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‘The object lesson concerns the passage from the foundational aims for
which various branches of modern logic were originally developed to the
discovery of areas and problems for which logical methods are effective
tools. The main point stressed here is that this passage did not consist
of successive refinements, a gradual evolution by adaptation as it were,
but required radical changes of direction, to be compared to evolution by
migration.’ ([45], p.139).

‘there is plenty of scope for specialist experience in logic provided (i)
new questions are asked and (ii) that experience is combined with more
specific knowledge.’ ([45], p.140).

1 Introduction

In the recent book [3], John Baldwin stresses that while early 20th century logic focused
on the foundation of all of mathematics, ‘contemporary model theory makes formalization
of specific mathematical areas a powerful tool’ and uses ‘local formalizations for distinct
mathematical areas in order to organize and do mathematics, and to analyze mathematical
practice’. Moreover, ‘geometry ... plays a fundamental role in analyzing the models of tame
theories and solving problems in other areas of mathematics’ ([3], p.3). As a result of this
‘paradigm shift’, model-theoretic methods became a useful tool in core areas of mathemat-
ics such as algebra or algebraic geometry.

Baldwin cites [44] in this respect e.g. ‘Kreisel had identified one element of the malaise:
“a preoccupation with a universal framework (a universal language, for example) and thus
with logical possibilities. This preoccupation is at heart of the malaise; it concerns a po-
tential conflict between pursuing these logical ideals and effective knowledge”([44])’ ([3],
p.250). However, where Kreisel is skeptical about whether model-theoretic ‘transfer prin-
ciples must take the literary form of metatheorems’ ([44] as quoted in [3] p.62), Baldwin
states that ‘given the results discussed in this book, we see Kreisel as overly pessimistic
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about the prospects of metatheorems’ ([3], p.62).

By its historical origin, proof theory has been particularly focused on general foundational
issues such as the consistency strength of whole systems of analysis and set theory which
extend basic number theory and so are not ‘tame’ in the model-theoretic sense. Rather
than ruling out the possibility of ‘Gödelian phenomena’ by considering only tame theories
one goal in recent decades has been to actually produce such phenomena in the context of
ordinary mathematics. One famous example for this is Harvey Friedman’s discovery that
a finitary (Π0

2-form) of Kruskal’s theorem cannot be proven in predicative mathematics (in
the sense of ATR0). Many much stronger forms of such ‘concrete incompleteness phenom-
ena’ have been discovered by Friedman during the last decades.

A different development, again initiated by Harvey Friedman [11] and then developed mainly
by Stephen Simpson [56] and his collaborators under the name of ‘reverse mathematics’,
has been to investigate the proof-theoretic strength of basic theorems used in core math-
ematics relative to a weak base system RCA0 of second-order number theory which is
Π0

2-conservative over primitive recursive arithmetic PRA. One of the outcomes of this line
of research has been that most of that part of existing ordinary mathematics (as long as
it is formalizable in the language of 2nd order number theory) can be carried out already
in systems such as ACA0 or WKL0 which are conservative over Peano arithmetic PA resp.
the fragment of PA with Σ0

1-induction (which in turn is Π0
2-conservative over primitive

recursive arithmetic PRA). This already indicates that a substantial amount of ordinary
mathematics is tame in a proof-theoretic sense even when in principle non-tame structures
such as a natural numbers are present.

While also reverse mathematics deals with provability in certain formal systems (though
addressing theorems from ordinary mathematics), Kreisel asked already many decades ago
for a shift of emphasis towards the ‘unwinding’ of specific proofs. Moreover, here the
focus is on proofs of theorems A which have a simpler logical form than the noneffective
set-theoretic tools used in the proof (and, in particular, are not equivalent to the latter
in sense of reverse mathematics). In fact, the combinatorial or numerical nature of the
theorems A considered naturally asks for explicit witnesses or bounds to be extracted from
the prima facie noneffective proof. To use proof-theoretic methods for this new type of
purpose has been proposed by Kreisel since the 50’s, most specifically in his ‘unwinding
of proofs’ program. This has been carried out under the name of ‘proof mining’ since
around 2000 systematically in the area of nonlinear analysis such as fixed point theory,
ergodic theory, abstract Cauchy problems, nonlinear semigroups, convex optimization and
geodesic geometry (see [31] for an account of the vast influence Kreisel’s insights have had
on prompting this development and [23, 29] for surveys on the results obtained in the proof
mining paradigm).

