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Abstract

We apply proof-theoretic techniques of ‘proof mining’ to obtain an effective uni-
form rate of metastability in the sense of Tao for Baillon’s famous nonlinear ergodic
theorem in Hilbert space. In fact, we analyze a proof due to Brézis and Browder of
Baillon’s theorem relative to the use of weak sequential compactness. Using previous
results due to the author we show the existence of a bar recursive functional Ω∗ (us-
ing only lowest type bar recursion B0,1) providing a uniform quantitative version of
weak compactness. Primitive recursively in this functional (and hence in T0 + B0,1)
we then construct an explicit bound ϕ on for the metastable version of Baillon’s the-
orem. From the type level of ϕ and another result of the author it follows that ϕ is
primitive recursive in the extended sense of Gödel’s T. In a subsequent paper also
Ω∗ will be explicitly constructed leading to the refined complexity estimate ϕ ∈ T4.

Keywords. Nonlinear ergodic theorem, effective bounds, proof mining, metastability

1 Introduction

The direct proof-theoretic analysis (e.g. by functional interpretation) of proofs based on
sequential compactness with the aim to extract new information (both effective bounds
as well as new qualitative uniformity results; see [12] for the general program) is noto-
riously difficult as already the functional interpretation of (even simple versions) of the
Bolzano-Weierstraß principle is a very intricate bar recursive construction (see [20]). Of-
ten one, therefore, applies additional proof-theoretic pre-processing to the the given proof
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to eliminate the use of sequential compactness by some more arithmetical reasoning (see
e.g. [12] for background information).
For proofs in abstract functional analysis that even use weak sequential compactness argu-
ments (in the context of arbitrary – not assumed to be separable – Hilbert spaces) things
are even more complicated. Only recently, we verified ([13]) that in such an abstract
context the formal theories, to which logical metatheorems on the extraction of uniform
bounds from [11, 6, 12] apply, suffice to establish the basic weak compactness principles
for Hilbert space. As a consequence of the formalizability of weak compactness, we draw
in section 2 some results on the extractability of an effective functional Ω∗ solving a uni-
form quantitative version of weak compactness (namely its monotone variant of Gödel’s
functional interpretation in the sense of [12]).

The reward of studying the formalizability of proofs based on substantial uses of weak
compactness is that for those proofs the above mentioned logical metatheorems guarantee
a-priori the existence (together with an extraction algorithm based on monotone func-
tional interpretation for the construction) of effective and surprisingly uniform bounds
on reformulations of ordinary convergence statements (that in general – due to their in-
trinsic ineffective nature – exclude the possibility of such bounds): these reformulations
go back to G. Kreisel’s so-called no-counterexample interpretation ([18, 19]) and have in
recent years been re-discovered by T. Tao under the name of ‘metastability’ (see [23, 24]
and – for proof theoretic applications to proofs that do not yet use weak compactness –
[1, 16, 17] among others).

While already these applications e.g. in [1, 16, 17] were only found using the underly-
ing proof-theoretic machinery at least as a guiding principle, the complexity of analyzing
proofs based on weak compactness is so significant that here even to find ineffective uni-
form bounds seems to be virtually impossible without substantial use of proof theory.

The first step towards extracting uniform metastability bounds from proofs based on weak
compactness was done in [14] where proofs of two well-known theorems on the strong
convergence of a certain iteration schemes for nonexpansive mappings in Hilbert space
due to F.E. Browder [5] and R. Wittmann [25] resp. are analyzed. Although these proofs
rely on a weak sequential compactness argument,3 the logical analysis in the end allows
one in both cases to bypass this due to the logical structure of the proofs. That paper also
outlines the way one would have to follow in more general cases.

Such a case (where the use of weak compactness might be indispensable) seems to be
the famous nonlinear ergodic theorem due to Baillon [2] for nonexpansive (but nonlinear)
operators in Hilbert space which in itself is a weak convergence result:

3The paper also analyzes a different proof of Browder’s theorem, due to Halpern, that already avoids
any use of weak compactness.
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Theorem 1.1 (Baillon [2]). Let C ⊂ X be a nonempty bounded closed convex subset of
a Hilbert space X and let T : C → C be a nonexpansive mapping. Then for every x ∈ C,
the sequence (yn) of Cesàro averages

yn :=
1

n+ 1

n∑
k=0

T k(x)

converges weakly to a fixed point of T.

Already as an a priori consequence of the formalizability of proofs of Baillon’s theo-
rem in suitable formal systems, the general logical metatheorems from [11, 12] guarantee
that there is an effective (and – as we will see in section 2 below – even primitive recur-
sive in the sense of Gödel’s calculus T, see [7, 8]) bound ϕ(ε, h, b) such that the following
holds (where N∗ := {1, 2, 3, . . .}):

Theorem 1.2 (Metastable version of Baillon’s theorem). Let X be a Hilbert space and
C ⊂ X be a nonempty bounded, closed and convex subset. Let N∗ 3 b ≥ ‖x‖ for all
x ∈ C. For ε > 0, h : N → N, w ∈ B1(0) and T : C → C be nonexpansive, the
following holds

∃l ≤ ϕ(ε, h, b)
(
|〈yl − yh̃(l), w〉| < ε

)
,

where h̃(n) := max{h(n), n} and (yn) as is above.

Note that this provides a highly uniform strengthening of

(∗) ∀ε > 0 ∀h : N→ N∀w ∈ B1(0)∃l ∈ N
(
|〈yl − yh̃(l), w〉| < ε

)
as the bound does not depend on X, x0, T or w and on C only via b. As a consequence,
instead of the infinite sequence (yn) involved in (∗), theorem 1.2 only refers to finite
initial segments of (yn) and so can be viewed as a finitization of (∗) in the sense of Tao
[23]. (∗), however, is (ineffectively) equivalent to the weak Cauchy property of (yn) and
hence (as X is a Hilbert and so a reflexive space) to the weak convergence of (yn) which
is the essence of Baillon’s theorem. In this sense, theorem 1.2 is a finitization of Baillon’s
theorem itself.

