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Abstract

We give explicit rates of asymptotic regularity for iterations of strongly nonexpansive

mappings T in general Banach spaces as well as rates of metastability (in the sense

of Tao) in the context of uniformly convex Banach spaces when T is odd. This, in

particular, applies to linear norm-one projections as well as to sunny nonexpansive
retractions. The asymptotic regularity results even hold for strongly quasi-nonexpansive

mappings (in the sense of Bruck), the addition of error terms and very general metric

settings. In particular, we get the first quantitative results on iterations (with errors)

of compositions of metric projections in CAT(κ)-spaces (κ > 0). Under an additional

compactness assumption we obtain, moreover, a rate of metastability for the strong
convergence of such iterations.
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1 Introduction

In this paper we give quantitative forms of asymptotic results on the iterations of strongly
nonexpansive operators in Banach spaces as well as in more general metric settings. Strongly
nonexpansive operators were introduced by Bruck and Reich [9] and are in many ways
much better behaved than nonexpansive ones. Some of the most important mappings used
in nonlinear analysis are strongly nonexpansive, e.g., the resolvent of a maximal monotone
operator as well as metric projections onto closed convex sets C in Hilbert spaces and sunny
nonexpansive retractions onto C in uniformly convex Banach spaces. All these examples
are, in fact, even so-called firmly nonexpansive which implies being strongly nonexpansive in
uniformly convex Banach spaces. In contrast, however, to the class of firmly nonexpansive
mappings (introduced by Browder [6] for Hilbert spaces and by Bruck [7] for general Banach

spaces), the class of strongly nonexpansive ones is closed under composition.
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One of the central facts about strongly nonexpansive mappings T : S → S (S ⊆ X some

subset of a normed space X) is the property of asymptotic regularity

‖Tn+1x− Tnx‖ → 0

which holds whenever T has a fixed point ([9]). In the context of uniformly convex Ba-

nach spaces one gets from this even the strong convergence of (Tnx) provided that S is a

symmetric convex closed subset and T is odd ([4]) (in fact a much more general condition

suffices as shown in [16]). All this can be applied, in particular, to compositions of norm-one
projections onto subspaces as well as to sunny nonexpansive retractions onto closed subsets
of a closed convex set ([9]).

In this paper, we give explicit quantitative forms of all these results. In the case of asymp-
totic regularity theorems, these mostly come in the form of full rates of convergence. For
the strongly convergent case, computable rates of convergence can be excluded on gen-
eral grounds from computability theory but we get explicit effective rates Φ of so-called
metastability (in the sense of T. Tao)

∀ε > 0 ∀g ∈ NN ∃n ≤ Φ(ε, g) ∀i, j ∈ [n, n+ g(n)] (‖T ix− T jx‖ < ε),

where here [n, n+ g(n)] denotes the set {n, n+ 1, . . . , n+ g(n)}.
In the final section we show that the quantitative asymptotic regularity results can largely
be generalized to the setting of arbitrary metric spaces and strongly quasi-nonexpansive
mappings SQNE in the sense of [8] (to be distinguished from other more restricted concepts

with the same name). This latter class is very well-behaved in geodesic settings and e.g.

in CAT(κ)-spaces (κ > 0) metric projections onto closed and convex sets are SQNE and

Lipschitzian (see [1]) but not nonexpansive. As a consequence of this we obtain quantita-

tive results on the asymptotic regularity of iterations (with error terms) of compositions of

metric projections in CAT(κ)-spaces. Under an additional compactness condition we also
get an explicit rate of metastability for the strong convergence of such iterations. This is
based on the fact that the sequence satisfies a uniform version of being quasi-Fejér monotone
which allows one to apply the general quantitative results for such sequences from [18].

Finally, we show that firmly (quasi-)nonexpansive mappings in uniformly convex hyper-

bolic spaces (so-called UCW -spaces, see [22]) are SQNE with an explicit ‘SQNE-modulus’.
Putting this together with our rates of asymptotic regularity for SQNE-mappings we obtain
(as an instance of a more general result) back precisely the rates of asymptotic regularity

which recently have been extracted for firmly nonexpansive mappings in [2]. We also show

that being SQNE with an explicit modulus is implied (in general metric spaces) by the

so-called property (P1) recently introduced in [3].

The approach in this paper is part of the so-called ‘proof-mining’ paradigm where tools from
mathematical logic (‘proof interpretations’) are used to convert prima facie nonquantitative
proofs in such a way that new quantitative information can be read-off. Though the proofs
in this paper make no reference to logic, they can be viewed as instances of this general
logical methodology and we occasionally make remarks referring to some logically relevant
points. For details on ‘proof mining’ see [15].
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2 Rates of asymptotic regularity in Banach spaces

In this paper N always denotes the set {0, 1, 2, . . .}, N∗ := N \ {0}.

Definition 2.1. Let X be a Banach space and S ⊆ X. A nonexpansive mapping T : S →
X is called strongly nonexpansive (SNE) if for all sequences (xn), (yn) in S the following
implication is true:

if ((xn − yn) bounded ∧ ‖xn − yn‖ − ‖Txn − Tyn‖ → 0) , then (xn−yn)−(Txn−Tyn)→ 0.

Lemma 2.2. A mapping T : S → X is strongly nonexpansive iff T satisfies

(∗)
{
∀c, k ∈ N ∃n ∈ N ∀x, y ∈ S(

‖x− y‖ ≤ c ∧ ‖x− y‖ − ‖Tx− Ty‖ < 2−n → ‖(x− y)− (Tx− Ty)‖ < 2−k
)
.

Proof: The converse implication ‘⇐’ is trivial once one observes that (∗), in particular,

implies that T is nonexpansive. So let’s prove ‘⇒’ by contraposition: suppose (∗) is wrong.
Then there are c, k ∈ N such that the following holds

∀n ∈ N ∃xn, yn ∈ S
(‖xn − yn‖ ≤ c ∧ ‖xn − yn‖ − ‖Txn − Tyn‖ < 2−n ∧ ‖(xn − yn)− (Txn − Tyn)‖ ≥ 2−k)

which contradicts T being SNE. �

Remark 2.3. Note that the proof of ‘⇒’ is noneffective by the use of contraposition together
with countable choice.

The lemma above shows that the strong nonexpansivity of T : S → X is nothing else but a
uniform version of being strictly nonexpansive in the sense of (see [10])

∀x, y ∈ S (x− y 6= Tx− Ty → ‖Tx− Ty‖ < ‖x− y‖)

which can easily be seen to be equivalent to

∀x, y ∈ S ∀k ∈ N ∃n ∈ N (‖x− y‖ − ‖Tx− Ty‖ ≤ 2−n → ‖(x− y)− (Tx− Ty)‖ < 2−k).

It is now easy to see (as was originally observed by S. Reich, see [10]) that for compact S
every strictly nonexpansive mapping T : S → X is strongly nonexpansive.
From general logical metatheorems due to the author (see [15]) it, moreover, follows (note

that ‘(. . .)’ in the formula above can be written in purely existential form) that from a

proof (even if noneffective) of the fact that a class of operators T is strictly nonexpansive
one can extract a proof of T being SNE together with an explicit effective bound ω in the
sense of the next definition provided that the proof is carried out for classes of spaces X
and mappings T that are allowed in these metatheorems. This, e.g., is the case for the
class of uniformly convex Banach spaces and for the class of firmly nonexpansive mappings
and so Proposition 2.17 proven below can be seen as an (simple) instance of this general
phenomenon.

3



Definition 2.4. A function ω : N2 → N witnessing ‘∃n’ in (∗) above, i.e.

(∗∗)
{
∀c, k ∈ N ∀x, y ∈ S(
‖x− y‖ ≤ c ∧ ‖x− y‖ − ‖Tx− Ty‖ < 2−ω(c,k) → ‖(x− y)− (Tx− Ty)‖ < 2−k

)
,

is called an SNE-modulus of T .

So a mapping T : S → X is strongly nonexpansive iff it possesses an SNE-modulus.

Remark 2.5. Of course, it is an inessential variation of (∗∗) to replace in the conclusion

‘<’ by ‘≤’ and in the premise ‘≤ c’ by ‘< c’ (shifting in one direction from ω to ω′(c, k) :=

ω(c/2, k + 1)). Then with the representation of real numbers as in [15], (∗∗) becomes a

purely universal statement (if S is treated as an abstract set just as the abstract convex sets

C in [15]). As a result of this, all the general logical bound extraction theorems from [15]
for nonexpansive mappings are also true if ‘nonexpansive’ is replaced by ‘SNE with modulus
ω’ with the only difference that now the extracted bound will additionally depend on ω.

