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1. Introduction and Preliminaries

In 1965, Browder-Göhde-Kirk proposed, independently, the theory of nonexpansive map-
pings in uniformly convex Banach spaces (see e.g. [11, 12]). Since then, the fixed point
theory for nonexpansive mappings is an active area of research in nonlinear functional
analysis and found a diverse range of applications, for instance problems of zeros of a
monotone operator and variational inequality problems. The problem of finding a com-
mon fixed point of a finite family of nonlinear mappings acting on a nonempty convex
domain often arises in applied mathematics. For example, finding a common fixed point
of a finite family of nonexpansive mappings may be used to solve systems of simulta-
neous equations, convex minimization problems of functions and the problem of image
recovery. The latter problem has been analyzed in Hilbert spaces and further general-
ized to uniformly convex Banach spaces and found many useful applications in applied
mathematics, for instance partial differential equations, control theory and image and
signal reconstruction. The purpose of this paper is to analyze different iteration schemas,
involving a finite family of nonlinear mappings, which are closely related to the problem
of image recovery.
Let H be a real Hilbert space and let C1, C2, · · · , Cr be nonempty closed convex subsets
of H. The problem of image recovery in a real Hilbert space H is defined as follows:
The original (unknown) image z is known a priori to belong to the intersection C0 =
∩ri=1Ci of the closed convex sets C1, C2, · · · , Cr. An iteration schema involving the metric
projections Pi : H → Ci onto the corresponding sets Ci, in which some initial estimate
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is sequentially projected onto the individual sets according to a periodic schedule, re-
covers some z ∈ C0. The image recovery problem is also studied under the label ‘convex
feasibility problem’ (see e.g. [3]).
One of the most important notions in metric fixed point theory is the asymptotic reg-
ularity [5] of a nonlinear iteration {xn} under consideration (see e.g. [2]). A Picard
iteration of the nonlinear mapping T : C → C is said to be asymptotically regular if

lim
n→∞

∥∥Tnx− Tn+1x
∥∥ = 0. (1.1)

Asymptotic regularity is not only useful in proving that fixed points exist but also in
showing that the sequence of iterates {xn} converges (at least weakly) to a fixed point.
In the theory of image recovery the following form of asymptotic regularity is essentially
due to Crombez [8]:

Theorem 1.1 ([8, Theorem 2]). Let T : H → H be a mapping given by

T = α0I +
r∑
i=1

αiTi, 0 < αi < 1 ∀ i = 0, 1, 2 · · · , r ,
r∑
i=0

αi = 1 (1.2)

where

(i) each Ti is nonexpansive on H;
(ii) the set of fixed points of T is nonempty;
(iii) Tu = u⇔ Tiu = u ∀ i = 0, 1, 2 · · · , r.

Then T is asymptotically regular.

Conditions (ii) and (iii) can be summarized as F (T ) = ∩ri=1F (Ti) 6= ∅. However, an
inspection of the proof in [8] shows that actually only ∩ri=1F (Ti) 6= ∅ is needed for the
asymptotic regularity.

This result has been generalized to uniformly convex Banach spaces:

Theorem 1.2 ([28, Theorem 5.4.2]). Let X be a uniformly convex Banach space with
modulus of uniform convexity η and let C be a nonempty convex subset of X. Let T :
C → C be a mapping as defined in (1.2) where each Ti is nonexpansive on C and
∩ri=1F (Ti) 6= ∅. Then T is asymptotically regular.

In the context of the image recovery problem, the mappings Ti are defined as

Ti := I + λi(Pi − I), (1.3)

where the Pi : C → Ci are

(i) metric projections in the case of Hilbert spaces H, C := H and 0 < λi < 2 for
all i,

(ii) nonexpansive retractions in uniformly convex spaces, where then, however, one
has to restrict the coefficients to 0 < λi < 1 for all i (nonexpansive retracts and
retractions are e.g. discussed in [6, 25, 21]).

In 1992, Crombez [9] introduced and analyzed another parallel computing iteration
schema by considering a mapping T as a convex combination solely of the mappings
Ti defined in (1.3). That is

T =
r∑
i=1

αiTi, ∀ i = 1, 2 · · · , r; αi > 0 and
r∑
i=1

αi = 1. (1.4)
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Iterates of such mappings T have been studied first in [26]. The Picard iteration of the
above mapping T is asymptotically regular and exhibits weak convergence in Hilbert
spaces.

Metric projections are an essential ingredient of the iteration schema used for the recov-
ery of the image. Since the construction of Ti involves the metric projection Pi which
is characterized as a nonexpansive mapping in Hilbert spaces also the relaxed metric
projection Ti defined in (1.3) is nonexpansive. Furthermore, the set of common fixed
points of Pi coincides with that of Ti. Crombez ([8, 9]) shows that the set of fixed points
of T coincides with C0 = ∩ri=1Ci, where T is defined as in (1.2) or as in (1.4). From this
he gets that (Tn(x)) weakly converges to a point p ∈ C0 = ∩ri=1Ci = ∩ri=1F (Ti).

However, the classical image recovery problem lacks any information on how a δ-fixed
point of T relates to being in the intersection C0,ε of ε-neighborhoods Ci,ε of Ci. More-
over, the problem of image recovery is often and seriously dealt with the inconsistent
constraints i.e., when the intersection of the sets C1, C2, · · · , Cr is empty (see e.g. [13, 7]).
To answer this question but also to get explicit effective rates of convergence we now
introduce an ε-version of the classical image recovery problem which we will solve with
explicit bounds in this paper. Our proposed ε-version provides an approximate solution
of the problem even in a situation when constraints are inconsistent.

Let H be a real Hilbert space and let C1, C2, · · · , Cr be nonempty closed convex subsets
of H. Let ε > 0 and let C1,ε, C2,ε, · · · , Cr,ε be the corresponding ‘r’ nonempty ε-convex
subsets of H, where Ci,ε := ∪x∈CiBε(x) (for 1 ≤ i ≤ r) and define C0,ε := ∩ri=1Ci,ε. Here
Bε(x) is the open ε-ball around x. The ε-version of the problem of image recovery in a
real Hilbert space H is defined as follows:

The original (unknown) image z is known a priori to belong to the intersection C0,ε =
∩ri=1Ci,ε of the convex sets C1,ε, C2,ε, · · · , Cr,ε. For this to happen z does not have to be
a fixed point of T but only a δ(ε)-fixed point (for a suitable δ(ε) which does not depend
on z) and instead of C0 6= ∅ it will turn out to be sufficient that C0,δ(ε) 6= ∅. Given an
explicit rate of asymptotic regularity for our iteration schemas xn := Tnx involving the
metric projections Pi onto the corresponding closed convex sets Ci we can get an explicit
bound Ψ(ε) such that

∀n ≥ Ψ(ε) (xn ∈ C0,ε).

