z0, y1(z

1), z1, . . . , ym(zm), zm)

The type of Σ
σ,δ,τ,m
p,p,n,n is (σ0 δ1 σ1 . . . δm σm τ) (σ1 δ1) . . . (σm δm) σ τ , where we

abbreviated by {σj :≡σ(pj)1 , . . . , σ(pj)nj
}m

j=0 and {σj :≡σ(pj)1 , . . . , σ(pj)
nj
}m

j=1 .

• for each n ∈ IN, permutation p of {1, . . . , n} and types τ, σ ≡ σ1, . . . , σn , the
permutation constant P σ,τ

n,p of type (στ)σpτ which is defined by the axiom

AxP : P σ,τ
n,p (x, zp) = x(z)

Recall from Section 1.2 that σp and zp represent the p–permuted σ and z .

• for each n, i ∈ IN, i ≤ n and types σ ≡ σ1, . . . , σn , the projector constant
Π

σ
i of type σσi which is defined by the axiom

AxΠ : Π
σ
i (z) = zi

For simplicity we abbreviate by 1 :≡ S0 . The system EILω is finally obtained
by adding the quantifier-free tertium non datur axiom

TND0 : x = 0 ∨ ¬(x = 0)

and the quantifier-free extensionality rule

ER0 :
A0 → s1 = t1 , . . . , A0 → sn = tn

A0 → B0(s) → B0(t)
.

The formal proofs in the sequel will be in EILω if not otherwise indicated.

Remark 2.3 The constants P and Π are definable in terms of Σ and also
Oσo = Π

o,σ
1 0 . We nevertheless chose to define them separately since they play

a particular rôle.

Definition 2.4 As particular cases of Σ we distinguish the tuple-Schönfinkel

combinators Σ
σ,(δ),τ,1
(1n,1n),(1n),(n,0),(n) with defining axioms of shape

Σ
σ,(δ),τ,1
(1n,1n),(1n),(n,0),(n)(x, y, z) = x(z, y(z)) .

These are generalizations of the usual 22 Schönfinkel combinators Σ to tuples
and will be used in the λ-abstraction Definition 2.12 . The usual Schönfinkel

combinators Σ are in fact particular cases of our Σ of shape Σ
σ,(δ),τ,1
(11,11),(11),(1,0),(1)

with defining axioms Σ
σ,(δ),τ,1
(11,11),(11),(1,0),(1)(x, y, z) = x(z, y(z)) . Also the usual

Schönfinkel projectors Π are particular cases of our Π of shape Π
(σ1,σ2)
1 with

defining axioms Π
(σ1,σ2)
1 (z1, z2) = z1 .

22 For the original definition of Schönfinkel’s Σ and Π see [46]. See also the last
paragraph before Section 2.1 .
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Remark 2.5 The quantifier-free tertium-non-datur TND0 becomes derivable
in the presence of induction for propositional formulas. Moreover, in the pres-
ence of a modest amount of arithmetic, the constantsD, ν, I and E are definable
and their axioms derivable. Therefore these axioms are in fact redundant in
any concrete application of functional interpretations, e.g., to HAω and frag-
ments thereof. Examples of the latter are systems of bounded arithmetic like
IPVω of [8] and the poly-time arithmetic LHA of [47] 23 .

Remark 2.6 The extensionality axiom

EA[σ] : xσ = yσ → fσo x =o fσo y ( let EA :≡ ∪σ EA[σ])

is derivable in EILω for σ ≡ o, . . . , o, particularly using the rule ER0. Therefore
EILω contains all equality axioms for type o. This no longer holds in general
when σ contains higher types (follows from Section 3.5.10 of [55] and [27]).
On the other hand, ER0 is derivable from EA in EILω r ER0, hence the rule is
strictly weaker than the axiom, but only at higher types.

Remark 2.7 These hold in EILω : ` ⊥ ↔ 1 = 0 and ` x 6= 0 ↔ Ix1 = 0 .

Remark 2.8 There exists k ∈ IN constant such that for all s, t, r, r1, r2, B0,
the following hold :

s = t `k B0(s) → B0(t) (1)

s = t `k r[s] = r[t]

r1 = r2, s = t `k r1(s) = r2(t). (2)

Proposition 2.9 The following equalities hold:

dg(Σ
σ,δ,τ,m
p,p,n,n ) = max{dg(σ, δ) + 2 , dg(τ) + 1} dg(Π

σ
i ) = dg(σ) + 1

dg(P σ,τ
n,p ) = max{dg(σ) + 2 , dg(τ) + 1} dg(Dσ

i ) = dg(σ) + 1

ar(Σ
σ,δ,τ,m
p,p,n,n ) = ar(τ) + |σ|+ |δ|+ 1 ar(Π

σ
i ) = ar(σi) + |σ|

ar(Dσ
i ) = ar(σi) + 2|σ|+ 1 ar(P σ,τ

n,p ) = ar(τ) + |σ|+ 1

In the proposition below we show how and at which cost in proof depth the
quantifier-free formulas can be viewed as prime formulas.

Proposition 2.10 (Association of terms to quantifier-free formulas)
There exists k ∈ IN constant and an association of terms to quantifier-free for-
mulas A0 7→ tA0 such that for all A0 ,

`k·ld(A0) A0(a) ↔ tA0 [a] = 0 . (3)

Proof: The proof is by induction on the structure of A0, making use of the
boolean constants axioms. For prime formulas just take tt1=t2 :≡ E t1t2 and

23 Even though LHA was designed in a modified realizability context, the outline of
similar systems corresponding to functional interpretations is quite straightforward.
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t⊥ :≡ 1, then recursively define tB0∧C0 :≡ ν tB0tC0 and tB0→C0 :≡ I tB0tC0 . 2

Corollary 2.11 (TND and Stability for quantifier-free formulas)
There exists k ∈ IN constant such that for all quantifier–free A0 ,

`k·ld(A0) A0(a) ∨ ¬A0(a) (4)

`k·ld(A0) ¬¬A0(a) → A0(a) . (5)

Proof: The principle STAB0 : ¬¬x = 0 → x = 0 follows immediately
with constant-depth proof from TND0 . Both (4) and (5) follow immediately
from TND0 and STAB0 respectively by (3) and (1) . 2

Definition 2.12 (λ-abstraction) To every term tτ one associates a term
(λxσ. t)στ , with V(λx. t) = V(t)− {x} , recursively defined as follows :

λx. xi :≡ Π
σ
i

λx. t :≡ Π
(τ,σ)
1 t , if {x} ∩ V(t) = ∅

λx. (tδτsδ) :≡ Σ
σ,(δ),τ,1
(1n,1n),(1n),(n,0),(n)(λx. t)(λx. s) , if {x} ∩ V(ts) 6= ∅ (6)

Proposition 2.13 (β-reduction) There exists k ∈ IN constant such that
for all t and r the following holds : `k·d(t) ( λxσ. t[x] ) rσ =τ t[r] .

Proof: By straightforward induction on d(t) , using (2) when the induction
step falls under (6) . 2

Proposition 2.14 The following inequalities hold :

d(λx. t) ≤ 2 · d(t) mdg(λx. t) ≤ max{dg(x) + 1 , mdg(t)}+ 1

S(λx. t) ≤ 3 · S(t) mar(λx. t) ≤ max{mar(t) + 1 , ar(x)}+ |x|

Proof: By structural induction on t , following Definition 2.12 . 2

Remark 2.15 In order to increase readability we will omit the adornments
of Σ, P and Π from now on. We consider that this side information can be
figured out from the context in a straightforward way. On the other hand its
display would only complicate the exposition.

3 A quantitative analysis of functional interpretation

Gödel’s functional (Dialectica) interpretation/translation was first introduced
in [22] and is also presented in [39](4) and [55](3.5.1). It is a translation
of proofs which includes a translation of formulas. Hence a given formula
A(a), with a all free variables of A, is interpreted to the associated formula
AD ≡ ∃x ∀y AD(x; y; a) with AD quantifier-free and x, y tuples of variables of
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finite type such that x, y, a are all free variables of AD. We often omit to dis-
play the tuples of free variables wherever this creates no ambiguity. We will
denote by B(a′)D ≡ ∃u ∀v BD(u; v; a′) and C(a′′)D ≡ ∃g ∀h CD(g; h; a′′). The
Dialectica interpretation of formulas is then given by the following list of rules:

Definition 3.1 (Gödel’s functional interpretation of formulas)

AD :≡ (AD :≡A) for prime formulas A

(A ∧B)D :≡ ∃x, u∀y, v [(A ∧B)D :≡AD(x; y) ∧BD(u; v)]

(∃zA(a, z))D :≡ ∃z, x ∀y [(∃zA(a, z))D :≡AD(x; y; a, z)]

(∀zA(a, z))D :≡ ∃X ∀z, y (∀zA(a, z))D (7)

(∀zA(a, z))D :≡ AD(X(z); y; a, z)

(A → B)D :≡ ∃Y , U ∀x, v (A → B)D (8)

(A → B)D :≡ AD(x; Y (x, v)) → BD(U(x); v)

(A ∨B)D :≡ ∃zo, x, u∀y, v (A ∨B)D

(A ∨B)D :≡ (z = 0 → AD(x; y)) ∧ (Iz1 = 0 → BD(u; v))

Remark 3.2 For quantifier–free formulas A, AD = AD = A. The types and
lengths of x and y depend only on the logical structure of A . Notice that
Vf(A

D) = Vf(A) and Vb(A
D) = {x, y} . In the subsequent presentation, unless

otherwise specified, x and y will refer to the x and y from AD . Similarly u, g
and v, h are bound by default to BD and CD respectively.

Proposition 3.3 It can be easily proved by induction on the structure of the
formula A (recall from Section 2.3 that qs also counts the free variables) that

qs(AD) = |x, y, a| = qs(A) (9)

Lemma 3.4 The following hold (for k0 see Section 1.2 and Footnote 14) :

dg(Vb(C
D)) ≤ vdg(C) + id(C)− k0 + 1 (10)

ar(Vb(C
D)) ≤ var(C) + qs(C) · (id(C)− k0 + 1) (11)

Proof: The proof is by recursion on the structure of the formula C, following
the Definition 3.1 . We simply notice that

• dg(Vb(·D)) may increase only at (8), with the quantity 1 ; (7) forces us to
start with 1 + vdg(C) , since dg(X) = max{dg(x) , dg(z) + 1} ;

• ar(Vb(·D)) may increase with the quantity 1 at (7) and with at most
|x, v| ≤ qs(A → B) ≤ qs(C) at (8) , hence

ar(Vb(C
D)) ≤ var(C) + fd(C) + qs(C) · (id(C)− k0) .
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Definition 3.5 Let Ax be an arbitrary but fixed 24 set of axioms. For a set of
closed terms Tm and a set Fm of formulas in the language of EILω[Ax] we define

• the prerealization relation by PR[Tm, Fm] :≡ {(t, A(a)) ⊆ Tm≤ω × Fm |
|t| = |x|, {a} = Vf(A) and typ(t(a)) = typ(x)} . For (t, A(a)) ∈ PR[Tm, Fm]

we abbreviate by {] t , A [} :≡ ∀y AD(t(a); y; a) .

• the realization relation by

RR[Tm, Fm] :≡ { (t, A) ∈ PR[Tm, Fm] | EILω[Ax] ` {]t, A[} }

• the set of realizing tuple selections RTS [Fm, Tm] as the set of those inverses
to subsets of RR[Tm, Fm] which are functions from Fm to Tm≤ω .

