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1 Introduction

Recently, Kohlenbach and Leu̧stean developed a method for analyzing convergence proofs that
make use of Banach limits (and hence – for what is known – the axiom of choice) and applied this
method to obtain quantitive versions of convergence results for Halpern iterations in CAT(0) and
uniformly smooth spaces (see [15, 16]). In this paper we apply this method to a recent convergence
proof (again in the CAT(0)-setting) due to Cuntavepanit and Panyanak [4] for a modified scheme
of Halpern iterations due to Kim and Xu [10].
Given a nonempty convex subset C in a CAT(0) space, we consider u, x ∈ C, a sequence (λn) ⊂
[0, 1] and a nonexpansive mapping T : C → C with a nonempty fixed point set. Then the Halpern
iterations with initial point x and reference point u are given by

x0 := x, xn+1 := λnu⊕ (1− λn)Txn, for n ∈ N.

Here for x, y ∈ X and λ ∈ [0, 1], λx ⊕ (1 − λ)y denotes the unique point z ∈ X with d(z, x) =
(1− λ)d(x, y) and d(z, y) = λd(x, y).

A particularly important choice for λn is
(

1
n+2

)
n∈N

. Then, if T is linear and u is chosen equal to

x, one obtains the Cesàro averages of {Tnx}n∈N

xn =
1

n+ 1

n∑
i=0

T ix.

∗This paper is based on parts of the master thesis of the first author [23] written under the supervision of the
second author.

†The 2nd author has been supported by the German Science Foundation (DFG Project KO 1737/5-1).
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The conditions used in this paper always allow for this choice of (λn).
In [15], Kohlenbach and Leuştean extracted both effective rates of convergence for the asympotic
regularity property

d(xn, Txn) → 0

as well as effective so-called rates of metastability (in the sense of Tao [27]) for the convergence
of the sequence (xn) of Halpern iterations applying techniques of the proof mining program (see
[13] for general information) to a convergence proof due to Saejung [22]. Here, by a rate of
metastability, we mean a function Ψ : (0,∞)× NN → N such that

∀ε > 0 ∀g : N → N ∃N ≤ Ψ(ε, g) ∀m,n ∈ [N ;N + g(N)] (d(xn, xm) ≤ ε).

In general, there is no computable rate of convergence for Halpern iterations (xn)n∈N (already
for λn := 1/(n + 2) and linear T ) as follows from [1, Theorem 5.1]. Note, however, that the
metastability property

∀ε > 0 ∀g : N → N ∃N ∈ N ∀m,n ∈ [N ;N + g(N)] (d(xn, xm) ≤ ε)

(for which [15] does extract effective rates) ineffectively is equivalent to the usual Cauchy property.
Saejung’s original proof makes substantial reference to the axiom of choice by using the existence
of Banach limits. Kohlenbach and Leuştean eliminated this reference in favor of a use of a finitary
functional which renders Saejung’s proof admissible for the proof mining program. In this paper
we apply this method to a variation of Halpern iterations, the aforementioned modified Halpern
iterations due to [10]:
In the same setting as above we consider two sequences (αn)n∈N, (βn)n∈N ⊂ [0, 1]. Then the
modified Halpern iterations with initial point x and reference point u are given by

x0 := x, xn+1 := βnu⊕ (1− βn)(αnxn ⊕ (1− αn)Txn), for n ∈ N.

So instead of using Txn as in the usual Halpern iteration, one takes here a so-called Krasnoselski-
Mann iteration

αnxn ⊕ (1− αn)Txn.

Modified Halpern iterations can be seen as generalizations of Halpern iterations by putting αn ≡ 0
and so our results (which allow this choice) extend the quantitative metastability and asymptotic
regularity results of [15]. The main convergence result that we treat is due to Cuntavepanit and
Panyanak [4].
Even for ordinary Halpern iterations, the inclusion of the case of unbounded C in our bounds is
new compared to [15].
Our paper further strengthens the claim made in [15] to have developed a general method for
analyzing quantitatively strong convergence proofs that use Banach limits.

2 Preliminaries

CAT(0) spaces are instances of geodesic spaces which are special metric spaces. Roughly speaking,
in a geodesic space the associated metric behaves in an orderly manner, i.e. making sure there is
at least one shortest path between two points. A CAT(0) space enforces further regularity in the
sense that every triangle in the space is as “thin” as in Euclidean space.
The terminology of CAT(κ) spaces is due to Gromov [8]. CAT(0) spaces are uniquely geodesic.
[2, Proposition II.1.4(1)]
With (1− λ)x⊕ λy we denote the unique point z on the unique geodesic segment [x, y] joining x
and y such that

d(z, x) = λd(x, y) and d(z, y) = (1− λ)d(x, y) (1)

holds.
The following properties of CAT(0) spaces are of interest to us.
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Proposition 2.1 ([5, Lemma 2.5]). Let X be a CAT(0) space. Then the following inequality holds
for all x, y, z ∈ X and for all t ∈ [0, 1]:

d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2. (2)

For a uniquely geodesic space X, this property is equivalent to X being a CAT(0) space.

Proposition 2.2 ([5, Lemma 2.4]). Let X be a CAT(0) space. If x, y, z are points in X and
t ∈ [0, 1], then

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z), (3)

i.e. CAT(0) spaces are, in particular, convex metric spaces in the sense of Takahashi [26] by taking
W (x, y, λ) := (1− λ)x⊕ λy.

Every pre-Hilbert space is a CAT(0)-space. Another example is the open unit ball B in C with
the Poincaré metric,

ρ(z, w) := 2 tanh−1

∣∣∣∣ z − w

1− zw

∣∣∣∣ for z, w ∈ B.

This example is interesting for fixed point theory, since holomorphic mappings f : B → B are
nonexpansive with respect to ρ (Schwarz-Pick Lemma, see [7]). R-trees in the sense of Tits are
further examples of CAT(0) spaces.
W-hyperbolic spaces are in turn generalizations of CAT(0) spaces. The following definition of
W-hyperbolic spaces is due to Kohlenbach [12, Definition 2.11].

Definition 2.3. A triple (X, d,W ) is called a W-hyperbolic space if (X, d) is a metric space and
W : X ×X × [0, 1] → X is a mapping satisfying

(W1) d(z,W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y),

(W2) d(W (x, y, λ0),W (x, y, λ1)) = |λ0 − λ1|d(x, y),

(W3) W (x, y, λ) = W (y, x, 1− λ),

(W4) d(W (x, z, λ),W (y, w, λ)) ≤ (1− λ)d(x, y) + λd(z, w).

