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Abstract

The notion of ‘modulus of regularity’, as recently studied in [19], unifies a
number of different concepts used in convex optimization to establish rates of
convergence for Fejér monotone iterative procedures. It generalizes the notion
of ‘modulus of uniqueness’ to the nonunique case. In this paper, we investigate
both notions in terms of reverse mathematics and calibrate their Weihrauch
complexity.
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1 Introduction

In [19], the concept of modulus of regularity is introduced as a central tool to con-
struct rates of convergence for classes of Fejér monotone sequences which appear in
fixed point theory, monotone operator theory and convex optimization. The concept
of modulus of regularity gives a unified account of various notions such as metric sub-
regularity ([10, 22, 21]), Hölder regularity ([4]), error bounds ([21]) and weak sharp

minima ([9]) which play a prominent role in nonlinear optimization. It is general
enough to cover many equilibirium, convex feasibility, fixed point and minimization
problems involving set-valued operators.

In the case where the solution in question is unique, the concept coincides with the
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notion of modulus of uniqueness ([13, 18, 19]) and can be understood as its general-
ization to the nonunique case.

While most problems in nonlinear analysis deal with classes of abstract, in general
not necessarily separable, metric or normed structures, we restrict ourselves in this
paper to the compact metric case. In this situation a modulus of regularity always
exists for continuous functions F ([19], Proposition 3.2) and the concept has been

anticipated already in [1]. We calibrate the strength of its existence in the sense of
reverse mathematics as well as its Weihrauch complexity and compare this with the
case of a modulus of (uniform) uniqueness in the unique case. We also consider the

weaker ∀ε∃δ-version of regularity (without stating the existence of a modulus func-

tion) and show that in this form, regularity is equivalent to WKL0 while the existence
of a modulus is equivalent to ACA0. This differs from the unique case where both
the ∀ε∃δ-form as well as the modulus version of uniform uniqueness are equivalent
to WKL0. The difference also shows up in the Weihrauch complexity: the many-
valued modulus-of-uniqueness operator MUNI is computable while the many-valued

modulus-of-regularity operator MREG is Weihrauch equivalent to L̂PO. Both phe-
nomena are due to the fact that the proof already for the ∀ε∃δ-form of regularity

makes substantial use of classical logic (Σ0
1-LEM=Π0

1-LEM+M, where M denotes the

Markov principle) while in the unique case only M is used.1

2 Moduli of regularity and uniqueness

Definition 2.1 ([19]). Let (X, d) be a metric space and let be F : X → R a mapping.

Let zer F := {x ∈ X : F (x) = 0} 6= ∅ and r > 0. We say that F is regular w.r.t.

zerF and B(z, r) for z ∈ zerF if

∀n ∈ N ∃k ∈ N ∀x ∈ B(z, r)
(
|F (x)| < 2−k → ∃z′ ∈ zer F (d(x, z′) < 2−n)

)
.

If this holds with ‘∀x ∈ B(z, r)’ replaced by ‘∀x ∈ X’ we say that F is regular w.r.t.
zer F.
A function f : N → N providing given n a number k = f(n) satisfying the above is

called a modulus of regularity of F w.r.t. zerF and B(z, r) resp. w.r.t. zer F.

Remark 2.2. 1. In [19] the conclusion ‘∃z′ ∈ zer F (d(x, z′) < 2−n)’ is conve-

niently written using the metric distance functions as ‘dist(x, zer F ) < 2−n’
but, of course, the concept does not presuppose the existence of ‘dist’, i.e. the
locatedness of zer F.

2. Again for convenience and to follow the style used in analysis, the concept of
a modulus of regularity in [19] is written in ε/δ-form, i.e. as a function :

1The latter is already implicit in [13] and [3] since to prenex uniform uniqueness as in [13], resp.
reformulating it in the strong form stated on p.714 in [3], just amounts to applying M.
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(0,∞) → (0,∞). All results can be, however, easily re-casted in terms of the
modulus f : N → N as defined above which is more appropriate for the context
of reverse mathematics and Weihrauch reducibility.

When zer F is not a singleton set, effective moduli of regularity can only be expected
to exist in rather restricted situations (due to their strong consequences on rates of

convergence for numerous iterative procedures used in nonlinear analysis). However,

[19] describes important cases where such moduli can be explicitly computed.

