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Abstract

This paper gives an explicit and effective rate of convergence for an asymptotic regularity
result ‖Txn−xn‖ → 0 due to Chidume and Zegeye in 2004 where (xn) is a certain pertubated
Krasnoselski-Mann iteration schema for Lipschitz pseudocontractive self-mappings T of closed
and convex subsets of a real Banach space. We also give a qualitative strengthening of the
theorem by Chidume and Zegeye by weakening the assumption of the existence of a fixed
point. For the bounded case, our bound is polynomial in the data involved.

1 Introduction

A fundamental theorem in the early stages of metric fixed point theory is the following one by
Krasnoselski which, apart from showing the existence of at least one fixed point, also provides a
sequence approximating one of these fixed points.

Theorem (Krasnoselski) ( [23]). Let K be a non-empty closed, convex and bounded subset of
a uniformly convex Banach space X and let T be a nonexpansive mapping of K into a compact
subset of K. Then for every x0 ∈ K, the sequence

xk+1 :=
xk + Txk

2

converges strongly to a fixed point z ∈ K of T .

Finding a uniform rate of convergence for the Picard iteration of T (depending on the starting
point x0 and the mapping or, in fact, just a bound on its initial displacement ‖x0 − T (x0)‖) of
strict contractions is trivial as the Banach fixed point theorem already provides this. The second
author has shown in [16] that there is no effective procedure to compute a rate of convergence
uniformly dependent on the data x0 and T for the above so-called Krasnoselski iteration where T
is nonexpansive.

In [16] it is also shown that one can, however, extract from Krasnoselski’s proof a uniform
bound for the asymptotic regularity of xk, i.e., for ‖Txk − xk‖ → 0, which only depends on
the modulus of (uniform) convexity and the diameter of the set K (without any compactness
condition needed). This was further generalized in [18] to a quantitative version of a theorem due
to Groetsch [11] (see also [30]) for the Krasnoselski-Mann iterations

xn+1 := (1− cn)xn + cnTxn

∗The results of this paper are (in a somewhat improved form) from the Bachelor Thesis of the 1st author [15]
written under the supervision of the 2nd author.
†The 2nd author has been supported by the German Science Foundation (DFG Project KO 1737/5-1).
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for (cn) in [0, 1] with
∑
cn(1− cn) =∞.

In a landmark result, Ishikawa showed in 1976 [13] that the assumption of uniform convexity was
superfluous even in Groetsch’ theorem under a somewhat stronger condition on (cn) :

Theorem (Ishikawa) ( [13]). Let K be a nonempty and convex subset of a Banach space X and
let T : K → K be a nonexpansive mapping. For x0 ∈ K define the sequence (xn) by

xn+1 := (1− cn)xn + cnTxn, (1)

where (cn) is a real sequence in [0, b) for some b ∈ (0, 1) with
∞∑
n=0

cn =∞. If (xn) is bounded, then

lim
n→∞

‖Txn − xn‖ = 0.

Under the assumption that K is compact, the sequence (xn) converges strongly to a fixed point
of T. In [17] an effective rate of convergence for (‖Txn − xn‖) was extracted from the proof of
a more general theorem due to Borwein, Reich and Shafrir (see [2]). In [21] the result was even
proved in hyperbolic space. For the special case of constant λn := λ ∈ (0, 1) an optimal quadratic
rate of convergence was obtained by Baillon and Bruck (see [1]).

In 1967, Browder introduced an important generalization of the class of nonexpansive, namely
pseudocontractive mappings defined by

∀u, v ∈ K ∀λ > 1 ((λ− 1)‖u− v‖ ≤ ‖(λI − T )(u)− (λI − T )(v)‖),

where I denotes the identity mapping.

Apart from being a generalization of nonexpansive mappings, the pseudocontractive mappings
are also closely related to accretive operators, where an operator A is called accretive if for every
u, v ∈ K and for all s > 0,

‖u− v‖ ≤ ‖u− v + s (Au−Av)‖ .

Observe that T is pseudocontractive if and only if I − T is accretive. Therefore, any fixed point
of T is a root of I − T . Hence, pseudocontractive mappings have received considerable attention
over the past 15 years.
According to Kato [14], there is also a different characterization for pseudocontractions using the
dual space X∗ of the Banach space X and the normalized duality mapping, which is defined by:

Definition 1. Let X be a real Banach space with dual X∗. The normalized duality mapping
J : X → 2X

∗
is defined by

Jx :=
{
f∗ ∈ X∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2

}
As a consequence of the Hahn-Banach Theorem, Jx is nonempty for all x ∈ X. We now state

the characterization of pseudocontractive mappings due to Kato [14]: A mapping T : U → X is
pseudocontractive if and only if for all u, v ∈ U there exists a j ∈ J (u− v) such that

〈Tu− Tv, j〉 ≤ ‖u− v‖2 .

Until 2000, it has been an open problem whether the Krasnoselski-Mann iteration could be used to
approximate fixed points for Lipschitzian pseudocontractive mappings. In 2000, Mutangadura and
Chidume [7] refuted this by giving an example of a Lipschitzian pseudocontractive mapping from
the unit circle of the two-dimensional Euclidean space into itself for which lim ‖Txn − xn‖ → 0
does not hold.

In 1974, Ishikawa [12] published an iteration sequence which converges strongly to a fixed point of
Lipschitzian pseudocontractive mappings T , but only on compact and convex subsets of Hilbert
spaces:
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Theorem (Ishikawa) ( [12]). If K is a compact and convex subset of a Hilbert space H, T :
K → K is a Lipschitz pseudocontractive mapping and x0 is any point of K, then the sequence
(xn) converges strongly to a fixed point of T, where (xn) is defined iteratively for each n ∈ N by{

yn := (1− βn)xn + βnTxn,
xn+1 := (1− α)xn + αnTyn,

where (αn) and (βn) are sequences of real numbers which satisfy the following conditions:

(i) 0 ≤ αn ≤ bn < 1,

(ii) lim
n→∞

βn = 0,

(iii)
∞∑
n=0

αnβn =∞.

It is still an open problem whether the Ishikawa iteration, i.e., the one presented in the above
theorem, extends to more general spaces.

In 2004, Chidume and Zegeye [8] published a perturbation of the iteration method provided by
(1) for which ‖Txn − xn‖ → 0 holds for the more general case of Lipschitz pseudocontractive
mappings. For this result, no compactness assumption is needed. Naturally, simply dropping this
hypothesis completely would make the result false. Simply take X := K := R and T : x 7→ x+ 1.
Being nonexpansive, T is Lipschitz continuous and pseudocontractive, but ‖Tx− x‖ = 1 for all
x ∈ R. Thus, one of two requirements should be added (here F (T ) denotes the fixed point set of
T ):

(i) F (T ) 6= ∅, or

(ii) K is bounded.

