
Proof interpretations:

theoretical and practical aspects

Vom Fachbereich Mathematik

der Technischen Universität Darmstadt

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

genehmigte Dissertation

von

Mestre em Matemática Jaime Gaspar
aus Lissabon (Portugal)

Referent: Prof. Dr. Ulrich Kohlenbach

1. Korreferent: Reader Dr. Paulo Oliva

2. Korreferent: Prof. Dr. Thomas Streicher

Tag der Einreichung: 6. Oktober 2011

Tag der mündlichen Prüfung: 6. Dezember 2011

Darmstadt, Dezember 2011

D 17

2

Abstract/Zusammenfassung

Abstract

We study theoretical and practical aspects of proof theoretic tools called proof in-
terpretations.

Theoretical contributions

Completeness and ω-rule Using a proof interpretation, we prove that Peano
arithmetic with the ω-rule is a complete theory.

Proof interpretations with truth Proof interpretations without truth give in-
formation about the interpreted formula, not the original formula. We
give three heuristics on hardwiring truth and apply them to several proof
interpretations.

Copies of classical logic in intuitionistic logic The usual proof interpretations
embedding classical logic in intuitionistic logic give the same copy of
classical logic, suggesting uniqueness. We present three different copies.

Practical contributions

“Finitary” infinite pigeonhole principles Terence Tao studied finitisations of
statements in analysis. We take a logic view at Tao’s finitisations through
the lenses of proof interpretations and reverse mathematics.

Proof mining Hillam’s theorem Hillam’s theorem characterises the convergence
of fixed point iterations. We proof mine it, getting a “finitary rate of con-
vergence” of the fixed point iteration.

3

Zusammenfassung

Wir untersuchen theoretische und praktische Aspekte von Beweisinterpretationen.

Theoretische Ergebnisse

Vollständigkeit und ω-Regel Mit Hilfe einer Beweisinterpretation zeigen wir,
dass die Peano-Arithmetik mit der ω-Regel eine vollständige Theorie ist.

Beweisinterpretationen mit Wahrheitsprädikat Beweisinterpretationen ohne
Wahrheitsprädikat geben Informationen über die interpretierte Formel
und nicht mehr über die ursprüngliche Formel. Wir präsentieren drei
Heuristiken, um Wahrheitsprädikate zu Beweisinterpretationen hinzuzu-
fügen, und geben einige Beispiele.

Kopien von klassischer Logik in intuitionistischer Logik Die üblichen Einbet-
tungen von klassischer Logik in intuitionistische Logik mit Hilfe von Be-
weisinterpretationen erzeugen alle die gleiche Kopie der klassischen Logik.
Dies deutet darauf hin, dass diese Kopie eindeutig sein könnte. Wir
zeigen, dass dies nicht der Fall ist und präsentieren drei verschiedene
Kopien.

Angewandte Ergebnisse

“Finitisierungen” des unendlichen Schubfachprinzips Terence Tao untersucht
Finitisierungen von Sätzen der Analysis. Wir betrachten Taos Ergebnisse
aus dem Blickwinkel der Beweisinterpretationen und reverse mathemat-
ics.

Proof mining des Satzes von Hillam Der Satz von Hillam charakterisiert die
Konvergenz von Fixpunktiterationen. Wir extrahieren mit Hilfe von proof
mining eine Rate der Konvergenz für die Fixpunktiteration.

4

Introduction

What are proof interpretations

A proof interpretation I is a mapping of formulas, mapping a formula A of a theory
S to a formula AI ≡ ∃xAI(x) of a theory T

I : S → T

A 7→ AI ≡ ∃xAI(x)

such that I maps a theorem A of S to a theorem AI of T:

S ⊢ A ⇒ T ⊢ AI. (1)

Even better, I gives us a term t witnessing the quantification ∃x in AI:

S ⊢ A ⇒ T ⊢ AI(t). (2)

Proof interpretations have many applications. We summarise the main ones.

Relative consistency The proof interpretation I shows that S is consistent relatively

to T. Indeed, ⊥I ≡ ⊥, so (1) becomes S ⊢ ⊥ ⇒ T ⊢ ⊥.

Conservation The proof interpretation I shows that S is conservative over T with

respect to formulas in a certain set Γ. Indeed, AI ≡ A for A ∈ Γ, so (1)
becomes S ⊢ A ⇒ T ⊢ A.

Closure under rules If S = T, then I gives us the closure of S for some rules. For
example, (A∨B)I(t) is equivalent to A or to B, so (2) gives us S ⊢ A∨B ⇒
(S ⊢ A or S ⊢ B).

Unprovability The proof interpretation I gives us the unprovability in S of some
formulas A. Indeed, if T 0 AI(t), then (2) gives us S 0 A.

Computational content The proof interpretation I gives us a term t encapsulating
computational content about a theorem A. For example, for A ≡ ∀x ∃y B(x, y)
we have AI(t) ≡ ∀xB(x, t(x)), so if S ⊢ A, then (2) gives us a t such that
T ⊢ ∀xB(x, t(x)), that is t gives us y = t(x) as a function of x.

5

What is done in this thesis

Framework In the first part of the thesis we construct the theories T that we will
consider: versions of Peano arithmetic that talk not only about N, but also
about NN, (NN)N, N(NN), and so on.

Proof interpretations In the second part of the thesis we present the proof interpre-
tations I that we will consider. They all have different features: for example,
if ∃xA(x), then some proof interpretations give an exact witness (that is a
term t such that A(t)), while others give a bound (that is a term t such that
∃x ≤ t A(x)). For each proof interpretation we give applications: relative
consistency results, extraction of computational content, and so on.

The first two parts of the thesis read like an introduction to proof interpreta-
tions.

Theoretical contributions In the third part of the thesis we give three theoretical
contributions by means of proof interpretations.

Completeness and ω-rule The ω-rule (essentially) states that from A(0), A(1),
A(2), . . . we infer ∀nA(n). Using a proof interpretation, we prove that
Peano arithmetic with the ω-rule is a complete theory.

Proof interpretations with truth A proof interpretation I gives information

about AI, but usually we want information about A. One way of trans-
ferring the information from AI to A is to hardwire truth in I: to change
I so that AI implies A. We give three heuristics on how to hardwire truth
and apply them to several proof interpretations.

Copies of classical logic in intuitionistic logic Some proof interpretations copy
(that is embed) classical logic (that is the usual logic in mathematics) into
intuitionistic logic (that is the logic of constructive mathematics). The
usual proof interpretations all give the same copy, suggesting that the
copy is unique. We refute this and present three different copies.

Practical contributions In the fourth part of the thesis we give two practical contri-
butions by means of proof interpretations.

“Finitary” infinite pigeonhole principles Terence Tao studied finitisations of
statements in analysis: assigning to qualitative-infinitary statements equiv-
alent quantitative-finitary statements. One of his prime examples is a
finitisation of the infinite pigeonhole principle (that is “if we colour the
natural numbers with finitely many colours, then some colour occurs in-
finitely often”). We take a logic view at Tao’s finitisations: we give a
counterexample to a mistaken finitisation, we obtain a correction by a
proof interpretation, and we compare in the context of reverse mathe-
matics our correction with Tao’s correction.

Proof mining Hillam’s theorem Hillam’s theorem characterises the convergence
of a fixed point iteration (xn) of a continuous function f : [0, 1] → [0, 1]:
the fixed point iteration (xn) converges if and only if xn+1 − xn → 0.

6

We proof mine Hillam’s theorem, that is using a proof interpretation
we extract computational content from Hillam’s proof: a “finitary rate
of convergence” of (xn) in terms of a “finitary rate of convergence” of
(xn+1 − xn) and a rate of uniform continuity of f .

The following diagram gives an overall impression of the many connections be-
tween the chapters of the thesis:

1
Heyting

and Peano
arithmetics

//
)) ((((

--

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗

$$■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■

 ❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅

��✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽

��✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵

��✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭
✭✭

��

��

��

��

2
Negative

translations 66

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲

��✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴

		✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓

��☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞

||②②
②②
②②
②②
②②
②②

3
Modified

realisability

//

**

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

��✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍

4
Bounded
modified

realisability

����✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝

5
Gödel’s

functional
interpretation

��

��

��

��

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠

16
Proof
mining
Hillam’s
theorem

6
Diller-Nahm
functional

interpretation

{{✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇

15
“Finitary”
infinite

pigeonhole
principles

7
Shoenfield
functional

interpretation

��✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎

14
Copies of
classical
logic in

intuitionistic
logic

8
Monotone
functional

interpretation

��
ss❣❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣

ggPP

13
Proof

interpretations
with truth

12
Completeness
and ω-rule

11
Slash

oo

jj

10
Shoenfield-

like
bounded
functional

interpretation

9
Bounded
functional

interpretation

oo

ff

7

Acknowledgements

First of all, I would like to gratefully thank my thesis advisor, Ulrich Kohlenbach,
for all his kind advice.

I would like to gratefully thank Jeremy Avigad, Ulrich Berger, Eyvind Briseid,
Jan Hendrik Bruinier, Fernando Ferreira, Gilda Ferreira, Hajime Ishihara, Daniel
Körnlein, Alexander Kreuzer, Burkhard Kümmerer, Paulo Oliva, Pavol Safarik,
Helmut Schwichtenberg, Thomas Streicher, Terence Tao, Benno van den Berg and
Martin Ziegler, for all their kind mathematical help.

I would like to gratefully thank Barbara Bergsträßer, Claudia Cramer, Elisabeth
Klingenburg and Betina Schubotz, for kindly making my stay in Germany easier.

I would also like to gratefully thank the Logic Group, the Department of Math-
ematics and the Technical University of Darmstadt, for all their kind logistical sup-
port.

Last but not least, I would like to gratefully thank the Portuguese Fundação para
a Ciência e a Tecnologia for all its kind financial support under grant
SFRH/BD/36358/2007 co-financed by Programa Operacional Potencial Humano /
Quadro de Referência Estratégico Nacional / Fundo Social Europeu (União Eu-
ropeia).

8

Contents

I Framework 13

1 Heyting and Peano arithmetics 15

1.1 Introduction . 15

1.2 Notation . 16

1.3 Intuitionistic and classical logics . 17

1.4 Types . 19

1.5 Heyting and Peano arithmetics . 20

1.6 Term reduction . 30

1.7 λ-abstraction . 32

1.8 Terms for primitive recursive functions 34

1.9 Characteristic terms for quantifier-free formulas 36

1.10 Definition by quantifier-free cases . 38

1.11 Law of excluded middle for quantifier-free formulas 39

1.12 Majorisability and majorants . 40

1.13 Principles . 44

1.14 Conclusion . 46

II Proof interpretations 47

2 Negative translations 49

2.1 Introduction . 49

2.2 Definition . 50

2.3 Soundness . 53

2.4 Characterisation . 56

2.5 Applications . 56

2.6 Conclusion . 58

3 Modified realisability 59

3.1 Introduction . 59

3.2 Definition . 60

3.3 Soundness . 62

3.4 Characterisation . 66

3.5 Applications . 69

3.6 Conclusion . 71

9

4 Bounded modified realisability 73
4.1 Introduction . 73
4.2 Definition . 73
4.3 Soundness . 75
4.4 Characterisation . 80
4.5 Applications . 83
4.6 Conclusion . 84

5 Gödel’s functional interpretation 85
5.1 Introduction . 85
5.2 Definition . 86
5.3 Soundness . 86
5.4 Characterisation . 87
5.5 Applications . 88
5.6 Conclusion . 88

6 Diller-Nahm functional interpretation 91
6.1 Introduction . 91
6.2 Definition . 92
6.3 Soundness . 93
6.4 Characterisation . 99
6.5 Applications . 101
6.6 Conclusion . 102

7 Shoenfield functional interpretation 103
7.1 Introduction . 103
7.2 Definition . 103
7.3 Factorisation . 104
7.4 Soundness . 105
7.5 Characterisation . 105
7.6 Applications . 106
7.7 Conclusion . 106

8 Monotone functional interpretation 109
8.1 Introduction . 109
8.2 Definition . 110
8.3 Soundness . 110
8.4 Applications . 110
8.5 Conclusion . 111

9 Bounded functional interpretation 113
9.1 Introduction . 113
9.2 Definition . 113
9.3 Soundness . 115
9.4 Characterisation . 123
9.5 Applications . 125
9.6 Conclusion . 125

10

10 Shoenfield-like bounded functional interpretation 127
10.1 Introduction . 127
10.2 Definition . 127
10.3 Factorisation . 128
10.4 Soundness . 129
10.5 Characterisation . 130
10.6 Applications . 131
10.7 Conclusion . 132

11 Slash 133
11.1 Introduction . 133
11.2 Definition . 134
11.3 Soundness . 136
11.4 Characterisation . 140
11.5 Applications . 142
11.6 Conclusion . 143

III Theoretical contributions 145

12 Completeness and ω-rule 147
12.1 Introduction . 147
12.2 Hilbert’s program and ω-rule . 147
12.3 Term model . 148
12.4 Completeness . 150
12.5 Conclusion . 153

13 Proof interpretations with truth 155
13.1 Introduction . 155
13.2 Heuristic 1 . 156
13.3 Heuristic 2 . 176
13.4 Heuristic 3 . 177
13.5 Conclusion . 186

14 Copies of classical logic in intuitionistic logic 187
14.1 Introduction . 187
14.2 Definitions . 187
14.3 Three different copies . 189
14.4 Characterisation . 192
14.5 Conclusion . 193

IV Practical contributions 195

15 “Finitary” infinite pigeonhole principles 197
15.1 Introduction . 197
15.2 Asymptotic stability . 200

11

15.3 “Finitary” infinite pigeonhole principles 203
15.4 Reverse mathematics . 207
15.5 Reverse mathematics of the “finitary” infinite pigeonhole principles . 212
15.6 Conclusion . 219

16 Proof mining Hillam’s theorem 221
16.1 Introduction . 221
16.2 Formalising the proof . 222
16.3 Rates of uniform continuity, convergence and metastability 230
16.4 Partial proof mining . 237
16.5 Full proof mining . 240
16.6 Computer testing . 246
16.7 Conclusion . 252

12

Part I

Framework

13

Chapter 1

Heyting and Peano arithmetics

1.1 Introduction

1.1. In this chapter we lay out our framework: a version HA
ω of Peano arithmetic

that

1. does not have the law of excluded middle A ∨ ¬A;

2. talks not only about N, but also about NN, (NN)N, N(NN), and so on.

To set up our framework, we mainly have to do three big tasks.

Define HA
ω For HAω to talk about N,NN, (NN)N,N(NN), . . ., we have to introduce the

so-called types. The idea is simple: we assign to each term of HAω an object,
called type, that tells us in which of the sets N,NN, (NN)N,N(NN), . . . the term
takes values.

To bar the law of excluded middle from HA
ω, we introduce intuitionistic logic.

Intuitionistic logic is, roughly speaking, the usual logic in mathematics without
the law of excluded middle.

Functions Once we have defined HA
ω, it is time to set up all the machinery for

constructing functions in N,NN, (NN)N,N(NN), . . . in the language of HAω.

The first thing to do is set up λ-abstraction. Informally, given a term t(x),
λ-abstraction allows us to define the function x 7→ t(x).

The second thing to do is to show that every primitive recursive function can
be represented in HA

ω by a term. This allows HA
ω to talk about addition,

multiplication, and so on.

The third thing to do is to show that quantifier-free formulas Aqf(x) have
characteristic terms that are (roughly speaking) characteristic functions of
sets {x : Aqf(x)}. Characteristic terms allow us to make in HA

ω definitions by
cases like

f(x) :=

{
x2 if Aqf(x)

x3 if ¬Aqf(x)
.

15

These definitions by cases play an important role in a delicate point of Gödel’s
functional interpretation: the interpretation of the seemly innocuous axiom
A→ A ∧A.

Majorisability Some of the proof interpretations that we will consider later, in the
face of a theorem ∃xA(x), seek to find not an exact witness t for x such
that A(t), but a bound t on x such that ∃x ≤ t A(x). The majorisability
≤ in question is such that f ≤ g (roughly speaking) means “f is pointwise
smaller than or equal to g, and g is non-decreasing”. To work fluently with
this majorisability, we need to prove its basic properties.

1.2. Our (admittedly modest) main contribution to this topic is checking [19, ca-
ṕıtulos 1 and 7] that the standard material on λ-abstraction, terms for primitive
recursive functions, characteristic terms, term definition by cases, and so on, goes
through in the neutral setting with an intensional majorisability HA

ω
i (introduced

later on). This led to three tiny patches to the literature and filling in a common
small omission in the literature (in the proofs of point 1 of theorem 1.30, point 1 of
theorem 1.61, point 1 of proposition 1.66, and theorem 1.34).

1.2 Notation

1.3. We collect here the non-standard notation and conventions that we will be
using later on.

1.4 Notation. Let A be a formula, x ≡ x1, . . . , xn be a tuple of variables and
t ≡ t1, . . . , tn be a tuple of terms.

1. We use ≡ to denote syntactic/literal equality.

2. We use ⇒ and ⇔ for implication and equivalence in meta-level.

3. We denote (possibly empty) tuples t1, . . . , tn of terms by an underlined letter
t.

4. When we write A[t/x] or A(t) to denote the simultaneous substitution of x by
t in A(x), we implicitly assume that each ti is free for xi in A(x).

5. We denote the sets of free and bounded variables of A by FV(A) and BV(A),
respectively. We denote by FV(t) the set of variables of t.

6. We abbreviate {x1, . . . , xn} by {x}.

7. We denote by pn
k the projection pn

k : N
n → N defined by pn

k(x1, . . . , xn) := xk.

8. We denote by µn .A(n) the least n such that the condition A(n) holds true.

9. We denote the set {0, 1, 2, . . . , n− 1} by n.

16

1.3 Intuitionistic and classical logics

1.5. Intuitionistic logic is a formalisation of intuitionism. Historically, intuitionism
was introduced by Brouwer [6] and formalised by Heyting [32]. Informally, classical
logic CL is the usual logic in mathematics, and intuitionistic logic IL is CL without:

1. proof by contradiction

¬A....
⊥
A

;

2. law of double negation ¬¬A→ A;

3. law of excluded middle A ∨ ¬A;

(as a curiosity, these three principles are equivalent in IL). Formally, here CL and
IL are axiomatised in definition 1.8 by a Hilbert-style deductive system (essentially)
due to Gödel [28] [30, page 280].

1.6. There are two antagonistic ways of comparing IL and CL.

IL is poorer than CL Intuitionistic logic IL is weaker than classical logic CL, that is
IL proves fewer theorems than CL: IL ⊢ A ⇒: CL ⊢ A.

IL is richer than CL Classical logic CL does not see the difference between ¬(¬A ∧
¬B) and A ∨ B, and between ¬∀x¬A(x) and ∃xA(x). Intuitionistic logic IL

refines this situation by making a difference:

1. ¬(¬A∧¬B) has the usual meaning “A or B”, while A∨B has the stronger
meaning “A or B, and we can point to one that holds true”;

2. ¬∀x¬A(x) has the usual meaning “there exists an x such that A(x)”,
while ∃xA(x) has the stronger meaning “there exists an x such that
A(x), and we know such an x”.

1.7. Another comparison between IL and CL is in terms of constructivity. The key
criteria to determine if a logic is constructive (arguably) is if it satisfies the following
properties:

Disjunction property if ⊢ A ∨B, then ⊢ A or ⊢ B (where A ∨B is a sentence);

Existence property if ⊢ ∃xA(x), then there exists a closed term t such that ⊢ A(t)
(where ∃xA(x) is a sentence).

In this sense, IL is constructive but CL is not.

1.8 Definition.

1. Let us define intuitionistic logic IL [75, section 1.1.4] [50, section 3.1].

(a) The language of IL is the following.

i. The language of IL has the following symbols.

A. The logical constants ⊥, ∧, ∨, →, ∀ and ∃.

17

B. Countable many variables x1, x2, x3,

C. For each arity n ≥ 0, at most countable many (possibly none)
n-ary function symbols f1, f2, f3,

D. For each arity n ≥ 0, at most countable many (possibly none)
n-ary predicate symbols P1, P2, P3,

ii. Terms are defined as follows.

A. Variables and (non-logical) constants (that is 0-ary function sym-
bols) are terms.

B. If t1, . . . , tn are terms and f is an n-ary function symbol, then
f(t1, . . . , tn) is also a term.

iii. Formulas are defined as follows.

A. The logical constant ⊥ is an atomic formula.

B. If P is an n-ary predicate symbol and t1, . . . , tn are terms, then
P (t1, . . . , tn) is an atomic formula.

C. Formulas are built from atomic formulas by means of ∧, ∨, →,
∀ and ∃.

(b) We define the following in IL.

i. ¬A :≡ A→ ⊥.
ii. A↔ B :≡ (A→ B) ∧ (B → A).

(c) We adopt the following convention to save on parentheses: ¬, ∀ and ∃
bind stronger than ∧ and ∨, which in turn bind stronger than→ and↔.

(d) The axioms and rules of IL are given in table 1.1 [50, section 3.1].

contraction axioms A→ A ∧A A ∨ A→ A
weakening axioms A ∧B → A A→ A ∨ B
permutation axioms A ∧B → B ∧A A ∨ B → B ∨ A
ex falso quodlibet ⊥ → A
quantifier axioms ∀xA→ A[t/x] A[t/x]→ ∃xA

modus ponens rule A A→ B
B

syllogism rule A→ B B → C
A→ C

exportation rule
A ∧ B → C

A→ (B → C)

importation rule
A→ (B → C)

A ∧ B → C

expansion rule A→ B
C ∨ A→ C ∨B

quantifier rules
A→ B

A→ ∀xB
B → A
∃xB → A

(x /∈ FV(A))

Table 1.1: axioms and rules of IL.

18

2. Classical logic CL is IL plus the law of excluded middle A∨¬A [50, section 3.1].

1.9. The deductive systems given for IL and CL are suitable to prove properties of
IL and CL by induction on the length of derivations, but unsuitable to actually find
derivations in IL and CL. For this purpose, a much more practical system is the
(equivalent) natural deduction [75, section 1.1.5 and theorem 1.1.11].

1.4 Types

1.10. We are going to work with a version of Peano arithmetic that talks not only
about N, but also about NN, (NN)N, N(NN), and so on. The elements of these sets
can only mix in a proper way: for example, given n ∈ N, f ∈ NN and F ∈ N(NN),
it makes sense to write f(n) and F (f), but not f(F) and F (n). So the syntax of
our Peano arithmetic has to somehow keep track of the sets in which the terms take
values. This is achieved by the types: to each term we assign a type, and the type
identifies the set according to the “dictionary” given in table 1.2. (We could directly
assign to each term a set, but traditionally we assign a type.)

Set N NN (NN)N N(NN) · · ·
Type 0 00 (00)0 0(00) · · ·

Table 1.2: sets and their types.

1.11 Definition. Consider an alphabet {0,→, (,)}. Finite types, or simply types [75,
section 1.6.2] [50, section 3.3], are words on this alphabet generated recursively by:

1. 0 is a type;

2. if σ and ρ are types, then (σ → ρ) is also a type.

We adopt the following notation, where σ and ρ are types and ρ ≡ ρ1, . . . , ρm and
σ ≡ σ1, . . . , σn are tuples of types.

1. We denote (σ → ρ) by ρσ (note the inversion of the position of the letters).

2. In ρ1 · · · ρm we associate to the left, that is we read
(
((ρ1ρ2)ρ3)ρ4

)
· · · ρm.

3. We define ρσ :≡ ρ1σ1 · · ·σn, . . . , ρmσ1 · · ·σn

4. We define ρt :≡ ρm, . . . , ρ1.

1.12 Remark. All types ρ can be decomposed as ρ = 0ρ1 · · · ρn (with possible no
ρis) [75, section 1.6.2] [50, section 3.1].

1.13. We can interpret types in the following way:

1. the type 0 is interpreted as the set N;

2. if the types ρ and σ are interpreted as sets A and B respectively, then the type
ρσ is interpreted as the set AB [75, section 1.6.2].

This interpretation produces table 1.2. Then we can interpret the statement “x has
type ρ” as meaning “x is in the set interpreting ρ”.

19

1.5 Heyting and Peano arithmetics

1.14. Now we introduce a version PA
ω of Peano arithmetic that, informally, talks not

only about N but also about NN, (NN)N, N(NN) and so on. More formally, the syntax
of PAω has the following two devices that mimic the sets N,NN, (NN)N,N(NN),

Assigning types to terms Each term has a type associated that, informally, says to

which of the sets N,NN, (NN)N,N(NN), . . . the term belongs.

Applying terms In the same way that given F ∈ N(NN) and f ∈ NN we can apply
them getting F (f) ∈ N, given two terms s of type ρσ and t of type σ we can
apply them getting a term st of type ρ. We can think of applying s and t as
applying s ∈ ρσ and t ∈ σ getting st ∈ ρ.

1.15. Before we proceed to the definition of PAω, we need to compile some notation
about terms and their types. In the definition of PAω some axioms are restricted to
certain classes of formulas, so we also need to compile the classes of formulas that
we will need.

1.16 Definition. Let ≤ρ be some majorisability infixed between terms of type ρ,
=ρ be some equality infixed between terms of type ρ, and maxρ be some maximum
of two terms of type ρ (they will be defined later on).

1. If t is a term of type ρ, then we write tρ to express this fact. More generally,
if t ≡ t1, . . . , tn is a tuple of terms, ρ ≡ ρ1, . . . , ρn is a tuple of types, and each
ti has type ρi, then we write tρ to express this fact. If it is not important to
make the types explicit, then we write simply t, ≤, = and max instead of tρ,
≤ρ, =ρ and maxρ.

2. Let s ≡ s1, . . . , sm and t ≡ t1, . . . , tn be tuples of terms. In t1 · · · tn we
associate to the left, that is we read

(
((t1t2)t3)t4

)
· · · tn. We define st :≡

s1t1 · · · tn, . . . , smt1 · · · tn.

3. Given terms s and t, when we write st we implicitly assume that the types
of the terms s and t fit, that is s has type ρσ and t has type σ for some
types ρ and σ. Given a formula A(x) with a distinguished tuple of variables
x ≡ x1, . . . , xn, and terms t ≡ t1, . . . , tn, when we write A[t/x] or A(t) we
implicitly assume that each ti has the same type that xi.

4. (a) We call bounded quantifiers [15, section 2] to quantifiers of the form

∀x ≤ρ t A,

∃x ≤ρ t A

(where t is a term and x /∈ FV(t)).

(b) We call monotone quantifiers [15, section 2.1] to quantifiers of the form

∀̃xρ A :≡ ∀x (x ≤ρ x→ A),

∃̃xρ A :≡ ∃x (x ≤ρ x ∧ A).

20

(c) We call monotone bounded quantifiers to quantifiers of the form

∀̃x ≤ρ t A :≡ ∀x ≤ρ t (x ≤ρ x→ A),

∃̃x ≤ρ t A :≡ ∃x ≤ρ t (x ≤ρ x ∧ A).

5. Let ρ ≡ ρ1, . . . , ρn be a tuple of types, xρ ≡ xρ1
1 , . . . , xρn

n and yρ ≡ yρ11 , . . . , yρnn
be tuples of variables and sρ ≡ sρ11 , . . . , sρnn and tρ ≡ tρ11 , . . . , tρnn be tuples of
terms. We define

s =ρ t :≡ s1 =ρ1 t1 ∧ · · · ∧ sn =ρn tn,

x ≤ρ y :≡ s1 ≤ρ1 t1 ∧ · · · ∧ sn ≤ρn tn,

maxρ(s, t) :≡ maxρ1(s1, t1), . . . ,maxρn(sn, tn),

∀xρ A :≡ ∀xρ1
1 . . . ∀xρn

n A,

∃xρ A :≡ ∃xρ1
1 . . . ∃xρn

n A,

∀̃xρ A :≡ ∀̃xρ1
1 . . . ∀̃xρn

n A,

∃̃xρ A :≡ ∃̃xρ1
1 . . . ∃̃xρn

n A,

∀x ≤ρ t A :≡ ∀x1 ≤ρ1 t1 . . .∀xn ≤ρn tn A,

∃x ≤ρ t A :≡ ∃x1 ≤ρ1 t1 . . .∃xn ≤ρn tn A,

∀̃x ≤ρ t A :≡ ∀̃x1 ≤ρ1 t1 . . . ∀̃xn ≤ρn tn A,

∃̃x ≤ρ t A :≡ ∃̃x1 ≤ρ1 t1 . . . ∃̃xn ≤ρn tn A.

1.17 Definition.

1. We reserve the subscript “at” (as in Aat) for atomic formulas.

2. A quantifier-free formula is a formula without (bounded and unbounded) quan-
tifiers. We reserve the subscript “qf” (as in Aqf) for quantifier-free formulas.

3. A bounded formula [15, section 2] is a formula without unbounded quantifiers.
We reserve the subscript “b” (as in Ab) for bounded formulas.

4. An ∃-free formula [50, definition 5.2.1)] is a formula:

(a) without disjunctions;

(b) without (bounded and unbounded) existential quantifiers.

We reserve the subscript “∃f” (as in A∃f) for ∃-free formulas.

5. An ∃̃-free formula [14, definition 3] is a formula:

(a) without disjunctions;

(b) without unbounded existential quantifiers;

(c) whose universal quantifiers are all monotone.

We reserve the subscript “∃̃f” (as in A∃̃f) for ∃̃-free formulas.

21

1.18 Definition.

1. Let us define the (typed) Heyting arithmetic HA
ω [76, section 3.1] [15, sec-

tion 2].

(a) The language of HAω is the following.

i. The language of HAω has the following symbols.

A. The logical constants ⊥, ∧, ∨, →, ∀ and ∃.
B. Countable many variables xρ

1, x
ρ
2, x

ρ
3, . . . for each type ρ.

C. The constant zero 0.

D. The constant successor S.

E. A constant projector Πρ,σ for each types ρ and σ.

F. A constant combinator Σρ,σ,τ for each types ρ, σ and τ .

G. A tuple of constants recursors Rρ ≡ (R1)ρ, . . . , (Rn)ρ for each
tuple of types ρ = ρ1, . . . , ρn.

H. The binary relation equality =0.

ii. Terms are defined as follows (their types indicated in superscripts).

A. Variables xρ, and the constants 00, S00, Πρσρ
ρ,σ , Σ

τρ(σρ)(τσρ)
ρ,σ,τ and

(Ri)
ρi(ρt0ρt)ρt0
ρ are terms.

B. If sρσ and tσ are terms, then (st)ρ is a term.

iii. Formulas are defined as follows.

A. The logical constant ⊥ is an atomic formula.

B. The expressions s =0 t are atomic formulas (where s0 and t0 are
terms).

C. Formulas are built from atomic formulas by means of ∧, ∨, →,
∀ and ∃.

(b) We define the following in HA
ω.

i. The formula A ∨t B :≡ (t =0 0 → A) ∧ (t 6=0 0 → B), where t0 is a
term of HAω and A and B are formulas of HAω.

ii. The extensional equality s =ρ t :≡ ∀x (sx =0 tx), where s and t are
terms of HAω of type ρ = 0ρn · · · ρ1 and x ≡ xρ1

1 , . . . , xρn
n .

iii. The hereditary equality sρ ≈ρ t
ρ [75, section 2.7.2], where s and t are

terms of HAω, by recursion on the structure of ρ by:

A. s ≈0 t :≡ s =0 t;

B. s ≈ρσ t :≡ ∀xσ, yσ (x ≈σ y → sx ≈ρ ty).

iv. A. The type 0 inequality s ≤0 t :≡ s .− t =0 0, where s0 and t0

are terms of HAω and .− (a term of HAω standing for the cut-
off/limited/truncated subtraction) is defined in point 3 of defini-
tion 1.37.

B. We extended ≤0 to higher types by s ≤ρ t :≡ ∀x (sx ≤0 tx),
where s and t are terms of HAω of type ρ = 0ρn · · · ρ1 and x ≡
xρ1
1 , . . . , xρn

n .

22

v. The extensional majorisability s ≤e
ρ t [39, section 2] [5, paragraph 1.1]

[50, definition 3.34], where sρ and tρ are terms of HAω, by recursion
on the structure of ρ by:

A. s ≤e
0 t :≡ s ≤0 t;

B. s ≤e
ρσ t :≡ ∀xσ, yσ (x ≤e

σ y → sx ≤e
ρ ty ∧ tx ≤e

ρ ty).

(c) The axioms and rules of HAω are the ones of IL plus the ones given in
table 1.3.

axioms of =0

x =0 x

x =0 y ∧Aat[x/z]→ Aat[y/z]

axioms of S
Sx 6=0 0

Sx =0 Sy → x =0 y

axioms of Π, Σ and R

Aat[Πρ,σxy/w]↔ Aat[x/w]

Aat[Σρ,σ,τxyz/w]↔ Aat[xz(yz)/w]

Aat[Rρ0yz/w]↔ Aat[y/w]

Aat[Rρ(Sx)yz/w]↔ Aat[z(Rρxyz)x/w]

induction rule
A(0) A(x)→ A(Sx)

A(x)

Table 1.3: axioms and rules of HAω (in addition to the ones of IL).

2. The (typed) Heyting arithmetic with weak extensionality [75, section 1.6.12]
[50, section 3.3] WE-HA

ω is HAω but with the extensionality rule [66, page 12]

Aat → s =ρ t

Aat → r[s/x] =0 r[t/x]
.

where r0, sρ and tρ are terms of WE-HA
ω.

3. The (typed) Heyting arithmetic with extensionality E-HA
ω [75, section 1.6.12]

[50, section 3.3] is HAω but with the extensionality axioms

∀xρ, yρ, z0ρ
t

(x =ρ y → zx =0 zy).

4. The (typed) Heyting arithmetic with extensional majorisability HA
ω
e [14, sec-

tion 4.1] is HAω with primitive bounded quantifications ∀x ≤e
ρ t A and ∃x ≤e

ρ

t A (for each type ρ and with the restriction x /∈ FV(t)) and their axioms

∀x ≤e
ρ tA ↔ ∀x (x ≤e

ρ t→ A),

∃x ≤e
ρ tA ↔ ∃x (x ≤e

ρ t ∧ A).

In HA
ω
e we redefine ≤e by (the equivalent) [14, page 333]

(a) s ≤e
0 t :≡ s ≤0 t;

23

(b) s ≤e
ρσ t :≡ ∀̃yσ ∀x ≤e

σ y (sx ≤e
ρ ty ∧ tx ≤e

ρ ty).

5. The (typed) Heyting arithmetic with intensional majorisability HA
ω
i [15, defi-

nition 5] is HAω with the following additions.

(a) A primitive binary relation ≤i
ρ (for each type ρ) infixed between terms of

HA
ω
i of type ρ, called intensional majorisability, and its axioms and rule

x ≤i
0 y ↔ x ≤0 y, x ≤i

ρσ y → ∀u ≤i
σ v (xu ≤i

ρ yv ∧ yu ≤i
ρ yv),

Ab ∧ x ≤i
σ y → sx ≤i

ρ ty ∧ tx ≤i
ρ ty

Ab → s ≤i
ρσ t

,

where s and t are terms of HAω
i and in the rule we have the restriction

x, y /∈ FV(Ab) ∪ FV(s) ∪ FV(t). We declare the formulas s ≤i
ρ t atomic,

where s and t are terms of HAω
i .

(b) Primitive bounded quantifications ∀x ≤i
ρ t A and ∃x ≤i

ρ t A (for each
type ρ and with the restriction x /∈ FV(t)) and their axioms

∀x ≤i
ρ t A↔ ∀x (x ≤i

ρ t→ A),

∃x ≤i
ρ t A↔ ∃x (x ≤i

ρ t ∧A).

6. The (typed) Peano arithmetics PA
ω, WE-PA

ω, E-PAω, PAω
e and PA

ω
i are, re-

spectively, HAω, WE-HA
ω, E-HAω, HAω

e and HA
ω
i with the addition of the law

of excluded middle.

1.19. The role of Π, Σ, R, =ρ, ≈ρ, ≤e
ρ, ≤i

ρ and extensionality may be a bit obscure,
so let us explain it.

Π and Σ The role of Π and Σ is to, given a term t(x), construct a term doing the
job of the function x 7→ t(x). This will be treat in detail in section 1.7.

R The tuple of recursors R is used to define terms by recursion. For example, if
the tuple has only one recursor R, then Rxyz stands for the sequence (rx)x∈N
defined by recursion on x by r0 := y and rx+1 := z(rx, x). So, in Rxyz, x is
the recursion variable, y is the initial value and z is the function that performs
the recursion step. The use of tuples of recursors R ≡ R1, . . . ,Rn allows us to
define multiple sequences (r1x)x∈N, . . . , (r

n
x)x∈N by simultaneous recursion.

We should note that rx+1 := z(rx, x) is (in general) not a numeric equality
but a function equality; this feature takes our recursors beyond the scope
of primitive recursive functions (for example, we can define the Ackermann
function [34, pages 185-186]).

=ρ and ≈ρ The equality =ρ just mimics the usual equality between, for example,

functions f, g : Nn → N: f = g if and only if ∀x ∈ Nn (f(x) = g(x)).

The equality ≈ρ is used for technicalities in points 3 and 6 of proposition 1.26:
to give an alternative formulation of the extensionality axioms in the form
∀z (z ≈ρ z), and then to prove that every closed term t is extensional in the
sense of t ≈ρ t.

24

≤e
ρ and ≤i

ρ For ρ = 00, the majorisability f ≤e
ρ g means “(∗1) f is pointwise smaller

than or equal to g, and (∗2) g is non-decreasing”. By adding (∗2) we gain the
property m ≤ n→ f(m) ≤ g(n) which plays an important role for some proof
interpretations. For higher types ρ it is difficult to nicely describe f ≤e

ρ g.

The majorisability ≤e
ρ trivially satisfies (∗) s ≤e

ρσ t↔ ∀xσ, yσ (x ≤e
σ y → sx ≤e

ρ

ty∧ tx ≤e
ρ ty). The majorisability ≤i

ρ is (essentially) ≤e
ρ but with the right-to-

left implication of (∗) weakened to a rule because some proof interpretations
do not seem to interpret that implication.

Extensionality To better explain extensionality, let us advance that in point 4 of
proposition 1.26 we will show that the extensionality rule of WE-HA

ω implies
s =ρ t / A(s) → A(t), and the extensionality axioms of E-HAω imply s =ρ

t → (A(s) → A(t)). So we see that extensionality is just an equality axiom
for =ρ, and that the extensionality rule is (essentially) the weakening of the
extensionality axioms to a rule because some proof interpretations do not
interpret the axioms.

1.20. Sometimes the axioms of Π, Σ and R are given as term equalities like t[Πxy/w] =
t[x/w] [75, section 1.6.15]. In the case of HAω

i this would leave some atomic formulas
out of reach of the axioms because not all atomic formulas are term equalities (we
also have the atomic formulas s ≤i t). So we formulated the axioms of Π, Σ and R
as equivalences like Aat[Πxy/w]↔ Aat[x/w] covering all atomic formulas.

This situation is somewhat typical: much of what is said below is well-known for
WE-HA

ω and E-HA
ω, but we should be careful with HA

ω, HAω
e , and especially HA

ω
i

(because of ≤i), as sometimes some tweak are necessary. So we carefully check the
details below.

1.21. Due to the multiplicity of theories defined above, it is useful to draw a picture
clarifying the relation between the languages and theorems of the theories. Let us
denote by term(HAω) the set of all terms of HAω, and by form(HAω) the set of all
formulas of HAω, and analogously for WE-HA

ω, E-HAω, HAω
e and HA

ω
i . We have:

1. term(HAω) = term(WE-HA
ω) = term(E-HAω) = term(HAω

e) = term(HAω
i);

2. form(HAω) = form(WE-HA
ω) = form(E-HAω) (form(HAω

e) (form(HAω
i)

(modulo considering ∀x ≤e
ρ t A ≡ ∀x ≤i

ρ t A and ∃x ≤e
ρ t A ≡ ∃x ≤i

ρ t A);

3. for all formulas A of HAω we have HA
ω
i ⊢ A ⇔ HA

ω
e ⊢ A ⇔ HA

ω ⊢ A ⇒
:

WE-HA
ω ⊢ A ⇒: E-HA

ω ⊢ A [15, proposition 11] [39, theorem 3.2].

In figure 1.1 we picture the inclusions and main differences between between HA
ω,

WE-HA
ω, E-HAω, HAω

e and HA
ω
i .

1.22. The next lemma is used to generalise axioms like x =0 y∧Aat[x/z]→ Aat[y/z]
from atomic formulas Aat to arbitrary formulas A. Roughly speaking, the lemma
says that if an axiom holds for atomic formulas, then it holds for all formulas.

1.23 Lemma. Let s ≡ s1, . . . , sn and t ≡ t1, . . . , tn be tuples of terms of HAω and
A a formula of HAω. If HAω ⊢ A → (Bat[s/x] ↔ Bat[t/x]) for all atomic formulas
Bat of HA

ω and for all tuples x ≡ x1, . . . , xn of variables of HAω, then:

25

HA
ω

WE-HA
ω

exten-
sionality
rule

E-HA
ω

exten-
sionality
axioms

HA
ω
i

≤i

HA
ω
e

≤e

Figure 1.1: inclusions and main differences between HA
ω, WE-HA

ω, E-HAω, HAω
e and

HA
ω
i .

1. HA
ω ⊢ A→ (B[s/x] ↔ B[t/x]) for all formulas B of HAω such that FV(A) ∩

BV(B) = ∅ and for all tuples x ≡ x1, . . . , xn of variables of HAω;

2. HA
ω ⊢ A→ s = t.

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i [19, lemas 28 and 144].

1.24 Proof. Let us do the proof only for HAω
i ; the cases of the other theories are

analogous.

1. The proof is by induction on the structure of B. Let us only see the case
of ∀≤i; the other cases are analogous. Let x′ be the tuple obtained from x
by replacing y by a variable z /∈ FV(B). By induction hypothesis we have
HA

ω
i ⊢ A→ (B[s/x′]↔ B[t/x′]), so (∗1) HAω

i ⊢ A→ (∀y ≤i r[s/x′]B[s/x′]↔
∀y ≤i r[s/x′]B[t/x′]) (since y /∈ FV(A) because FV(A)∩BV(∀y ≤i r B) = ∅).
By the premise of the lemma we have (∗2) A→ (y ≤i r[s/x′] ↔ y ≤i r[t/x′]).
In the following, the last formula is provable by (∗1) and (∗2), so the first
formula is also provable:

A→ ((∀y ≤i r B)[s/x]↔ (∀y ≤i r B)[t/x]) ≡
A→ (∀y ≤i r[s/x′]B[s/x′]↔ ∀y ≤i r[t/x′]B[t/x′])↔

A→ (∀y (y ≤i r[s/x′]→ B[s/x′])↔ ∀y (y ≤i r[t/x′]→ B[t/x′])).

2. Taking B :≡ s = x (with x /∈ FV(s)) in point 1 we get A → (s = s ↔ s = t)
where s = s is provable.

1.25. Some axioms and rules of HAω, WE-HA
ω, E-HAω, HAω

e and HA
ω
i where for-

mulated with restrictions on the classes of formulas and on the types. We always
choose the minimal formulation, that is the formulation in which the classes and
the types are as low as possible, because this makes easier to prove the so-called
soundness theorems of the proof interpretations. For example, we could have for-
mulated the extensionality rule (∗1) Aat → s =ρ t / Aat → r[s/x] =0 r[t/x] as
(∗2) Aqf → s =ρ t / Aqf → r[s/x] =σ r[t/x] (note that in the latter we have Aqf

instead of Aat, and =σ instead of =0), but we chose the minimal (∗1). In the next

26

proposition we show that some minimal axioms and rules imply more liberal formu-
lations.

In the next proposition we also collect some properties about the theories HAω,
WE-HA

ω, E-HAω, HAω
e and HA

ω
i . Some of these properties are just expected proper-

ties, like that =ρ is an equivalence relation, but anyway we should make sure that
they are really provable. Other properties, like that the extensionality axioms can be
equivalently replaced by ∀z (z ≈ z), give us alternative axiomatisations sometimes
more convenient to prove the soundness theorems.

1.26 Proposition.

1. The theory HA
ω proves

A[Πρ,σxy/w]↔ A[x/w], Πρ,σxy = x,

A[Σρ,σ,τxyz/w]↔ A[xz(yz)/w], Σρ,σ,τxyz = xz(yz),

A[Rρ0yz/w]↔ A[y/w], Rρ0yz = y,

A[Rρ(Sx)yz/w]↔ A[z(Rρxyz)x/w], Rρ(Sx)yz = z(Rρxyz)x,

for all formulas A of HAω. Analogously forWE-HA
ω, E-HAω, HAω

e and HA
ω
i [15,

proposition 2].

2. The theory HA
ω proves:

(a) x =ρ y;

(b) x =ρ y → y =ρ x;

(c) x =ρ y ∧ y =ρ z → x =ρ z.

Analogously for WE-HA
ω, E-HAω [50, remark 3.11.2)], HAω

e and HA
ω
i .