In addition to ε > 0, Ψ only depends (in the case of T defined by (1.4)) on an N ∈ N
such that 1/N ≤ min{αiλi, 2 − λi : 1 ≤ i ≤ r} an upper bound d ≥ ‖x0 − p‖ for some
fixed point p of T and an upper bound D > dist(x,C0,δ(ε)).
For 0 < λi < 1 the same type of result holds in arbitrary convex subsets C ⊆ X of
uniformly convex Banach spaces (with C1, . . . , Cr ⊆ C closed and convex) where now
Pi : C → Ci can be an arbitrary nonexpansive retraction. Then N has to satisfy
1/N ≤ min{αiλi(1 − λi) : 1 ≤ i ≤ r} and Ψ additionally depends on some modulus of
uniform convexity η of X.

Let us briefly indicate that the extractability of a uniform δ(ε) from the proof that

(1) C0 6= ∅ → F (T ) ⊆ C0
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is an instance of a general logical ‘metatheorem’ in the sense of [18, 10, 19]: (1) can be
written as (using that trivially x ∈ Ci ↔ Pix = x)

(2) ∃p
r∧
i=1

(Pip = p)→ ∀x (Tx = x→
r∧
i=1

(Pix = x)),

where here p, x range over H in the Hilbert space case resp. over C in the uniformly
convex case. (2) can logically be reformulated as

(3) ∀x∀p∀k ∈ N ∃n ∈ N
( r∧
i=1

(‖Pip−p‖ ≤ 2−n∧‖Tx−x‖ ≤ 2−n →
r∧
i=1

(‖Pix−x‖ < 2−k)
)
.

Since Hilbert (as well as uniformly convex) spaces and abstract closed convex subsets
Ci are allowed in the aforementioned logical metatheorems and metric projections resp.
nonexpansive retractions can be axiomatized by purely universal axioms (see [14] for the
former case) and are trivially majorized due to their nonexpansivity, (3) is of the right
form so that the general logical metatheorems allow for the extraction of some uniform
bound Φ(k,D,N) on ∃n ∈ N which only depends on the error 2−k, an upper bound
D ≥ ‖x − p‖ and N as discussed above (and in the uniformly convex case also on a
modulus η (in principle one might also need D ≥ ‖x‖ in the normed case but this can
be avoided here since the whole argument only takes place in convex subsets where only
relative distances matter, see [19]). Since

(4) ‖Pix− x‖ < 2−k → x ∈ Ci,2−k
(because of Pix ∈ Ci) and (using that the Pi are nonexpansive retractions)

(5) p ∈ Ci,2−k−1 → ‖Pip− p‖ < 2−k

(because of ‖p − y‖ < 2−k−1 → ‖Pip − p‖ ≤ ‖Pip − Piy‖ + ‖y − p‖ ≤ 2‖y − p‖ < 2−k

for y ∈ Ci with ‖p − y‖ < 2−k−1) this yields that for all x ∈ H, k ∈ N and Φ′(k) :=
Φ(k,D,N) + 1

‖Tx− x‖ ≤ 2−Φ′(k) ∧ C0,2−Φ′(k) 6= ∅ ∧D > dist(x,C0,2−Φ′(k))→ x ∈ C0,2−k
)

in the Hilbert case (see Theorem 3.1) and - with x ∈ C and C ∩ C0,2−Φ′(k) instead of

C0,2−Φ′(k) - in the uniformly convex case with general C (see Theorem 3.4).

Note that (5) implies that

(6) ∀x
(
x ∈ C0 ↔ ∀ε > 0(x ∈ C0,ε)

)
,

which further supports that the concept C0,ε is a natural one.

2. Rates of asymptotic regularity

As mentioned already, the asymptotic regularity of the iterations (1.2) and (1.4) (with Ti
being defined as in (1.3)) constitutes a major part of the corresponding weak convergence
results used to solve the problem of image recovery. It is, therefore, relevant to compute
explicit and effective rates of asymptotic regularity.
For this it is sufficient to observe that the iterates of the mapping T defined in (1.2)
coincide with the Krasnoselskii iteration for constant α0 and, consequently, one can use
the known optimal quadratic bound from [1] (in the case of Hilbert space, such a bound
follows much more easily as a special case from [17]) as bound on the rate of asymptotic
regularity of Picard iteration of the mapping T defined in (1.2). Krasnoselskii-Mann
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iterations are studied - also for fixed point free mappings - in [4] (see [16] and [20] for
quantitative versions of [4]). For r = 1, obviously the iterates of the mapping T defined
in (1.2) reduce to the usual Krasnoselskii iteration for constant α0. However, the same
is true for general r as was first noticed in [30]:

Let S :=
∑r

i=1 βiTi, where βi = αi
1−α0

so that 0 < βi < 1 and
∑r

i=1 βi = 1. The
nonexpansivity of T1, T2, · · · , Tr implies the nonexpansivity of the convex combination
S : C → C. Hence (1.2) reduces to the Krasnoselskii iteration:

T := α0I + (1− α0)S.

Now we can apply the optimal rate of convergence of ‖xn − Sxn‖ → 0 due to Baillon

and Bruck [1] Φ̃ (d, ε, α0) := d2

πα0(1−α0)ε2
which holds in any normed space as long as the

sequence (‖x0 − Sxn‖)n bounded (say by d) which e.g. is the case if p ∈ F (T ) = F (S)
and d/2 ≥ ‖x0 − p‖ since

‖x0 − Sxn‖ ≤ ‖x0 − p‖+ ‖p− Sxn‖ ≤ ‖x0 − p‖+ ‖p− xn‖ ≤ 2‖x0 − p‖.

So we do not need any common fixed point of T1, . . . , Tr. In fact, we not even need a
fixed point of T as it is sufficient to assume that T has arbitrarily good approximate
fixed points that are d/2-close to x0. Since ‖xn − xn+1‖ = (1− α0)‖xn − S(xn)‖ we get

Φ̃(d, ε/(1− α0), α0) = (1−α0)d2

πα0ε2
≤ d2

πα0ε2
as rate of asymptotic regularity for T.