While the first condition is the one required in [8] (Theorem 3.1), the second is required in Remark
3.6 of the same paper.

Let us emphasize that the class of Lipschitz pseudocontractions not only properly contains the class
of nonexpansive mappings but also the important class of strictly pseudo-contractive mappings
in the sense of Browder and Petryshyn [4] (see [6] for a detailed discussion; the fact that strict
pseudocontractions are Lipschitzean seems to be due to [26]). In [4] they proved a fixed point
theorem for this class (see [4], Theorem 12) as well as – under a Leray-Schauder condition –
several such theorems for Lipschitz pseudocontractions (see [4], Theorems 14 and 15).

Theorem (Chidume, Zegeye) ( [8]). Let K be a nonempty, closed and convex subset of a real
Banach space X. Let T : K → K be a Lipschitz pseudocontractive mapping with Lipschitz constant
L ≥ 0 such that F (T ) 6= ∅. Let a sequence (xn) be generated from an arbitrary x1 ∈ K by

xn+1 := (1− λn)xn + λnTxn − λnθn (xn − x1) , (2)

for all n ∈ N, where (λn) and (θn) are sequences of real numbers in (0, 1] satisfying the following
conditions:

(i) lim
n→∞

θn = 0, (ii)
∞∑
n=1

λnθn =∞,

(iii) lim
n→∞

λn
θn

= 0,

(iv) lim
n→∞

(
θn−1
θn
−1

)
λnθn

= 0,

(v) λn (1 + θn) ≤ 1.

Then ‖xn − Txn‖ → 0 as n→∞.
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The iteration scheme (2) was first considered by Bruck [5] in the context of Hilbert spaces and
by Reich [29] for the class of uniformly convex Banach spaces (see also [28,31]).

The main result in this paper (Theorem 1 in Section 4) gives an explicit rate of convergence for
the above theorem by Chidume and Zegeye. This rate depends on given rates of convergence
and divergence (‘moduli’)1 corresponding to the conditions (i)-(iv) on (θn) and (λn) as well as an
upper bound b of ‖x1 − p‖ where p is a fixed point of T, the error and a Lipschitz constant of T.
However the bound does not depend on X,K, x1 and T. In fact the assumption of the existence
of a fixed point of T can be weakened to the existence of approximate fixed points in some b-ball
around x1.
For ε > 0, we call pε an ‘ε- approximate fixed point’ (or simply ‘ε-fixed point’) of T if ‖pε−T (pε)‖ <
ε. We say that K has the ‘approximate fixed point property’ for some class of self-mappings
T : K → K provided that each such T has ε-fixed points in K for each ε > 0.

Under the additional assumption on X having a Gâteaux differentiable norm and on K having the
fixed point property for nonexpansive self-mappings, Chidume and Zegeye also show the strong
convergence of their iteration to a fixed point of T. It remains for a future research to extract from
the proof an effective rate of metastability for this result.

2 Logical analysis of proofs in nonlinear analysis

This section is not needed for the proof of the main result of this paper but rather explains
the broader logical context in which that proof was obtained. Going back to pioneering work
of G. Kreisel in the 50’s but having been taking up more systematically and in the context of
nonlinear analysis only during the past decade, a general program of analyzing proofs using tools
from logic (proof theory) emerged which has the aim to extract explicit effective and highly
uniform bounds from given proofs (see [20] for a recent book treatment of that). In particular,
general logical ‘metatheorems’ were developed that guarantee for large classes of (even highly
ineffective) proofs in abstract nonlinear functional analysis the extractability of such bounds (see,
for example, [9,10,19,20]). These metatheorems have meanwhile been applied to numerous prima
facie ineffective proofs of asymptotic regularity statements

(∗) ‖xn − Txn‖ → 0

of certain iteration sequences (xn) in metric fixed point theory based on general classes of mappings
T in Hilbert, Banach, hyperbolic or CAT(0)-spaces among others. The metatheorems guarantee
that the extracted bound (besides being computable) is guaranteed to be essentially independent
of the underlying space, the operator T and the starting point x1 of the iteration except for some
local metric bound b namely on ‖Tx1 − x1‖, ‖x1‖ and on ‖x1 − p‖ if the existence of some fixed
point p of T is assumed. If the proof essentially proceeds by contradiction, then the statement to be
proved needs the following logical form ∀x∃y Aqf (x, y), where Aqf (essentially) is a quantifier-free
formula. In (∗) above, which formalizes as

(∗∗) ∀k ∈ N ∃n ∈ N∀m ≥ n (‖Txm − xm‖ ≤ 2−k),

this is not the case. However, in many cases the monotonicity of the sequence allows one to drop
the innermost universal quantifier ∀m ≥ n without changing the statement. If this is not possible,
then one in general has to replace (∗∗) by the (ineffectively equivalent) so-called Herbrand normal
form of (∗∗)

∀k ∈ N ∀g : N→ N∃n ∈ N∀m ∈ [n, n+ g(n)] (‖Txm − xm‖ ≤ 2−k)

which recently has been rediscovered by T. Tao [32] under the name of ‘metastability’. For a recent
application of this in metric fixed point theory see, for instance, [22]. In this paper we surprisingly

1These moduli provide quantitative versions of the convergence/divergence conditions (i)-(iv). In logic such
quantitative enrichments are called ‘Skolem functions’. In the final section we will show how to compute such
moduli for concrete sequences (λn) and (θn).
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obtain a full rate of convergence (i.e. an effective bound on ∃n ∈ N in (∗∗)) despite of the fact that
monotonicity of the iteration sequences apparently does not hold. This is due to the fact that in the
course of the extraction the proof from [8] turns out to be essentially constructively reformulatable.
In such cases one can omit a logical step necessary in the ineffective case: the so-called negative
translation of Gödel. As a consequence one can directly apply proof interpretations such as the
monotone modified realizability or monotone functional interpretation (see [9, 20]). These are
proof-theoretic techniques which extract uniform bounds Φ

∀k ∈ N∀m ≥ Φ(k) (‖Txm − xm‖ ≤ 2−k)

from proofs of statements (∗∗). ‘Uniform’ here means that the bound – in addition to k – only
depends on a bound b ≥ ‖x1‖, ‖Tx1− x1‖, ‖p− x1‖ for some p ∈ F (T ), a Lipschitz constant L for
T and the aforementioned quantitative moduli R1, . . . , R4. Such moduli are asked for by the proof
interpretations just mentioned to make the conditions (i) − (iv) on (λn), (θn) purely universal
(see section 4 below). The universal quantification over (θn) and (λn) can be taken in the whole
compact Polish space2 [0, 1]N. It follows (again by the aforementioned logical metatheorems) that
the bound Φ does not depend on these sequences themselves but only on their moduli R1, . . . R4.