We omit to display Tm when it denotes the set of all the closed terms of
EILω[Ax] or Fm when it denotes the set of all formulas in the language of
EILω[Ax]. The set Ax will be determined by the context. Whenever (t, A) ∈ RR
we denote this fact by t Dr A and say that

• t is a realizing tuple for AD ;

• t is a realizing term for AD ;

• AD is realized by t or t .

We call

• realizer any realizing tuple or term ;

• realizer-free a formula A for which |x| = 0, where x is from AD .

Definition 3.6 We say that a proof P is realizer-free-normal if all realizer-
free formulas of P are located at the leaf level.

Remark 3.7 Let P be a realizer-free-normal proof. There exists no instance
of ER0 in P since the conclusion is quantifier-free and consequently realizer-
free. Realizer-free formulas of P may label only leaves of P which are left
premises of MP instances. Indeed, if the conclusion in any of the rules QR, EXP,
IMP is non-realizer-free then also the premise must be non-realizer-free. For
the MP rule, if the conclusion is non-realizer-free then also the A → B premise
must be non-realizer-free.

Definition 3.8 To any proof P in some extension of EILω we associate a
realizer-free-normal proof Ptr which is obtained from P by removing its maxi-
mal subtrees rooted at vertices labeled with realizer-free formulas, yet keeping
these roots (which become assumptions in Ptr). There is a fairly simple algo-
rithm which transforms P to Ptr by recursion on proof structure.

Remark 3.9 The proofs we consider in the sequel are realizer-free-normal if
not otherwise specified. See also Remark 3.32 .

24 See also Definition 3.10 and especially Remark 3.11 .
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3.1 Axiom extensions of EILω. The system EILω
++AC+IP∀+MK

Instances of the following three schemata are formulas whose correspondents
under functional interpretation can be realized by very simple terms, basi-
cally projectors Π. This makes them the first to be considered for axiom
extensions of EILω since their inclusion in proofs in the domain of functional
interpretation causes no increase in complexity. Moreover the verifying proof
is in EILω and has a constant bound on its depth. The first two are logical
axioms, i.e., they are valid in classical logic. The third axiom is non–logical.
The schemata are :

(1) A variant of Markov’s principle (below A0 is quantifier–free)

MK : ¬¬∃x A0(x) → ∃x¬¬A0(x) .

The usual 25 formulation of Markov’s principle

MK′ : ¬¬∃xA0(x) → ∃xA0(x)

can be deduced from MK with a proof which makes use of (5) and therefore
has depth upper bounded by k · ld(A0) for some k ∈ IN constant; on the
other hand the proof of MK from MK′ has constant depth .

(2) Independence of Premises for universal premises [below y 6∈ Vf(∀xA0(x))]

IP∀ : [∀x A0(x) → ∃y B(y) ] → ∃y [∀x A0(x) → B(y) ] .

(3) The Axiom of Choice

AC : ∀x ∃y A(x, y) → ∃Y ∀x A(x, Y (x)) .

Another simple axiom extension of EILω is with realizer-free formulas since the
quantitative analysis does not get affected in any way. There is a particular
kind of such axiom extension which we consider in the sequel. Strictly speak-
ing, the terms t1, t2 which appear in prime formulas t1 = t2 of contractions
A → A ∧ A and terms s involved in quantifier axioms A(s) ≡ ∀zB(z) → B(s)
or A(s) ≡ B(s) → ∃zB(z) are part of the realizing term (see Section 3.3).
However we do not count them in the quantitative analysis, but rather in-
troduce new constants t̃1, t̃2, s̃ associated to terms t1, t2, s together with their
defining axioms, such that any of the terms t1, t2, s contributes as much as a
unit (plus the number of its free variables) of size to the realizing term. This
is justified by the fact that we are only interested in the complexity of func-
tional interpretation itself. The terms t1, t2, s are not created by functional
interpretation – they are merely given as basic input data.

Definition 3.10 Let Ax be an arbitrary but fixed set of axioms and Thrf an
arbitrary but fixed set of realizer-free theorems of EILω[Ax]. We define below
two extensions EILω

+ and EILω
v of EILω[Ax] . The system EILω

+ is obtained by

25 We prefer the variant MK because the verifying proof of its functional interpretation
is much simpler than for MK′ . In the latter case the depth of the verifying proof is
k · ld(A0) for some k ∈ IN constant.

21



simply adding Thrf to the set of axioms of EILω[Ax] . Let ·̃ be a map which
uniquely associates the ·̃ constants t̃ to terms t[a] of EILω[Ax] such that

dg(t̃) = max{dg(a) + 1 , dg(t)} and ar(t̃) = |a|+ ar(t) (12)

together with the defining axiom

Axt̃ : t[a] = t̃(a) .

Let Tm be an arbitrary but fixed set of EILω[Ax] terms. The system EILω
v

is obtained by extending EILω
+ with the defining axioms Axt̃ for the newly

introduced constants t̃ associated to terms t ∈ Tm by (12) .

Remark 3.11 All arbitrary but fixed items in the above definition will be
implicitly given by their context if not explicitly described.

3.2 The treatment of EILω rules

Remark 3.12 Remember that the formal proofs below are by default in
EILω. See Section 1.2 for the definitions of Vt, Lv and ∂. The definitions of
qs, ls and the other quantitative measures of terms or formulas are given in
Section 2.3. Recall that qs also counts the free variables of its argument. For
the meaning of the relations PR, RR and RTS below see Definition 3.5 .

Lemma 3.13 The following hold for any proof P :

qs(Vt(P)) = qs(Lv(P)) and ls(Vt(P)) = ls(Lv(P)) (13)

V(Vt(P)) = V(Lv(P)) and C(Vt(P)) = C(Lv(P)) (14)

Proof: The following (in)equalities are immediate :

qs(A → ∀zB(z)) = qs(A → B(z)) qs(∃zA(z) → B) = qs(A(z) → B)

qs(A ∧B → C) = qs(A → B → C) qs(B) ≤ qs(A → B)

It follows by structural induction on P that qs(A) ≤ qs(Lv(P)) for any formula
A ∈ Vt(P) and then qs(Vt(P)) = qs(Lv(P)) is immediate. The argument for
ls is identical and (14) has a similar proof, with ⊆ instead of ≤ . 2

Lemma 3.14 (MP) Let AMP be the algorithm which produces (t4, B(a′)) ∈ PR
from the input (t1, A(a)), (t2, t3, (A → B)(ã)) ∈ PR, where {a1} = {a} − {a′},
{ã} = {a} ∪ {a′} and t4 is obtained from t′4 :≡Σ(t3, t1, a1) = λa′. t3(ã, t1(a))
by replacing the variables a1 with constants O of corresponding types. There
exists k ∈ IN constant such that the following hold :

d(t4) ≤ qs(A → B) + d(t1, t3) (15)

S(t4) ≤ 1 + qs(A → B) · S(t1, t3) (16)

dg(t4) ≤ dg(t3) and ar(t4) ≤ ar(t3)

mdg(t4) ≤ max{mdg(t1, t3) , dg(t3) + 1}

22



mar(t4) ≤ max{mar(t1, t3) , ar(t3) + 1 , ar(a1)}

{] t1 , A [} , {] t2, t3 , A → B [} `k {] t4 , B [}

Proof: There exists k ∈ IN constant such that for all (t2, t3, A → B) ∈ PR
and (t1, A) ∈ PR the following deductions hold :

y :≡ t2(ã, t1(a), v)
∀y AD(t1(a); y)

AD(t1(a); t2(ã, t1(a), v))
k

x :≡ t1(a)
∀x, v (AD(x; t2(ã, x, v)) → BD(t3(ã, x); v))

AD(t1(a); t2(ã, t1(a), v)) → BD(t3(ã, t1(a)); v)
k

By using MP once we thus obtain that there exists k ∈ IN constant such that for
all (t1, A) and (t2, t3, A → B) members of PR the following deduction holds :

∀y AD(t1(a); y) ∀x, v (AD(x; t2(ã, x, v)) → BD(t3(ã, x); v))

BD(t3(ã, t1(a)); v)
k

By AxΣ there exists k ∈ IN constant such that for all (t1, A) and (t2, t3, A → B)
members of PR, `k t3(ã, t1(a)) = t′4(a

′) holds. Since BD is quantifier–free, we
obtain from (1) that there exists k ∈ IN constant such that for all (t1, A) and
(t2, t3, A → B) ∈ PR the deduction BD(t3(ã, t1(a)); v) `k BD(t

′
4(a

′); v) holds.
We conclude that there exists k ∈ IN constant such that for all (t1, A) and
(t2, t3, A → B) members of PR, the following deduction holds :

∀y AD(t1(a); y) ∀x, v (AD(x; t2(ã, x, v)) → BD(t3(ã, x); v))

∀v BD(t
′
4(a

′); v)
k

Since |t1, a1|+ 1 ≤ qs(A) + 1 ≤ qs(A → B) (for the second inequality here we
also used that B is non-realizer-free), the inequalities (15) and (16) follow from

d(t4) ≤ |t1, a1|+ 1 + max{d(t1) , d(t3)}
S(t4) ≤ 1 + (|t1, a1|+ 1) ·max{S(t1) , S(t3)} .

The remaining inequalities follow immediately from

dg(t4) ≤ dg(t3) dg(a1) ≤ dg(Σ) = dg(t3) + 1

ar(t4) ≤ ar(t3) ar(Σ) = ar(t3) + 1

which are proved using t3(ã, t1(a)) = t′4(a
′) = Σ(t3, t1, a1, a

′) . 2

Lemma 3.15 (QR∀, QR∃) Let AQR∀ be the algorithm that produces the output
(t3, t4, A(a) → ∀z B(a′, z)) ∈ PR from an input (t1, t2, A(a) → B(a′, z)) ∈ PR ,
where t3 :≡P t1 = λã, x, z. t1(ã, z, x) and t4 :≡P t2 = λã, x, z. t2(ã, z, x) with
{ã} = {a} ∪ {a′} . There exists k ∈ IN constant such that the following hold :

d(t3, t4) ≤ d(t1, t2) + 1 and dg(t3, t4) = dg(t1, t2)

S(t3, t4) ≤ S(t1, t2) + 1 and ar(t3, t4) = ar(t1, t2)

mdg(t3, t4) ≤ max{mdg(t1, t2) , dg(t1, t2) + 1}

mar(t3, t4) ≤ max{mdg(t1, t2) , ar(t1, t2) + 1}

{] t1, t2 , A → B(z) [} `k {] t3, t4 , A → ∀z B(z) [}
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A corresponding statement holds for QR∃ as well, with the same bounds.

Proof: By definition,

(A → B(a′, z))D ≡ ∃Y , U ∀x, v [AD(x; Y (x, v)) → BD(U(x); v; a′, z)]

(A → ∀zB(a′, z))D ≡ ∃Y , U ∀x, z, v [AD(x; Y (x, z, v)) → BD(U(x, z); v; a′, z)] .

By AxP , there exists k ∈ IN constant such that for all (t1, t2, A → B(z)) ∈ PR,

`k t3(ã, x, z, v) = t1(ã, z, x, v) and `k t4(ã, x, z) = t2(ã, z, x) .