A computationally weaker form of quantitatively witnessing strong nonexpansivity is the
following:

Definition 2.6. Let T be SNE. A modulus of metastability for T is a functional Ω : N ×
NN×NN → NN×NN

such that for every bound c ∈ N on (xn−yn) and every rate of metastability

ϕ for ‖xn − yn‖ − ‖Txn − Tyn‖ → 0, i.e.

∀k ∈ N ∀g ∈ NN ∃n ≤ ϕ(k, g) ∀i ∈ [n, n+ g(n)] (‖xi − yi‖ − ‖Txi − Tyi‖ < 2−k),

ψ := Ω(c, ϕ) is a rate of metastability for (xn − yn)− (Txn − Tyn)→ 0, i.e.

∀k ∈ N ∀g ∈ NN∃n ≤ ψ(k, g) ∀i ∈ [n, n+ g(n)] (‖(xi − yi)− (Txi − Tyi)‖ < 2−k).

ω provides a stronger quantitative information than Ω: the latter is definable from the
former by [Ω(c, ϕ)](k, g) := ϕ(ω(c, k), g), but it does not seem to be easily possible to
convert a modulus Ω into ω.

While for logical considerations, it is convenient to work with 2−n, 2−k rather than with
ε, δ > 0 (since then quantification over positive reals is replaced by just quantifying over

natural numbers n, k and also computability theory can be directly applied to n, k), things

become much more readable by shifting back to the ε/δ-formulation which we do for much
of the rest of this paper.

We first aim at a quantitative version of the following theorem which goes back to [9]:

Theorem 2.7 ([9]). Let T : S → S be SNE and let T possess a fixed point p ∈ S. Then

‖Tn+1x− Tnx‖ → 0, for all x ∈ S,

i.e. T is asymptotically regular.

In the following, for a function f : N → N, we denote the n-th iteration of f starting from

0 by f (n)(0). We now give a quantitative version of Theorem 2.7:
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Theorem 2.8. Let T, x and p be as in Theorem 2.7. Let d ∈ N be such that d ≥ ‖x − p‖
and Ω be a modulus of metastability for T . Define ϕ(ε, g) := g̃(dd/εe)(0), where g̃(n) :=

n+ g(n) + 1, and ψd(ε) := (Ω(d, ϕ))(ε, 0). Then ψd is a rate of asymptotic regularity, i.e.

∀ε > 0 ∀n ≥ ψd(ε)
(
‖Tn+1x− Tnx‖ < ε

)
.

If ω is an SNE-modulus for T, then we obtain as rate of asymptotic regularity ψd(ε) :=

dd/ω(d, ε)e.

Proof: For x ∈ S define xn := Tnx. Let p be a fixed point of T and d ≥ ‖x−p‖. Since T , in

particular, is (quasi-)nonexpansive, the sequence (‖xn − p‖) is nonincreasing and bounded

by d. From [15][Proposition 2.27 and Remark 2.29] it follows that

∀ε > 0 ∀g ∈ NN ∃n ≤ ϕ(ε, g) ∀i, j ∈ [n, n+ g(n) + 1] (|‖xi − p‖ − ‖xj − p‖| < ε)

and so, in particular,

∀ε > 0 ∀g ∈ NN ∃n ≤ ϕ(ε, g) ∀i ∈ [n, n+ g(n)] (‖xi − p‖ − ‖xi+1 − p‖ < ε) .

Since ‖xn − p‖ − ‖Txn − Tp‖ = ‖xn − p‖ − ‖xn+1 − p‖, this means that ϕ is a rate

of metastability for ‖xn − p‖ − ‖Txn − Tp‖ → 0. Hence by the assumption on T being

SNE with modulus of metastability Ω we get that Ω(d, ϕ) is a rate of metastability for

‖Txn − xn‖ = ‖(Txn − Tp)− (xn − p)‖ → 0. Applied to the function g := 0 this yields

∀ε > 0 ∃n ≤ ψd(ε) (‖Txn − xn‖ < ε)

and hence
∀ε > 0 ∀n ≥ ψd(ε) (‖Txn − xn‖ < ε)

since (‖Txn − xn‖) is nonincreasing.

The 2nd claim follows from the fact that for [Ω(d, ϕ)](ε, g) := ϕ(ω(d, ε), g) (see above) we

get [Ω(d, ϕ)](ε, 0) = ϕ(ω(d, ε), 0) = dd/ω(d, ε)e since 0̃(n) = n+ 1. �

Remark 2.9. It is not hard to verify that for the claim about ω, the assumption in Theorem
2.8 that T has a fixed point can be replaced by

∀δ > 0∃pδ ∈ S (‖x− pδ‖ ≤ d ∧ ‖Tpδ − pδ‖ < δ).

In the following we give a quantitative version of the important property of strongly non-
expansive mappings being closed under composition (first proved in [9], see also [10]):

Theorem 2.10. Let S ⊆ X be a subset of a normed space X and let T1, T2 : S → S be
SNE mappings. Consider T := T2 ◦ T1.
If T1, T2 have SNE-moduli ω1, ω2 resp., then T is an SNE mapping and

ω(c, ε) := min{ω1(c, ε/2), ω2(c, ε/2)}

is an SNE-modulus for T.
If we have n SNE mappings T1, . . . , Tn : S → S with respective moduli ωi we may take

ω(c, ε) := min{ω1(c, ε/n), . . . , ωn(c, ε/n)}

as SNE-modulus for T := Tn ◦ . . . ◦ T1.
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Proof: Let ε1, ε2 > 0. Define ω(c, ε1, ε2) := min{ω1(c, ε1), ω2(c, ε2)}. Let x, y ∈ S be with

‖x− y‖ ≤ c. Assume that

(1) ‖x− y‖ − ‖Tx− Ty‖ < ω(c, ε1, ε2).

Then also

(2) ‖x− y‖ − ‖T1x− T1y‖ < ω1(c, ε1) and ‖T1x− T1y‖ − ‖T2(T1x)− T2(T1y)‖ < ω2(c, ε2)

because of

‖Tx− Ty‖ = ‖T2(T1x)− T2(T1y)‖ ≤ ‖T1x− T1y‖ ≤ ‖x− y‖.

Since ωi is an SNE-modulus for Ti (i = 1, 2) and ‖T1x − T1y‖ ≤ ‖x − y‖ ≤ c we get from

(2) that

‖(x− y)− (T1x− T1y)‖ < ε1 and ‖(T1x− T1y)− (T2(T1x)− T2(T1y))‖ < ε2

and so

‖(x−y)−(Tx−Ty)‖ ≤ ‖(x−y)−(T1x−T1y)‖+‖(T1x−T1y)−(T2(T1x)−T2(T1y))‖ < ε1+ε2.

From this result, we now inductively get the claim for SNE-mappings T1, . . . , Tn with
respective moduli ωi : let n > 1. By induction hypothesis, ω̃(c, ε) := min{ω1(c, ε/(n −
1)), . . . , ωn−1(c, ε/(n−1))} is an SNE-modulus for Tn−1 ◦ . . .◦T1. Then by the result proved
above, we get from assuming

‖x− y‖ − ‖Tx− Ty‖ < min{ω1(c,
ε

n
), . . . , ωn(c,

ε

n
)} = min{ω̃(c,

ε

n
(n− 1)), ωn(c,

ε

n
)}

that

‖(x− y)− (Tx− Ty)‖ < ε

n
(n− 1) +

ε

n
= ε.

which yields the claim. �

Remark 2.11. There also is a version of Theorem 2.10 in terms of moduli of metastability
for T1, T2 : If T1, T2 have moduli of metastability Ω1,Ω2 respectively which are selfmajorizing
(in the sense of the majorizability relation from [15]), then T is an SNE mapping with

modulus of metastability Ξ(Ω1,Ω2) (on selfmajorizing arguments) where

[Ξ(Ω1,Ω2)(c, ϕ)](k, g) := ξ(k, g),

with

ξ(k, g) := max
{
ξ1(k, δ(k, hk,g), ξ2(k, g̃ξ1(k,hk,g)

}
, where

g∗(n) := n+ max{g(i) : i ≤ n}, g̃l(m) := g∗(max{l,m}),
hk,g(n) := g∗(max{n, ξ2(k, g̃n)}), ξj(k, g) := [Ωj(c, ϕ)](k + 1, g) for j = 1, 2.