Condition (v) is already purely universal (and hence left unchanged by the logical interpre-
tation) as are the conditions on T being L-Lipschitz and pseudocontractive and p being a fixed
point of T. The monotone proof interpretations mentioned above also require a so-called majoriz-
ing function T ∗ : N→ N for T to be available as an additional argument of Φ, i.e., a nondecreasing
function T ∗ such that

∀n ∈ N ∀x ∈ K(n ≥ ‖x‖ → T ∗(n) ≥ ‖T (x)‖).

However, under the assumptions above one can simply take, e.g., T ∗(n) := L(n+ b) + 2b since

n ≥ ‖x‖ → ‖Tx‖ ≤ ‖Tx− Tx1‖+ ‖Tx1 − x1‖+ ‖x1‖ ≤ L‖x− x1‖+ 2b ≤ L(n+ b) + 2b.

Hence we do not have to add T ∗ as an additional input to Φ.

Chidume and Zegeye assume that T has a fixed point p ∈ K, i.e., that ∀l ∈ N (‖Tp − p‖ ≤ 2−l).
First we note that it is sufficient to impose a bound b on ‖x1‖ and ‖x1 − p‖ which is needed to
compute a majorant T ∗ since

‖Tx1 − x1‖ ≤ ‖Tx1 − Tp‖+ ‖p− x1‖ ≤ Lb+ b.

Now consider the implication

∀l ∈ N (‖Tp− p‖ ≤ 2−l)→ ∀k ∈ N ∃n ∈ N ∀m ≥ n (‖Txm − xm‖ ≤ 2−k).

In contrast to the monotone modified realizability interpretation, the monotone functional inter-
pretation not only extracts a bound Φ on ‘∃n ∈ N’ but also a bound on the negatively occurring
universal quantifier ‘∀l ∈ N’ in the premise that, however, has both k and m as arguments (see [20]
for more details):

∀k,m ∈ N (‖Tp− p‖ ≤ 2−f(k,m))→ (m ≥ Φ(k)→ ‖Txm − xm‖ ≤ 2−k),

where f only depends on b and L but not on p. Now suppose that in some fixed ball around x1
arbitrarily good approximate fixed points of T exist and assume that b is also a bound on the
radius of this ball. If we now pick for given k and m ≥ Φ(k) a 2−f(k,m)-good such approximate
fixed point as p, then we get ‖Txm − xm‖ ≤ 2−k. Since we can do this for every k,m we obtain

∀k ∈ N ∀m ≥ Φ(k) (‖Txm − xm‖ ≤ 2−k)

2The theorem by Chidume and Zegeye [8] assumes that θn, λn ∈ (0, 1] but the proof can be rewritten in such a
way that the case that θn = 0 or λn = 0 for certain n is allowed (see [15] where this is carried out). Since, however,
things get considerably simpler under the original assumption θn, λn > 0 we confine ourselves here to this one.
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and so, in particular, that lim ‖Txn−xn‖ = 0 (together with the rate of convergence Φ) under the
weaker assumption that in some ball around x1 the mapping T has arbitrarily good approximate
fixed points. Using implicitly this approach, gives in our main theorem in section 4 below not
only the effective bound Φ but also a verification of this bound under that weakened hypothesis
on T. Bounding ‖Tx1 − x1‖ in terms of b and L still works when p is just some 2−l-fixed point
using now Lb + b + 1 as upper bound. The actual bound extracted in section 4 even only uses
that b ≥ ‖x1 − p‖ but no upper bound on ‖x1‖ itself. This is due to the fact that the whole proof
never touches any points outside of K hence one can take x1 as a reference point w.r.t. which we
majorize distances (see [20], in particular pp. 410-411).

3 Technical Lemmas

The following lemma is a quantitative version of a lemma due to Moore and Nnoli [24]. In the
following, R∗+ denotes the set of strictly positive real numbers.

Lemma 1. Let ψ : (0,∞)→ (0,∞) be an increasing function (formally extended to 0 by ψ(0) := 0)
and let (an), (bn) and (cn) be sequences of real nonnegative numbers with modulus N1 : (0,∞)→ N
such that:3

∀ε > 0∀n ≥ N1 (ε) (cn ≤ bnε) . (3)

Moreover, let
∞∑
n=1

bn =∞ with rate of divergence N2 : (0,∞)→ N,

∀x ∈ (0,∞)

N2(x)∑
i=1

bi > x

 . (4)

If for all n ≥ 0
a2n+1 ≤ a2n − bnψ (an+1) + cn,

then we get a rate of convergence for (an):

∀ε > 0∀n ≥ Φ (N1, N2, ε) (an < ε) ,

where Φ : NR∗
+ × NR∗

+ × R∗+ → N, with

Φ (N1, N2, ε) = N2 (C) + 1,

C ≥
2a2
Ñ

ψ (ε)
+

Ñ−1∑
n=1

bn,

Ñ = N1

(
ψ (ε)

2

)
.

Proof. Let ε > 0 be given. We split the proof into two claims:

Claim 1: ∃n ∈
[
Ñ ,N2 (C) + 1

]
(an < ε)

Proof. Assume on the contrary that

∀n ∈
[
Ñ ,N2 (C) + 1

]
(an ≥ ε). We first remark that the above interval is non-trivial since for

Ñ ≥ N2 (C) + 1, we would get

N2(C)∑
n=1

bn ≤
Ñ−1∑
n=1

bn ≤
Ñ−1∑
n=1

bn +
2a2
Ñ

ψ (ε)
≤ C,

which is a contradiction to assumption (4), i.e., to the rate of divergence of
∑
bn. So from this

we must have Ñ < N2 (C) + 1.

3For strictly positive bn, (3) just expresses that cn/bn tends to 0 with rate of convergence N1.
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By assumption (3), we get

∀n ≥ Ñ
(
cnb
−1
n ≤

1

2
ψ (ε)

)
, (5)

and so for all n ∈
[
Ñ ,N2 (C)

]
it follows that

a2n+1 ≤ a2n − bnψ (an+1) + cn

≤ a2n − bnψ (ε) +
1

2
ψ (ε) bn

= a2n −
1

2
ψ (ε) bn.