Finally, Theorem 1.2 holds in arbitrary normed spaces (and - suitably adapted - even in
any W -hyperbolic space in the sense of [19], where we then have to use the exponential
rate of asymptotic regularity from [20]). W -hyperbolic spaces are closely related to the
spaces of hyperbolic type in [11] and the hyperbolic spaces in the sense of [27] (see [19]
for a detailed discussion).

Let us summarize things (for the normed case) in the following theorem:

Theorem 2.1. Let X be a normed linear space and let C be a nonempty convex subset
of X. Let T : C → C be a mapping as defined in (1.2) where each Ti : C → C is
nonexpansive. Then T is asymptotically regular, whenever d ≥ ‖x − p‖ for x ∈ C and
p ∈ F (T ) (in fact it suffices to have arbitrarily good approximate fixed points of T that
are d-close to x). In this case we have the following quantitative result:

∀ε > 0 ∀n ≥ Φ(2d, ε,N)
(
‖Tnx− Tn+1x‖ ≤ ε

)
,

where N ∈ N with 1/N ≤ α0 ≤ 1 and Φ(d, ε,N) := d2·N
πε2

.

It has been shown in [9] that the mapping (1.4) can be reduced to the one defined in
(1.2) with a slight modification in the coefficients αi and λi. We include the details of
this since we need some quantitative estimates on the new coefficients later:
Let 0 < αi < 1 for 1 ≤ i ≤ r. In the following, it suffices that at least one of the λi
is strictly less than 2. Without loss of any generality, we assume that 0 < λ1 < 2 and
0 < λi ≤ 2 for 2 ≤ i ≤ r. Let N ∈ N be such that

1

N
≤ 2− λ1 and

1

N
≤ α1. (2.1)

Let K := 2N + 1. Then K ≥ λ1
2−λ1

+ 1 (utilizing (2.1)). We now define new coefficients

λ′1 := K
K−1λ1, so that 0 < λ′1 ≤ 2, and β1 := K−1

K α1. Then obviously 0 < β1 < α1 < 1
5



and β1λ
′
1 = α1λ1. Now define

β0 : = α1 − β1

= α1 −
K − 1

K
α1

=
1

K
α1.

Put together, (1.4) now takes the form

T = β0I +

r∑
i=1

βiT
′
i , (2.2)

where

β0 :=
α1

K
, β1 :=

K − 1

K
α1 and βi = αi for 2 ≤ i ≤ r,

T
′
1 := I + λ

′
1(P1 − I), λ

′
1 :=

Kλ1

K − 1
,

λ
′
i = λi and T

′
i = Ti = I + λi(Pi − I) for 2 ≤ i ≤ r.

Note that βi ∈ (0, 1) and
∑r

i=0 βi = 1.
Observe that, by (2.2), T has the form defined in (1.2) and consequently the iterates of
the mapping T coincide with the Krasnoselskii iteration of the form:

T = β0I + (1− β0)S,

where S is defined as before, namely as

S :=
r∑
i=1

γiT
′
i , with γi :=

βi
1− β0

.

Note that S is nonexpansive provided that the T ′i are. Hence one can use the optimal
quadratic bound from [1] as a bound on the rate of asymptotic regularity for the iterates
of (2.2).
Utilizing (2.1), we compute a lower bound of β0 (1− β0) as follows: Since 1

N ≤ α1, we

get β0 ≥ 1
NK = 1

N(2N+1) . Moreover

1− β0 = 1− α1

K

≥ 1− 1

K
(since α1 < 1)

=
K − 1

K

=
2N

2N + 1
.

From the above estimates, we conclude the lower bound to be 1
(2N+1)2 ≤ β0 (1− β0) .

Since β0 ∈ (0, 1) we have that F (T ) = F (S).
In order to compute a rate of asymptotic regularity for the iteration schema (1.4), we
have to assume the nonexpansivity of Ti defined in (1.3). In a Hilbert space, the nonex-
pansivity of Ti (as well as of T ′i ) follows from the following result:

Lemma 2.2 ([8]). For 0 ≤ λi ≤ 2, Ti is nonexpansive.
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Taking into consideration these facts we get a result, parallel to Theorem 2.1, on the
rate of asymptotic regularity of iteration (1.4).

Theorem 2.3. Let H be a Hilbert space and let T : H → H be the mapping defined by
(1.4) with Ti := I + λi(Pi − I), 0 ≤ λi ≤ 2, λ1 < 2, where Pi : H → Ci is a metric
projection of H onto some closed convex subset Ci ⊆ H. Let xn = Tnx0 for x0 ∈ H and
let ‖x0 − p‖ ≤ d > 0 for some p ∈ F (T ). Then, we have

∀ε ∈ (0, 2]∀n ≥ Φ
(

2d, ε, (2N + 1)2
)

(‖xn − xn+1‖ ≤ ε) ,

where Φ is defined in Theorem 2.1 and N ∈ N such that 1/N ≤ min{α1, 2− λ1}.

Remark 2.4. It is clear that it suffices that some λj < 2 and that 1/N ≤ min{αi, 2−λj}
for some i, j.

It is remarked that the mapping T defined in (1.4) is further analyzed by Takahashi and
Tamura [30] in uniformly convex Banach spaces provided that 0 < λi < 1 for 1 ≤ i ≤ r.
Observe that this particular choice of λi leads to the nonexpansivity of Ti being a λi-
convex combination of I and Pi. In this situation, Pi could be any nonexpansive self-
mapping of some convex subset C ⊆ X. We again have to re-define λ′1 := K

K−1λ1 for

K := N + 1 ≥ λ1
1−λ1

+ 1 (with N such that 1/N ≤ min{1 − λ1, α1}) in order to get

that λ′1 ≤ 1 which is needed for the nonexpansivity of T ′1. Then we get the lower bound
1

(N+1)2 ≤ β0 (1− β0) ≤ β0 this time. Hence, we arrived at the following result.

Theorem 2.5. Let C be a nonempty convex subset of a normed linear space X and
let T : C → C be the mapping defined by (1.4) with Ti := I + λi(Pi − I), 0 < λi < 1
where Pi : C → C is a nonexpansive mapping. Let xn = Tnx0 for x0 ∈ C and let
‖x0 − p‖ ≤ d > 0 for some p ∈ F (T ). Then, we have

∀ε ∈ (0, 2]∀n ≥ Φ
(

2d, ε, (N + 1)2
)

(‖xn − xn+1‖ ≤ ε) ,

where Φ is defined in Theorem 2.1 and N ∈ N such that 1/N ≤ min{α1, 1− λ1}.