Lemma 2.4 ([13, p.386]). Let (X, d) be a CAT(0) space. If it is equipped with the mapping
W : X ×X × [0, 1] → X,

W (x, y, λ) := (1− λ)x⊕ λy,

W satisfies (W1-W4), i.e. (X, d,W ) is W-hyperbolic.

We will use the following notions (here and in the following N is the set of natural numbers
including 0 while Z+ denotes the set of natural numbers n ≥ 1):

(1) A mapping γ : (0,∞) → Z+ is called a Cauchy modulus of a Cauchy sequence (an)n∈N in a
metric space (X, d) if

∀ε > 0 ∀n ∈ N (d(aγ(ε)+n, aγ(ε)) ≤ ε).

(2) For (an)n∈N as above, a mapping Ψ : (0,∞)× NN → Z+ is a rate of metastability if

∀ε > 0 ∀g : N → N ∃N ≤ Ψ(ε, g) ∀m,n ∈ [N ;N + g(N)] (d(an, am) ≤ ε).

(3) Let (an)n∈N be a sequence in R. If lim supn→∞ an ≤ 0, then a mapping θ : (0,∞) → Z+ is
called an effective rate for (an)n∈N if

∀ε > 0 ∀n ≥ θ(ε) (an ≤ ε).
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(4) Let (an)n∈N be a sequence of nonnegative reals such that
∑∞

n=1 an = ∞. Then a function
δ : Z+ → Z+ with

δ(n)∑
i=1

ai ≥ n forall n ∈ Z+

is called a rate of divergence of (
∑n

i=1 ai)n∈N.

The term metastability is due to Tao [27, 28]. It is an instance of the no-counterexample inter-
pretation by Kreisel [17, 18].

3 Halpern iterations

Definition 3.1. Let C be a nonempty convex subset of a CAT(0) space X. Let u, x ∈ C,
(αn)n∈N , (βn)n∈N ⊂ [0, 1] and T : C → C be nonexpansive. The modified Halpern iterations
xn ∈ C with initial point x and reference point u are

x0 := x, xn+1 := βnu⊕ (1− βn)(αnxn ⊕ (1− αn)Txn), for n ∈ N.

Combinations of the following conditions were considered for the sequences (αn)n∈N and (βn)n∈N.

(D1) (a) lim
n→∞

βn = 0, (b) lim
n→∞

αn = 0,

(D2) (a)
∞∑

n=0

βn = ∞, (b)
∞∑

n=0

αn = ∞,

(D3) (a)
∞∑

n=0

|βn − βn+1| <∞, (b)
∞∑

n=0

|αn − αn+1| <∞,

(D4) (a)
∞∏

n=0

(1− βn) = 0, (b)
∞∏

n=0

(1− αn) = 0,

(D5) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1

We will be concerned with (D1) to (D4).
Modified Halpern iterations are a generalization of Halpern iterations if one is permitted to set
αn := 0 for all n ∈ N. This excludes (D2.b) which, however, we will never need.
Halpern iterations were named after a paper by Halpern [9] in 1967. This is somewhat misleading
since Halpern considered only an instance of Halpern iterations in which the reference point is set
to 0 and hence required a closed ball around 0 to be contained the domain C of the self-mapping
T .
In this paper, Halpern examines these iterations in the setting of Hilbert spaces. For the conver-
gence of (xn)n∈N to a fixed point of T with the smallest norm (hence closest to u = 0), he showed
that the conditions (D1.a) and (D2.a) were necessary. He also gave a set of sufficient conditions.
In 1977, Lions [20] improved Halpern’s original result. He considers real Hilbert spaces and Halpern
iterations in full generality in this article and shows the convergence of the iteration to the fixed
point of T nearest to u under the following conditions: (λn)n∈N ∈ (0, 1], (D1.a), (D2.a) and
limn→∞

λn−λn+1

λ2
n+1

= 0. Furthermore, he generalizes his result to a variation of Halpern iterations
which deal with finite families of nonexpansive operators Ti, 0 ≤ i ≤ N , with N ∈ N instead of
one nonexpansive T .
Halpern’s and Lion’s results do not cover the choice of (λn)n∈N = ( 1

n+2 )n∈N.
In 1983, Reich [21] posed the following problem, which was referred to as Problem 6.
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Let X be a Banach space. Is there a sequence (λn)n∈N such that whenever a weakly
compact convex subset C of X posses the fixed point property for nonexpansive map-
pings, then (xn)n∈N converges to a fixed point of T for all x ∈ C and all nonexpansive
mappings T : C → C?

Many partial answers were given to this problem, we will only give a brief overview. The problem
in its full generality is still open.
Wittmann [29] proved a result in 1992 that finally allows for λn = 1

n+2 in Hilbert spaces. While
Halpern’s proof relies on a limit theorem for a resolvent, Wittmann carries out a direct proof.

Theorem 3.2 (Wittmann [29, Theorem 2]). Let C be a closed convex subset of a Hilbert space
X and T : C → C a nonexpansive mapping with a fixed point. Assume (λn)n∈N satisfies (D1.a),
(D2.a) and (D3.a). Then for any x ∈ C, the Halpern iteration (xn)n∈N with u = x ∈ C converges
to the projection Px of x on Fix(T ).

Five years later, in 1997, Shioji and Takahashi [24] considered Banach spaces with uniformly
Gâteaux-differentiable norm with a closed, convex subset C. They treat also the case u 6= x
for u, x ∈ C for nonexpansive mappings T : C → C with a nonempty fixed point set and show
the convergence of (xn)n∈N to a fixed point if the conditions (D1.a), (D2.a) and (D3.a) hold for
(λn)n∈N ⊂ [0, 1] and for 0 < t < 1, the sequence satisfying

zt := tu+ (1− t)Tzt

converges strongly to z ∈ Fix(T ) as t → 0. The existence of this sequence follows from Banach’s
fixed point theorem.
In 2007, Saejung [22] considered the case of complete CAT(0) spaces, which are a generalization
of Hilbert spaces – as mentioned already above – and showed that for closed and convex subsets
C, T : C → C nonexpansive with a nonempty fixed point set, and (λn)n∈N ⊂ (0, 1) satisfying the
conditions (D1.a),(D2.a) to (D3.a) or, alternatively, (D1.a), (D2.a) and limn→∞