The construction ξ is made such that it transforms two metastability rates in one which is
simultaneously a rate for both. The requirement being ‘selfmajorizing’ is usually satisfied in
practice.
Since we do not need this form of Theorem 2.10 in this paper, we do not go into further
details here.
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Theorem 2.10 can be used to compute approximate common fixed points of finite fami-
lies T1, . . . , Tk of SNE-mappings if they have common fixed points. For this we need a
quantitative version of Lemma 2.1 from [9]

Proposition 2.12. Let X be a Banach space and S ⊆ X be a subset. Let T1, · · · , Tk :
S → S be SNE-mappings with SNE-moduli ω1, . . . , ωk, resp. Let p ∈ S be a common fixed
point of T1, . . . , Tk. Define ρ(d, ε) := χd(k − 1, ε), where χd(0, ε) := ε/2, χd(n + 1, ε) :=

min{ω(d, 12χd(n, ε)),
1
2χd(n, ε)} with ω(d, ε) := min{ω1(d, ε), . . . , ωk(d, ε)}. Then

∀d ∈ N ∀x ∈ S ∀ε > 0 (‖x− p‖ ≤ d ∧ ‖TkTk−1 . . . T1x− x‖ < ρ(d, ε)→
k∧
i=1

(‖Tix− x‖ < ε)).

Proof: We first observe that χd(n, ε) ≤ ε/2 for all n ∈ N.
We proceed by induction on 1 ≤ l ≤ k : For l = 1 the statement is trivial. So let 1 < l ≤ k.
Assume that

(1) ‖TlTl−1 . . . T1x− x‖ < ρ(d, ε) = min{ω(d,
1

2
χd(l − 2, ε)),

1

2
χd(l − 2, ε)} ≤ ε

2
.

Define y := Tl−1 . . . T1x. Then

(2) ‖x− p‖ −min{ω(d,
1

2
χd(l − 2, ε)),

1

2
χd(l − 2, ε)} < ‖Tly − p‖ ≤ ‖y − p‖ ≤ ‖x− p‖.

Since ω is an SNE-modulus of Tl, (2) yields

(3) ‖Tly − y‖ <
1

2
χd(l − 2, ε) ≤ ε/4.

(1) also implies

(4) ‖Tly − x‖ <
1

2
χd(l − 2, ε) ≤ ε/4.

By (3) and (4) we get

(5) ‖x− Tl−1 . . . T1x‖ = ‖x− y‖ < χd(l − 2, ε)

as well as

(6) ‖Tlx− Tly‖ ≤ ‖x− y‖ <
ε

2
.

Together with (1) this gives

(7) ‖x− Tlx‖ ≤ ‖x− Tly‖+ ‖Tly − Tlx‖ <
ε

2
+
ε

2
= ε.

So, by (7), we have shown that x is an ε-approximate fixed point of Tl and by (5) the
induction hypothesis gives the result for Tl−1, . . . , T1. �

We can now combine Theorem 2.8, Theorem 2.10 and Proposition 2.12 to obtain the fol-
lowing result:
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Corollary 2.13. Let T1, . . . , Tk : S → S be SNE-mappings with respective moduli ω1, . . . , ωk,
p ∈ S be a common fixed point of T1, . . . , Tk and define for x ∈ S, xn := Tnx with
T := Tk ◦ . . . ◦ T1. Let d ∈ N be such that ‖x− p‖ ≤ d. Then

∀ε > 0 ∀n ≥ ζ(d, ε)

(
k∧
i=1

‖Tixn − xn‖ < ε

)
,

where

ζ(d, ε) := ψd(ρ(d, ε)) with ψd(ε) :=
⌈

d
ω(d,ε)

⌉
+ 1,

ω(d, ε) := min{ω1(d, ε/k), . . . , ωk(d, ε/k)} and ρ(d, ε) as in Lemma 2.12.

Proof: By Theorem 2.10, ω is an SNE-modulus for T. Hence, by Theorem 2.8, ψd(ε) is a

rate of asymptotic regularity of T for x ∈ S with ‖x− p‖ ≤ d. Thus

∀n ≥ ζ(d, ε) (‖Txn − xn‖ = ‖Tn+1x− Tnx‖ < ρ(d, ε)

and so, by Proposition 2.12 (since ‖xn − p‖ ≤ ‖x− p‖ ≤ d),

∀n ≥ ζ(d, ε)

(
k∧
i=1

‖Tixn − xn‖ < ε

)
.

�

Definition 2.14 ([7]). A mapping T : S → X is λ-firmly nonexpansive for λ > 0 if

∀x, y ∈ S (‖Tx− Ty‖ ≤ ‖λ(x− y) + (1− λ)(Tx− Ty)‖)

and firmly nonexpansive if this holds for all λ > 0.

In uniformly convex Banach spaces, every λ-firmly nonexpansive mapping (for λ ∈ (0, 1))

and so, in particular, every firmly nonexpansive mapping is strongly nonexpansive (this is

Proposition 2.1 in [9]). In order to apply our quantitative results obtained so far we need a
quantitative version of this fact. The next lemma is essentially well-known:

Lemma 2.15. Let d > 0 and λ ∈ [0, 1]. Let X be a uniformly convex Banach space with a

modulus of uniform convexity η : (0, 2]→ (0, 1], i.e.

(∗) ∀ε ∈ (0, 2]∀x, y ∈ X
(
‖x‖, ‖y‖ ≤ 1 ∧ ‖x− y‖ ≥ ε→

∥∥∥∥1

2
(x+ y)

∥∥∥∥ ≤ 1− η(ε)

)
.

Then for all ε ∈ (0, 2] and x, y ∈ X :

‖x‖, ‖y‖ ≤ d ∧ ‖(1− λx) + λy)‖ > (1− 2λ(1− λ)η(ε)) d→ ‖x− y‖ < ε · d.

Remark 2.16. Note that for ε > 2 one can stipulate η(ε) to be any real > 0 as (∗) trivially
holds. We may, therefore, without loss of generality assume that η is defined as a function
(0,∞)→ (0,∞) and we will occasionally implicitly make use of this.
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Proposition 2.17. Let X be uniformly convex with a modulus η and let λ ∈ (0, 1). Let

S ⊆ X and T : S → X be λ-firmly nonexpansive. Then T is SNE with modulus ω(c, ε) :=

λ(1− λ)η(ε/c) · ε (for ε > 2c the claim is trivial and we may simply put ω(c, ε) := 1).

If η can be written as η(ε) = ε · η̃(ε) with η̃ such that

ε1 ≤ ε2 → η̃(ε1) ≤ η̃(ε2), for all ε1, ε2 ∈ (0, 2],

then the modulus can be taken as ω(c, ε) := 2λ(1− λ)η̃(ε/c) · ε.

Proof: Since T is λ-firmly nonexpansive we have

(1) ‖Tx− Ty‖ ≤ ‖(1− λ)(Tx− Ty) + λ(x− y)‖ ≤ ‖x− y‖.

Now assume that x, y ∈ S with ε/2 ≤ ‖x− y‖ ≤ c and

(2) ‖x− y‖ − ‖Tx− Ty‖ < λ(1− λ)η(ε/c) · ε.

(1) and (2) yield

(3) ‖(1− λ)(Tx− Ty) + λ(x− y)‖ > ‖x− y‖ − 2λ(1− λ)η(ε/c) · ‖x− y‖.

Then, since ‖Tx− Ty‖ ≤ ‖x− y‖ ≤ c, Lemma 2.15 (applied to d := ‖x− y‖) implies

‖(x− y)− (Tx− Ty)‖ < ε

c
· ‖x− y‖ ≤ ε.

If ‖x− y‖ < ε/2 (and so also ‖Tx− Ty‖ < ε/2), then trivially ‖(x− y)− (Tx− Ty)‖ < ε.

The additional claim is shown as follows: instead of (2) we now assume

(2)′ ‖x− y‖ − ‖Tx− Ty‖ < 2λ(1− λ) · ε · η̃(ε/c)
≤ 2λ(1− λ) · ε · η̃(ε/‖x− y‖)
= 2λ(1− λ) · η(ε/‖x− y‖) · ‖x− y‖.

(1) and (2)′ then yield

(3)′ ‖(1− λ)(Tx− Ty) + λ(x− y)‖ > ‖x− y‖ − 2λ(1− λ) · η(ε/‖x− y‖) · ‖x− y‖

and so by Lemma 2.15 (again applied to d := ‖x− y‖)

‖(x− y)− (Tx− Ty)‖ < ε

‖x− y‖
· ‖x− y‖ = ε.

�

Corollary 2.18. In Hilbert spaces we get the SNE-modulus

ω(c, ε) :=
λ(1− λ)

4c
ε2.
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Proof: It is well-known that η(ε) := ε2/8 is a modulus of uniform convexity in Hilbert

spaces. The corollary now follows from the 2nd claim in Proposition 2.17 with η̃(ε) = ε/8.
�

Corollary 2.19. Let X be a uniformly convex Banach space with modulus of uniform
convexity η.