Therefore
1

2
ψ (ε) bn ≤ a2n − a2n+1.

Since this holds for all n ∈
[
Ñ ,N2 (C)

]
, summing up yields

1

2
ψ (ε)

N2(C)∑
n=Ñ

bn ≤ a2Ñ − a
2
N2(C) ≤ a

2
Ñ
. (6)

Hence after adding
Ñ−1∑
n=1

bn to (6) we get

N2(C)∑
n=1

bn ≤
Ñ−1∑
n=1

bn +
2a2
Ñ

ψ (ε)
≤ C,

which is again a contradiction to (4). This proves Claim 1.

Then for some n0 ∈
[
N1

(
ψ(ε)
2

)
, N2 (C) + 1

]
we know that an0

< ε. We now prove the

following claim, which will conclude our result.
Claim 2: ∀l (an0+l < ε).

Proof. By induction on l. For l = 0 this is clear. We prove the induction step by contradiction.
So assume that for some l ≥ 0, we have an0+l < ε but an0+l+1 ≥ ε. Using (3) again we get

ε2 ≤ a2n0+l+1

≤ a2n0+l − bn0+lψ (an0+l+1) + cn0+l

≤ a2n0+l − bn0+lψ (ε) + bn0+l
ψ (ε)

2

< ε2 − bn0+l

2
ψ (ε)

≤ ε2,

which is a contradiction.

In the proof of our main Theorem 1, we will need a quantitative form of Proposition 2(iv) from
Morales and Jung [25].

Lemma 2. Let X be a Banach space and let K be a closed and convex subset of X. Suppose that
T : K → K is a pseudocontractive mapping such that for each x1 ∈ K, the equation

x = tTx+ (1− t)x1
has a solution yt ∈ K for every t ∈ (0, 1). If ‖Txε − xε‖ ≤ ε, then

‖yt − xε‖ ≤ ‖x1 − xε‖+
tε

1− t
for all t ∈ (0, 1)
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Proof. From the pseudocontractiveness, there exists a j ∈ J (yt − xε) such that

〈yt − xε, j〉 = 〈tTyt + (1− t)x1 − xε, j〉
= t 〈Tyt − Txε, j〉+ t 〈Txε − xε, j〉+ (1− t) 〈x1 − xε, j〉
≤ t 〈yt − xε, j〉︸ ︷︷ ︸

=t‖yt−xε‖2=t‖j‖2

+t ‖Txε − xε‖ · ‖j‖+ (1− t) ‖x1 − xε‖ · ‖j‖ .

Now, if ‖j‖ = 0, we also have that ‖yt − xε‖ = 0 and the claim becomes trivial. Otherwise,
dividing by ‖j‖ implies that

(1− t) ‖yt − xε‖ ≤ (1− t) ‖x1 − xε‖+ t ‖Txε − xε‖ .

Hence the claim follows from ‖Txε − xε‖ ≤ ε.

The next lemma is an improved version of the following inequality

‖yn−1 − yn‖ ≤
∣∣∣∣θn−1θn

− 1

∣∣∣∣ (‖yn−1‖+ ‖x1‖)

used by Chidume and Zegeye. Since Chidume and Zegeye are only interested in qualitative results,
they do not need the stronger version.

Lemma 3. Let K be a nonempty subset of a real Banach space X. Let T : K → K be a Lipschitz
pseudocontractive mapping and let (θn) ⊂ (0, 1] be a real sequence. Denote tn := 1

1+θn
. Let (yn)

be a sequence in K defined by yn = tnTyn + (1− tn)x1. Then

‖yn−1 − yn‖ ≤
∣∣∣∣θn−1θn

− 1

∣∣∣∣ ‖yn−1 − x1‖ .
for all n ∈ N.

Proof. From the definition of yn we immediately get(
1 +

1

θn

)
yn =

(
1 +

1

θn

)(
1

1 + θn
Tyn +

θn
1 + θn

x1

)
=

1 + θn
θn

(
1

1 + θn
Tyn +

θn
1 + θn

x1

)
=
Tyn
θn

+ x1. (7)

Since
(

1 + 1
θn

)
= 1+θn

θn
= 1

tnθn
, the pseudocontractivity of T (applied to λ := 1 + θn) together

with (7) implies

‖yn−1 − yn‖ ≤
∥∥∥∥yn−1 − yn +

1

θn
(yn−1 − Tyn−1 − yn + Tyn)

∥∥∥∥
=

∥∥∥∥yn−1(1 +
1

θn

)
− yn

(
1 +

1

θn

)
− Tyn−1 − Tyn

θn

∥∥∥∥
=

∥∥∥∥yn−1tnθn
−
(
Tyn
θn

+ x1

)
− Tyn−1

θn
+
Tyn
θn

∥∥∥∥
=

∥∥∥∥yn−1tnθn
− Tyn−1

θn
− x1

∥∥∥∥ .
From yn−1 = tn−1Tyn−1 + (1− tn−1)x1 we obtain that Tyn−1 = yn−1−(1−tn−1)x1

tn−1
, hence

‖yn−1 − yn‖ ≤
∥∥∥∥yn−1tnθn

− yn−1 − (1− tn−1)x1
tn−1θn

− x1
∥∥∥∥

=

∥∥∥∥yn−1( 1

tnθn
− 1

tn−1θn

)
+ x1

(
1− tn−1
tn−1θn

− 1

)∥∥∥∥ . (8)
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Moreover

1

tnθn
− 1

tn−1θn
=

1

θn

(
1

tn
− 1

tn−1

)
=

1

θn
(1 + θn − 1− θn−1)

= 1− θn−1
θn

(9)

and

1− tn−1
tn−1θn

− 1 =
1

θn

(
1

tn−1
− 1

)
− 1

=
1

θn
(1 + θn−1 − 1)− 1

=
θn−1
θn
− 1. (10)

From (8), (9) and (10) we finally conclude

‖yn − yn−1‖ ≤
∣∣∣∣θn−1θn

− 1

∣∣∣∣ · ‖yn−1 − x1‖ .

The proof in Chidume and Zegeye [8] also needs the following lemma due to W.V. Petryshyn

Lemma 4 (cf. [27]). Let X be a real normed linear space and let J be the normalized duality
mapping on X. Then for any x, y ∈ X and j (x+ y) ∈ J (x+ y) the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2 〈y, j〉 .