λn

λn+1
= 1, Halpern

iterations converge strongly to the fixed point of T nearest to u (for the case of the Hilbert ball,
which is a CAT(0) space, see already [7]). Saejung also studies Halpern iterations with finitely
and countably many different nonexpansive mappings sharing a fixed point.
In 2011, Kohlenbach [14] considered Wittmann’s proof and the case of λn := 1

n+1 for all n ∈ N
for Halpern iterations in Hilbert spaces. He extracts a rate of metastability in both bounded and
unbounded domains C. Subsequently, Kohlenbach and Leuştean [15] gave an effective uniform
rate of metastability for Halpern iterations in CAT(0) spaces by analyzing Saejung’s proof. They
now treated arbitrary (λn)n∈N satisfying (D1.a), either (D2.a) or (D4.a) and (D3.a) and the
case of bounded C. As an intermediate step, they use (improved versions of) uniform effective
rates of asymptotic regularity which are due to Leuştean [19] in 2007. In [16], Kohlenbach and
Leuştean also develop a new metatheorem for real Banach spaces with a norm-to-norm uniformly
continuous duality selection map. This metatheorem is the applied to the convergence proof of
Halpern iterations by Shioji and Takahashi [24] for the extraction of rates of metastability in the
setting of the metatheorem (though only relative to a given rate of asymptotic regularity for the
resolvent whose computation in this setting is still subject of ongoing research).
Kim and Xu [10] showed in 2005 for their modified Halpern iteration from Definition 3.1:
Let C be a closed convex subset of a uniformly smooth Banach space X and let T : C → C be a
nonexpansive mapping with nonempty fixed point set. Under the conditions (D1)-(D3) (a)+(b),
(xn)n∈N converges strongly to a fixed point of T .
Independent of each other, Suzuki [25] in 2006 and Chidume and Chidume [3] in 2007 considered
the following different iteration scheme:

x0 := x ∈ C, yn+1 := αnu⊕+(1− αn)((1− β)xn ⊕ βTxn) for n ∈ N, (4)

for β ∈ (0, 1). By ruling out β = 1, they exclude original Halpern iterations in their scheme.
Let X be a Banach space with uniformly uniformly Gâteaux-differentiable norm, C ⊂ X a closed
convex subset, T : C → C nonexpansive with nonempty fixed point set, u, x ∈ C. They showed
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convergence of this scheme to a fixed point of T if (λn)n∈N ⊂ [0, 1] satisfies (D1.a) and (D2.a) and
that (zt)t∈(0,1) converges strongly to some point z ∈ C as t→ 0 where zt is the unique element of
C with zt = tu+ (1− t)Tzt for every 0 < t < 1.
Note that Kim and Xu’s result does not permit this iteration scheme, since a constant β ∈ (0, 1)
does not satisfy (D1.b).
In 2011, Cuntavepanit and Panyanak [4] generalized Kim and Xu’s result to CAT(0) spaces and
eliminated the use of condition (D2.b). They consider C to be a nonempty closed convex subset
of a complete CAT(0) space X, x, u ∈ C and T : C → C a nonexpansive mapping with nonempty
fixed point set and show strong convergence to the fixed point of T nearest to u of the modified
Halpern iterations defined here under the conditions (D1.a), (D1.b), (D2.a), (D3.a) and (D3.b).
This scheme does not cover the schemes due to Suzuki and Chidume and Chidume, since the
choice of (αn) as (1 − β) is not permitted because of (D1.a). Since in [4] (D2.b) is now longer
used, modified Halpern iterations can be viewed as generalizations of Halpern iterations.
Cuntavepanit and Panyanak also considered a different iteration scheme: For (αn), (βn) ⊂ [0, 1],
let

x0 := x ∈ C, xn+1 := βnxn ⊕ (1− βn)(αnu⊕ (1− αn)Txn), for n ∈ N, (5)

and showed that the conditions (D1.b), (D2.b) and (D5) sufficed for strong convergence in the
above setting. We will call these iterations Secondary Modified Halpern iterations.
This scheme excludes original Halpern iterations. Setting for all n ∈ N,

β′n := (1− αn)(1− β) and α′n := αn/(1− β′n)

this scheme includes Chidume and Chidume’s and Suzuki’s iteration scheme, though. The quan-
titative analysis of the convergence proof for (5) has to be left for future research.

4 Main results

Theorem 4.1. Let X be a complete CAT(0) space, C ⊆ X a closed subset, x, u ∈ C and T :
C → C nonexpansive with a nonempty fixed point set. Let (αn)n∈N , (βn)n∈N ⊂ [0, 1] satisfy (D1.a)
and (D1.b), (D2.a), (D3.a) and (D3.b). Then the modified Halpern iteration (xn)n∈N is Cauchy.
Furthermore, let

γα : (0,∞) → Z+ rate of convergence of (αn)n∈N towards 0,
γβ : (0,∞) → Z+ rate of convergence of (βn)n∈N towards 0,

ψα : (0,∞) → Z+ Cauchy modulus of

(
N∑

i=1

|αi+1 − αi|

)
,

ψβ : (0,∞) → Z+ Cauchy modulus of

(
N∑

i=1

|βi+1 − βi|

)
,

θβ : Z+ → Z+ rate of divergence of

(
N∑

i=1

βi

)
.

Then for all ε ∈ (0, 2) and g : N → N,

∃N ≤ Σ(ε, g,M, γα, γβ , ψα, ψβ , θβ) ∀m,n ∈ [N ;N + g(N)] (d(xn, xm) ≤ ε)

where

Σ(ε, g,M, γα, γβ , ψα, ψβ , θβ) := θ+β

(
Γ− 1 +

⌈
ln
(

12M2

ε2

)⌉)
+ 1,
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with M ≥ 4 max{d(u, p), d(x, p)} for some p ∈ Fix(T ),

Φ̃(ε,M, θβ , ψβ , ψα) := θβ

(
max

{
ψβ

( ε

8M

)
, ψα

( ε

4M

)}
+ ln

⌈
M

ε

⌉
+ 1
)

+ 1,

Φ(ε,M, θβ , ψβ , ψα, γα, γβ) := max
{

Φ̃
(ε

2
,M, θβ , ψβ , ψα

)
, γα

( ε

4M

)
, γβ

( ε

4M

)}
.