Many theorems in nonlinear analysis concern convergence results for iterated procedures
(xn) for the computation of fixed points of some mapping T : C → C (C typically be-
ing a convex subset of some normed or geodesic space), zeros or minimizers of mappings
F : C → R etc.
Here one usually works in the context of abstract classes of normed and metric structures
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(used as parameters of the problem) which are not assumed to be separable and so cannot
even be expressed in the language of 2nd order number theory. In fact, it is the very absence
of any separability assumptions which makes it possible to obtain highly uniform bounds
which only depend on general local metric bounds without any compactness assumptions
required.
For so-called asymptotic regularity results d(Txn, xn) → 0 one typically obtains full rates
of convergence which are mostly polynomial in the relevant data and moduli of the problem
(see e.g. [30] for a polynomial rate of convergence which has been extracted from Bauschke’s
[4] solution of the ‘zero displacement conjecture’) or at least are simple exponential (as e.g.
in [36], which analyzes an asymptotic regularity proof from [1] that uses iterated arithmeti-
cal comprehension, and [51]; see also below). For strong convergence theorems for (xn)

itself one usually can show that (unless for special cases where e.g. the uniqueness of the
fixed point of T can be established or one has a so-called modulus of regularity) there is
no computable rate of convergence even for simple cases such as C := [0, 1] and easily
computable mappings T (see e.g. [50]). So one usually only has effective so-called rates
Φ(ε, a, g) of metastability (in the sense of Tao [57, 58])

∀ε ∈ Q∗+ ∀g : N→ N ∃N ≤ Φ(ε, a, g) ∀i, j ∈ [N,N + g(N)] (d(xi, xj) < ε)

which is an instance of Kreisel’s no-counterexample interpretation applied to the Cauchy
property (see [42, 43]). These are - with very few exceptions - of the form

(+) Φ(ε, a, g) =
(
χ1(ε, a) ◦ g̃ ◦ χ2(ε, a)

)(B(ε,a))
(0),

where χ1, χ2, B are simple (typically polynomial) functions in ε and (majorants of) the pa-
rameters a of the problem involved but which do not depend on g (here g̃(n) := max{g(i) :

i ≤ n} + n) and f (n)(0) denotes the n-th iteration of f. The need for such an iteration
usually is due to the arithmetical residuum of a use of sequential compactness which even
in the case of a single use of the convergence of bounded monotone sequence of reals uses
Σ0
1-induction Σ0

1-IA which suffices to show the totality of function iteration (see also be-
low). In fact, the Cauchy property of monotone sequences in [0, 1] is equivalent to Σ0

1-IA
(see [18]).

So despite of the fact that convergence theorems of the form above crucially use quantifi-
cation over natural numbers and so per se could display phenomena of enormous growth
rates (as in Kruskal’s theorem) it is an empirical fact, though, that with a few notable
exceptions, proofs e.g. in analysis seem to be tame in the sense of allowing for the extrac-
tion of bounds of rather low complexity. It is this frequent proof-theoretic tameness in
currently existing ordinary mathematics which makes the program of unwinding proofs so
rewarding but which to diagnose requires a proof-theoretic analysis in each particular case.

Very recently, we analyzed a proof for a central strong convergence result in nonlinear anal-
ysis where - as it stands - the rate of metastability for the first time uses primitive recursion
of type 1, i.e. the fragment T1 of Gödel’s T whose definable type-1 functions coincide with
the provably total functions of the fragment of Peano arithmetic with Σ0

2-induction (which

3



is equivalent to Π0
2-induction) and e.g. includes the Ackermann function. Only future re-

search will show whether this is an artefact of the proof being analyzed (or whether even a
closer examination of the extracted bound allows for a T0-definition) or is best possible.

