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Abstract

We give rates of strong convergence for the proximal point algorithm PPA computing the
unique zero z of operators A in uniformly convex Banach spaces which are uniformly accretive
at z. We also get a rate of convergence to some zero of A if A has a modulus of regularity. In
the boundedly compact case, we obtain a rate of metastability of PPA in the sense of Tao for

arbitrary accretive operators A (satisfying a range condition so that the PPA is well-defined).
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1 Introduction

The famous Proximal Point Algorithm PPA is used to approximate zeros of monotone operators A
in Hilbert spaces ([13, 15]; for an adaptation to the metric context of CAT(0)-spaces see [1]). While
the PPA converges weakly, strong convergence (in the infinite dimensional case) only holds when
A is strongly monotone or at least satisfies some strong metric regularity conditions. In such cases
explicit rates of convergence have been obtained e.g. in [12] and [9]. In the boundedly compact
case one has strong convergence but (already for R) effective rates of convergence in general are not
possible due to results in [14, 6]. In this case, the next best thing to hope for are effective rates of
metastability in the sense of Tao [18, 19]. Such rates are established in [8, 12].

In this paper we give for the first time effective rates of convergence for uniformly accretive at zero
(in the sense of [7]) operators and for metrically regular operators (in the sense of [9]) in the context
of uniformly convex Banach spaces. We also provide a rate metastability (in the boundedly compact
case) for arbitrary accretive operators in uniformly convex Banach spaces. We crucially use, that the
class of firmly nonexpansive operators, and hence the class of all resolvents Jy 4 of accretive operators
A and positive scalars A > 0, is strongly nonexpansive with a common modulus for being strongly
nonexpansive in the sense of [5] which only depends on a given modulus of uniform convexity of X.
Rates of convergence for other algorithms, e.g. of Ishikawa type, computing unique zeroes of uni-
formly accretive (at zero) operators in Banach spaces have recently been obtained in [10].



2 Main Results

In this paper (X, || - ||) always is a real uniformly convex normed space with a modulus of convexity
n:(0,2] = (0,1], i.e.

1
vee @AWy e X (el 1A Lo sl 2e = 360 <1-009).

Let A C X x X be an accretive operator, i.e.
V(,u), (y,v) € AFj(e —y) € J@ —y) (u—v,j(z —y)) > 0),
where J is the normalized duality mapping of X. It is well known that for any A > 0
Ia: RI+ M) — X, x> (I+2A) " (2)

is a single valued firmly nonexpansive mapping with R(Jy4) = D(A) and the fixed point set Fiz:(Jy4)
of Jxa coincides with the set zer A := {q € X : 0 € Aq} of zeros of A (see [4], p.466, and [17],
pp.130,135). From Proposition 2.17 in [5] it follows that Jy 4 is strongly nonexpansive with modulus

wnlee) = gn(e/e) ¢

(for € > 2¢ the claim is trivial and we may simply put wy(c,e) := 1) which does not depend on
A>0,ie. forall e, \,e >0, z,y € R(I+ \A)

lz =yl <enllz =yl = [Iaaz = Jaayl <wqlee) = (@ —y) = (Jaaz — Jhay)l| <e

If n can be written as n(e¢) = ¢ - 7j(¢) with 7 such that
g1 < &g — 7j(e1) < 7j(e2), for all £1,e2 € (0,2],

then the modulus can be taken as wy(c, ) := 47j(¢/c) - €. This gives a modulus of order p in € for L?
with 2 < p < .
We say that an accretive operator A satisfies the range condition if D(A) C R(I + AA) for all A > 0.

Usually, the stronger condition D(A) C R(I + AA) is imposed but we often don’t need this here. In
particular, if A is m-accretive, i.e. R(I+AA) = X for all A > 0, then A satisfies the range condition.