The theorem implies the only seemingly stronger version

∃l ≤ ϕ(ε/2, (h+)M , b)∀i, j ∈ [l; l + h(l)]
(
|〈yi − yj, w〉| < ε

)
,

where (h+)M(n) := max
i≤n
{i + h(i)} and [l; l + h(l)] := {l, l + 1, . . . , l + h(l)} (see

corollary 3.8) which literally corresponds to the formulation of metastability as used by
Tao (adapted to the case at hand).
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In the final and main section of the present paper we analyze (following the strategy
sketched already in section 4 of [14]) a proof of Baillon’s nonlinear ergodic theorem due
to Brézis and Browder [4] which is particularly easy to formalize in systems of the type
used in [12].

While the actual description of the above mentioned functional Ω∗ is devoted to a separate
paper ([15]), we in section 3 below explicitly construct the bound ϕ using Ω∗ as a given
operator by analyzing the proof of Baillon’s theorem relative to its use of weak sequential
compactness.

2 The monotone functional interpretation of weak sequen-
tial compactness in Hilbert space

Throughout this paper, X will be a (real) Hilbert space and B1(0) the closed unit ball in
X.

The well-known fact that every sequence (xn) in B1(0) has a weak cluster point in B1(0)

can be formalized as follows (in the language of T := P̂A
ω
|\+ QF-AC+CA0

ar)[X, 〈·, ·〉, C],
see [12] for details), where (xn) ⊂ B1(0) means ∀nN(‖xn‖X ≤R 1) and ∀xX resp. ∃xX

are more conveniently written as ∀x ∈ X resp. ∃x ∈ X and similarly for N)

(1) ∀(xn) ⊂ B1(0)∃v ∈ X ∀w ∈ X∀k ∈ N ∃n ≥ k (|〈ṽ − xn, w〉| <R 2−k),

where

ṽ :=
v

max{‖v‖, 1}
.

Remark 2.1. The formulation (1) is slightly weaker than then more usual definition of
‘weak cluster point’, where the existence of a common n ≥ k for a finite set of vectors
w1, . . . , wm is stated. However, for our quantitative interpretation of Baillon’s theorem the
(functional interpretation of) the version (1) is sufficient. The construction of the solution
functional Ω∗ of the functional interpretation of (1) from [15] referred to after Theorem
2.2 below also adapts to the more general case. In fact, as our formal framework proves
the existence of a weakly convergent subsequence of (xn) (see [13]) even that (strongest)
form of weak compactness has a solution functional.

By QF-AC, (1) is equivalent (over T ) to

(2) ∀(xn) ⊂ B1(0)∃v ∈ X ∃χ∀w ∈ X∀k ∈ N ∃n ∈ [k, χ(w, k)] (|〈ṽ−xn, w〉| <R 2−k),

where χ has the type X → (N→ N), i.e. represents a function X × N→ N.
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(2) in turn implies (and over T actually is equivalent to)4

(3)

{
∀(xn) ⊂ B1(0)∀W,K ∃v ∈ X ∃χ∃n ∈ [K(v, χ), χ(W (v, χ), K(v, χ))](

|〈ṽ − xn,W (v, χ)〉| <R 2−K(v,χ)
)
,

where (switching for convenience implicitly to product types)

W : X × (X × N→ N)→ X and K : X × (X × N→ N)→ N.

Applying (3) to
W̃ (v, χ) := W (ṽ, χ) and K̃(v, χ) := K(ṽ, χ)

yields

(4)

{
∀(xn) ⊂ B1(0)∀W,K ∃v ∈ X ∃χ∃n ∈ [K(ṽ, χ), χ(W (ṽ, χ), K(ṽ, χ))](

|〈ṽ − xn,W (ṽ, χ)〉| <R 2−K(ṽ,χ)
)
,

which in turn implies back (3) (take v := ṽ for v as in (4) and observe that ṽ = ˜̃v).
In the following T0 denotes the fragment of Gödel’s [7] system T of primitive recursive
functionals of all finite types that is defined only using ordinary primitive recursion of
type N (and hence defines primitive recursive functionals in the ordinary sense of Kleene).
T0+B0,1 denotes the functionals that are definable using such ordinary primitive recursion
by means of Spector’s [21] operator B0,1 for bar recursion of type N (see [12] for details
on all this). Functionals definable in T0 + B0,1 do not define total functionals in the full
set-theoretic model Sω over N but only in the model of strongly majorizable functionals
Mω due to [3] (again see [12] for details). Nevertheless, functionals of type level ≤ 2

(i.e. functionals taking only numbers and number theoretic functions as arguments and
numbers as values) in T0 + B0,1 do define total functionals (e.g. of type NN × N → N)
and – as shown in [10] – define exactly those functionals (of the respective type) that are
primitive recursive in the sense of Gödel’s T.
In the next theoremMω,X denotes the extension of Bezem’s modelMω to all finite types
(i.e. all function spaces) over N and X from [6, 12].

As shown in [13], (1) – and hence (4) – is provable in T . In fact, T proves that any
sequence in B1(0) contains a weakly convergent subsequence. Using the fact that T has
a monotone functional interpretation (combined with negative translation, i.e. – using the
terminology from [12] – NMD) by terms in T0 + B0,1 (see [12]) the following theorem
holds:

Theorem 2.2. (Uniform quantitative version of weak sequential compactness) Applying
monotone functional interpretation to the proof of (1) from [13] yields the extractability

4Note that we can replace <R by ≤R which is in Π0
1.
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of a closed term Ω∗ in T0 + B0,1 such that (denoting the strong majorizability relation
&0X – with the zero vector 0X as reference point – from [6, 12] by &) the following is
true in the model of all strongly majorizable functionalsMω,X

∃Ω . Ω∗ ∀K,W ∀(xn) ⊂ B1(0)
∃v ∈ X ∃χ = Ω(K,W, (xn))∃n ∈ [K(ṽ, χ), χ(W (ṽ, χ), K(ṽ, χ))](

|〈ṽ − xn,W (ṽ, χ)〉| <R 2−K(ṽ,χ)
)
.

Since our final bound ϕ on the metastable form of Baillon’s theorem is of type two
it follows from the above (i.e. the fact that the proof of Baillon’s theorem formalizes in
T which has a monotone functional interpretation by terms in T0 + B0,1 that only define
functionals of type 2 that are already definable in T ) that ϕ ∈ T. The detailed construction
of Ω∗ carried out (for the caseC := B1(0)) in [15] together with the structure of the bound
ϕ constructed in the present paper even yields that the bound is definable at the 4-th level
T4 of T.