Remark 2.6. Quite recently, a rate of asymptotic regularity for the Picard iterates of
the mapping T defined in (1.4) has been computed in the general setting of uniformly
convex hyperbolic spaces [24, Theorem 5.4]. Compared to [24, Theorem 5.4] our bound
in Theorem 2.5 holds in an arbitrary normed linear space and does not depend on a
modulus of uniform convexity η. Moreover, Theorem 2.5 can be generalized to uniformly
convex hyperbolic spaces or to arbitrary W -hyperbolic spaces provided that T is defined
as T := β0I + (1− β0)S with S as before (for constant β0 := α1

K one can use the known
bounds from [20] and [23], respectively). However, it is unclear whether this definition
coincides with the one corresponding to (1.4) if one is not in a linear setting.

We conclude this section with a somewhat different but related quantitative asymptotic
regularity result: recently, Khan and Kohlenbach [15] extracted uniform bounds on the
asymptotic regularity of an iteration involving a finite family of nonexpansive mappings
due to Kuhfittig [22]. That bound was recursive in nature due to the cyclic nature of the
iteration as well as the inter-dependence of the asymptotic regularity of each mapping of
the family. The bounds in [15] depend only on an upper bound on the distance between
the starting point and some common fixed point, a lower bound 1/N ≤ α0(1− α0), the
error ε > 0 and a modulus η of uniform convexity. As in [15] this uniformity of the
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bound can be explained in terms of a general logical metatheorem from [10, 18] (see also
[19]).
In 2000, Takahashi and Shimoji [29] introduced an iteration, namely S-mapping, involv-
ing a finite family of nonexpansive mappings. In a uniformly convex Banach space, the
iteration is weakly convergent to a common fixed point of the family and capable of
solving the problem of image recovery.
Let C be a convex subset of a Banach space X and let T1, T2, · · · , Tr be finite mappings
of C into itself and let α1, α2, · · · , αr be real numbers such that 0 < αi < 1 for every
i = 1, 2, · · · , r. Then, we define S-mapping of C onto itself as follows:

U1 = α1T1 + (1− α1)I
U2 = α2T2U1 + (1− α2)I

...
Ur−1 = αr−1Tr−1Ur−2 + (1− αr−1)I
S = Ur = αrTrUr−1 + (1− αr)I.

(2.3)

Such a mapping S is called S-mapping generated by T1, T2, · · · , Tr and
α1, α2, · · · , αr. It is remarked that the iteration schema (2.3) is slightly more general than
the classical Kuhfittig iteration (which is the special case where α1 = . . . = αr). Quite
recently, the classical Kuhfittig iteration has been analyzed in [15] in great detail covering
various possible modifications and extracting corresponding bounds on the asymptotic
regularity in uniformly convex W -hyperbolic spaces. Hence, bounds on the iteration
(2.3) can easily be derived from [15, Theorem 3.2] with a slight modification. Taking
into account these facts, we have the following result regarding bounds on asymptotic
regularity of the iteration schema (2.3) in uniformly convex W -hyperbolic spaces (in the
sense of [23]).

Theorem 2.7. Let C be a nonempty convex subset of a uniformly convex W -hyperbolic
space with monotone modulus of uniform convexity η and let {Ti}ri=1 be a finite family
of nonexpansive self-mappings of C with ∩ri=1F (Ti) 6= ∅. Let p ∈ ∩ri=1F (Ti) be such that
d (x0, p) ≤ D > 0 for x0 ∈ C and let N 3 N > 0 be such that
1
N ≤ min {αi(1− αi) : 1 ≤ i ≤ r} . Then for the sequence xn := Snx0 generated by (2.3),
we have

∀ε ∈ (0, 2]∀n ≥ Φi (D, ε,N, η) (d (xn, Tixn) ≤ ε) for 1 ≤ i ≤ r

where

Φi := θ
(
η̂(r−i+min(1,r−1))

( ε
2

))
;

with

θ (ε) :=

⌈
D

η̂ (ε)

⌉
;

η̂ (ε) :=
1

N
η

(
D,

ε

D + 1

)
ε.

Hint for the proof: Let N > 0 and set 1
N := min {αi(1− αi) : 1 ≤ i ≤ r}. Now one

can replace λ(1 − λ) in the original proof of [15, Theorem 3.2] (for example, in the
computation of estimates (3.4), (3.9) and the consequent η̂ (ε)) by 1

N .
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3. Approximate Fixed Points as Approximate Image Points

In this section, we show how the set of approximate fixed points of the mapping T
corresponds (uniformly) to the points in C0,ε up to a uniform change from ε to δ(ε).

Recall that a metric projection P onto the convex subset C of a real Hilbert space H is
characterized by the following well-known fundamental inequality (see e.g. Proposition
3.5(d) in [12]):

〈x− Px, y − Px〉 ≤ 0 for any x ∈ H and for all y ∈ C.

Our first main result of this section is a quantitative version of Proposition 3.1 in [9]
which has been obtained by analyzing the proof in [9]:

Theorem 3.1. (i) Let H be a Hilbert space and let T : H → H be a mapping defined as
T :=

∑r
i=1 αiTi, 0 < αi < 1,

∑r
i=1 αi = 1 with Ti := I + λi(Pi − I), 0 < λi ≤ 2 where

Pi : H → Ci is a metric projection of H onto some closed convex subset Ci ⊆ H. For
every ε ∈ (0, 1] and D ∈ N there exists a δ(ε) > 0 such that

∀x ∈ H
(
‖Tx− x‖ ≤ δ(ε) ∧ C0,δ(ε) 6= ∅ ∧D > dist

(
x,C0,δ(ε)

)
=⇒ x ∈ C0,ε

)
,

where

δ(ε) :=
ε2

22N3 (D + 1) (4N + 1)
,

and N ∈ N with 1/N ≤ min{αiλi : 1 ≤ i ≤ r}.
(ii) The same result holds for T := α0I +

∑r
i=1 αiTi for 0 < αi < 1 with

∑r
i=0 αi = 1

and Ti as before and 1/N ≤ min{αiλi : 1 ≤ i ≤ r} (note that we do not need any positive
lower bound on α0).