Since AD(x; y) → BD(u; v; a′, z) is quantifier-free, by using (1) we obtain that
there exists k ∈ IN constant such that for all (t1, t2, A → B(z)) member of PR,

AD(x; t1(ã, z, x, v)) → BD(t2(ã, z, x); v; a′, z)

AD(x; t3(ã, x, z, v)) → BD(t4(ã, x, z); v; a′, z)
k .

Further, there exists k ∈ IN constant such that for all (t1, t2, A → B(z)) ∈ PR,

∀x, v (AD(x; t1(ã, z, x, v)) → BD(t2(ã, z, x); v; a′, z))

∀x, z, v (AD(x; t3(ã, x, z, v)) → BD(t4(ã, x, z); v; a′, z))
k .

Obviously,

• dg(t3) = dg(t1) and dg(t4) = dg(t2) , therefore dg(t3, t4) = dg(t1, t2)

• ar(t3) = ar(t1) and ar(t4) = ar(t2) , therefore ar(t3, t4) = ar(t1, t2)

and the inequalities in the conclusion of this Lemma follow immediately. 2

Lemma 3.16 (EXP, IMP) The following holds :

{] t1, t2, t3 , A → (B → C) [} = {] t1, t2, t3 , A ∧B → C [} .

Proof: By definition,

(A ∧B → C)D ≡ ∃Y , V , G∀x, u, h

[AD(x; Y (x, u, h)) ∧BD(u; V (x, u, h)) → CD(G(x, u); h)]

(A → B → C)D ≡ ∃Y , V , G∀x, u, h

[AD(x; Y (x, u, h)) → BD(u; V (x, u, h)) → CD(G(x, u); h)] .

Theorem 3.17 There exists k ∈ IN constant and an algorithm A which does
the following. Let P be some proof of a formula A in EILω

+ and s(·)∈RTS [Lv(P)]
a realizing tuple selection for the set of leaves of P . Let q :≡ maxA∈Lv(P) q(sA)

for q ∈ {d, S, dg, ar,mdg, mar} and q :≡ q(Lv(P)) for q ∈ {qs, var}. Let 26

∂MP :≡ ∂MP(P), ∂QR :≡ ∂QR(P) and ∂ :≡ ∂(P). Let ∂ ∈ IN be a number such
that for all A ∈ Lv(P), `∂ {]sA, A[}. When A is presented with P and s(·) at
input, it produces as output (t, A) ∈ RR and the following hold :

26 See Section 1.2 for the meaning of ∂MP(P), ∂QR(P) and ∂(P). Notice that QR∀, QR∃
and MP label edges in our EILω-proof-trees P and QR accumulates both QR∀ and QR∃
labels.
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d(t) ≤ d + ∂QR + qs · (∂MP − k0) (17)

S(t) ≤ (S + ∂QR − k0 + 1) · qs (∂MP−k)
 (18)

dg(t) ≤ dg and mdg(t) ≤ mdg + 1 (19)

ar(t) ≤ ar and mar(t) ≤ max{var , mar + 1} (20)

EILω
+ `∂+k ∂ {] t , A [} (21)

Proof: The algorithm proceeds by recursion on the structure of P , using the
algorithms in Lemmas 3.14 and 3.15 as subprocedures at the MP, respectively
QR recursion steps; (21) follows immediately. We notice that dg and ar do not
increase in the recursion, hence (19) and (20) are clear. Let e ≡ e . . . en denote
paths from some leaf to the root of P , i.e., (ei)i∈,n denote edges such that e is
incident with a leaf and en is incident with the root of P . Let (d

e
i , S

e
i )i∈,n be

a sequence of pairs of natural numbers defined by (de
 , Se

) :≡ (d , S) and let

(d
e
i , S

e
i ) :≡


(d

e
i− + qs , qs · Se

i− + 1) , if L(ei) = MP

(d
e
i− + 1 , S

e
i− + 1) , if L(ei) ∈ QR

(d
e
i− , S

e
i−) , otherwise

.

with i ∈ 1, n. Using (13) it follows that maxe de
n and maxe Se

n are upper bounds
on d, S respectively. Inequalities (17) and (18) follow now immediately 27 . 2

Remark 3.18 Let us suppose that only unary (i.e., with n = 1) ER0 is al-
lowed in the verifying proof. The n-ary ER0 can be obtained from unary ER0
with a proof of depth proportional with n. It follows that we can upper bound
the depths of proofs of lemmas used in verifying MP and QR with quantities pro-
portional with qs. In consequence, (21) becomes EILω

+ `∂+k·(qs+∂) {] t , A [} .

3.3 Bounds for realizing terms for EILω
++AC+IP∀+MK axioms

Remark 3.19 Recall that the formal proofs below are by default in EILω.

Proposition 3.20 There exists k ∈ IN constant such that for any instance
A of CT∨, WK∨, WK∧, PM∨, PM∧, SYL, EPN, EFQ, TND0, MK, IP∀, AC, there exists
a realizing tuple t for AD such that :

d(t) ≤ k (22)

S(t) ≤ k (23)

mdg(t) ≤ k + vdg(A) + id(A) (24)

mar(t) ≤ k + var(A) + qs(A) · (id(A)− k0 + 2) (25)

EILω `k {] t , A [} (26)

27 At (18) an intermediate upper bound is (S + ∂QR − k0) · qs (∂MP−k)
 +

∑(∂MP−k0)−1
i=0 qs i

 .
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Proof: We treat here SYL as an example, since it is the most complex among
the above listed axioms. All remaining axioms are treated in the Appendix of
[26]. We have

((A → B) ∧ (B → C) → (A → C))D ≡ ∃X, V , U ′, H, Y ′, G′ ∀y, u, v′, g, x′, h′


AD(X(y, u, v′, g, x′, h′); y(X(y, u, v′, g, x′, h′), V (y, u, v′, g, x′, h′)))

→
BD(u(X(y, u, v′, g, x′, h′)); V (y, u, v′, g, x′, h′))


∧

BD(U
′(y, u, v′, g, x′, h′); v′(U ′(y, u, v′, g, x′, h′), H(y, u, v′, g, x′, h′)))

→
CD(g(U ′(y, u, v′, g, x′, h′)); H(y, u, v′, g, x′, h′))


−→

AD(x
′; Y ′(y, u, v′, g)(x′, h′))

→
CD(G

′(y, u, v′, g)(x′); h′)




from

((A → B) ∧ (B → C))D ≡ ∃Y , U, V ′, G ∀x, v, u′, h

((AD(x; Y (x, v)) → BD(U(x); v)) ∧ (BD(u
′; V ′(u′, h)) → CD(G(u′); h)))

from

(A → B)D ≡ ∃Y , U ∀x, v (AD(x; Y (x, v)) → BD(U(x); v))

(B → C)D ≡ ∃V ′, G∀u′, h (BD(u
′; V ′(u′, h)) → CD(G(u′); h))

(A → C)D ≡ ∃Y ′, G′ ∀x′, h′ (AD(x
′; Y ′(x′, h′)) → CD(G

′(x′); h′))

and we can take (below {a} = Vf((A → B) ∧ (B → C) → (A → C)))

tX :≡ Π = λa, y, u, v′, g, x′, h′. x′

tH :≡ Π = λa, y, u, v′, g, x′, h′. h′

tU ′ :≡ P Σ = λa, y, u, v′, g, x′, h′. u(x′)

tV :≡ P Σ = λa, y, u, v′, g, x′. v′(u(x′))

tY ′ :≡ P (Σ Σ) = λa, y, u, v′, g, x′, h′. y(x′, v′(u(x′), h′))

tG′ :≡ P Σ = λa, y, u, v′, g, x′. g(u(x′))

The proofs of (22) and (23) are immediate, for (24) and (25) we use the results
in Proposition 2.9 plus (10), respectively (9, 11) and for (26) we use AxΣ, AxP ,
AxΠ, AxD and (1) . 2

Proposition 2.10 gives us an algorithm for associating terms tAD
to formulas

A such that ` AD ↔ tAD
= 0 . Since V(tAD

) = Vf(AD) these tAD
are generally

not closed, whereas we want to produce closed realizing terms for contractions
A → A ∧ A . We could certainly close these tAD

via the λ-abstraction algorithm
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of Definition 2.12 . However this would force us to count in our complexity anal-
ysis the full size of the quantifier axioms terms and of the terms t1, t2 which
appear in prime formulas t1 = t2 of contractions A → A ∧ A . This is exactly
what we want to avoid, remember the comment at the end of Section 1.1 ,
Definition 3.5 and its preceding comment. We therefore give an association of
closed terms to all EILω

+ formulas such that ·̃ constants are used instead of
the original building terms.

Proposition 3.21 (Association of closed terms to all EILω
+ formulas)

There exists k ∈ IN constant and an association of terms to EILω
+ formulas

A 7→ tDA such that for all A (with {a} = Vf(A))

d(tDA) ≤ k · ld(A) (27)

S(tDA) ≤ k · ls(A) (28)

mdg(tDA) ≤ k + vdg(A) + id(A) (29)

mar(tDA) ≤ k + var(A) + qs(A) · (id(A)− k0 + 2) (30)

EILω
v `k·ld(A) AD(x; y; a) ↔ tDA(x, y, a) = 0 . (31)

The ·̃ constants in (31) are only those corresponding to terms occurring in A .

Proof: Induction on the structure of A. For prime formulas just take tD⊥ :≡ 1
and (below {a1} = V(t1), {a2} = V(t2) and {a} = Vf(t1 = t2))

tDt1=t2
:≡ Σ E t̃1 t̃2 = λa. E t̃1(a1) t̃2(a2)

and otherwise define (below {ã} = {a} ∪ {a′})
tDA∧B :≡ Σ ν tDA tDB = λx, u, y, v, ã. ν tDA(x, y, a) tDB(u, v, a′)

tD∃zA(a,z) :≡ P tDA(a,z) = λz, x, y, a. tDA(a,z)(x, y, a, z)

tD∀zA(a,z) :≡ Σ tDA(a,z) = λX, z, y, a. tDA(a,z)(X(z), y, a, z)

tDA→B :≡ Σ Σ I tDA tDB = λY , U, x, v, ã. I tDA(x, Y (x, v), a) tDB(U(x), v, a′)

tDA∨B :≡ Σ Σ ν I tDA tDB I 1 =

= λz, x, u, y, v, ã. ν (I z tDA(x, y, a)) (I (I z 1) tDB(u, v, a′))

The inequalities (27) and (28) are immediate, (29) and (30) follow from (10),
respectively (9, 11) and (31) follows using the axioms AxΣ, AxI, Axν, AxE . 2

Proposition 3.22 There exists k ∈ IN constant such that for any instance
A of CT∧ there exists a realizing tuple t for AD such that

d(t) ≤ k · ld(A)

S(t) ≤ k · ls(A)

mdg(t) ≤ k + vdg(A) + id(A)

mar(t) ≤ k + var(A) + qs(A) · (id(A)− k0 + 3)

EILω
v `k·ld(A) {] t , A [} . (32)

The ·̃ constants in (32) are only those corresponding to terms occurring in A .
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Proof: We have

(A ≡ B → B ∧B)D ≡ ∃Y , X ′, X ′′ ∀x, y′, y′′

[ BD(x; Y (x, y′, y′′)) → BD(X
′(x); y′) ∧ BD(X

′′(x); y′′) ]

and we can take ( here {a} = Vf(A) = Vf(B) )

tX′ :≡ tX′′ :≡Π = λa, x. x

tY :≡ ΣD tDB = λa, x, y′, y′′.D(tDB(x, y′, a), y′′, y′)

We first prove (32). By AxD , there exists k ∈ IN constant such that for all B , `k tDB(x, y′, a) = 0 → D(tDB(x, y′, a), y′′, y′) = y′′

`k I tDB(x, y′, a) 1 = 0 → D(tDB(x, y′, a), y′′, y′) = y′

and by using ER0 , there exists k ∈ IN constant such that for all B , `k tDB(x, y′, a) = 0 → BD(x;D(tDB(x, y′, a), y′′, y′)) → BD(x; y′′)

`k I tDB(x, y′, a) 1 = 0 → BD(x;D(tDB(x, y′, a), y′′, y′)) → BD(x; y′) .