1. Let {Pi : 1 ≤ i ≤ k} be linear norm-one projections of X onto subspaces {Xi : 1 ≤ i ≤
k}. Then Pk ◦ . . . ◦ P1 is an SNE-mapping with SNE-modulus

ω(c, ε) :=
ε

4k
η(ε/(k · c)).

2. Let C ⊆ X be a closed and convex subset and Pi : C → Fi be sunny nonexpansive
retractions of C onto (nonempty) closed subsets Fi ⊆ C for 1 ≤ i ≤ k. Then Pk◦. . .◦P1

is an SNE-mapping with the SNE-modulus ω(c, ε) as above.

Proof: Both items follow from Theorem 2.10 and Proposition 2.17 using that norm-one
linear projections as well as sunny nonexpansive retractions are firmly nonexpansive ([9])

and so, in particular, λ-firmly nonexpansive for λ := 1/2. �

For more information on (sunny) nonexpansive retracts see [19].

3 Rates of metastability for strong convergence results

As pointed out in [9], a corollary of Theorem 2.7 and a theorem proved in [4] (Theorem 1.1)
is the following:

Corollary 3.1 ([9]). Let X be a uniformly convex Banach space, C ⊆ X be closed and
convex with C = −C. Let T : C → C be odd and strongly nonexpansive. Then for every
x ∈ C, (Tnx) strongly converges to a fixed point of T.

In [16]1 we generalized the aforementioned Theorem 1.1 from [4] to mappings which just

satisfy a condition due to [30]

(W ) ∀x, y ∈ S (‖Tx+ Ty‖ ≤ ‖x+ y‖),

where now S ⊆ X is any closed subset (note that any odd and nonexpansive selfmap of a

symmetric set S satisfies (W )) and we gave a quantitative version of this theorem:

Theorem 3.2 ([16]). Let X be a uniformly convex Banach space with a modulus of uniform
convexity η, S ⊆ X be any nonempty subset of X and T : S → S a selfmapping of S that
satisfies Wittmann’s [30] condition (W ). Moreover, assume that for each 0 < d ∈ N the

mapping T is (uniformly on Sd := {x ∈ S : ‖x‖ ≤ d) asymptotically regular with a rate
α : N× R∗+ → N, i.e.

∀ε > 0 ∀d ∈ N∗ ∀x ∈ Sd ∀n ≥ α(d, ε)
(
‖Tn+1x− Tnx‖ < ε

)
.

1Typos in [16]: p.619, line 11 ‘Then (xn)...’, line 14 ‘b2 · λ’ (in the definition of α) and line 16 ‘λ‖xn −
T (xn)‖ = ‖Tn+1

λ x− Tnλ x‖’.
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Then (Tnx)n∈N converges strongly with the following rate of metastability

∀ε ∈ (0, 2]∀g : N→ N ∀d ∈ N∗ ∀x ∈ Sd ∃n ≤ Φ(d, α, ε, g)
∀i, j ∈ [n, n+ g(n)]

(
‖T ix− T jx‖ < ε

)
,

where

Φ(d, α, ε, g) := Ψ(d, hd,α,ε,g,
δd(ε)
2 ) with

hd,α,ε,g(n) := h(n) := max
{
α
(
d, δd(ε)

max{g(n),1}

)
−· n, g(n)

}
and

Ψ(d, f, δ) := f̃ (dd/δe)(0) with f̃(n) := n+ f(n) for f : N→ N,
δd(ε) := ε

2 · η(ε/d).

If T is continuous and S closed, then the strong limit of (Tnx)n∈N is a fixed point of T.
For the metastability statement the completeness of X is not needed.

Using Theorem 2.8 together with Theorem 3.2 we get the following quantitative version of
Corollary 1.2 in [9]:

Corollary 3.3. Let X be a uniformly convex Banach space with a modulus of uniform
convexity η and S ⊆ X be any closed subset. Let T : S → S be a mapping which satisfies
condition (W ) and which is strongly nonexpansive. Assume that T has a fixed point p ∈ S
(which e.g. is the case when S is convex and bounded or when S is convex and symmetric

and T is odd). Then for every x ∈ S, (Tnx) strongly converges to a fixed point of T with the

rate of metastability Φ(d, α, ε, g) from 3.2 with α(ε) := ψd+b(ε) from Theorem 2.8, where

d, b ∈ N with ‖x‖ ≤ d and ‖p‖ ≤ b.

Proof: Since ‖x‖ ≤ d implies that ‖x− p‖ ≤ d+ b, we get from Theorem 2.8 that ψd+b is a
uniform rate of asymptotic regularity for all x ∈ Sd. Hence Theorem 3.2 is applicable with
α(ε) := ψd+b(ε). �

The next corollary gives quantitative versions of Theorems 2.1 and 2.2 in [9]:

Corollary 3.4. Under the conditions of Corollary 2.19.1, the sequence
(
(Pk ◦ . . . ◦P1)

nx
)
n

is metastable with the rate Φ(d, ψd, ε, g) from Corollary 3.3, but now with

ψd(ε) := d4kd/(ε · η(ε/(k · d))e.

The same is true under the conditions of Corollary 2.19.2 if we additionally assume that X
is smooth and C and F1, . . . , Fk are symmetric.

Proof: The claim follows from Corollary 3.3, Theorem 2.8 and Corollary 2.19 since norm-
one linear projections as well as (under the assumptions made) sunny nonexpansive retracts

are odd (by [7, 9]) and hence (as well as their compositions) satisfy (W ). Note that this
time 0 is a fixed point of Pk ◦ . . . ◦ P1 so that we can take b := 0. �

4 Generalizations to metric and uniformly convex hyperbolic
spaces

In this section we show that most of the results in Section 2 hold true in the setting of
general metric spaces (instead of Banach spaces) and uniformly convex hyperbolic spaces
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(instead of uniformly convex Banach spaces). Since it is somewhat artificial to adapt the
concept of strong nonexpansivity to the metric context, we use instead a generalization of
this concept, namely strong quasi-nonexpansivity and so the results in this section are also
a proper generalization in the normed case (also we now allow for error terms). For the
relevance of this class of mappings in the context of convex optimization even in the setting
of Hilbert spaces, see e.g. [31]. In the geodesic setting, it has recently been shown that metric

projections to Chebycheff sets in CAT(κ)-spaces (κ > 0) are strongly quasi-nonexpansive

but not nonexpansive (while being Lipschitzian under suitable boundedness conditions, see

[1]). In the setting of the Hilbert ball, strongly (quasi-)nonexpansive mappings have been

defined and studied already in [25, 5].

Definition 4.1. Let (X, d) be a metric space, S ⊆ X and T : S → X be a mapping. We

call T uniformly strongly quasi-nonexpansive (SQNE) if Fix(T ) 6= ∅ and

(+)

{
∀c, k ∈ N ∃n ∈ N ∀x ∈ S ∀p ∈ Fix(T )

(d(x, p) ≤ c ∧ d(x, p)− d(Tx, p) < 2−n → d(x, Tx) < 2−k).

If this is only claimed for some fixed point p ∈ Fix(T ) we say that T is SQNE w.r.t. p.

Remark 4.2. 1. Note that being ‘SQNE’ differs from ‘SQNE w.r.t. p for each p ∈
Fix(T )’ as in the former case ‘∃n’ holds uniformly for all p ∈ Fix(T ).

2. Any mapping T that is SQNE w.r.t. some p ∈ Fix(T ), in particular, is quasi-
nonexpansive w.r.t. p, i.e.

∀x ∈ S (d(Tx, p) ≤ d(x, p)).

This definition is essentially due to [8] who considers both the nonuniform and the uniform

version of being SQNE. However, we do not claim n to be uniformly for all x (as in [8])

but only provided that d(x, p) ≤ c. It is then obvious that any SNE-mapping having a fixed

point is also (uniformly) SQNE (although claimed in [8] it is not clear why this would be

the case if the existence of n in SQNE would be claimed to be uniform for all x, p).

Note that the notion called also ‘SQNE’ in [10][2.1.38] for the Hilbert space case is much

stronger in the sense that n is claimed to be (uniformly) given in a very special form there.

In particular, not every SNE-mapping (having a fixed point) would be SQNE in this strong

sense. More precisely, the definition given in [10] coincides with the condition (P1) from [3]

for l = 2 (see below).

Being SQNE w.r.t. a fixed point p ∈ Fix(T ) is equivalent to being quasi-nonexpansive

w.r.t. p and satisfying the following condition (see also [25, 5]):

((xn) bounded ∧ d(xn, p)− d(Txn, p)→ 0)⇒ d(xn, Txn)→ 0.