The other constants are

ε0 :=
ε2

24(M + 1)2
, Γ := max

{
χ∗k(ε2/12) :

⌈
1
ε0

⌉
≤ k ≤ f̃∗

(dM2/ε2
0e)(0) +

⌈
1
ε0

⌉}
,

χ∗k(ε) := Φ̃
(

ε

4M(P̃k(ε/2) + 1)

)
+ P̃k(ε/2), P̃k(ε) :=

⌈
12M2(k + 1)

ε
Φ
(

ε

12M(k + 1)

)⌉
,

∆∗
k(ε, g) :=

ε

3gε,k(Θk(ε)− χ∗k(ε/3))
, Θk(ε) := θ

(
χ∗k

(ε
3

)
− 1 +

⌈
ln
(

3M2

ε

)⌉)
+ 1,

gε,k(n) := n+ g
(
n+ χ∗k

(ε
3

))
, θ+β (n) := max{θβ(i) : i ≤ n},

f(k) := max
{⌈

M2

∆∗
k(ε2/4, g)

⌉
, k

}
− k, f∗(k) = f

(
k +

⌈
1
ε0

⌉)
+
⌈

1
ε0

⌉
,

f̃∗(k) := k + f∗(k).

We now come to the metastability rates for the other set of conditions we consider for modified
Halpern iterations.

Theorem 4.2. In the setting of Theorem 4.1, let (αn)n∈N ⊂ [0, 1] and (βn)n∈N ⊂ [0, 1) satisfy
(D1.a) and (D4.a), (D3a), (D1.b) and (D3.b). Then the modified Halpern iteration (xn)n∈N is
Cauchy. Furthermore, let

θβ : Z0 → Z+ be a rate of convergence of
{ N∏

n=1

(1− βn)
}

towards 0.

Then for all ε ∈ (0, 2) and g : N → N,

∃N ≤ Σ(ε, g,M, γα, γβ , ψα, ψβ , θβ) ∀m,n ∈ [N ;N + g(N)] (d(xn, xm) ≤ ε)

where

Σ(ε, g,M, γα, γβ , ψα, ψβ , θβ) := max
{

Θk(ε2/4) :
⌈

1
ε0

⌉
≤ k ≤ f̃∗

(dM2/ε2
0e)(0) +

⌈
1
ε0

⌉}
,

with M ≥ 4 max{d(u, p), d(x, p)} for p ∈ Fix(T )

Φ̃(ε,M, θβ , ψβ , ψα) := θβ

(
Dε

M

)
+ 1

Φ(ε,M, θβ , ψβ , ψα, γα, γβ) := max
{

Φ̃
(ε

2
,M, θβ , ψβ , ψα

)
, γα

( ε

4M

)
, γβ

( ε

4M

)}
,

0 < D ≤
γ(ε/(2M)∏

n=1

(1− βn),
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γ(ε) := max
{
ψα

( ε

2M

)
, ψβ

( ε

4M

)}
,

Θk(ε) := θ

(
Dkε

3M2
2

)
+ 1,

0 < Dk ≤
χ∗k(ε/3)−1∏

n=1

(1− βn).

The other functionals and constants are defined as in Theorem 4.1.

Remark 4.3. 1. The bounds in Theorems 4.1 and 4.2 only differ from the ones obtained in [15]
for the usual Halpern iteration and the case of bounded C by the new functionals Φ, Φ̃ which
reflect the modification in the iteration scheme and by the fact that instead of M ≥ diam(C)
we only need M ≥ 4 max{d(u, p), d(x, p)}. Making only the latter change in the bounds in
[15] yields rates of metastability for the usual Halpern iterations in the unbounded case.

2. The extractability of bounds on metastability depending only on the arguments shown can
be explained in terms of general logical metatheorems from [12, 6]. In particular, the fact
that u, x, p and C,X, T only enter these bounds via M follows this way (note that we do not
need any extra bound on d(x, T (x)) since d(x, T (x)) ≤ d(x, p)+d(p, T (p))+d(T (p), T (x)) ≤
2d(x, p) ≤M). See [23] for details.

3. Again general logical metatheorems from [12, 6] guarantee that the existence of a fixed point
of T can be relaxed to the existence of arbitrarily good approximate fixed points in some fixed
b-bounded neighborhood around x, where then M is taken to satisfy M ≥ 4(d(u, x) + b) + 1
(note that d(u, p) ≤ d(u, x) + d(x, p) ≤ d(u, x) + b and that – reasoning as in the previous
point – d(x, T (x)) ≤ 2b+ 1 ≤M where, in fact, ‘+1’ can be replaced by an arbitrarily small
positive number). See [23] for details.

4. The assumption of the CAT(0)-space X to be complete and C to be closed is actually not
necessary as can be seen by going to the metric completion X̂ of X and the closure C of C
in X̂, since T extends to a nonexpansive operator on C [15, Remark 4.5.(ii)].

5 Estimates for modified Halpern iterations

We need bounds for modified Halpern iterations. Part of the following result can be deduced from
the proof of [4, Theorem 3.1].

Lemma 5.1. For modified Halpern iterations (xn)n∈N as in Definition 3.1 set yn := αnxn ⊕ (1−
αn)Txn for all n ∈ N. Then the following holds for n ∈ Z+ in (1)-(3) and n ∈ N in (4)-(6):

(1) d(xn+1, xn) ≤ (1− βn)d(yn, yn−1) + |βn − βn−1|d(u, yn−1).

(2) d(yn, yn−1) ≤ αnd(xn, xn−1) + (1− αn)d(xn, xn−1) + |αn − αn−1|d(xn−1, Txn−1).

(3) d(xn+1, xn) ≤ (1− βn)d(xn, xn−1) + (1− βn)|αn − αn−1|d(xn−1, Txn−1)
+ |βn − βn−1|αn−1d(xn−1, Txn−1) + |βn − βn−1|d(u, Txn−1).

(4) d(yn, Txn) ≤ αnd(xn, Txn).

(5) d(xn+1, Txn) ≤ βnd(u, Txn) + (1− βn)αnd(xn, Txn).

(6) d(xn, Txn) ≤ d(xn, xn+1) + βnd(u, Txn) + (1− βn)αnd(xn, Txn).
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Proof.

