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Abstract

Recently, Aoyama and Toyoda showed that a Halpern-type proximal point algorithm strongly
converges under very general conditions on the scalars involved to a zero of an accretive operator
in uniformly convex Banach spaces with a uniformly Gateaux differentiable norm. We give a
quantitative analysis of this result in the slightly more restricted context of Banach spaces which
are uniformly convex and uniformly smooth.
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1 Introduction

The fundamental Proximal Point Algorithm (PPA) is a method to approximate zeros of maximally
monotone operators A C H x H in Hilbert space ([18, 24]). While the algorithm converges weakly,
the strong convergence in general fails ([5]). To obtain strongly convergent versions of (PPA), the
definition of the iteration usually is modified in a way suggested by the so-called Halpern-type
iteration ([6]) which uses a certain point w € H as an anchor. The resulting Halpern-type form
(HPPA) of (PPA) is given by:

Tpp1 = aqu+ (1 — ap) Iy, ATn,
where (a,,) C (0,1),(\,) C (0,00) and Jy, 4 := (I + A\, A)~! is the resolvent of A (see e.g. [7, 28, 4,
17)).

In [1], the strong convergence of this algorithm is shown even for the class of uniformly convex Banach
spaces X whose norm is uniformly Gateaux differentiable and for general accretive operators A.
As conditions on (ay,) C (0,1] only

o0

E a, = o and lim «, =0,
n—oo

n=0

known to be necessary for Halpern’s classical strong convergence result, are needed and the only
assumption on (A,) C (0,00) is to be bounded away from 0, i.e. inf A\, > 0.



The strong convergence of (x,,) is established in [1] by reducing the situation to a famous result of
Reich [23] on the strong convergence of the path (z;) where z; = tu + (1 —t)Jy, 2 for ¢t € (0,1).

In this paper, we give a quantitative analysis of the main theorem in [1] in the slightly more restricted
case where X is assumed to be uniformly smooth (in addition to being uniformly convex) as for this
class of spaces logical bound-extraction metatheorems are available ([8, 12]).

It is known that even for trivial situations such as H = R one in general does not have a computable
rate of convergence for (z,) (see [19]) and so one has to aim at the next best thing which is an
explicit so-called rate of metastability in the sense of Tao [26, 27], i.e. a function © : N x N¥ — N
such that

vk € NVg € NYIN < O(k, ) ¥n,m € [N, N + g(N)] (Hxn || < kil) ,

where [N, N + g(N)] := {N,N+1,N+2,...,N + g(N)}, whose complexity reflects the compu-
tational content of the original convergence proof from which it is extractable by proof-theoretic
methods (see [8]). Note that, noneffectively, the metastability of (z,) implies the ordinary Cauchy
property of (z,,).

General results from mathematical logic ([8, 12]) guarantee the extractability of a rate of metastabil-
ity from the proof given in [1] which only depends on moduli 7, 7 of uniform convexity and uniform
smoothness of X, rates of convergence for [} (1 — o;) — 0 (which is equivalent to > .- a; = 00)
and a,, — 0, a positive lower bound 0 < A < A, (for all n € N), sequences of positive lower bounds
0 < @n < ap of (o) and of upper bounds A, > A, for (\,), an upper bound b > |ju — p|, |zo — p||
for some zero p of A, the error e = 1/(k + 1), g and a given rate of metastability £ for (2;), i.e. for
Reich’s result. Such a £ has recently been constructed for uniformly convex and uniformly smooth
Banach spaces in [13]. In the case where X is a Hilbert space, a much simpler such £ has been
known already since [9]. For more information on the logic-based approach to the extraction of
explicit bounds from prima facie noneffective proofs and the concept of metastability we refer to the
recent survey [11]. While many explicit rates of metastability have been extracted in recent years for
a number of algorithms in nonlinear analysis, for the Halpern-type Proximal Point Algorithm such
rates were obtained only recently in [21, 15, 22] (also using a logic-based approach) which consider
the HPPA in Hilbert spaces (also with error terms) where either (A,) is assumed to diverge to co
or is assumed to converge to some A > 0 (in the latter case an additional assumption on (a,) is
used) which are more restrictive then the situation in [1] which we study. Obviously, we have to
pay a price for the greater generality namely that our rate is somewhat more complicated. Also,
our rate depends on some sequence (&j) with 0 < &, < «a, witnessing the strict positivity of a,
which is used in the proof in [1], whereas in [21, 22] the special case where >, = oo is treated
in a way which does not require this. In any case, the proof from [1] is rather different from the
proofs analyzed in [21, 15, 22] and makes crucial use of the fact that Jy, 4 as a firmly nonexpansive
mapping in a uniformly convex space is strongly nonexpansive. The class of strongly nonexpansive
mappings has very nice quantitative properties which we exhibited in [10] and which are used in the
present paper as well.