In each of the applications of proof mining it is the bound extracted and/or the general
mathematical insights (also qualitative ones such as generalizations to geodesic settings and
abstract versions, see e.g. [47]) into the mathematical situation at hand which is of interest
rather than to add to the ‘security’ of the original proof: ‘Of course, being special, finitist
proofs do have some special properties including virtues. It just so happens that (special)
reliability is not among them.’ ([45], p.145). One of these virtues e.g. often is the fact that
the analyzed proofs suggests immediate generalizations (e.g. to geodesic setting or more
general classes of geodesic spaces etc., see e.g. [32, 36] or [46] which generalizes the analysis
from [34] from CAT(0) to CAT(κ)-spaces for κ > 0).

2 General observations made in case studies I: extensionality

As mentioned already (and discussed in detail e.g. in [20, 12, 24]) most situations in nonlin-
ear analysis involve abstract classes of normed or metric structures such as Hilbert spaces,
uniformly convex spaces or CAT(κ) spaces which are determined by general geometric con-
ditions while not assuming separability. The significance of the latter does not primarily
rest on the greater generality but on the fact that if a proof does not use separability
of the metric structures X the extracted bounds are highly uniform, i.e. independent
from norm-bounded or metrically bounded parameters from X without any compactness
assumption. This uniformity is of interest also in cases where the extracted bound is applied
only to separable or even (boundedly) compact structures, e.g. by providing bounds which
are independent of the dimension of the space under consideration.
In order to get the appropriate input data for the bounds, one may have to enrich X by
suitable moduli e.g. of convexity or smoothness etc. Specially designed logical metathe-
orems which are tailored for the class of statements at hand guarantee for whole classes
of proofs the extractability of uniform bounds which only depend on X via these moduli
(compare Baldwin on ‘local’ versus ‘global’ formalizations in contemporary model the-
ory). For the formalization of proofs in the context of abstract metric structures X we use
systems formulated in the language of all finite types ρ over the base types N and X.
The structures admissible in these metatheorems must be axiomatizable by axioms which
have a simple monotone functional interpretation (in the respective moduli). Usually, this
is guaranteed by verifying that, given maybe some modulus ω : N→ N, the axioms stating
that X belongs to the respective class of structures (with modulus ω) can be expressed
in purely universal form. This e.g. is the case for the following classes of spaces: metric,
hyperbolic, CAT(0), CAT(κ > 0), normed spaces, their completions, Hilbert, uniformly
convex, uniformly smooth (not: separable, strictly convex or smooth) spaces, abstract Lp-
and C(K)-spaces and all normed structures axiomatizable in positive bounded logic (Hen-
son, Ben-Yaacov etc., see [13]).
Similarly, the conditions on the classes of admissible mappings T need to be axiomatiz-
able in this way (again possibly using suitable moduli ω : N → N) which includes the
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following classes: uniformly continuous, Lipschitz-continuous, nonexpansive, firmly nonex-
pansive, strongly (quasi-)nonexpansive, pseudo-contractive mappings, directionally nonex-
pansive mappings, mappings satisfying Suzuki’s condition (E), maximally monotone and
accretive etc. mappings where in the latter two cases also set-valued operators T : X → 2X

have been treated.

Some of these conditions imply the uniform continuity of the operator T which then in turn
implies the extensionality of T

(∗) ∀x, y ∈ X
(
x =X y → T (x) =X T (y)

)
,

where x =X y :≡ dX(x, y) =R 0. This extensionality must not be included as an axiom into
the formal systems for which a metatheorem on uniform bound extractions can be expected
to hold since, otherwise, the very statement of these metatheorems (on the extractability
of uniform bounds) would imply the uniform continuity of T together with a modulus of
uniform continuity (even largely independent of T ). In fact, uniform continuity is the
uniform quantitative version of extensionality. So when using conditions on T such as
pseudo-contractivity, quasi- or directional nonexpansivity or Suzuki’s condition (E) one
cannot make free use of the extensionality axiom in formalizing a given proof. The principle
(∗) (and a fortiori its extensions to higher types) appears to be the only principle used in
mathematics which per se does not have any computational content. How then is this
addressed in the practice of proof mining? Here roughly three different situations can
occur:

1. The use of extensionality can be seen to be an instance of the (admissible in the
aforementioned metatheorems) quantifier-free rule of extensionality

Aqf → s =X t

Aqf → T (s) =X T (t)
,

where Aqf is a quantifier-free formula which may contain parameters.

