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Abstract

We give rates of strong convergence for the proximal point algorithm PPA computing the
unique zero z of operators A in uniformly convex Banach spaces which are uniformly accretive
at z. We also get a rate of convergence to some zero of A if A has a modulus of regularity. In
the boundedly compact case, we obtain a rate of metastability of PPA in the sense of Tao for

arbitrary accretive operators A (satisfying a range condition so that the PPA is well-defined).
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1 Introduction

The famous Proximal Point Algorithm PPA is used to approximate zeros of monotone operators A

in Hilbert spaces ([13, 15]; for an adaptation to the metric context of CAT(0)-spaces see [1]). While

the PPA converges weakly, strong convergence (in the infinite dimensional case) only holds when

A is strongly monotone or at least satisfies some strong metric regularity conditions. In such cases

explicit rates of convergence have been obtained e.g. in [12] and [9]. In the boundedly compact

case one has strong convergence but (already for R) effective rates of convergence in general are not

possible due to results in [14, 6]. In this case, the next best thing to hope for are effective rates of

metastability in the sense of Tao [18, 19]. Such rates are established in [8, 12].

In this paper we give for the first time effective rates of convergence for uniformly accretive at zero

(in the sense of [7]) operators and for metrically regular operators (in the sense of [9]) in the context

of uniformly convex Banach spaces. We also provide a rate metastability (in the boundedly compact

case) for arbitrary accretive operators in uniformly convex Banach spaces. We crucially use, that the

class of firmly nonexpansive operators, and hence the class of all resolvents JλA of accretive operators
A and positive scalars λ > 0, is strongly nonexpansive with a common modulus for being strongly

nonexpansive in the sense of [5] which only depends on a given modulus of uniform convexity of X.

Rates of convergence for other algorithms, e.g. of Ishikawa type, computing unique zeroes of uni-

formly accretive (at zero) operators in Banach spaces have recently been obtained in [10].
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2 Main Results

In this paper (X, ‖ · ‖) always is a real uniformly convex normed space with a modulus of convexity

η : (0, 2]→ (0, 1], i.e.

∀ε ∈ (0, 2]∀x, y ∈ X
(
‖x‖, ‖y‖ ≤ 1 ∧ ‖x− y‖ ≥ ε→

∥∥∥∥1

2
(x+ y)

∥∥∥∥ ≤ 1− η(ε)

)
.

Let A ⊆ X ×X be an accretive operator, i.e.

∀(x, u), (y, v) ∈ A ∃j(x− y) ∈ J(x− y) (〈u− v, j(x− y)〉 ≥ 0) ,

where J is the normalized duality mapping of X. It is well known that for any λ > 0

JλA : R(I + λA)→ X, x 7→ (I + λA)−1(x)

is a single valued firmly nonexpansive mapping withR(JλA) = D(A) and the fixed point set Fix(JλA)

of JλA coincides with the set zer A := {q ∈ X : 0 ∈ Aq} of zeros of A (see [4], p.466, and [17],

pp.130,135). From Proposition 2.17 in [5] it follows that JλA is strongly nonexpansive with modulus

ωη(c, ε) =
1

4
η(ε/c) · ε

(for ε > 2c the claim is trivial and we may simply put ωη(c, ε) := 1) which does not depend on

λ > 0, i.e. for all c, λ, ε > 0, x, y ∈ R(I + λA)

‖x− y‖ ≤ c ∧ ‖x− y‖ − ‖JλAx− JλAy‖ < ωη(c, ε)→ ‖(x− y)− (JλAx− JλAy)‖ < ε.

If η can be written as η(ε) = ε · η̃(ε) with η̃ such that

ε1 ≤ ε2 → η̃(ε1) ≤ η̃(ε2), for all ε1, ε2 ∈ (0, 2],

then the modulus can be taken as ωη(c, ε) := 1
2 η̃(ε/c) · ε. This gives a modulus of order p in ε for Lp

with 2 ≤ p <∞.
We say that an accretive operator A satisfies the range condition if D(A) ⊆ R(I +λA) for all λ > 0.

Usually, the stronger condition D(A) ⊆ R(I + λA) is imposed but we often don’t need this here. In

particular, if A is m-accretive, i.e. R(I+λA) = X for all λ > 0, then A satisfies the range condition.

For (γn) ⊂ (0,∞) the Proximal Point Algorithm for an accretive operator A satisfying the range

condition is given by the sequence

(∗) xn+1 := JγnAxn, x0 ∈ R(I + γ0A).

We assume that zer A 6= ∅.

Proposition 1. lim infn→∞ ‖xn − xn+1‖ = 0 with modulus of lim inf (in the sense of [8])

∆(ε, L, b, η) := db/ωη(b, ε)e+ L+ 1,

where b ≥ ‖x0 − p‖ for some p ∈ zer A, i.e.