2 Preliminaries

Definition 1. A real Banach space (X,|| - ||) is uniformly convexr with a modulus of convexity
n:(0,2] = (0,1] #f

1
vee @AWy e X (ol Il <1 a o=l 2= 5w+ <1-06).

Definition 2. A real Banach space (X, || - ||) is uniformly smooth if for all € > 0 there exists some
0=1(e) >0
Va,y € X(|lofl = 1A llyll <0 = [l +yll + llz —yll <2+ <llyl)

and a function 7 : (0,00) — (0,00) producing such a 6 = 7(¢) is called a modulus of uniform
smoothness for X.

Throughout this paper (X, ||-||) is a uniformly convex and uniformly smooth real Banach space with
respective moduli n and 7.

It is well known that in uniformly smooth spaces, the normalized duality mapping J is single-valued
and uniformly norm-to-norm continuous on bounded sets. The next lemma gives a quantitative
formulation of this fact:

Lemma 3 ([12]). Let X be uniformly smooth with modulus 7. Define w; : (0,00) x (0,00) — (0, 00)

by
g2 €
UJJ(b,E) ::T%'T(?b), 56(0,2],621,

with wy(b,e) :=wy(l,e) for b <1 and wy(b,e) :==wy(b,2) for e > 2. Then the single-valued duality
map J : X = X* is norm-to-norm uniformly continuous on bounded subsets with modulus wy, that
is, for allbye >0 and x,y € X with ||z, ||yl < b we have

e =yl <ws(b,e) = [[Jz = Jy|| <e.

If X is a Hilbert space, we may simply take w; as the identity mapping.

Let A C X x X be an accretive operator, i.e.

V(z,u), (y,v) € A ((u—v,J(x—y)) >0).
It is well known that for any A > 0

Ja: RI+MNA) = X, x> (I+2A) " (2)

is a single valued firmly nonexpansive mapping with R(Jy4) = D(A) and the fixed point set F'ix(Jx4)
of Jy4 coincides with the set zer A := A710 = {g € X : 0 € Aq} of zeros of A (see [3], p.466, and
[25], pp.130,135 as well as [2]). Since Jya is firmly nonexpansive it also is - using the uniform
convexity of X - strongly nonexpansive (see [3]).

In [10], a quantitative form of this fact is established (for arbitrary firmly nonexpansive mappings
but stated here in terms Jy4):

Lemma 4 ([10], Proposition 2.17). Jya is strongly nonexpansive with SNE-modulus

(e, ) = pn(e/e) <



(for € > 2c the claim is trivial and we may simply put wy(c,€) := 1) which does not depend on X > 0,
i.e. for allc,\;e >0, x,y € R(I + \A)

[ =yl < enlle =yl = [Ixaz = Jrayl| <wplee) = [[(x —y) = (Jaaz = Jay)ll <e.

If n can be written as n(e) = ¢ - 7j(e) with 7 such that
g1 < g9 — ’f](&‘l) < ﬁ(é‘g), forallei,eq € (0,2],
then the modulus can be taken as wy(c,€) = 3ij(e/c) - e.

This gives a modulus of order p in e for LP with 2 < p < co. In particular, for the case of Hilbert

1 .2

spaces we may take wy(c, ) 1= 15267

As in [1], we always assume that the accretive operator A satisfies the range condition

D(A) CC C R(I+ AA) for all A >0,

where D(A) is the closure of the domain D(A) of A and C is a nonempty closed and convex subset
of X and that zer A # 0.

For (A\,) C [A, 00) with A > 0, [1] studies the Halpern-type variant of the Proximal Point Algorithm
for an accretive operator A satisfying the conditions above is given by the sequence (x,,) C C defined
by (for given zg,u € C)

(%) Tpt1 := apu+ (1 — ay)Jx, ATy,

Here (av,) is a sequence in (0,1] with > o, = 00 and a;, — 0.
The main result (proved even under the weaker assumption of a uniformly Gateaux differentiable

norm rather than uniform smoothness) in [1] is:

Theorem 5 ([1], Theorem 3.1). Under the conditions stated above, (x,) converges strongly to Qu,
where @ is the unique sunny nonerpansive retraction of C' onto zer A.