2. There is an essential use of the axiom of extensionality but of a special form whose
uniform quantitative version does not require a modulus of uniform continuity. A
particularly important instance of this is the use of extensionality in the form

∀x, y ∈ X
(
x =X y ∧ Tx =X x→ Ty =X y

)
whose uniform quantitative form only requires so-called moduli of uniform closedness
δT , ωT : N→ N such that

(∗)

 ∀x, y ∈ X ∀k ∈ N
(
d(x, y) < 1

ωT (k)+1 ∧ d(x, Tx) < 1
δT (k)+1

→ d(y, Ty) ≤ 1
k+1

)
which e.g. can easily be constructed if T satisfies Suzuki’s condition (E) even though
the latter does not imply the continuity of T (see [35, 29]).
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3. If the extensionality axiom is needed but the properties of T do not imply the existence
of a uniform bound on the resp. use of extensionality then such a modulus needs to be
added as an assumption (a modulus of uniform continuity always suffices but weaker
moduli as in the item above are often sufficient, see Proposition 4.15 and Remark
4.16 in [28]).

As is evident from the above, the proof-theoretic bound extraction methods do not generally
require all functions involved to be uniformly continuous which is the common assumption
in continuous or positive bounded logic (see, however, the recent paper [8]).

3 General observations made in case studies II: noneffective
existence principles

The main noneffective existence principles applied in nonlinear analysis can be divided in
the following two classes:

1. Principles which have the form of a so-called axiom

∆ : ∀xδ∃y ≤ρ sx∀zτAqf (x, y, z),

where s is some closed term of the system used and Aqf a quantifier-free formula. Here
u ≤ρ v is pointwise defined, where if u has the type ρ = ρ1 → (. . . → (ρk → τ) . . .)

with τ ∈ {N, X} then v has the type ρ1 → (. . .→ (ρk → N) . . .) and u(w) ≤X v(w) :≡
‖u(w)‖ ≤ v(w) in the normed case and u(w) ≤X v(w) :≡ dX(u(w), a) ≤ v(w) for
some reference point a ∈ X in the metric case (see [24] and [13]).

2. Principles such as (strong as well as weak) sequential compactness and the existence of
projections (metric as well as sunny nonexpansive ones) as well as Banach limits which
use arithmetical comprehension, sometimes prima facie also in its uniform version

(∃2) : ∃ϕ∀fN→N (ϕ(f) =N 0↔ ∃nNf(n) =N 0)

(see further below) or arithmetical dependent choice (and in the case of Banach limits
even the existence of nontrivial ultrafilters).

If a proof uses sequential (weak or strong) compactness, usually one of the three following
scenarios applies:

1. The use of sequential compactness (in the strongly compact case) can be replaced
by Heine-Borel compactness and so can be reduced to the case of an axiom ∆ either
by using the binary König’s lemma WKL or a - more easily applicable - nonstan-
dard uniform boundedness principle Σ0