The concept of modulus of regularity generalizes that of a ‘modulus of uniqueness’ to
the nonunique case:

Definition 2.3 ([13, 18, 19]). Let F : X → R be such that zer F = {z}.

1. We say that zer F is uniformly unique w.r.t. B(z, r) if

∀n ∈ N ∃k ∈ N∀x ∈ B(z, r) (|F (x)| < 2−k → d(x, z) < 2−n).

If this holds with ‘∀x ∈ X’ we say that zer F is uniformly unique.

2. ω : N → N is a modulus of uniqueness for F w.r.t. zer F and B(z, r) for
z ∈ zer F if

∀n ∈ N ∀x ∈ B(z, r) (|F (x)| < 2−ω(n) → d(x, z) < 2−n).

If this holds with ‘∀x ∈ X’ we say that ω is a modulus of uniqueness for F w.r.t.
zer F.

The concept of modulus of uniqueness can also be considered without assuming that
zer F 6= ∅ in the form

(∗) ∀n ∈ N ∀x, y ∈ X (|F (x)|, |F (y)| < 2−ω(n) → d(x, y) < 2−n).

Clearly, if zer F = {z}, then any ω with (∗) is a modulus of uniqueness in the

sense of definition 2.3 and conversely, if ω is a modulus of uniqueness, then ω′(n) :=

ω(n+1) satisfies (∗). Suppose that one has an algorithmic way (xn) to construct 2−n-

approximate zeros xn, i.e. |F (xn)| < 2−n of F and ω satisfies (∗), then (xω(2−n)) is a

2−n-Cauchy sequence whose limit (for complete X and continuous F ) is a zero of F.
In this way, moduli of uniqueness give rates of convergence for algorithms computing
approximate solutions towards the actual solution and have been used in fixed point
theory to prove even new existence results (see [7] and the literature cited there). As

shown in [13] (for the case of compact metric spaces), explicit moduli of uniqueness
can be extracted by proof-theoretic methods from given, even nonconstructive, proofs
for the uniqueness of the zero of F. This has been carried out in the context of best

Chebycheff approximation in [13, 14] and best L1-approximation in [20] (see [18] for
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a comprehensive treatment of all this). Using the logical bound extraction theorems

for abstract metric and normed structures (without separability or compactness as-

sumptions) from [17, 12] such extractions of moduli of uniqueness are also possible

for abstract spaces in the absence of compactness (see [18], pp. 377-381) and have

been used in metric fixed point theory e.g. in [11, 7].
While the existence of a modulus of uniqueness is a uniform quantitative version of
the plain uniqueness property

(1) F (x) = 0 = F (z)→ x = z

and can be extracted from a given proof of the latter, the existence of a modulus of
regularity is a uniform quantitative version of the following trivially true (but logically

more complex than (1)) property:

(2) F (x) = 0→ ∀ε > 0∃z ∈ zer F (d(x, z) < ε).

So in this generality, there is no meaningful property such that from a proof of this
property a modulus of regularity can be extracted. Thus unless one is in the unique
case (where the concept of a modulus of regularity coincides with that of modulus of

uniqueness), one has to exploit rather specific features of the situation at hand in order

to get an effective modulus of regularity (see also the comments in the introduction

and [19]).

3 Reverse mathematics

In the following, RCA0 is the usual base system used in reverse mathematics, i.e.

the fragment of second order arithmetic with recursive (∆0
1) comprehension and Σ0

1-
induction only. WKL0 and ACA0 are its extension by the weak König’s lemma WKL
for 0/1-trees and the schema of arithmetic comprehension ACA, respectively. For

details we refer to [25].
We refer to the definition of compact metric spaces X as used in reverse mathematics

([25], Definition III.2.3), where X is given as the completion Â of a countable pseu-
dometric space A which, additionally, possesses a sequence of finite ε-nets. We recall
some crucial results from [25]:

Theorem 3.1 ([25], Theorem IV.1.6). The following is provable in WKL0. Let X be a

compact metric space. Let 〈〈Un,k : k ∈ N〉 : n ∈ N〉 be a sequence of coverings of X by

open sets. Then there exists a sequence of finite subcoverings 〈〈Un,k : k ≤ ln〉 : n ∈ N〉.