3. The following three theories, with three different formulations of extensionality,
are equal [50, remark 3.11.3)] [75, section 2.7.2]:

E-HA
ω := HA

ω + ∀xσ, yρ, z0ρ
t

(x =ρ y → zx =0 zy),

E-HA
ω ′ := HA

ω + ∀xσ, yσ, zρσ (x =ρ y → zx =σ zy),

E-HA
ω ′′ := HA

ω + ∀zρ (z ≈ρ z).

4. (a) The theory HA
ω proves

x =0 y → t[x/z] =0 t[y/z], x =0 y ∧ A[x/z]→ A[y/z]

for all terms t0 and formulas A of HAω. Analogously for WE-HA
ω, E-HAω,

HA
ω
e and HA

ω
i [15, proposition 1].

(b) The rules

Aqf → s =ρ t

Aqf → r[s/x] =σ r[t/x]
,

Aqf → s =ρ t

Aqf ∧ A[s/x]→ A[t/x]

hold in WE-HA
ω [50, remark 3.13]. Analogously for E-HAω.

27

(c) The theory E-HA
ω proves

x =ρ y → t[x/z] =σ t[y/z], x =ρ y ∧ A[x/z]→ A[y/z]

for all terms tσ and formulas A of E-HAω [50, remark 3.11.2)].

5. (a) The theory HA
ω proves the induction axiom (schema) [50, remark 3.3.2)]

A(0) ∧ ∀x (A(x)→ A(Sx))→ ∀xA(x).

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i .

(b) The following double induction rule holds in HA
ω [78, proposition 2.6 in

chapter 3]:
A(0, y) A(x, 0) A(x, y)→ A(Sx, Sy)

A(x, y)
.

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i .

6. For all closed terms t of HAω we have HA
ω ⊢ t ≈ t [75, theorem 2.7.3]. Analo-

gously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i .

1.27 Proof.

1. Follow from the axioms of Π, Σ and R, and lemma 1.23.

2. Let us only prove point 2c; points 2a and 2b are analogous. First we prove
the claim for ρ = 0: from x =0 y → y =0 x and y =0 x ∧ Aat(y)→ Aat(x) we
get x =0 y ∧ Aat(y)→ Aat(x); taking Aat(w) :≡ w =0 z we get x =0 y ∧ y =0

z → x =0 z. The claim for an arbitrary ρ follows from the claim for ρ = 0.

3. E-HA
ω = E-HA

ω ′

E-HA
ω ⊢ ∀xσ, yσ, zρσ (x =σ y → zx =ρ zy) Taking x ≡ x, w and y ≡ y, w

in ∀x, y, z (x = y → zx =0 zy) we get ∀x, y, z, w (x = y → zxw =0

zyw), that is ∀x, y, z (x = y → zx =σ zy).

E-HA
ω ′ ⊢ ∀xρ, yρ, z0ρ

t
(x =ρ y → zx =0 zy) The proof is by induction on

the length n of the tuples x and y. The base case n = 1 is trivial,
so let us see the induction step. We take arbitrary x ≡ x1, . . . , xn+1,
y ≡ y1, . . . , yn+1 and z, assume x = y and prove zx =0 zy. From
x1 = y1 we get zx1 = zy1, so (∗1) zx1x2 · · ·xn+1 = zy1x2 · · ·xn+1.
We have x2 = y2 ∧ · · · ∧ xn = yn → zy1x2 · · ·xn =0 zy1y2 · · · yn by
induction hypothesis, so (∗2) zy1x2 · · ·xn =0 zy1y2 · · · yn by x = y.
From (∗1) and (∗2) we get zx =0 zy.

E-HA
ω ′ = E-HA

ω ′′ It suffices to show that both E-HA
ω ′ and E-HA

ω ′′ prove x =ρ

y ↔ x ≈ρ y. We do only the proof for E-HA
ω ′′; the case of E-HAω ′ is

analogous. The proof is by induction on the structure of ρ. The base
case is trivial, so let us see the induction step. Using the induction
hypothesis in the equivalences and E-HA

ω ′′ ⊢ y ≈ρσ y in the implication,
we get (∗) u =σ v ↔ u ≈σ v → yu ≈ρ yv ↔ yu =ρ yv. Using the

28

induction hypothesis in the first equivalence, taking v := u in the left-to-
right implication of the second equivalence, and using (∗) in the right-to-
left implication of the second equivalence, we get

x ≈ρσ y ≡
∀uσ, vσ (u ≈σ v → xu ≈ρ yv)↔
∀uσ, vσ (u =σ v → xu =ρ yv)↔

∀uσ (xu =ρ yu) ≡
x =ρσ y.

4. (a) Let us prove the claim for formulas: we have x =0 y → (Aat[x/z] ↔
Aat[y/z]) for all Aat, so by point 1 of lemma 1.23 we get x =0 y →
(A[x/z] ↔ A[y/z]) (with x and y are free for z in A, which implies
FV(x =0 y) ∩ BV(A) = ∅). To prove the claim for terms, we apply the
claim for formulas to A :≡ t[x/z] =0 t.

(b) Let us prove the claim for terms. We will prove in theorem 1.44 that Aqf

is equivalent in HA
ω to an atomic formula Aat, so we replace Aqf by Aat.

Let y be a tuple of variables such that ry has type 0, x does not occur in
y and y /∈ FV(Aat). Using the extensionality rule in the first implication
we get

WE-HA
ω ⊢ Aat → s =ρ t ⇒

WE-HA
ω ⊢ Aat → (ry)[s/x] =0 (ry)[t/x] ⇒

WE-HA
ω ⊢ Aqf → r[s/x]y =0 r[t/x]y ⇒

WE-HA
ω ⊢ Aqf → ∀y (r[s/x]y =0 r[t/x]y) ⇒
WE-HA

ω ⊢ Aqf → r[s/x] =σ r[t/x].

Let us prove the claim for formulas. It suffices to prove it for atomic
formulas A ≡ r1 =0 r2 and A ≡ ⊥ (the latter being trivial) by point 1
of lemma 1.23. If WE-HA

ω ⊢ Aat → s =ρ t, then WE-HA
ω ⊢ Aat →

ri[s/x] =0 ri[t/x] for i = 1, 2, so WE-HA
ω ⊢ Aat → ((r1 =0 r2)[s/x] ↔

(r1 =0 r2)[t/x]).

(c) Let us prove the claim for terms by induction on the structure of t.

Base case If t is a variable w, then x = y → t[x/z] = t[y/z] is provable
because its conclusion is x = y if w ≡ z, and w = w if w 6≡ z.
Analogously for 0, S, Π, Σ and R.

Induction step Let us assume x = y and prove (∗1) (st)[x/z] = (st)[y/z].
By induction hypothesis we have s[x/z] = s[y/z] and t[x/z] = t[y/z].
So (∗2) s[x/z]t[x/z] = s[x/z]t[y/z] (by extensionality formulated as
x = y → zx = zy) and (∗2) s[x/z]t[y/z] = s[y/z]t[y/z]. From (∗2)
and (∗3) we get (∗1).

The claim for formulas follows from the claim for terms analogously to
point 4b.

29

5. (a) Let B(x) :≡ A(0)∧∀x (A(x)→ A(Sx))→ A(x). We can prove B(0) and
B(x) → B(Sx), so by the induction rule we prove B(x), thus ∀xB(x),
that is the induction axiom.

(b) We assume the premises of the rule and prove its conclusion by induction
on x.

A(0, y) It is the first premise.

A(x, y)→ A(Sx, y) We assume A(x, y) and prove A(Sx, y) by induction
on y.

A(Sx, 0) It is an instance of the second premise.

A(Sx, y)→ A(Sx, Sy) Follows from A(x, y) and the third premise.

6. The proof is by induction on the structure of t. The induction step is easy, so
let us see the base case.

S We have ∀u, v (u =0 v → Su =0 Sv), that is S ≈ S. Analogously for 0.

R Note x ≈ρ y ↔ ∀u, v (u ≈τ v → xu ≈σ yv) where ρ = στ t. Say R ≡
R1, . . . ,Rn. Let us prove Ri ≈ Ri by proving A(x) :≡ ∀x′, y, y′, z, z′ (x =0

x′ ∧ y ≈ y′ ∧ z ≈ z′ → ∧n
i=1Rixyz ≈ Rix

′y′z′) by induction on x.

Base case The premise of A(0) implies x′ =0 0, so the conclusion of A(0)
is equivalent to

∧n
i=1 yi ≈ y′i, which is implied by the premise.

Induction step The premise of A(Sx) implies x′ =0 Sx, so the conclusion
of A(Sx) is equivalent to

∧n
i=1 zi(Rxyz)x ≈ z′i(Rxy

′z′)x, which is
implied by the premise together with the induction hypothesis A(x).

Analogous for Π and Σ.

1.6 Term reduction

1.28. Every natural number n can be represented in HA
ω by a closed term of type

0, namely the numeral n̄ :≡ S · · ·S0. But is the reciprocal true: every closed term of
type 0 represents a natural number? If it is not, then HA

ω is not faithfully capturing
the natural numbers; it is also talking about some foreign numbers.

We are going to prove that the reciprocal is indeed true. Our strategy to prove
this has two main ideas.

1. Informally speaking, the axioms of Σ say Σxyz = xz(yz), so they put Σxyz
and xz(yz) at the same level. However, we think of Σxyz = xz(yz) as mean-
ing “Σxyz reduces to xz(yz)”, not “xz(yz) reduces to Σxyz”, so the axioms
suggest a direction. Analogously for Π and R.

Given a term t, we can reduce in t all occurrences of Πxy, Σxyz and Rxyz,
getting a term tn that says the same that t and cannot be reduced any further.
We think of tn as a normal form of t.

2. We show that if t is closed and has type 0, then tn is a numeral n̄.

30

Combining the two points above, as schematically in

t tn n̄,

we conclude that every closed term t of type 0 represents a numeral n̄.

1.29 Definition. Let p and q be terms of HAω.

1. We write p ≻1 q if and only if q is obtained from p by replacing exactly one
subterm of p of the form

Πrs, Σrst, Ri0st, Ri(Sr)st

(where R ≡ R1, . . . ,Rn, s ≡ s1, . . . , sn and t ≡ t1, . . . , tn) by, respectively,

r, rt(st), si, ti(Rrst)r.

2. We say that p reduces to q, and write p � q, if and only if there exists a
sequence p ≻1 · · · ≻1 q (possibly p ≡ q).

3. We say that p is normal if and only if there is no term q such that p ≻1 q.

4. We call normal form of p to a normal term pn such that p � pn.

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i [75, section 2.2.2].

1.30 Theorem.

1. Every term of HAω reduces to a unique normal form [78, proposition 2.10 and
section 2.22 in chapter 9] [75, theorem 2.2.23].

2. Every closed normal term of HAω of type 0 is a numeral [78, proposition 2.5(i)
in chapter 9] [75, lemma 2.2.8].

3. For all closed terms t0 of HA
ω, there exists a unique numeral n̄ such that

HA
ω ⊢ t =0 n̄ [78, corollary 2.12 in chapter 9] [75, theorem 2.2.9].

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i .

1.31 Proof. We only do the proof for HA
ω; the cases of the other theories are

analogous. We only prove the existence of the normal form; the references given
contain proofs of the rest. Let N be the set of terms of HAω that reduce to normal
form. Let C be the union, for all types ρ, of Tait’s computability predicates Cρ [70,
pages 198–199] defined by recursion on the structure of ρ by

1. C0 is the set of all t0 ∈ N;

2. Cρσ is the set of all tρσ ∈ N such that for all s ∈ Cσ we have ts ∈ Cρ.

Let us make two remarks.

31

1. Let ρ = σσn · · ·σ1. We have t ∈ Cρ if and only if for all ti ∈ Cσi
(i = 1, . . . , n)

we have t, tt1, . . . , tt1 · · · tn−1 ∈ N and tt1 · · · tn ∈ Cσ (this contains a tiny patch
to the literature).

2. If s � t and t ∈ C, then s ∈ C.

We want to prove that every term is in N; it suffices to prove that every term is
in C by induction on the structure of the term. The induction step is easy, so let us
see the base case.

x Accordingly to remark 1 with σ = 0, we prove that for all t1, . . . , tn ∈ C we have
x, xt1, . . . , xt1 · · · tn ∈ N. Since ti ∈ C, then ti � tni , so x ∈ N, xt1 � xtn1 ∈ N,
and so on. Analogously for 0 and S.

Σ We prove that for all r, s, t ∈ C we have (∗1) Σ,Σr,Σrs ∈ N and (∗2) Σrst ∈ C.
To prove (∗1) we note Σ ∈ N, Σr � Σrn ∈ N and Σrs � Σrnsn ∈ N. To prove
(∗2) we note Σrst � rt(st) ∈ C.

Ri Say R ≡ R1, . . . ,Rn, s ≡ s1, . . . , sn and t ≡ t1, . . . , tn. We prove, simultaneously
for i = 1, . . . , n, that for all r, s, t ∈ C we have (∗1) Ri,Rir,Rirs1, . . . ,Rirs1 · · · sn,
Rirs1 · · · snt1, . . . ,Rirs1 · · · snt1 · · · tn−1 ∈ N and (∗2) Rirst ∈ C. We have
rn ≡ Skr′ for some k ∈ N and r′ ∈ N not of the form r′ ≡ Sr′′. To prove (∗1)
we note Ri ∈ N, Rir � Rir

n ∈ N, and so on. The proof of (∗2) is by induction
on k.

Base case If r′ ≡ 0, then Rirst � Ri0st � si ∈ C. If r′ 6≡ 0, then Rirst �
Rir

′sntn ∈ C since, accordingly to remark 1 with σ = 0, for all q1, . . . , qm ∈
C we have Rir

′sntn ∈ N, Rir
′sntnq1 � Rir

′sntnqn1 ∈ N, and so on.

Induction step We have Rirst � Ri(S
k+1r′)st � ti(R(S

kr′)st)(Skr′) ∈ C.

1.7 λ-abstraction

1.32. Now we are going to see that given a term t(x), we can construct a term
λx . t(x) that behaves like the function x 7→ t(x). This is important so that HAω can
talk not only about terms like 2x, but also about functions like x 7→ 2x. The sole
role of the constants Π and Σ is to construct the term λx . t(x):

1. the role of Π is to construct the term λx . c :≡ Πc for a constant c;

2. the role of Σ is to combine two terms λx . s for s and λx . t for t into a new
term λx . st :≡ Σ(λx . s)(λx . t) for st.

1.33 Definition.

1. Let tρ be a term and xσ a variable of HAω. We define the term (λx . t)ρσ [75,
theorem 1.6.8] [50, lemma 3.15] of HAω (essentially) by recursion on the struc-
ture of t by

(a) λxσ . tρ :≡ Πρ,σt if x /∈ FV(t);

32

(b) λxσ . xσ :≡ Σσ,σ0,σΠσ,σ0Πσ,0;

(c) λxσ . (sρτ tτ) :≡ Σσ,τ,ρ(λx . s)(λx . t) if x ∈ FV(st).

2. We extent the definition to tuples of

(a) variables x ≡ x1, . . . , xm by λx . t :≡ λx1 . · · ·λxm . t [50, page 50];

(b) terms t ≡ t1, . . . , tn by λx . t :≡ λx . t1, . . . , λx . tn.

3. We adopt the following convention to save on parentheses:

(a) λx . rs means λx . (rs), not (λx . r)s;

(b) λx . t[s/y] means λx . (t[s/y]), not (λx . t)[s/y].

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i .

1.34 Theorem. For all tuples of terms q = q1, . . . , qm and t = t1, . . . , tn, tuples of
variables x = x1, . . . , xm and y = y1, . . . , yn, and formulas A of HAω, we have:

1. HA
ω ⊢ A[(λx . t)q/y]↔ A[t[q/x]/y] [75, section 1.6.15] [19, teorema 43];

2. HA
ω ⊢ (λx . t)q = t[q/x] [75, theorem 1.6.8] [50, lemma 3.15].

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i .

1.35 Proof. We sketch the proof for HAω; the cases of the other theories are anal-
ogous. By lemma 1.23 it suffices to prove the claim for atomic formulas.

1. First we prove the claim for m = n = 1 by induction on the structure of t. If
x ∈ FV(rs), then using induction hypothesis in the second equivalence we get

Aat[(λx . st)q/y] ≡
Aat[Σ(λx . s)(λx . t)q/y]↔

Aat[((λx . s)q)((λx . t)q)/y]↔
Aat[s[q/x]t[q/x]/y] ≡

Aat[(st)[q/x]/y].

Analogously for x /∈ FV(t) and for t ≡ x.

2. Now we consider a tuple x′ ≡ x′
1, . . . , x

′
m of variables such that x, x′ are distinct

and x′ /∈ FV(t, q) ∪ FV(Aat), and remark:

(a) (λx′
i . t)[qj/x

′
j] ≡ λx′

i . t[qj/x
′
j] for i 6= j [19, lema 37];

(b) t[q/x] ≡ t[x′/x][q1/x
′
1] · · · [qm/x′

m] [19, lema 39.1];

(c) Aat[q/x] ≡ Aat[x
′/x][q1/x

′
1] · · · [qm/x′

m] [19, lema 39.2];

(d) λx . t ≡ λx′ . t[x′/x] [19, lema 41].

33

3. Now we generalise to an arbitrary m [19, teorema 43] (a common small omis-
sion in the literature). Actually, we argue for m = 2 since the argument for
m > 2 is just an iteration of the argument for m = 2:

Aat[(λx1, x2 . t)q1q2/y] ≡ (by 2d)

Aat[(λx
′
1, x

′
2 . t[x

′
1, x

′
2/x1, x2])q1q2/y] ≡

Aat[(λx
′
1 . (λx

′
2 . t[x

′
1, x

′
2/x1, x2]))q1q2/y]↔ (by 1)

Aat[(λx
′
2 . t[x

′
1, x

′
2/x1, x2])[q1/x

′
1]q2/y] ≡ (by 2a)

Aat[(λx
′
2 . t[x

′
1, x

′
2/x1, x2][q1/x

′
1])q2/y]↔ (by 1)

Aat[t[x
′
1, x

′
2/x1, x2][q1/x

′
1][q2/x

′
2]/y] ≡ (by 2b)

Aat[t[q1, q2/x1, x2]/y].

4. Now we generalise to an arbitrary n [19, teorema 43] (a common small omission
in the literature). Actually, we argue for n = 2, since the argument for n > 2
is just an iteration of the argument for n = 2:

Aat[(λx . t1)q, (λx . t2)q/y1, y2] ≡ (by 2c)

Aat[y
′
1, y

′
2/y1, y2][(λx . t1)q/y

′
1][(λx . t2)q/y

′
2]↔ (by 3)

Aat[y
′
1, y

′
2/y1, y2][t1[q/x]/y

′
1][t2[q/x]/y

′
1] ≡ (by 2c)

Aat[t1[q/x], t2[q/x]/y1, y2].

1.8 Terms for primitive recursive functions

1.36. Now we show that every primitive recursive function can be represented in
HA

ω by a term of HAω. In particular, we can introduce in HA
ω the operations +

and ·, and the order relation ≤, which are conspicuously missing in our arithmetic.
The idea to represent primitive recursive functions by terms is fairly simple.

1. Primitive recursive function are constructed

(a) from the basic functions 0, S and pn
k ;

(b) by means of (generalised) composition;

(c) and primitive recursion.

2. We can represent

(a) the basic functions 0, S and pn
k the terms 0, S and λx1, . . . , xn . xk;

(b) composition by term application st of two terms s and t;

(c) and primitive recursion using the recursor R0.

1.37 Definition.

1. In the following, let all functions be primitive recursive, and f be introduced
by the equalities stated. To each derivation of a primitive recursive function
f : Nn → N we assign a closed term Tf of HAω of type 0 · · · 0 (n+1 times) by
recursion on the derivation of f by [75, paragraph 1.6.9] [19, teorema 47.1]:

34

(a) T0 :≡ 0;

(b) TS :≡ S;

(c) Tpn
k :≡ λx1, . . . , xn . xk;

(d) if f(x) = g(h1(x), . . . , hn(x)), then Tf :≡ λx . Tg(Th1 x) · · · (Thn x);

(e) if

{
f(0, x) = g(x)

f(y + 1, x) = h(y, f(y, x), x)
, then Tf :≡ λy, x .R0y(Tg x)(λz, y . Th yzx).

2. Let f ∈ {+, z, ·, sg, pd, .−, |· − ·|,max0}. We denote by just f the term Tf of
HA

ω assigned to derivation of the function f given in table 1.4 [50, page 45]
[75, section 1.3.9].

+
x+ 0 = p1

1(x)

x+ (y + 1) = S(p3
2(y, x+ y, x))

z
z(0) = 0

z(x+ 1) = p2
1(x, z(x))

· x · 0 = z(x)

x · (y + 1) = p3
2(x, x · y, x) + p3

3(y, x · y, x)

sg
sg(0) = S(0)

sg(x+ 1) = z(p2
1(x, sg x))

pd
pd(0) = 0

pd(x+ 1) = p2
1(x, pdx)

.− x .− 0 = p1
1(x)

x .− (y + 1) = pd(p3
2(y, x

.− y, x))

|· − ·| |x− y| = (x .− y) + (p2
2(x, y)

.− p2
1(x, y))

max0 max0(x, y) = p2
1(x, y) + (p2

2(x, y)
.− p2

1(x, y))

Table 1.4: derivations of the primitive recursive functions mentioned in defini-
tion 1.37.

3. We define s ≤0 t :≡ s .−t =0 0, where s and t are terms of HAω [78, definition 2.7
in chapter 3] [19, definição 128].

4. We define the term maxρ of HAω by recursion on the structure of ρ by [15,
section 2.1]:

(a) max0 is already defined;

(b) maxρσ :≡ λxρσ, yρσ, zσ . maxρ(xz)(yz).

Analogously for WE-HA
ω, E-HAω, HAω

e or HAω
i .

35

1.38. Just to be sure that the term Tf behaves (inside HA
ω) like the function f

does (on N), we state the following proposition.

1.39 Proposition. In the following, let all functions be primitive recursive, and f
be introduced by the equalities stated. We have

1. HA
ω ⊢ T0 =0 0;

2. HA
ω ⊢ TS x =0 Sx;

3. HA
ω ⊢ Tpn

k x1 · · ·xn =0 xk;

4. if f(x) = g(h1(x), . . . , hn(x)), then HA
ω ⊢ Tf x =0 Tg(Th1 x) · · · (Thn x);

5. if

{
f(0, x) = g(x)

f(y + 1, x) = h(y, f(y, x), x)
, then

{
HA

ω ⊢ Tf 0x =0 Tg x

HA
ω ⊢ Tf (Sy)x =0 Th y(Tf yx)x

.

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i [19, teorema 47.2].

1.40 Proof. Let us only prove HA
ω ⊢ Tf (Sy)x =0 Th y(Tf yx)x; the remaining

claims are analogous. We have

Tf (Sy)x ≡
(λy, x .R0y(Tg x)(λz, y . Th yzx))(Sy)x =0

R0(Sy)(Tg x)(λz, y . Th yzx) =0

(λz, y . Th yzx)(R0y(Tg x)(λz, y . Th yzx)︸ ︷︷ ︸
=0Tf yx

)y =0

Th y(Tf yx)x.

1.9 Characteristic terms for quantifier-free for-

mulas

1.41. Now we are going to see that each quantifier-free formula Aqf has a charac-
teristic term χAqf

such that Aqf ↔ χAqf
=0 0. These terms are important for two

reasons:

1. they play a main role in interpreting the axiom A → A ∧ A with Gödel’s
functional interpretation;

2. they are used to show that HAω (despite being an intuitionistic theory) proves
the law of excluded middle for quantifier-free formulas.

1.42. The idea to construct the terms is quite simple: we replace the logical oper-
ations ∧, ∨ and → on formulas by the arithmetic operations +, · and sg on terms.
For example, if we already have characteristic terms χA for A and χB for B, then
we can construct the characteristic term χA∧B :≡ χA + χB for A ∧B:

A ∧ B︸ ︷︷ ︸
logical operation on formulas

↔ χA =0 0 ∧ χB =0 0 ↔ χA + χB︸ ︷︷ ︸
arithmetic operation on terms

=0 0.

36

1.43 Definition. Let Aqf be a quantifier-free formula of HAω. We define a term
χAqf

of HAω with FV(χAqf
) = FV(A), called characteristic term of Aqf, by recursion

on the structure of Aqf by:

1. χ⊥ :≡ S0;

2. χs=0t :≡ |s− t|;

3. χAqf∧Bqf
:≡ χAqf

+ χBqf
;

4. χAqf∨Bqf
:≡ χAqf

· χBqf
;

5. χAqf→Bqf
:≡ (sgχAqf

) · χBqf
.

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i [50, proposition 3.8].

1.44 Theorem. For all quantifier-free formulas Aqf of HA
ω, we have HA

ω ⊢ Aqf ↔
χAqf

=0 0. Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i [50, proposition 3.8].

1.45 Proof.

First, we prove four properties of +, ·, sg, and |· − ·| by double induction on x and
y [50, lemma 3.7].

A(x, y) :≡ x+ y =0 0↔ x =0 0 ∧ y =0 0

A(0, y) It is provable because we can prove 0 + y =0 y by induction on y.

A(x, 0) It is provable because x+ 0 =0 x.

A(x, y)→ A(Sx, Sy) It is provable because Sx+Sy =0 S(Sx+y) 6=0 0, Sx 6=0 0
and Sy 6=0 0.

B(x, y) :≡ x · y =0 0↔ x =0 0 ∨ y =0 0 Analogously to A(x, y).

C(x, y) :≡ (sgx) · y =0 0↔ (x =0 0→ y =0 0)

C(0, y) It is provable because sg 0 · y =0 (S0) · y and we can prove (S0) · y =0 y
by induction on y.

C(x, 0) It is provable because sg x · 0 =0 0.

C(x, y)→ C(Sx, Sy) It is provable because sg(Sx) · Sy =0 0 · Sy =0 0.

D(x, y) :≡ |x− y| =0 0↔ x =0 y

D(0, y) It is provable because |0− y| =0 (0
.− y) + (y .− 0) =0 0 + y =0 y since

we can prove 0 .− y =0 0 by induction on y.

D(x, 0) Analogous to D(0, y).

D(x, y)→ D(Sx, Sy) It is provable because |Sx − Sy| =0 (Sx .− Sy) + (Sy .−
Sx) =0 (x

.− y) + (y .− x) =0 |x − y| since we can prove pd(Sx .− 0) =0 x
by induction on x and then Sx .− Sy =0 x

.− y by induction on y.

Finally, using A(x, y), B(x, y), C(x, y) and D(x, y), it is easy to prove the claim
of the theorem by induction on the structure of Aqf.

37

1.10 Definition by quantifier-free cases

1.46. Now we are going to show that given terms rρ and sρ and a quantifier-free
formula Aqf, we can define a term tρ by cases by

t =ρ

{
r if Aqf

s if ¬Aqf

.

This definition by cases is important because it plays a major role in interpreting
the axiom A→ A ∧ A with Gödel’s functional interpretation.

The idea for the definition of t is simply: since Aqf and ¬Aqf reduce to χAqf
=0 0

and χAqf
6=0 0, then we only need a term that distinguishes between a number being

zero and non-zero; the recursor R is such a term since Rx distinguishes between
x =0 0 and x 6=0 0.

1.47 Definition.

1. For each terms rρ ≡ rρ11 , . . . , rρnn , s0 and tρ ≡ tρ11 , . . . , tρnn of HAω we define the
terms r ∨s t :≡ Rsr(λx, y . t) where x, y /∈ FV(t) [50, proposition 3.19].

2. For each type ρ = 0ρn · · · ρ1 (possibly with no ρis) we define the term Oρ :≡
λxρ1

1 , . . . , xρn
n . 0 [50, page 98].

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i .

1.48 Proposition. For all terms rρ ≡ rρ11 , . . . , rρnn , s0 and tρ ≡ tρ11 , . . . , tρnn of HAω

and formulas A(zρ) of HAω, we have:

1. HA
ω ⊢

(
s =0 0→ (A(r ∨s t)↔ A(r))

)
∧
(
s 6=0 0→ (A(r ∨s t)↔ A(t))

)
;

2. HA
ω ⊢ (s =0 0→ r ∨s t = r) ∧ (s 6=0 0→ r ∨s t = t).

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i [50, proposition 3.19].

1.49 Proof.

1. We can prove ∀x (x =0 0 ∨ x 6=0 0) by induction on x, so s =0 0 ∨ s 6=0 0. If
s 6=0 0, then s =0 S(pd s), therefore

A(r ∨s t)↔
A
(
(λx, y . t)(Rsr(λx, y . t))s

)
↔

A(t).

Analogously if s =0 0.

2. Just take A(z) :≡ r ∨s t = z (with z /∈ FV(r ∨s t)) in the previous point.

38

1.50. The term r ∨s t provably reduces to r or t according to s =0 0 or s 6=0 0, or
in a more pictorial form,

r ∨s t =
{
r if s =0 0

t if s 6=0 0
.

A particularly important use of r ∨s t is when s ≡ χAqf
:

r ∨χAqf
t =

{
r if Aqf

t if ¬Aqf

.

1.51. The term O is a dummy term that we use when we need to present a closed
term but does not matter which term. For example, if we are asked to witness by a
closed term the existential quantifier in ∃x (⊥ → A(x)), we can take x = O.

1.11 Law of excluded middle for quantifier-free

formulas

1.52. The Heyting arithmetic HA
ω is an intuitionistic theory, and intuitionistic

logic does not prove the law of excluded middle, so naturally HA
ω does not prove

the law of excluded middle. However, HAω does prove the law of excluded middle
for quantifier-free formulas. This is a contribution not of the logical part of HAω,
but of the arithmetical part of HAω, namely characteristic terms and induction. The
idea of the proof is very simple:

1. we reduce quantifier-free formulas Aqf to χAqf
=0 0;

2. we prove ∀x (x =0 0 ∨ x 6=0 0) by induction on x;

3. taking x = χAqf
we get Aqf ∨ ¬Aqf.

1.53 Theorem.

1. For all quantifier-free formulas Aqf of HA
ω, we have HA

ω ⊢ Aqf ∨ ¬Aqf [78,
proposition 2.9 in chapter 3] [50, corollary 3.18].

2. For all quantifier-free sentences Aqf of HA
ω, we have HA

ω ⊢ Aqf or HA
ω ⊢

¬Aqf [50, proposition 3.8] [75, theorem 2.2.23].

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i .

1.54 Proof. We do the proof only for HA
ω; the cases of the other theories are

analogous.

1. By theorem 1.44 we have (∗1) Aqf ↔ χAqf
=0 0. We can prove ∀x (x =0

0 ∨ x 6=0 0) by induction on x, so (∗2) χAqf
=0 0 ∨ χAqf

6=0 0. From (∗1) and
(∗2) we get (∗3) Aqf ∨ ¬Aqf.

2. By theorem 1.44 we have (∗1) HAω ⊢ Aqf ↔ χAqf
=0 0 where χAqf

is a closed
term of type 0. So by point 3 of theorem 1.30 there exists n ∈ N such that
(∗2) HAω ⊢ χAqf

=0 n̄. From (∗1) and (∗2) we get HAω ⊢ Aqf ↔ n̄ =0 0. So we
have HA

ω ⊢ Aqf or HA
ω ⊢ ¬Aqf accordingly to n = 0 or n 6= 0, respectively.

39

1.12 Majorisability and majorants

1.55. Now we turn to the basic properties of majorisability and to the existence of
majorants of closed terms. These properties are necessary for some proof interpre-
tations that, in the face of a theorem ∃xA(x), seek to find not an exact witness t
for x (such that A(t)) but a bound t on x (such that ∃x ≤e t A(x)).

Properties of ≤e, ≤i and max We prove the basic properties of ≤e, ≤i and max.
Some properties are expected: for example, ≤e is transitive. Other properties
are a little bit more surprising: for example, x ≤e max xy but provided that
x ≤e x and y ≤e y. Admittedly, the proofs are tedious, so the reader may
want to skip them.

Majorants We show that every closed term t has a majorant tm such that t ≤e tm.
The construction of tm uses a small cute idea: we cannot simply take tm ≡ t
because t ≤e tm requires tm to be non-decreasing, so we (essentially) take tm

to be the non-decreasing version tmn :≡ max{t0, t1, t2, . . . , tn} of t.

1.56 Proposition. The theory HA
ω proves:

1. (a) 0 ≤0 x [19, lema 30.1].

(b) x ≤0 0↔ x =0 0 [19, lema 30.3];

2. (a) x ≤0 y ↔ Sx ≤0 Sy [19, lema 30.2];

(b) x ≤0 Sy ↔ x ≤0 y ∨ x =0 Sy [19, lema 30.5];

3. (a) x ≤0 x [19, teorema 131.1];

(b) x ≤0 y ∧ y ≤0 x → x =0 y [78, proposition 2.8(ii) in chapter 3] [19,
teorema 131.2];

(c) x ≤0 y ∧ y ≤0 z → x ≤0 z [78, proposition 2.11(iii) in chapter 3] [19,
teorema 131.3];

4. (a) x ≤0 maxxy ∧ y ≤0 maxxy [19, lema 134.1];

(b) x ≤0 x
′ ∧ y ≤0 y

′ → maxxy ≤0 maxx′y′ [19, lema 134.3];

5. (a) x ≤e
ρ y → y ≤e

ρ y [15, lemmas 1(i) and 2(i)];

(b) x ≤e
ρ y ∧ y ≤e

ρ z → x ≤e
ρ z [15, lemmas 1(i) and 2(i)];

6. (a) maxρ ≤e
ρρρ maxρ [15, lemma 4(ii)];

(b) x ≤e
ρ x ∧ y ≤e

ρ y → x ≤e maxρ xy ∧ y ≤e maxρ xy [15, lemma 4(i)];

7. The following rule holds in HA
ω [19, proposição 143]:

Ab ∧ x ≤e y → sx ≤e ty ∧ tx ≤e ty

Ab → s ≤e t
.

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i (for HAω

i replacing ≤e by ≤i).

40

1.57 Proof. We do the proofs only for HA
ω
i ; the cases of the other theories are

analogous.

1. (a) We can prove 0 ≤0 x ≡ 0 .− x =0 0 by induction on x.

(b) Follows from x ≤0 0 ≡ x .− 0 =0 0 and x .− 0 =0 x.

2. (a) Follows from Sx .− Sy =0 x
.− y, which we can prove by induction on y.

(b) We prove A(x, y) :≡ x ≤0 Sy ↔ x ≤0 y ∨ x =0 Sy by double induction
on x and y.

A(0, y) Follows from point 1a.

A(x, 0) The proof is by induction on x. The base case is an instance
of A(0, y), so let us see the induction step: by point 2a, A(Sx, 0)
is equivalent to x ≤0 0 ↔ Sx ≤0 0 ∨ x =0 0, which is provable by
point 1b.

A(x, y)→ A(Sx, Sy) By point 2a, A(Sx, Sy) is equivalent to A(x, y).

3. (a) The proof is by induction on x, using point 2a in the induction step.

(b) We prove A(x, y) :≡ x ≤0 y ∧ y ≤0 x→ x =0 y by double induction on x
and y.

A(0, y) Follows from point 1b.

A(x, 0) Analogously to A(0, y).

A(x, y)→ A(Sx, Sy) By point 2a, A(Sx, Sy) is equivalent to A(x, y).

(c) We prove A(z) :≡ x ≤0 y ∧ y ≤0 z → x ≤0 z is by induction on z. The
base case follows from point 1b, so let us see the induction step: from
A(z) we get x ≤0 y ∧ (y ≤0 z ∨ y =0 Sz) → x ≤0 z ∨ x ≤0 Sz, where
by point 2b the premise is equivalent to the premise of A(Sz), and the
conclusion implies the conclusion of A(Sz).

4. (a) Let us only prove A(x, y) :≡ x ≤0 maxxy by double induction on x and
y; the case of y ≤0 maxxy is analogous. The base cases are easy, so let
us see the induction step: from A(x, y) ≡ x .− (x + (y .− x)) =0 0 we
get A(Sx, Sy) ≡ Sx .− (Sx + (Sy .− Sx)) =0 0 since x .− (x + (y .− x)) =0

Sx .− (Sx+ (Sy .− Sx)).

(b) We only sketch the proof. First we prove (∗) x ≤0 z∧y ≤0 z → maxxy ≤0

z by triple induction on x, y and z. Now, if x ≤0 x′ and y ≤0 y′,
then x ≤0 maxx′y′ and y ≤0 maxx′y′ by points 3c and 4a, therefore
maxxy ≤0 maxx′y′ taking z := maxx′y′ in (∗).

5. (a) If ρ = 0, then the claim follows from point 3a. If ρ is a composite type,
then x ≤i y ∧ u ≤i v → yu ≤i yv ∧ yu ≤i yv, so x ≤i y → y ≤i y by the
rule of ≤i.

(b) The proof is by induction on the structure of ρ. The base case is point 3c,
so let us see the induction step. We have x ≤i y ∧ y ≤i z ∧ u ≤i v →
xu ≤i zv ∧ zu ≤i zv: from the premise (which implies v ≤i v and z ≤i z
by point 5a) we get xu ≤i yv, yv ≤i zv and zu ≤i zv, so xu ≤i zv by

41

induction hypothesis. By the rule of ≤i we conclude x ≤i y ∧ y ≤i z →
x ≤i z.

6. (a) Anticipating point 7, it suffices to prove x ≤i x′ ∧ y ≤i y′ → maxρ xy ≤i

maxρ x
′y′ by induction on the structure of ρ. The base case is point 4b,

so let us see the induction step. We have x ≤i x′ ∧ y ≤i y′ ∧ u ≤i v →
max(xu)(yu) ≤i max(x′v)(y′v) ∧ max(x′u)(y′u) ≤i max(x′v′)(y′v): from
the premise we get xu ≤i x′v, yu ≤i y′v, x′u ≤i x′v and y′u ≤i y′v, so we
get the conclusion by induction hypothesis.

(b) The proof is by induction on the structure of ρ. The base case follows
from point 4a, so let us see the induction step. We prove x ≤i x∧y ≤i y →
x ≤i maxxy (the part x ≤i x ∧ y ≤i y → y ≤i maxxy is analogous) by
proving x ≤i x∧ y ≤i y ∧ u ≤i v → xu ≤i max(xv)(yv)∧max(xu)(yu) ≤i

max(xv)(yv): from the premise we get xu ≤i xv, xv ≤i xv, yu ≤i yv and
yv ≤i yv so we get the conclusion by induction hypothesis and points 5b
and 6a.

7. The proof is by induction on the length of the tuple x. The base case is trivial,
so let us see the induction step. We assume (∗1) HAω

i ⊢ Ab ∧ x, x′ ≤i y, y′ →
sxx′ ≤i tyy′ ∧ txx′ ≤i tyy′ and prove (∗2) HAω

i ⊢ Ab → s ≤i t. Taking x = y
in (∗1) we get (Ab ∧ y ≤i y)∧ x′ ≤i y′ → tyx′ ≤i tyy′. So we have the premises
of the following instances of the rule of ≤i, therefore we have the conclusions:

(Ab ∧ x ≤i y) ∧ x′ ≤i y′ → sxx′ ≤i tyy′ ∧ tyx′ ≤i tyy′

Ab ∧ x ≤i y → sx ≤i ty
,

(Ab ∧ x ≤i y) ∧ x′ ≤i y′ → txx′ ≤i tyy′ ∧ tyx′ ≤i tyy′

Ab ∧ x ≤i y → tx ≤i ty
,

From the conclusions we get (∗2) by induction hypothesis.

1.58 Definition. Let t be a term of HA
ω and FV(t) = {x}. We say that t is

monotone if and only if HAω ⊢ λx . t ≤e λx . t. Analogously for WE-HA
ω, E-HAω,

HA
ω
e and HA

ω
i (for HAω

i replacing ≤e by ≤i) [15, definition 3].

1.59. In point 1b of the next definition we will define a term tm
′

in a formal manner
that turns out to be quite cryptic. So it is convenient to say that, informally, tm

′

is
just the following non-decreasing version of t: tm

′

n :≡ max{t0, t1, t2, . . . , tn}.

1.60 Definition.

1. For each closed term t of HAω we define the term tm of HAω by recursion on
the structure of t by:

(a) tm :≡ t for t ∈ {0, S,Π,Σ};
(b) (Ri)

m :≡ (Ri)
m′

where tm
′

:≡ λx .Rρx(t0)
(
λy, x . maxρ y(t(Sx))

)
[50, def-

inition 3.65].

(c) (st)m :≡ smtm.

42

2. For each term t of HAω we define the term tm(x) :≡ (λx . t)mx where FV(t) =
{x} and (λx . t)m was defined in the previous point.

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i (for HAω

i replacing ≤e by ≤i).

1.61 Theorem.

1. For all closed terms t of HAω we have HA
ω ⊢ t ≤e tm.

2. For all terms t(x) of HAω we have HA
ω ⊢ ∀̃x′ ∀x ≤e x′ (t(x) ≤e tm(x′)) where

FV(t) = {x}.

Analogously for WE-HA
ω, E-HAω, HAω

e and HA
ω
i (for HAω

i replacing ≤e by ≤i) [15,
lemma 5].

1.62 Proof. We do the proof only for HA
ω
i ; the cases of the other theories are

analogous.

1. First we prove: (∗1) for all terms sρ0 and tρ0 of HAω
i , if (∗2) HAω

i ⊢ ∀z0 (sz ≤i

tz) then HA
ω
i ⊢ s ≤i tm

′

(this contains a tiny patch to the literature [19,
lema 151]). We assume the premise and prove the conclusion by proving
A(v) :≡ ∀u (u ≤0 v → su ≤i tm

′

v ∧ tm
′

u ≤i tm
′

v) by induction on v.

Base case By point 1b of proposition 1.56, A(0) is equivalent to s0 ≤i t0∧t0 ≤i

t0, which follows from (∗2).
Induction step We assume A(v), take any u ≤0 Sv and prove the conclusion

of A(Sv), that is (∗3) su ≤i max(tm
′

v)(t(Sv))∧ tm′

u ≤i max(tm
′

v)(t(Sv)).
By point 2b of proposition 1.56 we have two cases.

u ≤0 v We have su ≤i tm
′

v and tm
′

u ≤i tm
′

v by A(v), and t(Sv) ≤i t(Sv)
by (∗2). So we have (∗3) by points 5b and 6b of proposition 1.56.

u =0 Sv We have s(Sv) ≤i t(Sv) by (∗2), and tm
′

v ≤i tm
′

v by A(v)

with u = v. So s(Sv) ≤i max(tm
′

v)(t(Sv)) ∧ max(tm
′

v)(t(Sv)) ≤i

max(tm
′

v)(t(Sv)) by point 6a of proposition 1.56, that is (∗3).

Now we prove the claim of the theorem by induction on the structure of t.
The induction step is easy, so let us see the base case.

S We have x ≤0 y → Sx ≤0 Sy by point 2a of proposition 1.56, so S ≤i S by
the rule of ≤i. Analogously for 0.

Σ We have x ≤i x′ ∧ y ≤i y′ ∧ z ≤i z′ → Σxyz ≤i Σx′y′z′ because the
conclusions is equivalent to xz(yz) ≤i x′z′(y′z′). So Σ ≤i Σ by point 7 of
proposition 1.56. Analogously for Π.

R Say R ≡ R1, . . . ,Rn. We can prove Rx ≤i Rx by proving y ≤i y′ ∧ z ≤i

z′ → Rxyz ≤i Rxy′z′ by induction on x. Then Ri ≤i Rm
i by (∗1).

2. By point 2d of proof 1.35 we have λx . t(x) ≡ λx′ . t(x′). By the previous
point we have λx . t(x) ≤i (λx′ . t(x′))m. So, if x ≤i x′, then (λx . t(x))x ≤i

(λx′ . t(x′))mx′, that is t(x) ≤i tm(x′).

43

1.13 Principles

1.63. So far we have been working with with HA
ω (and its variants). However, proof

interpretations interpret more than just HAω: they also interpret certain principles
like the axiom (schema) of choice

∀x ∃y A(x, y)→ ∃Y ∀xA(x, Y x).

So now we collect all the principles that we will be considering later.

1.64 Definition. In table 1.5 we define several principles [50, section 5.1, defi-
nitions 5.26 and 8.4] [15, section 4.1 and proposition 4.4] [14, section 3.1]. The
principles using ≤e can also be read with ≤i instead of ≤e: in the context of HAω

e

and PA
ω
e they use ≤e, while in the context of HAω

i and PA
ω
i they use ≤i. The vari-

ables introduced as bounds are not free in the formulas A, Aqf, A∃f, A∃̃f, Ab, B and
Bb. For example, in BAC, x and y can be free in A, but u and v cannot.

1.65 Remark. In all principles, where are single variables x and y, we can generalise
to tuples of variables x and y by induction on the length of the tuples. For example,
AC generalises to ∀x ∃y A(x, y) → ∃Y ∀xA(x, Y x). (Some principles are already
stated with tuples because they seemly do not generalise to tuples. For example,
¬¬∃xAqf → ∃xAqf does not seem to generalise to ¬¬∃xAqf → ∃xAqf, so we stated
QF-MP already with tuples x.)