For (v,) C (0,00) the Proximal Point Algorithm for an accretive operator A satisfying the range
condition is given by the sequence

(%) Tng1 = Jy, aTn, xo € R(I +7A).
We assume that zer A # ().
Proposition 1. liminf, . |[|[2n — Zpy1|| = 0 with modulus of liminf (in the sense of [8])
A(e,L,b,n) = [bjwy(b,e)] + L+1,
where b > ||xg — p|| for some p € zer A, i.e.

VLeN e>03n (L<n<A(Lbn) N ||z, —xnt1] <e)-.



Proof: p is a fixed point for Jy4 for all A > 0 and so for all n € N
[#ns1 = pll < llen = pll < llzo = pll <0
Given d > 0 there exists an n € N with L <n < L+ [b/d] + 1 such that
[en = pll = | Iy, a2n = Ty, apll = l#n = pll = €01 —pll <0
since, otherwise,
b= |lzr —pll = ller = pll = L+ /5141 — pll = ([6/6] +1) - 6 > b.

Applied to ¢ := wy(b,e) we get the existence of an n with L <n < A(e, L, b,n) such that

[2n = @ng1ll = l(zn — p) = (Jy, 420 — Jy,ap)|| <&
O
Proposition 2. Define
Up = In ~ Intl
Tn

Then (||un||)nen s nonincreasing.

Proof: The proof in [3] (p.346) for the Hilbert space case can be adapted: since u, € AZpi1,Uny1 €
Az, 42, the accretivity of A implies that Jj(xp41 — Zpt2) € J(Tnt1 — Tnto) and (using e.g. [17],
p-99) Fj(Znt1 — Tnt2)/Yn+1) € J((Znt1 — Tny2)/Vnt1) With

0< - <un - un+17j<xn+l - $n+2>>
= (Un = Un+1, I ((Tn+1 — Tnt2)/n+1))
= (Un, j(Un+1)) — (Unt1, J(Un41))
< unll - Munsall = lunsal? = llunsall (lunll = lungall)

and so
lunll = llunsall-

O
Proposition 3. (i) ([16]) ||/, azn — Jy, a0l < |70 — 7 - Hx%ﬁwl”
(i8) Nzn — Ty azall < l2n = Taga | + by — 7] - 122 mstll
Proof: (i) By the the resolvent equation (see e.g. [2], p.105)
Srar = Jpa (gx + (1 - g) J,\ASE> . Ap>0, z€D(Jxa),

we get

|y, a%n — Jy, an|| =

HJ o (Zan+ (U= 20,420 = Jyam| <

|20 + (1= 205, 420 — 2

A e
() is an immediate consequence of (). O



Corollary 4. If v, >~ >0 for all n € N, then ||uy| — 0 with rate of convergence
Ve > 0Vn 2 p(e,b,7,m) == A(e-7,0,b,n) (lunl <e).
Proof: By Proposition 1 there exists an n < p(e,b,v,n) with ||z, — zp41] < e -7 and so

|20 — Tnia | < lZn — Znia| <

Tn Y

|unll = €.

The claim now follows since (||u,||) is nonincreasing. O

In the following B(q,r) :={z € X : ||z — ¢|| < r}, where ¢ € X and r > 0.

Definition 5 ([9]). Let A C X x X be a set-valued operator with p € zer A and define F(x) :=
dist(0x, A(x)) (with F(x) := oo for x ¢ D(A)). Then ¢ : (0,00) — (0,00) is a modulus of reqularity
for A w.r.t. zer A and B(p,r) with v > 0 if for all e > 0 and v € B(p,r) the following implication

holds
F(z) < ¢(e) — dist(x, zer F) < e.

Lemma 6. Let A C X x X be an accretive operator satisfying the range condition and (x,,) be defined
by the prozimal point algorithm for some sequence () C (0,00). Then (x,,) is Fejér monotone w.r.t.
zer F:={x e X : F(z) =0}, i.e.