(1) Let n ∈ Z+.

d(xn+1, xn) = d(βnu⊕ (1− βn)yn, βn−1u⊕ (1− βn−1)yn−1)
≤ d(βnu⊕ (1− βn)yn, βnu⊕ (1− βn)yn−1)

+ d(βnu⊕ (1− βn)yn−1, βn−1u⊕ (1− βn−1)yn−1),
by the triangle inequality,
≤ (1− βn)d(yn, yn−1) + βnd(u, u) + |βn − βn−1|d(u, yn−1),
by (W4) and (W2) from Definition 2.3 and 2.4,
= (1− βn)d(yn, yn−1) + |βn − βn−1|d(u, yn−1)
= (1− βn)d(yn, yn−1) + |βn − βn−1|d(u, αn−1xn−1 ⊕ (1− αn−1)Txn−1),

(2) Let n ∈ Z+.

d(yn, yn−1) = d(αnxn ⊕ (1− αn)Txn, αn−1xn−1 ⊕ (1− αn−1)Txn−1)
≤ d(αnxn ⊕ (1− αn)Txn, αnxn−1 ⊕ (1− αn)Txn)

+ d(αnxn−1 ⊕ (1− αn)Txn, αnxn−1 ⊕ (1− αn)Txn−1)
+ d(αnxn−1 ⊕ (1− αn)Txn−1, αn−1xn−1 ⊕ (1− αn−1)Txn−1),

by the triangle inequality,
≤ (1− αn) d(Txn, Txn)︸ ︷︷ ︸

=0

+αnd(xn, xn−1) + αn d(xn−1, xn−1)︸ ︷︷ ︸
=0

+ (1− αn)d(Txn, Txn−1) + |αn − αn−1|d(xn−1, Txn−1),
by (W4) and (W2) from Definition 2.3 and 2.4,
= αnd(xn, xn−1) + (1− αn)d(Txn, Txn−1) + |αn − αn−1|d(xn−1, Txn−1)
≤ αnd(xn, xn−1) + (1− αn)d(xn, xn−1) + |αn − αn−1|d(xn−1, Txn−1),
since T is nonexpansive.

(3) Let n ∈ Z+.

d(xn+1, xn) ≤ (1− βn)d(yn, yn−1) + |βn − βn−1|d(u, αn−1xn−1 ⊕ (1− αn−1)Txn−1), by (1),
≤ (1− βn)[αnd(xn, xn−1) + (1− αn)d(xn, xn−1) + |αn − αn−1|d(xn−1, Txn−1)]

+ |βn − βn−1|d(u, αn−1xn−1 ⊕ (1− αn−1)Txn−1), by (2),
≤ (1− βn)d(xn, xn−1) + (1− βn)|αn − αn−1|d(xn−1, Txn−1)

+ |βn − βn−1|αn−1d(u, xn−1) + |βn − βn−1|(1− αn−1)d(u, Txn−1),
by Corollary 2.2,
≤ (1− βn)d(xn, xn−1) + (1− βn)|αn − αn−1|d(xn−1, Txn−1)

+ |βn − βn−1|αn−1[d(u, xn−1)− d(u, Txn−1)]
+ |βn − βn−1|d(u, Txn−1)

≤ (1− βn)d(xn, xn−1) + (1− βn)|αn − αn−1|d(xn−1, Txn−1)
+ |βn − βn−1|αn−1d(xn−1, Txn−1) + |βn − βn−1|d(u, Txn−1),

since d(u, xn−1) ≤ d(u, Txn−1) + d(Txn−1, xn−1).

(4) Let n ∈ N. By Corollary 2.2,

d(yn, Txn) = d(αnxn ⊕ (1− αn)Txn, Txn) ≤ αnd(xn, Txn) + (1− αn)d(Txn, Txn)
= αnd(xn, Txn).
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(5) Let n ∈ N. Again, by Corollary 2.2,

d(xn+1, Txn) = d(βnu⊕ (1− βn)yn, Txn) ≤ βnd(u, Txn) + (1− βn)d(yn, Txn)
≤ βnd(u, Txn) + (1− βn)αnd(xn, Txn),by (4).

(6) Let n ∈ N. By the triangle inequality,

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, Txn)
≤ d(xn, xn+1) + βnd(u, Txn) + (1− βn)αnd(xn, Txn),by (5).

For the general case of unbounded C, we also need some bound considerations, setting

M0 := max{d(x, p), d(u, p)}, (6)
M1 := 2d(p, u) and (7)
M2 ≥ 4M0 = 4max{d(u, p), d(x, p)} ≥ 2M0 +M1 (8)

for a fixed point p of T . Some parts of the next lemma are already implicit in the proof of [10,
Theorem 1]

Lemma 5.2. Consider the modified Halpern iterations (xn)n∈N. We define yn := αnxn ⊕ (1 −
αn)Txn for all n ∈ N. Take p ∈ Fix(T ). Then the following holds for n ∈ N:

(1) d(yn, p) ≤ d(xn, p).

(2) d(xn+1, p) ≤ βnd(u, p) + (1− βn)d(xn, p).

(3) d(xn, p) ≤M0. Hence (xn)n∈N and (yn)n∈N are bounded.

(4) d(Txn, p) ≤ d(xn, p) ≤M0.

(5) d(xn, Txn) ≤ 2M0 ≤M2.

(6) d(xn, u) ≤ 2M0 ≤M2.

(7) d(u, Tu) ≤ 2d(u, p) = M1 ≤M2.

(8) d(Txn, u) ≤M2.

(9) d(xn+1, xn) ≤ 2M0 ≤M2.

Proof.

(1) Let n ∈ N.

d(yn, p) = d(αnxn ⊕ (1− αn)Txn, p),
≤ αnd(xn, p) + (1− αn)d(Txn, p),
by Corollary 2.2,
≤ αnd(xn, p) + (1− αn)d(xn, p), since T is nonexpansive,
= d(xn, p)

(2) Let n ∈ N.

d(xn+1, p) = d(βnu⊕ (1− βn)yn, p)
≤ βnd(u, p) + (1− βn)d(yn, p), by Corollary 2.2,
≤ βnd(u, p) + (1− βn)d(xn, p), by (1).

10



(3) The induction start is trivial. For n ∈ N it holds

d(xn+1, p) ≤ βnd(u, p) + (1− βn)d(xn, p), by (2),
≤ βnd(u, p) + (1− βn)M0 by I.H.,
≤M0.

(4) This follows since T is nonexpansive using (3).

(5) For n ∈ N, d(xn, Txn) ≤ d(xn, p) + d(p, Txn) ≤ 2M0 ≤M2 using (3), (4).