1.66 Proposition.

1. The theories HAω
e +B-BAC+ ∃̃F-BIP+MAJ and HA

ω
i +B-BAC+∀-BIP+MAJ

prove B-BC [15, page 92]. Analogously replacing both B-BAC by BAC and
B-BC by BC [15, proposition 3] [14, proposition 2].

2. The theories HAω
e +B-BAC+ ∃̃F-BIP and HA

ω
i +B-BAC+∀-BIP prove B-MAC.

Analogously replacing both B-BAC by BAC and B-MAC by MAC [15, proposi-
tion 3] [14, proposition 3].

1.67 Proof.

1. We do the proof only for HA
ω
e + B-BAC + ∃̃F-BIP + MAJ; the cases of the

other theories are analogous. By MAJ, there exists an u′ such that u ≤e u′

(this contains a tiny patch to the literature). Using ∃̃F-BIP in the second
implication, B-BAC in the fourth implication, and taking x′ := u′ (which
satisfies x′ ≤e x′) in the fifth implication, we get

∀x ≤e u ∃y Ab →
∀x (x ≤e u→ ∃y Ab)→

∀x ∃̃v (x ≤e u→ ∃y ≤e v Ab)→
∀x ∃v (v ≤e v ∧ (x ≤e u→ ∃y ≤e v Ab))→

∃̃v′ ∀̃x′ ∀x ≤e x′ ∃v ≤e v′x′ (v ≤e v ∧ (x ≤e u→ ∃y ≤e v Ab))→
∃̃v′ ∀x ≤e u′ ∃v ≤e v′u′ (v ≤e v ∧ (x ≤e u→ ∃y ≤e v Ab))→

∃̃v′ ∀x ≤e u ∃y ≤e v′u′Ab →
∃̃v ∀x ≤e u ∃y ≤e v Ab.

44

axiom (schema) of choice AC ∀x ∃y A(x, y)→ ∃Y ∀xA(x, Y x)

axiom (schema) of choice (for
quantifier-free formulas) QF-AC

∀x ∃y Aqf(x, y)→ ∃Y ∀xAqf(x, Y x)

bounded axiom
(schema) of choice BAC

∀x ∃y A→ ∃̃v ∀̃u ∀x ≤e u ∃y ≤e vuA

bounded axiom (schema) of choice
(for bounded formulas) B-BAC

∀x ∃y Ab → ∃̃v ∀̃u ∀x ≤e u ∃y ≤e vuAb

monotone axiom
(schema) of choice MAC

∀̃x ∀̃z ∀̃y ≤e z (A(x, y)→ A(x, z)) ∧
∀̃x ∃̃y A(x, y)→ ∃̃Y ∀̃xA(x, Y x)

monotone axiom (schema) of choice
(for bounded formulas) B-MAC

∀̃x ∀̃z ∀̃y ≤e z (Ab(x, y)→ Ab(x, z)) ∧
∀̃x ∃̃y Ab(x, y)→ ∃̃Y ∀̃xAb(x, Y x)

independence of premises
(for ∃-free premises) ∃F-IP

(A∃f → ∃xB)→ ∃x (A∃f → B)
(x /∈ FV(A∃f))

independence of premises (for
purely universal premises) ∀-IP

(∀xAqf → ∃y B)→ ∃y (∀xAqf → B)
(y /∈ FV(∀xAqf))

bounded independence of premises

(for ∃̃-free premises) ∃̃F-BIP
(A∃̃f → ∃xB)→ ∃̃y (A∃̃f → ∃x ≤e y B)

(x /∈ FV(A∃̃f))

bounded independence
of premises (for purely

universal premises) ∀-BIP

(∀xAb → ∃y B)→ ∃̃z (∀xAb → ∃y ≤e z B)
(y /∈ FV(∀xAb))

Markov’s principle (for
quantifier-free formulas) QF-MP

¬¬∃xAqf → ∃xAqf

bounded Markov’s principle
(for bounded formulas) B-BMP

(∀xAb → Bb)→
∃̃y (∀x ≤e y Ab → Bb)

bounded collection BC ∀x ≤e u ∃y A→ ∃̃v ∀x ≤e u ∃y ≤e v A

bounded collection
(for bounded formulas) B-BC

∀x ≤e u ∃y Ab → ∃̃v ∀x ≤e u ∃y ≤e v Ab

bounded contra collection
(for bounded formulas) B-BCC

∀̃v ∃x ≤e u∀y ≤e v Ab → ∃x ≤e u∀y Ab

law of excluded middle LEM A ∨ ¬A
law of excluded middle (for
bounded formulas) B-LEM

Ab ∨ ¬Ab

bounded universal disjunction
(for bounded formulas) B-BUD

∀̃u, v (∀x ≤e uAb ∨ ∀y ≤e v Bb)→
∀xAb ∨ ∀y Bb

majorisability axioms MAJ ∀x ∃y (x ≤e y)

ω-rule ωR
for all closed terms tρ A(t)

∀xρ A(x)

Table 1.5: principles.

45

2. We do the proof only for HA
ω
e + B-BAC + ∃̃F-BIP; the cases of the other

theories are analogous. Let us assume (∗) ∀̃x ∀̃z ∀̃y ≤e z (Ab(x, y)→ Ab(x, z)).

Using ∃̃F-BIP in the third implication, B-BAC in the fourth implication, taking
x′ := x (which satisfies x′ ≤e x′) in the fifth implication, and using (∗) is the
last implication, we get

∀̃x ∃̃y Ab(x, y)→
∀x

(
x ≤e x→ ∃y (y ≤e y ∧Ab(x, y))

)
→

∀x ∃̃y′
(
x ≤e x→ ∃y ≤e y′ (y ≤e y ∧Ab(x, y))

)
→

∀x ∃y′
(
y′ ≤e y′ ∧ (x ≤e x→ ∃̃y ≤e y′Ab(x, y))

)
→

∃̃Y ∀̃x ∀x′ ≤e x ∃y′ ≤e Y x
(
y′ ≤e y′ ∧ (x′ ≤e x′ → ∃̃y ≤e y′ Ab(x

′, y))
)
→

∃̃Y ∀̃x ∃y′ ≤e Y x ∃̃y ≤e y′ Ab(x, y)→
∃̃Y ∀̃x ∃̃y ≤e Y xAb(x, y)→

∃̃Y ∀̃xAb(Y x).

1.14 Conclusion

1.68. We mainly saw the following three big points.

HA
ω Our framework is HAω: a version of Peano arithmetic that

1. does not have the law of excluded middle A ∨ ¬A;
2. talks not only about N, but also about NN, (NN)N, N(NN), and so on.

Functions We saw that in HA
ω:

1. we have λ-abstraction λx . t(x) (that is, informally, x 7→ t(x));

2. we can represent primitive recursive functions (+, ·, and so on) by terms;

3. we can define terms by cases by s ∨χAqf
t =

{
s if Aqf

t if ¬Aqf

.

Majorisability We have a majorisability ≤e (and ≤i) such that f ≤e g roughly
speaking means “f is pointwise smaller than or equal to g, and g is non-
decreasing”.

46

Part II

Proof interpretations

47

Chapter 2

Negative translations

2.1 Introduction

2.1. Classical logic CL is (informally) the usual logic in mathematics, and intuition-
istic logic IL is (informally) the constructive part of CL. So IL is weaker than CL,
but IL is constructive while CL is not.

IL is weaker than CL We have IL ⊢ A ⇒: CL ⊢ A.

IL is constructive A proof IL ⊢ ∃xA(x) can be turned into a proof IL ⊢ A(t) (for
some suitable term t of IL) that we regard in the following way: IL ⊢ A(t) is a
constructive proof of IL ⊢ ∃xA(x) that witnesses ∃x by t.

Given these differences between CL and IL, it is surprising that CL can be embedded
in IL.

2.2. A negative translation N is a embedding of CL in IL. By embedding we mean
a mapping of formulas A 7→ AN with the following two properties:

Soundness theorem if CL+ Γ ⊢ A, then IL+ ΓN ⊢ AN;

Characterisation theorem CL ⊢ A↔ AN.

In this chapter we introduce four negative translations due to Gödel and Gentzen,
Kolmogorov, Kuroda, and Krivine. We end with two applications: a conservation
result and a relative consistency result.

2.3. Our (admittedly modest) main contribution to this topic is the extension of the
Krivine, Gödel-Gentzen and Kolmogorov negative translations to PA

ω
i ± B-BAC ±

B-BCC ±MAJ (definition 2.5 and theorem 2.9). (The Kuroda negative translation
was extended by Ferreira and Oliva [15, section 5], and the soundness theorems of
our extensions are corollaries to the soundness theorem of their extension.)

49

2.2 Definition

2.4. Many classical laws hold intuitionistically if they are double negated. For
example:

CL ⊢ A ∨ ¬A, IL ⊢ ¬¬(A ∨ ¬A),
CL ⊢ ¬¬A→ A, IL ⊢ ¬¬(¬¬A→ A),

CL ⊢ ¬(A ∧ B)→ ¬A ∨ ¬B, IL ⊢ ¬¬(¬(A ∧B)→ ¬A ∨ ¬B),

CL ⊢ (A→ B)→ ¬A ∨B, IL ⊢ ¬¬((A→ B)→ ¬A ∨B),

CL ⊢ ¬∀x¬A→ ∃xA, IL ⊢ ¬¬(¬∀x¬A→ ∃xA).

This could lead us to conjecture that for all formulas A we have CL ⊢ A ⇔ IL ⊢
¬¬A, but this is false: CL ⊢ A but IL 0 ¬¬A for A ≡ ¬∀xB → ∃x¬B. The
correct proposition is CL ⊢ A ⇔ IL+DNS ⊢ ¬¬A, where the double negation shift
DNS is the principle ∀x¬¬A → ¬¬∀xA [78, exercise 2.2.3 in chapter 3]. We may
wonder if with a more involved change N (than a plain double negation) we have
CL ⊢ A ⇔ IL ⊢ AN by making DNS superfluous. We are going to use this question
as a motivation to four such Ns called negative translations.

Kuroda negative translation The double negation shift DNS is superfluous when
applied to a universal quantification with a negated matrix, that is ∀x¬¬A→
¬¬∀xA is already provable in IL if A is a negated formula. So one way to
make DNS superfluous is to define a translation Ku that maps a formula A to
the formula AKu obtained from A by double negating not only A but also all
matrices of universal quantifications in A.

Kolmogorov negative translation A wasteful variant of Ku is the translation Ko that

maps a formula A to the formula AKo obtained from A by double negating
every subformula of A.

Krivine negative translation Another way to make DNS superfluous is to consider
CL based on a language without ∃ and define a translation Kr that maps a
formula A to the formula AKr obtained from A by double negating A and
moving one of the negations inside up to the atomic subformulas of A. For
example, in step (2.1) below we add a double negation, in step (2.2) we move
one negation inside, and in step (2.3) we further move the negation inside up
to the atomic level:

∀x (Aat ∨ Bat) (2.1)

¬¬∀x (Aat ∨ Bat) (2.2)

¬∃x¬(Aat ∨ Bat) (2.3)

¬∃x (¬Aat ∧ ¬Bat) ≡
(∀x (Aat ∨Bat))

Kr.

Moving one negation inside turns all ∀s into ∃s, so there will be no ∀s in AKr,
thus making DNS superfluous. (Later we can put back ∃ and translate ∃xA
as if it were ¬∀x¬A.)

50

Gödel-Gentzen negative translation A fourth attempt is to identify a fragment of IL
where for all formulas we have IL ⊢ ¬¬A ↔ A, and then define a translation
GG that maps a formula A to the formula AGG obtained from A by rewriting
A in the fragment. If we try to prove IL ⊢ ¬¬A ↔ A by induction on the
structure of A we find no problems with ∧, → and ∀, but we find problems
with Aat and ∃ (below “IH” signals a use of induction hypothesis):

¬¬Aat = Aat,

¬¬(A ∧ B) ↔ ¬¬A ∧ ¬¬B IH↔ A ∧B,

¬¬(A ∨ B)
IH↔ ¬¬(¬¬A ∨ ¬¬B) = ¬¬A ∨ ¬¬B IH↔ A ∨ B,

¬¬(A→ B) ↔ (¬¬A→ ¬¬B)
IH↔ (A→ B),

¬¬∀xA IH↔ ¬¬∀x¬¬A ↔ ∀x¬¬A IH↔ ∀xA,
¬¬∃xA IH↔ ¬¬∃x¬¬A = ∃x¬¬A IH↔ ∃xA.

We solve the problem with atomic formulas by assuming that in the fragment
they always occur negated, and we solve the provable with ∨ and ∃ by leaving
them out of the fragment. So the fragment in question is the negative fragment
whose formulas are build from negated atomic formulas by means of ∧,→ and
∀. Then the translation GG rewrites a formula into the negative fragment by:

1. rewriting Aat as ¬¬Aat;

2. rewriting A ∨B as ¬(¬A ∧ ¬B);

3. rewriting ∃xA as ¬∀x¬A;
4. leaving invariant ∧, → and ∀.

Since AGG is in the negative fragment, we have IL ⊢ ¬¬AGG ↔ AGG, so
hopefully DNS becomes superfluous.

2.5 Definition.

1. The Gödel-Gentzen negative translation [27] [29, page 287] [23] [24, theo-
rem III] assigns to each formula A of PAω

e the formula AGG of HAω
e defined

by recursion on the structure of A by (where Aat 6≡ ⊥)

⊥GG :≡ ⊥,
AGG

at :≡ ¬¬Aat,

(A ∧B)GG :≡ AGG ∧ BGG,

(A ∨B)GG :≡ ¬(¬AGG ∧ ¬BGG),

(A→ B)GG :≡ AGG → BGG,

(∀x ≤e t A)GG :≡ ∀x ≤e t AGG,

(∃x ≤e t A)GG :≡ ¬∀x ≤e t¬AGG,

(∀xA)GG :≡ ∀xAGG,

(∃xA)GG :≡ ¬∀x¬AGG.

51

2. The Kolmogorov negative translation [54] [53, formula (49)] assigns to each
formula A of PAω

e the formula AKo of HAω
e defined by recursion on the structure

of A by

AKo
at :≡ ¬¬Aat,

(A ∧B)Ko :≡ ¬¬(AKo ∧BKo),

(A ∨B)Ko :≡ ¬¬(AKo ∨BKo),

(A→ B)Ko :≡ ¬¬(AKo → BKo),

(∀x ≤e t A)Ko :≡ ¬¬∀x ≤e t AKo,

(∃x ≤e t A)Ko :≡ ¬¬∃x ≤e t AKo,

(∀xA)Ko :≡ ¬¬∀xAKo,

(∃xA)Ko :≡ ¬¬∃xAKo.

3. The Krivine negative translation [69, sections 2 and 4] [2, page 1] [20, defini-
tion 3.1] assigns to each formula A of PAω

e the formula AKr :≡ ¬¬AKr of HA
ω
e

where AKr is defined by recursion on the structure of A by

(Aat)Kr :≡ ¬Aat,

(A ∧ B)Kr :≡ AKr ∨BKr,

(A ∨ B)Kr :≡ AKr ∧BKr,

(A→ B)Kr :≡ ¬AKr ∧ BKr,

(∀x ≤e t A)Kr :≡ ∃x ≤e t AKr,

(∃x ≤e t A)Kr :≡ ¬∃x ≤e t¬AKr,

(∀xA)Kr :≡ ∃xAKr,

(∃xA)Kr :≡ ¬∃x¬AKr.

4. The Kuroda negative translation [57, page 46] [15, section 5] assigns to each
formula A of PAω

e the formula AKu :≡ ¬¬AKu of HAω
e where AKu is defined by

recursion on the structure of A by

(Aat)Ku :≡ Aat,

(A ∧ B)Ku :≡ AKu ∧BKu,

(A ∨ B)Ku :≡ AKu ∨BKu,

(A→ B)Ku :≡ AKu → BKu,

(∀x ≤e t A)Ku :≡ ∀x ≤e t¬¬AKu,

(∃x ≤e t A)Ku :≡ ∃x ≤e t AKu,

(∀xA)Ku :≡ ∀x¬¬AKu,

(∃xA)Ku :≡ ∃xAKu.

Given a set Γ of formulas of CL, we define ΓGG := {AGG : A ∈ Γ}. Analogously for
Ko, Kr, Ku, and for CL, PAω, WE-HA

ω, E-HAω and HA
ω
i .

52

2.3 Soundness

2.6. Now we prove the soundness theorems of GG, Ko, Kr and Ku, essentially saying
that these negative translations map theorems of CL to theorems of IL.

To avoid doing four tedious proofs by induction on derivations, we take a short-
cut: in the next proposition we show that GG, Ko, Kr and Ku are equivalent in IL,
so it suffices to prove the soundness theorem for one of them. This proposition is
also of interest on its own since it says that four different embeddings of CL in IL

turn out to be (essentially) the same; in chapter 14 we will see if this is a coincidence
or not.

2.7 Proposition. For all formulas A of IL, we have IL ⊢ AGG ↔ AKo ↔ AKr ↔
AKu [58, pages 42–43] [69, proposition 2.1] [2, lemma 0.2]. Analogously for HA

ω,
WE-HA

ω, E-HAω, HAω
e and HA

ω
i .

2.8 Proof. Let us prove the proposition for HAω
i ; the cases of the other theories are

analogous. First let us prove

HA
ω
i ⊢ ¬¬(x ≤i

ρ y)→ x ≤i
ρ y (2.4)

by induction on the structure of ρ [15, lemma 7]. The base case follows from x ≤i
0

y ↔ x ≤0 y and point 1 of theorem 1.53, so let us see the induction step. We have
x ≤i y ∧ u ≤i v → xu ≤i yv ∧ yu ≤i yv, so ¬¬(x ≤i y) ∧ ¬¬(u ≤i v) → ¬¬(xu ≤i

yv) ∧ ¬¬(yu ≤i yv), thus ¬¬(x ≤i y) ∧ u ≤i v → xu ≤i yv ∧ yu ≤i yv by induction
hypothesis, therefore ¬¬(x ≤i y)→ x ≤i y by the rule of ≤i.

Now let us prove the proposition by induction on the structure of A.

AKu ↔ AGG Using (2.4) in the fourth equivalence and induction hypothesis in the
fifth equivalence, we get

(∃x ≤i t A)Ku ≡
¬¬∃x ≤i t AKu ↔

¬¬∃x (x ≤i t ∧ AKu)↔
¬¬∃x¬¬(x ≤i t ∧ AKu)↔

¬¬∃x (¬¬(x ≤i t) ∧ ¬¬AKu)↔
¬¬∃x (x ≤i t ∧ ¬¬AKu) ≡
¬¬∃x (x ≤i t ∧ AKu)↔
¬¬∃x (x ≤i t ∧AGG)↔
¬∀x¬(x ≤i t ∧AGG)↔
¬∀x (x ≤i t→ ¬AGG)↔

¬∀x ≤i t¬AGG ≡
(∃x ≤i t A)GG.

Analogously for Aat, ∧, ∨, →, ∀≤i, ∀ and ∃.

53

AKu ↔ AKo Using induction hypothesis in the last equivalence, we get

(A ∨ B)Ku ≡
¬¬(AKu ∨ BKu)↔

¬¬(¬¬AKu ∨ ¬¬BKu) ≡
¬¬(AKu ∨ BKu)↔
¬¬(AKo ∨ BKo) ≡

(A ∨ B)Ko.

Analogously for Aat, ∧, →, ∃≤i, ∀≤i, ∀ and ∃.

AGG ↔ AKr Using the induction hypothesis in the first equivalence, we get

(A→ B)GG ≡
(AGG → BGG)↔

AKr → BKr ≡
(¬AKr → ¬BKr)↔
¬(¬AKr ∧ BKr) ≡

(A→ B)Kr.

Analogously for Aat, ∧, ∨, ∃≤i, ∀≤i, ∀ and ∃.

2.9 Theorem (soundness). Let Γ be a set of formulas of CL. For the pair CL +
Γ, IL+ ΓGG we have: if CL + Γ ⊢ A, then IL + ΓGG ⊢ AGG [27] [29, theorem I] [23]
[24, theorem III]. Analogously for the pairs

PA
ω ± QF-AC+ Γ, HAω ± QF-AC± QF-MP+ ΓGG,

WE-PA
ω ± QF-AC+ Γ, WE-HA

ω ± QF-AC± QF-MP+ ΓGG,

E-PA
ω ± QF-AC+ Γ, E-HAω ± QF-AC± QF-MP+ ΓGG,

PA
ω
e ± B-BAC± B-BCC±MAJ+ Γ, HAω

e ± B-BAC± ∃̃F-BIP±MAJ± B-BMP+ ΓGG,

PA
ω
i ± B-BAC± B-BCC±MAJ+ Γ, HAω

i ± B-BAC± ∀-BIP±MAJ± B-BMP+ ΓGG,

where in each pair the sign ± is taken the same everywhere [15, proposition 5]
[75, theorem 1.10.11(ii)], and analogously for Ko [54] [53, section 3] and Kr [2,
theorem 0.1.2] [69, proposition 2.1] and Ku [57, page 46].

2.10 Proof. By proposition 2.7 it suffices to prove the theorem for Ku. The proof
is by induction on the derivation of A. When translating an axiom or rule, if it is
easy to see that its translation is provable, we simply state the translation without
comments.

A ∨ ¬A We have

(A ∨ ¬A)Ku ≡ ¬¬(AKu ∨ ¬AKu).

Analogously for A→ A∧A, A∨A→ A, A∧B → A, A→ A∨B, A∧B → B∧A,
A ∨B → B ∨A and ⊥ → A.

54

∀xA→ A[t/x] We have

(∀xA→ A[t/x])Ku ≡ ¬¬(∀x¬¬AKu → A[t/x]Ku).

Here we use AKu[t/x] ≡ A[t/x]Ku. Analogously for A[t/x]→ ∃xA.

A→ B /C ∨ A→ C ∨B We have

(A→ B)Ku ≡ ¬¬(AKu → BKu),

(C ∨A→ C ∨ B)Ku ≡ ¬¬(CKu ∨ AKu → CKu ∨BKu).

From ¬¬(AKu → BKu) we get AKu → ¬¬BKu, so CKu ∨AKu → CKu ∨¬¬BKu,
thus CKu ∨AKu → ¬¬CKu ∨ ¬¬BKu, therefore CKu ∨ AKu → ¬¬(CKu ∨ BKu),
concluding ¬¬(CKu ∨ AKu → CKu ∨ BKu). Analogously for A, A → B /B,
A → B, B → C /A → C, A ∧ B → C /A → (B → C) and A → (B →
C) /A ∧B → C.

A→ B /A→ ∀xB We have

(A→ B)Ku ≡ ¬¬(AKu → BKu),

(A→ ∀xB)Ku ≡ ¬¬(AKu → ∀x¬¬AKu).

Here we use x /∈ FV(A) = FV(AKu). Analogously for A→ B / ∃xA→ B.

Axioms of =0, S, Π, Σ and R, and x ≤i
0 y ↔ x ≤0 y Their translation is their dou-

ble negation, which follows from the axioms themselves.

Aat → s = t / Aat → r(s) =0 r(t) We have

(Aat → s = t)Ku ≡ ¬¬(Aat → (s = t)Ku),

(r(s) =0 r(t))
Ku ≡ ¬¬(Aat → r(s) =0 r(t)).

Here we use (s = t)Ku ↔ s = t (because if s =ρ t ≡ ∀x1, . . . , xn (sx1 · · ·xn =0

tx1 · · ·xn), then (s =ρ t)Ku ≡ ∀x1 ¬¬ · · · ∀xn ¬¬(sx1 · · ·xn =0 tx1 · · ·xn) and
¬¬∀x¬¬A↔ ∀x¬¬A holds intuitionistically). Analogously for the induction
rule, the extensionality axioms, the axioms of the bounded quantifications and
x ≤i y → ∀u ≤i v (xu ≤i yv ∧ yu ≤i yv).

Ab ∧ x ≤i y → sx ≤i ty ∧ tx ≤i ty /Ab → s ≤i t We have

(Ab ∧ x ≤i y → sx ≤i ty ∧ tx ≤i ty)Ku ≡
¬¬((Ab)Ku ∧ x ≤i y → sx ≤i ty ∧ tx ≤i ty)

(Ab → s ≤i t)Ku ≡ ¬¬((Ab)Ku → s ≤i t).

Note that (Ab)Ku is a bounded formula. From ¬¬((Ab)Ku ∧ x ≤i y → sx ≤i

ty ∧ tx ≤i ty) we get (Ab)Ku ∧ x ≤i y → ¬¬(sx ≤i ty) ∧ ¬¬(tx ≤i ty), that is
(Ab)Ku ∧ x ≤i y → sx ≤i ty ∧ tx ≤i ty by (2.4), thus (Ab)Ku → s ≤i t by the
rule of ≤i, concluding ¬¬((Ab)Ku → s ≤i t).

55

QF-AC Say x ≡ x1, . . . , xn. We have

QF-AC
Ku ≡

¬¬(∀x1 ¬¬ · · · ∀xn ¬¬∃y Aqf(x, y)→ ∃Y ∀x1 ¬¬ · · · ∀xn ¬¬Aqf(x, Y x)).

This formula is equivalent to ¬¬(∀x¬¬∃y Aqf(x, y)→ ∃Y ∀xAqf(x, Y x)), which
by QF-MP is equivalent to ¬¬QF-AC.

B-BAC We have

B-BAC
Ku ≡

¬¬(∀x¬¬∃y (Ab)Ku → ∃̃v ∀u¬¬(u ≤i u→ ∀x ≤e u¬¬∃y ≤e vu (Ab)Ku).

We have ¬¬∃z Bb → ∃̃z′ ¬¬∃z ≤i z′ Bb by B-BMP [15, section 4.1]. So from
the premise of B-BACKu we get ∀x ∃̃y′ ¬¬∃y ≤i y′ (Ab)Ku, thus ∃v ∀̃u ∀x ≤i

u ∃̃y′ ≤i vu¬¬∃y ≤i y′ (Ab)Ku, therefore ∃v ∀̃u ∀x ≤i u¬¬∃y ≤i vu (Ab)Ku,

getting the conclusion of B-BACKu. Analogously for MAJ.

B-BCC It is difficult to prove B-BCCKu directly, so instead we prove B-BCKu because
B-BC (generalised to tuples) and B-BCC are the contrapositive of each other.
The proof is analogously to the case of B-BAC, using B-BC itself to prove
B-BC

Ku by point 1 of proposition 1.66.

2.4 Characterisation

2.11. Now we prove the characterisation theorems of GG, Ko, Kr and Ku. Infor-
mally, these theorems say that, as far as CL is concerned, GG, Ko, Kr and Ku do
not change the meaning of formulas.

2.12 Theorem (characterisation). We have CL ⊢ A ↔ AGG [23] [24, theorem V].
Analogously for Ko [75, section 1.10.1], Kr [2, theorem 0.1.1] [69, proposition 2.1]
and Ku [75, section 1.10.1], PAω, WE-PA

ω, E-PAω [75, theorem 1.10.11(i)], PAω
e and

PA
ω
i .

2.13 Proof. By proposition 2.7 it suffices to prove the theorem for Ku. The formula
AKu is obtained from A by adding double negations in subformulas of A, so it is
equivalent to A.

2.5 Applications

2.14. Now we give two applications of negative translations.

Conservation for formulas without ∨ and ∃ The first application says (essentially)
that CL and IL prove exactly the same formulas without ∨ and ∃. This makes
sense if we recall that (informally) the difference between CL and IL is that IL
attaches a stronger meaning to ∨ and ∃:

56

1. A ∨ B means “A or B, and we can point to one that holds true”;

2. ∃xA(x) means “there exists an x such that A(x), and we know such an
x”.

So, if we drop ∨ and ∃, then the difference between CL and IL disappears, and
that is what our first application says.

Equiconsistency of CL and IL We can think of CL as a logical framework for the
usual mathematics, and IL as a logical framework for constructivism. So, for
the sake of our argument, let us identify CL with the usual mathematics, and
IL with constructivism.

One of the motivations for constructivism is that constructivism is sounder
than the usual mathematics, that is constructivism is less likely to produce
contradictions than the usual mathematics. Our second application denies
this: CL and IL are equiconsistent, that is the usual mathematics and con-
structivism are equally sound.

2.15 Definition. The negative fragment is the set NF of formulas of HAω
e generated

recursively by:

1. ⊥ ∈ NF;

2. ¬¬Aat ∈ NF;

3. if A,B ∈ NF, then A ∧B,A→ B, ∀x ≤e t A, ∀xA ∈ NF.

Analogously for CL, HAω, WE-HA
ω, E-HAω and HA

ω
i .

2.16. In other words, NF is the set of formulas without disjunctions and existential
(bounded and unbounded) quantifications, and with all atomic subformulas negated
(possibly with the exception of ⊥).

2.17 Theorem (conservation and relative consistency).

1. Let A ∈ NF and Γ ⊆ NF. For the pair CL+ Γ, IL+ Γ we have: if CL+ Γ ⊢ A,
then IL+ Γ ⊢ A [23] [24, theorem IV].

2. For the pair CL + Γ, IL+ Γ we have: if CL + Γ ⊢ ⊥, then IL+ Γ ⊢ ⊥ [23] [24,
theorem VI] [27] [29, page 295].

Analogously for the pairs

PA
ω ± QF-AC+ Γ, HAω ± QF-AC± QF-MP+ ΓGG,

WE-PA
ω ± QF-AC+ Γ, WE-HA

ω ± QF-AC± QF-MP+ ΓGG,

E-PA
ω ± QF-AC+ Γ, E-HAω ± QF-AC± QF-MP+ ΓGG,

PA
ω
e ± B-BAC± B-BCC±MAJ+ Γ, HAω

e ± B-BAC± ∃̃F-BIP±MAJ± B-BMP+ ΓGG,

PA
ω
i ± B-BAC± B-BCC±MAJ+ Γ, HAω

i ± B-BAC± ∀-BIP±MAJ± B-BMP+ ΓGG,

where in each pair the sign ± is taken the same everywhere.

57

2.18 Proof. We only do the proof for the pair CL+Γ, IL+Γ; the cases of the other
pairs are analogous.

1. We can prove IL ⊢ BGG ↔ B for all B ∈ NF by induction on the structure of
B. So we have IL ⊢ AGG ↔ A and IL+ ΓGG = IL+ Γ. Assuming the premise
of the theorem, by the soundness theorem of GG we get the conclusion of the
theorem.

2. Follows from the previous point.

2.6 Conclusion

2.19. We introduced four negative translations GG, Ko, Kr and Ku as embeddings
of CL into IL. The main results about these negative translations are the following.

Soundness and characterisation theorems Negative translations embed CL in IL.

Applications We used negative translations to do applications on:

1. conservation;

2. relative consistency.

58

Chapter 3

Modified realisability

3.1 Introduction

3.1. In this chapter we introduce a proof interpretation called modified realisability.
Maybe the best way to motivate modified realisability is by means of the BHK
(Brouwer-Heyting-Kolmogorov) interpretation [33, pages 14 and 17] [50, section 3.1].
This interpretation explains the constructive meaning of the symbols ∧, ∨, →, ∀
and ∃ by saying, by recursion on the structure of A, what it takes to constructively
prove A, that is what is the meaning of “a is a (constructive) proof of A”. For
example,

a proof of A ∧ B is a pair a, b where a is a proof of A and b is a proof of B.

(Note that we are collecting two proofs a and b in a pair a, b; if we iterate this, we
end up with tuples a, b, c, . . . of proofs, so below we use tuples.) Here is the complete
BHK interpretation:

a proof of A ∧B is a tuple a, b where a is a proof of A and b is a proof of B,

a proof of A ∨B is a tuple c, a, b where if c = 0 then a is a proof of A,

and if c 6= 0 then b is a proof of B,

a proof of A→ B is a tuple of functions B that map each proof a of A

to a proof Ba of B,

a proof of ∀xA(x) is a tuple of functions A that for all x give a proof Ax of A(x),

a proof of ∃xA(x) is a tuple x, a where a is a proof of A(x).

Let us note the following two aspects of the BHK interpretation.

1. In the clause of ∨, the BHK interpretation asks for a c that decides if we proved
A or if we proved B. So the BHK interpretation tries to decide disjunctions.

2. In the clause of ∃, the BHK interpretation asks for an x such that we proved
A(x). So the BHK interpretation tries to witness existential quantifications.

These two aspects give to the BHK interpretation a constructive nature.

59

Let us denote “a is a proof of A” by Amr(a); then the BHK interpretation becomes

(A ∧ B)mr(a, b) :≡ Amr(a) ∧ Bmr(b),

(A ∨B)mr(c, a, b) :≡ Amr(a) ∨c Bmr(b),

(A→ B)mr(B) :≡ ∀a (Amr(a)→ Bmr(Ba)),

(∀xA(x))mr(A) :≡ ∀xA(x)mr(Ax),

(∃xA(x))mr(x, a) :≡ A(x)mr(a).

This is modified realisability mr.

3.2. We also present two variants with truth mrq and mrt of modified realisabil-
ity mr; let us motivate these variants. Modified realisability mr maps an original
formula A to the interpreted formula Amr(a) and gives us information about the
latter. However, we usually want information about the former. If the formula A
belongs to a certain class of formulas Γ, then holds the so-called truth property
(∗) Amr(a) → A, so we can transfer the information from Amr(a) to A. But in
general we lose a connection between Amr(a) and A. The variants with truth change
mr in such a way that (∗) holds for larger classes Γ: mrq enlarges Γ to include dis-
junctive and existential formulas, and mrt further enlarges Γ to include all formulas.
This is pictured in figure 3.1.

mr : A
information−−−−−−→ Amr(a)

transference−−−−−−→
for A ∈ Γ

A

mrq : A
information−−−−−−→ Amrq(a)

transference−−−−−−→
for Γ,∨,∃

A

mrt : A
information−−−−−−→ Amrt(a)

transference−−−−−−→
for all A

A

Figure 3.1: transference of information by mr, mrq and mrt.

3.3. Our main contribution to this topic is the characterisation theorems for mrq
and mrt [22, theorem 2.6] (theorem 3.14).

3.2 Definition

3.4 Definition.

1. Modified realisability mr [55, paragraph 3.52] assigns to each formula A of HAω

the formula Amr :≡ ∃aAmr(a), where Amr(a) is defined by induction on the

60

structure of A by

(Aat)mr() :≡ Aat,

(A ∧ B)mr(a, b) :≡ Amr(a) ∧ Bmr(b),

(A ∨B)mr(c
0, a, b) :≡ Amr(a) ∨c Bmr(b),

(A→ B)mr(B) :≡ ∀a (Amr(a)→ Bmr(Ba)),

(∀xA)mr(A) :≡ ∀xAmr(Ax),

(∃xA)mr(x, a) :≡ Amr(a).

By (Aat)mr() we mean (Aat)mr(a) with the tuple a empty.

2. Modified realisability with q-truth mrq [45] [75, definition 3.4.2] is defined anal-
ogously to mr except for

(A ∨ B)mrq(c
0, a, b) :≡ (Amrq(a) ∧A) ∨c (Bmrq(b) ∧B),

(A→ B)mrq(B) :≡ ∀a (Amrq(a) ∧A→ Bmrq(Ba)),

(∃xA)mrq(x, a) :≡ Amrq(a) ∧A.

3. Modified realisability with t-truth mrt [31] [78, exercise 9.7.11 in chapter 9] is
defined analogously to mr except for

(A→ B)mrt(B) :≡ ∀a (Amrt(a)→ Bmrt(Ba)) ∧ (A→ B).

Analogously for WE-HA
ω and E-HA

ω.

3.5. Modified realisability has the word “modified” in its name likely because it is
a modification of Kleene’s recursive realisability [43, section 5].

3.6 Remark.

1. Modified realisability with q-truth mrq has truth in the sense of: for all dis-
junctive and existential formulas A of HAω we have HA

ω ⊢ Amrq(a) → A [22,
remark 2.2].

2. Modified realisability with t-truth mrt has truth in the sense of: for all formulas
A of HAω we have HA

ω ⊢ Amrt(a)→ A [78, exercise 9.7.11 in chapter 9].

Modified realisability with t-truth mrt is a (∗1) strengthening of mrq which (∗2) has
truth for all formulas. This can be given a rigorous meaning: (∗3) HAω ⊢ Amrt(a)↔
Amrq(a) ∧ A for all formulas A of HAω [22, theorem 2.5]. From (∗3) we get: HAω ⊢
Amrt(a) → Amrq(a), that is (∗1); HAω ⊢ Amrt(a) → A, that is (∗2). It follows the
analogous statements for WE-HA

ω and E-HA
ω.

3.7 Remark. The formulas Amr(a) are ∃-free.

3.8 Remark.

1. Modified realisability mr acts as the identity on ∃-free formulas of HAω in the
sense of: (A∃f)mr() ≡ A∃f for all ∃-free formulas A∃f of HA

ω [75, remark 3.4.4].

61

2. Modified realisability with q-truth mrq acts as the identity on ∃-free formulas
of HAω in the sense of: HAω ⊢ (A∃f)mrq() ↔ A∃f for all ∃-free formulas A∃f of
HA

ω [75, remark 3.4.4]. Analogously for mrt. (For mrt, this even holds true
for negated formulas [50, proposition 5.7].)

It follows the analogous statements for WE-HA
ω and E-HA

ω.

3.3 Soundness

3.9. Now we are going to prove the main theorem about mr: the soundness theorem.
This theorem says that if HAω + AC + ∃F-IP ⊢ A, then we can effectively (with an
algorithm given by the proof of the soundness theorem) extract from a proof of A
terms t such that Amr(t). These terms t encapsulate computational content from
the proof of A; for example:

1. if A is a disjunction B ∨ C, then t decide between B and C;

2. if A is an existential statement ∃xB(x), then t witness x;

3. if A is of the form ∀x ∃y B(x, y), then t give y as a function of x.

(Actually, mr decides between Bmr(b) and Cmr(c), witnesses x in Bmr(b), and gives
y as a function of x in B(x, y)mr(b). If B and C are ∃-free, or if we use mrq and mrt
instead, or if we move to the theory of the characterisation theorem below, then the
information on Bmr(b) and Cmr(c) transfers to B and C.)

3.10. In the next theorem, the sentence “if HAω ± AC ± ∃F-IP + Γ ⊢ A, then . . .
HA

ω ± AC± ∃F-IP+ Γ ⊢ Amrq(t)” abbreviates the following four possibilities:

1. “if HAω + Γ ⊢ A, then . . . HA
ω + Γ ⊢ Amrq(t)”;

2. “if HAω + AC+ Γ ⊢ A, then . . . HA
ω + AC + Γ ⊢ Amrq(t)”;

3. “if HAω + ∃F-IP+ Γ ⊢ A, then . . . HA
ω + ∃F-IP+ Γ ⊢ Amrq(t)”;

4. “if HAω + AC+ ∃F-IP+ Γ ⊢ A, then . . . HA
ω + AC + ∃F-IP+ Γ ⊢ Amrq(t)”.

Analogously for WE-HA
ω, E-HAω and mrt.

3.11 Theorem (soundness). Let A be a formula of HAω and let Γ be a set of ∃-free
formulas of HAω.

1. If HAω + AC + ∃F-IP + Γ ⊢ A, then we can extract from such a proof terms
t such that HA

ω + Γ ⊢ Amr(t) and FV(t) ⊆ FV(A) [75, theorem 3.4.5] [50,
theorem 5.13].

2. If HAω±AC±∃F-IP+Γ ⊢ A, then we can extract from such a proof terms t such
that HAω ±AC±∃F-IP+Γ ⊢ Amrq(t) and FV(t) ⊆ FV(A) [75, theorem 3.4.5].

3. If HAω±AC±∃F-IP+Γ ⊢ A, then we can extract from such a proof terms t such
that HAω ± AC± ∃F-IP+ Γ ⊢ Amrt(t) and FV(t) ⊆ FV(A) [78, exercise 9.7.11
in chapter 9] [50, theorem 5.23].

62

The terms constructed in the following proof for the three points above are the same.
Analogously for WE-HA

ω and E-HA
ω.

3.12 Proof. Let us make some remarks. We do the remarks only for HAω, but they
also work for WE-HA

ω and E-HA
ω.

1. We will treat mr, mrq and mrt in a unified manner in the following way. Let
id and ⊤ be functions, mapping formulas of HAω to formulas of HAω, defined
by Aid :≡ A and A⊤ :≡ 0 =0 0. Let q, t ∈ {id,⊤}. We redefine mr by changing
some of its clauses to

(A ∨B)mr(c
0, a, b) :≡ (Amr(a) ∧Aq) ∨c (Bmr(b) ∧ Bq),

(A→ B)mr(B) :≡ ∀a (Amr(a) ∧Aq → Bmr(Ba)) ∧ (A→ B)t,

(∃xA)mr(x, a) :≡ Amr(a) ∧Aq.

This redefined mr reduces:

(a) to the old mr when q = ⊤ and t = ⊤;
(b) to mrq when q = id and t = ⊤;
(c) to mrt when q = ⊤ and t = id (or when q = id and t = id).

By reducing we mean, for example, HAω ⊢ Amr(a) ↔ Amrq(a) in second case.
We prove the soundness theorem for the redefined mr, hence proving the the-
orem for the old mr, for mrq and for mrt. Moreover, the terms working for
them will not depend on q and t, so they are the same.

2. The interpretation of a formula of the form A→ B is of the form . . . ∧ (A→
B)t. So to prove that A → B is interpretable we have in particular to prove
(A→ B)t: if t = ⊤ it is trivial, and if t = id it follows from the formula itself.
Since the argument is always the same, we will systematically omit (A→ B)t.
When we do it, we write “≡” instead of ≡.
We also use “≡” if, following remark 3.8, we replace (A∃f)mrq() or (A∃f)mrt()
by A∃f.

3. When interpreting a rule A, B /C,

(a) we denote by rx the terms that by induction hypothesis exist witnessing
some variables x in the interpretation of A;

(b) we denote by sy the terms that by induction hypothesis exist witnessing
some variables y in the interpretation of B;

(c) we denote by tz the terms that we will construct witnessing some variables
z in the interpretation of C.

4. The claim of the theorem asks for terms t such that HA
ω ⊢ Amr(t) and

(∗) FV(t) ⊆ FV(A). We do not worry with (∗) because if the terms t do
not satisfy (∗), then we can replace them by the terms t′ :≡ t[O/x], where
FV(t) \ FV(A) = {x}, satisfying HA

ω ⊢ Amr(t
′) and FV(t′) ⊆ FV(A).

63

5. When interpreting an axiom or rule, if it is easy to see that the terms work,
we simply state the interpretation and the terms without comments.

Let us prove the theorem by induction on the derivation of A.

A ∨A→ A We have

(A ∨ A→ A)mr(C) “≡”
∀d, a, b

((
(Amr(a) ∧Aq) ∨d (Amr(b) ∧ Aq)

)
∧ (A ∨A)q → Amr(Cdab)

)
,

tC :≡ λd, a, b . (a ∨d b).

Analogously for A→ A ∧ A.

A→ A ∨ B We have

(A→ A ∨ B)mr(D,B,C) “≡”
∀a

(
Amr(a) ∧Aq → (Amr(Ba) ∧Aq) ∨Da (Bmr(Ca) ∧ Bq)

)
,

tD :≡ O, tB :≡ λa . a, tC :≡ O.

Analogously for A ∧ B → A and ⊥ → A.

A ∨B → B ∨A We have

(A ∨B → B ∨A)mr(F,C,D) “≡”
∀e, a, b

((
(Amr(a) ∧ Aq) ∨e (Bmr(b) ∧ Bq)

)
∧ (A ∨B)q →(

(Bmr(Ceab) ∧ Bq) ∨Feab (Amr(Deab) ∧ Aq)
))
,

tF :≡ λe, a, b . sg e, tC :≡ λe, a, b . b, tD :≡ λe, a, b . a.

Analogously for A ∧ B → B ∧ A.

A[t/x]→ ∃xA We have

(A[t/x]→ ∃xA)mr(X,B) “≡”
∀a (A[t/x]mr(a) ∧A[t/x]q → Amr(b)[Xa,Ba/x, b] ∧ Aq[Xa/x]),

tX :≡ λa . t, tB :≡ λa . a.

Here we use Amr(b)[t, a/x, b] ≡ A[t/x]mr(a). Analogously for ∀xA→ A[t/x].

A→ B, B → C /A→ C We have

(A→ B)mr(B) “≡” ∀a (Amr(a) ∧Aq → Bmr(Ba)), (3.1)

(B → C)mr(C) “≡” ∀b (Bmr(b) ∧ Bq → Cmr(Cb)), (3.2)

(A→ C)mr(C) “≡” ∀a (Amr(a) ∧Aq → Cmr(Ca)),

tC :≡ λa . sC(rBa).

If q = id, then we use the assumption that we proved A→ B, so that the part
Aq in (3.1) implies the part Bq in (3.2). Analogously for A, A→ B /B.