3 Quantitative lemmas

N := {0,1,2,...},N* := {1,2,3,...}. Throughout this paper, for f : N = N, f* : N — N denotes
the function fM(n) := max{f(i) :i < n}.

Lemma 6 ([1]). Let A C X x X be accretive with the range condition and X, ;v > 0. Then
i
o= Juazl < (24 %) lle = Jaaal

for allz € R(I + AA)NR(I + pA).
Lemma 7 ([20]). For all z,y € X we have ||z + y||*> < ||z||* + 2{y, J(z + y)).

Lemma 8 (Quantitative version of Lemma 2.3 in [1]). Let w € C and let (z,,) be any sequence in
C with ||z, —wl| < b for alln € N and (\,) be a sequence in (0,00). Then for w, from Lemma 4,
Ir, = Ja,a and @y(b,e) :=min {5, 2w, (b,£/2)} :

Ve > 0Vn €N ([lzn —w| — [y, zn — w|| < @y(b,e) Allw — Iy, w|| < ©y(b,e) = [lzn — Ix,zall <€)



Proof: Since w,, is an SNE-modulus for J)

n?

£

120 —wll =[5, 20 = Jx, wll < llon —wll =[x, 20 = wl[ + w = Jx, wl| < (b, €) +y (b, €) < wy(b, 5

)
implies that ||z, — Jx, zn| < ||(zn — w) — (Jr, 20 — I, 0)|| + v — Tr,w|| < 5+ 5 =¢. O
Lemma 9 (Quantitative version of Lemma 2.7 in [1]). Let b > 0 and (a,) be a sequence in [0, b].
1. Let 7 : N — N be such that
(+) Vn,k e N(k <nAap < apy1 — k < 7(n)).

Define for K € N,g € N¥ ¢ > 0 and §(n) :=n + g(n)

Then
T(1h(e, 9, K,b)) < K — 3In <1p(e, 9, K,b) (n = K AVi,j € [n,n+ g(n)] (la; — a;| <¢)).
2. Let ng € N be such that In < ng(a, < any1). Define
7(n) := max{k < max{ng,n} : ar < ags1}.
Then T is well-defined and satisfies (+). Moreover,

(Z) Vn € N(a‘r(n) < ar(n)+1)7
(i) Yn € N(7(n) < 7(n+ 1)),
(iii) Yn > no(an < army41)-
Proof: 1) Assume 7(¢ (e, g, K,b)) < K. Then
>K

—_—
Vk € [K7w(57gaK7 b))] (ak Z ak:+1)7

since, if k € [K,¢(e,g,K,b)] with ax < ags1, then by (+) & < 7(¥(e,9,K,b)) < K which is a
contradiction. Hence

(++) ¥k € [K, 52D ()] (0 < apgr < ax <),
Suppose now that

. b
Vi < ’76-‘ (ag(i+1)(K) < Ag6)(K) — 5) .

Then ax — agr/e1 gy > (g] -€ > b which contradicts ax, azn/e1 (k) € [0, 0]. Hence

. b
Jip < {J (ag(i0+1>(K) Z Qgio) (k) — 5)
———

=5000) (k) +¢(5(%0) (k)
and so for K < n := gl (K) < (e, g, K,b) - using (++) -

Vi, € fnn -+ g(n)] (la; - a] < ).



2) (4), (4), (it) are obvious from the definition of 7.

(#4i) follows as in the proof of Lemma 3.1 in [16] which we repeat here for completeness: we assume
n > ng (so that 7(n) < n) and hence only have to consider three cases:

Case 1: 7(n) =n. Then (iii) follows from (i).

Case 2: 7(n) =n — 1. Then (ii7) holds trivially.