Vp € zer F¥n € N (||znt1 — p|| < |lzn —2l))-

Proof: Obviously, the claim holds for p € zer A and so it remains to show that zer ' = zer A : Let
F(p) =0 and ¢ > 0. Clearly, Jv. € Ap with |Jv.|| < e. Since p+v. € (I + A)p and (I + A)~! is single
valued we get
p=I+A) " (p+v:) = Jalp+ve).
Thus
[Jap = pll = [|[Jap — Ja(p + v)[| < [Jve|| < e

Since € > 0 was arbitrary we conclude that p € Fiz(Ja) = zer A. O

Remark 7. Similarly to the argument in the proof of Lemma 6 one can slightly improve Theorem
3.10(ii) and Proposition 4.21 in [9]: in Theorem 3.10(ii) we can allow that ' = r by using in the
proof of this claim x instead of x + 7 to show (as in the proof above for p) that dist(z, zerdf) < e
for x € B(z,r) with dist(0,0f(x)) < ¢*(¢), where now

5(6) = o).

As a consequence of this, in Proposition 4.21 it suffices to have the modulus of uniform continuity
for f restricted to B(z,b+ 1) instead of B(z,b -+ 2) and in ¢ one can drop the minimum with £/2
and replace €/2 by €.

Theorem 8. Let X be complete and A C X x X be an accretive operator with 0 € Ap satisfying
D(A) € R(I +MA). Lety, >~ >0 foralln € N and b > ||xo — p||. If A has a modulus ¢ of
reqularity w.r.t zer A and B(p,b), then (z,) (given by ()) converges to a zero z := limz,, of A with
rate of convergence p(¢(e/2,b),b,v,n) + 1.



Proof: As shown already in the proof of Lemma 6 we have that zer F' = zer A which is closed as
this set coincides with the fixed point set of the nonexpansive mapping J4 (viewed as a mapping
D(A) — D(A)). The claim now follows from Theorem 4.1 in [9] using Lemma 6 and the fact that
by Corollary 4 above and u,, € A(zp4+1)

Vn > p(e; b,v,m) (IF(zni1)] < flunl <e).

O

The concept of a modulus of regularity generalizes that of a modulus of uniqueness (see [9]) and so
one, in particular, gets a rate of convergence under conditions which provide a modulus of uniqueness:

Definition 9 ([7]). An accretive operator A C X x X with 0 € Ap is called uniformly accretive at
zero if
Ve >0VK >030 >0V(z,u) € A

Iz —pll € e, K] = Fj(z —p) € J(z —p) (u,j(x —p)) = 0)).

Any function ©((-) : (0,00) x (0,00) = (0,00) such that § := Ok (e) satisfies the above formula is

called a modulus of accretivity at zero for A.

Note that A is in particular uniformly accretive at zero if
V(z,u) € AJj(x —p) € J(x —p) (u,j(z—p)) = 2z —pl)),
where @ : [0,00) — [0, 00) is continuous with ®(0) = 0 and ®(x) > 0 for > 0 : take
Ok (e) :==inf{®(x) : z € [e,max{e, K}]}.

Theorem 10. Let A C X x X be an accretive operator with 0 € Ap satisfying the range condition
which is uniformly accretive at zero with modulus ©. Let v > 0 and () be a sequence of real numbers
with v, >~y for all n € N. Define for xg € R(I + v A)

Tpt1 = Jy, ATp.
Then (x,,) strongly converges to the unique zero p of A with rate of convergence
Ve > 0Vn 2 p(0y(e)/b,b,7,m) + 1 ([lzn —pl < ¢)
with p from Corollary 4 and b > ||xg — p||.