The statement in theorem 2.2 is equivalent to

(6)


∃Ω . Ω∗ ∀K,W ∀(xn) ⊂ B1(0)

∃v ∈ B1(0)∃χ = Ω(K,W, (xn)) ∃n ∈ [K(v, χ), χ(W (v, χ), K(v, χ))](
|〈v − xn,W (v, χ)〉| <R 2−K(v,χ)

)
.

By bounded choice b-AC (which holds inMω,X , see [12]), (6) implies

Corollary 2.3. The following is true in the model of all strongly majorizable functionals
Mω,X :

∃Ω̃ . Ω∗ ∀K ∀l ∈ N∀(xn) ⊂ B1(0)

∃v ∈ B1(0)∃χ = Ω̃(K, l, (xn))∀w ∈ Bl(0)∃n ∈ [K(v, χ), χ(w,K(v, χ))](
|〈v − xn, w)〉| <R 2−K(v,χ)

)
.

Proof. Given K, l, (xn) define Ω̃(K, l, (xn)) := Ω(K,WK,l,(xn), (xn)) (with Ω from theo-
rem 2.2), where

WK,l,(xn)(v, χ) :=
some w ∈ Bl(0) s.t. ¬∃n ∈ [K(v, χ), χ(w,K(v, χ))]

(
|〈v − xn, w〉| < 2−K(v,χ)

)
if existent,

0X , otherwise.

WK,l,(xn)(v, χ) exists (as a functional in K, l, (xn), v and χ) by the axiom of bounded

choice. Then – by theorem 2.2 – we get that (for χ := Ω̃(K, l, (xn)))

∃v ∈ B1(0)∃n ∈ [K(v, χ), χ(WK,l,(xn)(v, χ), K(v, χ))](
|〈v − xn,WK,l,(xn)(v, χ)〉| <R 2−K(v,χ)

)
.
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and so – by the definition of WK,l,(xn) –

∃v ∈ B1(0)∀w ∈ Bl(0)∃n ∈ [K(v, χ), χ(w,K(v, χ))]
(
|〈v − xn, w)〉| <R 2−K(v,χ)

)
.

Moreover (using that WK,l,(xn) is majorized by a suitable constant-l functional which we
also denote by l)5,

∀K∗, K, l∗, l ∀(xn) ⊂ B1(0) (K∗ & K ∧ l∗ ≥ l→ Ω∗(K∗, l∗) & Ω̃(K, l, (xn)),

which implies that Ω∗ & Ω̃.

In the above corollary, one can easily also allow the sequence (xn) to be in Bb(0) (for
some b ∈ N∗) instead of B1(0) if also v is allowed to be in Bb(0) : just applying the
corollary to xbn := xn/b ∈ B1(0) and Kb(v, χ) := K(v, χ) + dlog(b)e yields the result
with Ω̃(K, b, l, (xn)) := Ω̃(Kb, l, (xbn)). In our application in the next section we have
l = 2b and so from now on we simply write Ω̃(K, b, (xn)) to denote Ω̃(K, b, 2b, (xn)).

Somewhat more complicated is the issue whether we may allow an arbitrary nonempty
b-bounded closed and convex subset C ⊂ X instead of Bb(0). This rests on the fact
whether the proof of the so-called Mazur lemma (needed to show that v again is in C) can
be formalized in the weakly extensional treatment of abstract convex sets from [12] (for
an extensional schematic treatment of C this is verified in [13]). While it is open whether
the statement

‘Every weak limit v of a sequence (xn) in C is also in C’

formalizes in the weakly extensional setting (probably not), one easily obtains from the
treatment Mazur’s proof in [13] that the version:

‘Every weakly convergent sequence (xn) in C possesses a weak limit v ∈ C’

is formalizable. Note the subtle point, that while the weak limit of course is unique w.r.t.
=X , the weakly extensional setting does not prove

v ∈ C ∧ w =X v → w ∈ C.

However, the second version suffices for the proof of the above corollary for an abstract
b-bounded closed and convex subset C instead of Bb(0) together with the extractability of
a majorant Ω∗ of an operator Ω̃(K, b, (xn)) so that Ω∗(K∗, b) majorizes Ω̃(K, b, (xn)) for
(xn) in C and K∗ majorizing K (K∗ is of type N× (N×N→ N)→ N), i.e. the majorant

5Officially, Ω∗ has a 3rd argument g : N → N which is a potential majorant for (xn). However, as we
only consider sequences in B1(0) we can take this to be the constant-1 function.
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does not depend on C except for the norm bound b. Instead of the previous construction
v 7→ ṽ ∈ B1(0) one now uses v 7→ ṽ ∈ C, where

ṽ :=

{
v, if χC(v) = 0
cX , otherwise,

where χC , cX are the constants used in the formalization of abstract convex sets from [11]
(see also [12]).

The combinatorial strength of a weak cluster point v of a sequence (xn) stems from the
fact that e.g. not only does exist for a given vector w and an error ε > 0 an index n0 such
that |〈v − xn0 , w〉| < ε but – given another vector w′ – also an index n1 larger than some
given function of v and n0 such that |〈v − xn1 , w

′〉| < ε′, where ε′ > 0 maybe given
as a function of v and n0 (and ε). In fact, w′ may (and typically will) depend on v (and
maybe n0) as a function w′ = T (v, n0) etc. Of course, much more involved scenarios
may happen as well (and do happen in our treatment of the proof of Baillon’s theorem
in the next section). Here we will as a motivating exercise show how the situation just
described and stated as ‘lemma 5.4’ in [14] is covered by corollary 2.3 making use of
a suitably chosen case distinction functional K provided that the functions involved are
majorizable, i.e. exist in the modelMω,X . This is a simpler version of a technical proof
used in the next section (from now on we omit the subscript ‘R’ in ‘≤R’ etc. as it will
always be clear from the context what the objects involved are):

Proposition 2.4. There exists a computable (in fact prim.-rec. in Ω∗) functional χ∗ :

NN × N× N→ N such that

∀ε > 0 ∀l ∈ N∗ ∀f : N→ N∗ ∀(xn) ⊆ B1(0)∀ϕ : X × N→ (0, 1] ∀w ∈ Bl(0)

∀T̃ : B1(0)× N→ Bl(0)
(
f & ϕ→ ∃v ∈ B1(0)∃n0 ≤ χ∗(f, d1/εe, l)∃n1 ≥ 2

ϕ(v,n0)(
|〈v − xn0 , w〉| < ε ∧ |〈v − xn1 , T̃ (v, n0)〉| < ϕ(v, n0)

))
,

where f & ϕ :≡ ∀j ∈ N∀v ∈ B1(0) ( 1
f(j)
≤ ϕ(v, j)) for f : N→ N∗.