Case 3: 7(n) <n —1,1ie. 7(n) <n — 2. By definition of 7 we have

Ar(n)+1 > Qr(n)+2 Z ... 2 Ap—1 2 Ay

O

Lemma 10 (Quantitative version of Lemma 2.8 in [1]). Let b > 0 and (ay,) be a sequence in [0, D]
with
ap+1 < (1 - an)an + anﬁn + Tn (’I’L € N),
where (o) C (0,1], (B,) C R and (v,) C RT with Y07 ja, = 00 (ie. T]0, (1 — ) =0 for all
m e N).
Let S: (0,00) x N — N be such that
S(e,m)
Ym € NVe > 0 H(l—ak)gs

k=m

W.l.o.g. we may assume that S is nondecreasing in m.
For e >0 and g € NY define

§(n) = g (n+ S(5.m) + 1) + S(5.n).

Suppose that N € N satisfies that

Im < NVi € [m,m+g(m)] (B; < Z)
Define
ole,S,N,b) := N + s%,m 1.
Then
‘P(E»S’N’b)+gM(¢(€7S7N’b)) c
vi < 3 In < (e, S,N,b)Vi € [n,n+ g(n)] (a; <e¢).

=0

Proof: By the assumption on N we have

Im < NVie [m,m+3(%,m)+g(m+5(%7m)+1)] (Bi <)

= ™

and so for n:=m+ S(5,m)+1

Vi€ m,n+g(n) — 1) (8, <

).

=] m



From the proof of Lemma 2.3 in [14] it follows that for all ¢ € [n,n + g(n)]
(using i > n > S(e/4b,m) + 1)1

i—1 i1
) e € ¢
ai§am.kl__[(1—ak)+max{ﬁk:m§k§171}+kz’yk§b4—b+i+§:s.

(]

Lemma 11 (Quantitative version of Lemma 2.9 in [1]). Let b > 0 and (x,) be a sequence in C,
u € C and fort € (0,1) let z, € C be the unique point with

zi =tu+ (1 —1t)Jrazt

for A > 0 (which exists by Banach’s fized point theorem). Assume that ||z¢ — xn||, [|[Jaazn — 2| <
for alln € N,t € (0,1). Let (t) be a sequence in (0,1) with tx, — 0 and let p: (0,00) — N be a rate
of convergence (i.e. t < e for k > p(e)) and x : N = N* such that ty > ﬁ for all k € N. Let

kE>p (b%) and for some n € N assume that ||Jaazn — Tnl| < pe 1= . Then for this n we get

xR
(u— 2z, J(xn — 2t,)) <e.

Proof: Reasoning as in [1](p.808) one has

—~

u— 2z, J(Xn — 2t,))

_4\2
< Yz, — 2al® + 9525 Taazn — 3l (1 T3a2n — 2l + 2]|20, — 20])
S %bQ + %HJAA:ETL - xn”
<s+5=¢

O

The next Lemma addresses the specific form in which in the proof of the main result, a given rate of
metastability for the sequence (z, ) will be used to construct a rate of metastability for the proximal
sequence (Z,,) :

Lemma 12. Let (ay,) be a Cauchy sequence in C with a rate of metastability £ in the form
Ve > 0Vg € NV 3n < €(e,9) Vi, j € [n,9(n)] (|la; — ;]| < ¢).
Let nowe > 0,c € N and f : N — N and define f.(I) := f(l+¢). Then
Ik < E(e, fo) + ¢ (k> cAVi,j € [k, f(K)] (la; — aj|| <¢€)).
Proof: By the definition of &
Ik < (e, fe) Virj € [k f(k+ )] (llai = aj]) < o).
Hence for k := k + ¢ we have that k > ¢ and

Vi, j € [k, f(R)] ([lai — a;] < e).

The next Lemma establishes a crucial bound on the various sequences involved in this paper:

1Correction Jan.22, 2023: in the next line replace max{...} by (1 — ([T¢Z% (1 — o)) max{...}.

k=m



Lemma 13. Let (x,),u as defined in (x) above and fort € (0,1) let z; € C be the unique point with
ze =tu+ (1 —t)Jx, a2. Let p € zer A and N* 5 b > 2max{|lu — p|, |zo — p||}. Then

diam{u, Ty, Jx, ATn, 2t, I, a2t :n € Nyt € (0,1)} <b.
Proof: As in [1](p.809) one shows that (using zer A = Fix(Jy, 4)) for all n € N

[ Tx, a2 = pll < [[2n = pll < max{|lu —pl|, [zo — pl}-

Also
|2t = pll = [tu+ (1 — )5, a2¢ — pl| = [[t(w — p) + (L = t)(Jr,a2e — Jx, ap)||
<tllu—pll+ (1 =[x a2t — x|l
< tllu—pll+ (1 =)z — pl|-