Proof: If 0 € Ap, then p is a fixed point of each J,, 4. By Corollary 4, |u,| < @‘“b(s) for all

n > p(64(e)/b,b,v,m). Now assume that ||z,+1 — p|| > € for some n > p(©,(e)/b,b,7v,n). Then
|zn+1 — pll € [,b] and so Fj(xp+1 — p) € J(Tpt1 — p) with (using that w, € Az,y1)

||UnH : ||5L'n+1 *PH > <un,j(xn+l 7p)> > @b(g)'

ebT(s) which is a contradiction. 0

Hence ||uy| >
For constant 7, :=~ > 0 a related result can be found as Theorem 2 in [11].

If A is only accretive but not uniformly accretive at zero, the proximal point algorithm is known
to converge only weakly (even in Hilbert spaces). In the boundedly compact case one has strong



convergence but in general there is no computable rate of convergence (even for X := R, see e.g.
[14]). So the next best thing to hope for is an effective rate of metastability in the sense of Tao
([18, 19]), i.e. a bound ¥ : N x N¥ — N with

1
Vk € NVg € NN 3n < U(k,g)Vi,j € [n,n + g(n)] <a:l —zj| < k—l—l) .

Such a rate has been established in the context of Hilbert spaces in [8]. We now construct a rate of
metastability for uniformly convex normed spaces. For this we need one further result:

Proposition 11. Let A C X x X be an accretive operator with D(A) C (| R(I + \A) satisfying
A>0

0€ Ap. Let v, > v >0 foralln € N and Cy, > 2+ ”7 for all i < k. Let (x,,) be defined as in (x)

with wg € D(A). Then (for b > |lzo — p||) ®(k,b,7,1) := A(((k + 1)Cx)~1,0,b,n) is an approzimate
F-bound (in the sense of [8]) for

- N [ 1
F:= ﬂFk, Fy, = m {xED(A) e — Iy, Az S},

keN i<k k+1

i.e.

1
T < B(k, by, m) Vi < K (nxn Tl < M) |

Proof: Since

:’1_%

Tn

|’7n - %‘|
Tn

Yi

<1+ <1y

Tn

Proposition 3(i¢) implies that for all ¢ < k
Hxn - wanH <Ck- Hxn - xn-i-l”

and so by Proposition 1

1 1
In < @k, by, )i <k (llon — Jy,aza] < C - = '
n < ®(k,b,v,m) Vi < (IIw watall < O k+1>

O

We can now apply Theorem 5.3 from [8] to obtain the following metastability result for the strong
convergence of (z,) in the finite dimensional case:

Theorem 12. Let A be as in Proposition 11 and assume additionally that D(A) is boundedly

compact. Let a be a II-modulus of total boundedness (in the sense of [8]) for D(A) N B(0, M), where
M > b+ |p|| so that ||zy| < ||zn —p||+|p|| < M for alln € N, where b > ||xg — pl|, for the sequence

(zn) produced by the proximal point algorithm with xy € D(A) and v, > v > 0. Let x(n,m,r) :=
max{n +m —1,m(r+ 1)} and ® from Proposition 11 above. Then U(k,g,a) := Vo(P, ko,g), with

\IJO(Ov kOag) = 0
Wo(n + 1, ko, 9) i= @ (X}, (o(n, ko, 9), 4k +3) ),



and

Xk,g (1, 7) == max{2k+ 1, x(n, g(n),7)}, X%g(n,r) = H1<aX{Xk’g(’L',T)}, P:=a«a(4ko+3), ko =2k+1
i<n

is a rate of metastability for (x,). In fact

Vk € NVg € NY3n < U(k,g,0) Vi, j € [n,n+ g(n)] (|xl —z;|| < and x; € Fk> .

1
E+1

Proof: Asin Section 8 from [8] (using that Lemma 8.1 in [8] holds with the same proof in our context)

we can apply Theorem 5.3 and Remark 5.4 in [8] to X := D(A) with wgp(k) := 4k + 3,0p(k) =
2k+1,x(n,m,r) :=max{n+m—1,m(r+1)},aqg := By := I, v := « as in the theorem and ® from
Proposition 11 above as approximate fixed point bound. (I
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