1-UB which follows from a nonstandard axiom
F ∈ ∆ by means of quantifier-free choice (see [15, 17] and also [24], Chapter 12).
‘Nonstandard’ here refers to the fact that the resp. principles do not hold in the
full set-theoretic model. Using a generalized uniform boundedness principle ∃-UBX
for the type X (see [22] and [24], 17.7.-17.8, for the bounded metric case, and [13]
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for the normed case) the latter is sometimes even possible in cases where one uses
the sequential weak compactness e.g. of bounded, closed and convex subsets C of
an abstract Hilbert space. Then, however, there is no classically correct principle
such as WKL which would imply the Heine-Borel compactness of C (since C is not
Heine-Borel compact unless X is finite dimensional) but one has to use a strong non-
standard uniform boundedness principle such as ∃-UBX which, nevertheless, can be
eliminated from the verification of the extracted bound and which does not contribute
to the complexity of the bound (see Theorem 3.5 in [22] or Theorem 17.101 in [24].
This principle can also be seen as a version of the bounded collection principle used in
the bounded functional interpretation of theories with abstract types (see [9] where
bounded functional interpretation is used to establish proof-theoretic conservation
results for bounded collection).
Uniform boundedness has been used implicitly (and subsequently eliminated) in the
unwindings of proofs of theorems of Browder, Wittmann and Yamada (based on a
sequential weak compactness argument) in [26] (for the theorems of Browder and
Wittmann) and [40, 41] (for the theorem of Yamada). In both cases, the elimina-
tion of the sequential weak compactness argument leaves no contribution to the final
bound at all which is of the simple primitive recursive form (+) above (the need for
the primitive recursion does not come from the sequential compactness argument but
from a projection argument discussed below). Recently, [10] made the hidden use of
nonstandard uniform boundedness on which these proof minings were based explicit
by formulating a general ‘macro’ which follows from uniform boundedness (∃-UBX)
as well as from bounded collection (in the sense of [9]) and can be used to formalize
(when adapted suitably to the situations at hand) proofs of the resp. theorems of
Browder, Wittmann and a special case of Yamada’s theorem due to Bauschke which
no longer use sequential weak compactness. Then bounded functional interpretation
is applied in [10] to the resulting proofs to extract bounds similar to those previously
obtained in [26] and - in the more general context of Yamada’s theorem - in [41].
Just as the use of sequential weak compactness in the original proof does not con-
tribute at all to the final bounds extracted in [26, 41] (which are verified without that
use), also the use of Banach limits in a proof analyzed in [34] in the end turned out to
have no contribution to the extracted bound although, in general, such a use could
contribute very significantly via the comprehension functional (∃2).

2. Compactness can be avoided altogether by making the original convergence proof
constructive once the assumptions are appropriately uniformized. A typical instance
of this is the recent unwinding ([37]) of a noneffective proof for a convergence theorem
in the context of the classical Lion-Man game in [48]. Here, using a compactness as-
sumption on a uniquely geodesic space satisfying the so-called betweenness property,
it is shown by a nested use of sequential compactness that the lion eventually gets
arbitrary close to the man (ε-capture). As it turns out, once the unique geodesic
and the betweenness properties are upgraded to ‘uniform’ versions of these properties
(with appropriate moduli so that these properties have the logical form admissible
in the logical metatheorems) which - in the presence of compactness - are equivalent
to the nonuniform ones, one can avoid the use of sequential compactness in the con-
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vergence proof. Moreover, existing metatheorems guarantee the extractability of an
explicit rate of convergence (depending on these moduli). This not only provides an
effective quantitative version of the original convergence proof but also a vast gener-
alization of the convergence statement itself since now instead of compactness only
these uniformized properties need to be assumed. This e.g. applies to all bounded
convex subsets of uniformly convex Banach spaces or of CAT(κ)-spaces (of sufficiently
small diameter). and in both cases the respective moduli can easily be computed (and
are low degree polynomials for Lp-spaces and CAT(κ)-spaces).

3. Sequential compactness is eliminated by arithmetizing the original proof. Already in
[16] we showed that the use of (fixed sequences of instances of) sequential compactness
in the form of the convergence principle for bounded monotone sequences of reals,
the Bolzano-Weierstraß principle for bounded sequences in Rn and the Arzelà-Ascoli
lemma can replaced by arithmetical principles (provable by Σ0

1-induction which -
by [18] - is optimal) in proofs of ∀∃-statements if the deductive context does not
allow for non-quantifier-free instances of induction which use the results of sequential
compactness as parameters nor the iteration of the latter. Similarly, the use of (fixed
sequences of instances of) the existence of the limsup of bounded sequences in R
can be reduced to Π0

2-induction (which - by [18] - again is optimal). The approach
is based on an ‘elimination of monotone Skolem functions’ procedure which in [24]
(17.9) is shown to apply also in the presence of abstract spaces X. This explains why
in many proofs, despite of the use of sequential compactness, this ‘arithmetization’ of
the proof results in primitive recursive bounds. E.g. this is the case in the elimination
of a Bolzano-Weierstraß argument for abstract compact metric spaces in [21] and -
much extended - in [35]. Here the use of compactness is not eliminated, in fact the
bounds depend on a given modulus of total boundedness of the metric space, but the
computational strength of its sequential form just causes a simple primitive recursive
contribution to the rate of metastability which is of the form (+) discussed above.
Note that in general already the full principle of monotone convergence for monotone
sequences in [0, 1] is equivalent to arithmetical comprehension ([56]) whose Gödel
functional interpretation cannot be solved in Gödel’s T (but requires bar recursion
B0,1 of lowest type; see [24]). Sometimes, the principle of monotone convergence
cannot only be reduced to its primitive recursively bounded metastable version but - in
the course of the analysis of a proof of a Π0