Hence

[ T3, a2t = pll < llze = pll < Jlu = pl-
Thus u, 2y, Jx, A%n, 2, Ix, a2t € Bya(p) := {xr € X : ||z — p|| <b/2} which implies the lemma. [
Lemma 14. Let K € Nje > 0 and (A,) C [A\,00) for A > 0. Let b be as in Lemma 13 and let

2, = tpu+ (1—t)Jx, a2, , where () C (0,1) converges to 0 with rate of convergence p. Let A; > \;
for all i € N. Define AM := max{\; : i <n}. Then

&
(2+O/N) b

Vk > p(e,K):=p Vn < K (||lzt, — Ix, a2, ]| < €).

Proof: |z:, — Jaaze, || = lltew + (1 — tg)In, a2, — Injaze, |l = tellu — Ix,a2:,. ]| <t - b and so by
Lemma 6 for n < K

An An M
lze, = Dnaze | <2+ ) 20, = Inaz | < (2+— ) te-b< |24+ | tx- D
A1 A1 A

which implies the claim. [

4 Proof of the main result

In this section we construct our rate of metastability for (z,) :
In the following, let (z,), (2¢)tc(0,1) and b be as in Lemma 13. For k € N* let t; := 1/k so that

x(k) :== k and p(e) := [1/¢] satisfy the requirements in Lemma 11. Let S, := Jy, 4 and zj := z,.
Instead of @, (b, ) (from Lemma 8) and wy(b,e) we simply write @, (¢) and wy(e). Let ¢ be a rate
of convergence for a,, — 0 and S be as in Lemma 10. Define for (A; > \;) € := 2 + :\71 and

g2 £2/64 g2

Togyr @/ (€7/1280)} i = 3ox (k) 192b- k'

Let now L,k € N be arbitrary and let n; be so large that for all m > ny

amb < M (k) = min {;@n(nk/@@n (;w (611“)52»} (g %w (@)52» ,



e.g. ny = max{C(My(i)/b) : i < k} (where we take the maximum to make the dependence on k
monotone which is used later).
Let g be as in Lemma 10 with £2/4 = (¢/2)? as ¢ and b* as b, i.e.

2 2
—~ M g 1)
gn)=g (n+S(16b2,n)+1>+S(16b2,n).

For ¢ as in Lemma 9 let

000 = v (3003 + 200 24
Define
K = (ng) + 5" (¢(ng)) + 2
and

=R £2 e2
K=K — K Mg K 1 1.
+s(16b2, )+g ( +5<16b2, )+ )+

Now let k' > L be so large that z;s is a d-approximate fixed point for all S,, for all m < IA(, where

. e? - (1 1 1 e
d < Msy(k) :_mln{IGb(I?Jrl)ywn <2 J(64b )> On(e/C), T6oE mln{a(z):ng}},

where 0 < &; < «; for all ¢ € N. E.g. we may take k' := max{L,[)(Mg(k),IA()} > L with p from

Lemma 14.
Define now the function f: N* — N by f(k) := k.

For the function f let k < £(£, f.) + ¢ by Lemma 12 applied to & as € and
ap = 2y, 1= p (£7/64b%) = [64b* /e?]
be such that k > ¢ and
(+) Vi, j € [k, f(B)] (|lzi — 2]l <&).

Theorem 15. Define for given € > 0,L € N and g : N — N the quantities €, f,c as above and take
k™ =€ fo) +c

from Lemma 12 and & being a rate of metastability for (zx) as in Lemma 12 and define
K* = ypM(ng) + g™ (M (ng-)) + 2. Then

2

< *

— K* > + 13K € [L, fM(k")Vi € [n,n + g(n)] (|| — zr|| < €/2)

and so, in particular (taking e.g. L :=0),

2

< *
(#) In < K +S<16b2’

K*) +1Vi,j € [n,n+ g(n)] (||lz; — z;]| < e).

Remark 16. 1. Note by inspection that the bounds only depend on €,b, g, L, \, (;\n), (an) and the
rates and moduli x,S,&,n, T.