By TND0 and AxI , there exists k ∈ IN constant such that for all B ,

`k tDB(x, y′, a) = 0 ∨ I tDB(x, y′, a) 1 = 0 .

From (31) , there exists k ∈ IN constant such that for all B ,

EILω
v `k·ld(B) BD(x; y′) ↔ tDB(x, y′, a) = 0 ,

hence there exists k ∈ IN constant such that for all B , EILω
v `k·ld(B) BD(x; y′) → BD(x;D(tDB(x, y′, a), y′′, y′)) → BD(x; y′′)

EILω
v `k·ld(B) ¬BD(x; y′) → BD(x;D(tDB(x, y′, a), y′′, y′)) → BD(x; y′) .

Since there exists k ∈ IN constant such that for all A, B and C ,

A ∨ ¬A , A → B → C , ¬A → B → A ` k B → A ∧ C ,

we finally obtain that there exists k ∈ IN constant such that for all B ,

EILω
v `k·ld(B) BD(x;D(tDB(x, y′, a), y′′, y′)) → BD(x; y′) ∧BD(x; y′′) .

Since there exists k ∈ IN constant such that for all B ,

`k tY (a, x, y′, y′′) = D(tDB(x, y′, a), y′′, y′)

`k tX′(a, x) = x

`k tX′′(a, x) = x ,

we obtain from (1) that there exists k ∈ IN constant such that

EILω
v `k·ld(B) BD(x; tY (a, x, y′, y′′)) → BD(tX′(a, x); y′′) ∧BD(tX′′(a, x); y′) .

This gives (32) . The other inequalities follow directly from Proposition 3.21 .

Proposition 3.23 There exists k ∈ IN constant such that for every instance
A(s) of QA∀ or QA∃ there exists a realizing tuple t for AD such that :
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d(t) ≤ k + fd(A), when A(s) ∈ QA∀ and (33)

d(t) ≤ k, when A(s) ∈ QA∃

S(t) ≤ k + fd(A), when A(s) ∈ QA∀ and (34)

S(t) ≤ k, when A(s) ∈ QA∃

mdg(t) ≤ k + vdg(A) + id(A) (35)

mar(t) ≤ k + var(A) + qs(A) · (id(A)− k0 + 2) (36)

EILω
v `k {] t , A [} (37)

The ·̃ constants in (37) are only those corresponding to terms occurring in A .

Proof: Let A(s) ≡ ∀zB(z, a′′) → B(s, a′′) be an instance of QA∀ , s free for
z in B . Let a′ :≡V(s) and a :≡ a′, a′′ = Vf(A(s)) . Also s ≡ s1, . . . , sn and let
ai :≡V(si) for i ∈ 1, n . We have that (∀zB(z) → B(s))D is given by

∃Z, Y , X ∀x, y [ BD(x(Z(x, y)); Y (x, y); Z(x, y)) → BD(X(x); y; s) ]

and we can take (recall from Definition 3.10 that s̃i(ai) = si)

tZi
:≡ Σ ′ s̃i = [λui, a, x, y. ui(ai)]s̃i = λa, x, y. s̃i(ai)

tY :≡ Π = λa, x, y. y

tX :≡ P Σ s̃ = [λu, a, x. x(u1(a1), . . . , un(an))] s̃

= λa, x. x(s̃1(a1), . . . , s̃n(an))

From Proposition 2.9 , typ(ui) = typ(s̃i) and (12) it immediately follows that

dg(Σ ′) ≤ 2 + max{dg(a, x, y) , dg(si)}
ar(Σ ′) ≤ 1 + |a, x, y|+ ar(si)

dg(Π) ≤ 1 + dg(a, x, y)

ar(Π) ≤ |a, x, y|+ ar(y)

dg(P ) ≤ 1 + dg(Σ) ≤ 3 + max{dg(a, x) , dg(s)}
ar(P ) ≤ 1 + ar(Σ) ≤ 2 + |a, x|+ |s|+ ar(x)

and (35), (36) now follow immediately from (10), respectively (9, 11), also
using that |z| = |s| and typ(zi) = typ(si) . The inequalities (33) and (34) are
immediate from |s| ≤ fd(A) . The proof of (37) uses the fact (which follows
from (1)) that there exists k ∈ IN constant such that for all A(s) ,

`k BD( x(s̃1(a1)...s̃n(an)) ; y; s̃1(a1)...s̃n(an) ) → BD( x(s̃1(a1)...s̃n(an)) ; y; s ) .

Let A(s) ≡ B(s, a′′) → ∃zB(z, a′′) be an instance of QA∃ , s free for z in B .
The tuples a′ , a and ai below are defined like in the QA∀ case above. We have

(B(s) → ∃zB(z))D ≡ ∃Y , Z, X ∀x, y [ BD(x; Y (x, y); s) → BD(X(x); y; Z(x)) ]

and we can take (recall from Definition 3.10 that s̃i(ai) = si)
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tY :≡ Π = λa, x, y. y

tZi
:≡ Σ s̃i = (λui, a, x. ui(ai))s̃i = λa, x. s̃i(ai)

tX :≡ Π = λa, x. x

The inequalities (33) and (34) are trivial, (35), (36) follow with an argument
similar to the one in the QA∀ case. For (37) we use the fact (which follows from
(1)) that there exists k ∈ IN constant such that for all A(s) ,

`k BD( x ; y ; s1, . . . , sn ) → BD( x ; y ; s̃1( a1), . . . , s̃n(an) ) .

Notation 3.24 We will denote by qs(P) :≡ max{2 , qs(Lv(P))} and

vdg(P) :≡ vdg(Lv(P)) var(P) :≡ var(Lv(P))

fd(P) :≡ fd(QA∀ ∩ Lv(P)) id(P) :≡ id(Lv(P))

ld(P) :≡ ld(CT∧ ∩ Lv(P)) ls(P) :≡ ls(CT∧ ∩ Lv(P))

fid(P) :≡ fid(Vt(P)) ls(P) :≡ ls(Lv(P))

We will omit P when this will be clear from the context .

Theorem 3.25 There exists k ∈ IN constant such that for any proof P in
EILω

++AC+IP∀+MK and any non-realizer-free A ∈ Lv(P) there exists tA such
that tA Dr A and the following hold :

• if A is not an instance of (CT∧, QA∀) then

d(tA) ≤ k

S(tA) ≤ k

mdg(tA) ≤ k + vdg + id

mar(tA) ≤ k + var + qs · id

EILω
v `k {] tA , A [}


(38)

• if A is an instance of CT∧, (38) holds except that EILω
v `k·ld {] tA , A [} ,

d(tA) ≤ k · ld and S(tA) ≤ k · ls ;

• if A is an instance of QA∀, (38) holds except that d(tA) ≤ k + fd and
S(tA) ≤ k + fd .

The ·̃ constants of EILω
v above 28 are only those required by the terms tA and

hence are limited to those corresponding to terms occurring in A .
Proof: Follows immediately from Propositions 3.20, 3.22, 3.23 and k0 ≥ 10 .

Theorem 3.26 There exists k ∈ IN constant and an algorithm which does
the following. Given as input a proof P of a formula A in EILω

++AC+IP∀+MK

it produces as output t such that t Dr A and, with the notations 3.24 and
abbreviations 29 ∂MP :≡ ∂MP(P), ∂QR :≡ ∂QR(P) and ∂ :≡ ∂(P), the following hold:

28 See also Definition 3.10 and Remark 3.11 .
29 See Footnote 26 for the meaning of ∂MP(P) , ∂QR(P) and ∂(P) .
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d(t) ≤ k · ld + ∂QR + qs · ∂MP (39)

S(t) ≤ (k · ls + ∂QR) · qs ∂MP
 (40)

mdg(t) ≤ k + vdg + id (41)

mar(t) ≤ k + var + qs · id (42)

EILω
v `k·(ld+∂) {] t , A [} (43)

The ·̃ constants of EILω
v in (43) are among those corresponding to terms oc-

curring in the leaves of P .

Proof: Just a synthesis of the results in Theorems 3.17 and 3.25 . For (39)
and (40) we use that fd ≤ qs and k0 ≥ 10 , hence

max{k · ld , k + fd}+ ∂QR + qs · (∂MP − k0) ≤ k · ld + ∂QR + qs · ∂MP
(max{k · ls , k + fd}+ qs + ∂QR − k0 + 1) · qs (∂MP−k)

 ≤ (k · ls + ∂QR) · qs ∂MP


Notation 3.27 We will denote by

wd(P) :≡ max{wd(CT∧ ∩ Lv(P)) , td(QA ∩ Lv(P))}
ws(P) :≡ max{ws(CT∧ ∩ Lv(P)) , ts(QA ∩ Lv(P))}
cdg(P) :≡ cdg((CT∧ ∪ QA) ∩ Lv(P))

car(P) :≡ car((CT∧ ∪ QA) ∩ Lv(P))

We will omit P when this will be clear from the context.

Remark 3.28 Theorem 3.26 holds also when the terms t1, t2 which build
prime formulas t1 = t2 of contractions CT∧ and the quantifier axioms terms s
are counted as components of the global realizer (instead of just taking the
associated constants t̃1, t̃2, s̃). We only need to use wd, ws instead of ld, ls

and (41), (42) must be replaced with

mdg(t) ≤ max{k + vdg + id , cdg}
mar(t) ≤ max{k + var + qs · id , car}

Corollary 3.29 There exists k′ ∈ IN constant and an algorithm which does
the following. Given as input a proof P of a formula A ≡ ∀x ∃y B(x, y) with
{x, y} = Vf(B) in EILω

++AC+IP∀+MK it produces as output tY such that

EILω
v +AC+IP∀+MK `k′·max{ld+∂ , ld(B)} ∀x B(x, tY (x))

Proof: In this case we have AD ≡ ∃Y , U ∀x, v BD(U(x); v; x, Y (x)) , hence by
Theorem 3.26 we get EILω

v `k·(ld+∂) ∀v BD(tU(x); v; x, tY (x)) and further

EILω
v `k·(ld+∂) ∃u ∀v BD(u; v; x, tY (x)) [ ≡ BD(x, tY (x)) ] (44)

It can be easily proved by induction on ld(B) that there exists k′′ ∈ IN such
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that for all formulas B ,

EILω+AC+IP∀+MK `k′′· ld(B) B ↔ BD (45)

The conclusion now follows immediately by combining (44) and (45) . 2

Remark 3.30 If λ-abstraction were treated as primitive and Σ, P, Π were
defined in terms of it then (40) would still hold. Indeed, let Σ be defined by
λx, y, z. x(z0, y1(z

1), z1, . . . , ym(zm), zm) . We would have S(Σ) ≤ 2 · |x, y, z| 2
and on the other hand |x, y, z| ≤ qs for all Σ which appear in t . Similarly (40)
would still hold if only Schönfinkel Σ and Π were allowed 30 . This follows from
the λ-abstraction Definition 2.12 . There exists k ∈ IN constant such that at
most k · |x, y, z| 2 ≤ k · qs

2 tuple-Schönfinkel Σ and Π are needed to simulate
our Σ and any of these tuple-Schönfinkel Σ and Π can be defined 31 in terms
of at most k · |x, y, z| ≤ k · qs usual Schönfinkel Σ and Π .