Theorem 3.2 ([25], Theorem IV.1.7). The following is provable in WKL0. Let X
be a compact metric space. Let C be a code for a closed subset in X. Then the

nonemptyness of C can be expressed by a Π0
1-formula.

4



Proposition 3.3 ([25], Exercise II.6.9, [8](Lemma 1.24)). The following is provable
in RCA0. Let X, Y be complete separable metric spaces and Φ : X → Y a continuous

function. Let V ⊆ Y be (a code of) an open set, then Φ−1(V ) is open (with a code

computable from a code for V ).

Corollary 3.4. The following is probable in WKL0. Let X be a compact space and
F : X → R be continuous, then the property that F has a zero on X can be expressed

by a Π0
1-formula.

Proof: Clearly, RCA0 proves that R \ {0} is open. Hence by Proposition 3.3, {x ∈
X : F (x) 6= 0} has a code as an open set and so zer F = {x ∈ X : F (x) = 0} has
a code as a closed set. So by Theorem 3.2, provably in WKL0, the nonemptyness of

zer F can be expressed by a Π0
1-formula. �

Remark 3.5. The proofs of the results above establish that even if we have sequences
〈Φn : n ∈ N〉 and 〈Fn : n ∈ N〉 uniformly given as sequences of codes that then RCA0

proves that 〈Φ−1n (V ) : n ∈ N〉 is a sequence of open sets and WKL0 proves that the

nonemptyness of zer Fn can expressed as a Π0
1-formula with n as parameter. The

latter is particularly easy to see in our instances below, where the functions Φn are
defined in terms of a single function Φ and any modulus of uniform continuity for Φ
can be modified into one for all Φn uniformly in n (see also the explicit construction

of the Π0
1-formula in the proof of Lemma 5.5 below).

4 Reverse mathematics of moduli of uniqueness

and regularity

Theorem 4.1. 1. WKL0 proves that for every compact metric space X = Â any
continuous mapping F : X → R having at most one zero has a modulus ω such
that

∀n ∈ N ∀x, y ∈ X (|F (x)|, |F (y)| < 2−ω(n) → d(x, y) < 2−n).

Obviously, if zerF = {z}, then ω is a modulus of uniqueness of F w.r.t. zer F.

2. Already for Lipschitz continuous functions F : [0, 1] → R which have exactly
one zero, the uniform uniqueness of the zero implies WKL0 over RCA0.

Proof: 1) Let F possess at most one zero and define

Un,k := {(x, y) ∈ X ×X : |F (x)|, |F (y)| ≤ 2−k → d(x, y) < 2−n}.

〈〈Un,k : k ∈ N〉 : n ∈ N〉 is a sequence of coverings of X × X (w.r.t. the product

metric, [25], Example II.5.4) by open sets. Here one uses Proposition 3.3 and the fact
that for the continuous functions

Gn,k(x, y) := max
{

max{|F (x)|, |F (y)|} − 2−k, 2−n − d(x, y), 0
}
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one has
(x, y) ∈ Un,k ↔ (x, y) /∈ (Gn,k)−1({0}).

By Theorem 3.1 it follows that, provably in WKL0, there is a sequence 〈〈Un,k : k ≤
α(n)〉 : n ∈ N〉 of finite subcoverings. Clearly, α : N→ N is a modulus of uniqueness.

2) Assume ¬-WKL. Then there exists an infinite 0/1-tree T with no path. Consider

the subtrees T0 and T1 of T consisting of all finite 0/1-sequences in T which start
with 0 or which start with 1 resp. One of those subtrees must be infinite as well.
W.l.o.g. assume that T0 is infinite. Define T [1] as T0 augmented by the constant-1

path. With this T [1] (playing the role of T ) now define as in [25] (p.129) a sequence

〈In = (rn, sn) : n ∈ N〉 of nonempty open intervals with rational endpoints. Adapting

the reasoning there to our situation (using that b′s ≤ 2/3 for s ∈ 2<N with lh(s) ≥ 1

and s(0) = 0) one gets

(i) ∀x ∈ [0, 1)∃n ∈ N (x ∈ In), (ii) ∀k ∈ N ∃x ∈ [0, 2/3] ∀i ≤ k (x /∈ Ii),
(iii) ∀n ∈ N (1 /∈ In).