4 Main Results

Let (λn) and (θn) be real sequences in (0, 1] such that for all n ∈ N the following hold

(i) lim
n→∞

θn = 0,

(ii)
∞∑
n=1

λnθn =∞,

(iii) ∀ε > 0∃m ∈ N∀n ≥ m (λn ≤ θnε),

(iv) ∀ε > 0∃m ∈ N∀n ≥ m

( ∣∣∣ θn−1
θn
−1

∣∣∣
λnθn

≤ ε

)
.

(v) λn (1 + θn) ≤ 1.

As in Lemma 1, we will also need the following rates of convergence and divergence Ri : (0,∞)→ N
such that

(i)’ ∀ε > 0∀n ≥ R1 (ε) (θn ≤ ε),

(ii)’ ∀x ∈ (0,∞)

(
R2(x)∑
n=1

λnθn ≥ x

)
,

(iii)’ ∀ε > 0∀n ≥ R3 (ε) (λn ≤ θnε),

9



(iv)’ ∀ε > 0∀n ≥ R4(ε)

( ∣∣∣ θn−1
θn
−1

∣∣∣
λnθn

≤ ε

)
.

Theorem 1. Let K be a nonempty, closed and convex subset of a real Banach space X. Let
T : K → K be a Lipschitzian pseudocontractive mapping with Lipschitz constant L and for some
b > 0 assume that T does possess arbitrarily good ε-fixed points xε ∈ K with ‖x1 − xε‖ < b. Let
(xn) be the sequence generated from an arbitrary x1 ∈ K by

xn+1 := (1− λn)xn + λnTxn − λnθn (xn − x1) .

Given the rates of convergence/divergence Ri : R→ N that satisfy (i)’ to (iv)’ above, we get

∀ε > 0∀n ≥ Ψ (b, L,R1, R2, R3, R4, ε) (‖xn − Txn‖ < ε)

where
Ψ (b, L,R1, R2, R3, R4, ε) = max

{
N2 (C) + 1, R1

( ε
4r

)
+ 1
}

and

N1 (ε) := max

{
R3

(
2εd

3r2

)
, R4

(√
ε

r2
+

9

4
− 3

2

)}
,

N2 (x) := R2

(x
2

)
+ 1,

C :=
18 (1 + L)

2
r2

ε2
+ 2

(
N1

(
ε2

8 (1 + L)
2

)
− 1

)
,

r := max

{
(2 + L)

R3(d) − 1

1 + L
b, 2b

}
,

d :=
1

2
(
5
2 + L

)
(2 + L)

.

Remark 1. Note that the bound Ψ does not depend on X,K, T, x1 except for b and the Lipschitz
constant L.

Proof. Let ε > 0 be given. For δ > 0, let xδ be a δ-fixed point of T such that ‖x1−xδ‖ < b, whose

existence is guaranteed by the assumption. Let c := (2+L)R3(d)−1
1+L and define

δ̃n,k :=

{
2−kc−1, if n ≤ R3 (d)

2λn−1θn−1

2+2λ2
n−1(2+L)

· 2−k−1, if n > R3 (d)
and δn,k := min{δ̃i,k : i ≤ n}. (11)

We first show that
∥∥xn − xδn,k∥∥ ≤ r + 2−k for all n ≤ R3 (d) and for any k ∈ N. By the triangle

inequality,

‖xn − Txn‖ ≤
∥∥xn − xδn,k∥∥+

∥∥xδn,k − Txδn,k∥∥+
∥∥Txδn,k − Txn∥∥ (12)

≤
∥∥xn − xδn,k∥∥+ δn,k +

∥∥Txδn,k − Txn∥∥
= (1 + L)

∥∥xn − xδn,k∥∥+ δn,k. (13)

Moreover, since λn,θn ∈ (0, 1] for all n ≥ 1, we get∥∥xn − λnθn (xn − x1)− xδn,k
∥∥ =

∥∥(1− λnθn)xn + λnθnx1 − xδn,k
∥∥

≤ (1− λnθn)
∥∥xn − xδn,k∥∥+

∥∥(1− λnθn)xδn,k + λnθnx1 − xδn,k
∥∥

= (1− λnθn)
∥∥xn − xδn,k∥∥+ λnθn

∥∥x1 − xδn,k∥∥
<
∥∥xn − xδn,k∥∥+

∥∥x1 − xδn,k∥∥
<
∥∥xn − xδn,k∥∥+ b. (14)

10



From (12), (14) and the definition of xn we obtain for all n, k∥∥xn+1 − xδn,k
∥∥ =

∥∥(1− λn)xn + λnTxn − λnθn (xn − x1)− xδn,k
∥∥

≤ λn ‖xn − Txn‖+
∥∥xn − λnθn (xn − x1)− xδn,k

∥∥
< (1 + L)

∥∥xn − xδn,k∥∥+
∥∥xn − xδn,k∥∥+ b+ δn,k

= (2 + L)
∥∥xn − xδn,k∥∥+ b+ δn,k.

Since
∥∥x1 − xδn,k∥∥ < b for all n and k, it follows that for n ≤ R3(d)

∥∥xn − xδn,k∥∥ < n−1∑
i=0

(2 + L)
i (
b+ 2−kc−1

)
=

(2 + L)
n − 1

(2 + L)− 1

(
b+ 2−kc−1

)
≤ (2 + L)

R3(d) − 1

1 + L

(
b+ 2−kc−1

)
= r + 2−k. (15)

Note that this estimate holds for any δn,k(= 2−kc−1)-fixed point xδn,k .

We now show by induction on n ≥ R3 (d) that
∥∥xn − xδn,k∥∥ ≤ r + 2−k for all k ∈ N and for all

δn,k-fixed points xδn,k of T with ‖x1 − xδn,k‖ < b. For n = R3 (d) this is trivial by (15). We show

the induction step by contradiction. Assume
∥∥xn − xδn,k∥∥ ≤ r+ 2−k for any such δn,k-fixed point

xδn,k but
∥∥xn+1 − xδn+1,k

∥∥ > r+ 2−k for some n ≥ R3 (d) and for some δn+1,k-fixed point xδn+1,k
.