Remark 3.31 If we allowed only unary (see Remark 3.18) ER0 in the veri-
fying proof then (43) would become EILω

v `k·(ld+qs+∂) {] t , A [} .

Remark 3.32 The algorithm of Theorem 3.26 can be applied to complete
proofs P in EILω

++AC+IP∀+MK after a preprocessing phase to Ptr via the pro-
cedure of Definition 3.8 . Since IELω ` A ↔ AD for any realizer-free assumption
A produced by the realizer-free-elimination procedure, the verifying proof can
use the same assumptions as Ptr . A complete verifying proof in EILω

v can be
produced by (re)including the parts of P which were eliminated in the pre-
processing phase.

3.4 Better bounds on the size of extracted terms

Smaller terms can be extracted if we use a simplification provided by the def-
initional equation of Σ . The size of the extracted terms becomes linear in the
size of the proof at input. Nevertheless the use of extra Σ’s brings an increase
in type complexity. This can be avoided by using a more economical represen-
tation of the realizing tuples by means of pointers to parts which are shared
by all members of a tuple. In such a setting all inequalities of Theorem 3.26
remain valid. The simplification is based on the observation that all terms
t4 produced by MP (see Lemma 3.14) contain a common part. Namely t1, O ,
which is somehow redundant to count for all t4 in t4 - and this is what we have
done so far. We give below a small example. Consider the following proof of C
from A, A → B and B → C : {{A , A → B} ` B , B → C} ` C . Let t1 Dr A,

30 See Definition 2.4 for the notions of “tuple-Schönfinkel” and “Schönfinkel” com-
binators Σ . Also for “Schönfinkel” projectors Π .
31 For Σ the proof is by induction on |z| of Definition 2.4 . We have Σ xy z z′ =
x z z′ (y z z′) = Σ′ (xz) (yz) z′ hence Σ = λx, y, z.Σ′ (xz) (yz) . For Π we can use
the iterated λ-abstraction λz1. (. . . λzn. zi) .
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(t2, t3) Dr (A → B) and (t5, t6) Dr (B → C) . The algorithm in Lemma 3.14
first produces t4 Dr B defined as t4 ≡ Σ(t3, t1, O) and then produces the real-
izing tuple for C, namely t7 Dr C defined as

t7 ≡ Σ(t6, t4, O
′)

≡ Σ(t6, Σ(t13, t1, O), . . . , Σ(t
|t3|
3 , t1, O), O

′)

We immediately notice that the tuple t1, O is common to all terms t4 ∈ t4 and
is multiply included in t7 . We describe below how it is possible to extract
realizing terms such that the common parts which were previously multiply
included are now counted only once for all the terms of a tuple.

Definition 3.33 For a proof P we define three size measures, denoted Si(P),
Sc(P) and Sm(P), which are to be used in the semi-intuitionistic (i.e., what we
have already described), the classical and in the monotone case respectively
(the last two cases will be treated in Section 4 below). The measure Sm(P) will
be used also for the time upper bounds (see Section 3.5) in all cases. All three
size measures are obtained by adding the following to the sum of qs(A → B)
for all MP-right-premises A → B plus the sum of qs(C) for all QR-conclusions
qs(C) (below A are non-realizer-free leaves) :

Si(P): the sum of qs(A) for non-CT∧ A plus the sum of ls(A) for CT∧ A ;

Sc(P): the sum of ls(A) for all non-realizer-free leaves A ;

Sm(P): the sum of qs(A) for all non-realizer-free leaves A .

It is immediate that Sm(P) ≤ Si(P) ≤ Sc(P) , which reflects the fact that the
monotone functional interpretation gives a simpler treatment of contraction
than Gödel’s functional interpretation and that the pre-processing negative
translation brings an increase in complexity for Gödel’s functional interpreta-
tion (but not for the monotone functional interpretation – see Theorem 4.20) .

Definition 3.34 For the tuples t ≡ t1, . . . , tn extracted by the algorithm of
Theorem 3.26 we define a size measure, denoted Sz′(t) in the following way.
There exists m ≥ 0 and a tuple t′ such that each ti ∈ t is either of shape
ti ≡ P i

1(. . . P
i
m(ti)) or of shape ti ≡ P i

1(. . . P
i
m(ti(t′))) where {P i

j}m
j=1 and ti are

characteristic to ti and t′ is common to all ti in the corresponding subset of
t . It is possible that m = 0 and/or the aforementioned subset is ∅ . We define

Sz′(t) :≡ m · |t| + Σt′∈t′ S(t′) + Σn
i=1 S(ti) .

Lemma 3.35 There exists k ∈ IN constant s.t. for every term P1(P2 x) with
P1 and P2 permutations there exists a permutation P3 s.t. `k P1(P2 x) = P3 x .

Proof: By AxP for P1 we obtain (P1(P2 x))(zp) = P2(x, z) . We can now apply
AxP for P2 and we distinguish two cases :

• z ≡ up′
, v and P2(x, up′

) = x(u) hence P2(x, z) = x(u, v) ≡ x(zp′′
) and the

last term is equal to P3(x, zp) via a definitional equation for P3 .

• z, y ≡ up′
and P2(x, up′

) = x(u) hence (P1(P2 x))(zp, y) = x(u) and the last
term is equal to P3(x, zp, y) via a definitional equation for P3 .
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Lemma 3.36 There exists k ∈ IN constant such that for any term
P1(. . . (Pm x)) with P1, . . . , Pm permutations there exists a permutation P0

such that `k·m P1(. . . (Pm x)) = P0 x .

Proof: Repeated applications of Lemma 3.35 and transitivity of equality. 2

Theorem 3.37 There exists k ∈ IN constant and an algorithm which does
the following. Given as input a proof P of a formula A in EILω

++AC+IP∀+MK

it produces as output t such that t Dr A with (43) and (below #MP denotes
the number of MP instances in P)

Sz′(t) ≤ k · Si(P) (46)

3 #MP ≤ d(t) (47)

∂MP − k0 ≤ mdg(t) (48)

3 #MP ≤ mar(t) (49)

Proof: The proof of (46) is by structural induction on P . For axioms A we
use the same realizing terms as before. When A is not an instance of CT∧
or QA∀ , (46) follows from |t| ≤ qs(A) . If A ≡ B → B ∧B then we notice that
tDB of Proposition 3.22 is common to all realizing tY , hence using (9) and (28) ,

Sz′(tX′ , tX′′ , tY ) ≤ k′ · |Y , X ′, X ′′|+ S(tDB) ≤ k′ · qs(A) + k′′ · ls(A) ≤ k · ls(A)

If A ≡ ∀zB(z, a′′) → B(s, a′′) then the tuple s̃ of Proposition 3.23 is common

to all realizing tX , hence Sz′(tZ , tY , tX) ≤ k′ · |Z, Y , X|+ |s̃| ≤ k · qs(A) .
There is nothing to prove for instances of EXP and IMP, see Lemma 3.16.
For QR instances the proof is trivial using Lemma 3.15. For instances of MP
we use Lemma 3.14 and further improve the result by applying a number of
Σ definitional equations. The algorithm in Lemma 3.14 is presented with the
tuples t3 and t1 , represented 32 as

t3 ≡ P ′
1(. . . P

′
m′(t0(t

′))) = P ′(t0(t
′))

ti1 ≡ P i
1(. . . P

i
m(ti(t))) = Pi(t

i(t))

 Using Lemma 3.36

and it produces (we assumed without loss of generality that 1 ≤ m′, m)

t4 ≡ Σ1(P
′(t0(t

′)), P1(t
1(t)), . . . , Pn(tn(t)), O) =

= Σ2(Σ1, P
′, P1, . . . , Pn, t0(t

′), t1(t), . . . , tn(t), O) =

= Σ3(Σ2, t0, t
1, . . . , tn, t′, t, P ′, P1, . . . , Pn, Σ1, O) =

= P (Σ3, Σ2, P
′, t0, t

1, . . . , tn, t′, t, P1, . . . , Pn, Σ1, O)

32 In the case when t3 or t1 comes from a (sub)proof which involved CT∧ or QA∀ and
no MP then we have an exception in the sense that only a part of the terms in the
tuple share a common tuple, see also Definition 3.34 . The reason should be obvious
from the above treatment of CT∧ and QA∀ . The final shape of the term t4 in (50)
below is nevertheless not affected by this technical exception. After an MP all terms
of the realizing tuple share a common tuple.
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hence we can actually take

t4 ≡ (P Σ3 Σ2 P ′ t0)(t
1, . . . , tn, t′, t, P1, . . . , Pn, Σ1, O) (50)

where t1, . . . , tn, t′, t, P1, . . . , Pn, Σ1, O is common to all t4 ∈ t4 . Hence

Sz′(t4) ≤ |P, Σ3, Σ2| · |t4|+ |Σ1, O|+ Sz′(t3) + Sz′(t1)

≤ 3 · qs(A → B) + Sz′(t3) + Sz′(t1) ,

where for the last inequality we used that |t4|+ max{1 , |O|} ≤ qs(A → B) .

In order to prove the remaining inequalities it is useful to denote by cp(t)
the common tuple in the canonical representation of the tuple t (i.e., t′) . We
have |cp(t1)|+ |cp(t3)|+ 1 ≤ |cp(t4)| because at least the constant Σ1 appears
new at each MP application. It follows that for the final extracted tuple t we
have #MP ≤ |cp(t)| . Now (47) and (49) are immediate because |cp(t)| ≤ d(t)
and |cp(t)| ≤ mar(t) . Also (48) is immediate once we notice that dg(cp(t))
increases by at least 1 at each MP application; this is due to the fact that ti

enters cp(t4) and dg(ti) ≥ dg(t) + 1 .

The proof that (43) still holds is by straightforward computations. 2

We notice that the price to pay for having smaller realizing terms is an increase
in type complexity. This is unavoidable with the actual representation of terms.
The maximal degree of the realizing term increases by at least 1 at each MP

application. This is due to the fact that subterms from the private part, which
have degree greater by at least 1 than the maximal degree of a subterm from
the common part now enter the new common part. We can avoid the increase
in type complexity only by modifying the term representation such that the
terms in the common part are multiply pointed from each member of the
realizing tuple. In this way Σ3 is no longer needed for feeding the common
part to each member of the realizing tuple. The increase in degree was due
exactly to these Σ3’s. We can now state the following theorem, where Sz is
defined in the new pointer setting similarly to Sz′, i.e., by counting common
parts only once.

Theorem 3.38 There exists k ∈ IN constant and an algorithm which does
the following. Given as input a proof P of a formula A in EILω

++AC+IP∀+MK it
produces as output t such that t Dr A , Sz(t) ≤ k · Si(P) and the inequalities
of Theorem 3.26 all hold.

Remark 3.39 The following inequalities are immediate:

S(t) ≤ Sz(t)

Si(P) ≤ (ls(P) + qs(P)) · 2∂(P) ≤ 3 · ls(P) · qs(P)∂(P) .