64

A ∧B → C /A→ (B → C) We have

(A ∧B → C)mr(C) ≡
∀a, b (Amr(a) ∧Bmr(b) ∧ (A ∧ B)q → Cmr(Cab)) ∧ (A ∧B → C)t,

(3.3)

(A→ (B → C))mr(C) ≡
∀a

(
Amr(a) ∧ Aq → ∀b (Bmr(b) ∧ Bq → Cmr(Cab)) ∧ (B → C)t

)
∧

(A→ (B → C))t,

(3.4)

tC :≡ sC .

If t = id, then we use Amr(a) → A, so that the parts (A ∧ B → C)t in (3.3)
and Amr(a) in (3.4) together imply the part (B → C)t in (3.4). Analogously
for A→ (B → C) /A ∧B → C.

A→ B /C ∨ A→ C ∨B We have

(A→ B)mr(B) “≡” ∀a (Amr(a) ∧Aq → Bmr(Ba)),

(C ∨A→ C ∨B)mr(F,D,B) “≡”
∀e, c, a

(
(Cmr(c) ∧ Cq) ∨e (Amr(a) ∧Aq)→

(Cmr(Deca) ∧ Cq) ∨Feca (Bmr(Beca) ∧ Bq)
)
,

(3.5)

tF :≡ λe, c, a . e, tD :≡ λe, c, a . c, tB :≡ λe, c, a . sBa.

If q = id, then we use the assumption that we proved A→ B, so that the part
Aq in (3.5) implies the part Bq in (3.5).

A→ B /A→ ∀xB We have

(A→ B)mr(B) “≡” ∀a (Amr(a) ∧Aq → Bmr(Ba)),

(A→ ∀xB)mr(B) “≡” ∀a (Amr(a) ∧ Aq → ∀xBmr(Bxa)),

tB :≡ λx, a . sBa.

Here we use x /∈ FV(A)∪{a} = FV(Amr(a)). Analogously for A→ B / ∃xA→
B.

Axioms of =0, S, Π, Σ and R, and extensionality rule and axioms Their formulas are
∃-free, so they are equivalent to their own interpretation.

A[0/x], A→ A[Sx/x] /A We have

A[0/x]mr(a),

(A→ A[Sx/x])mr(B) “≡” ∀a (Amr(a) ∧ Aq → A[Sx/x]mr(Ba)),

Amr(a),

ta(x) :≡ Rxra λa, x . sB(x)a.

65

By induction hypothesis we have

A[0/x]mr(ra), (3.6)

∀a
(
Amr(a) ∧ Aq → A[Sx/x]mr(sB(x)a)

)
. (3.7)

Let us prove ∀xAmr(ta(x)) by induction on x.

Base case The formula Amr(ta(x))[0/x] is equivalent to (3.6).

Induction step By induction hypothesis we assume Amr(ta(x)). Taking a =
ta(x) in (3.7) we get A[Sx/x]mr(sB(x)ta(x)), that is Amr(ta(x))[Sx/x]. If
q = id, then we use the assumption that we proved A, so as to have the
part Aq in (3.7).

AC To keep the notation simple, we denote A(x, y)mr(a)[Y x/x] and A(x, Y x)mr(a)
by Amr(A; x, Y x). We have

ACmr(Y,B) “≡”
∀Y,A

(
∀x (Amr(Ax; x, Y x) ∧ A(x, Y x)q) ∧ (∀x ∃y A(x, y))q →
∀xAmr(BY Ax; x,YAY x) ∧ (∀xA(x,YY Ax))q

)
,

tY :≡ λY,A, x . Y x, tB :≡ λY,A, x . Ax.

∃F-IP We have

∃F-IPmr(X,B) “≡”
∀x, a

(
(A∃f ∧Aq

∃f → Bmr(a; x) ∧ B(x)q) ∧
(A∃f → ∃xB(x))t ∧ (A∃f → ∃xB(x))q →

(A∃f ∧ Aq
∃f → Bmr(Bxa;Xxa)) ∧ (A∃f → B(Xxa))t ∧ (A∃f → B(Xxa))q

)
,

tX :≡ λx, a . x, tB :≡ λx, a . a.

If t = id, then we use Bmr(a; x) → B(x), so that the part A∃f ∧ Aq
∃f →

Bmr(a; x) ∧ B(x)q in the premise implies the part (A∃f → B(Xxa))t in the
conclusion.

Γ We have
(A∃f)mr() “≡” A∃f.

3.4 Characterisation

3.13. Now we prove the so-called characterisation theorem, saying HA
ω + AC +

∃F-IP ⊢ A↔ Amr. There are several ways of reading this theorem.

Distance We can think of the characterisation theorem as measuring the “displace-
ment” created by mr, that is the “distance” between A and Amr: the strongest
the theory needed to prove A ↔ Amr, the greater the “distance” between A
and Amr.

66

Construction We can think of the characterisation theorem (and its proof) as show-
ing us how Amr is constructed from A. In particular, as identifying the prin-
ciples used in that construction: AC and ∃F-IP.

Optimality We can use the characterisation theorem to show that the theory inter-
preted in the soundness theorem is optimal, that is it cannot be strengthened
(we do this in remark 3.16).

Transference We can use the characterisation theorem to transfer information from
the interpreted formula Amr(a) to the original formula A. For example, if we
proved ∃xA(x) in T := HA

ω + AC + ∃F-IP, then the soundness theorem gives
us terms t, s witnessing x, a in the interpreted formula (∃xA(x))mr(x, a) ≡
A(x)mr(a), and the characterisation theorem allows us to transfer t to the
original formula A(x), as pictured in figure 3.2.

T ⊢ ∃xA(x) soundness
=====⇒

t,s
T ⊢ A(t)mr(s)

characterisation
===============⇒
A(t)mr(s)→A(t)mr ↔A(t)

T ⊢ A(t)

Figure 3.2: transference of t from A(t)mr(s) to A(t) by the characterisation theorem.

3.14 Theorem (characterisation). Let us consider the theory HA
ω + AC+ ∃F-IP.

1. This theory proves A↔ Amr for all formulas A of HAω [75, theorem 3.4.8].

2. This theory is the least theory, containing HA
ω, satisfying the previous point.

Analogously for WE-HA
ω + AC + ∃F-IP, E-HA

ω + AC + ∃F-IP, mrq and mrt [22,
theorem 2.6].

3.15 Proof. We only do the proof for HA
ω + AC + ∃F-IP; the cases of the other

theories are analogous. Let us prove the claim of the theorem for mr.

1. The proof is by induction on the structure of A.

∨ Using HA
ω in the first equivalence, and induction hypothesis in the second

equivalence, we get

A ∨ B ↔
∃c ((c =0 0→ A) ∧ (c 6=0 0→ B))↔

∃c ((c =0 0→ Amr) ∧ (c 6=0 0→ Bmr)) ≡
∃c

(
(c =0 0→ ∃aAmr(a)) ∧ (c 6=0 0→ ∃bBmr(b))

)
↔

∃c, a, b
(
(c =0 0→ Amr(a)) ∧ (c 6=0 0→ Bmr(b))

)
↔

(A ∧B)mr.

Analogously for Aat, ∨ and ∃.

67

→ Using induction hypothesis in the first equivalence, ∃F-IP in the third equiv-
alence, and AC in the last equivalence, we get

(A→ B)↔
Amr → Bmr ≡

(∃aAmr(a)→ ∃b Amr(b))↔
∀a (Amr(a)→ ∃b Amr(b))↔
∀a ∃b (Amr(a)→ Amr(b))↔

∃B ∀a (Amr(a)→ Amr(Ba)) ≡
(A→ B)mr.

Analogously for ∀.

2. Let T be a theory, containing HA
ω, that proves the equivalences A↔ Amr for

all formulas A. Let P be one of the principles AC and ∃F-IP. Let us show
T ⊢ P. By the soundness theorem of mr we have HA

ω ⊢ Pmr, so T ⊢ Pmr, thus
T ⊢ P.

Now let us prove the claim of the theorem for mrq and mrt.

1. The point 1 of the theorem for mrq and mrt follows from the point 1 for mr
by proving by induction on the structure of A that HAω + AC + ∃F-IP proves
(∗1) Amr(a)↔ Amrq(a) and (∗2) Amr(a)↔ Amrt(a).

Proof of (∗1) Let us only see the case of ∨; the cases of Aat, ∧, →, ∀ and ∃
are analogous. Using Amr(a)→ Amr ↔ A and Bmr(b)→ Bmr ↔ B in the
first equivalence, and induction hypothesis in the second equivalence, we
get

(A ∨ B)mr(c, a, b) ≡
Amr(a) ∨c Amr(b)↔

(Amr(a) ∧A) ∨c (Amr(b) ∧B)↔
(Amrq(a) ∧ A) ∨c (Amrq(b) ∧B) ≡

(A ∨ B)mrq(c, a, b).

Proof of (∗2) Let us only see the case of →; the cases of Aat, ∧, ∨, ∀ and ∃
are analogous. Using (A → B)mr(B) → (A → B)mr ↔ (A → B) in the
first equivalence, and induction hypothesis in the second equivalence, we
get

(A→ B)mr(B) ≡
∀a (Amr(a)→ Amr(Ba))↔

∀a (Amr(a)→ Amr(Ba)) ∧ (A→ B)↔
∀a (Amrt(a)→ Amrt(Ba)) ∧ (A→ B) ≡

(A→ B)mrt(B).

68

2. We adopt here the remarks made in the beginning of proof 3.12. Let q = id
or t = id. Let T be a theory, containing HA

ω, that proves the equivalences
(∗) A↔ Amr for all formulas A. Let us show T ⊢ AC and T ⊢ ∃F-IP.

T ⊢ AC Using (∗) in the first implication, and A(x, Y x)mr(Ax)→ A(x, Y x) in
the second implication if t = id, we get

∀x ∃y A(x, y)→
(∀x ∃y A(x, y))mr ≡

∃Y,A∀x (A(x, Y x)mr(Ax) ∧A(x, Y x)q)→
∃Y ∀xA(x, Y x).

T ⊢ ∃F-IP Using (∗) in the first implication, and Bmr(a) → B in the second
implication if t = id, we get

(A∃f → ∃xB)→
(A∃f → ∃xB)mr “≡”

∃x, a
(
(A∃f ∧ Aq

∃f → Bmr(a) ∧Bq) ∧ (A∃f → ∃xB)t
)
→

∃x (A∃f → B).

3.16 Remark. The characterisation theorem of mr ensures that the soundness
theorem of mr is optimal, in the sense that the theory HA

ω + AC+ ∃F-IP+ Γ there
considered is the strongest theory T such that (∗) T ⊢ A ⇒ HA

ω+Γ ⊢ Amr (because
(∗) implies T ⊢ A ⇒ HA

ω + AC + ∃F-IP + Γ ⊢ A). Analogously for WE-HA
ω and

E-HA
ω.

3.5 Applications

3.17. We finish with applications of mr, mrq and mrt. They illustrate the use of
proof interpretations in general (as most proof interpretations have similar applica-
tions), and of modified realisability in particular. These applications are optimised
for simplicity, not generality, since we intend them to be “short, simple and sweet”
illustrations of what can be done with proof interpretations.

3.18 Theorem (disjunction property, existence property and program extraction).
Let T := HA

ω ± AC± ∃F-IP.

1. Let A ∨B be a sentence of T. If T ⊢ A ∨ B, then T ⊢ A or T ⊢ B.

2. If T ⊢ ∃xA(x), then we can extract from such a proof terms t of T such that
T ⊢ A(t) and FV(t) ⊆ FV(∃xA).

3. If T ⊢ ∀x ∃y A(x, y), then we can extract from such a proof terms t(x) of T
such that T ⊢ ∀xA(x, t(x)) and FV(t(x)) ⊆ FV(∃y A(x, y)).

Analogously for WE-HA
ω ±AC±∃F-IP and E-HA

ω ±AC±∃F-IP [75, theorem 3.7.2]
[50, corollary 5.24].

69

3.19 Proof.

1. We have (A ∨ B)mrt(c
0, a, b) ≡ Amrt(a) ∨c Bmrt(b). Assuming the premise of

the theorem, by the soundness theorem of mrt we can extract closed terms
t0, r, s of T such that T ⊢ Amrt(r)∨t Bmrt(s). By truth we get T ⊢ A∨t B. By
point 3 of theorem 1.30 we have t ≡ n̄ for some n ∈ N. If n = 0, then T ⊢ A;
if n 6= 0, then T ⊢ B.

2. We have (∃xA(x))mrt(x, a) ≡ A(x)mrt(a). Assuming the premise of the theo-
rem, by the soundness theorem of mrt we can extract terms s, t of T such that
T ⊢ A(t)mrt(s) and FV(s, t) ⊆ FV(∃xA(x)). By truth we get T ⊢ A(t).

3. Follows from the previous point.

3.20 Theorem (conservation and relative consistency).

1. If HAω + AC + ∃F-IP ⊢ ∀x ∃y A∃f, then HA
ω ⊢ ∀x ∃y A∃f.

2. If HAω + AC + ∃F-IP ⊢ ⊥, then HA
ω ⊢ ⊥.

Analogously for WE-HA
ω and E-HA

ω [75, theorem 3.6.6(ii)] [50, corollary 5.21].

3.21 Proof.

1. We have (∀x ∃y A∃f(x, y))mr(Y) ≡ ∀xA∃f(x, Y x). Assuming the premise of the
theorem, by the soundness theorem of mr we can extract terms t of HAω such
that HAω ⊢ ∀xA∃f(x, tx). So we get the conclusion of the theorem.

2. Follows from the previous point.

3.22 Theorem (independence). Let T := E-HA
ω + AC+ ∃F-IP.

1. We have T 0 QF-MP and T 0 ¬QF-MP [55, paragraph 3.52].

2. We have T 0 LEM and T 0 ¬LEM (already for Σ0
1 and Π0

1 formulas).

It follows the analogous statements for HAω+AC+∃F-IP and WE-HA
ω+AC+∃F-IP.

3.23 Proof. It suffices to show that QF-MP and LEM are unprovable in T, since
their negations cannot be proved in T (otherwise PA

ω + AC would be inconsistent).
Using definition 1.37 we can define an atomic formula Tx0y0z0 of T representing
Kleene’s T predicate asserting that the Turing machine (coded by) x, when given
the input (coded by) y, halts with computation history (coded by) z.

1. We have (¬¬∃y Txxy → ∃zTxxz)mr(z) ≡ ¬∀y ¬Txxy → Txxz. By contra-
diction, we assume T ⊢ QF-MP, thus T ⊢ ¬¬∃y Txxy → ∃zTxxz. So by
the soundness theorem of mr we can extract a term t(x) of E-HAω such that
E-HA

ω ⊢ ¬∀y ¬Txxy → Txxt(x). This term t(x) induces a computable func-
tion (also denoted by) t(x) such that N |= ∃yTxxy → Txxt(x). So t(x) solves
the halting problem, a contradiction.

70

2. We have (∃yTxxy∨¬∃z Txxz)mr(a, y) ≡ Txxy∨a∀z ¬Txxz. By contradiction,
we assume T ⊢ LEM, thus (∗) T ⊢ ∃y Txxy ∨ ¬∃z Txxz, an instance of LEM
for Σ0

1 formulas. So by the soundness theorem of mr we can extract terms
s(x) and t(x) of E-HAω such that E-HAω ⊢ Txxs(x)∨t(x) ∀z ¬Txxz. Thus N |=
∃yTxxy ∨t(x) ∀z ¬Txxz. So t(x) solves the halting problem, a contradiction.
Analogously for Π0

1 formulas using T ⊢ ∀y ¬Txxy ∨¬∀z ¬Txxz instead of (∗).

3.6 Conclusion

3.24. We introduced modified realisability, motivated by the BHK interpretation.
The main results about modified realisability are the following.

Soundness theorem This theorem says that we can use modified realisability to ex-
tract computational content from proofs in E-HA

ω + AC+ ∃F-IP.

Characterisation theorem This theorem guarantees that the soundness theorem is
optimal.

Applications We used modified realisability to do applications on:

1. disjunction property;

2. existence property;

3. program extraction;

4. conservation;

5. relative consistency;

6. independence.

71

72

Chapter 4

Bounded modified realisability

4.1 Introduction

4.1. The modified realisability mr (essentially) extracts exact witnesses for existen-
tial statements: given a theorem ∃xA(x), extracts a term t such that A(t). Now we
introduce the bounded modified realisability br that (essentially) extracts bounds
instead of exact witnesses: given a theorem ∃xA(x), extracts a term t such that
∃x ≤e t A(x). This change from exact witnesses to bounds is mainly obtained by
changing the clause of ∃x from asking for x to asking for a bound b on x:

(∃xA)mr(x, a) :≡ Amr(a),

(∃xA)br(b, a) :≡ ∃x ≤e bAbr(a).

We also introduce two variants with truth of br: the bounded modified realisability
with q-truth brq and the bounded modified realisability with t-truth brt.

4.2. Our main contributions to this topic are the following.

1. The bounded modified realisabilities with q-truth brq and with t-truth brt and
their soundness and characterisation theorems [22, section 5] (definition 4.3
and theorems 4.10 and 4.12).

2. The bounded existence property and the bounded program extraction (theo-
rem 4.15).

4.2 Definition

4.3 Definition.

1. The bounded modified realisability br [14, definition 4] assigns to each formula
A of HAω

e the formula Abr :≡ ∃̃aAbr(a), where Abr(a) is defined by recursion

73

on the structure of A by

(Aat)br() :≡ Aat,

(A ∧B)br(a, b) :≡ Abr(a) ∧Bbr(b),

(A ∨B)br(a, b) :≡ Abr(a) ∨Bbr(b),

(A→ B)br(B) :≡ ∀̃a (Abr(a)→ Bbr(Ba)),

(∀x ≤e t A)br(a) :≡ ∀x ≤e t Abr(a),

(∃x ≤e t A)br(a) :≡ ∃x ≤e t Abr(a),

(∀xA)br(A) :≡ ∀̃b∀x ≤e bAbr(Ab),

(∃xA)br(b, a) :≡ ∃x ≤e bAbr(a).

By (Aat)br() we mean (Aat)br(a) with the tuple a empty.

2. The bounded modified realisability with q-truth brq [22, definition 5.1] is defined
analogously to br except for

(A ∨ B)brq(a, b) :≡ (Abrq(a) ∧A) ∨ (Bbrq(b) ∧B),

(A→ B)brq(B) :≡ ∀̃a (Abrq(a) ∧A→ Bbrq(Ba)),

(∃x ≤e t A)brq(a) :≡ ∃x ≤e t (Abrq(a) ∧A),

(∃xA)brq(b, a) :≡ ∃x ≤e b (Abrq(a) ∧A).

3. The bounded modified realisability with t-truth brt [22, definition 5.3] is defined
analogously to br except for

(A→ B)brt(B) :≡ ∀̃a (Abrt(a)→ Bbrt(Ba)) ∧ (A→ B),

(∀xA)brt(A) :≡ ∀̃b∀x ≤e bAbrt(Ab) ∧ ∀xA.

4.4. Let us note that, contrarily to what is done for mrt, in brt we added “∧ ∀xA”
in the clause of ∀; this will be discussed later in chapter 13.

4.5 Remark.

1. The bounded modified realisability with q-truth brq has truth in the sense
of: HA

ω
e ⊢ Abrq(a) → A for all disjunctive and (bounded and unbounded)

existential formulas A of HAω
e [22, remark 5.2].

2. The bounded modified realisability with t-truth brt has truth in the sense of:
HA

ω
e ⊢ Abrt(a)→ A for all formulas A [22, remark 5.4].

The bounded modified realisability with t-truth brt is a (∗1) strengthening of brq
which (∗2) has truth for all formulas. This can be given a rigorous meaning:
(∗3) HA

ω
e ⊢ Abrt(a) ↔ Abrq(a) ∧ A for all formulas A of HAω

e [22, proposition 5.6].
From (∗3) we get: HAω

e ⊢ Abrt(a) → Abrq(a), that is (∗1); HAω
e ⊢ Abrt(a)→ A, that

is (∗2).

4.6 Remark. The formulas Abr(a) are ∃̃-free.

74

4.7 Remark.

1. The bounded modified realisability br acts as the identity on ∃̃-free formulas
of HAω

e in the sense of: (A∃̃f)br() ≡ A∃̃f for all ∃̃-free formulas A∃̃f of HA
ω
e [14,

proposition 1].

2. The bounded modified realisability with q-truth brq acts as the identity on
∃̃-free formulas of HAω

e in the sense of: HA
ω
e ⊢ (A∃̃f)brq() ↔ A∃̃f for all ∃̃-free

formulas A∃̃f of HA
ω
e [22, proof of theorem 5.5]. Analogously for brt.

4.3 Soundness

4.8 Lemma (monotonicity). We have HA
ω
e ⊢ ∀̃a′ ∀a ≤e a′ (Abr(a) → Abr(a

′)) [14,
lemma 4]. Analogously for brq [22, proof of theorem 5.5] and brt.

4.9 Proof. We adopt here (with the proper adaptations, including an analogous
unified treatment of variants without truth, with q-truth and with t-truth, by means
of q, t ∈ {id,⊤}) the remarks made in the beginning of proof 3.12. The proof is by
induction on A. Let us only do the case of→; the other cases are analogous. Let us
take arbitrary monotone B′ and arbitrary B ≤e B′. Using the induction hypothesis
in the implication, we get

(A→ B)br(B) ≡
∀̃a (Abr(a) ∧ Aq → Bbr(Ba)) ∧ (A→ B)t →
∀̃a (Abr(a) ∧Aq → Bbr(B

′a)) ∧ (A→ B)t ≡
(A→ B)br(B

′).

4.10 Theorem (soundness). Let A be a formula of HAω
e with FV(A) = {ℓ}, and

let Γ be a set of formulas of HAω
e of the form ∀x ∃y ≤e s ∀z A∃̃f where s are terms of

HA
ω
e .

1. If HAω
e + BAC + ∃̃F-BIP + MAJ + Γ ⊢ A, then we can extract from such a

proof monotone terms t(ℓ) such that HA
ω
e + Γ ⊢ ∀̃ℓ′ ∀ℓ ≤e ℓ′ Abr(t(ℓ

′)) and
FV(t(ℓ)) ⊆ FV(A) [14, theorem 4].

2. If HAω
e ±BAC±∃̃F-BIP±MAJ+Γ ⊢ A, then we can extract from such a proof

monotone terms t(ℓ) such that HAω
e ± BAC ± ∃̃F-BIP ±MAJ + Γ ⊢ ∀̃ℓ′ ∀ℓ ≤e

ℓ′ Abrq(t(ℓ
′)) and FV(t(ℓ)) ⊆ FV(A) [22, theorem 5.5].

3. If HAω
e ±BAC±∃̃F-BIP±MAJ+Γ ⊢ A, then we can extract from such a proof

monotone terms t(ℓ) such that HAω
e ± BAC ± ∃̃F-BIP ±MAJ + Γ ⊢ ∀̃ℓ′ ∀ℓ ≤e

ℓ′ Abrt(t(ℓ
′)) and FV(t(ℓ)) ⊆ FV(A) [22, theorem 5.7].

The terms constructed in the following proof for the three points above are the same.

4.11 Proof. Let us make some remarks.

1. We adopt here (with the proper adaptations, including an analogous unified
treatment of variants without truth, with q-truth and with t-truth, by means
of q, t ∈ {id,⊤}) the remarks made in the beginning of proof 3.12.

75

2. We have

HA
ω
e ⊢ (∃xA)br(b, a)↔ ∃x ≤e b (Abr(a) ∧Aq),

HA
ω
e ⊢ (∃̃xA)br(b, a)↔ ∃̃x ≤e b (Abr(a) ∧Aq),

HA
ω
e ⊢ (∃x ≤e t A)br(a)↔ ∃x ≤e t (Abr(a) ∧Aq),

HA
ω
e ⊢ (∀xA)br(A)↔ ∀̃b∀x ≤e bAbr(Ab) ∧ (∀xA)t,

so below we replace the left sides of the equivalences by the right sides. When
we do it, we use “≡” instead of ≡.

Let us prove the theorem by induction on the derivation of A.

A ∨A→ A We have

(A ∨ A→ A)br(C) “≡”
∀̃a, b

((
(Abr(a) ∧ Aq) ∨ (Abr(b) ∧ Aq)

)
∧ (A ∨A)q → Abr(Cab)

)
,

tC :≡ λa, b . max(a, b).

Here we use monotonicity. Analogously for A→ A∧A, A∧B → A, A→ A∨B,
A ∧B → B ∧A, A ∨ B → B ∨ A and ⊥ → A.

A[t/x]→ ∃xA We have

(A[t/x]→ ∃xA)br(B,C) “≡”
∀̃a

(
A[t/x]br(a) ∧A[t/x]q → ∃x ≤e Ba (Abr(Ca) ∧ Aq)

)
,

tB(ℓ) :≡ λa . tm(ℓ), tC :≡ λa . a.

Let us see that the terms work, that is

∀̃ℓ′ ∀ℓ ≤e ℓ′ ∀̃a
(
A[t/x]br(a) ∧A[t/x]q → ∃x ≤e tm(ℓ′) (Abr(a) ∧ Aq)

)
.

The premise, that is Abr(a)[t/x], implies the conclusion with x = t(ℓ) (which
satisfies x ≤e tm(ℓ′)). Analogously for ∀xA→ A[t/x].

A→ B, B → C /A→ C We have

(A→ B)br(B) “≡” ∀̃a (Abr(a) ∧ Aq → Bbr(Ba)), (4.1)

(B → C)br(C) “≡” ∀̃b (Bbr(b) ∧Bq → Cbr(Cb)), (4.2)

(A→ C)br(C) “≡” ∀̃a (Abr(a) ∧ Aq → Cbr(Ca)),

tC :≡ λa . sc(rBa).

If q = id, then we use the assumption that we proved A→ B, so that the part
Aq in (4.1) implies the part Bq in (4.2). Analogously for A, A → B /B and
A→ B /C ∨A→ C ∨B.

76

A ∧B → C /A→ (B → C) We have

(A ∧B → C)br(C) ≡
∀̃a, b (Abr(a) ∧Bbr(b) ∧ (A ∧ B)q → Cbr(Cab)) ∧ (A ∧ B → C)t,

(4.3)

(A→ (B → C))br(C) ≡ ∀̃a
(
Abr(a) ∧Aq →

∀̃b (Bbr(B) ∧Bq → Cbr(Cab)) ∧ (B → C)t
)
∧ (A→ (B → C))t,

(4.4)

tC :≡ sC .

If t = id, then we use Abr(a) → A, so that the parts Abr(a) in (4.4) and
(A∧B → C)t in (4.3) together imply the part (B → C)t in (4.4). Analogously
for A→ (B → C) /A ∧B → C.

A→ B /A→ ∀xB We have

(A→ B)br(B) ≡ ∀̃a (Abr(a) ∧ Aq → Bbr(Ba)) ∧ (A→ B)t, (4.5)

(A→ ∀xB)br(B) ≡
∀̃a (Abr(a) ∧Aq → ∀̃c ∀x ≤e cBbr(Bac) ∧ (∀xB)t) ∧ (A→ ∀xB)t,

(4.6)

tB(ℓ) :≡ λa, c . sB(ℓ, c)a.

Let us see that the terms work. By induction hypothesis we have (4.7) and
we want to prove (4.8):

∀̃ℓ′, c ∀ℓ, x ≤e ℓ′, c ∀̃a
(
Abr(a) ∧Aq → Bbr(sB(ℓ

′, c)a)
)
∧ (A→ B)t, (4.7)

∀̃ℓ′ ∀ℓ ≤e ℓ′ ∀̃a
(
Abr(a) ∧Aq → ∀̃c ∀x ≤e cBbr(sB(ℓ

′, c)a) ∧ (∀xB)t
)
∧

(A→ ∀xB)t,
(4.8)

(actually, if x /∈ FV(A→ B), then in (4.7) where is ∀̃ℓ′, c ∀ℓ, x ≤e ℓ′, c should
be ∀̃ℓ′ ∀ℓ ≤e ℓ′). If t = id, then we use Abr(a) → A, so that the parts
(A→ B)t (that by induction hypothesis was proved, so we can upgrade it to
(A → ∀xB)t) in (4.7) and Abr(a) in (4.8) together imply the part (∀xB)t in
(4.8). Analogously for A→ B / ∃xA→ B.

∀x ≤e t A↔ ∀x (x ≤e t→ A) To interpret A ↔ B it suffices to interpret A → B
and B → A separately.

→ We have

(∀x ≤e t A→ ∀x (x ≤e t→ A))br(B) “≡”
∀̃a

(
∀x ≤e t Abr(a) ∧ (∀x ≤e t A)q →

∀̃c ∀x ≤e c
(
(x ≤e t ∧ (x ≤e t)q → Abr(Bac)) ∧ (x ≤e t→ A)t

)
∧

(∀x (x ≤e t→ A))t
)
,

tB :≡ λa, c . a.

77

If t = id, then we use Abr(a)→ A, so that the part ∀x ≤e t Abr(a) in the
premise implies the parts (x ≤e t → A)t and (∀x (x ≤e t → A))t in the
conclusion.

← We have

(∀x (x ≤e t→ A)→ ∀x ≤e t A)br(B) “≡”
∀̃A

(
∀̃c ∀x ≤e c

(
(x ≤e t ∧ (x ≤e t)q → Abr(Ac)) ∧ (x ≤e t→ A)t

)
∧

(∀x (x ≤e t→ A))t ∧ (∀x (x ≤e t→ A))q → ∀x ≤e t Abr(BA)
)
,

tB(ℓ) :≡ λA .Atm(ℓ).

To see that the terms work, in the premise we take c = tm(ℓ′) (which
satisfies c ≤e c if ℓ ≤e ℓ′). Analogously for ∃x ≤e t A↔ ∃x (x ≤e t ∧ A).

Axioms of =0, S, Π, Σ, and R Their formulas are ∃̃-free, so they are equivalent to
their own interpretation.

A[0/x], A→ A[Sx/x] /A We can assume x ∈ FV(A), otherwise A[0/x] ≡ A and so
the terms working for A[0/x] also work for A. We have

A[0/x]br(a),

(A→ A[Sx/x])br(B) “≡” ∀̃a (Abr(a) ∧ Aq → A[Sx/x]br(Ba)),

Abr(a),

ta(ℓ, x) :≡ Rxra(ℓ) λa, x . max(sB(ℓ, x)a, a).

By induction hypothesis we have (4.9) and (4.10), and we want to prove (4.11):

∀̃ℓ′ ∀ℓ ≤e ℓ′ A[0/x]br(ra(ℓ
′)), (4.9)

∀̃ℓ′, x′ ∀ℓ, x ≤e ℓ′, x′ ∀̃a
(
Abr(a) ∧Aq → A[Sx/x]br(sB(ℓ

′, x′)a)
)
, (4.10)

∀̃ℓ′, x′ ∀ℓ, x ≤e ℓ′, x′ Abr(ta(ℓ
′, x′)). (4.11)

First, let us prove that ta(ℓ, x) are monotone, that is ∀ℓ′, x′ ∀ℓ, x ≤e ℓ′, x′

(ta(ℓ, x) ≤e ta(ℓ
′, x′)). We take arbitrary ℓ′ and ℓ ≤e ℓ′ prove B(x, x′) :≡

ta(ℓ, x) ≤e ta(ℓ
′, x′) by double induction on x and x′.

B(0, x′) It is provable by induction on x′.

B(0, 0) It is equivalent to ra(ℓ) ≤e ra(ℓ
′), which provable by the mono-

tonicity of ra.

B(0, x′)→ B(0, Sx′) It is equivalent to ra(ℓ) ≤e ta(ℓ
′, x′) → ra(ℓ) ≤e

max(sB(ℓ
′, x′)ta(ℓ

′, x′), ta(ℓ
′, x′)), which is provable by the monotonic-

ity of max.

B(x, 0) It can only be x =0 0, so we fall in the case B(0, 0).

B(x, x′)→ B(Sx, Sx′) This formula is equivalent to ta(ℓ, x) ≤e ta(ℓ
′, x′) →

max(sB(ℓ, x)ta(ℓ, x), ta(ℓ, x)) ≤e max(sB(ℓ
′, x′)ta(ℓ

′, x′), ta(ℓ
′, x′)), which

is provable by the monotonicity of max.

78

Now, let us prove (4.11) by induction on x. We start by proving (4.11) with
x =0 x

′. We take arbitrary monotone ℓ′ and ℓ ≤e ℓ′, and prove ∀xAbr(ta(ℓ
′, x))

by induction on x.

Base case The formula Abr(ta(ℓ
′, x))[0/x] is equivalent toA[0/x]br(ra(ℓ

′)), which
is provable by (4.9).

Induction step By induction hypothesis we assume Abr(ta(ℓ
′, x)). Taking x′ =

x and a = ta(ℓ
′, x) (that satisfies a ≤e a) in formula (4.10) we get

A[Sx/x]br(sB(ℓ
′, x)ta(ℓ

′, x)) (if q = id, then we use the assumption that
we proved A, so as to have the part Aq in (4.10)). By monotonicity we get
A[Sx/x]br

(
max(sB(ℓ

′, x)ta(ℓ
′, x), ta(ℓ

′, x))
)
, that is Abr(ta(ℓ

′, x))[Sx/x].

From (4.11) with x =0 x′ we get (4.11) with x ≤e x′ by the monotonicity of
Abr(a) and ta(ℓ, x).

BAC We have

(∀x ∃y A)br(C,A) ≡ ∀̃d ∀x ≤e d ∃y ≤e Cd (Abr(Ad) ∧Aq) ∧ (∀x ∃y A)t,

(∃̃v ∀̃u ∀x ≤e u ∃y ≤e vuA)br(f, B) “≡” ∃̃v ≤e f
(
∀̃e ∀u ≤e e

((
u ≤e u ∧ (u ≤e u)q → ∀x ≤e u ∃y ≤e vu (Abr(Be) ∧Aq)

)
∧

(u ≤e u→ ∀x ≤e u ∃y ≤e vuA)t
)
∧ (∀̃u ∀x ≤e u ∃y ≤e vuA)t ∧

(v ≤e v ∧ ∀̃u ∀x ≤e u ∃y ≤e vuA)q
)
,

BACbr(F ,B) “≡”
∀̃C,A

(
∀̃d ∀x ≤e d ∃y ≤e Cd (Abr(Ad) ∧Aq) ∧ (∀x ∃y A)t ∧ (∀x ∃y A)q

↓
∃̃v ≤e FCA(

∀̃e ∀u ≤e e
((
u ≤e u ∧ (u ≤e u)q → ∀x ≤e u ∃y ≤e vu (Abr(BCAe) ∧Aq)

)
∧

(u ≤e u→ ∀x ≤e u ∃y ≤e vuA)t
)
∧ (∀̃u ∀x ≤e u ∃y ≤e vuA)t ∧

(v ≤e v ∧ ∀̃u ∀x ≤e u ∃y ≤e vuA)q
))

,

tF :≡ λC,A . C, tB :≡ λC,A, e . Ae.

To see that the terms work, we take v = C (which satisfies v ≤e C and v ≤e v)
in the conclusion. If t = id, then we use Abr(Ad) → A, so that the part
∀̃d ∀x ≤e d ∃y ≤e CdAbr(Ad) in the premise implies the parts (u ≤e u →
∀x ≤e u ∃y ≤e vuA)t and (∀̃u ∀x ≤e u ∃y ≤e vuA)t in the conclusion.

79

∃̃F-BIP We have

(A∃̃f → ∃xB)br(c, a) “≡”(
A∃̃f ∧ Aq

∃̃f → ∃x ≤
e c (Bbr(a) ∧ Bq)

)
∧ (A∃̃f → ∃xB)t,

(∃̃y (A∃̃f → ∃x ≤e y B))br(d, b) “≡”
∃̃y ≤e d

((
A∃̃f ∧ Aq

∃̃f → ∃x ≤
e y (Bbr(b) ∧ Bq)

)
∧

(A∃̃f → ∃x ≤e y B)t ∧ (y ≤e y ∧ (A∃̃f → ∃x ≤e y B))q
)
,

(∃̃F-BIP)br(D,B) “≡”
∀̃c, a

((
A∃̃f ∧ Aq

∃̃f → ∃x ≤
e c (Bbr(a) ∧ Bq)

)
∧ (A∃̃f → ∃xB)t ∧ (A∃̃f → ∃xB)q

↓
∃̃y ≤e Dca

((
A∃̃f ∧Aq

∃̃f → ∃x ≤
e y (Bbr(Bca) ∧Bq)

)
∧

(A∃̃f → ∃x ≤e y B)t ∧ (y ≤e y ∧ (A∃̃f → ∃x ≤e y B))q
))

,

tD :≡ λc, a . c, tB :≡ λc, a . a.

If t = id, then we use Bbr(a)→ B, so that the part A∃̃f∧Aq

∃̃f → ∃x ≤
e cBbr(a)

in the premise implies the part (A∃̃f → ∃x ≤e y B)t in the conclusion.

MAJ We have

MAJbr(A) “≡” ∀̃b∀x ≤e b∃y ≤e Ab (x ≤e y ∧ (x ≤e y)q),

tA :≡ λb . b.

Γ We have

(∀x ∃y ≤e s∀z A∃̃f)br() “≡”
∀̃b∀x ≤e b∃y ≤e s (∀̃a ∀z ≤e aA∃̃f ∧ (∀z A∃̃f)

t ∧ (∀z A∃̃f)
q).

4.4 Characterisation

4.12 Theorem (characterisation). Let us consider the theory HA
ω
e +BAC+∃̃F-BIP+

MAJ.

1. This theory proves A↔ Abr for all formulas A of HAω
e [14, theorem 2].

2. This theory is the least theory, containing HA
ω
e , satisfying the previous point.

Analogously for brq and brt [22, theorem 5.8].

4.13 Proof. Let us prove the claim of the theorem for br.

1. The proof is by induction on the structure of A.

80

→ Using induction hypothesis in the first equivalence, ∃̃F-BIP in the third
equivalence, monotonicity in the fourth equivalence, andMAC (see point 2
of proposition 1.66) in the last equivalence, we get

(A→ B)↔
Abr → Bbr ≡

(∃̃aAbr(a)→ ∃̃bBbr(b))↔
∀̃a (Abr(a)→ ∃̃bBbr(b))↔

∀̃a ∃̃b (Abr(a)→ ∃̃b′ ≤e bBbr(b
′))↔

∀̃a ∃̃b (Abr(a)→ Bbr(b))↔
∃̃B ∀̃a (Abr(a)→ Bbr(Ba)) ≡

(A→ B)br.

Analogously for Aat, ∧, ∨ and ∃≤e.

∀≤e Using induction hypothesis in the first equivalence, BC (see point 1 of
proposition 1.66) in the second equivalence, and monotonicity in the last
equivalence, we get

∀x ≤e t A↔
∀x ≤e t Abr ≡

∀x ≤e t ∃̃aAbr(a)↔
∃̃a ∀x ≤e t ∃̃a′ ≤e aAbr(a

′)↔
∃̃a ∀x ≤e t Abr(a) ≡

(∀x ≤e t A)br.

∀ Using induction hypothesis in the first equivalence, MAJ in the second equiv-
alence, BC in the third equivalence, monotonicity in the fourth equiva-
lence, and MAC in the last equivalence, we get

∀xA↔
∀xAbr ≡

∀x ∃̃aAbr(a)↔
∀̃b∀x ≤e b ∃̃aAbr(a)↔

∀̃b ∃̃a∀x ≤e b ∃̃a′ ≤e aAbr(a
′)↔

∀̃b ∃̃a ∀x ≤e bAbr(a)↔
∃̃A ∀̃b ∀̃x ≤e bAbr(Ab) ≡

(∀xA)br.

Analogously for ∃.

2. Analogous to point 2 of proof 3.15.

81

Now let us prove the claim of the theorem for brq and brt.

1. The point 1 of the theorem for brq and brt follows from the point 1 for br by
proving by induction on the structure of A that HAω

e + BAC + ∃̃F-BIP+MAJ

proves (∗1) ∀̃a (Abr(a)↔ Abrq(a)) and (∗2) ∀̃a (Abr(a)↔ Abrt(a)).

Proof of (∗1) Let us only see the case of ∨; the cases of Aat, ∧,→, ∀≤e, ∃≤e, ∀
and ∃ are analogous. Let us assume a, b ≤e a, b. Using Abr(a)→ Abr ↔ A
and Bbr(b)→ Bbr ↔ B in the first equivalence, and induction hypothesis
in the second equivalence, we get

(A ∨B)br(a, b) ≡
Abr(a) ∨Abr(b)↔

(Abr(a) ∧ A) ∨ (Abr(b) ∧B)↔
(Abrq(a) ∧A) ∨ (Abrq(b) ∧B) ≡

(A ∨ B)brq(a, b).

Proof of (∗2) Let us only see the case of →; the cases of Aat, ∧, ∨, ∀≤e, ∃≤e,
∀ and ∃ are analogous. Let us assume B ≤e B. Using (A→ B)br(B)→
(A→ B)br ↔ (A→ B) in the first equivalence, and induction hypothesis
in the second equivalence, we get

(A→ B)br(B) ≡
∀̃a (Abr(a)→ Abr(Ba))↔

∀̃a (Abr(a)→ Abr(Ba)) ∧ (A→ B)↔
∀̃a (Abrt(a)→ Abrt(Ba)) ∧ (A→ B) ≡

(A→ B)brt(B).

2. We adopt here (with the proper adaptations, including an analogous unified
treatment of variants with q-truth and with t-truth by means of q, t ∈ {id,⊤})
the remarks made in the beginning of proofs 3.12 and 4.11. Let q = id or t = id.
Let T be a theory, containing HA

ω
e , that proves the equivalences (∗) A↔ Abr

for all formulas A. Let us show T ⊢ BAC, T ⊢ ∃̃F-BIP and T ⊢ MAJ.

T ⊢ BAC Using (∗) in the first implication, and Abr(Au) → A in the second
implication if t = id, we get

∀x ∃y A→
(∀x ∃y A)br ≡

∃̃v, A
(
∀̃u ∀x ≤e u ∃y ≤e vu (Abr(Au) ∧Aq) ∧ (∀x ∃y A)t

)
→

∃̃v ∀̃u ∀x ≤e u ∃y ≤e vuA.

T ⊢ ∃̃F-BIP Using (∗) in the first implication, and Bbr(a) → B in the second

82

implication if t = id, we get

(A∃̃f → ∃xB)→
(A∃̃f → ∃xB)br “≡”

∃̃y, a
((
A∃̃f ∧Aq

∃̃f → ∃x ≤
e y (Bbr(a) ∧ Bq)

)
∧ (A∃̃f → ∃xB)t

)
→

∃̃y (A∃̃f → ∃x ≤e y B).

T ⊢ MAJ Using (∗) in the first implication, and x′ ≤e
ρ y ∧ x =ρ x′ → x ≤e

ρ y
(which is provable by induction on the structure of ρ) [50, lemma 3.49(i)]
in the second implication, we get

∃x′ (x = x′) ≡
∃x′ ∀z (xz =0 x

′z)→
(∃x′ ∀z (xz =0 x

′z))br “≡”
∃̃y ∃x′ ≤e y (∀̃a ∀z ≤e a (xz =0 x

′z) ∧ (x = x′)t ∧ (x = x′)q)→
∃y (x ≤e y).

We have T ⊢ ∃x′ (x = x′), so T ⊢ ∃y (x ≤e y), therefore T ⊢ MAJ.

4.14 Remark. The characterisation theorem of br ensures that the soundness the-
orem of br is optimal, in the sense that the theory HA

ω
e +BAC+ ∃̃F-BIP+MAJ+Γ

there considered is the strongest theory T such that T ⊢ A ⇒ HA
ω
e + Γ ⊢ Abr

(analogously to remark 3.16).

4.5 Applications

4.15 Theorem (bounded existence property and bounded program extraction).
Let T := HA

ω
e ± BAC± ∃̃F-BIP±MAJ.

1. Let FV(∃xA) = {ℓ}. If T ⊢ ∃xA, then we can extract from such a proof
monotone terms t(ℓ) of T such that T ⊢ ∀̃ℓ′ ∀ℓ ≤e ℓ′ ∃x ≤e t(ℓ′)A and
FV(t(ℓ)) ⊆ FV(∃xA).

2. Let FV(∀x ∃y A(x, y)) = {ℓ}. If T ⊢ ∀x ∃y A, then we can extract from such

a proof monotone terms t(ℓ, x) of T such that T ⊢ ∀̃ℓ, x′ ∀ℓ, x ≤e x′, ℓ′ ∃y ≤e

t(ℓ′, x′)A and FV(t(ℓ, x)) = FV(∃y A(x, y)).

4.16 Proof.

1. We have (∃xA)brt(b, a) ≡ ∃x ≤e bAbrt(a). Assuming the premise of the theo-
rem, by the soundness theorem of brt we can extract monotone terms s(ℓ), t(ℓ)
of T such that T ⊢ ∀ℓ′ ∀ℓ ≤e ℓ′ ∃x ≤e t(ℓ′)Abrt(s(ℓ

′)) and FV(s(ℓ), t(ℓ)) ⊆
FV(∃xA). By truth we get T ⊢ ∀ℓ′ ∀ℓ ≤e ℓ′ ∃x ≤e t(ℓ′)A.