Proof. (i) Let ai := αiλi ∈ (0, 2). First note that

2N ≥
r∑
i=1

ai
ar
≥

r−1∑
i=1

ai
ar

(3.1)

since N ≥ 1/ar and
∑r

i=1 ai ≤ 2 by the assumption on N,αi, λi.
Let ε ∈ (0, 1] and ‖Tx− x‖ ≤ δ(ε) for some x ∈ H, where δ(ε) > 0. We aim to show that
x ∈ C0,ε. Let y ∈ C0,δ(ε) be such that ‖x− y‖ ≤ D. Since Pi is the metric projection onto

Ci we get ‖Piy − y‖ ≤ δ(ε). Moreover

‖Pix− x‖ ≤ ‖Pix− Piy‖+ ‖Piy − y‖+ ‖y − x‖
≤ 2 ‖x− y‖+ δ(ε)

≤ 2 (D + 1) . (3.2)

Now observe that

‖Tx− x‖ =

∥∥∥∥∥
r∑
i=1

ai (Pix− x)

∥∥∥∥∥ =

∥∥∥∥∥
r−1∑
i=1

ai (Pix− x)− ar (x− Prx)

∥∥∥∥∥ ≤ δ(ε) (3.3)

and hence ∥∥∥∥∥
r−1∑
i=1

ai
ar

(Pix− x)− (x− Prx)

∥∥∥∥∥ ≤ δ(ε)

ar
. (3.4)
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Let e :=
∑r−1

i=1
ai
ar

(Pix− x) and f := x− Prx. Then observe that

|〈e, e+ Pry − x〉 − 〈f, f + Pry − x〉|
= |〈f, e+ Pry − x〉 − 〈f − e, e+ Pry − x〉 − 〈f, f + Pry − x〉|
= |〈f, e− f〉 − 〈f − e, e+ Pry − x〉|
= |〈e+ f + Pry − x, e− f〉|
≤ ‖e+ f + Pry − x‖ · ‖e− f‖ . (3.5)

Utilizing (3.1),(3.2) and the nonexpansivity of Pr we now compute

‖e+ f + Pry − x‖ =

∥∥∥∥∥
r−1∑
i=1

ai
ar

(Pix− x) + x− Prx+ Pry − x

∥∥∥∥∥
≤

∥∥∥∥∥
r−1∑
i=1

ai
ar

(Pix− x)

∥∥∥∥∥+ ‖Pry − Prx‖

≤
r−1∑
i=1

ai
ar
‖Pix− x‖+ ‖Pry − Prx‖

≤
r−1∑
i=1

ai
ar
‖Pix− x‖+ ‖y − x‖

≤ 4N (D + 1) +D

≤ (D + 1) (4N + 1) . (3.6)

Substituting (3.6) in (3.5) and then utilizing (3.4), we get

|〈e, e+ Pry − x〉 − 〈f, f + Pry − x〉| ≤
(D + 1) (4N + 1) δ(ε)

ar
.

This implies that

〈x− Prx, Pry − Prx〉 ≥

〈
r−1∑
i=1

ai
ar

(Pix− x) ,

r−1∑
i=1

ai
ar

(Pix− x) + Pry − x

〉

−
(D + 1) (4N + 1) δ(ε)

ar
. (3.7)

Note that 〈
r−1∑
i=1

ai
ar

(Pix− x) ,
r−1∑
i=1

ai
ar

(Pix− x) + Pry − x

〉

=

〈
r−1∑
i=1

ai
ar

(Pix− x) ,

r−1∑
i=1

ai
ar

(Pix− x)

〉
+

〈
r−1∑
i=1

ai
ar

(Pix− x) , Pry − x

〉

=

∥∥∥∥∥
r−1∑
i=1

ai
ar

(Pix− x)

∥∥∥∥∥
2

+
r−1∑
i=1

ai
ar
‖Pix− x‖2 +

r−1∑
i=1

ai
ar
〈Pix− x, Pry − Pix〉 .

10



Hence (3.7) now takes the form

〈x− Prx, Pry − Prx〉 ≥

∥∥∥∥∥
r−1∑
i=1

ai
ar

(Pix− x)

∥∥∥∥∥
2

+
r−1∑
i=1

ai
ar
‖Pix− x‖2

+
r−1∑
i=1

ai
ar
〈Pix− x, Pry − Pix〉 −

(D + 1) (4N + 1) δ(ε)

ar
(3.8)

≥

∥∥∥∥∥
r−1∑
i=1

ai
ar

(Pix− x)

∥∥∥∥∥
2

+
r−1∑
i=1

ai
ar
‖Pix− x‖2

+
r−1∑
i=1

ai
ar
〈Pix− x, Piy − Pix〉 −

5 (D + 1) (4N + 1) δ(ε)

ar
(3.9)

since (using ‖Pry − Piy‖ ≤ ‖Pry − y‖+ ‖y − Piy‖ ≤ 2δ(ε))∣∣∣∣r−1∑
i=1

ai
ar
〈Pix− x, Pry − Pix〉 −

r−1∑
i=1

ai
ar
〈Pix− x, Piy − Pix〉

∣∣∣∣ ≤ 4N(D + 1)2δ(ε)

≤ 16N(D+1)δ(ε)
ar

.

Note that
r−1∑
i=1

ai ‖Pix− x‖2 > 5 (D + 1) (4N + 1) δ(ε)

would lead to a contradiction of the conclusion in (3.9) since by the characterizing prop-
erty of metric projections 〈Pix− x, Piy − Pix〉 ≥ 0 while 〈x− Prx, Pry − Prx〉 ≤ 0.
Therefore

‖Pix− x‖2 ≤
5 (D + 1) (4N + 1) δ(ε)

ai
≤ 5N(D+1)(4N +1)δ(ε) for 1 ≤ i ≤ r−1. (3.10)

For

δ(ε) ≤
ε2

5N (D + 1) (4N + 1)
, (3.11)

we get

‖Pix− x‖ ≤ ε for 1 ≤ i ≤ r − 1.

For Pr (3.4) and (3.10) imply that

‖Prx− x‖ ≤

∥∥∥∥∥
r−1∑
i=1

ai
ar

(Pix− x)

∥∥∥∥∥+
δ(ε)

ar

≤
r−1∑
i=1

ai
ar
‖Pix− x‖+

δ(ε)

ar

≤ 2N
√

5N(D + 1)(4N + 1)δ(ε) +
δ(ε)

ar
.