2. In what follows we give a completely elementary proof of the theorem. Since (ii) trivially
implies the Cauchy property of (x,) one obtains (using that C is closed and X is complete)
that (z,,) strongly converges. Moreover, by (i) it converges to the same limit as (zi) converges
to (take e.g. g(n) := L so that by (i) we have In, k' > L(||z, — 21| < €), i.e. to Qu, where Qu
is the sunny nonexpansive retraction of C onto zer A (for the latter statement an elementary
proof is given in [13] where also an explicit rate of metastability £ for (z) is constructed). If

X is a Hilbert space, we can simply take £(e, g) := g((bz/ﬂ)(o) (see [9], Theorem 4.2). So in
total our theorem gives an explicit quantitative account of Theorem 3.1 in [1].

Proof: Let a,, := ||xm — 21|
Case I: Vi < 9(nk) (a;+1 < a;). Then (reasoning as in the proof of Lemma 9.1)

I < U(ne) (n 2 e AV € [nn+ () +2) (s — 5] < S3y(m/C)).

Moreover, n +g(n) +2 < K < K.

Case II: 3i < (ng) (a; < ai41). Define for (ay,) and ng := 1p(ny) the function 7 as in Lemma 9.2.
Then

(1) Vn € N (ar(n) < Ar(n)+1, T(?’L) < T(n + 1));
(2) Vn > w(nk) (a'n < af‘r(n)+1)'

Case IL.1: Vm € [(ng), ¥ (ng) + (¢ (ng)) + 2] (7(m) > ng).
Let m € [y (nw), ¥ (ne) + g4 (k) + 2] :

2 r(myr1 = 20| < Qrmyllu = 2 || + (1 = @) [1Sr(m) Tr(m) — 21|
implies (using Lemma 13)
(3) lzr(my+1 — 2| = 17 (m)Tr(m) — 2| < Qr(myllu — 21 [| < Qr(omyb-
Hence by (1) and using that 7(m) > ny

(4) lz7(m) = 262 | = 17 (m)Tr(m) — 2l
< @7 my+1 = 21|l = [1Sr(m)Tr(m) — 21|l < Qr(m)b
< min {@, (3w (g5¢2)) ,@n(m/C)} -

Since
7(m) < max{m, ¥(ny)} < (k) + G (WY(ng)) +2 =K < K,

we have

(. /1 1 -
l2& — Sr(my2e || < min {wn <2wJ (M)€2>) ,wn(nk/C)} .

Hence by Lemma 8 (and Lemma 13)

. 1 1
er(m) - S‘r(m)xT(m)H < min {2WJ (64()€2> 777k/0} .

10



By Lemma 6 and the definition of the constant C' this also gives
||'T‘r(m) - Slx’r(m)” < M.

Using again that 7(m) > ny we get (involving Lemma 13)

(5) Hx'r(m)Jrll - xT(m)H < ||x‘r(m)+1 - S‘r(m)mr(m)” + ||S‘r(m)x‘r(m) - x’r(m)”
(3.3),[1]
2 0+ B (5152) < ().

Since
HxT(m) - Slxr(m)” < Nk

we get from Lemma 11 (using that k > p (é%))

vim € (), (i) + G (ni)) + 2 (<u s () — 21)) < ) |

Hence by (5)

(6) Vm € [¢(ng), ¥(nk) + g(¥(nk)) + 2] ((u — 2k, J(Tr(my41 — 28)) < ;) .

By (+) and the definition of f we have

2 2
Iz — 2| < min< wy L),
- 128b ) 7 128D

and so (6) implies

2 52 52

9
(7) (= 20, T (@1 = 24)) € o5+ 2 < 36

We, moreover, have using Lemma 7 and Lemma 13
[Zrmy 41 = 2012 = Qr(my (u = 210 ) + (1 = Qr ) ) (Sr(m) T (my — 200) I
< (1 - O‘T(m))2||ST(m)xT(m) — Rk’ ||2 + 20‘7’(171) <u - Rk, J(IT(m)—i-l - Zk’)>
< (1= Qr(m)) 21 Sr(m)Zr(m) — Sr(m)zir |2 + 2bl1Sr(my 2k — 20 | + 20 () (0 — 27, J (@ (my 1 — 207))
< (1= arm)lzr(m) = 21 1?4 26]|S7(my 2 — 20| 4 200 () (U = 2r, T (T (my 41 — 2))-

By (1), we have [|2;(m) — 2& || < |T7(m)+1 — 2r]| and so
27 (my 41— 20|12 < (L= r ) |27 () 41— 200|121 S () 21r = 200 [| 42007 () (4= 2, T (Z () 1= 200)) -