They just express the fact that the new bounds on size are indeed better.
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Remark 3.40 We will tacitly assume in the sequel that terms are represented
with pointers in the manner described above.

3.5 Space and time complexity of the functional interpretation algorithm

In a real-world implementation of the algorithm of Theorem 3.26 we ought to
count also the size of types associated to the EILω-constants as part of the size
of the realizing terms. This real-size of the extracted terms actually gives also
the time complexity of the algorithm 33 since what this does is only writing
down the extracted terms.

In order to compute the real-size we need to decide upon some representation
of types. It turns out that the most efficient is to use dags 34 . We choose
dags instead of normal binary trees 35 because dags allow the reuse of existent
types via pointers. Hence given the input proof P we start with the types
of all variables and constants which appear in P and build the types of con-
stants which are produced by functional interpretation. We therefore need to
count for the real-size only the number of new type-nodes which are created
in order to represent the type of a newly created constant c . By straight-
forward computations it follows that there exists k′ ∈ IN constant such that
for any formula C, the number of new type-nodes required by Vb(C

D) is at
most k′ · qs(C)2 · ls(C) . Hence the number of new type-nodes required by the
new variables created in the interpretation of the leaves, right MP–premises
and QR–conclusions of P is at most k′ · qs · ls · Sm(P) . Then we can im-
mediately see that whenever a new constant c of type στ is created by the
algorithm of Theorem 3.26 , the types σ, τ are immediately available from the
existent terms or variables created by the functional interpretation. There ex-
ists k′′ ∈ IN constant such that for any such new constant c created at a leaf C ,
instance of MP–right–premise C or instance of QR–conclusion C of P , at most
k′′ · |σ|2 ≤ k′′ · qs(C)2 new type-nodes are necessary to represent the type of c .
Hence overall we have at most k′′ · qs · ls · Sm(P) newly created type-nodes
in this category. We can now state the following theorem.

Theorem 3.41 There exists k ∈ IN constant such that the time overhead of
the algorithm in Theorem 3.38 is upper bounded by k · qs · ls · Sm(P) .

33 The space complexity follows immediately by the principle that the space over-
head of an algorithm is always less than its time overhead.
34 Here “dag” is the usual acronym for “directed acyclic graph”.
35 The representation with binary trees is in fact equivalent to the usual
parenthesized-strings representation.
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4 Immediate extensions of the quantitative analysis

4.1 Treatment of classical EILω. The system ECLω
++AC0

So far we have considered only semi-intuitionistic systems. We describe in the
sequel how our complexity analysis can easily be adapted to classical logic
(and theories) as well by applying it to the image of the classical system un-
der a suitable negative translation. The so-called negative or double–negation
translations have all in common the fact that the image of a formula is (intu-
itionistically equivalent to) a negative formula 36 . Negative translations were
initially produced by Gödel [21], Gentzen, Kolmogorov, Glivenko. We use be-
low a variant due to Kuroda of Gödel’s translation which we further adapt in
order to handle blocks of universal quantifiers.

Definition 4.1 (Kuroda’s N-translation) To a formula A one associates
AN ≡ ¬¬A∗ , where A∗ is defined by structural induction on A as follows :

• A∗ :≡ A , if A is a prime formula

• (A2B)∗ :≡ A∗2B∗ , where 2 ∈ {∧,∨,→}
• (∃xA(x))∗ :≡ ∃x(A(x))∗

• (∀xA(x))∗ :≡ ∀x¬¬(A(x))∗ , where A(x) 6≡ ∀yB(y, x)

Remark 4.2 AN is realizer-free iff A is realizer-free .

N-translation followed by functional interpretation gives a proof interpreta-
tion for theories based on classical logic 37 . Remark 4.2 implies that given a
(complete) proof P in some classical system the following are equivalent :

• carry out the composed 38 interpretation to Ptr ;

• first do the N-translation of P , then apply the realizer-free-elimination al-
gorithm of Definition 3.8 and finally carry out the functional interpretation
of (PN)tr .

The former approach is obviously more efficient: one does not carry out the
N-translation of parts which subsequently get eliminated.

36 By definition, a formula is called negative, respectively existential-free if it is
built up from negated prime, respectively prime formulas by means of ⊥, ∧, →
and ∀ only. In our system negative formulas are trivially existential-free. On the
other hand, EILω ` s =o t ↔ ¬¬(s =o t) for any prime formula s =o t and hence
also every existential-free formula is equivalent to a negative formula.
37 Details of the use of negative translation in combination with functional interpre-
tation may be found, e.g., in [3,29,39].
38 In fact parts which are produced by N-translation also need to be transformed.
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Let ECLω, ECLω
+ be the classical versions 39 of EILω, EILω

+ respectively, obtained
by replacing TND0 with the full tertium-non-datur schema A ∨ ¬A . Let

AC0 : ∀x ∃y A0(x, y) → ∃Y ∀x A0(x, Y (x))

be the quantifier-free axiom-of-choice (with x and y of arbitrary types).

Remark 4.3 The proof–size measure Sc is introduced in Definition 3.33 .

Proposition 4.4 There exists k ∈ IN constant and an algorithm which does
the following. Given as input a proof P of a formula A in ECLω

++AC0 it pro-
duces as output a proof PN of AN in EILω

++AC0+MK and the following hold :

(1) ∂(PN) ≤ k · ∂(P) and Si(PN) ≤ k · Sc(P) ;

(2)


qs(PN) ≤ qs(Vt(PN)) ≤ k · qs(Vt(P))

(13)
= k · qs(P)

ld(PN) ≤ ls(PN) ≤ ls(Vt(PN)) ≤ k · ls(Vt(P))
(13)
= k · ls(P)

(3) id(PN) ≤ k · fid(P) ; we must use fid(P) because in the N-translation
a ∀ brings two ¬, hence in fact two → due to our treatment of negation ;

(4) no new variable or constant appears in PN, hence (using (14))

vdg(Vt(PN)) ≤ vdg(Vt(P)) = vdg(Lv(P))

var(Vt(PN)) ≤ var(Vt(P)) = var(Lv(P))

cdg(Vt(PN)) ≤ cdg(Vt(P)) = cdg(Lv(P))

car(Vt(PN)) ≤ car(Vt(P)) = car(Lv(P))

Proof: The algorithm proceeds by recursion on the structure of P , see [29]
for details. The proof of its correctness makes use of the following schemata
of intuitionistic logic :

¬¬(A → B) ↔ (A → ¬¬B) ↔ (¬¬A → ¬¬B) (51)

¬¬∀x¬¬A(x) ↔ ∀x¬¬A(x) (52)

A → ¬¬A (53)

These schemata have proofs in which the axiom instances and intermediate
formulas have size (depth) at most linear in the size (depth) of the formula to
be proved. We only need to further notice that there exists k′ ∈ IN constant
such that the following hold :

• the N-translation of any non-realizer-free axiom scheme B of ECLω
++AC0 is a

theorem in EILω
++AC0+MK whose proof P ′ has the same structure for all in-

stances of B, in particular the same depth ; all formulas which appear in P ′

have size (depth) upper bounded by k′ times the maximal size (depth) of B ;

39 Below EILω
+-based systems will appear for verifying the functional interpretation

of proofs in ECLω
+-based systems. In virtue of Remark 4.2 it should be obvious that

A is a realizer-free axiom from Thrf of ECLω
+ (see Definition 3.10) if and only if AN is

a realizer-free axiom from Thrf of EILω
+ .
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• any rule A1 [, A2] ` B of ECLω
++AC0 is interpreted under N-translation to a

proof P ′ of BN from AN
1 [, AN

2] ; P ′ has the same structure for all instances
of the rule, in particular the same depth ; all formulas which appear in P ′

have size (depth) upper bounded by k′ times the maximal size (depth) of
A1 [, A2] .

As an example we prove the above claim for AC0 and QR∀ . The other axioms
and rules are even easier.

Case AC0: We prove that there exists k′ ∈ IN constant such that for all A0 ,

EILω
++AC0+MK `k′ [∀x ∃y A0(x, y) → ∃Y ∀x A0(x, Y (x)) ]N (54)

By (53), the conclusion of (54) is implied by

∀x¬¬∃y A0(x, y) → ∃Y ∀x¬¬A0(x, Y (x)) .

This follows from MK and AC0 with a IELω–proof of constant depth.

Case QR∀: B → A ` B → ∀zA . By induction hypothesis we have a proof of
¬¬(B∗ → A∗) . Then we use (51) and MP to get B∗ → ¬¬A∗ and by QR∀ ,
B∗ → ∀z¬¬A∗ . If A 6≡ ∀yC then ∀z¬¬A∗ ≡ (∀zA)∗. If A ≡ ∀xA′ with
A′ 6≡ ∀yC then A∗ ≡ ∀x¬¬A′∗ and using (52) we obtain B∗ → ∀z, x¬¬A′∗

with ∀z, x¬¬A′∗ ≡ (∀zA)∗ . In any case we obtain ¬¬(B → ∀zA)∗ (also using
(53)). Hence overall the deduction of (B → ∀zA)N from (B → A)N has constant
depth. 2

Remark 4.5 The new quantifier axioms of PN are of shape ∀zB(z) → B(z)
and these can be realized with simple projectors Π instead of the terms tZ of
Proposition 3.23 .

Remark 4.6 Except for those triggered by (A → A ∧ A)N , the contractions
CT∧ of PN are required by the N-translations of A ∨ ¬A , QA∀ and QR∃ . In the
last two cases the verifying CT∧ is brought by the critical implication

(¬¬A → ¬¬B) → ¬¬(A → B) (55)

of (51). The use of (55) can be avoided in the case of IMP, EXP by using axiom
versions of these rules 40 , the non-critical converse of (55) and MP .

Remark 4.7 The following holds: ((Ptr)N)tr = (PN)tr .

We are now able to describe an efficient algorithm for extracting realizing
terms from (complete) proofs P in ECLω

++AC0 . First P is transformed to Ptr

and then to (Ptr)N via the algorithm of Proposition 4.4 . In a second phase
(Ptr)N is transformed 41 to ((Ptr)N)tr and the algorithm of Theorem 3.26 is
applied to it. Using Proposition 4.4 , Theorems 3.38 and 3.41 , Notation 3.24

40 The axiom versions of IMP and EXP are simply realized with projectors Π . This
follows immediately from the fact that (A → (B → C) )D ≡ ( A ∧B → C )D . See
also Lemma 3.16 .
41 Here only the parts produced by N-translation need to be transformed.
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and the abbreviations ∂ :≡ ∂(P) , Sc :≡ Sc(P) and Sm :≡ Sm(P) we can state
the following theorem.

Theorem 4.8 There exists k ∈ IN constant and an algorithm which does the
following. Given as input a proof P of a formula A in ECLω

++AC0 it produces
as output t such that t Dr AN and the following hold :

d(t) ≤ k · (ls + qs · ∂) (56)

S(t) ≤ Sz(t) ≤ k · Sc ≤ k · (ls + ∂) · (k · qs)
k·∂ (57)

mdg(t) ≤ vdg + k · fid (58)

mar(t) ≤ var + k · qs · fid (59)

EILω
v `k·(ls+∂) {] t , AN [} . (60)

The time overhead of the algorithm is upper bounded by k · qs · ls · Sm . The
·̃ constants of EILω

v in (60) are among those corresponding to terms occurring
in the leaves of PN.