Then using lemma 4 one shows exactly as in [8] that for all j ∈ J(xn+1 − xδn+1,k
)∥∥xn+1 − xδn+1,k

∥∥2 =
∥∥xn − xδn+1,k

− λn ((xn − Txn) + θn (xn − x1))
∥∥2

≤
∥∥xn − xδn+1,k

∥∥2 − 2λn 〈(xn − Txn) + θn (xn − x1) , j〉

=
∥∥xn − xδn+1,k

∥∥2 − 2λnθn
∥∥xn+1 − xδn+1,k

∥∥2 + 2λn〈θn (xn+1 − xn)

− (xn − Txn) + θn
(
x1 − xδn+1,k

)
+ (xn+1 − Txn+1)

− (xn+1 − Txn+1) , j〉. (16)

Since T is pseudocontractive, we have for some j ∈ J
(
xn+1 − xδn+1,k

)
〈xn+1 − Txn+1, j〉 =

〈
xn+1 − xδn+1,k

, j
〉
−
〈
Txδn+1,k

− xδn+1,k
, j
〉

+
〈
Txδn+1,k

− Txn+1, j
〉

≥ −
∥∥Txδn+1,k

− xδn+1,k

∥∥ · ∥∥xn+1 − xδn+1,k

∥∥
≥ −δn+1,k

∥∥xn+1 − xδn+1,k

∥∥ .
Therefore, for such a j, (16) becomes∥∥xn+1 − xδn+1,k

∥∥2 ≤
∥∥xn − xδn+1,k

∥∥2 − 2λnθn
∥∥xn+1 − xδn+1,k

∥∥2 + 2λn〈θn (xn+1 − xn)

+θn
(
x1 − xδn+1,k

)
+ (xn+1 − Txn+1)− (xn − Txn) , j〉

+2δn+1,k

∥∥xn+1 − xδn+1,k

∥∥
≤

∥∥xn − xδn+1,k

∥∥2 − 2λnθn
∥∥xn+1 − xδn+1,k

∥∥2 + 2δn+1,k

∥∥xn+1 − xδn+1,k

∥∥
+2λn

[
(2 + L) ‖xn+1 − xn‖+ θn

∥∥x1 − xδn+1,k

∥∥] · ∥∥xn+1 − xδn+1,k

∥∥
≤

∥∥xn − xδn+1,k

∥∥2 − 2λnθn
∥∥xn+1 − xδn+1,k

∥∥2 + 2δn+1,k

∥∥xn+1 − xδn+1,k

∥∥
+2λn

[
(2 + L)λn ‖xn − Txn + θn (xn − x1)‖+

θnr

2

]
·
∥∥xn+1 − xδn+1,k

∥∥ .
11



Moreover

‖xn − Txn + θn (xn − x1)‖ ≤
∥∥xn − xδn+1,k

∥∥+
∥∥xδn+1,k

− Txδn+1,k

∥∥
+
∥∥Txδn+1,k

− Txn
∥∥+

∥∥xn − xδn+1,k

∥∥+ θn
∥∥xδn+1,k

− x1
∥∥

≤ (2 + L)
∥∥xn − xδn+1,k

∥∥+ δn+1,k +
θnr

2
.

Thus,∥∥xn+1 − xδn+1,k

∥∥2 ≤
∥∥xn − xδn+1,k

∥∥2 − 2λnθn
∥∥xn+1 − xδn+1,k

∥∥2 + 2δn+1,k

∥∥xn+1 − xδn+1,k

∥∥
+2λn

[
(2 + L)λn

(
(2 + L)

∥∥xn − xδn+1,k

∥∥+ δn+1,k +
θnr

2

)
+
θnr

2

]
·
∥∥xn+1 − xδn+1,k

∥∥
≤

∥∥xn − xδn+1,k

∥∥2 − 2λnθn
∥∥xn+1 − xδn+1,k

∥∥2 + 2δn+1,k

∥∥xn+1 − xδn+1,k

∥∥
+2λn

[
λn (2 + L)

((
5

2
+ L

)
(r + 2−k) + δn+1,k

)
+
θnr

2

]
·
∥∥xn+1 − xδn+1,k

∥∥ .
(17)

In the last step we used that by assumption ‖xn − xδn+1,k
‖ ≤ r + 2−k since xδn+1,k

a fortiori is a
δn,k-fixed point.
In the same way we have by assumption that

∥∥xn+1 − xδn+1,k

∥∥ > ∥∥xn − xδn+1,k

∥∥ ≥ 0. In particular,

we may divide both sides by
∥∥xn+1 − xδn+1,k

∥∥. Moreover,
∥∥xn+1 − xδn+1,k

∥∥2−∥∥xn − xδn+1,k

∥∥2 > 0.
Hence (17) becomes

2λnθn
∥∥xn+1 − xδn+1,k

∥∥ < 2λn

[
λn (2 + L)

((
5

2
+ L

)
(r + 2−k) + δn+1,k

)
+
θnr

2

]
+ 2δn+1,k,

and so∥∥xn+1 − xδn+1,k

∥∥ <
λn
θn

(2 + L)

(
5

2
+ L

)
(r + 2−k) +

r

2
+

(
2 + 2λ2n(2 + L)

)
δn+1,k

2λnθn

≤ r

2
+
r + 2−k

2
+

(
2 + 2λ2n(2 + L)

)
δn+1,k

2λnθn
≤ r + 2−k−1 + 2−k−1 = r + 2−k.

This is a contradiction. Therefore,
∥∥xn − xδn,k∥∥ ≤ r + 2−k for all k, n ∈ N.

For tn := 1
1+θn

we have 1
2 ≤ tn < 1. By Proposition 1 of [25], we are thus guaranteed the

existence of a unique path (ytn)n∈N in K such that

ytn = tnTytn + (1− tn)x1. (18)

For simplicity we will denote ytn by yn. Now we will estimate ‖xn − yn−1‖ in such a way that we
can apply Lemma 1 to get ‖xn − yn−1‖ → 0 and also a rate of convergence for (‖xn − yn−1‖)n.

Observe that
tn

1− tn
=

1

1 + θn
· 1

1− 1
1+θn

=
1

1 + θn
· 1 + θn

θn
=

1

θn
.

For all k, n ∈ N, applying Lemma 2 to yn yields∥∥yn − xδn+1,k

∥∥ ≤ ∥∥x1 − xδn+1,k

∥∥+
tnδn+1,k

1− tn

≤ b+
δn+1,k

θn
≤ r

2
+
δn+1,k

θn
, (19)
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therefore

‖xn+1 − yn‖ ≤
∥∥xn+1 − xδn+1,k

∥∥+
∥∥yn − xδn+1,k

∥∥
≤ r + 2−k +

r

2
+
δn+1,k

θn
.

Since this fact is true for all k ∈ N, we get (using that lim
k→∞

δn+1,k = 0)

‖xn+1 − yn‖ ≤
3

2
r. (20)

Moreover, for all k ∈ N,

‖xn − Txn + θn (xn − x1)‖ ≤
∥∥xn − xδn,k∥∥+ δn,k +

∥∥Txδn,k − Txn∥∥+ θn ‖xn − x1‖
≤ (1 + L)

(
r + 2−k

)
+
∥∥xn − xδn,k∥∥+

∥∥xδn,k − x1∥∥︸ ︷︷ ︸
<b≤ r2

+δn,k

<

(
5

2
+ L

)(
r + 2−k

)
+ δn,k.