∀L ∈ N, ε > 0 ∃n (L ≤ n ≤ ∆(ε, L, b, η) ∧ ‖xn − xn+1‖ < ε) .
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Proof: p is a fixed point for JλA for all λ > 0 and so for all n ∈ N

‖xn+1 − p‖ ≤ ‖xn − p‖ ≤ ‖x0 − p‖ ≤ b.

Given δ > 0 there exists an n ∈ N with L ≤ n ≤ L+ db/δe+ 1 such that

‖xn − p‖ − ‖JγnAxn − JγnAp‖ = ‖xn − p‖ − ‖xn+1 − p‖ < δ

since, otherwise,

b ≥ ‖xL − p‖ ≥ ‖xL − p‖ − ‖xL+db/δe+1 − p‖ ≥ (db/δe+ 1) · δ > b.

Applied to δ := ωη(b, ε) we get the existence of an n with L ≤ n ≤ ∆(ε, L, b, η) such that

‖xn − xn+1‖ = ‖(xn − p)− (JγnAxn − JγnAp)‖ < ε.

�

Proposition 2. Define

un :=
xn − xn+1

γn
.

Then (‖un‖)n∈N is nonincreasing.

Proof: The proof in [3] (p.346) for the Hilbert space case can be adapted: since un ∈ Axn+1, un+1 ∈
Axn+2, the accretivity of A implies that ∃j(xn+1 − xn+2) ∈ J(xn+1 − xn+2) and (using e.g. [17],

p.99) ∃j((xn+1 − xn+2)/γn+1) ∈ J((xn+1 − xn+2)/γn+1) with

0 ≤ 1
γn+1
〈un − un+1, j(xn+1 − xn+2)〉

= 〈un − un+1, j((xn+1 − xn+2)/γn+1)〉
= 〈un, j(un+1)〉 − 〈un+1, j(un+1)〉
≤ ‖un‖ · ‖un+1‖ − ‖un+1‖2 = ‖un+1‖ (‖un‖ − ‖un+1‖)

and so
‖un‖ ≥ ‖un+1‖.

�

Proposition 3. (i) ([16]) ‖JγnAxn − JγiAxn‖ ≤ |γn − γi| ·
‖xn−xn+1‖

γn
.

(ii) ‖xn − JγiAxn‖ ≤ ‖xn − xn+1‖+ |γn − γi| · ‖xn−xn+1‖
γn

.

Proof: (i) By the the resolvent equation (see e.g. [2], p.105)

JλAx = JρA

(ρ
λ
x+

(
1− ρ

λ

)
JλAx

)
, λ, ρ > 0, x ∈ D(JλA),

we get

‖JγnAxn − JγiAxn‖ =∥∥∥JγiA ( γiγnxn + (1− γi
γn

)JγnAxn

)
− JγiAxn

∥∥∥ ≤∥∥∥ γiγnxn + (1− γi
γn

)JγnAxn − xn
∥∥∥ =∣∣∣1− γi

γn

∣∣∣ ‖xn − xn+1‖ = |γn − γi|‖xn−xn+1‖
γn

.

(ii) is an immediate consequence of (i). �

3



Corollary 4. If γn ≥ γ > 0 for all n ∈ N, then ‖un‖ → 0 with rate of convergence

∀ε > 0 ∀n ≥ ρ(ε, b, γ, η) := ∆ (ε · γ, 0, b, η) (‖un‖ < ε) .

Proof: By Proposition 1 there exists an n ≤ ρ(ε, b, γ, η) with ‖xn − xn+1‖ < ε · γ and so

‖un‖ =
‖xn − xn+1‖

γn
≤ ‖xn − xn+1‖

γ
< ε.

The claim now follows since (‖un‖) is nonincreasing. �

In the following B(q, r) := {x ∈ X : ‖x− q‖ ≤ r}, where q ∈ X and r > 0.

Definition 5 ([9]). Let A ⊆ X × X be a set-valued operator with p ∈ zer A and define F (x) :=

dist(0X , A(x)) (with F (x) :=∞ for x 6∈ D(A)). Then φ : (0,∞)→ (0,∞) is a modulus of regularity

for A w.r.t. zer A and B(p, r) with r > 0 if for all ε > 0 and x ∈ B(p, r) the following implication

holds
F (x) < φ(ε)→ dist(x, zer F ) < ε.

Lemma 6. Let A ⊆ X×X be an accretive operator satisfying the range condition and (xn) be defined

by the proximal point algorithm for some sequence (γn) ⊂ (0,∞). Then (xn) is Fejér monotone w.r.t.

zer F := {x ∈ X : F (x) = 0}, i.e.