A function ω : N2 → N witnessing ‘∃n’ in (+) as a function in c, k is called a (uniform)

SQNE-modulus of T (resp. an SQNE-modulus w.r.t. some p ∈ Fix(T ) if T is only claimed

to be SQNE w.r.t. p).
We can adopt also the concept of being a modulus Ω of metastability for mappings T :
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S → X that are SQNE-mappings w.r.t. a fixed point p ∈ Fix(T ) in the following way: Ω

transforms a bound c on (d(xn, p)) and a rate of metastability ϕ for d(xn, p)−d(Txn, p)→ 0

into a rate ψ := Ω(c, ϕ) of metastability for d(xn, Txn)→ 0.

We next observe that being SQNE is implied (in general metric spaces) by the property

(P1) introduced in [3] and one easily can construct an SQNE-modulus:

Definition 4.3 ([3]). Let (X, d) be a metric space and S ⊆ X be a subset. A mapping

T : S → X satisfies the property (P1) if Fix(T ) 6= ∅ and there exist l, β > 0 such that

(P1) ∀x ∈ S ∀p ∈ Fix(T )
(
d(Tx, p)l ≤ d(x, p)l − βd(Tx, x)l

)
.

Proposition 4.4. Every mapping T satisfying the property (P1) is SQNE with modulus

(switching again to the more convenient ε/δ-notation) ω(c, ε) := αc(ε
l · β), where αc is a

modulus of uniform continuity for x 7→ xl on [0, c].

Proof: Let αc : R∗+ → R∗+ be a modulus of uniform continuity of a 7→ al on [0, c], i.e.

∀ε > 0 ∀a, b ∈ [0, c] (|a− b| < αc(ε)→ |al − bl| < ε).

(P1) implies that for all x ∈ S, p ∈ Fix(T )

(1) d(Tx, x) ≤
(
d(x, p)l − d(Tx, p)l

β

) 1
l

.

Define
(2) ω(c, ε) := αc(ε

l · β).

Now let d(x, p) ≤ c with x ∈ S and p ∈ Fix(T ). (P1), in particular, implies that d(Tx, p) ≤
d(x, p). Assume that

(3) d(x, p)− d(Tx, p) < ω(c, ε).

Then
(4) d(x, p)l − d(Tx, p)l < εl · β

and so by (1)

d(Tx, x) < ε.

�

Corollary 4.5. Let X be a complete CAT(κ)-space (κ > 0) with diam(X) < π/(2
√
κ) ≤ d

and C ⊆ X be a nonempty closed convex subset. Then the metric projection PC : X → C

is SQNE with modulus2

ω(ε) :=
ε2 · β

2d
,

where

β =
1

2
(π − 2

√
κδ) tan(

√
κδ) with 0 < δ < π/(2

√
κ)− diam(X).

2Since X is bounded we do not need the first argument c of ω here.
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Proof: By [3], metric projections onto closed convex subsets of X satisfy the property (P1)

with l = 2 and β as given above. Hence by Proposition 4.4 we get (using that f(x) = x2 is

2d-Lipschitz on [0, d]) that ε2 · β/2d is an SQNE-modulus for PC . �

Theorem 2.10 also holds for SQNE-mappings with respective moduli in the following sense:

Theorem 4.6. If T1, . . . , Tk : S → S are SQNE with moduli ω1, . . . , ωk for some common

fixed point p ∈
⋂k
i=1 Fix(Ti), then Tk ◦ . . . ◦ T1 is SQNE (with the modulus ω as defined in

Theorem 2.10) w.r.t. p. In particular: if T1, . . . , Tk are SQNE, then T is SQNE (again with

the modulus ω as defined in Theorem 2.10) provided that
⋂k
i=1 Fix(Ti) 6= ∅.

Proof: The first part follows by inspecting the proof of Theorem 2.10. The 2nd claim follows

using that if T1, . . . , Tk are SQNE and
⋂k
i=1 Fix(Ti) 6= ∅, then Fix(T ) =

⋂k
i=1 Fix(Ti) (using

that the new modulus ω is uniform if the moduli ω1, . . . , ωk were). This fact is shown in

[8] (and we give a quantitative form of this result in Proposition 4.15 below; note that the

continuity requirement is not necessary for the qualitative result). �

Theorem 4.7. Let (X, d) be a metric space and S ⊆ X be any subset. Let T : S → S be

an SQNE-map with modulus of metastability Ω w.r.t. some p ∈ Fix(T ). Then

d(Tn+1x, Tnx)→ 0, for all x ∈ S,

and we obtain the following rate of metastability for this asymptotic regularity:

d(x, p) ≤ d→ ∀ε > 0 ∀g ∈ NN ∃n ≤ ψd(ε, g)∀k ∈ [n, n+ g(n)]
(
d(T k+1x, T kx) < ε

)
,

where

ψd(ε, g) := (Ω(d, ϕ))(ε, g) with ϕ(ε, g) := g̃(dd/εe)(0), g̃(n) := n+ g(n) + 1.

If ω is an SQNE-modulus for T w.r.t. p, then we obtain as rate of metastability for the
asymptotic regularity ψd(ε, g) := ϕ(ω(d, ε), g).

In the case where (d(Tn+1x, Tnx)) is nonincreasing (which e.g. is the case if T addition-

ally is nonexpansive), then ψd(ε, 0) is a rate of asymptotic regularity (in both cases). In

particular, then dd/ω(d, ε)e is a rate of asymptotic regularity.

Proof: For x ∈ S define xn := Tnx. Let d ≥ d(x, p). Since T , in particular, is quasi-

nonexpansive (w.r.t. p), the sequence (d(xn, p)) is nonincreasing and bounded by d. From

[15][Corollary 2.28 and Remark 2.29] it follows that

∀ε > 0∀g ∈ NN ∃n ≤ ϕ(ε, g) ∀i, j ∈ [n, n+ g(n) + 1] (|d(xi, p)− d(xj , p)| < ε)

and so, in particular,

∀ε > 0 ∀g ∈ NN ∃n ≤ ϕ(ε, g) ∀i ∈ [n, n+ g(n)] (d(xi, p)− d(xi+1, p) < ε) .
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Since d(xn, p)−d(Txn, p) = d(xn, p)−d(xn+1, p), this means that ϕ is a rate of metastability

for d(xn, p)− d(Txn, p)→ 0. Hence by the assumption on T being SQNE with modulus of

metastability Ω w.r.t. p we get that Ω(d, ϕ) is a rate of metastability for d(Txn, xn) → 0.
Applied to the function g := 0 this yields

∀ε > 0 ∃n ≤ ψd(ε, 0) (d(Txn, xn) < ε) .

If (d(Txn, xn)) is, furthermore, nonincreasing we obtain

∀ε > 0 ∀n ≥ ψd(ε, 0) (d(Txn, xn) < ε) .

The 2nd claim follows from the fact that, given an SQNE-modulus ω w.r.t. p we can just
take [Ω(d, ϕ)](ε, g) := ϕ(ω(d, ε), g) as SQNE-modulus of metastability w.r.t. p. Finally,

[Ω(d, ϕ)](ε, 0) = ϕ(ω(d, ε), 0) = dd/ω(d, ε)e since 0̃(n) = n+ 1. �

We now show how to introduce error terms in Theorem 4.7. We first need a lemma:

Lemma 4.8. Let (an), (δn) be sequences of nonnegative reals with

an+1 ≤ an + δn,

where
∑
δn <∞. Let A,D ∈ N with A ≥ a0 and D ≥

∑
δn. Define

ϕ̃A,D(ε, g) := g̃(K)(0), where K =

⌈
4(A+ 5D)

ε

⌉
, g̃(n) := n+ g(n).

Then ϕ̃A,D is a rate of metastability for (an).