Proof. Fix ε, l, f, (xn), ϕ, w, T̃ as in the proposition and assume that f & ϕ. Define K :=

Kw,ε,ϕ,(xn) : X × (X × N→ N)→ N by

K(v, χ) :={
jε := dlog(1/ε)e, if ∀n ∈ [jε, χ(w, jε)]

(
|〈ṽ − xn, w〉| ≥ 2−jε

)
max

(⌈
2

ϕM (ṽ,χ(w,jε))

⌉
,
⌈
− log

(
ϕM(ṽ, χ(w, jε))

)⌉)
, otherwise,

where ϕM(v,m) := min{ϕ(v, n) : n ≤ m} and ṽ := v
max{‖v‖,1} as before.

Corollary 2.3 applied to K, (xn) and l yields the existence of v ∈ B1(0) and χ =
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Ω̃(K, l, (xn)) such that (reasoning inMω,X ; note that by the construction of K∗ below it
is clear that K is majorizable)

(∗) ∀z ∈ Bl(0)∃n ∈ [K(v, χ), χ(z,K(v, χ))]
(
|〈v − xn, z〉| < 2−K(v,χ)

)
.

By the definition of K, (∗) applied to z := w yields

∃n0 ∈ [jε, χ(w, jε)]
(
|〈v − xn0 , w〉| < 2−jε ≤ ε

)
and

K(v, χ) = max

(⌈
2

ϕM(v, χ(w, jε))

⌉
,
⌈
− log

(
ϕM(v, χ(w, jε))

)⌉)
.

Applying (∗) again (but this time to w := T̃ (v, n0)) gives (using that n0 ≤ χ(w, jε))

∃n1 ≥ K(v, χ) ≥ 2

ϕ(v, n0)

(
|〈v − xn1 , T̃ (v, n0)〉| < 2−K(v,χ) ≤ ϕ(v, n0)

)
.

Now define for v∗ ∈ N and χ∗ : N2 → N

K∗l,ε,f (v
∗, χ∗) := K∗(v∗, χ∗) := K∗(χ∗) :=

max {jε, 2f(χ∗(l, jε)), dlog(f(χ∗(l, jε)))e} = max{jε, 2f(χ∗(l, jε))}.

Then K∗ & K and so Ω∗(K∗, l) & Ω̃(K, l, (xn)) = χ (here ‘&’ for general finite type
function spaces over N, X again is the relation denoted by ‘&0X ’ in [12]).
It follows that χ∗(f, n, l) := Ω∗(K∗

l, 1
n+1

,f
, l)(l, jε) ≥ χ(w, jε) for n ≥ d1

ε
e.

3 A quantitative finitization of Baillon’s nonlinear ergodic
theorem in Hilbert space

Let C ⊂ X be a nonempty bounded, closed, convex subset of the Hilbert space X and
b > 0 be such that b ≥ ‖x‖ for all x ∈ C.

Lemma 3.1. Let (xn) be a sequence in C and define yn := 1
n+1

n∑
k=0

xk ∈ C.

Let ε > 0 and nε :=
⌈

2(n+1)b
ε

⌉
− 1 for n ∈ N.

Then

∀n ∈ N ∀m ≥ nε ∃um ∈ Cm
n

(
‖ym − um‖ ≤ ε

)
,

where Cm
n := co{xn, xn+1, . . . , xm} is the convex closure of {xn, xn+1, . . . , xm} for m ≥

n.
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Proof. For j with n < j ≤ m define

λj :=
1

m+ 1
and λn := 1− m− n

m+ 1
=

n+ 1

m+ 1
.

Then
m∑
j=n

λj = 1 and so
m∑
j=n

λjxj ∈ Cm
n . Moreover,

‖ym −
m∑
j=n

λjxj‖ ≤ 1
m+1

n∑
k=0

‖xk‖+ n+1
m+1
‖xn‖

≤ n+1
m+1

b+ n+1
m+1

b = 2(n+1)b
m+1

m≥nε
≤ 2(n+1)b

nε+1
≤ ε.

Lemma 3.2. Let (an), (bn) be sequences in [0, N ], where N > 0.

Define ãn := min{ai : i ≤ n} and - analogously - b̃n. Then the following holds:

∀ε > 0∀g : N→ N ∃n ≤ Φ(ε, g,N)∀j ∈ [n; g̃(n)]
(
|ãn − ãj| < ε ∧ |b̃n − b̃j| < ε

)
,

where g̃(n) := max{n, g(n)}, [n;m] := {j ∈ N : n ≤ j ≤ m} and

Φ(ε, g,N) := g̃(d 2N
ε e)(0).

Proof. Since (ãn) and (b̃n) are non-increasing sequences also (cn) defined by cn := ãn +

b̃n ∈ [0, 2N ] is non-increasing. By [12] (prop.2.27 and rem.2.29.1) we have

∀ε > 0∀g : N→ N∃n ≤ Φ(ε, g,N)∀j ∈ [n; g̃(n)]
(
|cn − cj| < ε

)
.

Because of ãn − ãj, b̃n − b̃j ≥ 0 for all j ≥ n one has

|ãn − ãj|+ |b̃n − b̃j| = |ãn − ãj + b̃n − b̃j| = |(ãn + b̃n)− (ãj + b̃j)| = |cn − cj|.

Hence the lemma follows.

Lemma 3.3 (Quantitative demiclosedness principle, [14]). Let (xn) be a sequence in C,

v ∈ C and T : C → C be a nonexpansive mapping. For ε > 0 define vε := v− ε2

16b2
(Id−

T )(v) ∈ C. Then the following holds for all ε > 0 and all j ∈ N :

|〈(Id− T )(vε), xj − v〉| <
ε4

96b2
∧ ‖T (xj)− xj‖ <

ε4

96b3
→ ‖v − T (v)‖ < ε.