Hence by (7) we get for all m € [1h(ng), ¥ (nk) + §(¥(ng)) + 2] (since 7(m) < K < K):

2bHST(m)zk,72k/ I

7 (m)

27 (my+1 — 21> < 2(u = 200, (T ()1 — 200)) +
< %52 + %52 = i52

and using that by (2) (since m > 1)(ny)) we have ||z, — 2zpr|| < [|27(m)4+1 — 2w || we obtain
~ 1
i € ), ) + () + 2 (lom vl < 3.
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So
Vi € [0(0na), )+ 96 0))] € [6000),00e) + G(600) + 2] (L — 2 < 5¢).
i.e. we have established already the theorem in this case with n := ¥(ng) < K < K* (note also that
L <k =f(k) < fM(E)).
Case I1.2: Im € [Y(ng), Y(ng) +g(¥(ng)) + 2] (7(m) < ng). By (1) we have 7(¢(ng)) < 7(m) < ny.

Hence by Lemma 9 we get the existence of a 7 > ny, with n +g(n) +2 < K < K (since 1 < h(ny))
such that

e o 1.
Vi € [ g0 +2 (1o = sl = iy = aw ] £ 53,00/C) )

So in both of the cases I and I1.2 in which the theorem is not yet established we get an n > nj, with
n+gn)+2< K < K such that

Ym >n (amb < ;dzn(nk/C))
and
vioj € [t 300+ 2] (1l = 5wl = s = ] < 5 (/C) )
and so for all m € [n,n +g(n) + 1]

[2m — 20 [| = 1Sm@m — 2 || < [|Tms1 — 2| = 1SmTm — 20 | + ([T — 2| — (2 — 207 ]]
<b

— 1~ B
< g |lu— 2| +§wn(77k/c) < @y (nk/C)

since ||[Tmi1 — 2r || < amllu — 2| + (1 — am)||Sm@m — 2 |-

Hence by Lemma 8 (using that m < K < K and so ||Spzp — 2 || < On(nk/C))
Vm € [n,n+g(n) + 1] (|2m — Smam|| < m/C)

and so by Lemma 6
Vm e [nan + /g\(n) + 1] (”xm - SIQTm” < 777@) .

By Lemma 11 (using that k > p(c?/64b?)) we get
2
Ym € [n,n+g(n) + 1] <<u — 2k, J (T, — 21)) < )
and so by wy, the definition of £, f and (+)

~ g?
Vm € [n,n —|—g(?’l) + 1} <<U — 2k’ J(xm - Zk’)> S 32> .
Moreover, for all ¢ € N we have (using Lemma 7)
zit1 — 2w ||? = [Ji(u — zi) + (1 — ;) (Siwi — z1)||?
< (1 —0)?||Sim; — za |2 + 20 (u — 237, J (w51 — 20))
< (1= 0)?||Siwi — Sizir ||* + 20| Sizhr — 2ar || + 20 (u — 2pr, J (Tig1 — 21))
< (1 — Otz)H.%l — Zk/||2 + QbHSZZk/ — Zk/” + 2ai<u — 2k, J(lL‘i_H — Zk/)>.
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We can now apply Lemma 10 to 2/4 as € and b? as b and
a; ‘= H.I‘z — Zk/HQ, N = K, Yi = 2b||SZ‘Zk/ — Zk’H and 61‘ = 2<u — zk/,J<xi+1 — Z}C/)>

since n < K and
€

2
Vi € [n,n +g(n)] <[3z‘ < 6 i(5/2)2)

and
(p(e?/4, 5, K, b%) + gM(p(e2/4, 5, K,b?)) + 1)
2bmax{||Size — 2| 11 < ©(e2/4, 8, K, b?) + gM (p(2/4, S, K, b%)) = K}
< 5(e/2)?

to conclude the existence of an 7 < p(¢2/4, 5, K,b*) = K + S (%,K) + 1 such that

Vi € [f, 7+ g(R)] (|Jas — 21 ||* < (€/2)%)

and so
Vi€ [n,n+gn)| (||l — 2| <e/2).

Now with k* := £(€, f.) + ¢ from Lemma 12 with &, f. as above and K* being defined as in the
theorem, we get

62

B < K <
"= +S(16b2’

£2
K 1I<K*+S8(—,K" 1.
)1 rt s (k) +

Moreover, L < k' = f(k) < fM(k*). O
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