Remark 4.9 In the above theorem we use the more general quantity ∂ instead
of the more detailed ones ∂QR and ∂MP which appear in Theorem 3.26 . We do so
because the N-translations of QR∀, QR∃, EXP and IMP trigger new MP instances
needed for their verification in PN . Hence ∂MP(PN) ≥ ∂(P) already.

Corollary 4.10 Let A ≡ ∀x ∃y A0(x, y) with Vf(A0) = {x, y} and, as usual,
A0 quantifier-free. The theorem above holds also with A instead of AN, i.e.,
t Dr A with (56), (57), (58), (59) and EILω

v `k·(ls+∂) ∀x A0(x, t(x)) .

Proof: There exists k′ ∈ IN constant such that, using (52) and (5),

EILω
++MK `k′· ld(A0) (∀x∃yA0(x, y))N → ∀x∃yA0(x, y) .

From (13) it follows that the quantity ld(A0) gets absorbed into ls . 2

4.2 A quantitative analysis of monotone functional interpretation

The second author realized in [31] that a much simpler extraction procedure
applies if the goal is to extract majorizing functionals t∗ for the realizing terms
t of AD , i.e., terms t∗ such that

M : ∃x [ t∗ maj x ∧ ∀a, y AD(x(a), y, a)] .

Here y maj x :≡ ∧ (y maj x) and maj is W.A. Howard’s majorization rela-
tion (see [27]). This is of significance since t∗ suffices for many (if not most) ap-
plications of functional interpretation. These range from conservation results
(e.g., for weak König’s lemma [30]) to the proof mining of concrete proofs [35].
We noticed in Section 3 that the contraction A → A ∧ A is by far the most
complicated axiom in the usual functional interpretation. Monotone functional
interpretation features a very simple treatment of A → A ∧ A and therefore
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the extraction process for t∗ becomes much simpler than the one for t .

Definition 4.11 Let EILω
M be an extension of EILω with the following :

• An inequality relation ≥o for type-o-objects with the usual axioms plus
1 ≥o Ixo yo , 1 ≥o ν xo yo and 1 ≥o Exo yo . Inequality for higher types

is defined extensionally by x ≥σo y :≡ ∀zσ (x z ≥o x z) . The majorization

relation is defined by x∗ maj σo x :≡ ∀zσ, yσ (z maj σ y → x∗ z maj o x y) ,

where z maj σ y is an abbreviation for ∧σ∈σ(z maj σ y) and maj o :≡ ≥o .

• A maximum constant Mo of type ooo defined by the axioms

AxM : Mo x y ≥o x Mo x y ≥o y Mo maj Mo .

Maximum constants for higher types are defined by

Mσo :≡ ΣMo = λxσo, yσo, zσ.Mo (x z) (y z) .

• A schema of explicit definability for arbitrary quantifier-free formulas:

ED[A0] : ∃Y ∀a [ (1 ≥o Y (a)) ∧ (A0(a) ↔ Y (a) =o 0) ] .

• Axioms S maj S and O maj O .

Remark 4.12 In the presence of a minimal amount of arithmetic S maj S
and O maj O are immediately provable. Also the constants ≥o, ν, I, E and
Mo can be defined such that the remaining axioms of Definition 4.11 become
provable (see also Remark 2.5) .

Remark 4.13 The formulas Σ maj Σ, Π maj Π and P maj P hold in EILω
M

with proofs of depths proportional with the arities of Σ, Π and P respec-
tively. Then Mρ maj Mρ holds for arbitrary ρ with a formal proof of depth
proportional with ar(ρ) + 1 .

Lemma 4.14 There exists k ∈ IN constant such that for any tuple of terms
s of EILω

M (with V(s) = {x}) there exist corresponding terms s∗ of EILω
M (with

V(s∗) = {x∗}) such that

EILω
M ` x∗ maj x → s∗ maj s . (61)

Proof: The constants O and S trivially majorize themselves by the last clause
of Definition 4.11. On the other hand, ΣM = λz, x, x′.Mx x′ majorizes D
and Π1 = λxo, yo. 1 majorizes I, ν and E . Using Remark 4.13 we have that
Σ, Π, P and M majorize themselves. The conclusion follows immediately by
induction on d(s) . 2

Corollary 4.15 Let s̃, s̃∗ be constants associated to terms s, s∗ like in Defi-
nition 3.10. From (61) it immediately follows that

` s̃∗ maj s̃ (62)

Definition 4.16 We denote by EILω
M,+ the system (EILω

M )+ where “+” in-

cludes all formulas s̃∗ maj s̃ as axioms. We take them as axioms because
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we consider that the (formal) proof in (62) is not created by monotone func-
tional interpretation. Also let EILω

M,v be the corresponding (EILω
M )v .

In [31] realizing terms are presented for the monotone functional interpreta-
tion of all axioms of EILω

M +AC+IP∀+MK . They are the same as for the usual
functional interpretation, except that

• A → A∧A is realized by terms ΣM = λa, x, y′, y′′.M y′ y′′ and Π = λa, x. x ;

compare this with the results of Proposition 3.22 ;

• A ∨ A → A is realized by ΣM = λa, z, x, x′.Mx x′ and Π ;

• A ∨B → B ∨ A is realized by terms Π and Π 1 ;

• the schema ED itself is trivially realized by Π 1 = λa. 1 ;

• ∀zA(z) → A(s) is realized by terms obtained from the realizing terms of
the usual functional interpretation by replacing the constants s̃ with the
corresponding s̃∗ where s∗ are given by Lemma 4.14 .

Using Remark 4.13 it follows that there exists k ∈ IN constant such that
the verifying proof for some axiom A of EILω

M +AC+IP∀+MK has depth up-
per bounded by k · qs(A) . The verifying proof for CT∧ makes use of ED .

Remark 4.17 The proof–size measure Sm is introduced in Definition 3.33 .
The proof–depth measures ∂MP, ∂QR and ∂ are introduced in Section 1.2 . In the
following theorem we will abbreviate by ∂MP :≡ ∂MP(P), ∂QR :≡ ∂QR(P), ∂ :≡ ∂(P)
and Sm :≡ Sm(P) .

Since monotone functional interpretation uses the same algorithm as the usual
functional interpretation for producing realizing terms for conclusions given
the realizing terms for premises, the following analogue of Theorem 3.38 holds.

Theorem 4.18 There exists k ∈ IN constant and an algorithm which does
the following. Given as input a proof P of A in EILω

M,++AC+IP∀+MK it pro-
duces as output t∗ such that, with the notations 3.24, the following hold :

d(t) ≤ k + ∂QR + qs · ∂MP
S(t) ≤ Sz(t) ≤ min{k · Sm , k · ∂QR · qs ∂MP

 } ≤ k · qs ∂
 (63)

mdg(t) ≤ k + vdg + id

mar(t) ≤ k + var + qs · id

EILω
M,v `k·(qs+∂) ∃x (t∗ maj x ∧ ∀a, y AD(x(a), y, a)) (64)

The time overhead of the algorithm is upper bounded by k · qs · ls · Sm . The
·̃ constants of EILω

M,v in (64) are among those corresponding to terms occurring
in the leaves of P .

Proof: The rightmost inequality of (63) follows from a suitable adaptation
of Remark 3.39 to the monotone case. We now only need to comment on (64).
In order to build the verifying proof for MP we need to use the following lemma :
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(y1 maj x1) ∧ (y3 maj x3) → ∧ [ Σ(y3, y1, O) maj Σ(x3, x1, O) ] (65)

Using Remark 4.13 it follows that there exists k′ ∈ IN such that for all its
instances, lemma (65) has a proof of depth at most k′ · |y3, y1, O| . When used

for verifying MP, we have |y3, y1, O| ≤ qs , hence (64) follows immediately. 2

Remark 4.19 If (65) were taken as axiom, the depth of verifying MP would
be upper bounded by a constant, just like in the case of usual functional
interpretation. On the other hand (65), Σ maj Σ, Π maj Π, P maj P and
M maj M would have constant-depth proofs in EILω

M if the underlying logical
system handled tuples of conjunctions more smoothly. In such a case (64) could
be replaced with EILω

M,v `k·∂ ∃x (t∗ maj x ∧ ∀a, y AD(x(a), y, a)) . Hence the
bound on verifying proof depth would be better than in the usual functional
interpretation case, see (43). The smoother treatment of tuples of conjunc-
tions would actually be normal in our context with free use of tuples in both
quantifier axioms/rules and the extensionality rule ER0 .

Let ECLω
M,+ be the classical variant of EILω

M,+ . Combined with N-translation,
monotone functional interpretation carries over to ECLω

M,++AC0 and the upper
bounds on size and proof depth are smaller than in the functional interpreta-
tion case. The following analogue of Theorem 4.8 + Corollary 4.10 holds.

Theorem 4.20 There exists k ∈ IN constant and an algorithm which does
the following. Given as input a proof P of A in ECLω

M,++AC0 , it produces as
output t∗ such that, with the notations 3.24 and the abbreviations ∂ :≡ ∂(P)
and Sm :≡ Sm(P) the following hold :

d(t∗) ≤ k · qs · ∂

S(t∗) ≤ Sz(t∗) ≤ k · Sm ≤ (k · qs)
k·∂

mdg(t∗) ≤ vdg + k · fid

mar(t∗) ≤ var + k · qs · fid

EILω
M,v `k·(qs+∂) ∃x [ t∗ maj x ∧ ∀a, y (AN)D(x(a), y, a) ] (66)

For A ≡ ∀x ∃y A0(x, y) with A0 quantifier-free and {x, y} = Vf(A0) , (66) can
be replaced with

EILω
M,v `k·(ld(A0)+qs+∂) ∃Y [ t∗ maj Y ∧ ∀x A0(x, Y (x)) ] (67)

The time overhead of the algorithm is upper bounded by k · qs · ls · Sm .
The ·̃ constants of EILω

M,v in (66, 67) are among those corresponding to terms
occurring in the leaves of PN .

In concrete applications of monotone functional interpretation, EILω
M will be

extended by certain arithmetical (and even analytical) principles (see Section
5 below).
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In the presence of a modest amount of arithmetic we can make use of t∗ ex-
tracted by monotone functional interpretation in the following way. Let x,
y be of type o . Then (67) implies ∀x∃y ≤ t∗(x) A0(x, y) and therefore, us-
ing bounded search applied to t∗ and a characteristic term tA0 for A0 one
easily constructs t such that ∀x A0(x, t(x)) . This also works for x of type 1
using the construction xM(i) :≡maxj≤i x(j) since xM maj x . Moreover, for sen-
tences of the form ∀x1 ∀z ≤1 s ∃yo A0(x, z, y) with s closed term one can easily
obtain a type-2-term t̂ from t∗ such that ` ∀x1 ∀z ≤1 s ∃y ≤o t̂(x) A0(x, z, y)
by taking t̂(x) :≡ t∗(xM, s∗) where s∗ is a majorizing term for s . The term t̂
provides a uniform bound on y which is independent from z . See [30] for
more details. This feature of monotone functional interpretation is of cru-
cial importance in applications to numerical analysis [35] where {z | z ≤1 s} is
used to represent compact Polish spaces. Since A0(x, z, y) is monotone (i.e.,
A0(x, z, y1) ∧ y2 ≥ y1 → A0(x, z, y2)) in most applications, the term t̂ will not
be only a bound but actually a realizer for ∃y . Hence in this context monotone
functional interpretation even provides a realizer which is independent from
z and of simpler structure than realizers produced by the usual functional
interpretation (see [31] for more on this).