Proof. For C := B1(0), this lemma is proved already in [14]. We include here for com-
pleteness the adaptation of this proof for general C : Define T̃ := Id− T.

(1)

{
0 ≤ ‖vε − xj‖2 − 〈T (vε)− T (xj), vε − xj〉 = 〈T̃ (vε)− T̃ (xj), vε − xj〉

= 〈T̃ (vε), vε〉 − 〈T̃ (xj), vε〉 − 〈T̃ (xε), xj〉+ 〈T̃ (xj), vj〉.
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Since ‖xj‖, ‖vε‖ ≤ b we have that

b · ‖T (xj)− xj‖ ≥ |〈T̃ (xj), xj〉|, |〈T̃ (xj), vε〉|.

Hence (1) and the assumption yield

− ε4

32b2
< 〈T̃ (vε), vε − v〉 = 〈T̃ (v − ε2

16b2
T̃ (v)),− ε2

16b2
T̃ (v)〉

= − ε2

16b2
〈T̃ (v − ε2

16b2
T̃ (v)), T̃ (v)〉.

Thus
ε2

2
> 〈T̃ (v − ε2

16b2
T̃ (v)), T̃ (v)〉

and so (!)
ε2 > 〈T̃ (v), T̃ (v)〉 = ‖T̃ (v)‖2, i.e. ‖T̃ (v)‖ < ε.

‘!’ holds since T̃ ∈ Lip(2) and ‖T̃ (v)‖ ≤ ‖v‖+ ‖T (v)‖ ≤ 2b and so

‖T̃ (v)− T̃ (v − ε2

16b2
T̃ (v))‖ ≤ 2‖ ε2

16b2
T̃ (v)‖ ≤ ε2

4b
,

which implies

|〈T̃ (v), T̃ (v)〉−〈T̃ (v− ε2

16b2
T̃ (v)), T̃ (v)〉| ≤ ‖T̃ (v)− T̃ (v− ε2

16b2
T̃ (v))‖ · ‖T̃ (v)‖ ≤ ε2

2
.

Lemma 3.4 (Asymptotic regularity). Let T : C → C be a nonexpansive mapping, x0 ∈

C, xn+1 := T (xn) and yn := 1
n+1

n∑
k=0

xk. Then the following holds

∀ε > 0 ∀n ≥ ρ(ε)
(
‖T (yn)− yn‖ < ε

)
,

where ρ(ε) := d4b2/ε2e. We say that ρ is a rate of asymptotic regularity for (yn).

Proof. From the proof of theorem 1 in [4] (for the special case where an,k := 1
n+1

for k ≤
n and an,k := 0 for all k > n, where k, n ∈ N, so that γn :=

∑∞
k=0(an,k+1 − an,k)+ = 0)

it follows that

2‖yn − T (yn)‖2 ≤ 2

n+ 1
· diam(C)2 ≤ 8b2

n+ 1
.

Hence ‖yn − T (yn)‖ ≤ 2b√
n+1

< ε for all n ≥ d4b2/ε2e.

In the following, let T, xn, yn be as in the previous lemma and ρ : R∗ → N be a rate
of asymptotic regularity for (yn). For ε > 0 and n ∈ N define ε̃ := ε2

144b
and δε,n :=
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min
{

1, ε̃
(4b+1)(n+1)

}
(so that (n + 1)(4bδε,n + δ2

ε,n) ≤ ε̃). Let nε :=
⌈

2(n+1)b
ε

⌉
, n̂ε :=

max {nε̃, dlog(2/(ε̃b))e, dlog(4/ε)e} and Φ̃(ε, g, b) := g̃

(⌈
8b2

ε̃

⌉)
(0), where for g : N→ N

we define g̃(n) := max{n, g(n)}. Moreover, let tε(n) := ρ(δ4
ε,n/96b3) and – for v ∈ C

and δ > 0 – vδ := v− δ2

162 (Id−T )(v) ∈ C. Finally, for h : N→ N and w ∈ B1(0) define

χh(n) := max{n, nε̃, χ(n̂ε), h̃
M(χ(n̂ε))) and hw,v(n) :=

{
n, if |〈yn − v, w〉| ≥ ε

2

h̃(n), otherwise.

Lemma 3.5. Let T : C → C be nonexpansive, w ∈ B1(0), h : N → N and ε > 0. Then
there are u, v ∈ C and χ : N→ N such that

∃m ≤ Φ̃(ε, χh, b)∃q, n, l ≤ χ(m̂ε)∃km, k̃m ≥ tε
(
(χh)

M(Φ̃(ε, χh, b))
)

(a) q, n ≥ mε̃ ∧
(b) |〈yn − u, u− v〉| < ε̃b

2
∧

(c) |〈ykm − u, (Id− T )(uδ
ε,(χh)M (Φ̃(ε,χh,b))

)〉| <
δ4
ε,(χh)M (Φ̃(ε,χh,b))

96b2
∧

(d) |〈yhw,u(l) − v, w〉| < ε
4
∧

(e) |〈yhw,u(q) − v, v − u〉| < ε̃b
2
∧

(f) |〈yhw,u(k̃m) − v, (Id− T )(vδ
ε,(χh)M (Φ̃(ε,χh,b))

)〉| <
δ4
ε,(χh)M (Φ̃(ε,χh,b))

96b2
∧

(g) ∀j ∈ [m;χh(m)]
∧

z∈{u,v}

(∣∣∣ ˜‖xm − z‖2 − ˜‖xj − z‖2

∣∣∣ < ε̃
)

Proof. (yn)n∈N ⊂ C has a weak cluster point u ∈ C, i.e.

(+) ∀z ∈ X ∀k ∈ N∃n ≥ k
(
|〈yn − u, z〉| < 2−k

)
.

Analogously, there is a weak cluster point v ∈ C of (yhw,u(n))n∈N, i.e.

(++) ∀z ∈ X ∀k ∈ N ∃n ≥ k
(
|〈yhw,u(n) − v, z〉| < 2−k

)
.