2. Follows from the previous point.

83

4.17 Theorem (conservation and relative consistency).

1. Let ∀̃x′ ∀x ≤e x′ ∃y A∃̃f be a sentence of HAω
e . If HA

ω
e +BAC+ ∃̃F-BIP+MAJ ⊢

∀̃x′ ∀x ≤e x′ ∃y A∃̃f, then HA
ω
e ⊢ ∀̃x′ ∀x ≤e x′ ∃y A∃̃f [14, corollary 2].

2. If HAω
e + BAC+ ∃̃F-BIP+MAJ ⊢ ⊥, then HA

ω
e ⊢ ⊥ [14, corollary 4].

4.18 Proof.

1. We have HA
ω
e ⊢ (∀̃x′ ∀x ≤e x′ ∃y A∃̃f)br(A) ↔ ∀̃b ∀̃x′ ≤e b∀x ≤e x′ ∃y ≤e

AbA∃̃f ↔ ∀̃b ∀̃x ≤e b∃y ≤e AbA∃̃f. Assuming the premise of the theorem, by
the soundness theorem of br we can extract closed monotone terms t of HAω

e

such that HA
ω
e ⊢ ∀̃b ∀̃x ≤e b∃y ≤e tbA∃f. So we get the conclusion of the

theorem.

2. Follows from the previous point.

4.6 Conclusion

4.19. We introduced the bounded modified realisability as a variant of modified
realisability that aims at bounds instead of exact witnesses. The main results about
the bounded modified realisability are the following.

Soundness theorem This theorem says that we can use the bounded modified realis-

ability to extract computational content from proofs in HA
ω
e +BAC+ ∃̃F-BIP+

MAJ.

Characterisation theorem This theorem guarantees that the soundness theorem is
optimal.

Applications We used the bounded modified realisability to do applications on:

1. bounded existence property;

2. bounded program extraction;

3. conservation;

4. relative consistency.

84

Chapter 5

Gödel’s functional interpretation

5.1 Introduction

5.1. We saw that mr can be used to interpret HAω, but what about PAω? We can
think about composing mr with a negative translation N to get an interpretation of
PA

ω, as pictured in figure 5.1. But, for the negative translations GG, Ko, Kr and

PA
ω

mr ◦N

33
N // HAω mr // HAω

Figure 5.1: the composition mr ◦ N.

Ku, the composition gives a trivial interpretation, that is the tuple a in (AN)mr(a)
is empty (so the soundness theorem of mr gives an empty tuple of terms, which is
of no interest). Indeed:

GG the formulas AGG are ∃-free, so in (AGG)mr(a) the tuple a is empty;

Ko, Kr and Ku the formulas AKo are negated, so in (AKo)mr(a) the tuple a is empty,
and analogously for Kr and Ku.

To better see the problem, let us, for example, compute the interpretation of
∃xAat by the composition mr ◦Ku:

(∃xAat)
Ku ≡ ¬¬∃xAat,

(∃xAat)mr(x
(∗1)

) ≡ Aat, (5.1)

(¬∃xAat)mr(
(∗2)

) ≡ ∀x¬Aat, (5.2)

(¬¬∃xAat)mr(
(∗3)

) ≡ ¬∀x¬Aat.

We see that in (5.1) modified realisability seems to be on the right track by “captur-
ing” the variable x, that is x appears in (∗1). But then in (5.2) modified realisability

85

loses x forever, that is x is absent in (∗2) and (∗3). The problem is that once x be-
comes universally quantified, mr no longer has a hold on x.

So to get a non-trivial interpretation of PAω, we need to replace mr by some other
proof interpretation that “captures” universally quantified variables. That will be
Gödel’s functional interpretation D that captures universally quantified variables
and collects them in b in AD ≡ ∃a ∀b AD(a; b). In this chapter we only present D;
the composition of D with a negative translation is presented in chapter 7.

5.2. There are no main contributions of our own to this topic. Almost all of the
material here is known.

5.2 Definition

5.3 Definition. Gödel’s functional interpretation D [28] [30, page 248] [50, defini-
tion 8.1] assigns to each formula A of HAω the formula AD :≡ ∃a ∀b AD(a; b), where
AD(a; b) is defined by recursion on the structure of A by

(Aat)D(;) :≡ Aat,

(A ∧ B)D(a, c; b, d) :≡ AD(a; b) ∧BD(c; d),

(A ∨ B)D(e
0, a, c; b, d) :≡ AD(a; b) ∨e BD(c; d),

(A→ B)D(C,B; a, d) :≡ AD(a;Bad)→ BD(Ca; d),

(∀xA)D(A; x, b) :≡ AD(Ax; b),

(∃xA)D(x, a; b) :≡ AD(a; b).

By (Aat)D(;) we mean (Aat)D(a; b) with the tuples a and b empty. Analogously for
WE-HA

ω.

5.4. The letter D in the symbol for Gödel’s functional interpretation D likely comes
from this interpretation also be called Dialectica interpretation since it was intro-
duced in a paper [28] in a journal called Dialectica.

5.5 Remark. The formulas AD(a; b) are quantifier-free.

5.6 Remark. Gödel’s functional interpretation D acts as the identity on quantifier-
free formulas of HAω without disjunctions in the sense of: (Aqf)D(;) ≡ Aqf for all
quantifier-free formulas Aqf of HA

ω without disjunctions.

5.3 Soundness

5.7 Theorem (soundness). Let A be a formula of HAω and let Γ be a set of formulas
of HAω of the form ∀xAqf. If HA

ω+AC+∀-IP+QF-MP+Γ ⊢ A, then we can extract
from such a proof terms t such that HA

ω + Γ ⊢ ∀bAD(t; b) and FV(t) ⊆ FV(A).
Analogously for WE-HA

ω [28] [75, theorem 3.5.10(ii)] [50, theorem 8.6].

5.8 Proof. This proof is analogous and sometimes simpler than the proof 6.9, so
we prefer to do the more complicated proof 6.9 later on. There is one exception:

86

contrarily to proof 6.9, here the axiom A → A ∨ A requires defining terms by
quantifier-free cases. Let see this. We have

(A→ A ∧A)D(C,E,B; a, d, f) ≡ AD(a;Badf)→ AD(Ca; d) ∧AD(Ea; f),

tC :≡ λa . a, tE :≡ λa . a, tB :≡ λa, d, f . f ∨χAD(a;d)
d.

Informally,

tBadf =

{
f if AD(a; d)

d if ¬AD(a; d)
.

To see that the terms work, that is

∀a, d, f (AD(a; f ∨χAD(a;d)
d)

︸ ︷︷ ︸
(∗1)

→ AD(a; d)︸ ︷︷ ︸
(∗2)

∧AD(a; f)︸ ︷︷ ︸
(∗3)

),

we argue by cases:

χAD(a;d) =0 0 we have (∗2) and (∗1)↔ (∗3), so we have (∗1)→ (∗2) ∧ (∗3);

χAD(a;d) 6=0 0 we have ¬(∗2) and (∗1)↔ (∗2), so we have (∗1)→ (∗2) ∧ (∗3).

5.9. There seems to be no sound Gödel’s functional interpretation with truth. This
is because, for example, if we add a copy ∀xA to clause of ∀ of D, getting

(∀xA)Dt(A; x, b) :≡ ADt(Ax; b) ∧ ∀xA,

then the formulas ADt(a; b) are no longer quantifier-free formulas, so they do not have
the characteristic terms χADt(a;b) necessary in the proof of the soundness theorem [41,
section 6.1]. In contrast, in chapter 6 we have a sound Diller-Nahm functional
interpretation (a variant of D) with truth because its soundness theorem does not
require characteristic terms.

5.4 Characterisation

5.10 Theorem (characterisation). Let us consider the theory HA
ω + AC + ∀-IP +

QF-MP.

1. This theory proves A↔ AD for all formulas A of HAω [75, theorem 3.5.10(i)]
[50, proposition 8.12].

2. This theory is the least theory, containing HA
ω, satisfying the previous point.

Analogously for WE-HA
ω + AC+ ∀-IP+ QF-MP.

5.11 Proof. This proof is analogous and sometimes simpler than the proof 6.13, so
we prefer to do the more complicated proof 6.13 later on.

5.12 Remark. The characterisation theorem of D ensures that the soundness the-
orem of D is optimal, in the sense that the theory HA

ω + AC + ∀-IP + QF-MP + Γ
there considered is the strongest theory T such that T ⊢ A ⇒ HA

ω + Γ ⊢ AD

(analogously to remark 3.16). Analogously for WE-HA
ω.

87

5.5 Applications

5.13 Theorem (disjunction property, existence property and program extraction).
Let T := HA

ω + AC+ ∀-IP+ QF-MP.

1. Let A ∨B be a sentence of T. If T ⊢ A ∨ B, then T ⊢ A or T ⊢ B.

2. If T ⊢ ∃xA(x), then we can extract from such a proof terms t of T such that
T ⊢ A(t) and FV(t) ⊆ FV(∃xA).

3. If T ⊢ ∀x ∃y A(x, y), then we can extract from such a proof terms t(x) of T
such that T ⊢ ∀xA(x, t(x)) and FV(t(x)) = FV(∃y A(x, y)).

Analogously for WE-HA
ω+AC+∀-IP+QF-MP [75, theorem 3.7.5] [50, corollary 8.14

and theorem 8.15].

5.14 Proof. Analogous to proof 6.17.

5.15 Theorem (conservation and relative consistency).

1. If HAω + AC + ∀-IP+ QF-MP ⊢ ∀x ∃y Aqf, then HA
ω ⊢ ∀x ∃y Aqf.

2. If HAω + AC + ∀-IP+ QF-MP ⊢ ⊥, then HA
ω ⊢ ⊥.

Analogously for WE-HA
ω [50, corollary 8.12].

5.16 Proof. Analogous to proof 3.21.

5.17 Theorem (independence). Let T := WE-HA
ω +AC+∀-IP+QF-MP. We have

T 0 LEM and T 0 ¬LEM (already for Σ0
1 and Π0

1 formulas). It follows the analogous
statement for HAω + AC+ ∀-IP+ QF-MP.

5.18 Proof. Analogous to point 2 of proof 3.23.

5.6 Conclusion

5.19. We introduced Gödel’s functional interpretation as being a proof interpreta-
tion that solves a problem of modified realisability (when composed with a negative
translation) by “capturing” universally quantified variables. The main results about
Gödel’s functional interpretation are the following.

Soundness theorem This theorem says that we can use Gödel’s functional interpre-
tation to extract computational content from proofs in WE-HA

ω+AC+∀-IP+
QF-MP.

Characterisation theorem This theorem guarantees that the soundness theorem is
optimal.

Applications We used Gödel’s functional interpretation to do applications on:

1. disjunction property;

88

2. existence property;

3. program extraction;

4. conservation;

5. relative consistency;

6. independence.

89

90

Chapter 6

Diller-Nahm functional
interpretation

6.1 Introduction

6.1. Gödel’s functional interpretation almost breaks when it interprets the seemly
innocuous axiom A → A ∧ A: its interpretation (essentially) asks for terms t such
that

AD(a; t)→ AD(a; d) ∧AD(a; f), (6.1)

like

t :=

{
f if AD(a; d)

d if ¬AD(a; d)

(the exact details are given in proof 5.8). The difficulty is that in (6.1) from one A
in the premise we need to get two As in the conclusion. This would be no problem
if we could have two As in the premise:

AD(a; s) ∧ AD(a; t)→ AD(a; d) ∧ AD(a; f)

(even better, finitely many As to interpret A → A ∧ · · · ∧ A). That is what the
Diller-Nahm functional interpretation DN does: to change D by allowing in

(A→ B)D(C,B; a, d) :≡ AD(a;Bad)→ BD(Ca; d)

a family {AD(a;Badf)}f≤0ead of As in the premise:

(A→ B)DN(C,B, e; a, d) :≡ ∀f ≤0 eadADN(a;Badf)→ BDN(Ca; d).

This allows to interpret theories in which we cannot define terms by quantifier-free
cases.

In addition to the Diller-Nahm functional interpretation DN, we also introduce
two variants with truth of DN: the Diller-Nahm functional interpretation with
q-truth DNq and the Diller-Nahm functional interpretation with t-truth DNt.

6.2. Our main contribution to this topic is the Diller-Nahm functional interpreta-
tion with t-truth DNt and its soundness theorem [22, section 6] (definition 6.3 and
theorem 6.8).

91

6.2 Definition

6.3 Definition.

1. The Diller-Nahm functional interpretation DN [10, pages 54–55] assigns to
each formula A of HAω the formula ADN :≡ ∃a ∀bADN(a; b), where ADN(a; b)
is defined by recursion on the structure of A by

(Aat)DN(;) :≡ Aat,

(A ∧ B)DN(a, c; b, d) :≡ ADN(a; b) ∧BDN(c; d),

(A ∨ B)DN(e
0, a, c; b, d) :≡ ADN(a; b) ∨e BDN(c; d),

(A→ B)DN(C,B, e; a, d) :≡ ∀f ≤0 eadADN(a;Badf)→ BDN(Ca; d),

(∀xA)DN(A; x, b) :≡ ADN(Ax; b),

(∃xA)DN(x, a; b) :≡ ADN(a; b).

By (Aat)DN(;) we mean (Aat)DN(a; b) with the tuples a and b empty.

2. TheDiller-Nahm functional interpretation with q-truth DNq [67, Definition 0.3]
[41, definition 6.2.1] is defined analogously to DN except for

(A ∨ B)DNq(e
0, a, c; b, d) :≡ (ADNq(a; b) ∧ A) ∨e (BDNq(c; d) ∧B),

(A→ B)DNq(C,B, e; a, d) :≡ ∀f ≤0 eadADNq(a;Badf) ∧A→ BDNq(Ca; d),

(∃xA)DNq(x, a; b) :≡ ADNq(a; b) ∧ A.

3. The Diller-Nahm functional interpretation with t-truth DNt [22, definition 6.3]
is defined analogously to DN except for

(A→ B)DNt(C,B, e; a, d) :≡ (∀f ≤0 eadADNt(a;Badf)→ BDNt(Ca; b)) ∧
(A→ B),

(∀xA)DNt(A; x, b) :≡ ADNt(Ax; b) ∧ ∀xA.

Analogously for WE-HA
ω.

6.4. Let us note that, contrarily to what is done for mrt, in DNt we added “∧∀xA”
in the clause of ∀; this will be discussed later in chapter 13. We can add here that
it was known that does not suffice to change only the clause of → in DN. Indeed,
HA

ω proves the formula ∀y ¬Txxy → ¬∃z Txxz (T was introduced in proof 3.23),
and the soundness theorem of DNt applied to this formula gives us terms s(x, z)
and t(x, y, a) such that we have (6.2) without (∗) if we only change the clause of→,
and with (∗) if we also change the clause of ∀:

HA
ω ⊢ ∀x, z (∀a ≤ s(x, z)¬Txxt(x, z, a)∧∀y ¬Txxy︸ ︷︷ ︸

(∗)

→ ¬Txxz ∧¬∃z Txxz). (6.2)

If we change only the clause of→, then we do not have (∗) in (6.2), so the terms solve
the halting problem, thus DNt cannot have a soundness theorem [41, theorem 6.1.1].
But if we also change the clause of ∀, then we have (∗) in (6.2), so there is nothing
wrong with (6.2): it holds true with s(x, z) :≡ 0 and t(x, z, a) :≡ z [22, section 6.3].

92

6.5 Remark.

1. The Diller-Nahm functional interpretation with q-truth DNq has truth in the
sense of: for all disjunctive and existential formulas A of HAω we have HA

ω ⊢
ADNq(a; b)→ A [22, remark 6.2].

2. The Diller-Nahm functional interpretation with t-truth DNt has truth in the
sense of: for all formulas A of HA

ω we have HA
ω ⊢ ADNt(a; b) → A [22,

remark 6.4].

The Diller-Nahm functional interpretation with t-truth DNt is a (∗1) strengthen-
ing of DNq which (∗2) has truth for all formulas. This can be given a rigorous
meaning: (∗3) HA

ω ⊢ ADNt(a; b) ↔ ADNq(a; b) ∧ A for all formulas A of HAω [22,
proposition 6.5]. From (∗3) we get: HA

ω ⊢ ADNt(a; b) → ADNq(a; b), that is (∗1);
HA

ω ⊢ ADNt(a; b)→ A, that is (∗2). It follows the analogous statements forWE-HA
ω.

6.6 Remark. The formulas ADN(a; b) are equivalent in HA
ω to quantifier-free formu-

las: we can replace each bounded quantification ∀x ≤0 t Bqf(x) (working inside out
of ADN(a; b), so that the matrix of the bounded quantification is quantifier-free) by
the equivalent quantifier-free formula r(t) =0 0 where r(y) :≡ RyχBqf

(0)λz, y . (z +
χBqf

(Sy)) (that is r(y) = χBqf
(0) + · · ·+ χBqf

(y)).

6.7 Remark. The Diller-Nahm functional interpretation DN acts as the identity
on quantifier-free formulas of HA

ω without disjunctions in the sense of: HA
ω ⊢

(Aqf)DN(a; b)↔ Aqf for all quantifier-free formulas Aqf of HA
ω without disjunctions.

(The variables a, b are introduced by DN, for example, when interpreting implica-
tions Aat → Bat, as a bound c on the dummy quantification in (Aat → Bat)DN(c;) ≡
∀d ≤0 cAat → Bat where d /∈ FV(Aat). So the variables a, b are dummy.) Analo-
gously for DNq and DNt. It follows the analogous statements for WE-HA

ω.

6.3 Soundness

6.8 Theorem (soundness). Let A be a formula of HAω and let Γ be a set of formulas
of HAω of the form ∀xAqf.

1. If HAω + AC+ ∀-IP+ QF-MP+ Γ ⊢ A, then we can extract from such a proof
terms t such that HAω + Γ ⊢ ∀bADN(t; b) and FV(t) ⊆ FV(A) [10, Satz 3].

2. If HAω ± ∀-IP + Γ ⊢ A, then we can extract from such a proof terms t such
that HA

ω ± ∀-IP + Γ ⊢ ∀bADNq(t; b) and FV(t) ⊆ FV(A) [67, Satz 1.1] [41,
theorem 6.2.3].

3. If HAω ± ∀-IP + Γ ⊢ A, then we can extract from such a proof terms t such
that HAω ± ∀-IP+ Γ ⊢ ∀bADNt(t; b) and FV(t) ⊆ FV(A) [22, theorem 6.6].

The terms constructed in the following proof for the three points above are the same.
Analogously for WE-HA

ω.

6.9 Proof. Let us make some remarks.

93

1. We adopt here (with the proper adaptations, including an analogous unified
treatment of variants without truth, with q-truth and with t-truth, by means
of q, t ∈ {id,⊤}) the remarks made in the beginning of proof 3.12.

2. We have

HA
ω ⊢ (∃xA)DN(x, a; b)↔ ADN(a; b) ∧Aq,

HA
ω ⊢ (∀xA)DN(A; x, b)↔ ADN(Ax; b) ∧ (∀xA)t.

We will replace the left sides of the equivalences by the right sides. When we
do it, we use “≡” instead of ≡.

A→ A ∧ A We have

(A→ A ∧ A)DN(C,E,B, g; a, d, f) “≡”
∀h ≤0 gadf ADN(a;Badfh) ∧Aq → ADN(Ca; d) ∧ ADN(Ea; f),

tC :≡ λa . a, tE :≡ λa . a, tB :≡ λa, d, f , h . d ∨h f, tg :≡ λa, d, f . S0.

Analogously for A ∨ A→ A.

A ∨B → B ∨A We have

(A ∨ B → B ∨ A)DN(J, E,G,B,D, k; i, a, c, f, h) “≡”
∀l ≤0 kiacfh

(
(ADN(a;Biacfhl) ∧ Aq) ∨i (BDN(c;Diacfhl)) ∧Bq)

)
∧

(A ∨ B)q → (BDN(Eiac; f) ∧ Bq) ∨Jiac (ADN(Giac; h)) ∧ Aq),

tJ :≡ λi, a, c . sg i, tE :≡ λi, a, c . c, tG :≡ λi, a, c . a,

tB :≡ λi, a, c, f , h, l . h, tD :≡ λi, a, c, f, h, l . f , tk :≡ O.

Analogously for A ∧ B → A, A→ A ∨B, A ∧ B → B ∧ A and ⊥ → A.

∀xA→ A[t/x] We have

(∀xA→ A[t/x])DN(C,X,B, e;A, d) “≡”
∀f ≤0 eAd (ADN(a; b)[A(XAdf), BAdf,XAdf/a, b, x] ∧ (∀xA)t) ∧ (∀xA)q →

A[t/x]DN(CA; d),

tC :≡ λA .At, tX :≡ λA, d, f . t, tB :≡ λA, d, f . d, te :≡ O.

Analogously for A[t/x]→ ∃xA.

A→ B, B → C /A→ C We have

(A→ B)DN(C,B, g; a, d) “≡” ∀h ≤0 gadADN(a;Badh) ∧ Aq → BDN(Ca; d),

(B → C)DN(E,D, g; c, f) “≡” ∀h ≤0 gcf BDN(c;Dcfh) ∧ Bq → CDN(Ec; f),

(A→ C)DN(E,B, g; a, f) “≡” ∀h ≤0 gaf ADN(a;Bafh) ∧ Aq → CDN(Ea; f).

94

In a primitive recursive way we define terms tB and th such that {tBafh}h≤0tgaf

enumerates {rBa(sD(rCa)fh)h′}h≤0sg(rCa)f

h′≤0rga(sD(rCa)fh)

and therefore

∀h ≤0 tgaf E(tBafh)↔
∀h ≤0 sg(rCa)f ∀h′ ≤0 rga(sD(rCa)fh)E

(
rBa(sD(rCa)fh)h

′).
(6.3)

Let us see that the terms

tE :≡ λa . sE(rCa), tB, tg

work. By induction hypothesis we have (6.4) and (6.5), and we want to prove
(6.6):

∀h′ ≤0 rgadADN(a; rBadh
′) ∧ Aq → BDN(rCa; d), (6.4)

∀h ≤0 sgcf BDN(c; sDcfh) ∧Bq → CDN(sEc; f), (6.5)

∀h ≤0 tgaf ADN(a; tBafh) ∧ Aq → CDN(sE(rCa); f). (6.6)

Taking d = sD(rCa)fh in (6.4) and c = rCa in (6.5) we get, respectively,

∀h′ ≤0 rga(sD(rCa)fh)ADN

(
a; rBa(sD(rCa)fh)h

′) ∧ Aq →
BDN(rCa; sD(rCa)fh),

(6.7)

∀h ≤0 sg(rCa)f BDN(rCa; sD(rCa)fh) ∧ Bq →
CDN(sE(rCa); f).

(6.8)

By (6.3), the premise of (6.6) implies the premise of (6.7) for all h ≤0 sg(rCa)f ,
which implies the conclusion of (6.7) for the same hs, that is the first conjunc-
tive of the premise of (6.8), so we get the conclusion of (6.8), that is the
conclusion of (6.3), as we wanted. If q = id, then we use the assumption that
we proved B, so as to have the partBq in (6.8). Analogously for A, A→ B /B.

A ∧B → C /A→ (B → C) We have

(A ∧B → C)DN(E,B,D, g; a, c, f) ≡
(
∀h ≤0 gacf (ADN(a;Bacfh) ∧BDN(c;Dacfh)) ∧ (A ∧B)q →

CDN(Eac; f)
)
∧ (A ∧ B → C)t,

(6.9)

(A→ (B → C))DN(E,D, G,B, i; a, c, f) ≡
(
∀j ≤0 iacf ADN(a;Bacfj) ∧ Aq →

(
(∀h ≤0 Gacf BDN(c; Dacfh) ∧ Bq → CDN(Eac; f)) ∧ (B → C)t

))
∧

(A→ (B → C))t,

(6.10)

tE :≡ sE , tD :≡ sD, tG :≡ sg, tB :≡ sB, ti :≡ sg.

If t = id, then we use ADN(a;Bacfj)→ A, so that the parts (A∧B → C)t in
(6.9) and ADN(a;Bacfj) in (6.10) together imply the part (B → C)t in (6.10).
Analogously A→ B /C ∨ A→ C ∨B.

95

A→ (B → C) /A ∧B → C The interpretations were computed in (6.9) and (6.10).

tE :≡ sE, tB :≡ sB, tD :≡ sD, tg :≡ λa, c, f . max(siacf)(sGacf).

A→ B /A→ ∀xB We have

(A→ B)DN(C,B, e; a, d) ≡
(∀f ≤0 eadADN(a;Badf) ∧ Aq → BDN(Ca; d)) ∧ (A→ B)t,

(6.11)

(A→ ∀xB)DN(C, B, e; a, x, d) “≡”
∀f ≤0 eaxdADN(a;Baxdf) ∧Aq → BDN(Cax; d) ∧ (∀xB)t,

(6.12)

tC(ℓ) :≡ λa, x . sC(ℓ, x)a, tB(ℓ) :≡ λa, x, d, f . sB(ℓ, x)adf,

te(ℓ) :≡ λa, x, d . se(ℓ, x)ad.

If t = id, the we use ADN(a;Baxdf) → A, so that the parts (A → B)t in
(6.11) and ADN(a;Baxde) in (6.12) together imply the part (∀xB)t in (6.12).
Analogously for A→ B / ∃xA→ B.

Axioms of =0, S, Π, Σ and R Their formulas are quantifier-free, so they are equiv-
alent to their own interpretation.

A[0/x], A→ A[Sx/x] /A We can assume x ∈ FV(A), otherwise A[0/x] ≡ A and so
the terms working for A[0/x] also work for A. We have

A[0/x]DN(a; b),

(A→ A[Sx/x])DN(C,B, e; a, d) “≡” ∀f ≤0 eadADN(a;Badf) ∧Aq →
A[Sx/x]DN(Ca; d),

ADN(a; b),

ta(ℓ, x) :≡ Rxra(ℓ) λa, x . sC(ℓ, x)a.

By induction hypothesis we have (6.13) and (6.14), and we want to prove
(6.15) by induction on x:

∀b A[0/x]DN(ra(ℓ); b), (6.13)

∀a, d∀f ≤0 se(ℓ, x)adADN(a; sB(ℓ, x)adf) ∧ Aq →
A[Sx/x]DN(sC(ℓ, x)a; d),

(6.14)

∀bADN(ta(ℓ, x); b) (6.15)

Base case The formula ∀bADN(ta(ℓ, x); b)[0/x] is equivalent to (6.13).

Induction step By induction hypothesis we assume ∀bADN(ta(ℓ, x); b). Tak-
ing a = ta(ℓ, x) in (6.14) we get ∀dA[Sx/x]DN(sC(ℓ, x)ta(ℓ, x); d), that is
∀b ADN(ta(ℓ, x); b)[Sx/x]. If q = id, then we use the assumption that we
proved A, so as to have the part Aq in (6.14).

96

Aat → ∀x (rx =0 sx) /Aat → t(r) =0 t(s) We have

(Aat → ∀x (rx =0 sx))DN(a; x) “≡”
∀b ≤0 axAat ∧Aq

at → rx =0 sx ∧ (∀x (rx =0 sx))
t,

(6.16)

(Aat → t(r) =0 t(s))DN(a;) “≡”
∀b ≤0 axAat ∧Aq

at → t(r) =0 t(s),
(6.17)

ta :≡ sa.

Note that ∀b ≤0 saxAat ↔ Aat because the quantification is dummy, so we
can apply the extensionality rule to (6.16) getting (6.17).

AC To keep the notation simple, we denote A(x, Y x)DN(a; b) andA(x, y)DN(a; b)[Y x/x]
by ADN(a; b; x, Y x). We have

(∀x ∃y A(x, y))DN(Y,A; x, b) ≡
ADN(Ax; b; x, Y x) ∧ A(x, Y x)q ∧ (∀x ∃y A(x, y))t,

(∃Y ∀xA(x, Y x))DN(Y, C; x, d) ≡
ADN(Cx; d; x, Y x) ∧ (∀xA(x, Y x))t ∧ (∀xA(x, Y x))q,

ACDN(Y,C, X,B, e; Y,A, x, d) “≡”
∀f ≤0 eY Axd

(
ADN(A(XY Axdf);BY Axdf ;XYAxdf, Y (XY Axdf)) ∧

A(XY Axdf, Y (XY Axdf))q ∧ (∀x ∃y A(x, y))t
)
∧ (∀x ∃y A(x, y))q

↓
ADN(CY Ax; d; x,YY Ax) ∧ (∀xA(x,YY Ax))t ∧ (∀xA(x,YY Ax))q,

tY :≡ λY,A, x . Y x, tC :≡ λY,A, x . Ax, tX :≡ λY,A, x, d, f . x,

tB :≡ λY,A, x, d, f . d, te :≡ O.

These terms only seem to work if q = ⊤ and t = ⊤.

∀-IP We have

(∀xAqf(x)→ ∃y B(y))DN(y, a,X, e; b) ≡(
∀f ≤0 eb

(
Aqf(Xbf) ∧ (∀xAqf(x))

t
)
∧ (∀xAqf(x))

q → BDN(a; b; y) ∧B(y)q
)
∧

(∀xAqf(x)→ ∃y B(y))t,
(
∃y (∀xAqf(x)→ B(y))

)
DN

(y, c,X, g; d) ≡
(
∀h ≤0 gd

(
Aqf(Xdh) ∧ (∀xAqf(x))

t
)
∧ (∀xAqf(x))

q → BDN(c; d; y)
)
∧

(∀xAqf(x)→ B(y))t ∧ (∀xAqf(x)→ B(y))q,

97

∀-IPDN(Y, C,X, G,B, i; y, a,X, e, d) “≡” ∀j ≤0 iyaXed((
∀f ≤0 e(ByaXedj)

(
Aqf(X(ByaXedj)f) ∧ (∀xAqf(x))

t
)
∧ (∀xAqf(x))

q →

BDN(a;ByaXedj; y) ∧ B(y)q
)
∧ (∀xAqf(x)→ ∃y B(y))t

)
∧

(∀xAqf(x)→ ∃y B(y))q

↓(
∀h ≤0 GyaXed

(
Aqf(XyaXedh) ∧ (∀xAqf(x))

t
)
∧ (∀xAqf(x))

q →
BDN(CyaXe; d; Y ayXe)

)
∧

(∀xAqf(x)→ B(Y yaXe))t ∧ (∀xAqf(x)→ B(Y yaXe))q,

tY :≡ λa, y,X, e . y, tC :≡ λy, a,X, e . a, tX :≡ λy, a,X, d, g .Xdh,

tG :≡ λy, a,X, e, d . ed, tB :≡ λy, a,X, e, d, j . d, ti :≡ O.
If t = id, then we use BDN(a;ByaXedj; y) → B(y), so that the premise of
the interpretation of ∀-IP implies the part (∀xAqf(x) → B(tY yaXe))t in the
conclusion.

QF-MP It suffices to interpret ¬¬∃xAat(x) → ∃y Aat(y) because every quantifier-
free formula is equivalent in HA

ω to an atomic formula by theorem 1.44.

(¬¬∃xAat(x))DN(X, c; a) “≡” ¬
(
∀d ≤0 ca

(
¬
(
∀b ≤0 a(Xad) (Aat(Xad) ∧ Aat(Xad)q) ∧ (∃xAat(x))

q
)
∧ (¬∃xAat(x))

t
)
∧

(¬∃xAat(x))
q
)
∧ (¬¬∃xAat(x))

t,

(∃y Aat(y))DN(y;) “≡” Aat(y) ∧Aat(y)
q,

QF-MPDN(Y ,A, e;X, c) “≡” ∀f ≤0 eXc

(
¬
(
∀d ≤0 c(AXcf)

(
¬
(
∀b ≤0 AXcf(X(AXcf)d)

(
Aat(X(AXcf)d) ∧ Aat(X(AXcf)d)q

)
∧

(∃xAat(x))
q
)
∧ (¬∃xAat(x))

t
)
∧ (¬∃xAat(x))

q
)
∧ (¬¬∃xAat(x))

t

)
∧

(¬¬∃xAqf(x))
q

↓
Aat(Y Xc) ∧ Aat(Y Xc))q,

tY :≡ λX, c .XO0, tA :≡ O, te :≡ O.
These terms only seem to work if q = ⊤ and t = ⊤.

Γ We have
(∀xAqf)DN(; x) “≡” Aqf.

6.10 Remark.

1. The Diller-Nahm functional interpretation with q- [41, remark 6.2.4] and
t-truth do not seem to interpret AC. To interpret it we (essentially and in

98

particular) should present a term witnessing Y in A(x, Y x) ∧ ∀x ∃y A(x, y)→
∀xA(x,YY x) and this does not seem possible.

2. The Diller-Nahm functional interpretation with q- [41, remark 6.2.4] and
t-truth do not seem to interpret QF-MP. To interpret it we (essentially and
in particular) should present terms witnessing Y in ¬¬∃xA(x) → Aat(Y Xc)
and this does not seem possible.

6.11. Because DNq and DNt do not seem to interpret QF-MP, we may wonder
what do they add to mrq and mrt. For example, in theorem 6.16, the disjunction
property, existence property and program extraction of HAω ± ∀-IP already can be
obtained with mrq and mrt (observing that their soundness theorems also hold with
∀-IP instead of ∃F-IP) [41, section 6.3] [52]. It seems that for complex formulas (for
example, of the form Π2 → Π2) DNt is stronger than mrt [22, section 6.4], but
despite this applications of DNq and DNt that cannot be obtained with mrq and
mrt are unknown.

6.4 Characterisation

6.12 Theorem (characterisation). Let us consider the theory HA
ω + AC + ∀-IP +

QF-MP.

1. This theory proves A↔ ADN for all formulas A of HAω.

2. This theory is the least theory, containing HA
ω, satisfying the previous point.

Analogously for WE-HA
ω + AC+ ∀-IP+ QF-MP [10, Satz 2.1].

6.13 Proof. We do the proof for HAω + AC+ ∀-IP+ QF-MP; the case of the other
theory is analogous. By remark 6.6 we can treat the formulas ADN(a; b) as if they
were quantifier-free.

1. The proof is by induction on the structure of A.

∨ Using HAω in the first equivalence, induction hypothesis in the second equiv-
alence, and ∀-IP in the third equivalence, we get

A ∨ B ↔
∃e ((e = 0→ A) ∧ (e 6= 0→ B))↔

∃e ((e = 0→ ADN) ∧ (e 6= 0→ BDN)) ≡
∃e

(
(e = 0→ ∃a ∀bADN(a; b)) ∧ (e 6= 0→ ∃c ∀dBDN(c; d))

)
↔

∃e, a, c
(
(e = 0→ ∀bADN(a; b)) ∧ (e 6= 0→ ∀dBDN(c; d))

)
↔

∃e, a, c∀b, d
(
(e = 0→ ADN(a; b)) ∧ (e 6= 0→ BDN(c; d))

)
≡

(A ∨ B)DN.

Analogously for Aat, ∧ and ∃.

99

→ We have (∗) HA
ω ⊢ (∀xAqf → Bqf) ↔ ¬¬∃x (Aqf → Bqf) where x /∈

FV(Bqf): follows from point 1 of theorem 1.53 and IL + (¬¬C → C) +
(¬¬D → D) ⊢ (∀y C → D) ↔ ¬¬∃y (C → D) where y /∈ FV(D) [50,
exercise 5 of section 8.3]. Using induction hypothesis in the first equiva-
lence, ∀-IP in the third equivalence, (∗) in the sixth equivalence, QF-MP

in the seventh equivalence, and AC in the last equivalence, we get

(A→ B)↔
ADN → BDN ≡

(∃a ∀bADN(a; b)→ ∃c∀dBDN(c; d)))↔
∀a (∀bADN(a; b)→ ∃c ∀dBDN(c; d))↔
∀a ∃c (∀bADN(a; b)→ ∀dBDN(c; d))↔
∀a ∃c ∀d (∀b ADN(a; b)→ BDN(c; d))↔

∀a ∃c ∀d (∀B, e ∀f ≤0 eADN(a;Bf)→ BDN(c; d))↔
∀a ∃c ∀d¬¬∃B, e (∀f ≤0 eADN(a;Bf)→ BDN(c; d))↔
∀a ∃c ∀d∃B, e (∀f ≤0 eADN(a;Bf)→ BDN(c; d))↔

∃C,B, E ∀a, d (∀f ≤0 EadADN(a; Badf)→ BDN(Ca; d)) ≡
(A→ B)DN.

∀ Using induction hypothesis in the first equivalence and AC in the second
equivalence, we get

∀xA↔
∀xADN ≡

∀x ∃a ∀b ADN(a; b)↔
∃A ∀x, b ADN(a; b) ≡

(∀xA)DN.

2. Analogous to point 2 of proof 3.15.

6.14 Remark. The characterisation theorem of DN ensures that the soundness
theorem of DN is optimal, in the sense that the theory HA

ω+AC+∀-IP+QF-MP+Γ
there considered is the strongest theory T such that T ⊢ A ⇒ HA

ω + Γ ⊢ ADN

(analogously to remark 3.16). Analogously for WE-HA
ω.

6.15 Remark. Stein proved a characterisation theorem of DNq [67, Satz 4.8], but
we prefer not to include it here in detail because of its use of non-standard princi-
ples and its indirect and complicated proof. Nevertheless, we briefly sketch Stein’s
characterisation theorem of DNq. Let ∃F-AC be AC restricted to ∃-free formulas,
and let ac be the principle

∀Y ∃X, z0
(
∀x ≤0 z A(Xz, Y (Xz))→ ∃Y (∀x ∃y A(x, y)→ ∀xA(x, Y x))

)
.

Stein proved the following characterisation theorem for DNq: the theory WE-HA
ω+

∃F-AC+ ac+ ∃F-IP is the least theory, containing WE-HA
ω, that proves A↔ ADNq

for all formulas A of WE-HA
ω. Stein’s proof goes along these lines.

100

1. We prove WE-HA
ω + ∃F-AC + ac + ∃F-IP ⊢ ADNq → A by induction on the

structure of A. So let us focus on the reciprocal implication.

2. The proof of the characterisation theorem of mr only uses AC for ∃-free for-
mulas, so WE-HA

ω + ∃F-AC+ ∃F-IP ⊢ A↔ Amr.

3. We can prove the following variant of the soundness theorem of DNq: if
WE-HA

ω + ∃F-AC + ∃F-IP ⊢ A, then WE-HA
ω + ∃F-AC + ac+ ∃F-IP ⊢ ADNq.

4. Combining the previous two points, we get WE-HA
ω + ∃F-AC + ac + ∃F-IP ⊢

(Amr → A)DNq. From (Amr → A)DNq we get (Amr)DNq ∧ Amr → ADNq, so
Amr → ADNq (since we can prove Amr → (Amr)DNq), thus A → ADNq (by the
characterisation theorem of mr).

From Stein’s characterisation theorem of DNq and WE-HA
ω ⊢ ADNt ↔ ADNq ∧ A

(by remark 6.5) we get an analogous characterisation theorem of DNt.

6.5 Applications

6.16 Theorem (disjunction property, existence property and program extraction).
Let T := HA

ω ± ∀-IP.

1. Let A ∨B be a sentence of T. If T ⊢ A ∨ B, then T ⊢ A or T ⊢ B.

2. If T ⊢ ∃xA(x), then we can extract from such a proof terms t of T such that
T ⊢ A(t) and FV(t) ⊆ FV(∃xA).

3. If T ⊢ ∀x ∃y A(x, y), then we can extract from such a proof terms t(x) of T
such that T ⊢ ∀xA(x, t(x)) and FV(t(x)) = FV(∃y A(x, y)).

Analogously for WE-HA
ω ± ∀-IP [41, theorem 6.3.1] [75, theorem 3.7.2] [50, corol-

lary 5.24], HA
ω + AC + ∀-IP + QF-MP and WE-HA

ω + AC + ∀-IP + QF-MP [75,
theorem 3.7.5] [50, corollary 8.14 and theorem 8.15].

6.17 Proof. We do two slightly different proofs: one for HAω±∀-IP and WE-HA
ω±

∀-IP using DNt and its truth, and another one for HAω + AC + ∀-IP + QF-MP and
WE-HA

ω + AC+ ∀-IP+ QF-MP using DN and its characterisation theorem.

HA
ω ± ∀-IP and WE-HA

ω ± ∀-IP Analogous to proof 3.19.

HA
ω + AC+ ∀-IP+ QF-MP and WE-HA

ω + AC+ ∀-IP+ QF-MP Let T := HA
ω+AC+

∀-IP+ QF-MP; the case of the other theory is analogous.

1. We have (A ∨ B)DN(e
0, a, c; b, d) ≡ ADN(a; b) ∨e BDN(c; d). Assuming

the premise of the theorem, by the soundness theorem of DN we can
extract terms r, s, t0 of T such that T ⊢ ∀b, d (ADN(r; b) ∨t BDN(s; d)), so
T ⊢ ∀cADN(r; b) ∨t ∀dBDN(s; d). By the characterisation theorem of DN
we get T ⊢ A ∨t B. By point 3 of theorem 1.30 we have t ≡ n̄ for some
n ∈ N. If n = 0, then T ⊢ A; if n 6= 0, then T ⊢ B.

101

2. We have (∃xA(x))DN(x, a; b) ≡ A(x)DN(a; b). Assuming the premise of
the theorem, by the soundness theorem of DN we can extract terms s, t
of T such that T ⊢ ∀b A(t)DN(s; b) and FV(s),FV(t) ⊆ FV(∃xA(x)). By
the characterisation theorem of DN we get T ⊢ A(t).

3. Follows from the previous point.

6.18 Theorem (conservation and relative consistency).

1. Let ∀x ∃y Aqf(x, y) be a sentence of HAω. If HAω + AC + ∀-IP + QF-MP ⊢
∀x ∃y Aqf, then HA

ω ⊢ ∀x ∃y Aqf.

2. If HAω + AC + ∀-IP+ QF-MP ⊢ ⊥, then HA
ω ⊢ ⊥.

Analogously for WE-HA
ω [50, corollary 8.12].

6.19 Proof. By theorem 1.44, without loss of generality we can assume that Aqf is
atomic. Then we proceed as in proof 3.21.

6.20 Theorem (independence). Let T := WE-HA
ω +AC+∀-IP+QF-MP. We have

T 0 LEM and T 0 ¬LEM (already for Σ0
1 and Π0

1 formulas). It follows the analogous
statement for HAω + AC+ ∀-IP+ QF-MP.

6.21 Proof. Analogous to point 2 of proof 3.23.

6.6 Conclusion

6.22. We introduced the Diller-Nahm functional interpretation as a variant of Gödel’s
functional interpretation that deals with the contraction axiom A → A ∧ A by al-
lowing finitely many As in the premise. The main results about the Diller-Nahm
functional interpretation are the following.

Soundness theorem This theorem says that we can use the Diller-Nahm functional
interpretation to extract computational content from proofs inWE-HA

ω+AC+
∀-IP+ QF-MP.

Characterisation theorem This theorem guarantees that the soundness theorem is
optimal.

Applications We used the Diller-Nahm functional interpretation to do applications
on:

1. disjunction property;

2. existence property;

3. program extraction;

4. conservation;

5. relative consistency;

6. independence.

102

Chapter 7

Shoenfield functional
interpretation

7.1 Introduction

7.1. Gödel’s functional interpretation D interprets HA
ω. When composed with a

negative translation N we get an interpretation D ◦ N of PAω. If we take N = Kr,
then composition D◦Kr is a known interpretation of PAω called Shoenfield functional
interpretation S. This is pictured in figure 7.1. In this chapter we introduce S.

PA
ω

S=D◦Kr

33
Kr // HAω D // HAω

Figure 7.1: the composition S = D ◦Kr.

7.2. There are no main contributions of our own to this topic. Almost all of the
material here is known.

7.2 Definition

7.3. In this chapter we consider PAω and WE-PA
ω based on ¬, ∨ and ∀, so A∧B :≡

¬(¬A ∨ ¬B), A→ B :≡ ¬A ∨ B and ∃xA :≡ ¬∀x¬A.
7.4 Definition. The Shoenfield functional interpretation S [63, page 219] assigns
to each formula A of PAω the formula AS :≡ ∀a ∃b AS(a; b), where AS(a; b) is defined
by recursion on the structure of A by

(Aat)S(;) :≡ Aat,

(¬A)S(B; a) :≡ ¬AS(a;Ba),

(A ∨ B)S(a, c; b, d) :≡ AS(a; b) ∨ BS(c; d),

(∀xA)S(x, a; b) :≡ AS(a; b).

By (Aat)S(;) we mean (Aat)S(a; b) with the tuples a and b empty. Analogously for
WE-PA

ω.

103

7.5 Remark. The formulas AS(a; b) are quantifier-free.

7.6 Remark. The Shoenfield functional interpretation S acts as the identity on
quantifier-free formulas of PAω in the sense of: (Aqf)S(;) ≡ Aqf for all quantifier-free
formulas Aqf of PA

ω [63, page 219].