2-theorem - to an instance of this metastable
version with a very simple counterfunction g (e.g. a constant function g ≡ k). This is
the reason why the analyses of proofs that originally used the convergence principle
as carried out in [51] (Theorem 4.4) as well as in [36] (Theorem 3.1) resulted in simple
exponential rates of convergence (in both cases the theorems in question state that a
sequence of positive reals decreases towards 0 which is in Π0

2).

Projection arguments are usually treated by first replacing them in a given proof by arith-
metical ε-weakenings. E.g. the existence of the metric projection of x ∈ X onto the (closed
and convex) fixed point set Fix(T ) of a nonexpansive mapping T in a Hilbert space X,
which is used in the aforementioned proofs of theorems of Browder, Wittmann and Yamada,
can usually be replaced (see [26, 41] and - similarly - the recent [10]) by its arithmetical

8



version:
∀ε > 0∃y ∈ Fix(T ) ∀z ∈ Fix(T ) (‖x− y‖ ≤ ‖x− z‖+ ε).

While the proof of the existence of the actual projection uses countable choice ([25]), the
arithmetic version can be proved by induction and its quantitative version has a simple
primitive recursive bound.
Browder’s theorem (proved independently also by Halpern [14]) states that for a Hilbert
space X, a bounded closed and convex subset C ⊆ X and a nonexpansive mapping T :
C → C the path (xt) of resolvents

xt = tTxt + (1− t)x, t ∈ (0, 1), x ∈ C,

strongly converges for t→ 1− and, in fact, to the metric projection of x onto Fix(T ).

In the important paper [54], Browder’s theorem was for the first time generalized from
Hilbert spaces to more general Banach spaces X such as uniformly smooth spaces. Even
for Lp-spaces (other than L2) this was new. Unless X is a Hilbert space, the path (xt) never
converges to the metric projection of x but to the so-called sunny nonexpansive retraction
of x onto Fix(T ). In general, nonexpansive retractions onto closed, bounded and convex
sets C are known to exist only in special situations, e.g. when C is the fixed point set of
a nonexpansive mapping as was shown by Bruck using Zorn’s lemma ([5, 6, 7]). The only
more ‘constructive’ approach to the existence of (unique sunny) nonexpansive retractions in
this situation in fact stems from Reich’s theorem. So here one cannot rely on a quantitative
version of the existence of ε-versions of sunny nonexpansive retractions to analyze Reich’s
proofs but has to directly analyze the strong convergence of (xt). This is done in [39] (where,
in fact, a variant of Reich’s proof due to [49] is analyzed). [49] uses the existence of infima
of the function

F (y) := lim sup
n→∞

‖xtn − y‖2

where (tn) is a sequence in (0, 1) which converges to 1. In [39] - using as an additional
hypothesis that X is uniformly convex (in addition to being uniformly smooth, which still
covers all Lp-spaces for 1 < p <∞) - a modulus of uniqueness for the infimum is constructed
and used to replace the (unique) point where the infimum is attained by ε-infima. This in
turn makes it possible to replace the existence of F as an object (which requires uniform
arithmetical comprehension (∃2)) by

∀y ∈ C ∃z ∈ R (z = lim sup
n→∞

‖xtn − y‖2),

where ‘z = lim supn→∞ ‖xtn − y‖2’∈ Π0
3, which only requires ordinary arithmetical compre-

hension.
Finally, in the whole proof even the use of limsup’s is replaced by ε-limsup’s whose exis-
tence is equivalent to Π0