Hence for given ε > 0 and w ∈ B1(0) there is χ : N → N (using only QF-AC0,0) such
that

(∗)
{
∀k ∈ N ∃q, n, l ∈ [k;χ(k)](
|〈yn − u, u− v〉| < 2−k ∧ |〈yhw,u(q) − v, v − u〉| < 2−k ∧ |〈yhw,u(l) − v, w〉| < 2−k

)
.

By lemma 3.2 we also have (note that χh = ˜(χh))

∃m ≤ Φ̃(ε, χh, b)∀j ∈ [m;χh(m)]
∧

z∈{u,v}

(∣∣∣ ˜‖xm − z‖2 − ˜‖xj − z‖2

∣∣∣ < ε̃
)
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since ‖xj − z‖2 ≤ 4b2.

Let m be as above and apply (∗) to k := m̂ε. Then (using that mε̃ ≤ m̂ε)

∃q, n, l ∈ [mε̃;χ(m̂ε)](
|〈yn − u, u− v〉| < ε̃b

2
∧ |〈yhw,u(q) − v, v − u〉| < ε̃b

2
∧ |〈yhw,u(l) − v, w〉| < ε

4

)
.

Applying (+) and (++) again yields

∃km, k̃m ≥ tε
(
(χh)

M(Φ̃(ε, χh, b))
)(

|〈ykm − u, (Id− T )(uδ
ε,(χh)M (Φ̃(ε,χh,b))

)〉| <
δ4
ε,(χh)M (Φ̃(ε,χh,b))

96b2
∧

|〈yhw,u(k̃m) − v, (Id− T )(vδ
ε,(χh)M (Φ̃(ε,χh,b))

)〉| <
δ4
ε,(χh)M (Φ̃(ε,χh,b))

96b2

)
,

which concludes the proof.

In the following, we construct – using Ω∗ from the previous section – a majorant χ∗ for
χ in lemma 3.5 that only depends on ε > 0, b ∈ N and h : N→ N but not onX,C (except
for b), the points x ∈ C,w ∈ B1(0) or the mapping T : C → C. For ψ : X × N → N
define (χ ∧ ψ)(u, n) := max{χ(u, n), ψ(u, n)} and (for additionally u, v ∈ C)

(χ ∧ ψ)u,v(n) := (χ ∧ ψ)u,v,w(n) :=
max ((χ ∧ ψ)(v − u, n), (χ ∧ ψ)(u− v, n), (χ ∧ ψ)(w, n)) ,
(χ ∧ ψ)u,v,h :=

(
(χ ∧ ψ)u,v

)
h
.

Now define

Kv,ψ(u, χ) :=
m̂ε for the least m ≤ Φ̃(ε, (χ ∧ ψ)u,v,h, b) such that
¬∀z ∈ B2b(0)∃n ∈ [m̂ε, (χ ∧ ψ)(z, m̂ε)]

(
|〈yn − u, z〉| < min

{
ε̃b
2
, ε

4

})
if existent,

max

{
tε

(
((χ ∧ ψ)u,v,h)

M(Φ̃(ε, (χ ∧ ψ)u,v,h, b))
)
, log

⌈
96b2

δ4
ε,((χ∧ψ)u,v,h)M (Φ̃(ε,(χ∧ψ)u,v,h,b))

⌉}
,

otherwise.

Furthermore, define

K̃u,χ(v, ψ) :=
m̂ε for the least m ≤ Φ̃(ε, (χ ∧ ψ)u,v,h, b) such that
¬∀z ∈ B2b(0)∃n ∈ [m̂ε, (χ ∧ ψ)(z, m̂ε)]

(
|〈yhw,u(n) − v, z〉| < min

{
ε̃b
2
, ε

4

})
if existent,

max

{
tε

(
((χ ∧ ψ)u,v,h)

M(Φ̃(ε, (χ ∧ ψ)u,v,h, b))
)
, log

⌈
96b2

δ4
ε,((χ∧ψ)u,v,h)M (Φ̃(ε,(χ∧ψ)u,v,h,b))

⌉}
,

otherwise.
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Remark 3.6. It is clear that K and K̃ are majorizable (in fact by primitive recursive
functionals; see below) and hence denote functionals in the modelMω,X . The ineffective
case distinction used in the definition of K, K̃ could be avoided since instead of ‘∀z ∈
B2b(0)’ it suffices to consider ‘∀z ∈ {v − u, u − v, w}’ (see below) and ‘<R’ can be
replaced by an appropriate approximate version. However, for the construction of the
majorants this anyhow does not matter as the case distinction gets replaced by taking the
maximum of both cases.

Let us motivate first the definition of Kv,ψ (and similarly of K̃u,χ):

for u := V (Kv,ψ, 2b, (yn)) and χ := Ω̃(Kv,ψ, 2b, (yn)) (where Ω̃ is as in corollary 2.3 –
extended to general b-bounded closed convex C as in the comments after corollary 2.3 –
and V (K, 2b, (yn)) selects a v ∈ C as in corollary 2.3) we get from corollary 2.3 that

(+)

{
∀m ≤ Φ̃(ε, (χ ∧ ψ)u,v,h, b)
∀z ∈ B2b(0)∃n ∈ [m̂ε, (χ ∧ ψ)(z, m̂ε)]

(
|〈yn − u, z〉| < min

{
ε̃b
2
, ε

4

})
since, otherwise,Kv,ψ would be m̂ε for the least counterexamplem ≤ Φ̃(ε, (χ∧ψ)u,v,h, b)

so that

¬∀z ∈ B2b(0)∃n ∈ [m̂ε, (χ ∧ ψ)(z, m̂ε)]

(
|〈yn − u, z〉| < min

{
ε̃b

2
,
ε

4

})
and so a fortiori – since χ ∧ ψ ≥ χ and Kv,ψ(u, χ) = m̂ε ≥ log(2/(ε̃b), log(4/ε) –

¬∀z ∈ B2b(0)∃n ∈ [Kv,ψ(u, χ), (χ(z,Kv,ψ(u, χ))]
(
|〈yn − u, z〉| < 2−Kv,ψ(u,χ)

)
contradicting corollary 2.3.
(+) implies (applied to z ∈ {v−u, u−v, w} and using that (χ∧ψ)u,v(n) ≥ (χ∧ψ)(z, n)

for those z and all n)6

(++)