Proof: The lemma is a special case of Lemma 3.2.3 in [17] taking there bn = 0 (and

consequently B = 0). We use ‘4’ instead of ‘3’ in the definition of K to get the conclusion

in the metastability statement with < ε (as in our paper) rather than ≤ ε (as in [17]). �

Theorem 4.9. Let (X, d) be a metric space and S ⊆ X be any subset. Let T : S → S be an

SQNE-map with modulus of metastability Ω w.r.t. some p ∈ Fix(T ). Let x ∈ S and d ∈ N
with d ≥ d(x, p). Let (xn) be a sequence in S with x0 = x and d(xn+1, Txn) < δn where

(δn) is a sequence of nonnegative reals with
∑
δn ≤ D ∈ N. Then

d(Txn, xn)→ 0, for all x ∈ S,

and we obtain the following rate of metastability for this asymptotic regularity:

∀ε > 0 ∀g ∈ NN ∃n ≤ ψd(ε, g) ∀k ∈ [n, n+ g(n)] (d(Txk, xk) < ε) ,

where
ψd(ε, g) := ψd,D,α(ε, g) := (Ω(d+D, ϕ̂d,D))(ε, g)

with ϕ̂d,D(ε, g) := ϕ̃d,D(ε/2, gα(ε/2) + 1) + α(ε/2),

where ϕ̃d,D is as in Lemma 4.8, gl(n) := g(n + l) + l and α is a rate of convergence for

δn → 0, i.e. ∀ε > 0 ∀n ≥ α(ε) (δn < ε).
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If ω is an SQNE-modulus for T w.r.t. p, then we obtain as rate of metastability for the
asymptotic regularity ψd(ε, g) := ϕ̂d,D(ω(d+D, ε), g).

In the case where (d(Txn, xn)) is nonincreasing (which e.g. is the case if T additionally is

nonexpansive and δn = 0 for all n), then ψd(ε, 0) is a rate of asymptotic regularity (in both

cases).

Proof: For x ∈ S let (xn) be a sequence in S with x0 = x and d(xn+1, Txn) < δn. Let

d ≥ d(x, p). Since T , in particular, is quasi-nonexpansive (w.r.t. p), we get that

d(xn+1, p) ≤ d(xn+1, Txn) + d(Txn, p) < δn + d(xn, p)

and so, in particular,
d(xn, p) ≤ d+D.

By Lemma 4.8, ϕ̃d,D(ε, g) is a rate of metastability for the Cauchy property of (d(xn, p)),

i.e.

∀ε > 0∀g ∈ NN ∃n ≤ ϕ̃d,D(ε, g + 1) ∀i, j ∈ [n, n+ g(n) + 1] (|d(xi, p)− d(xj , p)| < ε) .

In particular, we get from this that

∀ε > 0 ∀g ∈ NN ∃n ≤ ϕ̃d,D(ε, g + 1) ∀i ∈ [n, n+ g(n)] (d(xi, p)− d(xi+1, p) < ε) .

Applying this to gα(ε), where gl(n) := g(n+ l) + l, we get

∃n ≤ ϕ̃d,D(ε, gα(ε) + 1) ∀i ∈ [n, n+ g(n+ α(ε)) + α(ε))] (d(xi, p)− d(xi+1, p) < ε) .

Hence (adding to n from the previous line α(ε))

∃n ∈ [α(ε), ϕ̃d,D(ε, gα(ε) + 1) + α(ε)]∀i ∈ [n, n+ g(n)] (d(xi, p)− d(xi+1, p) < ε) .

Since
d(xi, p)− d(Txi, p) < d(xi, p)− d(xi+1, p) + δi

we get that

∃n ≤ ϕ̃d,D(ε, gα(ε) + 1) + α(ε) ∀i ∈ [n, n+ g(n)] (d(xi, p)− d(Txi, p) < 2ε) .

Hence
ϕ̂d,D(ε, g) := ϕ̃d,D(ε/2, gα(ε/2) + 1) + α(ε/2)

is a rate of metastability for
d(xn, p)− d(Txn, p)→ 0.

Hence by the assumption on T being SQNE with modulus of metastability Ω w.r.t. p (and

the fact that (d(xn, p)) is bounded by d+D) we get that ψd = Ω(d+D, ϕ̂d,D) is a rate of

metastability for d(Txn, xn)→ 0. Applied to the function g := 0 this yields

∀ε > 0 ∃n ≤ ψd(ε, 0) (d(Txn, xn) < ε) .

If (d(Txn, xn)) is, furthermore, nonincreasing this yields

∀ε > 0 ∀n ≥ ψd(ε, 0) (d(Txn, xn) < ε) .

�
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Corollary 4.10. The rate of metastability ψd for the asymptotic regularity in Theorem 4.9,
in particular, provides a so-called lim inf-bound ξ for (xn), i.e.

∀n ∈ N ∀ε > 0 ∃m ∈ [n, ξ(ε, n)] (d(xm, Txm) < ε).

Take as ξ(ε, n) := ψd(ε, n), where here we identify in the notation n with the constant-n

function g(k) := n.

Corollary 4.11. Theorem 4.9, in particular, applies (with S := X) to the case where
T := PCk ◦ . . . ◦ PC1 is a composition of metric projections onto closed convex subsets

Ci in a complete CAT(κ)-space X (κ > 0) with diam(X) < π/(2
√
κ) ≤ d provided that⋂k

i=1Ci 6= ∅. In this case one can take as SQNE-modulus

ω(ε) := (ε/k)2 · β/2d,

where

β =
1

2
(π − 2

√
κδ) tan(

√
κδ) with 0 < δ < π/(2

√
κ)− diam(X).

Proof: This follows from Corollary 4.5 and Theorem 4.6. �

We now show the strong convergence of (xn) in 4.9 with a rate of metastability if S is
compact and T additionally is nonexpansive. For this we need a lemma:

Lemma 4.12. The sequence (xn) in Theorem 4.9 (but with T being additionally nonexpan-

sive) is uniformly quasi-Fejér-monotone w.r.t. F = Fix(T ) (see Definition 6.3 in [18] in the

special case where G,H are the identity function and AFk := {p ∈ S : d(p, Tp) ≤ 1/(k+ 1)}
and X := S) with modulus χ(r, n,m) := m(r + 1), i.e.

∀r, n,m ∈ N∀p ∈ S (d(p, Tp) < 1
χ(r,n,m)+1 →

∀l ≤ m(d(xn+l, p) < d(xn, p) +
∑n+l−1

i=n δi + 1
r+1).

Proof: Easy induction using that for all p ∈ S

d(xn+1, p) ≤ d(xn+1, Txn) + d(Txn, Tp) + d(Tp, p) < δn + d(xn, p) + d(Tp, p).

�

Definition 4.13. Let K be a totally bounded metric space. A function γ : N→ N s.t.

∀k ∈ N ∀(xn) ⊂ K ∃i, j ≤ γ(k)

(
i < j ∧ d(xi, xj) ≤

1

k + 1

)
is called a modulus of total boundedness for K (see [18]).

Theorem 4.14. Let X be a metric space and S ⊆ X be a compact subset with a modulus of
total boundedness γ. Then under the conditions of Theorem 4.9 (plus T being additionally
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nonexpansive) the sequence (xn) is strongly convergent with rate of metastability Ψ̂ (for

ε = 1/(k + 1)) defined as Ψ̂(k, g, ξ′, χ, γ, β) := Ψ̂0(P, k, g, ξ
′, χ, β) with

Ψ̂0(0, . . .) := 0,

Ψ̂0(n+ 1, . . .) := ξ′
(
χMg (Ψ̂0(n, . . .), 8k + 7), β(8k + 7)

)
,

χMg (n, k) := max
i≤n
{χ(i, g(i), k)}, P := γ(8k + 7) + 1,

where ξ′(n, k) := max{ξ(i, 1/(j+1)) : i ≤ n, j ≤ k} and ξ is the lim inf-bound from Corollary

4.10 and β is a rate of convergence for
∑
δn (for ε = 1/(k + 1))

Proof: The proof is immediate from Theorem 4.9, Lemma 4.12 and [18][Theorem 6.4] (with

AFk = F̃k := {p ∈ S : d(p, Tp) ≤ 1/(k + 1)} and αG := βH := id). �

Further below (see Theorem 4.19) we will show that such a metastability result can also be
obtained for the important case of compositions Pk ◦ . . . ◦ P1 of metric projections in com-
plete CAT(κ) spaces X despite of the fact that here we no longer have the nonexpansivity
available. For this we need first to generalize Proposition 2.12 to SQNE mappings in the
geodesic setting:

Proposition 4.15. Let X be a metric space and S ⊆ X be a subset. Let T1, . . . , Tk : S → S
be SQNE-mappings with SQNE-moduli ω1, . . . , ωk, resp. w.r.t. some common fixed point
p ∈ S of T1, . . . , Tk and let d ∈ N. Assume that T1, . . . , Tk are uniformly continuous on
Sd := {x ∈ S : d(x, p) ≤ d} with modulus of uniform continuity α : R∗+ → R∗+, i.e.

∀ε > 0∀y, y′ ∈ Sd (d(y, y′) < α(ε)→
k∧
i=1

d(Tiy, Tiy
′) < ε).

Define ρ(d, ε) := χd(k − 1, ε), where χd(0, ε) := min{α(ε/2), ε},
χd(n + 1, ε) := min{ω(d, 12χd(n, ε)),

1
2χd(n, ε)} with ω(d, ε) := min{ω1(d, ε), . . . , ωk(d, ε)}.