∀p ∈ zer F ∀n ∈ N (‖xn+1 − p‖ ≤ ‖xn − p‖).

Proof: Obviously, the claim holds for p ∈ zer A and so it remains to show that zer F = zer A : Let

F (p) = 0 and ε > 0. Clearly, ∃vε ∈ Ap with ‖vε‖ < ε. Since p+ vε ∈ (I+A)p and (I+A)−1 is single

valued we get

p = (I +A)−1(p+ vε) = JA(p+ vε).

Thus
‖JAp− p‖ = ‖JAp− JA(p+ vε)‖ ≤ ‖vε‖ ≤ ε.

Since ε > 0 was arbitrary we conclude that p ∈ Fix(JA) = zer A. �

Remark 7. Similarly to the argument in the proof of Lemma 6 one can slightly improve Theorem

3.10(ii) and Proposition 4.21 in [9]: in Theorem 3.10(ii) we can allow that r′ = r by using in the

proof of this claim x instead of x + γ to show (as in the proof above for p) that dist(x, zer∂f) < ε

for x ∈ B̄(z, r) with dist(0, ∂f(x)) < φ∗(ε), where now

φ∗(ε) =
1

γ
φ(ε).

As a consequence of this, in Proposition 4.21 it suffices to have the modulus of uniform continuity

for f restricted to B̄(z, b + 1) instead of B̄(z, b + 2) and in φ one can drop the minimum with ε/2

and replace ε/2 by ε.

Theorem 8. Let X be complete and A ⊆ X × X be an accretive operator with 0 ∈ Ap satisfying

D(A) ⊆ R(I + λA). Let γn ≥ γ > 0 for all n ∈ N and b ≥ ‖x0 − p‖. If A has a modulus φ of

regularity w.r.t zer A and B(p, b), then (xn) (given by (∗)) converges to a zero z := limxn of A with

rate of convergence ρ(φ(ε/2, b), b, γ, η) + 1.
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Proof: As shown already in the proof of Lemma 6 we have that zer F = zer A which is closed as

this set coincides with the fixed point set of the nonexpansive mapping JA (viewed as a mapping

D(A) → D(A)). The claim now follows from Theorem 4.1 in [9] using Lemma 6 and the fact that

by Corollary 4 above and un ∈ A(xn+1)

∀n ≥ ρ(ε, b, γ, η) (|F (xn+1)| ≤ ‖un‖ ≤ ε) .

�

The concept of a modulus of regularity generalizes that of a modulus of uniqueness (see [9]) and so

one, in particular, gets a rate of convergence under conditions which provide a modulus of uniqueness:

Definition 9 ([7]). An accretive operator A ⊆ X ×X with 0 ∈ Ap is called uniformly accretive at

zero if

∀ε > 0 ∀K > 0 ∃δ > 0 ∀(x, u) ∈ A

(‖x− p‖ ∈ [ε,K]→ ∃j(x− p) ∈ J(x− p) (〈u, j(x− p)〉 ≥ δ)) .

Any function Θ(·)(·) : (0,∞)× (0,∞) → (0,∞) such that δ := ΘK(ε) satisfies the above formula is

called a modulus of accretivity at zero for A.

Note that A is in particular uniformly accretive at zero if

∀(x, u) ∈ A ∃j(x− p) ∈ J(x− p) (〈u, j(x− p)〉 ≥ Φ(‖x− p‖)) ,

where Φ : [0,∞)→ [0,∞) is continuous with Φ(0) = 0 and Φ(x) > 0 for x > 0 : take

ΘK(ε) := inf{Φ(x) : x ∈ [ε,max{ε,K}]}.

Theorem 10. Let A ⊆ X ×X be an accretive operator with 0 ∈ Ap satisfying the range condition

which is uniformly accretive at zero with modulus Θ. Let γ > 0 and (γn) be a sequence of real numbers

with γn ≥ γ for all n ∈ N. Define for x0 ∈ R(I + γ0A)

xn+1 := JγnAxn.

Then (xn) strongly converges to the unique zero p of A with rate of convergence

∀ε > 0∀n ≥ ρ (Θb(ε)/b, b, γ, η) + 1 (‖xn − p‖ ≤ ε)

with ρ from Corollary 4 and b ≥ ‖x0 − p‖.

Proof: If 0 ∈ Ap, then p is a fixed point of each JγnA. By Corollary 4, ‖un‖ < Θb(ε)
b for all

n ≥ ρ (Θb(ε)/b, b, γ, η) . Now assume that ‖xn+1 − p‖ ≥ ε for some n ≥ ρ (Θb(ε)/b, b, γ, η) . Then

‖xn+1 − p‖ ∈ [ε, b] and so ∃j(xn+1 − p) ∈ J(xn+1 − p) with (using that un ∈ Axn+1)

‖un‖ · ‖xn+1 − p‖ ≥ 〈un, j(xn+1 − p)〉 ≥ Θb(ε).