Now we define (see [28], p.309):

F : [0, 1]→ [0, 1], F (x) :=
∞∑
n=0

2−n−1Fn(x),

where

Fn(x) := max{0, 1

2
(sn − rn)− |x− 1

2
(rn + sn)|}.

Then, clearly, ∀x ∈ [0, 1) (F (x) > 0) by (i), inf
x∈[0,2/3]

F (x) = 0 by (ii), and F (1) = 0 by

(iii). F is nonexpansive but obviously is not uniformly unique w.r.t. zer F = {1}.2
�

Theorem 4.2. 1. WKL0 proves that for every compact metric space X = Â any
continuous mapping F : X → R having a zero is regular w.r.t. zer F.

2. Already for Lipschitz continuous functions F : [0, 1] → R with zer F 6= ∅, the
regularity of F w.r.t. zer F implies WKL0 over RCA0.

Proof: 1) Take k ∈ N and consider the finite cover of X by closed balls

B(a1, 2
−k−1), . . . , B(ank

, 2−k−1) provided by the representation of X as a compact

metric space (in the sense of [25](Definition III.2.3)), where a1, . . . , ank
are in the

2Alternatively, we could have modified the mapping Φ5 in the proof of Theorem IV.2.3.5 in [25]
by using ‘1− 3−lh(u)’ instead of ‘1− 2−lh(u)’ to achieve the Lipschitz property. However, we find the
construction above more elementary. One can also adapt Specker’s [27] construction or the Lipschitz
functions defined in [2].
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countable set A whose completion Â the space X is defined to be. Using WKL0, the
predicate

P (i) :≡ ∃x ∈ X (d(ai, x) ≤ 2−k−1 ∧ F (x) = 0) (1 ≤ i ≤ nk)

is in Π0
1. Here we use that P (i) can be written as ∃x ∈ X (Gi(x) = 0) for the

continuous function Gi : X → R defined by

Gi(x) := max
{
|F (x)|,max{2−k−1, d(ai, x)} − 2−k−1

}
≥ 0

and Corollary 3.4. Hence by bounded Π0
1-comprehension (provable in RCA0, see [24],

Theorem 1, or [25], Theorems II.3.9 and II.2.5) one gets the existence of a code σ of

a finite 0/1-sequence of length nk such that

∀i (1 ≤ i ≤ nk → ((σ)i−1 = 0↔ P (i))).

Consider now an i with ¬P (i). Then, again by WKL0 and using [25](Theorem IV.2.2),
one gets the existence of an li ∈ N with

inf{Gi(x) : x ∈ X} > 2−li

and hence
∀x ∈ B(ai, 2

−k−1) (|F (x)| > 2−li).

In WKL0 (needed to show the existence of a modulus of uniform continuity for F and

hence for Gi) one can show that the sequence (ai) with ai := inf{|Gi(x)| : x ∈ X}
exists. So by Σ0

1-bounded collection (provable in RCA0) we can prove

∃l ∈ N ∀i (1 ≤ i ≤ nk ∧ (σ)i−1 = 1→ inf{Gi(x) : x ∈ X} > 2−l).

Now assume that |F (x)| ≤ 2−l for some x ∈ X. Then, by the definition of l, x must

be in one of the balls B(ai, 2
−k−1) (with 1 ≤ i ≤ nk) for which (σ)i−1 = 0, i.e. which

contains a zero z of F. Since d(x, z) ≤ 2−k, the conclusion follows.

2) is an immediate corollary to Theorem 4.1.2 as in the unique case the concepts of
regularity and uniform uniqueness coincide. �

Remark 4.3. The proof of Theorem 4.2.1 uses classical logic in the form of Π0
1-LEM

(implicit in the bounded Π0
1-CA) and M (implicit in concluding

∀x ∈ B(ai, 2
−k−1) ∃l ∈ N (Gi(x) > 2−l) from ¬∃x ∈ B(ai, 2

−k−1) (Gi(x) = 0).

Theorem 4.4. 1. ACA0 proves that if X = Â is a compact metric space and
F : X → R is continuous and has a zero, then F possesses a modulus of
regularity w.r.t. zerF.
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2. Over RCA0, the statement that every Lipschitz continuous function F : [0, 1]→
R with a zero has a modulus of regularity implies ACA0.