Then

∀x ∈ Sd ∀ε > 0 (d(TkTk−1 . . . T1x, x) < ρ(d, ε)→
k∧
i=1

(d(Tix, x) < ε)).

Proof: We first observe that χd(n, ε) ≤ min{α(ε/2), ε} for all n ∈ N. Note also that, in
particular, T1, . . . , Tk are quasi-nonexpansive w.r.t. p.
We proceed by indiction on 1 ≤ l ≤ k : For l = 1 the statement is trivial. So let 1 < l ≤ k
Assume that

(1) d(TlTl−1 . . . T1x, x) < ρ(d, ε) = min{ω(d,
1

2
χd(l − 2, ε)),

1

2
χd(l − 2, ε)} ≤ ε

2
.

Define y := Tl−1 . . . T1x. Then

(2) d(x, p)−min{ω(d,
1

2
χd(l − 2, ε)),

1

2
χd(l − 2, ε)} < d(Tly, p) ≤ d(y, p) ≤ d(x, p).
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Since ω is an SQNE-modulus of Tl w.r.t. p, (2) yields

(3) d(Tly, y) <
1

2
χd(l − 2, ε) ≤ α(ε/2)/2.

(1) also implies

(4) d(Tly, x) <
1

2
χd(l − 2, ε) ≤ α(ε/2)/2.

By (3) and (4) we get

(5) d(x, Tl−1 . . . T1x) = d(x, y) < χd(l − 2, ε)

as well as
(6) d(x, y) < α(ε/2)

and so in turn

(7) d(Tlx, Tly) <
ε

2
.

Together with (1) this gives

(8) d(x, Tlx) ≤ d(x, Tly) + d(Tly, Tlx) <
ε

2
+
ε

2
= ε.

So, by (8), we have shown that x is an ε-approximate fixed point of Tl and by (5) and the
induction hypothesis we get this also for Tl−1, . . . , T1. �

Remark 4.16. There is an interesting logical point to mention in connection with Propo-
sition 4.15: as briefly remarked in the introduction, behind the quantitative results in this
paper, there is a general logical pattern guiding this. In fact, there are general results from
logic to guarantee such quantitative enrichments to be possible. One of the crucial conditions
made in these logical results is that the, otherwise considered as trivial, equality axiom

x = y → Tx = Ty

for functions T : X → X is not included in the formal framework but only a weaker rule:
from a proof of s = t one can infer that Ts = Tt. If this rule is not sufficient and the full
equality axiom is needed, then one has to impose that T is uniformly continuous on bounded
sets with a given modulus of uniform continuity as this is the correct quantitative form of
the equality axiom. In the original proof of the non-quantitative version of Proposition 4.15
one does use the equality axiom in the form

y = x→ Tky = Tkx

which is not just a use of the rule mentioned above, since the proof that y = x uses the
(universal) assumption ‘x = (Tk ◦ . . . ◦ T1)x’ which is not permitted in this rule (note that

x = y is defined as dX(x, y) =R 0 and that =R is universal given the representation of reals

as used in [15]). It is because of this use of the equality axiom that we need to assume

that Tk (and in turn also Tk−1, . . . , T1) are uniformly continuous on bounded sets (note that
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in the case of SNE-mappings in Proposition 2.12 this was trivially satisfied). See [15] for
extensive discussions of this issue. In the case at hand, actually we only need the uniform
continuity (as far as Tk and the argument above is concerned) on pairs of points x, y one of
which is a fixed point of Tk ◦ . . .◦T1. This sometimes is already realized by certain conditions
on the mappings which do not imply their full uniform continuity (see [18] for a discussion

of this point).

Combining Theorems 4.6,4.7 and Proposition 4.15 we get the following result:

Corollary 4.17. Let T1, . . . , Tk : S → S be SQNE-mappings with respective moduli ω1, . . . , ωk
w.r.t. some common fixed point p of T1, . . . , Tk. Assume that T1, . . . , Tk are uniformly con-
tinuous on bounded sets. Define for x ∈ S, xn := Tnx with T := Tk ◦ . . . ◦ T1. Let d ∈ N
and define Sd := {y ∈ S : d(y, p) ≤ d}. Let αd be a common modulus of uniform continuity
for T1, . . . , Tk on Sd. Then

∀x ∈ Sd ∀ε > 0 ∀g ∈ NN ∃n ≤ ζ(d, ε, g)∀m ∈ [n, n+ g(n)]

(
k∧
i=1

d(Tixm, xm) < ε

)
,

where

ζ(d, ε, g) := ψd(ρ(d, ε), g) with ψd(ε, g) := g̃(dd/ω(d,ε)e), g̃(n) := n+ g(n) + 1,
ω(d, ε) := min{ω1(d, ε/k), . . . , ωk(d, ε/k)} and ρ(d, ε) as in Proposition 4.15.

Proof: By Theorem 4.6, ω is an SQNE-modulus for T w.r.t. p. Hence, by Theorem 4.7,
ψd(ε, g) is a rate of metastability for the asymptotic regularity of T for x ∈ Sd. So there

exists an n ≤ ζ(d, ε, g) s.t.

∀m ∈ [n, n+ g(n)] (d(Txm, xm) = d(Tm+1x, Tmx) < ρ(d, ε)

and so, by Proposition 4.15 (since d(xm, p) ≤ d(x, p) ≤ d),

∀m ∈ [n, n+ g(n)]

(
k∧
i=1

d(Tixm, xm) < ε

)
.

�
We now prove that (even perturbed) iterations of compositions of metric projections in

complete CAT(κ) spaces are uniformly quasi-Fejér monotone provided that the projections
have a common fixed point.

Lemma 4.18. Let X be a complete CAT(κ) space with κ > 0 and diam(X) < π/(2
√
κ).

Let C1, . . . , Ck ⊆ X be nonempty, closed and convex subsets with
⋂k
i=1Ci 6= ∅. Consider

Ti := PCi for i = 1, . . . , k and T := Tk ◦ . . . ◦ T1. Let (xn) be a sequence in X with

d(xn+1, Txn) < δn with
∑
δn < ∞, where (δn) is a sequence of nonnegative reals. Then

(xn) is uniformly quasi-Fejér monotone w.r.t. F := Fix(T ) (in the sense of Lemma 4.12)

and we can compute a modulus χ for this property (see the proof).
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Proof: By [11] we know that for all p ∈ Ci and all x ∈ X

d(Tix, p) ≤ d(x, p).

Now let q ∈ X be s.t. d(q, Tiq) < δ. Since Tiq ∈ Ci we get

d(Tix, q) ≤ d(Tix, Tiq) +d(Tiq, q) ≤ d(x, Tiq) +d(Tiq, q) ≤ d(x, q) + 2d(Tiq, q) < d(x, q) + 2δ.

By [1] we have that the projections Ti are Lipschitzian with Lipschitz constant

λ :=
M
√
κ

2 arcsin(sin(M
√
κ/2) cos(M

√
κ))

,

where diam(X) ≤ M < π/(2
√
κ), and so α(ε) := ε/λ is a common modulus of uniform

continuity for T1, . . . , Tk. Moreover, in Corollary 4.5 we have shown that the Ti are SQNE
and computed an SQNE-modulus ω for Ti which, in particular, holds for the points in⋂k
i=1Ci. By Proposition 4.15 (with S := X) we know that any ρ(d, δ)-approximate fixed

point of T is a common δ-fixed point for all T1, . . . , Tk, where d ≥ π/2
√
κ. From this and

iterating the reasoning above, we get that for each p ∈ X with d(p, Tp) < ρ(d, δ) we have
that for all x ∈ X

d(Tx, p) < d(x, p) + 2kδ

and so
d(xn+1, p) < d(xn, p) + 2kδ + δn.

Hence

d(xn+l, p) < d(xn, p) + 2lkδ +
n+l−1∑
i=n

δi.

This yields that

χ(n,m, r) :=

⌈
1

ρ(d, 1/(2mk(r + 1)))

⌉
is a modulus of (xn) being uniformly quasi-Fejér monotone. �

Theorem 4.19. Let X,C1, . . . , Ck, PC1 , . . . , PCk , (xn), (δn), χ be as in Lemma 4.18. Let

X be, moreover, compact with modulus of total boundedness γ. Then the sequence (xn) is

strongly convergent with rate of metastability Ψ̂(k, g) as defined in Theorem 4.14 but now
with χ from Lemma 4.18.