Now in order to achieve that

2N
√

5N (D + 1) (4N + 1) δ(ε) ≤
39ε

40
,
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it suffices that

δ(ε) ≤
ε2

22N3 (D + 1) (4N + 1)
. (3.12)

Since such a δ(ε) trivially satisfies that δ(ε)/ar ≤ ε/40 we get

‖Prx− x‖ ≤ ε.
Observe that the choice of δ(ε) in (3.12) ultimately covers the choice in (3.11). This
completes the proof of (i).
For (ii) we just have to observe that

‖Tx− x‖ = ‖
r∑
i=1

αiλi(Pix− x)‖

and that the proof for (i), therefore, applies unchanged. �

Remark 3.2. (1) A bound D satisfying the condition in Theorem 3.1 can e.g. be
always constructed when C0,1 is bounded (and so in particular when all the Ci
are bounded) since D := diam({x}∪C0,1) ≥ diam({x}∪C0,δ) ≥ dist(x,C0,δ) for
all δ ∈ (0, 1] such that C0,δ 6= ∅.

(2) A kind of converse of Theorem 3.1 (even for nonexpansive retractions Pi) can
easily be established as follows:
Let Pi : H → Ci be a nonexpansive retraction and let x ∈ C0,ε ⊆ Ci,ε. Then
there exists a y ∈ Ci with ‖x− y‖ < ε. This implies that x is a 2ε-common fixed
point of Pi’s since

‖Pix− x‖ ≤ ‖Pix− Piy‖+ ‖Piy − y‖+ ‖y − x‖
≤ 2 ‖x− y‖
< 2ε, for all i = 1, 2, 3, · · · , r.

Since 0 ≤ λi ≤ 2, therefore (1.3) now implies that

‖Tix− x‖ < 4ε for all i = 1, 2, 3, · · · , r.
Hence, any x ∈ C0,δ(ε) with δ(ε) := ε

4 is an ε-fixed point of the mapping T.

Recall that a normed linear space X is uniformly convex if for each ε with 0 < ε ≤ 2
there corresponds a δ(ε) > 0 such that

‖x‖ , ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε implies that

∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ(ε).

A mapping η : (0, 2]→ (0, 1] which provides such a δ = η(ε) > 0 for a given ε ∈ (0, 2] is
known as a modulus of uniform convexity of X.
The next lemma is well-known:

Lemma 3.3. Let (X, ‖·‖) be a uniformly convex normed linear space with a modulus of
uniform convexity η. If ‖x‖ , ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε for a given ε ∈ (0, 2], then

‖λx+ (1− λ)y‖ ≤ 1− 2λ(1− λ)η(ε), 0 ≤ λ ≤ 1.

In the spirit of Theorem 3.1, we now prove a uniform quantitative version of a result first
established in [6] (see also [30] and – in the context of Busemann convex geodesic spaces
– [24]). Here ‘uniform’ refers to the fact that the bound does not depend on x ∈ C. It
is this fact which is crucially used in the next section and causes the need to upgrade
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the assumption of strict convexity (made in the aforementioned references) to uniform
convexity (see [19] for a detailed discussion of this point):

Theorem 3.4. Let X be a uniformly convex normed linear space with modulus of uniform
convexity η and let C be a nonempty convex subset of X. Let T : C → C be a mapping
defined as T :=

∑r
i=1 αiTi, 0 < αi < 1,

∑r
i=1 αi = 1 with Ti := I+λi(Pi− I), 0 < λi < 1

where Pi : C → Ci is a nonexpansive retraction of C onto some convex subset Ci ⊆ C.
For every ε ∈ (0, 1] and D ∈ N there exists a θ(ε) > 0, such that

∀x ∈ C
(
‖Tx− x‖ ≤ θ(ε) ∧ C0,θ(ε) ∩ C 6= ∅ ∧D > dist

(
x,C0,θ(ε) ∩ C

)
=⇒ x ∈ C0,ε

)
,

where

θ(ε) := θ(ε,N,D,η) =
2

9N
η

(
ε

D + 1

)
ε,

and N ∈ N

1

N
≤ min {αiλi(1− λi) : 1 ≤ i ≤ r} .

Proof. Let ε ∈ (0, 1]. We aim to show that any x ∈ C which is a θ(ε)-fixed point of
T is in fact an ε-common fixed point of Pi. As a consequence, x ∈ C0,ε. Now assume
towards contradiction that ‖Pi0x− x‖ ≥ ε for some i0 ∈ {1, 2, · · · , r} . For the sake of
notational simplicity, we assume that i0 = 1. Let y ∈ C0,θ(ε) ∩C such that D ≥ ‖x− y‖ .
Moreover, we may assume that ‖x− y‖ > ε

3 for otherwise: ‖x− y‖ ≤ ε
3 implies that

x ∈ C0,θ(ε)+
ε
3
⊆ C0,ε. Now observe that

‖P1x− x‖
‖x− y‖+ 2θ(ε)

≥ ε

‖x− y‖+ 2θ(ε)
≥ ε

D + 1
. (3.13)

Moreover,

‖P1x− y‖ ≤ ‖P1x− P1y‖+ ‖P1y − y‖
≤ ‖x− y‖+ 2θ(ε). (3.14)

It follows from (3.13)-(3.14) and Lemma 3.3, that

∥∥∥∥(1− λ1)
x− y

‖x− y‖+ 2θ(ε)
+ λ1

P1x− y
‖x− y‖+ 2θ(ε)

∥∥∥∥ ≤ 1− 2λ1 (1− λ1) η

(
ε

D + 1

)
. (3.15)
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Utilizing (3.15), the following estimates hold:

‖x− y‖ ≤ ‖Tx− y‖+ θ(ε)

=

∥∥∥∥∥
r∑
i=1

αiTix− y

∥∥∥∥∥+ θ(ε)

=

∥∥∥∥∥
r∑
i=1

αi ((1− λi) (x− y) + λi (Pix− y))

∥∥∥∥∥+ θ(ε)

≤
r∑
i=1

αi ‖(1− λi) (x− y) + λi (Pix− y)‖+ θ(ε)

= α1 ‖(1− λ1) (x− y) + λ1 (P1x− y)‖

+

r∑
i=2

αi ‖(1− λi) (x− y) + λi (Pix− Piy + Piy − y)‖+ θ(ε)

≤ α1

(
‖x− y‖+ 2θ(ε) − 2λ1 (1− λ1) η

(
ε

D + 1

)(
‖x− y‖+ 2θ(ε)

))
+

r∑
i=2

αi
{

(1− λi) ‖x− y‖+ λi ‖Pix− Piy‖+ 2λiθ(ε)

}
+ θ(ε)

< α1

(
‖x− y‖ − λ1 (1− λ1) η

(
ε

D + 1

)
2ε

3

)
+

r∑
i=2

αi ‖x− y‖+ 3θ(ε)

= ‖x− y‖ − α1λ1(1− λ1)η

(
ε

D + 1

)
2ε

3
+ 3θ(ε).