7.3 Factorisation

7.7 Theorem (factorisation S = D ◦Kr). For all formulas A of PAω we have:

1. HA
ω ⊢ AS(a;Ba)↔ (AKr)D(B; a) [69, theorem 3.1.2] [2, proposition 0.4];

2. HA
ω + QF-AC ⊢ AS ↔ (AKr)D.

Analogously for WE-HA
ω.

7.8 Proof.

1. (a) First we prove (∗) HAω ⊢ AS(a; b) ↔ ¬(AKr)D(a; b) by induction on the
structure of A. Let us only see the case of ∨; the cases of Aat, ¬ and ∀ are
analogous. Using induction hypothesis in first equivalence, and point 1
of theorem 1.53 in the second equivalence, we get

(A ∨ B)S(a, c; b, d) ≡
AS(a; b) ∨ BS(c; d)↔

¬(AKr)D(a; b) ∨ ¬(BKr)D(c; d)↔
¬((AKr)D(a; b) ∧ (BKr)D(c; d)) ≡

¬((A ∨ B)Kr)D(a, c; b, d).

(b) Now we prove HA
ω ⊢ AS(a;Ba)↔ (AKr)D(B; a). Using (∗) in the equiv-

alence we get

AS(a;Ba)↔
¬(AKr)D(a;Ba) ≡
(¬AKr)D(B; a) ≡
(AKr)D(B; a).

2. Using QF-AC in the first equivalence and point 1 in the second equivalence,
we get

AS ≡
∀a ∃b AS(a; b)↔

∃B ∀aAS(a;Ba)↔
∃B ∀a (AKr)D(B; a) ≡

(AKr)D.

104

7.4 Soundness

7.9 Theorem (soundness). Let A be a formula of PAω and let Γ be a set of formulas
of PAω of the form ∀xAqf. If PA

ω+QF-AC+Γ ⊢ A, then we can extract from such a
proof terms t such that HAω+Γ ⊢ ∀aAS(a; t) and FV(t) ⊆ FV(A)∪{a}. Analogously
for WE-HA

ω [63, page 220].

7.10 Proof. We can prove HA
ω ⊢ AKr

qf ↔ Aqf by induction on the structure of Aqf

(using point 1 of theorem 1.53), thus (∀xAqf)
Kr ≡ ¬∃x (Aqf)Kr is equivalent in HA

ω

to ∀x¬(Aqf)Kr ≡ ∀xAKr
qf , which is equivalent in HA

ω to ∀xAqf. So (∗) HAω +ΓKr =
HA

ω + Γ.
If PAω+QF-AC+Γ ⊢ A, then HA

ω+QF-AC+ΓKr ⊢ AKr by the soundness theorem
of Kr, that is HAω+QF-AC+Γ ⊢ AKr by (∗), so by the soundness theorem of D we can
extract terms t′ of HAω such that HAω +Γ ⊢ (AKr)D(t

′; a) and FV(t′) ⊆ FV(AKr) =
FV(A). By point 1 of the factorisation S = D ◦ Kr we get HA

ω + Γ ⊢ AS(a; t
′a).

Take t :≡ t′a.

7.5 Characterisation

7.11 Theorem (characterisation). Let us consider the theory PA
ω + QF-AC.

1. This theory proves A↔ AS for all formulas A of PAω [63, page 219].

2. This theory is the least theory, containing HA
ω, satisfying the previous point.

Analogously for WE-PA
ω + QF-AC.

7.12 Proof.

1. The proof is by induction on the structure of A. Let us only see the case of
¬; the cases of Aat, ∨ and ∀ are analogous. Using induction hypothesis in the
first equivalence and QF-AC in the second equivalence, we get

¬A↔
¬AS ≡

¬∀a ∃bAS(a; b)↔
¬∃B ∀aAS(a;Ba)↔
∀B ∃a¬AS(a;Ba) ≡

(¬A)S.

2. Analogous to point 2 of proof 3.15.

7.13 Remark. The characterisation theorem of S ensures that the soundness theo-
rem of S is optimal, in the sense that the theory PA

ω +QF-AC+Γ there considered
is the strongest theory T such that T ⊢ A ⇒ HA

ω + Γ ⊢ AS (analogously to
remark 3.16). Analogously for WE-HA

ω.

105

7.6 Applications

7.14 Theorem (existence property for quantifier-free formulas and program extrac-
tion for quantifier-free formulas). Let T := PA

ω + QF-AC.

1. If T ⊢ ∃xAqf(x), then we can extract from such a proof terms t of HAω such
that HAω ⊢ Aqf(t) and FV(t) ⊆ FV(∃xA).

2. If T ⊢ ∀x ∃y Aqf(x, y), then we can extract from such a proof terms t(x) of T
such that HAω ⊢ ∀xAqf(x, t(x)) and FV(t(x)) = FV(∃y A(x, y)).

Analogously for WE-PA
ω + QF-AC [3, theorem 3.2.2] [50, theorem 10.8].

7.15 Proof.

1. Say x ≡ x1, . . . , xn. Recall ∃xAqf(x) ≡ ¬∀x1 ¬ · · · ¬∀xn ¬Aqf(x) (in PA
ω based

on ¬, ∨ and ∀). We have HA
ω ⊢ (∃xAqf(x))S(; x) ↔ Aqf(x). Assuming the

premise of the theorem, by the soundness theorem of S we can extract terms
t of HAω such that HAω ⊢ Aqf(t) and FV(t) ⊆ FV(∃xA(x)).

2. Follows from the previous point.

7.16 Theorem (conservation and relative consistency).

1. If PAω + QF-AC ⊢ ∀x ∃y Aqf, then HA
ω ⊢ ∀x ∃y Aqf [3, corollary 3.2.5].

2. If PAω + QF-AC ⊢ ⊥, then HA
ω ⊢ ⊥ [63, page 222].

Analogously for WE-PA
ω [3, corollary 3.2.5].

7.17 Proof. Say x ≡ x1, . . . , xn. Recall ∃xAqf(x) ≡ ¬∀x1 ¬ · · · ¬∀xn ¬Aqf(x) (in
PA

ω based on ¬, ∨ and ∀). We have HA
ω ⊢ (∃xAqf(x))S(; x) ↔ Aqf(x). Then we

proceed as in proof 3.21.

7.7 Conclusion

7.18. We introduced the Shoenfield functional interpretation S and motivated it
by the composition S = D ◦ Kr. The main results about the Shoenfield functional
interpretation are the following.

Factorisation We proved S = D ◦Kr.

Soundness theorem This theorem says that we can use the Shoenfield functional in-
terpretation to extract computational content from proofs inWE-PA

ω+QF-AC.

Characterisation theorem This theorem guarantees that the soundness theorem is
optimal.

Applications We used the Shoenfield functional interpretation to do applications
on:

106

1. existence property for quantifier-free formulas;

2. program extraction for quantifier-free formulas;

3. conservation;

4. relative consistency.

107

108

Chapter 8

Monotone functional
interpretation

8.1 Introduction

8.1. Monotone functional interpretation MD is a variant of Gödel’s functional in-
terpretation D that extracts bounds instead of exact witnesses. More precisely, we
obtain AMD from AD in the following way:

∀ℓ AD ≡ (FV(A) = {ℓ})
∀ℓ ∃b∀cAD(b; c)↔ (by AC)

∃B ∀ℓ, c AD(Bℓ; c) (bound B by a)

∃̃a∃B ≤e a ∀ℓ, c AD(Bℓ; c) ≡:
AMD.

It may seem that MD just weakens MD by asking for bounds instead of exact
witnesses. However, there are advantages in this.

More axioms Gödel’s functional interpretation D interprets HAω+Γ where Γ is a set
of axioms of the form ∀xAqf. For MD we can enlarge Γ to include axioms of
the form ∀x ∃y ≤ tx ∀z Aqf [50, theorem 9.1] (where the inequality is pointwise
and the terms t are closed).

Uniformity If we proved a theorem ∀x00 ∀y ≤ tx ∃z0(00) A (where the terms t are
closed), then MD extracts a bound on z that is uniform (that is does not
depend) on y [50, theorem 9.3]. One application of this is that points in
arbitrary compact metric spaces can be represented by ys bounded by a term,
so the bound extracted by MD is uniform on the space.

Simpler terms Bounds can be simpler than exact witnesses. For example, the bound
1 on x in ∃x (Aqf ↔ x =0 0) is simpler than the exact witness

{
0 if Aqf

1 if ¬Aqf

.

8.2. There are no main contributions of our own to this topic. Almost all of the
material here is known.

109

8.2 Definition

8.3 Definition. Monotone functional interpretation MD [46, page 231] [50, sec-
tion 9.1] assigns to each formula A of HAω, with FV(A) = {ℓ}, the formula AMD :≡
∃̃a ∃b ≤e a ∀ℓ, cAD(bℓ; c). Analogously for WE-HA

ω.

8.3 Soundness

8.4 Theorem (soundness). Let A be a formula of HAω with FV(A) = {ℓ}, let Γ be a
set of formulas of HAω of the form ∀x ∃y ≤ sx ∀z Aqf(y) where the terms s are closed,
and Γ′ be the set of the corresponding Skolem normal forms ∃Y ≤ s∀x, z Aqf(Y x).
If HAω +AC+ ∀-IP+QF-MP+Γ ⊢ A, then we can extract from such a proof closed
monotone terms t such that HA

ω + Γ′ ⊢ ∃b ≤e t ∀ℓ, c AD(bℓ; c). Analogously for
WE-HA

ω [50, theorem 9.1].

8.5 Proof. To prove the theorem with Γ, we would need to prove it by induction
on the derivation of A. To avoid a long proof by induction, we prove the theorem
without Γ in a simpler way. Assume the premise of the theorem. By the soundness
theorem of D we can extract from such a proof terms t′ such that HAω ⊢ ∀ℓ, c AD(t

′; c)
and FV(t′) ⊆ {ℓ}. Letting t′′ :≡ λℓ . t′, we have HA

ω ⊢ ∀ℓ, cAD(t
′′ℓ; c) and t′′ are

closed. Take t :≡ t′′m.

8.6. There seems to be no sound monotone functional interpretation with truth by
the same reason explained in paragraph 5.9.

8.7. An (optimal) characterisation theorem of MD is unknown.

8.4 Applications

8.8 Theorem (monotone existence property and monotone program extraction).
Let T := HA

ω + AC+ ∀-IP+ QF-MP.

1. Let FV(∃xA(x)) = {ℓ}. If T ⊢ ∃xA(x), then we can extract from such a proof
closed monotone terms t of T such that T ⊢ ∃X ≤e t ∀ℓ A(Xℓ).

2. Let FV(∀x ∃y A(x, y)) = {ℓ}. If T ⊢ ∀x ∃y A(x, y), then we can extract
from such a proof closed monotone terms t of T such that T ⊢ ∃Y ≤e

t ∀ℓ, xA(x, Y ℓx).

Analogously for WE-HA
ω + AC+ ∀-IP+ QF-MP [50, theorem 8.15 and remark 9.5].

8.9 Proof.

1. We have (∃xA(x))MD ≡ ∃̃a, b∃X, c ≤e a, b∀ℓ, dA(Xℓ)D(cℓ; d). Assuming the
premise of the theorem, by the soundness theorem of MD we can extract closed
monotone terms s, t of T such that T ⊢ ∃X, c ≤e t, s∀ℓ, dA(Xℓ)D(cℓ; d) and
FV(s),FV(t) ⊆ FV(∃xA(x)). By the characterisation theorem of D we get
T ⊢ ∃X ≤e t ∀ℓ A(Xℓ).

110

2. Follows from the previous point.

8.10. We can prove the following: if HA
ω + AC + ∀-IP + QF-MP ⊢ ∀x00 ∀y ≤ρ

sx ∃z0(00) A (where the formula is a sentence, the terms s are closed and ≤ρ is
pointwise inequality), then we can extract from such a proof monotone terms t(x)
such that HA

ω + AC + ∀-IP + QF-MP ⊢ ∀x ∀y ≤ sx ∃z ≤ t(x)A and FV(t(x)) =
{x} [50, theorem 9.3]. The interest of this result it that the terms t(x) are uniform
(that is do not depend) on y. However, this theorem on program extraction does not
compare nicely (because of the restriction on the types of x and z) with our other
theorems on program extraction, so we prefer to present point 2 of theorem 8.8.

8.5 Conclusion

8.11. We introduced monotone functional interpretation as a variant of Gödel’s
functional interpretation that extracts bounds instead of exact witnesses (allowing
for more axioms, uniformity and simpler terms). The main results about monotone
functional interpretation are the following.

Soundness theorem This theorem says that we can use monotone functional inter-
pretation to extract computational content from proofs in WE-HA

ω + AC +
∀-IP+ QF-MP.

Applications We used monotone functional interpretation to do applications on:

1. monotone existence property;

2. monotone program extraction.

111

112

Chapter 9

Bounded functional interpretation

9.1 Introduction

9.1. Gödel’s functional interpretation D extracts exact witnesses for existential
statements: given a theorem ∃xA(x), extracts a term t such that A(t). Mono-
tone functional interpretation MD extracts bounds instead of exact witnesses: given
a theorem ∃xA(x), extracts a term t such that (essentially) ∃x ≤e t A(x). The
way MD does this is by starting by targeting an exact witness and then in a last
step changing the target to a bound. Now we introduce the bounded functional
interpretation that also targets bounds, not in a last step but systematically from
the very beginning. The price to pay for this is that B will not work in the setting
HA

ω + AC + QF-MP + ∀-IP but in the more exotic setting HA
ω
i + BAC + B-BCC +

∀-BIP+MAJ+ B-BMP+ B-BUD.
This change from exact witnesses to bounds is mainly obtained by changing the

clause of ∃x from asking for x to asking for a bound c on x (as done for br):

(∃xA)D(x, a; b) :≡ AD(a; b),

(∃xA)B(c, a; d) :≡ ∃x ≤i c ∀̃b ≤i dAB(a; b).

(Note the parallelism between the pair mr, br and the pair D,B.) We also introduce
two variants with truth of B: the bounded functional interpretation with q-truth Bt
and the bounded functional interpretation with t-truth Bt.

9.2. Our main contributions to this topic are the following.

1. The bounded functional interpretations with q-truth Bt and with t-truth Bt
and their soundness theorems [22, section 7] (definition 9.3 and theorem 9.10).

2. The bounded existence property and the bounded program extraction (theo-
rem 9.17).

9.2 Definition

9.3 Definition.

1. The bounded functional interpretation B [15, definition 4] assigns to each for-
mula A of HAω

i the formula AB :≡ ∃̃a ∀̃bAB(a; b), where AB(a; b) is defined by

113

recursion on the structure of A by

(Aat)B(;) :≡ Aat,

(A ∧B)B(a, c; b, d) :≡ AB(a; b) ∧BB(c; d),

(A ∨ B)B(a, c; e, f) :≡ ∀̃b ≤i eAB(a; b) ∨ ∀̃d ≤i f BB(c; d),

(A→ B)B(C, e; a, d) :≡ ∀̃b ≤i eadAB(a; b)→ BB(Ca; d),

(∀x ≤i t A)B(a; b) :≡ ∀x ≤i t AB(a; b),

(∃x ≤i t A)B(a; c) :≡ ∃x ≤i t ∀̃b ≤i cAB(a; b),

(∀xA)B(A; c, b) :≡ ∀x ≤i cAB(Ac; b),

(∃xA)B(c, a; d) :≡ ∃x ≤i c ∀̃b ≤i dAB(a; b).

By (Aat)B(;) we mean (Aat)B(a; b) with the tuples a and b empty.

2. The bounded functional interpretation with q-truth Bq [22, definition 7.1] is
defined analogously to B except for

(A ∨B)Bq(a, c; e, f) :≡ (∀̃b ≤i eABq(a; b) ∧A) ∨ (∀̃d ≤i f BBq(c; d) ∧B),

(A→ B)Bq(C, e; a, d) :≡ ∀̃b ≤i eadABq(a; b) ∧A→ BBq(Ca; d),

(∃x ≤i t A)Bq(a; c) :≡ ∃x ≤i t (∀̃b ≤i cABq(a; b) ∧A),

(∃xA)Bq(c, a; d) :≡ ∃x ≤i c (∀̃b ≤i dABq(a; b) ∧ A).

3. The bounded functional interpretation with t-truth Bt [22, definition 7.3] is
defined analogously to B except for

(A→ B)Bt(C, e; a, d) :≡ (∀̃b ≤i eadABt(a; b)→ BBt(Ca; d)) ∧ (A→ B),

(∀xA)Bt(A; c, b) :≡ ∀x ≤i cABt(Ac; b) ∧ ∀xA.

9.4. Let us note that, contrarily to what is done for mrt, in Bt we added “∧ ∀xA”
in the clause of ∀; this will be discussed later in chapter 13.

9.5 Remark.

1. The bounded functional interpretation with q-truth Bq has truth in the sense
of: HA

ω
i ⊢ ABq(a; b) → A for all disjunctive and (bounded and unbounded)

existential formulas A of HAω
i [22, theorem 7.2].

2. The bounded functional interpretation with t-truth Bt has truth in the sense
of: HAω

i ⊢ ABt(a; b)→ A for all formulas A of HAω
i [22, remark 7.4].

The bounded functional interpretation with t-truth Bt is a (∗1) strengthening of
Bq which (∗2) has truth for all formulas. This can be given a rigorous meaning:
(∗3) HAω

i ⊢ ∀̃a, b (ABt(a; b) ↔ ABq(a; b) ∧ A) for all formulas A of HAω
i [22, propo-

sition 7.6]. From (∗3) we get: HA
ω
i ⊢ ∀̃a, b (ABt(a; b) → ABq(a; b)), that is (∗1)

(restricted to monotone a, b); HAω
i ⊢ ∀̃a, b (ABt(a; b) → A), that is (∗2) (restricted

to monotone a, b).

114

9.6 Remark. The formulas AB(a; b) are bounded.

9.7 Remark.

1. The bounded functional interpretation B acts as the identity on bounded for-
mulas of HAω

i in the sense of: (Ab)B(;) ≡ Ab for all bounded formulas Ab of
HA

ω
i [15, definition 4].

2. The bounded functional interpretation with q-truth Bq acts as the identity
on bounded formulas of HAω

i in the sense of: HA
ω
e ⊢ (Ab)Bq(;) ↔ Ab for all

bounded formulas Ab of HAω
i . Analogously for Bt.

9.3 Soundness

9.8 Lemma (monotonicity). We have HA
ω
i ⊢ ∀̃a′ ∀a ≤i a′ ∀̃b (AB(a; b) → AB(a

′; b))
[15, lemma 6]. Analogously for Bq [22, proof of theorem 7.5] and Bt.

9.9 Proof. Analogous to proof 4.9.

9.10 Theorem (soundness). Let A be a formula of HAω
i with FV(A) = {ℓ}, and

let Γ be a set of formulas of HAω
i of the form ∀x ∃y ≤i s ∀z Ab where s are terms of

HA
ω
i .

1. If HAω
i +BAC+B-BCC+∀-BIP+MAJ+B-BMP+B-BUD+Γ ⊢ A, then we can

extract from such a proof monotone terms t(ℓ) such that HAω
i + Γ ⊢ ∀̃ℓ′ ∀ℓ ≤i

ℓ′ ∀̃bAB(t(ℓ
′); b) and FV(t(ℓ)) ⊆ FV(A) [15, theorem 4].

2. If HAω
i ±B-BCC±∀-BIP±MAJ±B-BUD+Γ ⊢ A, then we can extract from such a

proof monotone terms t(ℓ) such that HAω
i ±B-BCC±∀-BIP±MAJ±B-BUD+Γ ⊢

∀̃ℓ′ ∀ℓ ≤i ℓ′ ∀̃bABq(t(ℓ
′); b) and FV(t(ℓ)) ⊆ FV(A) [22, theorem 7.5].

3. If HAω
i ±B-BCC±∀-BIP±MAJ±B-BUD+Γ ⊢ A, then we can extract from such a

proof monotone terms t(ℓ) such that HAω
i ±B-BCC±∀-BIP±MAJ±B-BUD+Γ ⊢

∀̃ℓ′ ∀ℓ ≤i ℓ′ ∀̃bABt(t(ℓ
′); b) and FV(t(ℓ)) ⊆ FV(A) [22, theorem 7.7].

The terms constructed in the following proof for the three points above are the same.

9.11 Proof. Let us make some remark.

1. We adopt here (with the proper adaptations, including an analogous unified
treatment of variants without truth, with q-truth and with t-truth, by means
of q, t ∈ {id,⊤}) the remarks made in the beginning of proof 3.12.

2. We have

HA
ω
i ⊢ (∀xA)B(A; c, b)↔ ∀x ≤i cAB(Ac; b) ∧ (∀xA)t,

HA
ω
i ⊢ (∀̃xA)B(A; c, b)↔ ∀̃x ≤i cAB(Ac; b) ∧ (∀̃xA)t,

HA
ω
i ⊢ ∀̃c

(
(∃x ≤i t A)B(a; c)↔ ∃x ≤i t (∀̃b ≤i cAB(a; b) ∧ Aq)

)
,

HA
ω
i ⊢ ∀̃d

(
(∃xA)B(c, a; d)↔ ∃x ≤i c (∀̃b ≤i dAB(a; b) ∧ Aq)

)
,

HA
ω
i ⊢ ∀̃d

(
(∃̃xA)B(c, a; d)↔ ∃̃x ≤i c (∀̃b ≤i dAB(a; b) ∧ Aq)

)
.

115

We will replace the left sides of the equivalences by the right sides. When we
do it, we use “≡” instead of ≡.

Let us prove the theorem by induction on the derivation of A.

A→ A ∧ A We have

(A→ A ∧A)B(C,E, g; a, d, f) “≡”
∀̃b ≤i gadf AB(a; b) ∧Aq → AB(Ca; d) ∧AB(Ea; f),

tC :≡ λa . a, tE :≡ λa . a, tg :≡ λa, d, f . max(d, f).

Here we use point 6b of proposition 1.56.

A→ A ∨ B We have

(A→ A ∨B)B(C,E, i; a, g, h) “≡” ∀̃b ≤i iaghAB(a; b) ∧Aq →
(∀̃d ≤i g AB(Ca; d) ∧Aq) ∨ (∀̃f ≤i hBB(Ea; f) ∧Bq),

tC :≡ λa . a, tE :≡ λa .O, ti :≡ λa, g, h . g.

To see that the terms tE are monotone, we prove HA
ω
i ⊢ O ≤i

ρ O by induction
on the structure of ρ. Analogously for A∨A→ A, A∧B → A, A∧B → B∧A,
A ∨B → B ∨A and ⊥ → A.

∀xA→ A[t/x] We have

(∀xA→ A[t/x])B(C, f, g;A, d) “≡”
∀̃e, b ≤i fAd, gAd (∀x ≤i eAB(Ae; b) ∧ (∀xA)t) ∧ (∀xA)q →

A[t/x]B(CA; d),

tC(ℓ) :≡ λA .Atm(ℓ), tf(ℓ) :≡ λA, d . tm(ℓ), tg :≡ λA, d . d.

Let us see that the terms work, that is

∀̃ℓ′ ∀ℓ ≤i ℓ′ ∀̃A, d
(
∀̃e, b ≤i tm(ℓ′), d (∀x ≤i eAB(Ae; b) ∧ (∀xA)t) ∧
(∀xA)q → A[t/x]B(At

m(ℓ′); d)
)
.

Taking b = d, e = tm(ℓ′) (which satisfies e ≤i e) and x = t(ℓ) (which satisfies
x ≤i e) in the premise we get AB(At

m(ℓ′); d)[t/x]. Analogously for A[t/x] →
∃xA.

A→ B, B → C /A→ C We have

(A→ B)B(C, g; a, d) “≡” ∀̃b ≤i gadAB(a; b) ∧ Aq → BB(Ca; d),

(B → C)B(E, g; c, f) “≡” ∀̃d ≤i gcf BB(c; d) ∧Bq → CB(Ec; f),

(A→ C)B(E, g; a, f) “≡” ∀̃b ≤i gaf AB(a; b) ∧ Aq → CB(Ea; f),

tE :≡ λa . sE(rCa), tg :≡ λa, f . rg(sg(rCa))f.

116

Let us see that the terms work. By induction hypothesis (9.1) and (9.2), and
we want to prove (9.3):

∀̃ℓ′ ∀ℓ ≤i ℓ′ ∀̃a, d (∀̃b ≤i rgadAB(a; b) ∧Aq → BB(rCa; d)), (9.1)

∀̃ℓ′ ∀ℓ ≤i ℓ′ ∀̃c, f (∀̃d ≤i sgcf BB(c; d) ∧ Bq → CB(sEc; f)). (9.2)

∀̃ℓ′ ∀ℓ ≤i ℓ′ ∀̃a, f
(
∀̃b ≤i rg(sg(rCa))f AB(a; b) ∧Aq → CB(sE(rCa); f)

)
. (9.3)

Taking arbitrary monotone d ≤i sg(rCa)f in (9.1) we get (9.4), from which we
get (9.5); taking c = rCa in (9.2) we get (9.6):

∀̃ℓ′ ∀ℓ ≤i ℓ′ ∀̃a ∀̃d ≤i sg(rCa)f (∀̃b ≤i rgadAB(a; b) ∧ Aq →
BB(rCa; d)),

(9.4)

∀̃ℓ′ ∀ℓ ≤i ℓ′ ∀̃a, f
(
∀̃b ≤i rga(sg(rCa)f)AB(a; b) ∧Aq →

∀̃d ≤i sg(rCa)f BB(rCa; d)
)
,

(9.5)

∀̃ℓ′ ∀ℓ ≤i ℓ′ ∀̃a, f (∀̃d ≤i sg(rCa)f BB(rCa; d) ∧ Bq →
CB(sE(rCa); f)).

(9.6)

From (9.5) and (9.6) we get (9.3). If q = id, then we use the assumption
that we proved A→ B, so that part Aq in (9.3) implies the part Bq in (9.6).
Analogously for A, A→ B /B and A→ B /C ∨ A→ C ∨B.

A ∧B → C /A→ (B → C) We have

(A ∧ B → C)B(E, g, h; a, c, f) ≡
(
∀̃b, d ≤i gacf, hacf (AB(a; b) ∧BB(c; d)) ∧ (A ∧B)q →

CB(Eac; f)
)
∧ (A ∧B → C)t,

(9.7)

(A→ (B → C))B(E, H, g; a, c, f) ≡
(
∀̃b ≤i gacf AB(a; b) ∧Aq →

(
(∀̃d ≤i Hacf BB(c; d) ∧Bq → CB(Eac; f)) ∧ (B → C)t

))
∧

(A→ (B → C))t,

(9.8)

tE :≡ sE , tH :≡ sh, tg :≡ sg.

If t = id, then we use AB(a; b)→ A, so that the parts (A ∧ B → C)t in (9.7)
and AB(a; b) in (9.8) together imply the part (B → C)t in (9.8). Analogously
for A→ (B → C) /A ∧B → C.

117

A→ B /A→ ∀xB We have

(A→ B)B(C, e; a, d) ≡
(∀̃b ≤i eadAB(a; b) ∧ Aq → BB(Ca; d)) ∧ (A→ B)t,

(A→ ∀xB)B(C, e; a, f, d) ≡
(∀̃b ≤i eafdAB(a; b) ∧Aq → ∀x ≤i f BB(Caf ; d) ∧ (∀xB)t) ∧

(A→ ∀xB)t,

tC(ℓ) :≡ λa, f . sC(ℓ, f)a, te(ℓ) :≡ λa, f, d . se(ℓ, f)ad.

Let us see that the terms work. By induction hypothesis we have (9.9) and
we want to prove (9.10):

∀̃ℓ′, f ∀ℓ, x ≤i ℓ′, f ∀̃a, d
((
∀̃b ≤i se(ℓ

′, f)adAB(a; b) ∧ Aq →
BB(sC(ℓ

′, f)a; d)
)
∧ (A→ B)t

)
,

(9.9)

∀̃ℓ′ ∀ℓ ≤i ℓ′ ∀̃a, f, d
((
∀̃b ≤i se(ℓ

′, f)adAB(a; b) ∧Aq →
∀x ≤i f BB(sC(ℓ

′, f)a; d) ∧ (∀xB)t
)
∧ (A→ ∀xB)t

) (9.10)

(if x /∈ FV(A → B), then in (9.9) where is ∀̃ℓ′, f ∀ℓ, x ≤i ℓ′, f should be
∀̃ℓ′ ∀ℓ ≤i ℓ′). If t = id, then we use AB(a; b) → A, so that the parts (A →
B)t (which was proved, so it can be upgraded to (A → ∀xB)t) in (9.9) and
AB(a; b) in (9.10) together imply the part (∀xB)t in (9.10). Analogously for
A→ B / ∃xA→ B.

∀x ≤i t A↔ ∀x (x ≤i t→ A) To interpret A ↔ B it suffices to interpret A → B
and B → A separately.

→ We have

(∀x ≤i t A→ ∀x (x ≤i t→ A))B(C, f ; a, e, d) “≡”
∀̃b ≤i faed ∀x ≤i t AB(a; b) ∧ (∀x ≤i t A)q →

∀x ≤i e
(
(x ≤i t ∧ (x ≤i t)q → AB(Cae; d)) ∧ (x ≤i t→ A)t

)
∧

(∀x (x ≤i t→ A))t,

tC :≡ λa, e . a, tf :≡ λa, e, d . d.

If t = id, then we use AB(a; b) → A, so that the part ∀x ≤i t AB(a; b) in
the premise implies the parts (x ≤i t → A)t and (∀x (x ≤i t → A))t in
the conclusion.

118

← We have

(∀x (x ≤i t→ A)→ ∀x ≤i t A)B(C, f, g;A, d) “≡”
∀̃e, b ≤i fAd, gAd∀x ≤i e

(
(x ≤i t ∧ (x ≤i t)q → AB(Ae; b)) ∧ (x ≤i t→ A)t

)
∧

(∀x (x ≤i t→ A))t ∧ (∀x (x ≤i t→ A))q →
∀x ≤i t AB(CA; d),

tC(ℓ) :≡ λA .Atm(ℓ), tf (ℓ) :≡ λA, d . tm(ℓ), tg :≡ λA, d . d.

Analogously for ∃x ≤i t A↔ ∃x (x ≤i t ∧A).

Axioms of =0, S, Π, Σ, R and ≤i, and rule of ≤i Their formulas are bounded, so they
are equivalent to their own interpretation.

A[0/x], A→ A[Sx/x] /A We can assume x ∈ FV(A), otherwise A[0/x] ≡ A and so
the terms working for A[0/x] also work for A. We have

A[0/x]B(a; b),

(A→ A[Sx/x])B(C, e; a, d) “≡”
∀̃b ≤i eadAB(a; b) ∧Aq → A[Sx/x]B(Ca; d),

AB(a; b),

ta(ℓ, x) :≡ Rxra(ℓ) λa, x . max(sC(ℓ, x)a, a).

By induction hypothesis we have (9.11) and (9.12), and we want to prove
(9.13):

∀̃ℓ′ ∀ℓ ≤i ℓ′ ∀̃bA[0/x]B(ra(ℓ′); b), (9.11)

∀̃ℓ′, x′ ∀ℓ, x ≤i ℓ′, x′ ∀̃a, d ∀̃b ≤i se(ℓ
′, x′)adAB(a; b) ∧Aq →

A[Sx/x]B(rC(ℓ, x
′)a; d)),

(9.12)

∀̃ℓ′, x′ ∀ℓ, x ≤i ℓ′, x′ ∀̃b AB(ta(ℓ
′, x′); b). (9.13)

First, we prove that ta(ℓ, x) are monotone analogously to proof 4.11. Now,
let us prove (9.13) by induction on x. We start by proving (9.13) with
x =0 x′. We take arbitrary monotone ℓ′ and arbitrary ℓ ≤i ℓ′, and prove
∀x ∀̃bAB(ta(ℓ

′, x); b) by induction on x.

Base case The formula ∀̃bAB(ta(ℓ
′, x); b)[0/x], that is ∀̃bA[0/x]B(ra(ℓ′); b), is

provable by (9.11).

Induction step By induction hypothesis we assume ∀̃bAB(ta(ℓ
′, x); b). Tak-

ing x′ = x and a = ta(ℓ
′, x) (which satisfies a ≤i a) in (9.12) we get

∀̃dA[Sx/x]B(sC(ℓ′, x)ta(ℓ′, x); d) (if q = id, then we use the assumption
that we proved A, so as to have the part Aq in (9.12)). By mono-
tonicity we get ∀̃dA[Sx/x]B

(
max(sC(ℓ

′, x)ta(ℓ
′, x), ta(ℓ

′, x)); d
)
, that is

∀̃b AB(ta(ℓ
′, x); b)[Sx/x].

119

From (9.13) with x =0 x′ we get (9.13) with x ≤i x′ by the monotonicity of
AB(a; b) and of ta(ℓ, x).

BAC We have

(∀x ∃y A)B(E,A; g, f) “≡”
∀x ≤i g ∃y ≤i Eg (∀̃b ≤i f AB(Ag; b) ∧ Aq) ∧ (∀x ∃y A)t,

(∃̃v ∀̃u ∀x ≤i u ∃y ≤i vuA)B(j, C; k, l) “≡”
∃̃v ≤i j

(
∀i, h ≤i k, l

(
∀̃u ≤i i ∀x ≤i u ∃y ≤i vu (∀̃d ≤i hAB(Ci; d) ∧ Aq) ∧

(∀̃u ∀x ≤i u ∃y ≤i vuA)t
)
∧ (∀̃u ∀x ≤i u ∃y ≤i vuA)q

)
,

BACB(J,C, m, n;E,A, k, l) “≡” ∀̃g, f ≤i mEAkl, nEAkl
(
∀x ≤i g ∃y ≤i Eg (∀̃b ≤i f AB(Ag; b) ∧Aq) ∧ (∀x ∃y A)t

)
∧ (∀x ∃y A)q

↓
∃̃v ≤i JEA

(
∀i, h ≤i k, l

(
∀̃u ≤i i ∀x ≤i u ∃y ≤i vu (∀̃d ≤i hAB(CEAi; d) ∧Aq) ∧
(∀̃u ∀x ≤i u ∃y ≤i vuA)t

)
∧ (∀̃u ∀x ≤i u ∃y ≤i vuA)q

)
,

tJ :≡ λE,A .E, tC :≡ λE,A, i . Ai,

tm :≡ λE,A, l, k . k, tn :≡ λE,A, l, k . l.

The terms only seem to work for q = ⊤ and t = ⊤.

B-BCC We have

(∀̃v ∃x ≤i u∀y ≤i v Ab)B(; a) “≡”
∀̃v ≤i a∃x ≤i u∀y ≤i v Ab ∧ (∀̃v ∃x ≤i u∀y ≤i v Ab)

t,

(∃x ≤i u∀y Ab)B(; c) “≡”
∃x ≤i u

(
∀̃b ≤i c (∀y ≤i bAb ∧ (∀y Ab)

t) ∧ (∀y Ab)
q
)
,

(B-BCC)B(d; c) “≡”
∀̃a ≤i dc (∀̃v ≤i a ∃x ≤i u∀y ≤i v Ab ∧ (∀̃v ∃x ≤i u∀y ≤i v Ab)

t) ∧
(∀̃v ∃x ≤i u∀y ≤i v Ab)

q

↓
∃x ≤i u

(
∀̃b ≤i c (∀y ≤i bAb ∧ (∀y Ab)

t) ∧ (∀y Ab)
q
)
,

td :≡ λc . c.

If t = id, then the part (∀y Ab)
t in the conclusion implies the part ∀̃b ≤i c ∀y ≤i

cAb in the conclusion, so it suffices to prove ∃x ≤i u (∀y Ab)
t, which follows

from the part (∀̃v ∃x ≤i u∀y ≤i v Ab)
t in the premise by B-BCC. Analogously

if q = id.

120

∀-BIP We have

(∀xAb → ∃y B)B(f, a, h; g) “≡”(
∀̃e ≤i hg (∀x ≤i eAb ∧ (∀xAb)

t) ∧ (∀xAb)
q →

∃y ≤i f (∀̃b ≤i g BB(a; b) ∧Bq)
)
∧ (∀xAb → ∃y B)t,

(∃̃z (∀xAb → ∃y ≤i z B))B(l, c, k;m) “≡”
∃̃z ≤i l

(
∀j ≤i m

((
∀̃i ≤i kj (∀x ≤i iAb ∧ (∀xAb)

t) ∧ (∀xAb)
q →

∃y ≤i z (∀̃d ≤i j BB(c; d) ∧Bq)
)
∧ (∀xAb → ∃y ≤i z B)t

)
∧

(z ≤i z ∧ (∀xAb → ∃y ≤i z B))q
)
,

(∀-BIP)B(L,C,K, n; f, a, h,m) “≡”
∀̃g ≤i nfahm

((
∀̃e ≤i hg (∀x ≤i eAb ∧ (∀xAb)

t) ∧ (∀xAb)
q →

∃y ≤i f (∀̃b ≤i g BB(a; b) ∧Bq)
)
∧ (∀xAb → ∃y B)t

)
∧ (∀xAb → ∃y B)q

↓
∃̃z ≤i Lfah

(
∀j ≤i m

((
∀̃i ≤i Kfahj (∀x ≤i i Ab ∧ (∀xAb)

t) ∧ (∀xAb)
q →

∃y ≤i z (∀̃d ≤i j BB(Cfah; d) ∧ Bq)
)
∧ (∀xAb → ∃y ≤i z B)t

)
∧

(z ≤i z ∧ (∀xAb → ∃y ≤i z B))q
)
,

tL :≡ λf, a, h . f, tC :≡ λf, a, h . a,

tK :≡ λf, a, h, j . hj, tn :≡ λf, a, h,m .m.

If t = id, then to prove (∀xAb → ∃y ≤i z B)t note that ∀xAb implies the part
∀̃e ≤i hg (∀x ≤i eAb ∧ (∀xAb)

t) ∧ (∀xAb)
q in the premise, which implies the

part ∃y ≤i f (∀̃b ≤i g BB(a; b) ∧ Bq) in the premise, which by truth implies
∃y ≤i f B, that is ∃y ≤i z B with z = f . Analogously if q = id.

MAJ We have

MAJB(A; b) “≡” ∀x ≤i b∃y ≤i Ab (x ≤i y ∧ (x ≤i y)q),

tA :≡ λb . b.

B-BMP We have

(∀xAb → Bb)B(b;) “≡”(
∀̃a ≤i b (∀x ≤i aAb ∧ (∀xAb)

t) ∧ (∀xAb)
q → Bb

)
∧ (∀xAb → Bb)

t,

(∃̃y (∀x ≤i y Ab → Bb))B(c;) “≡”
∃̃y ≤i c ((∀x ≤i y Ab → Bb) ∧ (∀x ≤i y Ab → Bb)

q),

121

(B-BMP)B(C; b) “≡”
(
∀̃a ≤i b (∀x ≤i aAb ∧ (∀xAb)

t) ∧ (∀xAb)
q → Bb

)
∧ (∀xAb → Bb)

t ∧
(∀xAb → Bb)

q

↓
∃̃y ≤i Cb ((∀x ≤i y Ab → Bb) ∧ (∀x ≤i y Ab → Bb)

q),

tC :≡ λb . b.

These terms only seem to work for q = ⊤ and t = ⊤.

B-BUD We have

(∀̃u, v (∀x ≤i uAb ∨ ∀y ≤i v Bb))B(; a, b) “≡”
∀̃u, v ≤i a, b (∀x ≤i uAb ∨ ∀y ≤i v Bb) ∧ (∀̃u, v (∀x ≤i uAb ∨ ∀y ≤i v Bb))

t,

(∀xAb ∨ ∀y Bb)B(; e, f) “≡”(
∀̃c ≤i e (∀x ≤i cAb ∧ (∀xAb)

t) ∧ (∀xAb)
q
)
∨

(
∀̃d ≤i f (∀y ≤i dBb ∧ (∀y Bb)

t) ∧ (∀y Bb)
q
)
,

(B-BUD)B(g, h; e, f) “≡” ∀̃a, b ≤i gef, hef
(
∀̃u, v ≤i a, b (∀x ≤i uAb ∨ ∀y ≤i v Bb) ∧ (∀̃u, v (∀x ≤i uAb ∨ ∀y ≤i v Bb))

t
)
∧

(∀̃u, v (∀x ≤i uAb ∨ ∀y ≤i v Bb))
q

↓
(
∀̃c ≤i e (∀x ≤i cAb ∧ (∀xAb)

t) ∧ (∀xAb)
q
)
∨

(
∀̃d ≤i f (∀y ≤i dBb ∧ (∀y Bb)

t) ∧ (∀y Bb)
q
)
,

tg :≡ λe, f . e, th :≡ λe, f . f .

If t = id, then the parts (∀xAb)
t and (∀y Bb)

t in the conclusion imply the

parts ∀̃c ≤i e ∀x ≤i cAb and ∀̃d ≤i f ∀y ≤i dBb in the conclusion, so it

suffices to prove (∀xAb)
t ∨ (∀y Ab)

t, which follows from the part (∀̃u, v (∀x ≤i

uAb ∨ ∀y ≤i v Bb))
t in the premise by B-BUD. Analogously if q = id.

Γ We have

(∀x ∃y ≤i s∀z Ab)B(; c, b) “≡”
∀x ≤i c ∃y ≤i s

(
∀̃a ≤i b (∀z ≤i aAb ∧ (∀z Ab)

t) ∧ (∀z Ab)
q
)
.

9.12 Remark.

1. The bounded functional interpretations with q-truth and t-truth do not seem
to interpret BAC. To interpret it we (essentially and in particular) should
present terms witnessing v in ∀̃g ≤i . . . ∀x ≤i g ∃y ≤i EgA → ∀̃u ∀x ≤i

u ∃y ≤i vuA and this does not seem possible since the premise only gives us
E working for bounded g but the conclusion asks for v working for unbounded
u.

122

2. The bounded functional interpretations with q-truth and t-truth do not seem
to interpret B-BMP. To interpret it we (essentially and in particular) should
present terms witnessing y in (∀xAb → Bb) → (∀x ≤i y Ab → Bb) and this
does not seem possible.

9.4 Characterisation

9.13 Theorem (characterisation). Let us consider the theory HA
ω
i +BAC+B-BCC+

∀-BIP+MAJ+ B-BMP+ B-BUD.

1. This theory proves A↔ AB for all formulas A of HAω
i [15, theorem 3].

2. This theory is the least theory, containing HA
ω
i , satisfying the previous point.

9.14 Proof.

1. The proof is by induction on the structure of A.

∨ Using induction hypothesis in the first equivalence, and B-BUD in the third
equivalence, we get

A ∨ B ↔
AB ∨ BB ≡

∃̃a ∀̃bAB(a; b) ∨ ∃̃c ∀̃dBB(c; d)↔
∃̃a, c (∀̃bAB(a; b) ∨ ∀̃dBB(c; d))↔

∃̃a, c ∀̃e, f (∀̃b ≤i eAB(a; b) ∨ ∀̃d ≤i f BB(c; d)) ≡
(A ∨ B)B.

Analogously for Aat and ∧.
→ Using induction hypothesis in the first equivalence, ∀-BIP in the third

equivalence, monotonicity in the fourth equivalence, B-BMP in the sixth
equivalence, and MAC (see point 2 of proposition 1.66) in the last two
equivalences, we get

(A→ B)↔
(AB → BB) ≡

(∃̃a ∀̃bAB(a; b)→ ∃̃c ∀̃dBB(c; d))↔
∀̃a (∀̃bAB(a; b)→ ∃̃c ∀̃dBB(c; d))↔

∀̃a ∃̃c (∀̃bAB(a; b)→ ∃̃c′ ≤i c ∀̃dBB(c
′; d))↔

∀̃a ∃̃c (∀̃bAB(a; b)→ ∀̃dBB(c; d))↔
∀̃a ∃̃c ∀̃d (∀̃bAB(a; b)→ BB(c; d))↔

∀̃a ∃̃c ∀̃d ∃̃e (∀̃b ≤i eAB(a; b)→ BB(c; d))↔
∀̃a ∃̃c ∃̃E ∀̃d (∀̃b ≤i EdAB(a; b)→ BB(c; d))↔
∃̃C,E ∀̃a, d (∀̃b ≤i EadAB(a; b)→ BB(Ca; d)) ≡

(A→ B)B.

123

∀≤i Using induction hypothesis in the first equivalence, BC (see point 1 of
proposition 1.66) in the second equivalence, and monotonicity in the third
equivalence, we get

∀x ≤i t A↔
∀x ≤i t AB ≡

∀x ≤i t ∃̃a ∀̃bAB(a; b)↔
∃̃a ∀x ≤i t ∃̃a′ ≤i a ∀̃b AB(a

′; b)↔
∃̃a ∀x ≤i t ∀̃bAB(a; b)↔
∃̃a ∀̃b∀x ≤i t AB(a; b) ≡

(∀x ≤i t A)B.