(6) For n ∈ N, d(xn, u) ≤ d(xn, p) + d(u, p) ≤ 2M0 ≤M2 using (3).

(7) d(u, Tu) ≤ d(u, p) + d(p, Tu) ≤ 2d(u, p) = M1 ≤M2.

(8) Let n ∈ N.

d(Txn, u) ≤ d(Txn, Tu) + d(Tu, u) ≤ d(xn, u) + d(u, Tu)
≤ 2M0 +M1 ≤M2.

(9) For n ∈ N, d(xn+1, xn) ≤ d(xn+1, p) + d(xn, p) ≤ 2M0 ≤M2.

6 Effective rates of asymptotic regularity

In this section we give the actual quantitative convergence results. Let in the following (X, d) be
a CAT(0) space. The results hold also true if we consider a W-hyperbolic space (X, d,W ). Let C
be a convex subset of X. Let T : C → C be nonexpansive.
The following proposition is the quantitative version of [4, Theorem 3.1].

Proposition 6.1. In the setting of Theorem 4.1, (xn)n∈N is an approximate fixed point sequence
and limn→∞ d(xn, xn+1) = 0. More precisely, for all ε ∈ (0, 2),

∀n ≥ Φ̃ d(xn, xn+1) ≤ ε and ∀n ≥ Φ d(xn, Txn) ≤ ε,

where

Φ̃ := Φ̃(ε,M2, θβ , ψβ , ψα) := θβ

(
max

{
ψβ

(
ε

8M2

)
, ψα

(
ε

4M2

)}
+ ln

⌈
M2

ε

⌉
+ 1
)

+ 1,

Φ := Φ(ε,M2, θβ , ψβ , ψα, γα, γβ) := max
{

Φ̃
(ε

2
,M2, θβ , ψβ , ψα

)
, γα

(
ε

4M2

)
, γβ

(
ε

4M2

)}
,

where M2 ≥ 4 max{d(u, p), d(x, p)} for a p ∈ Fix(T ).

Proof. We want to apply [15, Lemma 5.5.]. For all n ∈ Z+, we know

d(u, Txn−1) ≤M2, by Lemma 5.2(8), (9)
d(xn−1, Txn−1) ≤ 2M0 ≤M2, by Lemma 5.2(5). (10)

By Lemma 5.1(3), we have for all n ∈ Z+

d(xn+1, xn) ≤ (1− βn)d(xn, xn−1) + (1− βn)|αn − αn−1|d(xn−1, Txn−1)
+ |βn − βn−1|αn−1d(xn−1, Txn−1) + |βn − βn−1|d(u, Txn−1)

≤ (1− βn)d(xn, xn−1) + |αn − αn−1|d(xn−1, Txn−1)
+ |βn − βn−1|d(xn−1, Txn−1) + |βn − βn−1|d(u, Txn−1)

≤ (1− βn)d(xn, xn−1) +M2[|αn − αn−1|+ 2|βn − βn−1|]. (11)
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We set for all n ∈ Z+

sn := d(xn, xn−1),
an := βn and
bn := M2[|αn − αn−1|+ 2|βn − βn−1|].

Then for all n ∈ Z+

sn+1 = d(xn+1, xn) ≤ (1− βn)d(xn, xn−1) +M2[|αn − αn−1|+ 2|βn − βn−1|],
by (11),
= (1− an)sn + bn. (12)

The sequence (sn) is a priori bounded by M2
2 by Lemma 5.2(9). But we know also by assumption

∞∑
n=1

βn →∞, with rate of divergence θβ ,

N∑
n=1

M2(2|βn − βn−1|+ |αn − αn−1|) <∞, N →∞, with Cauchy modulus

ψ : (0,∞) → Z+, ψ(ε) = max
{
ψβ

(
ε

4M2

)
, ψα

(
ε

2M2

)}
.

We have fulfilled the requirements of [15, Lemma 5.5.](1). Thus,

∀ε ∈ (0, 2) ∀n ≥ Φ̃ sn ≤ ε,

where

Φ̃(ε,M2, θβ , ψβ , ψα) := θβ

(
max

{
ψβ

(
ε

8M2

)
, ψα

(
ε

4M2

)}
+ ln

⌈
M2

ε

⌉
+ 1
)

+ 1.

It remains to determine Φ. By Lemma 5.1(6), (9) and (10), we have

d(xn, Txn) ≤ d(xn, xn+1) + βnd(u, Txn) + (1− βn)︸ ︷︷ ︸
≤1

αnd(xn, Txn)

≤ d(xn, xn+1) + (βn + αn)M2.

We can define a rate of convergence

γ : (0,∞) → Z+, with γ(ε) = max
{
γα

(
ε

2M2

)
, γβ

(
ε

2M2

)}
such that the second term on the right becomes less than ε. For our bound, we then need to
consider γ

(
ε
2

)
so that the term on the right side becomes less than ε

2 . In total, we get for all
ε ∈ (0, 2) and for all n ≥ Φ, we have d(xn, Txn) ≤ ε, where

Φ̃(ε,M2, θβ , ψβ , ψα) := θβ

(
max

{
ψβ

(
ε

8M2

)
, ψα

(
ε

4M2

)}
+ ln

⌈
M2

ε

⌉
+ 1
)

+ 1,

Φ(ε,M2, θβ , ψβ , ψα, γα, γβ) := max
{

Φ̃
(ε

2
,M2, θβ , ψβ , ψα

)
, γα

(
ε

4M2

)
, γβ

(
ε

4M2

)}
.

We can also consider the case in which (D2.a) is replaced by (D4a). This case was not considered
by Cuntavepanit and Panyanak [4].
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Proposition 6.2. In the setting of Theorem 4.2, (xn)n∈N is an approximate fixed point sequence
and limn→∞ d(xn, xn+1) = 0. More precisely, for all ε ∈ (0, 2),

∀n ≥ Φ̃ d(xn, xn+1) ≤ ε and ∀n ≥ Φ d(xn, Txn) ≤ ε,

where

Φ̃ := Φ̃(ε,M2, θβ , ψβ , ψα) := θβ

(
Dε

M2

)
+ 1,

Φ := Φ(ε,M2, θβ , ψβ , ψα, γα, γβ) := max
{

Φ̃
(ε

2
,M2, θβ , ψβ , ψα

)
, γα

(
ε

4M2

)
, γβ

(
ε

4M2

)}
,

where M2 = 4max{d(u, p), d(x, p)} for p a fixed point of T and

γ(ε) := max
{
ψα

(
ε

2M2

)
, ψβ

(
ε

4M2

)}

D ≤
γ(ε/2)∏
n=1

(1− βn).