(3.16)

Let N ∈ N be such that 1
N ≤ min {αiλi (1− λi) : 1 ≤ i ≤ r} . Then for θ(ε) := θ(ε,N,D,η) ≤

2
9N η

(
ε

D+1

)
ε, we have a contradiction. Therefore, any x ∈ C which is a θ(ε)-fixed point

of T is an ε-common fixed point of Pi. Hence, x ∈ C0,ε. This completes the proof. �

Remark 3.5. (i) Since 0 < λi < 1, a converse of Theorem 3.4 easily follows as in
Remark 3.2: any x ∈ C0,θ(ε) ∩ C with θ(ε) := ε

2 is an ε-fixed point of the mapping T.

(ii) If η (ε) = εη̃ (ε) , where η̃ (ε) is increasing as ε increases, we can improve our bound as
follows: reasoning as in (3.16) (using that implies that (3.15) also holds with ‖x−y‖+2θ(ε)

instead of D + 1) we get

‖x− y‖ < α1

(
‖x− y‖ − 2λ1 (1− λ1) η

(
ε

‖x− y‖+ 2θ(ε)

)(
‖x− y‖+ 2θ(ε)

))
+

r∑
i=2

αi ‖x− y‖+ 3θ(ε)

≤ α1

(
‖x− y‖ − 2λ1 (1− λ1) η̃

(
ε

‖x− y‖+ 2θ(ε)

)
ε

)
+

r∑
i=2

αi ‖x− y‖+ 3θ(ε)

≤ α1

(
‖x− y‖ − 2λ1 (1− λ1) η̃

(
ε

D + 1

)
ε

)
+

r∑
i=2

αi ‖x− y‖+ 3θ(ε).
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Again, letting 1
N ≤ min {αiλi (1− λi) : 1 ≤ i ≤ r} and θ(ε) := θ(ε,N,D,η̃) ≤ 2

3N η̃
(

ε
D+1

)
ε,

we have a contradiction.

4. Applications

So far we have shown that

(i) the iterates of the mapping T defined in (1.2) and (1.4) are asymptotically regular

with the bounds Φ (2d, ε,N) and Φ
(

2d, ε, (2N + 1)2
)

resp. Φ
(

2d, ε, (N + 1)2
)

;

(ii) the set of approximate fixed points of the respective mappings correspond uni-
formly to the points in C0,ε in the setting of Hilbert spaces and uniformly convex
normed linear spaces.

This collectively implies the following result:

Theorem 4.1. (i) Let H be a Hilbert space and let T : H → H be a mapping defined as
T :=

∑r
i=1 αiTi, 0 < αi < 1,

∑r
i=1 αi = 1 with Ti := I + λi(Pi − I), 0 < λi ≤ 2, λ1 < 2,

where Pi : H → Ci is a metric projection of H onto some closed convex subset Ci ⊆ H
and F (T ) 6= ∅. Let xn = Tnx0 for some x0 ∈ H and ε ∈ (0, 1], then

∀n ≥ Ψ (d,D,N1, N2, ε) (xn ∈ C0,ε)

with

Ψ (d,D,N1, N2, ε) :=

⌈
1936 · d2 ·N6

1 (2d+D + 1)2(4N1 + 1)2 · (2N2 + 1)2

π · ε4

⌉
,

where d > ‖x0 − p‖ for some p ∈ F (T ), D > dist
(
x0, C0,δ(ε,N1,2d+D)

)
, C0,δ(ε,N1,2d+D)

6= ∅,
N1, N2 ∈ N such that 1

N1
≤ min {αiλi : 1 ≤ i ≤ r} , 1

N2
≤ min {α1, 2− λ1} and δ as in

Theorem 3.1.
(ii) ‘(i)’ also holds for T defined as T := α0I +

∑r
i=1 αiTi with Ti as before and

α0, . . . , αr ∈ (0, 1) with
∑r

i=0 αi = 1, where now

Ψ (d,D,N1, N2, ε) :=

⌈
1936 · d2 ·N6

1 (2d+D + 1)2(4N1 + 1)2 ·N2

π · ε4

⌉
,

with N1, N2 ∈ N such that 1
N1
≤ min {αiλi : 1 ≤ i ≤ r} and 1

N2
≤ α0.

(iii) Let X be a uniformly convex normed linear space with modulus of uniform convexity
η and let C be a nonempty convex subset of X. Let T : C → C be a mapping defined as
T :=

∑r
i=1 αiTi, 0 < αi < 1,

∑r
i=1 αi = 1 with Ti := I + λi(Pi − I), 0 < λi < 1 where

Pi : C → Ci is a nonexpansive retraction of C onto some convex subset Ci ⊆ C and
F (T ) 6= ∅. Let xn = Tnx0 for some x0 ∈ C and ε ∈ (0, 1], then

∀n ≥ Ψ (d,D,N1, N2, η, ε) (xn ∈ C0,ε)

with

Ψ (d,D,N1, N2, η, ε) :=


81 · d2 ·N2

1 · (N2 + 1)2

π ·
(
η( ε

2d+D+1)
)2
· ε2

 ,
where d > ‖x0 − p‖ for some p ∈ F (T ), D > dist

(
x0, C0,θ(ε,N1,2d+D,η)

∩ C
)
,

C0,θ(ε,N1,2d+D,η)
∩C 6= ∅, N1, N2 ∈ N such that 1

N1
≤ min {αiλi (1− λi) : 1 ≤ i ≤ r} , 1

N2
≤

min{α1, 1− λ1} and θ as in Theorem 3.4.
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Proof. The asymptotic regularity of the iterates of the mapping T defined in (i)-(iii)
follows from Theorem 2.3 (for (i)), Theorem 2.1 (for (ii)) and Theorem 2.5 (for (iii))

with the bounds Φ
(

2d, ε, (2N2 + 1)2
)
, Φ (2d, ε,N2) , resp. Φ

(
2d, ε, (N2 + 1)2

)
.