Hence,

‖xn − Txn + θn (xn − x1)‖ ≤
(

5

2
+ L

)
r. (21)

For proving (3.5) in the proof of Theorem 3.1 of [8], the hypothesis F (T ) 6= ∅ is not used.
Therefore, for all n ∈ N,

‖xn+1 − yn‖2 ≤ ‖xn − yn‖2 − 2λnθn ‖xn+1 − yn‖2

+ 2λ2n (2 + L) ‖xn − Txn + θn (xn − x1)‖ · ‖xn+1 − yn‖ .

Using (20) and (21), this becomes

‖xn+1 − yn‖2 ≤ ‖xn − yn‖2 − 2λnθn ‖xn+1 − yn‖2 + 3r2λ2n

(
5

2
+ L

)
(2 + L) . (22)

The only term which prevents us from applying Lemma 1 is ‖xn − yn‖. In order to resolve
this problem, we use Lemma 3 and (19) to obtain

‖yn − yn−1‖ ≤
∣∣∣∣θn−1θn

− 1

∣∣∣∣ · ‖yn−1 − x1‖
≤
∣∣∣∣θn−1θn

− 1

∣∣∣∣ (∥∥yn−1 − xδn,k∥∥+
∥∥x1 − xδn,k∥∥)

≤
∣∣∣∣θn−1θn

− 1

∣∣∣∣ · (2
∥∥x1 − xδn,k∥∥+

δn,k
θn−1

)
<

∣∣∣∣θn−1θn
− 1

∣∣∣∣ (2b+
δn,k
θn−1

)
.

This again holds for all k ∈ N and so ‖yn − yn−1‖ ≤
∣∣∣ θn−1

θn
− 1
∣∣∣ 2b ≤ ∣∣∣ θn−1

θn
− 1
∣∣∣ r. Therefore, (22)

becomes (using also (20))

‖xn+1 − yn‖︸ ︷︷ ︸
an+1:=

2 ≤ ‖xn − yn−1‖︸ ︷︷ ︸
an:=

2 − 2λnθn︸ ︷︷ ︸
bn:=

‖xn+1 − yn‖2

+ r2
∣∣∣∣θn−1θn

− 1

∣∣∣∣2 + 3r2
∣∣∣∣θn−1θn

− 1

∣∣∣∣+ 3λ2n

(
5

2
+ L

)
(2 + L) r2︸ ︷︷ ︸

cn:=

. (23)
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We now apply Lemma 1 with

ψ (x) := x2

N1 (ε) := max

{
R3

(
2εd

3r2

)
, R4

(√
ε

r2
+

9

4
− 3

2

)}
N2 (x) := R2

(x
2

)
+ 1

to obtain a rate of convergence for (an). It remains to show that N1, N2 as above satisfy conditions
(3) and (4) of Lemma 1, respectively. We split the first claim into two parts, namely (i) and (ii):
For all n ≥ N1 (ε),

cn
bn

=

3r2

2

∣∣∣ θn−1

θn
− 1
∣∣∣

λnθn
+

r2

2

∣∣∣ θn−1

θn
− 1
∣∣∣2

λnθn︸ ︷︷ ︸
(i)
< ε

2

+
3λn
2θn

(
5

2
+ L

)
(2 + L) r2︸ ︷︷ ︸

(ii)
< ε

2

.

Proof of (i). In the following, we will denote

∣∣∣ θn−1
θn
−1

∣∣∣
λnθn

by αn to simplify notation. By hypothesis,

for all n ≥ N1 (ε) ≥ R4

(√
ε
r2 + 9

4 −
3
2

)
:

αn <

√
ε

r2
+

9

4
− 3

2

which implies (
αn +

3

2

)2

<
ε

r2
+

9

4

and so
r2α2

n + 3r2αn < ε.

Since λnθn ≤ 1 we get

3r2
∣∣∣ θn−1

θn
− 1
∣∣∣

λnθn
+
r2
∣∣∣ θn−1

θn
− 1
∣∣∣2

λnθn
≤

3r2
∣∣∣ θn−1

θn
− 1
∣∣∣

λnθn
+
r2
∣∣∣ θn−1

θn
− 1
∣∣∣2

(λnθn)2
= 3r2αn + r2α2

n

< ε.

Thus implying (i).
Proof of (ii). By hypothesis, λn

θn
< 2εd

3r2 for all n ≥ N1 (ε) ≥ R3

(
εd
r2

)
, hence the claim follows by

the definition of b.
We now show that N2 satisfies (4) of Lemma 1. For all x ∈ R the following holds:

N2(x)∑
i=1

bi = 2

R2( x2 )+1∑
i=1

λiθi >

R2( x2 )∑
i=1

λiθi

≥ 2 · x
2

= x.

Therefore, the conditions of Lemma 1 are satisfied and consequently for Φ as in Lemma 1,

∀δ > 0∀n ≥ Φ (N1, N2, δ) (‖xn − yn−1‖ < δ) .

Remark 2. The authors of this paper acknowledge that the proof of the induction step is al-
most exactly as in Chidume and Zegeye [8]; we only needed to make some minor adjustments to
accommodate for the fact that the hypothesis F (T ) 6= ∅ was weakened.
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Finally, we proceed to showing the actual statement of the Theorem.

It follows from Lemma 1 with δ = ε
2(1+L) that Ñ = N1

(
ε2

8(1+L)2

)
= N1

(
ψ( ε

2(1+L) )
2

)
and

C =
18 (1 + L)

2
r2

ε2
+ 2

(
Ñ − 1

)
≥

8 (1 + L)
2
a2
Ñ

ε2
+

Ñ−1∑
n=1

bn

=
2a2
Ñ

ψ
(

ε
2(1+L)

) +

Ñ−1∑
n=1

bn

since an = ‖xn − yn−1‖ ≤ 3r
2 for all n ∈ N and so, in particular, a2

Ñ
≤ 9r2

4 . So, in particular, for
all natural numbers n such that n ≥ Ψ (b, L,R1, R2, R3, R4, ε) ≥ N2 (C) + 1 we have

‖xn − yn−1‖ ≤
ε

2 (1 + L)
. (24)

Moreover, ‖yn − Tyn‖ = ‖tnTyn + (1− tn)x1 − Tyn‖ for all n ∈ N by the definition of yn. Thus,
from (18)

‖xn − Txn‖ ≤ ‖xn − yn−1‖+ ‖yn−1 − Tyn−1‖+ ‖Tyn−1 − Txn‖
≤ (1 + L) ‖xn − yn−1‖+ (1− tn−1) ‖Tyn−1 − x1‖ ,

where (using that tn−1 ≥ 1
2 )

‖Tyn−1 − x1‖ =

∥∥∥∥yn−1 − (1− tn−1)x1
tn−1

− x1
∥∥∥∥

=

∥∥∥∥yn−1 − x1tn−1

∥∥∥∥
≤ 2r.