5 Extensions to Arithmetic and fragments of Analysis

Both Gödel’s functional interpretation and the monotone functional interpre-
tation apply to intuitionistic and, via the negative translation, also classical
arithmetic [22,32,55] (even in finite types) and fragments thereof [8,32,43].
Let PRAω be Feferman’s system [13] of primitive recursive arithmetic in all fi-
nite types, where only quantifier-free induction and ordinary Kleene-primitive
recursive functionals are included. Let PRAω

i be its intuitionistic variant, for-
mulated over EILω (see Section 5.1 of [26]). All the quantitative results proved
above in Theorems 3.26, 4.18 and Theorems 4.8, 4.20 carry on to PRAω

i , re-
spectively PRAω in the obvious way. The system PRAω+AC0 allows to derive
the schemata of Σ0

1-induction and ∆0
1-comprehension (see [30]) and therefore

contains the system RCA0 known from reverse mathematics (see [50]). Let us
denote by WKL the binary König’s lemma. This important 42 analytical prin-
ciple simply asserts that every infinite binary tree has an infinite path. The
second author has proved in [30] by means of a combination of functional
interpretation and majorizability (a precursor of monotone functional inter-
pretation) that PRAω+AC0+WKL (which contains Friedman’s system 43 WKL0 of
[14,50]) is Π0

2-conservative over PRAω
i . Moreover, a witnessing term can be pro-

42 A comprehensive discussion of the vast mathematical applicability of WKL is in[50].
43 Theorem I.10.3 of [50] gives a summary of important mathematical statements
which are theorems of WKL0 . We only mention here the Heine-Borel covering lemma,
the separable Hahn-Banach theorem and Brouwer’s fixed point theorem.
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vided. We give below a quantitative version of this result. We follow closely the
proof in Section 7 of [3] which is a simplification of the more general method
of [30]. Let PRAω be formulated over ECLω

M . We use the following convenient
formulations of the binary König’s lemma :

WKL : ∀f [∀k ¬Bnd(BTr(f), k) → ∃b ∀ k (InSeg(Bin(b), k) ∈ BTr(f)) ]

WKL′ : ∀f ∃b ∀ k [¬Bnd(BTr(f), k) → InSeg(Bin(b), k) ∈ BTr(f) ]

where (see Section 7 of [3] for full details)

• Bin and BTr are primitive recursive functionals which transform their ar-
gument to a binary function, respectively a binary tree ;

• InSeg is a primitive recursive functional which produces the length k initial
segment of the binary function Bin(b) ;

• Bnd is a primitive recursive predicate which expresses that the given binary
tree BTr(f) has depth at most k .

Remark 5.1 Below A0 is quantifier-free, x, y are type o and {x, y} = Vf(A0) .

The following theorem expresses the fact that the WKL–elimination and term
extraction procedure from WKL–based proofs as developed in [30] is feasible
both w.r.t. the size of the extracted terms and the depth of the verifying WKL–
free proof. Although the feasibility of WKL–elimination was already proved
(independently) in [23] and [2] for fragments of second-order arithmetic, the
techniques employed there do not provide any term extraction procedure.

Theorem 5.2 There exists k ∈ IN constant and an algorithm based on Gödel’s
functional interpretation which does the following. Given as input a proof

P : PRAω+AC0 `∂ WKL → ∀x ∃y A0(x, y)

it produces at output realizing terms t such that Sz(t) ≤ k · Sc(P) and

PRAω
i `k·(ls+∂) ∀x A0(x, t(x)) . (68)

The time overhead of the algorithm is upper bounded by k · qs · ls · Sm(P) .

Proof: The first step is to transform P : PRAω+AC0 `∂ WKL → ∀x ∃y A0(x, y)

to PN : PRAω
i +AC0+MK `k′·(ld(A0)+∂) WKL′ → ∀x ∃y A0(x, y) such that all sta–

tements on PN in Proposition 4.4 hold. Here PN is obtained by a slight trans-
formation within PRAω

i +MK of the output from the N-translation algorithm
carried on P . There exist fixed proofs (hence with constant complexity) in
PRAω

i of WKL′ → WKL and WKL→ WKLN . See also Lemmas 7.3.1 and 7.3.3 of [3] .

The second step is to transform PN to the proof in (68) via a technique based
on functional interpretation and majorization. This technique is described
in Lemmas 7.4.1 and 7.4.2 of [3] and is an adaptation of the more general
technique of [30] . The elimination of WKL′ is achieved by weakening WKL′ to
a formula which is provable in PRAω

i . Since we are here interested also in the
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realizing term for ∃y and not only in the WKL–conservation, we use a tuple-
extended variant of Lemma 7.4.1 from [3] where a realizer for ∃y is provided
as well. 2

Corollary 5.3 (quantitative WKL-conservation) There exists an algorithm

which transforms proofs P : PRAω+AC0 `∂ WKL → ∀x ∃y A0(x, y) into proofs

P ′ : PRAω
i `k·(ls+∂) ∀x ∃y A0(x, y) .

Remark 5.4 We could alternatively use a monotone functional interpreta-
tion version of Lemma 7.4.1 from [3] in the lines of our Theorem 4.20 . Then we
would first obtain a majorizing tuple t∗ for ∃y and we could produce a realizer
by bounded search up to t∗(x) along the predicate tA0(x, y) = 0 . Theorem 5.2
would now hold with (68) replaced by PRAω

i `k·(ld(A0)+qs+∂) ∀x A0(x, t(x)) .
In many cases A0 is monotone in y and therefore bounded search is actu-
ally not needed – see also the remarks following Theorem 4.20 . In such a
case we would obtain terms t with Sz(t) ≤ k · Sm(P) , time overhead at most
k · fid · qs · Sm(P) and

PRAω
i `k·(qs+∂) ∀x A0(x, t(x)) (69)

hence a full better performance than the algorithm of Theorem 5.2 .

Remark 5.5 There are three ways to produce a variant of Theorem 5.2
where the input proof is P : PRAω+AC0+WKL `∂ ∀x ∃y A0(x, y) . One way to
overcome the failure of the deduction theorem for weakly extensional PRAω is
via the elimination-of-extensionality procedure from [39] . This applies when
P contains only 44 variables of type 0 or 1 . In fact this is the case in most
applications. We conjecture that the aforementioned procedure is feasible and
hence the overall term extraction and WKL-conservation is still a feasible pro-
cess. However if we are interested in the term extraction more than in the
WKL-conservation we can state a variant of Theorem 5.2 based on the mono-
tone functional interpretation with the verifying proof in PRAω

i +̃WKL and of
the same depth as (69), where

W̃KL : ∃B ∀f ∀ k [¬Bnd(BTr(f), k) → InSeg(Bin(B(f)), k) ∈ BTr(f) ]

is a strengthening of WKL′ . If we are satisfied with a partial WKL-conservation
then we can use the fact that premises of ER0 are realizer-free and hence any
WKL instance used in the proof of such a ER0-premise gets discarded in the pre-
processing phase of the (monotone) functional interpretation algorithm. We
can thus consider that the input proof is in PRAω+AC0⊕WKL (see [30], p. 1246
for the meaning of ⊕ in this context). For this system the deduction theorem
holds w.r.t. ⊕ and we obtain (68) with PRAω

i extended with the N-translations
of conclusions of those ER0 instances in P whose sub-proof-trees use WKL . See

44 Under this type restriction we can allow the use of (full) extensionality axiom EA,
see also Remark 2.6 . Hence in this setting we work with the fully extensional PRAω

which features the deduction theorem.
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also Remark 3.32 .

Remark 5.6 Even though the term extraction procedure of Theorem 5.2
is extremely feasible, the normalization of the extracted terms into ordinary
primitive recursive functions and the verification in (plain) primitive recursive
arithmetic would however trigger a non-elementary-recursive complexity .

The results obtained above for systems based on PRAω immediately carry on
to the corresponding systems based on PAω for suitable formulations of Peano
Arithmetic in all finite types PAω , see Section 5.3 of [26] for more on this .
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[23] P. Hájek. Interpretability and fragments of arithmetic. In Arithmetic, proof
theory, and computational complexity (Prague, 1991), volume 23 of Oxford Logic
Guides, pages 185–196. Oxford Univ. Press, New York, 1993.

[24] S. Hayashi and H. Nakano. PX: A Computational Logic. MIT Press, 1988.

[25] M.-D. Hernest. A comparison between two techniques of program extraction
from classical proofs. In M. Baaz, J. Makovsky, and A. Voronkov, editors, LPAR
2002: Short Contributions and CSL 2003: Extended Posters, volume VIII of
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A Index of Notations

The tables are to be read from left to right and then top–down.

Distribution of Definitions and Notations in (Sub)Sections

Def.
Not.

Section Def.
Not.

Section Def.
Not.

Section Def.
Not.

Section

2.1 2 2.4 2.3 2.12 2.3 3.1 3

3.5 3 3.10 3.1 3.24 3.3 3.27 3.3

3.33 3.4 3.34 3.4 3.38 3.4 4.11 4.2
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Association of Definitions, Notations or (Sub)Sections to Symbols

Name Defined in Name Defined in Name Defined in

`n Section 1.2 {] · , · [} Definition 3.5 | · | Section 1.2

·̃ Definition 3.10 ≥σ Definition 4.11 =σ , 6= Section 2.2

ar(·) Definition 2.1
+ Section 2.2

car(·) Section 2.2 car(·) Notation 3.27

cdg(·) Section 2.2 cdg(·) Notation 3.27 C(·) Section 2.2

d(·) Section 2.2 dS(·) Section 2.2
S meta-var.

dg(·) Definition 2.1
+ Section 2.2

D Section 2.3 ·D , · D Definition 3.1 · Dr · Definition 3.5

∂(·) Section 1.2 ∂L(·) Section 1.2
L meta-var.

E Section 2.3

fd(·) Section 2.2 fd(·) Notation 3.24 fid(·) Section 2.2

id(·) Section 2.2 id(·) Notation 3.24 I Section 2.3
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ld(·) Section 2.2 ld(·) Notation 3.24 ls(·) Section 2.2

ls(·) Notation 3.24 ls(·) Notation 3.24 Lv(·) Section 1.2

mdg(·) Section 2.2 mar(·) Section 2.2 · maj σ · Definition 4.11

Mσ · · Definition 4.11 · N Definition 4.1 Oρ Section 2.3

Σ , Π Definition 2.4
+ Section 2.3

P Section 2.3 PR[·] Definition 3.5

qs(·) Section 2.2 qs(·) Notation 3.24 RR[·] Definition 3.5

RTS [·] Definition 3.5 S(·) Section 2.2 S Section 2.3

Si(·) Definition 3.33 Sc(·) Definition 3.33 Sm(·) Definition 3.33

Sz(·) Theorem 3.38 Sz′(·) Definition 3.34 typ(·) Section 2.2

td(·) Section 2.2 ts(·) Section 2.2 ν Section 2.3

var(·) Section 2.2 var(·) Notation 3.24 vdg(·) Section 2.2

vdg(·) Notation 3.24 V(·) Section 2.2 Vb(·) Section 2.2

Vf(·) Section 2.2 Vt(·) Section 1.2 wd(·) Section 2.2

wd(·) Notation 3.27 ws(·) Section 2.2 ws(·) Notation 3.27
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