{
∀m ≤ Φ̃(ε, (χ ∧ ψ)u,v,h, b)
∀z ∈ {v − u, u− v, w} ∃n ∈ [m̂ε, (χ ∧ ψ)u,v(m̂ε)]

(
|〈yn − u, z〉| < min

{
ε̃b
2
, ε

4

})
(+) also implies (by the definition of Kv,ψ) that

Kv,ψ(u, χ) :=

max

{
tε

(
((χ ∧ ψ)u,v,h)

M(Φ̃(ε, (χ ∧ ψ)u,v,h, b))
)
, log

⌈
96b2

δ4
ε,((χ∧ψ)u,v,h)M (Φ̃(ε,(χ∧ψ)u,v,h,b))

⌉}
and so – by corollary 2.3 –

∀z ∈ B2b(0)∃n ≥ tε

(
((χ ∧ ψ)u,v,h)

M(Φ̃(ε, (χ ∧ ψ)u,v,h, b))
)(

|〈yn − u, z〉| <
δ4
ε,((χ∧ψ)u,v,h)M (Φ̃(ε,(χ∧ψ)u,v,h,b))

96b2

)
6For Kv,ψ we only need z := u− v while for K̃u,χ we need z := v − u and z := w.
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which – in particular – can be applied to

z := (Id− T )
(
uδ

ε,((χ∧ψ)u,v,h)M (Φ̃(ε,(χ∧ψ)u,v,h,b))

)
.

This finishes the motivation.
Now let u, χ be variables again and consider

ψu,χ := Ω̃(K̃u,χ, 2b, (yhw,u(n))) and vu,χ := V (K̃u,χ, 2b, (yhw,u(n))),

where Ω̃ is as in corollary 2.3 and V (K, 2b, (yn)) selects a v ∈ C as in corollary 2.3, and
define

K(u, χ) := Kvu,χ,ψu,χ(u, χ).

Finally, put
χK := Ω̃(K, 2b, (yn)) and uK := V (K, 2b, (yn)).

Then
χ :=

(
χK ∧ ψuK ,χK

)
u,v

so that
χh =

(
χK ∧ ψuK ,χK

)
u,v,h

satisfies lemma 3.5 with u := uK , v := vuK ,χK .

χ can be easily majorized as a functional χ∗(ε, h, b) as follows: define

K∗v,ψ(u, χ) := K̃∗u,χ(v, ψ) := max

{
̂(Φ̃(ε, α, b))ε, tε(α(Φ̃(ε, α, b))), log

⌈
96b2

δ4
ε,α(Φ̃(ε,α,b))

⌉}
,

where
α :=

(
((χ ∧ ψ)(2b))h

)M
.

Then
λv, ψ, u, χ.K∗v,ψ(u, χ) & λv, ψ, u, χ.Kv,ψ(u, χ)

and
λu, χ, v, ψ.K̃∗v,ψ(u, χ) & λu, χ, v, ψ.K̃v,ψ(u, χ).

Note that K∗ and K̃∗ actually do not depend on u, v, w as these vectors are majorized by
b and hence u− v, v − u are majorized by 2b. Likewise, vu,χ is majorized by b and for

ψ∗u,χ := Ω∗(K̃∗u,χ, 2b)

we have that λu, χ.ψ∗u,χ & λu, χ.ψu,χ. Hence for K∗(u, χ) := K∗b,ψ∗u,χ(u, χ) we have that

K∗ & K. Finally, define (making the hidden parameters ε, h, b explicit)

χ∗(ε, h, b) := χ∗K ∧ ψ∗b,χ∗K , where χ∗K := Ω∗(K∗, 2b).
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Then
χ∗(ε, h, b) & χ(ε, h, b).

Note that (for rational ε ∈ Q∗+) the bound χ∗ is primitive recursive (in the sense of Kleene)
in Ω∗ and so in total definable in T0 + B0,1 and hence (see the discussion before theorem
2.2) in Gödel’s system T of primitive recursive functionals of finite type.

Theorem 3.7 (Effective quantitative metastable version of Baillon’s nonlinear ergodic
theorem). Let X be a Hilbert space and C ⊂ X be a nonempty bounded, closed and
convex subset. Let N∗ 3 b ≥ ‖x‖ for all x ∈ C. For ε > 0, h : N → N, w ∈ B1(0) and
T : C → C be nonexpansive, the following holds

∃l ≤ ϕ(ε, h, b)
(
|〈yl − yh̃(l), w〉| < ε

)
,

where
ϕ(ε, h, b) := χ∗(ε, h, b)(n̂ε)

with
n̂ε := max {nε̃, dlog(2/(ε̃b))e, dlog(4/ε)e} ,where
n := Φ̃(ε, (χ∗(ε, h, b))hM , b),

ε̃ := ε2

144b
and nε :=

⌈
2(n+1)b

ε

⌉
.

Proof. Let u, v, χ,m, n, q, l, km, k̃m be as in lemma 3.5 where χ is constructed as above.
We will show now that l satisfies |〈yl − yh̃(l), w〉| < ε. Since (by lemma 3.5) l ≤ χ(m̂ε)

with m ≤ Φ̃(ε, χh, b) it then follows that l ≤ ϕ(ε, h, b) which proves the theorem.
By lemma 3.3, the conjuncts (c) and (f) in lemma 3.5 imply (using that by lemma 3.4 ρ

is a rate of asymptotic regularity for (yn) and km, k̃m ≥ tε
(
(χh)

M(Φ̃(ε, χh, b))
)
) that

(1) ‖T (u)− u‖ < δε,(χh)M (Φ̃(ε,χh,b))

and (since hw,u(k̃m) ≥ k̃m)

(2) ‖T (v)− v‖ < δε,(χh)M (Φ̃(ε,χh,b))
.

For all z ∈ C and k ∈ N one has

‖T (z)− z‖ < δε,n → ‖xk+1 − z‖2 ≤ (‖T (xk)− T (z)‖+ ‖T (z)− z‖)2

< (‖T (xk)− T (z)‖+ δε,n)2 ≤ (‖xk − z‖+ δε,n)2 = ‖xk − z‖2 + 2δε,n‖xk − z‖+ δ2
ε,n

δε,n≤1

≤ ‖xk − z‖2 + (4b+ 1)δε,n ≤ ‖xk − z‖2 + ε̃ · 1
n+1

.