For the desired results in (i),(ii) utilize Theorem 3.1(i),(ii) by letting ε := δ(ε,N1,2d+D)

since ‖xn − x0‖ ≤ 2d implies that

dist(xn, C0,δ(ε)) ≤ 2d+ dist(x0, C0,δ(ε)) < 2d+D.

The result in (iii) follows from utilizing Theorem 3.4 with ε := θ(ε,N1,D,η).
An easy calculation shows that

Ψ(d,D,N1, N2, ε) = Φ(2d, δ(ε,N1,2d+D), (2N2 + 1)2) in (i), (4.1)

Ψ(d,D,N1, N2, ε) = Φ(2d, δ(ε,N1,2d+D), N2) in (ii), and (4.2)

Ψ(d,D,N1, N2, η, ε) = Φ(2d, θ(ε,N1,2d+D,η), (N2 + 1)2) (in (iii)). (4.3)

�

Remark 4.2. Theorem 4.1 provides a solution to the problem of image recovery up to
an ε-perturbation of the original problem even in cases where the original problem has
no solution because of C0 = ∅ since the condition F (T ) 6= ∅ ∧ C0,δ 6= ∅ is weaker than
(i) C0 = F (T ) = ∩ri=1F (Ti) 6= ∅ used in Theorem 1.1 and
(ii) C0 = ∩ri=1F (Ti) 6= ∅ used in Theorem 1.2.

The following example supports the above assertion:
Let X := R, C1 := {c}, C2 := {−c} for some c 6= 0 and let Pi be the metric projection
of R onto the closed convex set Ci. For i = 1, 2, let Ti : R→ R be defined by

Ti =
1

2
I +

1

2
Pi,

with

T =
1

2
T1 +

1

2
T2.

Then F (T1) = {c} and F (T2) = {−c} so that F (T1) ∩ F (T2) = C0 = ∅. However,
F (T ) = {0} . Moreover, for |c| < δ then 0 ∈ C0,δ 6= ∅.

We now present a weaker version of Theorem 4.1 when C0 6= ∅ since it is easier to state:

Corollary 4.3. (i) Let H be a Hilbert space and let T : H → H be a mapping defined as
T :=

∑r
i=1 αiTi, 0 < αi < 1,

∑r
i=1 αi = 1 with Ti := I + λi(Pi − I), 0 < λi ≤ 2, λ1 < 2,

where Pi : H → Ci is a metric projection of H onto some closed convex subset Ci ⊆ H
and F (T ) 6= ∅. Let xn = Tnx0 for some x0 ∈ H and ε ∈ (0, 1], then

∀n ≥ Ψ (D,N1, N2, ε) (xn ∈ C0,ε) ,

with

Ψ (d,D,N1, N2, ε) :=

⌈
1936 ·N6

1 · (D + 1)4(4N1 + 1)2 · (2N2 + 1)2

π · ε4

⌉
,

where D > ‖x0 − p‖ for some p ∈ C0; N1, N2 ∈ N such that
1
N1
≤ min {αiλi : 1 ≤ i ≤ r} and 1

N2
≤ min {α1, 2− λ1} .
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(ii) ‘(i)’ also holds for T defined as T := α0I +
∑r

i=1 αiTi with Ti as before and
α0, . . . , αr ∈ (0, 1) with

∑r
i=0 αi = 1, where now

Ψ (d,D,N1, N2, ε) :=

⌈
1936 ·N6

1 (D + 1)4(4N1 + 1)2 ·N2

π · ε4

⌉
,

with N1, N2 ∈ N such that 1
N1
≤ min {αiλi : 1 ≤ i ≤ r} and 1

N2
≤ α0.

(iii) Let X be a uniformly convex normed linear space with modulus of uniform convexity
η and let C be a nonempty convex subset of X. Let T : C → C be a mapping defined as
T :=

∑r
i=1 αiTi, 0 < αi < 1,

∑r
i=1 αi = 1 with Ti := I + λi(Pi − I), 0 < λi < 1 where

Pi : C → Ci is a nonexpansive retraction of C onto some convex subset Ci ⊆ C and
C0 := ∩ri=1F (Ti) 6= ∅. Let xn = Tnx0 for some x0 ∈ C and ε ∈ (0, 1], then

∀n ≥ Ψ (D,N1, N2, η, ε) (xn ∈ C0,ε)

with

Ψ (D,N1, N2, η, ε) :=


81 ·D2 ·N2

1 · (N2 + 1)2

π ·
(
η( ε

D+1)
)2
· ε2

 ,
where D > ‖x0 − p‖ for some p ∈ C0; N1, N2 ∈ N such that
1
N1
≤ min {αiλi (1− λi) : 1 ≤ i ≤ r} and 1

N2
≤ min{α1, 1− λ1}.

Proof. The proof follows from the previous one, since we now may take p ∈ C0 ⊆ F (T )
and hence may use D as upper bound for ‖x0 − p‖ and - using that C0 ⊆ C0,δ(∩C) (for
any δ > 0) - we get D > ‖x0−p‖ ≥ ‖xn−p‖ ≥ dist(xn, C0,δ(∩C)) so that we can replace
‘2d+D’ by ‘D’ in the previous proof. �

Remark 4.4. Note that Lp-spaces (1 < p < ∞) are uniformly convex with modulus
of uniform convexity η (ε) := 1

p

(
ε
2

)p
for p ≥ 2. As η (ε) := εη̃ (ε) , therefore we get

η̃ (ε) := 1
p

(
εp−1

2p

)
. Now θ(ε,N,D,η) from Remark 3.5(ii) simplifies to

θ(ε,N,D) :=
2

3N · p · (D + 1)p−1

( ε
2

)p
.

As a consequence, we get the bound Ψ(D,N1, N2, ε) :=
9·22p·p2·(D+1)2p·N2

1 ·(N2+1)2

π·ε2p in (iii)

for Lp-spaces. For Hilbert space this gives a bound of order ε4 as in (i) but only for
λi ∈ (0, 1).
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Typos (also in published version, 9.6.2014): In Corollary 4.3(i) replace ‘F (T ) 6= ∅’ by
‘C0 6= ∅’ and in Corollary 4.3(i),(ii) ‘Ψ(d,D,N1, N2, ε) :=’ by ‘Ψ(D,N1, N2, ε) :=’.
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