Proof. We want to use Lemma [15, Lemma 5.5.](2). We set again for n ∈ Z+,

sn := d(xn, xn1),
an := βn and
bn := M2[|αn − αn−1|+ 2|βn − βn−1|].

Then the main condition of Lemma [15, Lemma 5.5.] is fulfilled by (12), since the sequences
(an) , (sn) and (bn) were chosen the same.
The sequence (sn) is a priori bounded by M2

2 by Lemma 5.2(9). But also,

∞∏
n=1

(1− βn) = 0, with rate of convergence θβ ,

N∑
n=1

M2(2|βn − βn−1|+ |αn − αn−1|) <∞, N →∞, with Cauchy modulus γ,

defined as γ : (0,∞) → Z+,

γ(ε) := max
{
ψα

(
ε

2M2

)
, ψβ

(
ε

4M2

)}
.

Then the conditions for Lemma [15, Lemma 5.5.](2) are fulfilled and we obtain the desired rate
Φ̃. The rate Φ is obtained as in Proposition 6.1.

7 Quantitative properties of an approximate fixed point
sequence

Cuntavepanit’s and Panyanak’s proof contains a lemma that uses the existence of Banach limits
similar to the Banach limit lemma used in Saejung [22]. To make a current metatheorem applicable,
this lemma has to be replaced in the proof. This can be done in the same way as carried out in
[15].
Let X be a complete CAT(0) space, C ⊂ X a closed convex subset and T : C → C a nonexpansive
mapping. For t ∈ (0, 1) and u ∈ C consider

Tu
t : C → C, Tu

t y = tu⊕ (1− t)Ty. (13)
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One can easily see, that Tu
t is a strict contraction with contractive constant L = 1 − t. Thus Tu

t

has a unique fixed point zu
t ∈ C by Banach’s fixed point theorem. Hence zu

t solves the following
equation uniquely:

zu
t = tu⊕ (1− t)Tzu

t . (14)

The following proposition is our substitute for a use of Banach limits in convergence proofs of
modified Halpern iterations.

Proposition 7.1 (see also [15, Proposition 9.1] for the bounded case). Let (yn)n∈N be a sequence
in C, u ∈ C, t ∈ (0, 1) and let be z as defined in (14). Define for all n ∈ Z+,

γt
n := (1− t)d(u, Tzu

t )2 − d(yn, u)2. (15)

Let M ∈ Z+ be such that d(zu
t , yn), d(yn, T yn), d(yn, u) ≤M holds for all n ∈ Z+.

(1) For all n ∈ Z+,

d(yn, z
u
t )2 ≤ d(yn, u)2 +

1
t
an − (1− t)d(u, Tzu

t ) =
1
t
an − γt

n,

where an := d(yn, T yn)2 + 2Md(yn, T yn).

(2) If (yn)n∈N is asymptotically regular with rate of asymptotic regularity ϕ, then for all ε ∈ (0, 2),

∀p ≥ P (ε, t,M,ϕ) ∀m ≥ 1 (Cm,p(γt
n) ≤ ε),

where

P (ε, t,M,ϕ) =
⌈

6M2

tε
ϕ

(
tε

6M

)⌉
.

(3) Assume that (yn)n∈N is asymptotically regular and limn→∞ d(yn, yn+1) = 0. Then

lim sup
n→∞

γt
n ≤ 0.

Furthermore, if ϕ is a rate of asymptotic regularity of (yn)n∈N and ϕ̃ is a rate of convergence
of {d(yn, yn+1)}n∈N towards 0, then lim supn→∞ γt

n ≤ 0 with effective rate ψ defined by

ψ(ε, t,M,ϕ, ϕ̃) = ϕ̃

(
ε

2M(P (ε/2, t,M,ϕ) + 1)

)
+ P (ε/2, t,M,ϕ),

where P is given by the same definition as in (2).

Proof. The result follows from the proof given in [15] by collecting all the instances of M ≥
diam(C) used in that proof.

Proposition 7.2 ([15, Proposition 9.3]). Let (tk)n∈N ⊂ (0, 1) be non increasing. For k ∈ N let
zu
tk

be defined as in (14). Let the set C be bounded with diam(C) ≤ M ∈ N. Then for all ε > 0
and g : N → N, the following holds

∃K0 ≤ K(ε, g,M) ∀i, j ∈ [K0,K0 + g(K0)]
(
d(zu

ti
, zu

tj
) ≤ ε

)
,

where
K(ε, g,M) := g̃dM

2/ε2e(0), (16)

and g̃(k) := k + g(k).

Proof. For the case of Hilbert spaces, the bound is extracted in [14] from Halpern’s proof of the
convergence of (zu

t ). Since that proof extends unchanged to CAT(0) spaces as remarked by Kirk
[11], the same is true for the extracted bound.
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Lemma 7.3 (Compare Saejung [22, Lemma 2.2]). Let zu
t be defined as in equation (14). If

Fix(T ) 6= ∅, then

d(p, zu
t ) ≤ d(p, u), for p ∈ Fix(T ).

In particular, d(u, zu
t ), d(xn, z

u
t ), d(u, Tzu

t ) ≤M2 and for n ∈ N.

Proof. Let p ∈ Fix(T ). Then

d(p, zu
t ) = d(p, tu⊕ (1− t)Tzu

t ) ≤ td(p, u) + (1− t)d(p, Tzu
t ), by Corollary 2.2

≤ td(p, u) + (1− t)d(p, zu
t ).

Hence, d(p, zu
t ) ≤ d(p, u).

Then, by the definition of M0 in (6), and by Lemma 5.2(3),

d(zu
t , u) ≤ d(zu

t , p) + d(p, u) ≤ 2d(p, u) ≤M2,

d(zu
t , xn) ≤ d(zu

t , p) + d(p, xn) ≤ d(p, u) +M0 ≤M2,

d(Tzu
t , u) ≤ d(Tzu

t , p) + d(u, p) ≤ d(zu
t , p) + d(u, p) ≤M2

for all n ∈ N.

With this result we can generalize Proposition 7.2 to unbounded domains given a fixed point p of
T .

Corollary 7.4. In the situation of Proposition 7.2 the conclusion also holds if C is unbounded
and T has a nonempty fixed point set. In this case the bound M can be replaced by M2.