Proof: 1) Let S := zer F. By Theorem 4.2.1, already WKL0 suffices to prove:

(1) ∀n ∈ N∃k ∈ N∀l ∈ N
(
|F (al)| < 2−k → ∃p ∈ S(d(al, p) ≤ 2−n)

)
.

We now show (in WKL0) that

(2) P (n, k, l) :≡
(
|F (al)| < 2−k → ∃p ∈ S(d(al, p) ≤ 2−n)

)
∈ Π0

1.

Define (uniformly in n, l) continuous functions Gn,l : X → R by

Gn,l(x) := max{|F (x)|,max{2−n, d(al, x)} − 2−n}.

Then
P (n, k, l)↔

(
|F (al)| < 2−k → ∃p ∈ X (Gn,l(p) = 0)

)
.

Hence, by Corollary 3.4, WKL0 proves (see also the proof of Lemma 5.5) that P (n, k, l) ∈
(Σ0

1 → Π0
1) = Π0

1.

(1) and (2) imply that

∀n ∈ N ∃k ∈ N ∀l ∈ NP (n, k, l) with ∀l ∈ NP (n, k, l) ∈ Π0
1

and so by (a single use of) Π0
1-ACN,N, and thus, in particular, in ACA0, we get

∃f : N→ N∀n, l ∈ N
(
|F (al)| < 2−f(n) → ∃p ∈ S (d(al, p) ≤ 2−n)

)
.

Using the continuity of F and that {al : l ∈ N} is dense in X we get

∃f : N→ N ∀n ∈ N ∀x ∈ X
(
|F (x)| < 2−f(n) → ∃p ∈ S (d(x, p) < 2−n+1)

)
and so g(n) := f(n+ 1) is a modulus of regularity for F w.r.t. zer F.

2) We use a construction from the proofs of Remarks 4.9 and 4.10 in [19] which in turn

adapt a construction due to [23]. Let (an) be a nondecreasing sequence of rational

numbers in [0, 1] and define

fn : [0, 1]→ [0, 1], fn(x) := max{x, an},
T : [0, 1]→ [0, 1], T (x) := 1

2
(x+ f(x)), where f(x) :=

∑∞
n=0 2−n−1fn(x).

f is nonexpansive and, therefore, T is nonexpansive too (even firmly nonexpansive)
and 1 is fixed point of T. By primitive recursion one can easily show in RCA0 that
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the sequence (xn) defined by xn := T n0 exists. By the comment after Corollary 1 in

[16], α(n) := n+ 3 is a rate of asymptotic regularity for (xn), i.e.

∀n ∈ N ∀k ≥ n+ 3 (|xk − Txk| < 2−n).

All this can easily be established in RCA0. Suppose now that the 2-Lipschitz function
F : [0, 1] → R F (x) := |x − Tx| has a modulus of regularity g : N → N (note that

1 ∈ zer F 6= ∅). Then (reasoning as in the proof of Theorem 4.1 in [19]; note that

(xn) obviously is Fejér monotone w.r.t. zer F = Fix(T ) since T is nonexpansive)

one can easily show in RCA0 that ρ(n) := α(g(n + 1)) = g(n + 1) + 3 is a rate of

convergence for (xn). So z := lim
n→∞

xn can be shown in RCA0 to exist and is a fixed

point of T, i.e. a zero of F. Since f(z) = z, it is clear that ∀n ∈ N (an ≤ z). Suppose

that there would exist a k ∈ N with an + 2−k ≤ z for all n ∈ N. Then by Π0
1-induction

(and hence in RCA0) also xn ≤ z − 2−k for all n ∈ N in contradiction to limxn = z:

clearly x0 = 0 ≤ an ≤ z − 2−k. Assume that xn ≤ z − 2−k. Then

xn+1 = 1
2
(xn + f(xn)) = 1

2

(
xn +

∑∞
l=0 2−l−1 max{xn, al}

)
I.H., assumption

≤ 1
2

(
z − 2−k +

∑∞
l=0 2−l−1(z − 2−k)

)
= z − 2−k.