∀ Using induction hypothesis in the first equivalence, BAC in the second equiv-
alence, and monotonicity in the third equivalence, we get

∀xA↔
∀xAB ≡

∀x ∃̃a ∀̃bAB(a; b)↔
∃̃A ∀̃c ∀x ≤i c ∃̃a ≤i Ac ∀̃bAB(a; b)↔

∃̃A ∀̃c ∀x ≤i c ∀̃bAB(Ac; b)↔
∃̃A ∀̃c, b∀x ≤i cAB(Ac; b) ≡

(∀xA)B.

∃ Using induction hypothesis in the first equivalence, MAJ in the second equiv-
alence, and B-BCC in the last equivalence, we get

∃xA↔
∃xAB ≡

∃x ∃̃a ∀̃bAB(a; b)↔
∃̃c ∃x ≤i c ∃̃a ∀̃bAB(a; b)↔
∃̃c ∃̃a ∃x ≤i c ∀̃bAB(a; b)↔

∃̃c, a ∀̃d ∃x ≤i c ∀̃b ≤i dAB(a; b) ≡
(∃xA)B.

Analogously for ∃≤i.

2. Analogous to point 2 of proof 3.15.

9.15 Remark. The characterisation theorem of B ensures that the soundness the-
orem of B is optimal, in the sense that the theory HA

ω
i + BAC + B-BCC+ ∀-BIP +

MAJ + B-BMP + B-BUD + Γ there considered is the strongest theory T such that
T ⊢ A ⇒ HA

ω
i + Γ ⊢ AB (analogously to remark 3.16).

9.16. An (optimal) characterisation theorem of Bq and Bt is unknown.

124

9.5 Applications

9.17 Theorem (bounded existence property and bounded program extraction).
Let T := HA

ω
i ± B-BCC± ∀-BIP±MAJ± B-BUD.

1. Let FV(∃xA) = {ℓ}. If T ⊢ ∃xA, then we can extract from such a proof mono-
tone terms t(ℓ) of T such that T ⊢ ∀̃ℓ′ ∀ℓ ≤i ℓ′ ∃x ≤i t(ℓ′)A and FV(t(ℓ)) =
FV(∃xA).

2. Let FV(∀x ∃y A) = {ℓ}. If T ⊢ ∀x ∃y A, then we can extract from such a proof

monotone terms t(ℓ, x) of T such that T ⊢ ∀̃ℓ′, x′ ∀ℓ, x ≤i ℓ′, x′ ∃y ≤i t(ℓ′, x′)A
and FV(t(ℓ, x)) = FV(∃y A).

Analogously for HAω
i + BAC+ B-BCC+ ∀-BIP+MAJ+ B-BMP+ B-BUD.

9.18 Proof. Analogous to proof 6.17.

9.19 Theorem (conservation and relative consistency).

1. Let ∀̃x′ ∀x ≤i x′ ∃y Ab be a sentence of HAω
i . If HA

ω
i +BAC+B-BCC+∀-BIP+

MAJ+ B-BMP+ B-BUD ⊢ ∀̃x′ ∀x ≤i x′ ∃y Ab, then HA
ω
i ⊢ ∀̃x′ ∀x ≤i x′ ∃y Ab.

2. If HAω
i +BAC+B-BCC+∀-BIP+MAJ+B-BMP+B-BUD ⊢ ⊥, then HA

ω
i ⊢ ⊥.

9.20 Proof. Analogous to proof 4.18.

9.6 Conclusion

9.21. We introduced the bounded functional interpretation as proof interpretation
that aims at bounds from the start, instead of in a last step like the monotone func-
tional interpretation. The main results about the bounded functional interpretation
are the following.

Soundness theorem This theorem says that we can use the bounded functional in-
terpretation to extract computational content from proofs in HA

ω
i + BAC +

B-BCC+ ∀-BIP+MAJ+ B-BMP+ B-BUD.

Characterisation theorem This theorem guarantees that the soundness theorem is
optimal.

Applications We used the bounded functional interpretation to do applications on:

1. bounded existence property;

2. bounded program extraction;

3. conservation;

4. relative consistency.

125

126

Chapter 10

Shoenfield-like bounded functional
interpretation

10.1 Introduction

10.1. In the same way that before we presented a unbounded interpretation S of
PA

ω by composing D with Kr, now we present a bounded interpretation U of PAω
i

by composing B with Kr. This is pictured in figure 10.1. This new composition
U = B ◦Kr is called Shoenfield-like bounded functional interpretation.

PA
ω

S=D◦Kr

33
Kr // HAω D // HAω

PA
ω
i

U=B◦Kr

33
Kr // HAω

i
U // HAω

i

Figure 10.1: the compositions S = D ◦Kr and U = B ◦Kr.

10.2. Our main contribution to this topic is the factorisation U = B ◦ Kr (theo-
rem 10.10).

10.2 Definition

10.3. In this chapter we consider PA
ω
i based on ¬, ∨, ∀≤i and ∀, so A ∧ B :≡

¬(¬A ∨ ¬B), A→ B :≡ ¬A ∨ B, ∃x ≤i t A :≡ ¬∀x ≤i t¬A and ∃xA :≡ ¬∀x¬A.
10.4 Definition. The Shoenfield-like bounded functional interpretation U [13, def-
inition 1] assigns to each formula A of PAω

i the formula AU :≡ ∀̃a ∃̃bAU(a; b), where
AU(a; b) is defined by recursion on the structure of A by

(Aat)U(;) :≡ Aat,

(¬A)U(B; c) :≡ ∃̃a ≤i c¬AU(a;Ba),

(A ∨ B)U(a, c; b, d) :≡ AU(a; b) ∨BU(c; d),

(∀x ≤i t A)U(a; b) :≡ ∀x ≤i t AU(a; b),

(∀xA)U(c, a; b) :≡ ∀x ≤i cAU(a; b).

127

By (Aat)U(;) we mean (Aat)U(a; b) with the tuples a and b empty.

10.5. The letter U in the symbol for the Shoenfield-like bounded functional in-
terpretation U seems to come from “uniformity” since the paper [13] where this
interpretation is presented puts the emphasis on uniformities.

10.6 Remark. The formulas AU(a; b) are bounded.

10.7 Remark. The Shoenfield-like bounded functional interpretation U acts as the
identity on bounded formulas of PAω

i in the sense of: (Ab)U(;) ≡ Ab for all bounded
formulas Ab of PAω

i .

10.3 Factorisation

10.8 Lemma (monotonicity). We have HAω
i ⊢ ∀a ∀b′ ∀b ≤i b′ (AU(a; b)→ AU(a; b

′))
[13, lemma 1].

10.9 Proof. Analogous to proof 4.9.

10.10 Theorem (factorisation U = B ◦Kr). For all formulas A of PAω
i we have:

1. HA
ω
i + B-LEM ⊢ ∀̃B, a (AU(a;Ba)↔ (AKr)B(B; a)) [20, theorem 4.1];

2. HA
ω
i + B-LEM+ B-MAC ⊢ AU ↔ (AKr)B [20, theorem 4.1].

10.11 Proof.

1. (a) First we prove (∗) HAω
i +B-LEM ⊢ ∀̃a, b (AU(a; b)↔ ¬∀̃b′ ≤i b (AKr)B(a; b

′))
by induction on the structure of A. (The essential difference between this
proof and proof 7.8 is in the quantification ∀̃b′ ≤i b used here.)

∨ Let us assume a, c, b, d ≤i a, c, b, d. Using the induction hypothesis in
the first equivalence, B-LEM in the second equivalence, and b, d ≤i b, d
in the third equivalence (because to prove ∀x ≤i y (C ∧D)→ ∀x ≤i

y C ∧D, with x /∈ FV(D), we use y ≤i y), we get

(A ∨ B)U(a, c; b, d) ≡
AU(a; b) ∨ BU(c; d)↔

¬∀̃b′ ≤i b (AKr)B(a; b
′) ∨ ¬∀̃d′ ≤i d (BKr)B(c; d

′)↔
¬(∀̃b′ ≤i b (AKr)B(a; b

′) ∧ ∀̃d′ ≤i d (BKr)B(c; d
′))↔

¬∀̃b, d′ ≤i b, d ((AKr)B(a; b
′) ∨ (BKr)B(c; d

′)) ≡
¬∀̃b′, d′ ≤i b, d ((A ∨ B)Kr)B(a, c; b

′, d′).

Analogously for Aat and ¬.

128

∀ Let us assume c, a, b ≤i c, a, b. Using the induction hypothesis in the
first equivalence we get

(∀xA)U(c, a; b) ≡
∀x ≤i cAU(a; b)↔

∀x ≤i c¬∀̃b′ ≤i b (AKr)U(a; b
′)↔

¬∃x ≤i c ∀̃b′ ≤i b (AKr)U(a; b
′)↔

¬∀̃b′ ≤i b ∃x ≤i c ∀̃b′′ ≤i b′ (AKr)U(a; b
′′) ≡

¬∀̃b′ ≤i b ((∀xA)Kr)B(c, a; b
′).

Analogously for ∀≤i.

(b) Now we prove HA
ω
i + B-LEM ⊢ ∀̃B, a (AU(a;Ba) ↔ (AKr)B(B; a)). Let

us assume B, a ≤i B, a. Using (∗) in the equivalence we get

AU(a;Ba)↔
¬∀̃b ≤i Ba (AKr)B(a; b) ≡

(¬(AKr))B(B; a) ≡
(AKr)B(B; a).

2. Using B-MAC in the first equivalence (having in mind the monotonicity of U),
and point 1 in the second equivalence, we get

AU ≡
∀̃a ∃̃bAU(a; b)↔

∃̃B ∀̃aAU(a;Ba)↔
∃̃B ∀̃a (AKr)B(B; a) ≡

(AKr)B.

10.4 Soundness

10.12 Theorem (soundness). Let A be a formula of PAω
i with FV(A) = {ℓ}, and

let Γ be a set of formulas of PAω
i of the form ∀x ∃y ≤i s∀z Ab where s are terms of

PA
ω
i . If PAω

i + B-BAC + B-BCC + MAJ + Γ ⊢ A, then we can extract from such a
proof monotone terms t(ℓ) such that HAω

i + B-LEM+ Γ ⊢ ∀̃ℓ′ ∀ℓ ≤i ℓ′ ∀̃aAU(a; t(ℓ
′))

and FV(t) ⊆ {ℓ, a} [13, theorem 1].

10.13 Proof. Say y ≡ y1, . . . , yn and s ≡ s1, . . . , sn. Recall ∀x ∃y ≤i s ∀z Ab ≡
∀x¬∀y1 ≤i s1 ¬ · · · ¬∀yn ≤i sn ¬∀z Ab (in PA

ω
i based on ¬, ∨, ∀≤i and ∀). We

can prove HA
ω
i + B-LEM ⊢ AKr

b ↔ Ab by induction on the structure of Ab, so
(∀x ∃y ≤i s∀z Ab)

Kr ≡ ¬∃x¬∃y1 ≤i s1 ¬ · · · ¬∃yn ≤i sn ¬∃z (Ab)Kr is equivalent

in HA
ω
i to ∀x¬¬∃y ≤i s∀z ¬(Ab)Kr ≡ ∀x¬¬∃y ≤i s ∀z AKr

b , which is implied in

HA
ω
i +B-LEM by ∀x ∃y ≤i s ∀z Ab. So (∗) HAω +B-LEM+ΓKr ⊆ HA

ω +B-LEM+Γ.

129

If PAω
i + B-BAC+ B-BCC+MAJ+ Γ ⊢ A, then HA

ω
i + B-BAC+ ∀-BIP+MAJ+

B-BMP + ΓKr ⊢ AKr by the soundness theorem of Kr, therefore HA
ω
i + B-BAC +

∀-BIP + MAJ + B-BMP + B-LEM + Γ ⊢ AKr by (∗), so by the soundness theorem
of B (taking Γ as actually being Γ ∪ {B-LEM}, where {B-LEM} denotes the set of
instances of B-LEM, which are bounded formulas) we can extract monotone terms
t′(ℓ) of HA

ω
i such that HA

ω
i + B-LEM + Γ ⊢ ∀̃ℓ′ ∀ℓ ≤i ℓ′ ∀̃a (AKr)B(t

′(ℓ′); a) and
FV(t′(ℓ)) ⊆ FV(AKr) = FV(A). By point 1 of the factorisation U = B ◦ Kr we get
HA

ω
i + B-LEM ⊢ ∀̃ℓ′ ∀ℓ ≤i ℓ′ ∀̃aAU(a; t

′(ℓ′)a). Take t(ℓ) :≡ t′(ℓ)a.

10.5 Characterisation

10.14 Theorem (characterisation). Let us consider the theory PA
ω
i + B-BAC +

B-BCC+MAJ.

1. This theory proves A↔ AU for all formulas A of PAω
i [13, theorem 3].

2. This theory is the least theory, containing HAω
i +B-LEM, satisfying the previous

point.

10.15 Proof.

1. The proof is by induction on the structure of A.

¬ Using induction hypothesis in the first equivalence, B-MAC (which is prov-
able in PA

ω
i + B-BAC + B-BCC + MAJ by point 2 of proposition 1.66

together with PA
ω
i + MAJ ⊢ ∀-BIP) in the third equivalence (having in

mind the monotonicity of U), and MAJ in the last equivalence, we get

¬A↔
¬AU ≡

¬∀̃a ∃̃bAU(a; b)↔
¬∃̃B ∀̃aAU(a;Ba)↔

¬∃̃B ∀̃c ∀̃a ≤i cAU(a;Ba)↔
∀̃B ∃̃c ∃̃a ≤i c¬AU(a;Ba) ≡

(¬A)U.

Analogously for Aat and ∨.

∀ Using induction hypothesis in the first equivalence, MAJ in the second equiv-
alence, the contrapositive of B-BCC in the third equivalence, and the

130

monotonicity of U in the last equivalence, we get

∀xA↔
∀xAU ≡

∀x ∀̃a ∃̃bAU(a; b)↔
∀̃c, a∀x ≤i c ∃̃bAU(a; b)↔

∀̃c, a ∃̃b∀x ≤i c ∃̃b′ ≤i b AU(a; b
′)↔

∀̃c, a ∃̃b∀x ≤i cAU(a; b) ≡
(∀xA)U.

Analogously for ∀≤i.

2. Analogous to point 2 of proof 3.15.

10.16 Remark. The characterisation theorem of U ensures that the soundness
theorem of U is optimal, in the sense that the theory PA

ω
i +B-BAC+B-BCC+MAJ+Γ

there considered is the strongest theory T such that T ⊢ A ⇒ HA
ω
i + Γ ⊢ AU

(analogously to remark 3.16) [13, section 5].

10.6 Applications

10.17 Theorem (bounded existence property for bounded formulas and bounded
program extraction for bounded formulas). Let T := PA

ω
i +B-BAC+B-BCC+MAJ.

1. Let FV(∃xAb) = {ℓ}. If T ⊢ ∃xAb, then we can extract from such a proof
monotone terms t(ℓ) of T such that HAω

i + B-LEM ⊢ ∀̃ℓ′ ∀ℓ ≤i ℓ′ ∃x ≤i t(ℓ′)Ab

and FV(t(ℓ)) = FV(∃xAb) [13, corollary 1].

2. Let FV(∀x ∃y Ab) = {ℓ}. If T ⊢ ∀x ∃y Ab, then we can extract from such a

proof monotone terms t(ℓ, x) of T such that HA
ω
i + B-LEM ⊢ ∀̃ℓ′, x′ ∀ℓ, x ≤i

ℓ′, x′ ∃y ≤i t(ℓ′, x′)Ab and FV(t(ℓ, x)) = FV(∃y Ab) [13, corollary 1].

10.18 Proof.

1. Say x ≡ x1, . . . , xn. Recall ∃xAb ≡ ¬∀x1 ¬ · · · ¬∀xn ¬Ab (in PA
ω
i based on

¬, ∨, ∀≤i and ∀). We have HA
ω
i + B-LEM ⊢ (∃xAb)U(; a) ↔ ∃x ≤i aAb.

Assuming the premise of the theorem, by the soundness theorem of U we
can extract monotone terms t(ℓ) of HAω

i + B-LEM such that HAω
i + B-LEM ⊢

∀̃ℓ′ ∀ℓ ≤i ℓ′ ∃x ≤i t(ℓ′)Ab and FV(t(ℓ)) ⊆ FV(∃xAb).

2. Follows from the previous point.

10.19 Theorem (conservation and relative consistency).

1. Let ∀̃x′ ∀x ≤i x′ ∃y Ab be a sentence of PAω
i . If PA

ω
i +B-BAC+B-BCC+MAJ ⊢

∀̃x′ ∀x ≤i x′ ∃y Ab, then HA
ω
i + B-LEM ⊢ ∀̃x′ ∀x ≤i x′ ∃y Ab.

2. If PAω
i + B-BAC+ B-BCC+MAJ ⊢ ⊥, then HA

ω
i + B-LEM ⊢ ⊥ [13, section 4].

10.20 Proof. Analogous to proof 4.18.

131

10.7 Conclusion

10.21. We introduced the Shoenfield-like bounded functional interpretation U and
motivated it by the composition U = B◦Kr. The main results about the Shoenfield-
like bounded functional interpretation are the following.

Factorisation We proved U = B ◦Kr.

Soundness theorem This theorem says that we can use the Shoenfield-like bounded
functional interpretation to extract computational content from proofs in PA

ω
i +

B-BAC+ B-BCC+MAJ.

Characterisation theorem This theorem guarantees that the soundness theorem is
optimal.

Applications We used the Shoenfield-like bounded functional interpretation to do
applications on:

1. bounded existence property for bounded formulas;

2. bounded program extraction for bounded formulas;

3. conservation;

4. relative consistency.

132

Chapter 11

Slash

11.1 Introduction

11.1. The slash is a proof interpretation different from the other ones: instead of
mapping a formula to an interpreted formula, the slash maps a formula to a condition
in metalevel. Essentially, the slash interprets the internal symbols

Aat, ∧, ∨, →, ∀, ∃

into, respectively, the metalevel symbols

⊢ Aat, and, or, implies, for all closed terms, exists a closed term.

We are going to see three slashes.

Slash without truth | This slash is (essentially) Tarski’s definition of truth treated
in a proof interpretation style.

Slash with q-truth |q This slash is (roughly speaking) the previous one with some

information about provability hardwired in it.

Slash with t-truth |t This slash is similar to the previous one but with more infor-
mation about provability hardwired, to the point that “Tarski’s truth” implies
provability.

11.2. Our main contributions to this topic are the following.

1. The slash without truth | and its soundness theorem [22, section 4] (defini-
tion 11.3 and theorem 11.11).

2. The use of ωR and extensionality in the soundness and characterisation theo-
rems of |, |q and |t (theorems 11.11 and 11.15).

3. The use of | to prove the disjunction and existence properties of classical
theories with ωR (theorem 11.19).

133

11.2 Definition

11.3 Definition. Let Γ be a set of formulas of HAω.

1. The slash | [22, section 4] (on HA
ω+Γ±ωR) assigns to each formula A of HAω

the condition Γ |A defined by recursion on the structure of A by

Γ |Aat :≡ HA
ω + Γ± ωR ⊢ Aat,

Γ | (A ∧B) :≡ Γ |A and Γ |B,

Γ | (A ∨B) :≡ Γ |A or Γ |B,

Γ |(A→ B) :≡ Γ |A implies Γ |B,

Γ |∀xρ A(x) :≡ for all closed terms tρ Γ |A(t),
Γ |∃xρ A(x) :≡ exists a closed term tρ Γ |A(t).

2. The slash with q-truth |q [44, section 2.2] [75, section 3.1.19] (on HA
ω+Γ±ωR)

is defined analogously to Γ |A except for

Γ |q (A ∨ B) :≡ (Γ |qA and HA
ω + Γ± ωR ⊢ A) or

(Γ |qB and HA
ω + Γ± ωR ⊢ B),

Γ |q (A→ B) :≡ Γ |qA and HA
ω + Γ± ωR ⊢ A implies Γ |qB,

Γ |q∃xA(x) :≡ exists a closed term t (Γ |qA(t) and HA
ω + Γ± ωR ⊢ A(t)).

3. The slash with t-truth |t [1, section 4] (on HA
ω+Γ±ωR) is defined analogously

to Γ |A except for

Γ |t (A→ B) :≡ (Γ |tA implies Γ |tB) and HA
ω + Γ± ωR ⊢ A→ B,

Γ |t∀xA(x) :≡ for all closed terms t Γ |tA(t) and HA
ω + Γ± ωR ⊢ ∀xA(x).

Analogously for WE-HA
ω+Γ±ωR, E-HAω+Γ±ωR, PAω+Γ±ωR, WE-PA

ω+Γ±ωR
and E-PA

ω + Γ± ωR.

11.4. Let us note that, contrarily to what is done for mrt, in |t we added “and
HA

ω + Γ± ωR ⊢ ∀xA” in the clause of ∀; this will be discussed later in chapter 13.

11.5. When we write something along the lines of “if E-PAω + Γ ± ωR ⊢ A, then
Γ |tA”, we implicitly assume that the slash in question is based on E-PA

ω +Γ± ωR,
that is the theory that appears in the clauses

Γ |Aat :≡ E-PA
ω + Γ± ωR ⊢ Aat,

Γ |t (A→ B) :≡ (Γ |tA implies Γ |tB) and E-PA
ω + Γ± ωR ⊢ A→ B,

Γ |t∀xA(x) :≡ for all closed terms t Γ |tA(t) and E-PA
ω + Γ± ωR ⊢ ∀xA(x).

is E-PAω + Γ± ωR.
In the particular case of |, with respect to sentences, the theory HA

ω + Γ ± ωR
in Γ |Aat :≡ HA

ω + Γ ± ωR ⊢ Aat, if consistent, does not matter, because HA
ω is

complete with respect to atomic sentences (by point 2 of theorem 1.53).

134

11.6. We can think of | as Tarski’s definition of truth with:

1. Tarski’s condition for atomic formulas “Aat is true” replaced by “Aat is prov-
able”;

2. in a model whose objects are exactly the closed terms, so that Tarski’s con-
dition for universal quantifications “for all objects x we have A(x)” becomes
“for all closed terms t we have A(t)”, and analogously for existential quantifi-
cations.

This relation between the slash and Tarski’s definition of truth can be given a
rigorous meaning: for all sentences A of HAω we have the equivalence ∅ | A ⇔
Tω |= A (where Tω is the term model of HAω from definition 12.4).

11.7 Remark.

1. The slash with q-truth |q has truth in the sense of: Γ |qA implies HAω+Γ±ωR ⊢
A for all disjunctive and existential formulas A of HAω [22, remark 4.2].

2. The slash with t-truth |t has truth in the sense of: Γ |tA implies HAω+Γ±ωR ⊢
A for all formulas A of HAω [78, section 5.7 in chapter 3].

The slash with t-truth |t is a (∗1) strengthening of |q which (∗2) has truth for all
formulas. This can be given a rigorous meaning: (∗3) Γ |tA ⇔ (Γ |qA and HA

ω +
Γ ± ωR ⊢ A), for all formulas A of HAω + Γ ± ωR [78, exercise 3.5.3 in chapter 3].
From (∗3) we get: Γ |t A ⇒ Γ |q A, that is (∗1); Γ |t A ⇒ HA

ω + Γ ± ωR ⊢ A,
that is (∗2). Analogously for WE-HA

ω + Γ ± ωR, E-HAω + Γ ± ωR, PAω + Γ ± ωR,
WE-PA

ω + Γ± ωR and E-PA
ω + Γ± ωR.

11.8 Proposition. The slash | acts as the identity on quantifier-free sentences of
HA

ω +Γ± ωR in the sense of: HAω +Γ±ωR ⊢ Aqf ⇔ Γ |Aqf, for all quantifier-free
sentences Aqf of HA

ω+Γ±ωR. Analogously for WE-HA
ω+Γ±ωR, E-HAω+Γ±ωR,

PA
ω + Γ± ωR, WE-PA

ω + Γ± ωR, E-PAω + Γ± ωR, |q and |t.
11.9 Proof. We adopt here (with the proper adaptations, including an analogous
unified treatment of variants without truth, with q-truth and with t-truth, by means
of q, t ∈ {id,⊤}) the remarks made in the beginning of proof 3.12. We do the proof
for HAω + Γ± ωR; the cases of the other theories are analogous. Let us abbreviate
HA

ω + Γ ± ωR ⊢ A by Γ ⊢ A. The proof is by induction on the structure of Aqf.
We only see the case of →; the cases of Aat, ∧ and ∨ are analogous. Using point 2
of theorem 1.53 in right-to-left implication of the first equivalence (in the following
way: if Γ ⊢ ¬A or Γ ⊢ B, then Γ ⊢ A→ B; if Γ ⊢ A and Γ ⊢ ¬B, then Γ ⊢ B ∧¬B,
that is Γ ⊢ ⊥, so Γ ⊢ A→ B), and induction hypothesis in the last equivalence, we
get

Γ ⊢ A→ B ⇔
(Γ ⊢ A implies Γ ⊢ B) and Γ ⊢ (A→ B)t ⇔

(Γ ⊢ A and Γ ⊢ Aq implies Γ ⊢ B) and Γ ⊢ (A→ B)t ⇔
(Γ |A and Γ ⊢ Aq implies Γ |B) and Γ ⊢ (A→ B)t ≡

Γ | (A→ B).

135

11.10 Definition. Let A be a formula of HAω +Γ± ωR and Γ be a set of formulas
of HAω + Γ± ωR.

1. We denote a universal closure of A by Ā.

2. We define Γ̄ := {B̄ : B ∈ Γ}.

3. We define Γ | Γ̄ as meaning “Γ |B̄ for all B ∈ Γ”.

Analogously for WE-HA
ω+Γ±ωR, E-HAω+Γ±ωR, PAω+Γ±ωR, WE-PA

ω+Γ±ωR
and E-PA

ω + Γ± ωR.

11.3 Soundness

11.11 Theorem (soundness). Let Γ be a set of formulas such that Γ | Γ̄.
1. If HAω+Γ±ωR ⊢ A, then Γ | Ā [22, section 4]. Analogously for WE-HA

ω+Γ±
ωR, E-HAω +Γ± ωR, PAω + Γ± ωR, WE-PA

ω + Γ± ωR and E-PA
ω +Γ± ωR.

2. If HAω + Γ ± ωR ⊢ A, then Γ |q Ā. Analogously for WE-HA
ω + Γ ± ωR and

E-HA
ω + Γ± ωR [75, section 3.1.20].

3. If HAω + Γ± ωR ⊢ A, then Γ |t Ā [78, theorem 5.9 in chapter 3]. Analogously
for WE-HA

ω + Γ± ωR and E-HA
ω + Γ± ωR.

11.12 Proof. Let us make some remarks. We make them for HAω +Γ± ωR and |,
but they also apply to the other theories and slashes.

1. We adopt here (with the proper adaptations, including an analogous unified
treatment of variants without truth, with q-truth and with t-truth, by means
of q, t ∈ {id,⊤}) the remarks made in the beginning of proof 3.12.

2. Let us shorten HA
ω+Γ±ωR ⊢ A by Γ ⊢ A, HAω+Γ±ωR ⊢ Aq by Γ ⊢q A and

HA
ω+Γ±ωR ⊢ At by Γ ⊢t A. Also, let us shorten “Γ |A and HA

ω+Γ±ωR ⊢ Aq”
by Γ q A, and “Γ |A and HA

ω + Γ± ωR ⊢ At” by Γ t A.

3. Say FV(A(ℓ)) = {ℓ}. When interpreting A(ℓ), we first take a universal closure
Ā ≡ ∀ℓ A(ℓ) of A(ℓ) and then we slash Ā; this slash is equivalent to (∗) “for
all closed terms t Γ |A(t) and Γ ⊢t Ā”. We will do this implicitly by directly
writing (∗). When we do it, we write “≡” instead of ≡.

4. If HAω+Γ±ωR ⊢ ⊥, then for all formulas A of HAω+Γ±ωR we have Γ |A [44,
section 2.3].

Let us prove the remark. The condition Γ |A is a combination by means of
“and”, “or”, “implies”, “for all closed terms” and “exists a closed term” of
“atomic” conditions of the form HA

ω +Γ± ωR ⊢ A. From the assumption we
get that all theses “atomic” conditions are true, so Γ |A is also true.

5. If HAω + Γ ± ωR ⊢ s =0 t, then Γ | A(s) ⇔ Γ | A(t). The same holds for
E-HA

ω + Γ ± ωR with =ρ instead of =0. The proof is analogous to the proof
of remark 4.

136

Let us prove the theorem by induction on the derivation of A.

⊥ → A(ℓ) We have

Γ |⊥ → A(ℓ) “≡” for all closed terms t
(
(Γ ⊢ ⊥ and Γ ⊢q ⊥ implies Γ |A(t)) and Γ ⊢t ⊥ → A(t)

)
and Γ ⊢t ⊥ → A(ℓ).

Here we use remark 4.

A(t(x, ℓ), ℓ)→ ∃xA(x, ℓ) We have

Γ |A(t(x, ℓ), ℓ)→ ∃xA(x, ℓ) “≡” for all closed terms s′, s((
Γ q A(t(s

′, s), s) implies exists a closed term r Γ q A(r, s)
)
and

Γ ⊢t A(t(r, s), s)→ ∃xA(x, s)
)
and Γ ⊢t A(t(x, ℓ), ℓ)→ ∃xA(x, ℓ).

(actually, if x /∈ FV
(
A(t(x, ℓ), ℓ)→ ∃xA(x, ℓ)

)
, then there is no quantification

of s′). Analogously for A → A ∧ A, A ∨ A → A, A ∧ B → A, A → A ∨ B,
A ∧B → B ∧A, A ∨ B → B ∨ A and ∀xA(x)→ A(t).

A(ℓ)→ B(ℓ), B(ℓ)→ C(ℓ) /A(ℓ)→ C(ℓ) We have

Γ |A(ℓ)→ B(ℓ) ≡ for all closed terms t(
(Γ q A(t) implies Γ |B(t)) and Γ ⊢t A(t)→ B(t)

)
and

Γ ⊢t A(ℓ)→ B(ℓ),

(11.1)

Γ |B(ℓ)→ C(ℓ) ≡ for all closed terms t(
(Γ q B(t) implies Γ |C(t)) and Γ ⊢t B(t)→ C(t)

)
and

Γ ⊢t B(ℓ)→ C(ℓ),

(11.2)

Γ |A(ℓ)→ C(ℓ) ≡ for all closed terms t(
(Γ q A(t) implies Γ |C(t)) and Γ ⊢t A(t)→ C(t)

)
and

Γ ⊢t A(ℓ)→ C(ℓ)

(11.3)

(actually, in (11.1) there are no quantifications of terms in t corresponding to
variables of ℓ that are in FV(C(ℓ)) \

(
FV(A(ℓ))∪FV(B(ℓ))

)
, and analogously

for (11.2) and (11.3)). If q = id, then we use the assumption that we proved
A(ℓ) → B(ℓ), so that the part Γ ⊢q A(t) in (11.3) implies the part Γ ⊢q B(t)
in (11.2). Analogously for A, A→ B /B and A→ B /C ∨A→ C ∨ B.

137

A(ℓ) ∧B(ℓ)→ C(ℓ) /A(ℓ)→ (B(ℓ)→ C(ℓ)) We have

Γ |A(ℓ) ∧B(ℓ)→ C(ℓ) ≡ for all closed terms t(
(Γ |A(t) and Γ |B(t) and Γ ⊢q A(t) ∧B(t) implies Γ |C(t)) and

Γ ⊢t A(t) ∧ B(t)→ C(t)
)
and Γ ⊢t A(ℓ) ∧B(ℓ)→ C(ℓ),

(11.4)

Γ |A(ℓ)→ (B(ℓ)→ C(ℓ)) ≡ for all closed terms t((
Γ q A(t) implies (Γ q B(t) implies Γ |C(t)) and

Γ ⊢t B(t)→ C(t)
)
and Γ ⊢t A(t)→ (B(t)→ C(t))

)
and

Γ ⊢t A(ℓ)→ (B(ℓ)→ C(ℓ)).

(11.5)

If t = id, then we use that Γ |A(t) implies Γ ⊢ A(t), so that the parts Γ |A(t)
in (11.5) and Γ ⊢t A(t) ∧ B(t) → C(t) in (11.4) together imply the part
Γ ⊢t B(t)→ C(t) in (11.5). Analogously for A→ (B → C) /A ∧ B → C.

A(ℓ)→ B(x, ℓ) /A(ℓ)→ ∀xB(x, ℓ) We have

Γ |A(ℓ)→ B(x, ℓ) ≡ for all closed terms t′, t(
(Γ q A(t) implies Γ |B(t′, t)) and Γ ⊢t A(t)→ B(t′, t)

)
and

Γ ⊢t A(ℓ)→ B(x, ℓ),

(11.6)

Γ |A(ℓ)→ ∀xB(x, ℓ) ≡ for all closed terms t(
(Γ q A(t) implies for all closed terms s Γ |B(s, t)

and Γ ⊢t ∀xB(x, t)) and Γ ⊢t A(t)→ ∀xB(x, t)
)
and

Γ ⊢t A(ℓ)→ ∀xB(x, ℓ)

(11.7)

(actually, if x /∈ FV(A(ℓ) → B(x, ℓ)), then there is no quantification of t′

in (11.6) and the quantification of s in (11.7) is dummy). If t = id, then
we use that Γ |A(t) implies Γ ⊢ A(t), so that the parts Γ |A(t) in (11.7) and
Γ ⊢t A(ℓ)→ B(x, ℓ) in (11.6) together imply the part Γ ⊢t ∀xB(x, t) in (11.7).
Analogously for A→ B / ∃xA→ B.

Axioms of =0, S, Π, Σ and R Let Aqf(ℓ) be one of these axioms. We have

Γ |Aqf(ℓ) “≡” for all closed terms t Γ |Aqf(t) and Γ ⊢t Aqf(ℓ)

so Γ |Aqf(ℓ) is equivalent to “for all closed terms t Γ ⊢ Aqf(t) and Γ ⊢t Aqf(ℓ)”

by proposition 11.8, thus Γ |Aqf(ℓ) follows from the axiom Aqf(ℓ) itself.

A(0, ℓ), A(x, ℓ)→ A(Sx, ℓ) /A(x, ℓ) We can assume x ∈ FV(A), otherwise A[0/x] ≡

138

A and so Γ |A[0/x] ≡ Γ |Ā. We have

Γ |A(0, ℓ) ≡ for all closed terms t Γ |A(0, t) and Γ ⊢t A(0, ℓ), (11.8)

Γ |A(x, ℓ)→ A(Sx, ℓ) “≡” for all closed terms t′, t(
(Γ q A(t

′, t) implies Γ |A(St′, t)) and Γ ⊢t A(t′, t)→ A(St′, t)
)
and

Γ ⊢t A(x, ℓ)→ A(Sx, ℓ),

(11.9)

Γ |A(x, ℓ) ≡ for all closed terms t′, t Γ |A(t′, t) and Γ ⊢t A(x, ℓ). (11.10)

By point 3 of theorem 1.30 and remark 5, to prove (11.10) it suffices to prove
it when t′ is a numeral n̄. We do this by induction on n using (11.8) and
(11.9). If q = id, then we use the assumption that we proved A, so as to have
the part Γ ⊢q A(t′, t) in (11.9).

Aat → s = t / Aat → r(s) =0 r(t) Using the assumption that we proved the premise

of the rule, then we proved the conclusion of the rule, so Γ |Aat → r(s) =0 r(t)
arguing as in the case of the axioms of =0, S, Π, Σ and R.

z ≈ z We have

Γ |z ≈ z ≡ for all closed terms t Γ | (t ≈ t) and Γ ⊢t z ≈ z.

At this point of the proof, we already proved the following: if HAω ⊢ A, then
Γ |Ā (where the slash is on E-HA

ω +Γ±ωR). So, since HAω ⊢ t ≈ t by point 6
of proposition 1.26, then Γ |(t ≈ t) (where the slash is on E-HA

ω + Γ± ωR).

ωR We have

Γ |A(t, ℓ) “≡” for all closed terms s Γ |A(t, s) and Γ ⊢t A(t, ℓ),

Γ |∀xA(x, ℓ) “≡” for all closed terms s

(for all closed terms t Γ |A(t, s) and Γ ⊢t ∀xA(x, s)) and Γ ⊢t ∀xA(x, ℓ).

A(ℓ) ∨ ¬A(ℓ) Let q = ⊤ and t = ⊤. We have

Γ | (A(ℓ) ∨ ¬A(ℓ)) “≡”
for all closed terms t

(
Γ |A(t) or (Γ |A(t) implies Γ ⊢ ⊥)

)
.

Γ By hypothesis we have Γ | Γ̄.

11.13. We need the terms t in

Γ |∀xA(x) :≡ for all closed terms t Γ |A(t)

to be closed because when verifying the induction rule in the proof of the soundness
theorem we need to reduce t to a numeral. Once settled that the terms need to be

139

closed, we are forced to take universal closures of all formulas, otherwise we could
not show

Γ | (∀xA(x)→ A(x)) ≡ for all closed terms t Γ |A(t) implies Γ |A(x)
to be true by taking t to be the non-closed term x. But taking a universal closure,
the slash will replace the free variable x by closed terms s, and then we can take q
to be the closed term s:

Γ |∀xA(x)→ A(x) ≡ for all closed terms s

(for all closed terms t Γ |A(t) implies Γ |A(s))
(where FV(A(x)) = {x}).
11.14. The slashes |q and |t on PA

ω do not interpret PAω because their truth prevents
them from interpreting the law of excluded middle. Indeed, in the case of |t, if for
all sentences A of PAω the slash

∅|t (A ∨ ¬A) ≡ ∅|tA or ∅|t¬A
were true, then (by truth) for all sentences A of PAω we would have

PA
ω ⊢ A or PAω ⊢ ¬A,

so PA
ω would be complete, which is false. Analogously for WE-PA

ω, E-PAω and |q.

11.4 Characterisation

11.15 Theorem (characterisation). Let Γ be a set of formulas of HAω+ωR. For all
formulas A of HAω +Γ+ ωR, we have the equivalence HA

ω +Γ+ ωR ⊢ Ā ⇔ Γ | Ā.
Analogously for WE-HA

ω+Γ+ωR, E-HAω+Γ+ωR, PAω+Γ+ωR, WE-PA
ω+Γ+ωR,

E-PA
ω + Γ + ωR, |q and |t [78, sections 5.7 and 5.9 in chapter 3].

11.16 Proof. Let us do the proof only for HA
ω + Γ + ωR; the cases of the other

theories are analogous. Since Ā is a sentence, it suffices to prove the theorem for
sentences A. We adopt here the remarks made in the beginning of proof 11.12. We
assume HAω+Γ+ωR 0 ⊥, otherwise the claim of the theorem follows from remark 4
in proof 11.12. Let us denote “not Γ |A” by Γ ∤A. We prove

Γ |A ⇔ Γ ⊢ A,

Γ ∤A ⇔ Γ ⊢ ¬A,
by simultaneous induction on the structure of the sentence A [68, suggested for the
different context of proof 12.13]. Note that the equivalences imply Γ ⊢ A or Γ ⊢ ¬A.
Aat We have Γ |Aat ≡ Γ ⊢ Aat.

Using point 2 of theorem 1.53 in the equivalence, we get

Γ ∤Aat ≡
Γ 0 Aat ⇔

Γ ⊢ ¬Aat.

140

→ From the induction hypothesis we get (∗1) Γ ⊢ A or Γ ⊢ ¬A, and (∗2) Γ ⊢ B or
Γ ⊢ ¬B.

Using induction hypothesis in the first equivalence, and (∗1) in the third equiv-
alence, we get

Γ |(A→ B) ≡
(Γ |A and Γ ⊢q A implies Γ |B) and Γ ⊢t A→ B ⇔

(Γ ⊢ A and Γ ⊢q A implies Γ ⊢ B) and Γ ⊢t A→ B ⇔
(Γ ⊢ A implies Γ ⊢ B) and Γ ⊢t A→ B ⇔

Γ ⊢ A→ B and Γ ⊢t A→ B ⇔
Γ ⊢ A→ B.

Using induction hypothesis in the second equivalence, and (∗1) and (∗2) in the
last two equivalences, we get

Γ ∤ (A→ B) ⇔
(Γ |A and Γ ⊢q A and Γ ∤B) or Γ 0t A→ B ⇔

(Γ ⊢ A and Γ ⊢q A and Γ ⊢ ¬B) or Γ 0t A→ B ⇔
(Γ ⊢ A and Γ ⊢ ¬B) or Γ 0t A→ B ⇔

Γ ⊢ A and Γ ⊢ ¬B ⇔
Γ ⊢ ¬(A→ B).

Analogously for ∧ and ∨.

∀ As before, we have Γ ⊢ A(t) or Γ ⊢ ¬A(t) for all closed terms t.

We have that (∗1) Γ ⊢ ¬∀xA(x) implies that there exists a closed term t such
that Γ ⊢ ¬A(t): if the conclusion is false, then for all closed terms t we have
Γ ⊢ A(t), so Γ ⊢ ∀xA(x) by ωR, thus the premise is false.

We have that (∗2) Γ 0 ∀xA(x) implies Γ ⊢ ¬∀xA(x): if for all closed terms t
we would have Γ ⊢ A(t), then by ωR we would have Γ ⊢ ∀xA(x) contradicting
the premise, therefore for some closed term t we have Γ ⊢ ¬A(t), thus Γ ⊢
¬∀xA(x).
Using induction hypothesis in the first equivalence, and ωR in the second
equivalence, we get

Γ |∀xA(x) ≡
for all closed terms t Γ |A(t) and Γ ⊢t ∀xA(x) ⇔

for all closed terms t Γ ⊢ A(t) and Γ ⊢t ∀xA(x) ⇔
Γ ⊢ ∀xA(x) and Γ ⊢t ∀xA(x) ⇔

Γ ⊢ ∀xA(x).

141

Using induction hypothesis in the second equivalence, (∗1) in the third equiv-
alence, and (∗2) in the last equivalence, we get

Γ ∤∀xA(x) ⇔
exists a closed term t Γ ∤A(t) or Γ 0t ∀xA(x) ⇔

exists a closed term t Γ ⊢ ¬A(t) or Γ 0t ∀xA(x) ⇔
Γ ⊢ ¬∀xA(x) or Γ 0t ∀xA(x) ⇔

Γ ⊢ ¬∀xA(x).

Analogously for ∃.
11.17 Remark. The characterisation theorem of | ensures that the soundness the-
orem of | is optimal, in the sense that the theory HA

ω + Γ + ωR there considered
is the strongest theory T such that T ⊢ A ⇒ Γ | A where the slash Γ | A is on
HA

ω + Γ + ωR (analogously to remark 3.16). Analogously for WE-HA
ω + Γ + ωR,

E-HA
ω + Γ + ωR, PAω + Γ + ωR, WE-PA

ω + Γ + ωR, E-PAω + Γ + ωR, |q and |t.
11.18. The characterisation theorem of |t tells us that |t (on PA

ω + ωR) interprets
PA

ω, but we saw in paragraph 11.14 that |t (on PA
ω) does not interpret PAω. This is

not a contradiction (because the former slash is on PA
ω +ωR and the latter slash is

on PA
ω), but may look confusing. So it may help to say that the reason why |t (on

PA
ω + ωR) interprets PA

ω + ωR is because PA
ω + ωR is complete (as we will prove

in theorem 12.8), and the reason why |t (on PA
ω) does not interpret PAω is because

PA
ω is incomplete (as we saw in paragraph 11.14). Analogously for |q.

11.5 Applications

11.19 Theorem (disjunction property and existence property). Let T := HA
ω±ωR.

1. Let A and B be sentences of T. If T ⊢ A ∨ B, then T ⊢ A or T ⊢ B [75,
section 3.1.20].

2. Let ∃xA(x) be a sentence of T. If T ⊢ ∃xA(x), then there exist closed terms
t of T such that T ⊢ A(t) [75, section 3.1.20].

Analogously for WE-HA
ω ± ωR and E-HA

ω ± ωR [75, section 3.1.20], PA
ω + ωR,

WE-PA
ω + ωR and E-PA

ω + ωR.

11.20 Proof. We do two slightly different proofs: one for the intuitionistic theories
and another one for the classical theories.

HA
ω ± ωR, WE-HA

ω ± ωR and E-HA
ω ± ωR

1. Assuming the premise of the theorem, by the soundness theorem of |t we
have ∅ |t (A ∨ B) ≡ “∅ |tA or ∅ |tB”. By truth we get the conclusion of
the theorem.

2. Assuming the premise of the theorem, by the soundness theorem of |t we
have ∅|t∃xA(x) ≡ “exists a closed term t ∅|tA(t)”. By truth we get the
conclusion of the theorem.

142

PA
ω + ωR, WE-PA

ω + ωR and E-PA
ω + ωR Analogous to the previous proof but us-

ing | and its characterisation theorem instead of |t and its truth.

11.21. In chapter 12 we are going to see that HAω+ωR even has a property stronger
than the disjunction and existence properties: it is a complete theory.