Proof. By the logical analysis of Halpern’s proof [9, Theorem 1] in [14, Theorem 4.2] one can
replace the bound M on the diameter by a bound on d(zu

t , u). If we have a fixed point p of T at
our disposal we can take this bound to be M2 ≥ 4 max{d(u, p), d(x, p)} by Lemma 7.3.

The next lemma for modified Halpern iterations interestingly is precisely of the form proved for
the usual Halpern iterations (for bounded C) in [15, Lemma 9.2] though the proof is different.

Lemma 7.5. Let u, x ∈ C and (xn)n∈N be the modified Halpern iterations as in Definition 3.1.
Then for all t ∈ (0, 1) and n ≥ 0,

d(xn+1, z
u
t )2 ≤ (1− βn)d(xn, z

u
t )2 + βn

(
(1− t)d(u, Tzu

t )2 − d(xn+1, u)2
)

+M2
2 t,

with M2 := 4 max{d(u, p), d(x, p)}.

Proof. Let n ∈ N and t ∈ (0, 1) be given.
We need the following inequalities which follow from (2).

d(xn+1, u)2 = d(βnu⊕ (1− βn)yn, u)2 ≤ (1− βn)d(yn, u)2 (17)

d(u, zu
t )2 ≤ d(u, tu⊕ (1− t)Tzu

t )2 ≤ (1− t)d(Tzu
t , u)

2. (18)

d(xn+1, z
u
t )2 = d(βnu⊕ (1− βn)yn, z

u
t )2

≤ (1− βn)d(yn, z
u
t )2 + βnd(u, zu

t )2 − βn (1− βn)d(u, yn)2︸ ︷︷ ︸
≥d(xn+1,u)2

,by (2)

in the next step, we apply (2) on d(yn, z
u
t )2 and use again (17),

≤ (1− βn)[αnd(xn, z
u
t )2 + (1− αn)d(Txn, z

u
t )2−αn(1− αn)d(xn, Txn)2︸ ︷︷ ︸

≤0

]

+ βnd(u, zu
t )2 − βnd(xn+1, u)2

≤ (1− βn)αnd(xn, z
u
t )2 + (1− βn)(1− αn)d(Txn, z

u
t )2

+ βnd(u, zu
t )2 − βnd(xn+1, u)2
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≤ (1− βn)αnd(xn, z
u
t )2

+ (1− βn)(1− αn)︸ ︷︷ ︸
≤1

[td(u, Txn)2 + (1− t)︸ ︷︷ ︸
≤1

d(Tzu
t , Txn)2︸ ︷︷ ︸

≤d(zu
t ,xn)2

−t(1− t)d(u, Tzu
t )2︸ ︷︷ ︸

≤0

],by ((2))

+ βnd(u, zu
t )2 − βnd(xn+1, u)2

≤ (1− βn)αnd(xn, z
u
t )2 + (1− βn)(1− αn)d(xn, z

u
t )2 + βn d(u, zu

t )2︸ ︷︷ ︸
≤(1−t)d(Tzu

t ,u)2

− βnd(xn+1, u)2 + td(u, Txn)2,

≤ (1− βn)d(xn, z
u
t )2 + βn[(1− t)d(Tzu

t , u)
2 − d(xn+1, u)2] + td(u, Txn)2, by (18)

≤ (1− βn)d(xn, z
u
t )2 + βn[(1− t)d(Tzu

t , u)
2 − d(xn+1, u)2] + tM2

2 ,by 5.2(8).

Proof of Theorems 4.1 and 4.2 concluded:

The proof of Theorem 4.1 (and also of Theorem 4.2) is essentially the same as the proof of the
existence of a rate of metastability for ordinary Halpern iterations in the case of bounded C by
Kohlenbach and Leuştean [15, Theorem 4.2] replacing the rates of asymptotic regularity Φ, Φ̃ used
in [15] by the new ones we obtained in section 6. This is due to the fact that despite of the
different iteration scheme at hand, Lemma 7.5 (though by a different proof) is identical to [15,
Lemma 9.2]. The only other thing we have to check is that we can use the bound M := M2 ≥
4 max{d(u, p), d(x, p)} in Proposition 7.1. This, however, follows from Lemma 7.3 and Lemma
5.2(5) and (6).

References

[1] J. Avigad, P. Gerhardy, and H. Towsner, Local stability of ergodic averages, Trans.
Amer. Math. Soc., 362 (2010), pp. 261–288.

[2] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature (Grundlehren
der mathematischen Wissenschaften), Springer-Verlag, Berlin, Softcover reprint of hardcover
1st ed. 1999 ed., 12 2010.

[3] C.E. Chidume and C.O. Chidume, Iterative approximation of fixed points of nonexpansive
mappings, J. Math. Anal. Appl., 318 (2006), pp. 288 – 295.

[4] A. Cuntavepanit and B. Panyanak, Strong convergence of modified Halpern iterations in
CAT(0) spaces, Fixed Point Theory Appl., 2011 (2011).

[5] S. Dhompongsa and B. Panyanak, On ∆-convergence theorems in CAT(0) spaces, Com-
put. Math. Appl., 56 (2008), pp. 2572–2579.

[6] P. Gerhardy and U. Kohlenbach, General logical metatheorems for functional analysis,
Trans. Amer. Math. Soc., 360 (2008), pp. 2615–2660.

[7] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive map-
pings, Monographs and Textbooks in Pure and Applied Mathematics, Dekker, New York,
1984.

[8] M. Gromov, Hyperbolic groups, in Essays in group theory, S. Gersten, ed., Springer-Verlag,
1987, pp. 75–263.

[9] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), pp. 957–
961.

[10] T.-H. Kim and H.-K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal.,
61 (2005), pp. 51 – 60.

16



[11] W. Kirk, Geodesic geometry and fixed point theory, in Seminar of Mathematical Analysis
(Malaga/Seville, 2002/2003), vol. 64, Sevilla, Spain, 2003, University of Sevilla Secretary,
pp. 195–225.

[12] U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans.
Amer. Math. Soc., 357 (2005), pp. 89–128.

[13] , Applied Proof Theory. Proof Interpretations and their Use in Mathematics, Springer
Monographs in Mathematics, Berlin, Heidelberg, 2008.

[14] , On quantitative versions of theorems due to F.E. Browder and R. Wittmann, Adv.
Math., 226 (2011), pp. 2764–2795.
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