2-induction (that Π0
2-IA suffices is straightforward; for the converse

one has to adapt the proof of Theorem 6.1 in [18]). Hence - by [53] - the functional in-
terpretation (combined with negative translation) of the existence of approximate limsup’s
can be carried out in the fragment T1 of Gödel’s T (which only has the primitive recursive
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recursors R0 and R1). Finally, the existence of of the resulting ε-infimum problem can be
solved by functionals in T2. A detailed analysis of the latter solution shows that in the
concrete application at hand, the use of type-2 primitive recursion actually reduces to a
type-1 primitive recursion resulting in a final rate of metastability for the Cauchy property
of (xtn) which is definable in T1 (see [39]). It seems likely that a further analysis of the
(very complicated detailed structure of) this bound - in the line of Lemma 4 in [52] - might
show that it actually is definable already in T0. This then would leave the rate extracted
for Baillon’s nonlinear ergodic theorem in [27] (which is definable in T but - as it stands
- not in T0) as is the only bound extracted so far which is not primitive recursive in the
ordinary sense of Kleene (i.e. in T0). Among all the bounds extracted which are definable
in T0, the one obtained in [55] is the only one which does not have the simple form (+).

The situation discussed can be summarized as follows:

• While mostly uniform classes of metric and normed spaces X are used (as atoms)
quantification over N is needed in all applications (already to speak e.g. about the
convergence of sequences inX and rates of convergence or metastability), i.e. one does
not have model-theoretic tameness and Gödelian or H. Friedman-type phenomena
could occur in principle.

• Empirical fact 1: all of the rates of asymptotic regularity extracted so far are
either polynomial or simple exponential in the basic data (for [19, 32] this holds for
constant λk = λ only). This also applies to the moduli of uniqueness extracted in
best approximation theory (see [24], Chapter 16, for a survey).

• Empirical fact 2: among all the numerous rates of metastability extracted only
2 so far are not primitive recursive as it stands (but definable in Gödel’s T and so
α < ε0-recursive). With one exception, the primitive recursive bounds extracted all
have a the simple form (+) discussed above. Usually, the primitive iteration involved
in (+) can be shown to be necessary by establishing that the Cauchy property of
the respective sequence (already in simple cases such as C := [0, 1] and computable
mappings T : [0, 1]→ [0, 1]) implies Σ0

1-induction.

• In contrast to model-theoretic tameness, to detect proof-theoretic tameness requires
to actually carry out a proof analysis in each individual case.

• Geometric properties such as uniform convexity and smoothness etc. are usually
more important than complicated inductions (see, however, the discussion of
[39] above). The proof-theoretic tameness of the axiomatization of these properties
amounts to having a simple (if not trivial) monotone functional interpretation in suit-
able moduli ω : N → N which quantitatively witness these properties. See e.g. [2]
for converting prima facie noneffective proofs into explicit low-complexity transfor-
mations from certain moduli (e.g. of the uniform convexity of the given space) into
others (e.g. of uniform continuity for the proximal mappings in uniformly convex
spaces).
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• The use of uniform boundedness (amplifying the already implicitly present unifor-
mity in proofs and corresponding to the use of ultraproducts in continuous or positive
bounded logic) does not contribute to the growth of extractable bounds.

• General proof-theoretic logical metatheorems play an important guiding role in
finding promising applications.

Let us finally mention another important aspect of the proof-theoretic tameness of proofs
in nonlinear analysis which has been observed over the past 20 years. Even if a proof
does not use noneffective set-theoretic existence principles or complicated inductions, so
that the extracted bounds are guaranteed to be of low complexity and even polynomials,
the depth of the nesting of the basic functions, e.g. the degree of the polynomial, in
general depends superexponentially on the quantifier-complexity of the formulas used in
cuts (modus ponens). This already can happen in plain logic or logic augmented by purely
universal axioms. Related to this, the bounds extracted by functional interpretation, which
make use of the typed λ-calculus, could require superexponentially (in the degree of the
highest type use) many β-reduction steps to compute their normal form. In practice,
however, the normalization has never been a problem and usually is almost trivial (except
for [39] where things are more involved) and the logical nestings of the basic functions
are of very low depth. So not only is the use of mathematical principles typically tame
proof-theoretically but even that of first-order logic.
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