Hence z = lim an. The claim now follows from the well-known fact that the conver-
gence of increasing sequences of rational numbers in [0, 1] is equivalent to ACA0 over

RCA0 ([25], Theorem III.2.2, and note that the sequence (cn) constructed in the rel-
evant part of the proof of this theorem is an increasing sequence of rational numbers
in [0, 2] so that we may take an := cn/2; alternatively one can also adapt Specker’s

[26] construction). �

5 Weihrauch complexity of moduli of uniqueness

and regularity

We recall the standard concepts used in the notion of Weihrauch reducibility which
can be found e.g. in [5].

Definition 5.1. A represented space is a pair (X, δX), where X is a set and

δX :⊆ NN → X is a partial surjective function.

Definition 5.2. Let (X, δX), (Y, δY ) be represented spaces and let f :⊆ X ⇒ Y be a

multi-valued function. Then F :⊆ NN → NN is a realizer of f if

∀p ∈ dom(fδX) (δY (F (p)) ∈ f(δX(p))).
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Definition 5.3. Let f, g be multi-functions on represented spaces. Then f is said to
be Weihrauch reducible to g, in symbols f ≤W g, if there are computable functions

H,K :⊆ NN → NN such that H〈id,GK〉 is a realizer of f whenever G is a realizer of
g. We say that f and g are Weihrauch equivalent, in symbols f ≡W g, if both f ≤W g
and g ≤W f.

The parallelization L̂PO of the ‘omniscience principle’ LPO (i.e. Σ0
1-LEM) is defined

as3

L̂PO : NN×N → NN, L̂PO(q)(n) =

{
0, if ∃k ∈ N (q(n, k) = 0)
1, otherwise.

The formulation of the convergence principle for bounded monotone sequences of reals
is formulated in the framework of Weihrauch complexity as follows

MCT :⊆ RN → R, (xn) 7→ sup
n∈N

xn

with dom(MCT)= {(xn) : ∀n ∈ N (xn ≤ xn+1) and (xn) bounded}. MCTQ∩[0,1] is the

restriction of MCT to {(rn) ∈ QN : ∀n ∈ N (0 ≤ rn ≤ rn+1 ≤ 1)}.
It is well-known (see e.g. [6], Facts 3.5 and 11.26; the result essentially is also already

in [15], Proposition 5.5) that

MCTQ∩[0,1] ≡W MCT ≡W L̂PO.

Let us define

MREG[0,1] :⊆ C[0, 1] ⇒ NN, F 7→ {f ∈ NN : f modulus of regularity of F w.r.t. zer F},

with dom(MREG[0,1]) := {F ∈ C[0, 1] : zer F 6= ∅}, and

MUNI[0,1] :⊆ C[0, 1] ⇒ NN,

F 7→ {f ∈ NN : f modulus of uniqueness (∗) of F w.r.t. zer F},

with dom(MUNI[0,1]) := {F ∈ C[0, 1] : F has at most one zero}.
We will show that MUNI[0,1] is computable and so this a fortiori holds for its restriction

to those F which have exactly one zero.

In the proofs below we refer to the standard representations of R and C[0, 1] but
suppress explicitly mentioning them.

Lemma 5.4. MCT ≤W MREG[0,1].

3The official definition is slightly different but modulo Currying trivially equivalent to this, see
[5] Lemma 6.3, where our formulation is called C.
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Proof: By the comments above, it suffices to show that

MCTQ∩[0,1] ≤W MREG[0,1].

As the proof of Theorem 4.4.2 shows, uniformly in a given increasing sequence (an) of

rational numbers in [0, 1] one can compute a (2-Lipschitz) function F := K((an)) ∈
dom(MREG[0,1]) such that if g ∈ MREG[0,1](F ), then a := lim an = sup an can be

computed uniformly as a functional H((an), g) using that g(n + 1) + 3 is a rate of

convergence for (T n0) whose limit is a (note that in (an), the mapping T, and hence

the sequence (T n0), is computable). �

Lemma 5.5. MREG[0,1] ≤W L̂PO.

Proof: Let F ∈ C[0, 1] with zer F 6= ∅. From a name of F in the usual standard

representation of C[0, 1] one can compute a modulus ω : N→ N of uniform continuity
for F, i.e.