Hence ‖un‖ ≥ Θb(ε)
b which is a contradiction. �

For constant γn := γ > 0 a related result can be found as Theorem 2 in [11].

If A is only accretive but not uniformly accretive at zero, the proximal point algorithm is known

to converge only weakly (even in Hilbert spaces). In the boundedly compact case one has strong
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convergence but in general there is no computable rate of convergence (even for X := R, see e.g.

[14]). So the next best thing to hope for is an effective rate of metastability in the sense of Tao

([18, 19]), i.e. a bound Ψ : N× NN → N with

∀k ∈ N∀g ∈ NN ∃n ≤ Ψ(k, g)∀i, j ∈ [n, n+ g(n)]

(
‖xi − xj‖ ≤

1

k + 1

)
.

Such a rate has been established in the context of Hilbert spaces in [8]. We now construct a rate of

metastability for uniformly convex normed spaces. For this we need one further result:

Proposition 11. Let A ⊆ X ×X be an accretive operator with D(A) ⊆
⋂
λ>0

R(I + λA) satisfying

0 ∈ Ap. Let γn ≥ γ > 0 for all n ∈ N and Ck ≥ 2 + γi
γ for all i ≤ k. Let (xn) be defined as in (∗)

with x0 ∈ D(A). Then (for b ≥ ‖x0 − p‖) Φ(k, b, γ, η) := ∆(((k + 1)Ck)−1, 0, b, η) is an approximate

F -bound (in the sense of [8]) for

F :=
⋂
k∈N

F̃k, F̃k :=
⋂
i≤k

{
x ∈ D(A) : ‖x− JγiAx‖ ≤

1

k + 1

}
,

i.e.

∃n ≤ Φ(k, b, γ, η)∀i ≤ k
(
‖xn − JγiAxn‖ ≤

1

k + 1

)
.

Proof: Since
|γn − γi|

γn
=

∣∣∣∣1− γi
γn

∣∣∣∣ ≤ 1 +
γi
γn
≤ 1 +

γi
γ
,

Proposition 3(ii) implies that for all i ≤ k

‖xn − JγiAxn‖ ≤ Ck · ‖xn − xn+1‖

and so by Proposition 1

∃n ≤ Φ(k, b, γ, η)∀i ≤ k
(
‖xn − JγiAxn‖ ≤ Ck ·

1

Ck(k + 1)
≤ 1

k + 1

)
.

�

We can now apply Theorem 5.3 from [8] to obtain the following metastability result for the strong

convergence of (xn) in the finite dimensional case:

Theorem 12. Let A be as in Proposition 11 and assume additionally that D(A) is boundedly

compact. Let α be a II-modulus of total boundedness (in the sense of [8]) for D(A)∩B(0,M), where

M ≥ b+ ‖p‖ so that ‖xn‖ ≤ ‖xn− p‖+ ‖p‖ ≤M for all n ∈ N, where b ≥ ‖x0− p‖, for the sequence

(xn) produced by the proximal point algorithm with x0 ∈ D(A) and γn ≥ γ > 0. Let χ(n,m, r) :=

max{n+m− 1,m(r + 1)} and Φ from Proposition 11 above. Then Ψ(k, g, α) := Ψ0(P, k0, g), with{
Ψ0(0, k0, g) := 0

Ψ0(n+ 1, k0, g) := Φ
(
χMk,g (Ψ0(n, k0, g), 4k0 + 3)

)
,
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and

χk,g(n, r) := max{2k+ 1, χ(n, g(n), r)}, χMk,g(n, r) := max
i≤n
{χk,g(i, r)}, P := α (4k0 + 3) , k0 = 2k+ 1

is a rate of metastability for (xn). In fact

∀k ∈ N ∀g ∈ NN ∃n ≤ Ψ(k, g, α)∀i, j ∈ [n, n+ g(n)]

(
‖xi − xj‖ ≤

1

k + 1
and xi ∈ F̃k

)
.

Proof: As in Section 8 from [8] (using that Lemma 8.1 in [8] holds with the same proof in our context)

we can apply Theorem 5.3 and Remark 5.4 in [8] to X := D(A) with ωF (k) := 4k + 3, δF (k) :=

2k+ 1, χ(n,m, r) := max{n+m−1,m(r+ 1)}, αG := βH := I, γ := α as in the theorem and Φ from

Proposition 11 above as approximate fixed point bound. �
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