In the last step we have used that ‖yn−1 − x1‖ ≤ r which holds since

‖yn−1 − x1‖ ≤ ‖yn−1 − xδn,k‖+ ‖xδn,k − x1‖ ≤ b+
δn,k
θn−1

+ b

for all k.
Since furthermore 1 − tn−1 = θn−1

1+θn−1
< θn−1 < ε

4r for all n ≥ Ψ (b, L,R1, R2, R3, R4, ε) ≥
R1

(
ε
4r

)
+ 1, (24) implies

‖xn − Txn‖ ≤ (1 + L) ‖xn − yn−1‖+ (1− tn−1) ‖Tyn−1 − x1‖

<
ε

2
+
ε

2
= ε,

and the proof is complete.

We remark that in the above proof, the hypothesis that T has approximate fixed points xδ,
whose distance to the starting point x1 of the iteration sequence is smaller than b, was only used
to construct bounds on (xn) and (yn). Since both (xn) ⊂ K and (yn) ⊂ K, we can instead assume
that K is bounded with diameter diam (K) := sup {‖x− y‖ : x, y ∈ K} ≤ M for some M ∈ R∗+.
In this case we get a rate of convergence which depends on M instead of b.
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Corollary 1. Let K be a nonempty, closed, convex and bounded subset of a real Banach space X
with diam (K) ≤ M for some M ∈ R. Let T : K → K be a Lipschitz pseudocontractive mapping
with Lipschitz constant L. Let (xn) be the sequence generated from an arbitrary x1 ∈ K by

xn+1 := (1− λn)xn + λnTxn − λnθn (xn − x1)

Given rates of convergence/divergence Ri : R→ N satisfying (i)’ to (iv)’ above, we get

∀ε > 0∀n ≥ Ψ (M,L,R1, R2, R3, R4, ε) (‖xn − Txn‖ < ε)

where
Ψ (M,L,R1, R2, R3, R4, ε) = max

{
N2 (C) + 1, R1

( ε

2M

)
+ 1
}

and

N1 (ε) := max

{
R3

(
ε

4M2 (2 + L)

)
, R4

(√
ε

M2
+ 1− 1

)}
,

N2 (x) := R2

(x
2

)
+ 1,

C :=
8 (1 + L)

2
M2

ε2
+ 2

(
N1

(
ε2

8 (1 + L)
2

)
− 1

)
.

Proof. The proof follows with the same arguments as the proof of Theorem 1 but becomes much
simpler since finding bounds for ‖xn − yn‖ as in Theorem 1 is now trivial. For more details
see [15].

Remark 3. The complexity of the modulus of asymptotic regularity is strongly reduced in Corollary

1. While it is dependent on (2 + L)
R3(L2)

2

in Theorem 1, the modulus provided in Corollary 1
exhibits only polynomial growth in its arguments. This is due to the fact that for the extraction of
the bound of the iteration sequence xn, we needed some crude estimates, while this is trivial when
we assume that K is bounded.

5 Examples of Sequences λn, θn

We now give examples of sequences λn and θn which satisfy conditions (i) to (v) above, taken
from [8]. We then calculate the rates of convergence and divergence Ri : R → N and substitute
them into the functional Ψ in Theorem 1. Let a, b ∈ R with 0 < a < b and a+ b < 1. Define

λn :=
1

(n+ 1)
a and θn :=

1

(n+ 1)
b
.

If R1 (ε) :=
⌈
ε−

1
b − 1

⌉
, we get ∀ε > 0∀n ≥ R1 (ε)

(
θn = 1

(n+1)b
≤ ε
)

.

In order to simplify notation we denote λnθn by dn and define

R2 (h) :=


h̃∑
n=1

2n−1

 , where

h̃ :=


log2

(
h(21−a−b−1)

2−a−b
+ 1

)
1− a− b

 .
We will show that R2 is a rate of divergence of dn. Observe that dn ≥ 1

n+1 for all n ∈ N, so

we could take the much simpler term 2dhe+1, which is the ‘textbook’ rate of divergence of the
harmonic series. We now show that R2 is as required.
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When considering the sum
R2(h)∑
n=1

dn for h ≥ 0, we see that we sum up h̃-many “packets”, where

the nth packet has 2n−1 summands. We denote the nth packet by pn:

pn := d2n−1 + . . .+ d2n−1.

Thus, we get
R2(h)∑
n=1

dn =

h̃∑
n=1

pn. (25)

Since dn is strictly decreasing, we get

pn > 2n−1︸︷︷︸
number of summands

· 2−n(a+b)︸ ︷︷ ︸
d2n−1

.

Hence (25) becomes

R2(h)∑
n=1

dn >

h̃∑
n=1

2n−1−n(a+b)

=
1

2

h̃∑
l=1

2n(1−a−b)

=
1

2
· 21−a−b

21−a−b − 1

(
2h̃(1−a−b) − 1

)
≥ 2−a−b

21−a−b − 1
·
(
21−a−b − 1

)
h

2−a−b

= h.

If R3 (ε) :=
⌈
ε

1
a−b − 1

⌉
, we get ∀ε > 0∀n ≥ R3 (ε)

(
λn
θn

= 1
(n+1)b−a

≤ ε
)

.

We define R4 (ε) :=

⌈(
ε

2b(a+b)

) 1
a+b−1 − 1

⌉
and then for all ε > 0 and for each n ≥ R4 (ε), we

get

θn−1

θn
− 1

λnθn
=

((
n+ 1

n

)b
− 1

)
(n+ 1)

a+b

≤

(
(n+ 1)

b − nb

nb

)
2bnb (n+ 1)

a

< 2b
(

(n+ 1)
a+b − na+b

)
(26)

By the mean value theorem, there exists ξ ∈ (n, n+ 1) such that (n+ 1)
a+b−na+b = (a+ b) ξa+b−1

and hence
2b
(

(n+ 1)
a+b − na+b

)
< 2b (a+ b) (n+ 1)

a+b−1
.

Thus (26) implies
θn−1
θn
−1

λnθn
< ε and R4 is the desired rate of convergence.
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