(1) and (2) yield (note that (χh)
M(Φ̃(ε, χh, b)) ≥ χh(m)) that for z ∈ {u, v}

(3) ‖xj − z‖2 − ˜‖xj − z‖2 < ε̃
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for all j ≤ χh(m) and so conjunct (g) in lemma 3.5 (using that always ‖xj − z‖2 ≥
˜‖xj − z‖2) implies

(4) ∀j ∈ [m;χh(m)]
( ∣∣‖xm − z‖2 − ‖xj − z‖2

∣∣ < 2ε̃
)
.

Now define (for u, v ∈ C, ε > 0 and m ∈ N) a convex subset

Kv,u
ε,m :=

{
z ∈ X : |2〈z − v, v − u〉+ ‖xm − v‖2 − ‖xm − u‖2 + ‖v − u‖2| ≤ 4ε̃

}
.

For all a, ã ∈ X and j ∈ N one has

(5) ‖xj − ã‖2 = ‖xj − a‖2 + ‖a− ã‖2 + 2〈xj − a, a− ã〉

and so for (a, ã) = (v, u) resp. (a, ã) = (u, v) we get together with (4)

Cχh(m)
m ⊆ Kv,u

ε,m, K
u,v
ε,m.

By the definition of mε̃ we have by lemma 3.1

(6) ∀k ∈ [mε̃, χh(m)]∃uk ∈ Cχh(m)
m (‖yk − uk‖ ≤ ε̃).

Hence

(7)

{
∀k ∈ [mε̃, χh(m)] (|2〈yk − v, v − u〉+ ‖xm − v‖2 − ‖xm − u‖2 + ‖v − u‖2|
≤ 4ε̃+ 2ε̃‖u− v‖ ≤ 8ε̃b)

and (analogously)

(8) ∀k ∈ [mε̃, χh(m)]
(∣∣2〈yk − u, u− v〉+ ‖xm − u‖2 − ‖xm − v‖2 + ‖v − u‖2

∣∣ ≤ 8ε̃b
)
.

By the conjuncts (b) and (e) in lemma 3.5 this yields (note that – using conjunct (a) in
lemma 3.5 – χh(m) ≥ hw,u(q) ≥ q ≥ mε̃ and χh(m) ≥ χ(m̂ε) ≥ n ≥ mε̃)

(9) ‖xm − v‖2 + ‖v − u‖2 ≤ ‖xm − u‖2 + 9ε̃b

and
(10) ‖xm − u‖2 + ‖v − u‖2 ≤ ‖xm − v‖2 + 9ε̃b

and so in turn

(11) ‖v − u‖2 ≤ 9ε̃b =
ε2

16
, i.e. ‖v − u‖ ≤ ε

4
.

By conjunct (d) in lemma 3.5 and (11) we have that

(12) |〈yhw,u(l) − u,w〉| <
ε

2
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and so (using the definition of hw,u)

(13) |〈yl − u,w〉| <
ε

2
∧ |〈yh̃(l) − u,w〉| <

ε

2
.

Hence

(14)

{
|〈yl − yh̃(l), w〉| = |〈(yl − u)− (yh̃(l) − u), w〉| = |〈yl − u,w〉 − 〈yh̃(l) − u,w〉|
= |〈yl − u,w〉|+ |〈yh̃(l) − u,w〉| < ε.

Theorem 3.7 has the following seemingly stronger consequence:

Corollary 3.8.

∀ε > 0∀h : N→ N ∀w ∈ B1(0)∃l ≤ ϕ(ε/2, (h+)M , b)∀i, j ∈ [l; l+h(l)]
(
|〈yi−yj, w〉| < ε

)
,

where h+(n) := n+ h(n).

Proof. Apply theorem 3.7 to

h−w(l) := l + min i ≤ h(l) [∀j ≤ h(l)
(
|〈yl − yl+j, w〉| ≤ |〈yl − yl+i, w〉|

)
]

and ε/2. Note that h̃−w = h−w and that (h+)M majorizes h−w . Since – by construction – ϕ is
a selfmajorizing functional we have that

∃l ≤ ϕ(ε/2, h−w , b) ≤ ϕ(ε/2, (h+)M , b)
(
|〈yl − yh−w(l), w〉| <

ε

2

)
.

Since
∀j ≤ h(l)

(
|〈yl − yl+j, w〉| ≤ |〈yl − yh−w(l), w〉| <

ε

2

)
,

it follows that

∀i, j ∈ [l; l + h(l)]
(
|〈yi − yj, w〉| ≤ |〈yl − yj, w〉|+ |〈yl − yi, w〉| < ε

)
.

Final comments: While we believe that the above analysis faithfully reflects the fini-
tary combinatorial and effective content of the proof of Baillon’s theorem as given by
Brézis and Browder in [4], it remains open whether maybe a different proof (e.g. Bail-
lon’s original proof from [2]) might lead to an analysis that would allow one to bypass the
use of the quantitative weak compactness functional Ω∗ and so might provide a primitive
recursive (in the ordinary sense of Kleene) bound on the metastable version. In Baillon’s
proof, the weak convergence of (yn) is established by showing that this sequence weakly
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converges towards the strong limit of the sequence of projections of T n(x0) to the fixed
point set Fix(T ) of T. Though such projection arguments are hard to unwind, we man-
aged in [14] to do so in the case of a similar (but simpler) projection argument (namely
the existence of the projection of just x0 towards Fix(T )) in the proofs due to Browder
[5] and Wittmann [25] (which do use additionally weak compactness) of their respective
well-known theorems which resulted in an elimination of weak compactness altogether
and a primitive recursive bound. Only further research will tell us whether such an elim-
ination of weak sequential compactness might happen in the course of a logical analysis
of Baillon’s proof (repeated essentially also in [22]). However, even if this should turn out
to be the case, it is not clear whether this will result in a simpler (and primitive recursive)
bound as the existence of the sequence of projections of T n(x0) towards Fix(T ) requires
and instance of countable choice for a Π0

1-formula which in itself needs (for its monotone
Gödel functional interpretation) bar recursion (of lowest type) just as weak sequential
compactness does.
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