Proof: The proof is immediate from Corollary 4.10 with S := X (which is applicable due

to Corollary 4.5, Theorem 4.6), Lemma 4.18 and [18][Theorem 6.4] (with AFn = F̃n := {p ∈
X : d(p, Tp) ≤ 1/(n+ 1)}). �
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Remark 4.20. Instead of assuming X to be compact it suffices to use that Ck is compact
by viewing T as a selfmap of Ck. This is obvious in the absence of error terms δn where
xn ∈ Ck for n ≥ 1. In the presence of error terms one can apply the reasoning to yn := T (xn)

noticing that as in the proof of Lemma 4.18 also (yn) is uniformly quasi-Fejér monotone

(with the same modulus χ). Using a rate of convergence for δn → 0, the rate of metastability

for (yn) can then be transformed into one for (xn).

Remark 4.21. The metastability results in Theorems 4.14 and 4.19 can also be strengthened
as follows: since T in 4.14 is nonexpansive (and Lipschitzian in 4.19) one gets moduli of

explicit closedness ωF , δF (for F = Fix(T )) in the sense of [18] which then can be used as in

Theorem 5.3 in [18] to modify the rate Ψ̂ into a rate Ψ̃(k, g) satisfying for k ∈ N, g : N→ N

∃n ≤ Ψ̃(k, g) ∀i, j ∈ [n, n+ g(n)]

(
d(xi, xj) ≤

1

k + 1
and d(xi, Txi) ≤

1

k + 1

)
.

Applying this to k′ := d1/ρ(d, 1/(k + 2))e+ 1 ≥ k with ρ from Proposition 4.15 we then get

(using that proposition) in the situation of Theorem 4.19

∃n ≤ Ψ̃(k′, g) ∀i, j ∈ [n, n+ g(n)]

(
d(xi, xj) ≤

1

k + 1
and

k∧
m=1

(d(xi, Tmxi) ≤
1

k + 1
)

)

which constitutes a finitary quantitative version of the theorem that (xn) converges to a
common fixed point of T1, . . . , Tk.

In [2], the concept of being λ-firmly nonexpansive has been generalized (for λ ∈ (0, 1)) to

the context of W -hyperbolic spaces in the sense of [14] (in the case of the Hilbert ball this

is due to [12]; W -hyperbolic spaces are closely related to the hyperbolic spaces due to [27],

see [14] for a detailed discussion of the relationship): let (X, d,W ) be a W -hyperbolic space,

S ⊆ X and T : S → X. Given λ ∈ (0, 1), we say that T is λ-firmly nonexpansive if for all
x, y ∈ S

d(Tx, Ty) ≤ d ((1− λ)x⊕ λTx, (1− λ)y ⊕ λTy) .

Here (1−λ)x⊕λy is defined as W (x, y, λ), i.e. as the unique point z in the metric segment

[x, y] provided by W with d(x, z) = λd(x, y).

We say that T : S → X with Fix(T ) 6= ∅ is λ-firmly-quasi-nonexpansive if for all x, p ∈ S
with p ∈ Fix(T )

d(Tx, p) ≤ d ((1− λ)x⊕ λTx, p) .

Note that if T is λ-firmly-nonexpansive and has a fixed point, then it also is λ-firmly-quasi-
nonexpansive since W (x, x, λ) = x.

A hyperbolic space (X, d,W ) is uniformly convex [22] if for any r > 0 and any ε ∈ (0, 2]

there exists θ ∈ (0, 1] such that for all a, x, y ∈ X,

d(x, a) ≤ r
d(y, a) ≤ r
d(x, y) ≥ εr

 ⇒ d

(
1

2
x⊕ 1

2
y, a

)
≤ (1− θ)r. (1)
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A mapping η : (0,∞) × (0, 2] → (0, 1] providing such a θ := η(r, ε) for given r > 0 and

ε ∈ (0, 2] is called a modulus of uniform convexity.

In the sequel, (X, d,W ) is a uniformly convex space and η is a modulus of uniform convexity.
As a counterpart to Lemma 2.15 we now have

Lemma 4.22 ([22]). Let r > 0, ε ∈ (0, 2] and a, x, y ∈ X be such that d(x, a) ≤ r, d(y, a) ≤
r, d(x, y) ≥ εr. Then for any λ ∈ [0, 1],

d((1− λ)x⊕ λy, a) ≤ (1− 2λ(1− λ)η(r, ε))r.

Following [23] we call a uniformly convex W -hyperbolic space with a modulus of convexity

η(r, ε) which (for fixed ε) decreases as r increases a UCW -space. We call such a modulus
monotone.

We now show that T being λ-firmly(-quasi-)nonexpansive implies that T is SQNE (provided

that Fix(T ) 6= ∅) and we give a quantitative version of this:

Proposition 4.23. Let (X, d,W ) be a UCW -space with monotone modulus of convexity η.

Let S ⊆ X and T : S → X be a λ-firmly-quasi-nonexpansive mapping for some λ ∈ (0, 1)

(resp. only w.r.t. some fixed point p of T ). Then T is an SQNE-mapping (resp. SQNE

w.r.t. p) with SQNE-modulus

ω(c, ε) := λ(1− λ)η(c, ε/c) · ε

(for ε/c ≤ 2 and := 1, otherwise).

If η can be written as η(r, ε) = ε · η̃(r, ε), where η̃(r, ε) for fixed r increases as ε increases,
then ω can be improved to

ω(c, ε) := 2λ(1− λ)η̃(c, ε/c) · ε.

Proof: Since T is λ-firmly-quasi-nonexpansive w.r.t. p we have for all x ∈ S

(1) d(Tx, p) ≤ d ((1− λ)x⊕ λTx, p) ≤ (1− λ)d(x, p) + λd(Tx, p) ≤ d(x, p).

Now assume that x ∈ S with ε/2 ≤ d(x, p) ≤ c and

(2) d(x, p)− d(Tx, p) < λ(1− λ)η(c, ε/c) · ε.

By (1) and (2) we get (using the monotonicity of η)

(3)

{
d ((1− λ)x⊕ λTx, p) > d(x, p)− 2λ(1− λ)η(c, ε/c) · d(x, p)

≥ d(x, p)− 2λ(1− λ)η(d(x, p), ε/c) · d(x, p).

Since d(Tx, p) ≤ d(x, p) ≤ c, Lemma 4.22 (applied to a := p, y := Tx and r := d(x, p))
implies

d(x, Tx) <
ε

c
d(x, p) ≤ ε.
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If d(x, p) < ε/2 (and hence d(Tx, p) < ε/2), then trivially d(x, Tx) ≤ d(x, p) +d(p, Tx) < ε.

The additional claim is shown as follows: assume instead of (2)

(2)′ d(x, p)− d(Tx, p) < 2λ(1− λ) · ε · η̃(c, ε/c)
≤ 2λ(1− λ) · ε · η̃(c, ε/d(x, p))
= 2λ(1− λ) · η(c, ε/d(x, p)) · d(x, p).

(1) and (2)′ then yield

(3)′
{
d ((1− λ)x⊕ λTx, p) > d(x, p)− 2λ(1− λ)η(c, ε/d(x, p)) · d(x, p)

≥ d(x, p)− 2λ(1− λ)η(d(x, p), ε/d(x, p)) · d(x, p)

and so by Lemma 4.22

d(x, Tx) <
ε

d(x, p)
d(x, p) = ε.

�

Remark 4.24. 1. It is well-know that for CAT(0) spaces X, one can take - as in the

case of Hilbert spaces - η(r, ε) := ε2

8 as a modulus of uniform convexity (see [22]) and

so gets ω(c, ε) := λ(1−λ)
4c ε2 (for ε ≤ 2c and := 1, otherwise) as SQNE-modulus for any

λ-firmly-quasi-nonexpansive T : S → X (with λ ∈ (0, 1)).

2. Theorem 4.7 (last part) and Proposition 4.23 together, in particular, yield the same
bounds on the asymptotic regularity for Picard iterations of λ-firmly nonexpansive
mappings as the ones obtained recently in [2](Theorem 7.1,Remark 7.2). Note that

for λ-firmly-nonexpansive mappings one can (as in [2]) replace the assumption of the
existence of a fixed point by that of arbitrarily good approximate fixed points in some
c-ball around the starting point.

3. Iterations of firmly nonexpansive mappings are also asymptotically regular in general
Banach spaces ([26]) and even W -hyperbolic spaces ([2]) despite of the fact that in such
settings in general being firmly nonexpansive does not imply being SNE. An exponential
rate of asymptotic regularity has recently been extracted using proof mining in [24].
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[1] to his attention.

References
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[18] Kohlenbach, U., Leuştean, L., Nicolae, A., Quantitative results of Fejér monotone
sequences. Preprint 2014, arXiv:1412.5563, submitted.
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