∀k ∈ N ∀x, y ∈ [0, 1] (|x− y| < 2−ω(k) → |F (x)− F (y)| < 2−k),

and from this a (common) modulus ω̃(k) := max{ω(k), k} of uniform continuity for
the function Gn,l from the proof of Theorem 4.4.1 for all n, l ∈ N. Using compactness

(WKL) the statement

∃p ∈ [0, 1] (Gn,l(p) = 0)

can be written equivalently as

∀m∃i ≤ 2ω̃(m)
(∣∣Gn,l(i/2

ω̃(m))(m)
∣∣ <Q 2−m+1

)
∈ Π0

1,

where for (a name of) x ∈ R, ‘x(m)’ denotes the 2−m-rational approximation to x
provided by that name. Note that WKL is only needed to verify the above equivalence

but not to construct the Π0
1-formula from a name of F.

With (al) being some standard enumeration of the dyadic rational numbers in [0, 1],

the property ∀l ∈ NP (n, k, l) in the proof of Theorem 4.4.1 can now be written

(coding three universal quantifiers into a single one) as

∀l ∈ N (q(〈n, k〉, l) 6= 0)

for a function q ∈ NN which can be uniformly computed as a function q := K(F ) in

(a name of) F. Now let p = L̂PO(q). Then the statement

∀n ∈ N ∃k ∈ N ∀l ∈ NP (n, k, l)

established in the proof of Theorem 4.4.1 has the form

∀n ∈ N ∃k ∈ N (p(〈n, k〉) = 1)
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so that an f ∈ NN with
∀n ∈ N∀l ∈ NP (n, f(n), l)

can be uniformly computed in p as

f := H(p) := λn.min k [p(〈n, k〉) = 1].

As in the proof of Theorem 4.4.1 it follows that g(n) := f(n + 1) is a modulus of

regularity for F w.r.t. zer F, i.e. g ∈ MREG[0,1](F ).

�

Corollary 5.6.

MREG[0,1] ≡W L̂PO.

In contrast to this, we have that MUNI[0,1] is computable (in fact this holds for every

computably compact computable Polish space K instead of [0, 1] but for the sake of

simplicity we treat here only the case [0, 1]):

Proposition 5.7. MUNI[0,1] is computable.

Proof: We use the representation of [0, 1] from [18] (Chapter 4) by which

• each f ∈ NN represents a unique element in [0, 1],

• primitive recursively in f ∈ NN one can define f̃ ≤ N := λn.j(2n+3, 2n+2 − 1)

such that f̃ represents the same real in [0, 1] as f does (here f ≤ g :≡ ∀n ∈
N (f(n) ≤ g(n))).

On the level of names f, g for x, y ∈ [0, 1] and a given name F̂ ∈ NN for F ∈ C[0, 1]
one can express

(x, y) ∈ Un,k :≡
(
|F (x)|, |F (y)| ≤ 2−k → |x− y| < 2−n

)
as a Σ0

1-formula

∃l ∈ N (Φ(F̂ , f, g, n, k, l) = 0),

where Φ is a (primitive recursively) computable functional : NN×NN×NN×N3 → N.
If F has at most one zero, then

Ψ̃(f, g, n) := minm.[Φ(F̂ , f, g, n, (m)0, (m)1) = 0]

defines (computably in F̂ ) a total function : NN × NN × N → N. With Ψ̃ also

Ψ(f, g, n) := (Ψ̃(f, g, n))0 is computable in F̂ . Hence the restriction of λf, g.Ψ(f, g, n)

12



to functions f, g ≤ N has (uniformly in n) a modulus of uniform continuity ω(n, k)

which is computable in F̂ , i.e.

∀f1, f2, g1, g2 ≤ N ∀k, n ∈ N(
f 1(ω(n, k)) = f 2(ω(n, k)) ∧ g1(ω(n, k)) = g2(ω(n, k))→ Ψ(f1, g1, n) = Ψ(f2, g2, n)

)
.

Using ω one can compute (uniformly in F̂ )

α(n) := sup {Ψ(f, g, n) : f, g ≤ N} .

Clearly, α is a modulus of uniform uniqueness in the form (∗) for zer F. �

The proof above uses an unbounded search which terminates by the assumption of the
uniqueness of the solution and which does not provide any complexity information.
This is in contrast to the situation where one has a proof (even if that is prima facie

noneffective) for the uniqueness from which - as discussed briefly in section 2 - one
can then extract a modulus of uniqueness which reflects the numerical content of that
uniqueness proof.
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