11.6 Conclusion

11.22. We saw three slashes |, |q and |t which interpret the internal symbols

Aat, ∧, ∨, →, ∀, ∃

as the metalevel symbols

Γ ⊢ Aat, and, or, implies, for all closed terms, exists a closed term,

resembling Tarski’s definition of truth (with some provability hardwired). The main
results about the slash are the following.

Soundness theorem This theorem says that we can use the slash to guarantee the
existence of computational content from proofs in E-PA

ω + ωR.

Characterisation theorem This theorem guarantees that the soundness theorem is
optimal.

Applications We used the slash to do applications on:

1. disjunction property;

2. existence property.

143

144

Part III

Theoretical contributions

145

Chapter 12

Completeness and ω-rule

12.1 Introduction

12.1. In this chapter we introduce the term model Tω of PAω + ωR and prove the
completeness of PAω + ωR:

Syntactic completeness for all sentences A we have PAω+ωR ⊢ A or PAω+ωR ⊢ ¬A;

Semantic completeness for all sentences A we have PA
ω + ωR ⊢ A ⇔ Tω |= A.

The chapter is admittedly light since the results and proofs are quite simple. Despite
this, the results have some interest from a historical perspective as they relate to
Hilbert’s program.

12.2 Hilbert’s program and ω-rule

12.2. In the early 20th century there were attempts to ground all mathematics
in secure foundations (for example, naive set theory), but unsuccessfully due to
paradoxes (such as Russell’s paradox). David Hilbert proposed a foundation in his
famous program [81], namely to ground mathematics in a system consisting of the
following.

Language A well defined and precise language in which all statements should be
written.

Axioms and rules A well defined and precise list of axioms and rules according to
which the statements in the language should be manipulated.

Moreover, the system should have the following properties.

Completeness The system should prove all true statements in the language.

Consistency The system should not fall into contradiction, and this fact should
be proved using only “finitary methods”. (The exact meaning of “finitary
methods” is open to interpretation, but they should be methods obviously
true, easy to survey and working with finite objects.)

147

Conservation If a statement about “real objects” (concrete, finite and easy to survey
objects such as natural numbers) is proved using “ideal objects” (abstract,
infinite and difficult to survey objects such as infinite sets), then in principle
we can eliminate the use of “ideal objects”, obtaining a proof in the system
that only uses “real objects”.

Decidability There should be an algorithm that correctly decides the truth value of
any statement in the language.

Gödel’s incompleteness theorems showed that Hilbert’s program is unattainable
for the following reasons.

1. Gödel’s first incompleteness theorem implies that Hilbert’s system, being de-
cidable and consistent, cannot be complete.

2. Gödel’s second incompleteness theorem implies that Hilbert’s “finitary meth-
ods”, which (independently of what they are) were believed to be formalisable
in Peano arithmetic PA, do not prove the consistency of a system grounding
all mathematics.

One day after Gödel’s announcement of his first incompleteness theorem, Hilbert
gives a talk where he claims that there is no ignorabimus (impossibility to know the
truth) in mathematics, in contradiction to Gödel’s theorem [9, pages 69 and 71]. In
the same talk, Hilbert proposes to add the ω-rule ωR′

A(0̄) A(1̄) A(2̄) . . .

∀xA(x)

to PA in order to get a complete theory: N |= A ⇔ PA+ωR′ ⊢ A [35, pages 491–492].
(Hilbert is not very clear; under one possible interpretation he seems to argue com-
pleteness only for Π0

1 sentences A.) The ω-rule turns proofs into infinite objects
without a provability predicate, putting them out of the range of Gödel’s incom-
pleteness theorems.

12.3 Term model

12.3. The rule ωR gives us the left-to-right implication in the equivalence

for all closed terms tρ A(t) ⇔ ∀xρ A(x).

This equivalence suggests that for ωR to be true in a model of HAω, the objects of
type ρ of the model should be exactly the closed terms of type ρ. There is such a
model: the term model.

12.4 Definition. The term model Tω [75, definition 2.5.1] is a model of HAω defined
as follows.

1. The universe of Tω is the set of all closed terms of HAω.

2. The constants 0, S, Π, Σ and Ri are interpreted as themselves.

148

3. Term application sρσ, tσ (st)ρ is interpreted as itself.

4. Equality =0 is interpreted as: s =0 t ⇔ sn ≡ tn.

12.5 Proposition. The term model Tω is a model of HAω±ωR [75, definition 2.5.1],
WE-HA

ω ± ωR, E-HAω ± ωR, PAω ± ωR, WE-PA
ω ± ωR and E-PA

ω ± ωR.

12.6 Proof. It suffices to prove the proposition for E-PA
ω + ωR, since the other

theories are subtheories of E-PA
ω + ωR. The logical axioms and rules (given in

table 1.1 plus LEM) hold true in any model, so we only have to verify the arithmetical
axioms and rules (given in table 1.3), ∀z (z ≈ z) (see point 3 of proposition 1.26)
and ωR. First, let us make some remarks.

1. When interpreting in Tω a formula, we implicitly interpret an universal closure
of the formula.

2. We have Tω |= x =0 y → (A[x/z]↔ A[y/z]).

Let us prove this claim by induction on the structure of A. We only see the
base case Aat(z, ℓ) ≡ s(z, ℓ) =0 t(z, ℓ), where FV(Aat(z, ℓ)) ⊆ {z, ℓ}, since the
case A ≡ ⊥ and the induction step are easy. The interpretation of x =0 y →
(s(x, ℓ) =0 t(x, ℓ) ↔ s(y, ℓ) =0 t(y, ℓ)) is “for all closed terms p, q and r, if
qn ≡ rn then: s(q, p)n ≡ t(q, p)n ⇔ s(r, p)n ≡ t(r, p)n”. It is true because if
qn ≡ rn, then s(q, p), s(r, p) � s(qn, p) ≡ s(rn, p) and t(q, p), t(r, p) � t(qn, p) ≡
t(rn, p), so s(q, p)n ≡ s(r, p)n and t(q, p)n ≡ t(r, p)n.

x =0 x Its interpretation is the true “for all closed terms t0 we have tn ≡ tn”.

x =0 y ∧ Aat[x/z]→ Aat[y/z] Follows from remark 2.

Sx 6=0 0 Its interpretation is “for all closed terms t0 we have (St)n 6≡ 0n”. It is true
because (St)n ≡ Stn 6≡ 0.

Sx =0 Sy → x =0 y Its interpretation is “for all closed terms s0 and t0, if (Ss)n ≡
(St)n then sn ≡ tn”. It is true because (Ss)n ≡ Ssn and (St)n ≡ Stn.

Aat[R(Sx)yz/w]↔ Aat[z(Rxyz)x/w] Let us say Aat(w, ℓ) ≡ s(w, ℓ) =0 t(w, ℓ), where

FV(Aat(w, ℓ)) ⊆ {w, ℓ} (the case Aat ≡ ⊥ is trivial). The interpretation of
the axiom is “for all closed terms o, p, q and r we have: s(R(Sp)qr, o)n ≡
t(R(Sp)qr, o)n ⇔ s(r(Rpqr)p, o)n ≡ t(r(Rpqr)p, o)n”. This interpretation is
true since s(R(Sp)qr, o)n ≡ s(r(Rpqr)p, o)n and t(R(Sp)qr, o)n ≡ t(r(Rpqr)p, o)n

because Ri(Sp)qr � ri(Ripqr)p. Analogously for the other axioms of R and
the axioms of Π and Σ.

A(x), A(x)→ A(Sx) /A(x) Its interpretation is

if Tω |= A(0) and

for all closed terms s we have (Tω |= A(s) ⇒ Tω |= A(Ss))

then for all closed terms t we have Tω |= A(t).

149

It suffices to prove the conclusion for numerals: by point 3 of theorem 1.30 we
have t =0 n̄ for some n ∈ N, thus Tω |= A(t) is equivalent to Tω |= A(n̄) by
remark 2. From the premise we get Tω |= A(n̄) for all n ∈ N by induction on
n.

z ≈ z Its interpretation is “for all closed terms t we have Tω |= t ≈ t”. At this point
of the proof we already proved that Tω is a model of HAω. So Tω |= t ≈ t for
all closed terms t by point 6 of proposition 1.26.

ωR The interpretations of the premises and conclusion of the rule coincide.

12.4 Completeness

12.7. We are going to prove the completeness of the intuitionistic theories HAω+ωR,
WE-HA

ω +ωR and E-HA
ω + ωR, and the classical theories PAω + ωR, WE-PA

ω + ωR
and E-PA

ω + ωR. We give five different proofs. Some proofs work for both the
classical and intuitionistic theories, other ones only work for the classical theories.
Some proofs use as tool the slash, others use as tool provability, and others use as
tool truth (in Tω). We summarise this in table 12.1.

theories tools

intuitionistic classical slash provability truth

proof 12.9 X X

proof 12.10 X X X

proof 12.11 X X

proof 12.12 X X X

proof 12.13 X X X

Table 12.1: proofs of completeness, the theories for which they work, and the tools
that they use.

12.8 Theorem.

1. The theory HA
ω+ωR is syntactically complete: for all sentences A of HAω+ωR

we have HA
ω + ωR ⊢ A or HAω + ωR ⊢ ¬A.

2. The theory HA
ω + ωR is semantically complete with respect to Tω: for all

sentences A of HAω + ωR we have Tω |= A ⇔ HA
ω + ωR ⊢ A.

Analogously forWE-HA
ω+ωR, E-HAω+ωR, PAω+ωR, WE-PA

ω+ωR and E-PA
ω+ωR.

12.9 Proof. This proof only works for the classical theories. We only do the proof
for PAω + ωR; the cases of the other classical theories are analogous.

1. We have PA
ω + ωR ⊢ A ∨ ¬A, so ∅ | (A ∨ ¬A), that is “∅ | A or ∅ | ¬A”, by

the soundness theorem of |. Then PA
ω + ωR ⊢ A or PA

ω + ωR ⊢ ¬A by the
characterisation theorem of |.

150

2. This point follows from the previous one since Tω is a model of PAω + ωR.

12.10 Proof. We only do the proof for HAω + ωR; the cases of the other theories
are analogous.

1. We have ∅ |A or ∅ ∤A, where ∅ ∤A implies ∅ | ¬A. So by the characterisation
theorem of | we get HAω + ωR ⊢ A or HAω + ωR ⊢ ¬A.

2. This point follows from the previous one since Tω is a model of HAω + ωR.

12.11 Proof. This proof only works for the classical theories. We only do the proof
for PAω + ωR; the cases of the other classical theories are analogous. We prove first
the last point of the theorem.

2. The right-to-left implication follows from Tω being a model of PAω + ωR. Let
us see the left-to-right implication. In Tω and in PA

ω + ωR every formula
A is equivalent to a formula Ap ≡ Q1x1 . . . Qnxn Aqf(x1, . . . , xn) in prenex
normal form, where Q1, . . . , Qn ∈ {∀, ∃}. So it suffices to prove Tω |= Ap ⇒
PA

ω + ωR ⊢ Ap by induction on the structure of sentences in prenex normal
form.

Aqf This case follows from point 2 of theorem 1.53 and from Tω being a model
of PAω + ωR.

∀ Using the induction hypothesis in the second implication (note that A(t) is
a sentence because ∀xA(x) is a sentence) and ωR in the third implication,
we get

Tω |= ∀xA(x) ⇒
for all closed terms t Tω |= A(t) ⇒

for all closed terms t PAω + ωR ⊢ A(t) ⇒
PA

ω + ωR ⊢ ∀xA(x).

Analogously for ∃.

1. This point follows from the other point.

12.12 Proof. We only do the proof for HAω + ωR; the cases of the other theories
are analogous. Let us abbreviate HA

ω + ωR ⊢ A by ⊢ A. We prove ⊢ A or ⊢ ¬A by
induction on the structure of A.

1. Aat This case follows from point 2 of theorem 1.53.

→ Using the induction hypothesis in the second implication, we get

0 A→ B ⇒
0 ¬A and 0 B ⇒
⊢ A and ⊢ ¬B ⇒
⊢ ¬(A→ B).

Analogously for ∧ and ∨.

151

∀ Using ωR (that gives the equivalence between ⊢ ∀xA(x) and “for all closed
terms t ⊢ A(t)”) in the first implication, and induction hypothesis in the
second implication, we get

0 ∀xA(x) ⇒
there exists a closed term t 0 A(t) ⇒

there exists a closed term t ⊢ ¬A(t) ⇒
⊢ ∃x¬A(x) ⇒
⊢ ¬∀xA(x).

Analogously for ∃.

2. This point follows from the previous one since Tω is a model of HAω + ωR.

12.13 Proof. We only do the proof for HAω + ωR; the cases of the other theories
are analogous. Let us abbreviate Tω |= A by |= A, and HA

ω + ωR ⊢ A by ⊢ A. We
prove first the last point of the theorem.

2. We prove the equivalences

Tω |= A ⇔ HA
ω + ωR ⊢ A,

Tω |= ¬A ⇔ HA
ω + ωR ⊢ ¬A

by simultaneous induction on the structure of A [68]. The right-to-left impli-
cations follow from Tω being a model of HAω + ωR, so we only have to prove
the left-to-right implications.

Aat This case follows from point 2 of theorem 1.53.

→ Using the induction hypothesis in the second implication of both columns,
we get

|= A→ B ⇒ |= ¬(A→ B) ⇒
|= ¬A or |= B ⇒ |= A and |= ¬B ⇒
⊢ ¬A or ⊢ B ⇒ ⊢ A and ⊢ ¬B ⇒
⊢ A→ B, ⊢ ¬(A→ B).

Analogously for ∨ and ∧.
∃ Using the induction hypothesis in the second implication of both columns,

and ωR in the third implication of the right column, we get

|= ∃xA(x) ⇒ |= ¬∃xA(x) ⇒
exists a closed term t |= A(t) ⇒ for all closed terms t |= ¬A(t) ⇒
exists a closed term t ⊢ A(t) ⇒ for all closed terms t ⊢ ¬A(t) ⇒

⊢ ∃xA(x), ⊢ ∀x¬A(x) ⇒
⊢ ¬∃xA(x).

Analogously for ∀.

152

1. This point follows from the other point.

12.14. In proof 12.13 we used the idea of proving the equivalences (∗1) Tω |= A ⇔
HA

ω+ωR ⊢ A and (∗2) Tω |= ¬A ⇔ HA
ω+ωR ⊢ ¬A by simultaneous induction on

the structure of A [68]. Since we are only interested in (∗1), the more natural thing
to do would be to only prove (∗1). But this seems to fail in the case of negation
(a particular case of implication): assuming that (∗1) holds for A, we have to show
Tω |= ¬A ⇔ HA

ω + ωR ⊢ ¬A, that is Tω |6= A ⇔ HA
ω + ωR ⊢ ¬A; but the

induction hypothesis only tells us that Tω |6= A ⇔ HA
ω + ωR 0 A, and we do not

know how to show (∗3) HAω+ωR 0 A ⇒ HA
ω+ωR ⊢ ¬A. In fact, (∗3) is the essence

of completeness, exactly what we want to prove. But by having simultaneously (∗1)
and (∗2) we do get (∗3).

12.15. The following corollary tells us that ωR encapsulates full classical logic.

12.16 Corollary. We have HA
ω + ωR ⊢ LEM. Analogously for WE-HA

ω + ωR and
E-HA

ω + ωR.

12.17 Proof. We only prove HA
ω + ωR ⊢ LEM; the cases of the other theories

follow. Let A be an arbitrary formula of HAω + ωR and Ā be a universal closure of
A. Using point 2 of theorem 12.8 in the second equivalence, we get

HA
ω + ωR ⊢ A ∨ ¬A ⇔

HA
ω + ωR ⊢ A ∨ ¬A ⇔

Tω |= A ∨ ¬A,

where the last line is true [52].
Alternatively, we prove HA

ω + ωR = PA
ω + ωR:

HA
ω + ωR ⊢ A ⇔

HA
ω + ωR ⊢ Ā ⇔

Tω |= Ā ⇔
PA

ω + ωR ⊢ Ā ⇔
PA

ω + ωR ⊢ A.

12.5 Conclusion

12.18. We saw that HA
ω + ωR (and its variants with extensionality and classical

logic) is complete:

Syntactic completeness for all sentences A we have HAω+ωR ⊢ A or HAω+ωR ⊢ ¬A;

Semantic completeness for all sentences A we have HA
ω + ωR ⊢ A ⇔ Tω |= A.

153

154

Chapter 13

Proof interpretations with truth

13.1 Introduction

13.1. Let us recall that a proof interpretation I is a mapping A 7→ AI(a) with the
properties

Soundness ⊢ A ⇒ ⊢ AI(t) for suitable terms t;

Truth A ∈ Γ ⇒ ⊢ AI(a)→ A for a suitable class Γ of formulas.

We can use I to prove closure under rules for formulas in Γ. For example, using
soundness in the first implications and truth in the second implications below, we
prove the disjunction property, existence property and program extraction for A,B ∈
Γ:

⊢ A ∨ B ⇒ ⊢ AI ∨t BI ⇒ ⊢ A ∨t B ⇒ ⊢ A or ⊢ B,

⊢ ∃xA(x) ⇒ ⊢ AI(t) ⇒ ⊢ A(t),

⊢ ∀x ∃y A(x, y) ⇒ ⊢ ∀xAI(x, t(x)) ⇒ ⊢ ∀xA(x, t(x)).

But this only works for formulas in Γ. So, naturally, we wish Γ to be as large as
possible, ideally we even want Γ to be the class of all formulas. To enlarge Γ we
hardwire truth in I, that is we change I getting It by adding copies of the formulas
under interpretation in some clauses of the definition of I:

(Aat)I :≡ . . . , (Aat)It :≡ . . . ,

(A ∧B)I :≡ . . . , (A ∧ B)It :≡ . . . ,

(A ∨B)I :≡ . . . , (A ∨ B)It :≡ . . . ,

(A→ B)I :≡ . . . , (A→ B)It :≡ . . . ∧ (A→ B),

(∀xA)I :≡ . . . , (∀xA)It :≡ . . . ∧ ∀xA,
(∃xA)I :≡ . . . , (∃xA)It :≡

The questions are: in which clauses? and is It sound? We are going to answer these
questions with three heuristics.

Heuristic 1 In intuitionistic linear logic ILL
ω, to hardwire truth we only have to

add a copy in the clause of the bang !. Using Girard’s embeddings, we move

155

from IL
ω to ILL

ω, hardwire truth in ILL
ω, and then return to IL

ω. Girard’s
embeddings propagate the copy added in ILL

ω to the clauses of Aat, → and ∀,
as illustrated in figure 13.1.

IL
ω embedding−−−−−−−→ ILL

ω with
copy in !

embedding−−−−−−−→ IL
ω with copies
in Aat,→, ∀

Figure 13.1: Girard’s embeddings propagating the copy in ! to Aat, → and ∀.

Heuristic 2 We can usually hardwire q-truth in I, getting Iq, just by imitating the
way in which we hardwire q-truth in mr getting mrq. Then we try to upgrade
q-truth to t-truth by defining AIt :≡ AIq ∧A.

Heuristic 3 We add copies in all clauses, and then we see that if I is “well-behaved”
in a certain sense, then It is sound.

13.2 Heuristic 1

13.2. Intuitionistic linear logic is based on two conjunctions ⊗ and &, a disjunction
⊕, an implication ⊸, quantifications ∀ and ∃, and a symbol ! called bang. The
quantifiers behave as in the usual logic, but the remaining symbols do not, so we
motivate the remaining symbols.

Conjunction In intuitionistic logic, the treatment of conjunction can be formalised
by two sets of rules, {∧L,∧R} and {∧L′,∧R′} (where i ∈ {1, 2}):

Γ, Ai ⊢ B

Γ, A1 ∧ A2 ⊢ B
∧L Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧B
∧R

Γ, A, B ⊢ C

Γ, A ∧ B ⊢ C ∧L
′ Γ ⊢ A ∆ ⊢ B

Γ,∆ ⊢ A ∧ B ∧R′

In the presence of contraction con and weakening wkn rules,

Γ, A, A ⊢ B

Γ, A ⊢ B
con

Γ ⊢ B
Γ, A ⊢ B

wkn

these two treatments are equivalent: one set can be deduced from the other
by (where i, j ∈ {1, 2} and i 6= j)

Γ, Ai ⊢ B

Γ, Ai, Aj ⊢ B
wkn

Γ, A1 ∧ A2 ⊢ B ∧L
′

Γ ⊢ A Γ ⊢ B
Γ,Γ ⊢ A ∧ B ∧R′

Γ ⊢ A ∧ B
con

Γ, A, B ⊢ C

Γ, A ∧ B,A ∧ B ⊢ C
∧L

Γ, A ∧B ⊢ C
con

Γ ⊢ A
Γ,∆ ⊢ A

wkn
∆ ⊢ B

Γ,∆ ⊢ B
wkn

Γ,∆ ⊢ A ∧ B
∧R

But in a contraction-and-weakening-free context, the two treatments lead to
two different conjunctions.

156

{∧L,∧R} Leads to a context-sensitive conjunction & because ∧R requires A
and B to be proved from the same context Γ. This conjunction supports
contraction in the sense that from Γ ⊢ A and Γ ⊢ B we get Γ ⊢ A & B,
not only Γ,Γ ⊢ A&B. It also supports weakening in the sense that from
A ⊢ C we get A&B ⊢ C.

{∧L′,∧R′} Leads to a context-insensitive conjunction ⊗ because in ∧R′ there
is no requirement on the contexts Γ of A and ∆ of B. This conjunction
does not support contraction in the sense that from Γ ⊢ A and Γ ⊢ B we
get Γ,Γ ⊢ A⊗ B, not Γ ⊢ A⊗ B. It also does not support weakening in
the sense that from A ⊢ C we do not get A⊗ B ⊢ C [77, section 1.5].

Disjunction Let us for a moment change to a sequent calculus with tuples not only
on the left of ⊢, but also on the right. In classical logic, the treatment of
disjunction can be formalised by two sets of rules, {∨L,∨R} and {∨L′,∨R′}
(where i ∈ {1, 2}):

Γ, A ⊢ ∆ Γ, B ⊢ ∆

Γ, A ∨ B ⊢ ∆
∨L Γ ⊢ Ai,∆

Γ ⊢ A1 ∨ A2,∆
∨R

Γ, A ⊢ Π ∆, B ⊢ Σ

Γ,∆, A ∨B ⊢ Π,Σ ∨L′ Γ ⊢ A,B,∆

Γ ⊢ A ∨ B,∆ ∨R
′

In the presence of contraction con and weakening wkn rules,

Γ,∆,∆ ⊢ Π,Σ,Σ

Γ,∆ ⊢ Π,Σ
con

Γ ⊢ Π
Γ,∆ ⊢ Π,Σ

wkn

these two treatments are equivalent: one set can be deduced from the other
by (where i, j ∈ {1, 2} and i 6= j)

Γ, A ⊢ ∆ Γ, B ⊢ ∆

Γ,Γ, A ∨B ⊢ ∆,∆ ∨L′

Γ, A ∨B ⊢ ∆
con

Γ ⊢ Ai,∆

Γ ⊢ Ai, Aj,∆
wkn

Γ ⊢ A1 ∨ A2,∆
∨R′

Γ, A ⊢ Π

Γ,∆, A ⊢ Π,Σ
wkn

∆, B ⊢ Σ

Γ,∆, B ⊢ Π,Σ
wkn

Γ,∆, A ∨ B ⊢ Π,Σ
∨L

Γ ⊢ A,B,∆

Γ ⊢ A ∨B,A ∨B,∆
∨R

Γ ⊢ A ∨ B,∆
con

But in a contraction-and-weakening-free context, the two treatments lead to
two different disjunctions.

{∨L,∨R} Leads to a context-sensitive disjunction ⊕ because ∨L requires ∆
to be proved from the contexts Γ, A and Γ, B with a common Γ. This
disjunction supports contraction in the sense that from Γ, A ⊢ ∆ and
Γ, B ⊢ ∆ we get Γ, A⊕B ⊢ ∆, not only Γ,Γ, A⊕B ⊢ ∆. It also supports
weakening in the sense that from Γ ⊢ A we get Γ ⊢ A⊕ B.

{∨L′,∨R′} Leads to a context-insensitive disjunction ` because in ∨L′ there is
no requirement on the contexts Γ, A of Π and ∆, B of Σ. This disjunction
does not support contraction in the sense that from Γ, A ⊢ Π and Γ, B ⊢ Σ
we get Γ,Γ, A`B ⊢ Π,Σ, not Γ, A`B ⊢ Π,Σ. It also does not support
weakening in the sense that from Γ ⊢ A we do not get Γ ⊢ A`B.

157

It is well-known that intuitionistic logic can be obtained from classical logic by
restricting the sequent calculus for classical logic to only one formula on the
right side of ⊢. Copying this, intuitionistic linear logic is defined from classical
linear logic making the same restriction. But since the rule ∨R′ makes no
sense under this restriction, the disjunction ` is left out in intuitionistic linear
logic. (It could happen that just copying into linear logic a restriction that
works for the usual logic would result in a linear logic that is not intuitionistic
in some reasonably sense. However, Girard’s embeddings from intuitionistic
logic into intuitionistic linear logic, and vice versa, give some justification to
regard intuitionistic linear logic as really intuitionistic.)

Implication Linear implication ⊸ is intended to satisfy the following equivalence:
(∗) A ⊢ B if and only if ⊢ A ⊸ B. In our contraction-free context, A ⊢ B
is not the same that A,A ⊢ B, so (∗) translates to say that ⊸ is sensitive
to how many times we use the premise of⊸. Similarly in our weakening-free
context, ⊢ B does not imply A ⊢ B, so (∗) translates to say that⊸ does not
allow dummy premises. This leads us to interpret A ⊸ B as meaning that
from A we get B using A exactly once.

Bang We saw that the two conjunctions & and ⊗ and the two disjunctions ⊕ and
` arise due to a contraction-and-weakening-free context. Nevertheless, we
may wish to apply contraction or weakening to a formula A. This is allowed
provided that we mark the formula A with a symbol !, getting !A, to signal
that contraction and weakening are allowed on !A and to keep track of where
contraction and weakening are used. For example, the sequent !A ⊢ B & C
means that from A we prove B & C provided that we are allowed to use
contraction or weakening on A. Technically, this enforcing of marking the
formulas where contraction or weakening is applied is achieved by restricting
the rules con and wkn to marked formulas:

Γ, !A, !A ⊢ B

Γ, !A ⊢ B
con

Γ ⊢ B
Γ, !A ⊢ B

wkn

Informally, we may think of !A as being A,A,A, . . . , A (n times), for any value
of n that we may want (including n = 0). For example, from A ⊢ B and A ⊢ C
we get !A ⊢ B ⊗ C, where we may think of !A as being A,A (so n = 2). And
from ⊢ B we get !A ⊢ B, where we may think of !A as being an empty list of
As (so n = 0).

13.3 Definition.

1. Let us define intuitionistic linear logic ILL
ω (with primitive λ-abstraction and

with booleans) [16, sections 1.1 and 1.2] [22, section 3.1].

(a) The language of ILLω is the following.

i. The language of ILLω is a typed language based on two ground types,
0 and b (booleans), and has the following symbols.

A. The logical constants zero 0, true ⊤, times ⊗, with &, plus ⊕,
linear implication ⊸, bang !, ∀ and ∃.

158

B. Countable many variables xρ
1, x

ρ
2, x

ρ
3, . . . for each type ρ.

C. For each arity n ≥ 0, at most countable many (possibly none)
n-ary function symbols f1, f2, f3,

D. For each arity n ≥ 0, at most countable many (possibly none)
n-ary predicate symbols P1, P2, P3,

E. The constant c.

F. The constants true t and false f.

G. The constant λ-abstraction λ · . ·.
H. The constant definition by cases · ⊕· ·.
I. The binary relation equality = (between booleans).

ii. Terms are defined as follows (their types indicated in superscripts).

A. Variables xρ, and constants c0, tb and fb are terms.

B. If xρ is a tuple of variables and rσ, sb, and tσ are terms, then
(λx . t)σρ

t
and (r ⊕s t)

σ are terms.

C. If sρσ and tσ are terms, then (st)ρ is a term.

iii. Formulas are defined as follows.

A. Predicate symbols, 0 and ⊤ are atomic formulas.

B. The expressions s = t are atomic formula (where sb and tb are
terms).

C. Formulas are built from atomic formulas by means of ⊗, &, ⊕,
⊸, !, ∀ and ∃.

(b) We define the following in ILL
ω.

i. The formula 1 :≡ !⊤.
ii. The term Oρ :≡ λxρ1

1 , . . . , xρn
1 . c, where ρ = 0ρn · · · ρ1 (possibly with

no ρis).

iii. The linear equivalence A ˛ B :≡ (A ⊸ B) & (B ⊸ A), where A
and B are formulas of ILLω.

iv. If Γ ≡ A1, . . . , An, then !Γ :≡ !A1, . . . , !An, where A1, . . . , An are
formulas of ILLω.

v. The tuple of terms r⊕s t :≡ r1⊕s t1, . . . , rn⊕s tn, where s ≡ s1, . . . , sn
and t ≡ t1, . . . , tn are tuples of terms of ILLω.

vi. The formula A⊕t B :≡ (!(t = t)⊸ A) & (!(t = f)⊸ B), where tb is
a term of ILLω and A and B are formulas of ILLω.

(c) We adopt the following convention to save on parentheses: !, ∀ and ∃
bind stronger than ⊗, & and ⊕, which in turn bind stronger than⊸ and
˛.

(d) The axioms and rules are expressed in a sequent calculus where on the left
of ⊢ we have (finite and possibly empty) multisets (that is multiplicity
matters but order does not) and on the right of ⊢ we have exactly one
formula. The logical axioms and rules of ILLω are given in table 13.1.
The axioms for λ-abstraction, term application, · ⊕· · and = are given in
table 13.2.

159

Aat ⊢ Aat id
Γ ⊢ A ∆, A ⊢ B

Γ,∆ ⊢ B
cut

Γ, 0 ⊢ A 0L Γ ⊢ ⊤ ⊤R
Γ, A, B ⊢ C

Γ, A⊗ B ⊢ C
⊗L Γ ⊢ A ∆ ⊢ B

Γ,∆ ⊢ A⊗B
⊗R

Γ, Ai ⊢ B

Γ, A1 & A2 ⊢ B
&L

Γ ⊢ A Γ ⊢ B
Γ ⊢ A&B

&R

Γ, A ⊢ C Γ, B ⊢ C

Γ, A⊕ B ⊢ C
⊕L

Γ ⊢ Ai

Γ ⊢ A1 ⊕A2
⊕R

with i ∈ {1, 2}
Γ ⊢ A ∆, B ⊢ C

Γ,∆, A⊸ B ⊢ C
⊸L

Γ, A ⊢ B

Γ ⊢ A⊸ B
⊸R

Γ, A[t/x] ⊢ B

Γ, ∀xA ⊢ B
∀L

Γ ⊢ A
Γ ⊢ ∀xA ∀R

with x /∈ FV(Γ)

Γ, A ⊢ B

Γ, ∃xA ⊢ B
∃L

with x /∈ FV(B)

Γ ⊢ A[t/x]

Γ ⊢ ∃xA ∃R

Γ, A ⊢ B

Γ, !A ⊢ B
!L

!Γ ⊢ A
!Γ ⊢ !A

!R

Γ, !A, !A ⊢ B

Γ, !A ⊢ B
con

Γ ⊢ B
Γ, !A ⊢ B

wkn

Table 13.1: logical axioms and rules of ILLω.

⊢ Aat[(λx . t)s/y] ˛ Aat[t[s/x]/y] ⊢ Aat[λx . (tx)/y] ˛ Aat[t/y]

⊢ Aat[s⊕t t/x] ˛ Aat[s/x] ⊢ Aat[s⊕f t/x] ˛ Aat[t/x]

⊢ x = x !(x = y) ⊢ y = x

!(x = y), !(y = z) ⊢ x = z !(x = y), Aat[x/z] ⊢ Aat[y/z]

Γ, !(t = f) ⊢ 0 ⊢ !(x = t)⊕ !(x = f)

Table 13.2: axioms of ILLω for λ-abstraction, term application, · ⊕· · and =.

160

2. Let us define intuitionistic logic IL
ω (with primitive λ-abstraction and with

booleans) [22, section 3.1]. It is defined like ILL
ω, except for the following

differences.

(a) Instead of having the logical constants 0, ⊤, ⊗, &, ⊕, ⊸, !, ∀ and ∃, it
has the logical constants ⊥, ∧, ∨, →, ∀ and ∃.

(b) Its constant · ⊕· · is denoted by · ∨· ·.
(c) We replace A⊕t B by A ∨t B :≡ (t = t→ A) ∧ (t = f→ B), where tb is

a term of ILω and A and B are formulas of ILω.

(d) Instead of the axioms given in tables 13.1 and 13.2, it has the axioms
given in tables 1.1 and 13.3.

Aat[(λx . t)s/y]↔ Aat[t[s/x]/y] Aat[λx . (tx)/y]↔ Aat[t/y]

Aat[s ∨t t/x]↔ Aat[s/x] Aat[s ∨f t/x]↔ Aat[t/x]

x = x x = y → y = x

x = y ∧ y = z → x = z x = y ∧Aat[x/z]→ Aat[y/z]

¬(t = f) x = t ∨ x = f

Table 13.3: axioms of ILω for λ-abstraction, term application, · ∨· · and =.

13.4. Let us explain the role of some symbols and axioms of ILLω.

0, ⊤ and 1 The formula 0 is the identity of ⊕, in the sense of ⊢ A ⊕ 0 ˛ A.
Analogously, ⊤ and 1 are the identities of & and ⊗, respectively.

c We assume that there exists a constant c0 to ensure that every type ρ is inhabited
by a closed term Oρ. This is necessary when we have to produce a dummy
closed term of an arbitrary type.

· ⊕· · The term r⊕s t is intended to be a definition by cases: it reduce to r when the
boolean s is true, and to t when s is false. Analogously, the formula A ⊕t B
reduces to A when t is true, and to B when t is false.

0 and b The ground type 0 is the one of interest (in arithmetic it would stand for the
type of the natural numbers). The boolean ground type b is introduced only
to allow the definitions by cases r ⊕s t and A ⊕t B. (In arithmetic we would
not need booleans as we could take r ⊕s t :≡ Rs0rλx, y . t with x, y /∈ FV(t),
and A⊕t B :≡ (t0 =0 0→ A) ∧ (t0 6=0 0→ B).)

Γ, !(t = f) ⊢ 0 and ⊢ !(x = t)⊕ !(x = f) The axiom Γ, !(t = f) ⊢ 0 states t 6= f, and
the axiom ⊢ !(x = t) ⊕ !(x = f) states that any boolean is true or false. So
together they state that any boolean as exactly one of the truth values true
and false.

161

13.5. In the next lemma we collect some basic derivations in ILL
ω that we will need

later on to work smoothly with ILL
ω. Admittedly, the proofs are tedious, so the

reader may want to skip them.

13.6 Lemma. The following is provable in ILL
ω.

1. A ⊢ A.

2.
Γ, A, B ⊢ C

Γ, A⊗ B ⊢ C
and

Γ, A⊗B ⊢ C

Γ, A, B ⊢ C
.

3.
Γ ⊢ A1 Γ ⊢ A2

Γ ⊢ A1 & A2
and

Γ ⊢ A1 & A2

Γ ⊢ Ai
(where i ∈ {1, 2}).

4.
Γ, A ⊢ B

Γ ⊢ A⊸ B
and

Γ ⊢ A⊸ B

Γ, A ⊢ B
.

5.
Γ ⊢ ∀xA
Γ ⊢ A[t/x]

.

6.
Γ ⊢ A

Γ[t/x] ⊢ A[t/x]
.

7. The axioms of λ-abstraction and equality generalise to arbitrary formulas.

8. !(A ˛ B) ⊢ C(A) ˛ C(B) where C(S) is a formula of ILLω, S a subformula
of C(S) and BV(C) ∩ (FV(A) ∪ FV(B)) = ∅.

9.
A1, . . . , An ⊢ B Γi ⊢ Ai ˛ A′

i, i = 1, . . . , n ∆ ⊢ B ˛ B′

Γ1, . . . ,Γn,∆, A′
1, . . . , A

′
n ⊢ B′ .

10. A ˛ A⊕t B and B ˛ A⊕f B [16, lemma 1(iv)].

11.
Γ(s) ⊢ A Γ(t) ⊢ B

Γ(s⊕x t) ⊢ A⊕x B
[22, table 2].

12.
Γ(q), A ⊢ C(s) Γ(r), B ⊢ C(t)

Γ(q ⊕x r), A⊕x B ⊢ C(s⊕x t)
[22, table 2].

13.7 Proof.

1. The proof is by induction on the structure of A. For example, let us see the
case of⊸. By induction hypothesis we assume A ⊢ A and B ⊢ B, and we want
to prove A⊸ B ⊢ A⊸ B. From A ⊢ A and B ⊢ B we get A,A⊸ B ⊢ B
by⊸L, and so we conclude A⊸ B ⊢ A⊸ B by⊸R.

2. The first rule is ⊗L, so let us prove the second rule. By point 1 we have A ⊢ A
and B ⊢ B, so A,B ⊢ A⊗B by ⊗R. From here and the premise Γ, A⊗B ⊢ C
we conclude Γ, A, B ⊢ C by cut.

3. The first rule is &R, so let us prove the second rule. By point 1 we have
Ai ⊢ Ai, so A1 & A2 ⊢ Ai by &L. From here and the premise Γ ⊢ A1 & A2 we
conclude Γ ⊢ Ai by cut.

162

4. The first rule is ⊸R, so let us prove the second rule. By point 1 we have
A ⊢ A and B ⊢ B, so A,A ⊸ B ⊢ B by ⊸L. From here and the premise
Γ ⊢ A⊸ B we conclude Γ, A ⊢ B by cut.

5. By point 1 we have A[t/x] ⊢ A[t/x], so ∀xA ⊢ A[t/x] by ∀L. From here and
the premise Γ ⊢ ∀xA we conclude Γ ⊢ A[t/x] by cut.

6. Say Γ ≡ B1, . . . , Bn. By point 4, it is equivalent to prove ⊢ B1⊸ · · ·⊸ Bn⊸

A/ ⊢ B1[t/x] ⊸ · · · ⊸ Bn[t/x] ⊸ A[t/x] (associating ⊸ to the right). By
∀R we introduce ∀x on the right side of ⊢ in the premise and then we replace
x by t using point 5, getting the conclusion.

7. It suffices to prove that if for all tuples of variables x and tuples of terms s
and t and for all atomic formulas Aat we have !Γ ⊢ Aat[s/x] ˛ Aat[t/x], then
for all tuples of variables x and tuples of terms s and t and for all formulas
A such that BV(A) ∩ FV(Γ) = ∅ we have !Γ ⊢ A[s/x] ˛ A[x/t]. It is
convenient to note that !Γ ⊢ A[s/x] ˛ A[t/x] is equivalent to the conjunction
of (∗1) !Γ, A[s/x] ⊢ A[t/x] and (∗2) !Γ, A[t/x] ⊢ A[s/x] by points 3 and 4, and
it suffices to prove (∗1) since the proof of (∗2) is analogous. The proof is by
induction on the structure of A. Let us see the cases of⊸ and ∀.

⊸ By induction hypothesis we have !Γ, A[t/x] ⊢ A[s/x] and !Γ, B[s/x] ⊢
B[t/x], so !Γ, A[t/x], A[s/x] ⊸ B[s/x] ⊢ B[t/x] by ⊸L and con. From
here we conclude !Γ, A[s/x]⊸ B[s/x] ⊢ A[t/x]⊸ B[t/x] by ⊸R.

∀ If y is not one of the variables in x = x1, . . . , xn, then from the induc-
tion hypothesis !Γ, A[s/x] ⊢ A[t/x] we get !Γ, (∀y A)[s/x] ≡ ∀y A[s/x] ⊢
∀y A[t/x] ≡ (∀y A)[t/x] by ∀L and ∀R, where we can apply ∀R be-
cause y /∈ FV(Γ) since by hypothesis BV(∀y A) ∩ FV(Γ) = ∅. If y is
xi, then from the induction hypothesis !Γ, A[s′/x′] ⊢ A[t′/x′] applied to
the tuples x′ = x1, . . . , xi−1, xi+1, . . . , xn, s′ :≡ s1, . . . , si−1, si+1, . . . , sn
and t′ :≡ t1, . . . , ti−1, ti+1, . . . , tn we get !Γ, (∀y A)[s/x] ≡ ∀y A[s′/x′] ⊢
∀y A[t′/x′] ≡ (∀y A)[t/x] by ∀L and ∀R.

8. The proof is by induction on the structure of C. Let us see the case of ⊸.
As in the previous point we only see one of the implications since the other
one is analogous. By induction hypothesis we have !(A ˛ B), C(B) ⊢ C(A)
and !(A ˛ B), D(A) ⊢ D(B), so !(A ˛ B), C(B), C(A)⊸ D(A) ⊢ D(B) by
⊸L and con, thus we conclude !(A ˛ B), C(A) ⊸ D(A) ⊢ C(B) ⊸ D(B)
by⊸R.

9. First we prove the result with B ≡ B′ and with ∆ empty by induction on n.

Base case From the premise Γ1 ⊢ A1 ˛ A′
1 we get Γ1, A

′
1 ⊢ A1 by points 3

and 4. From here and the premise A1 ⊢ B we conclude Γ1, A
′
1 ⊢ B by

cut.

Induction step Assume the premises A1, . . . , An+1 ⊢ B and Γi ⊢ Ai ˛ A′
i,

i = 1, . . . , n+ 1. So A1, . . . , An ⊢ An+1⊸ B by⊸R, and Γi ⊢ Ai ˛ A′
i,

i = 1, . . . , n. By induction hypothesis we get Γ1, . . . ,Γn, A
′
1, . . . , A

′
n ⊢

163

An+1 ⊸ B, so (∗1) Γ1, . . . ,Γn, A
′
1, . . . , A

′
n, An+1 ⊢ B by point 4. From

Γn+1 ⊢ An+1 ˛ A′
n+1 we get (∗2) Γn+1, A

′
n+1 ⊢ An+1. From (∗1) and (∗2)

we conclude Γ1, . . . ,Γn+1, A
′
1, . . . , A

′
n+1 ⊢ B by cut.

Now we prove the result for arbitrary B, B′ and ∆. From the premise
∆ ⊢ B ˛ B′ we get ∆, B ⊢ B′, and from here and the already proved
Γ1, . . . ,Γn, A

′
1, . . . , A

′
n ⊢ B we conclude Γ1, . . . ,Γn,∆, A′

1, . . . , A
′
n ⊢ B′ by cut.

10. We prove only A ˛ A⊕t B since B ˛ A⊕f B is analogous.

⊸ We have A, !(t = t) ⊢ A by point 1 and wkn, so (∗1) A ⊢ !(t = t)⊸ A by
⊸R. We have A, 0 ⊢ B by 0L, so replacing 0 by the linearly equivalent
!(t = f) we get A, !(t = f) ⊢ B by point 9, thus (∗2) A ⊢ !(t = f)⊸ B by
⊸R. From (∗1) and (∗2) we conclude A ⊢ A⊕t B.

› We have !(t = t) ⊢ !(t = t) and A ⊢ A by point 1, so !(t = t), !(t = t)⊸
A ⊢ A by ⊸L. We cut out !(t = t) (that is provable from the axiom
⊢ x = x and !R) and get !(t = t) ⊸ A ⊢ A. Then by &L we conclude
A⊕t B ⊢ A.

11. From Γ(s) ⊢ A we get Γ(s ⊕t t) ⊢ A (by points 7 and 8), so (∗1) !(x =
t),Γ(s⊕x t) ⊢ !(x = t)⊸ A (by wkn,⊸R and point 7). Since Γ(s⊕x t), !(x =
t), !(x = f) ⊢ 0 (by replacing t by x in the axiom Γ(s⊕xt), !(t = f) ⊢ 0 assuming
!(x = t)), then (∗2) !(x = t),Γ(s ⊕x t) ⊢ !(x = f)⊸ B (by the axiom 0 ⊢ B,
cut and⊸R). From (∗1) and (∗2) we get (∗3) !(x = t),Γ(s⊕x t) ⊢ A⊕x B by
&R. Analogously we prove (∗4) !(x = f),Γ(s ⊕x t) ⊢ A ⊕x B. From (∗3) and
(∗4) we get !(x = t) ⊕ !(x = f),Γ(s ⊕x t) ⊢ A ⊕x B by ⊕L. Then we cut out
the axiom !(x = t)⊕ !(x = f) from the context, getting our conclusion.

12. From Γ(q), A ⊢ C(s) we get Γ(q ⊕t r), A ⊕t B ⊢ C(s ⊕t t). Replacing t by
x assuming !(x = t) and get (∗1) !(x = t),Γ(q ⊕x r), A ⊕x B ⊢ C(s ⊕x t).
Analogously we prove (∗2) !(x = f),Γ(q ⊕x r), A⊕x B ⊢ C(s⊕x t). From (∗1)
and (∗2) we get !(x = t) ⊕ !(x = f),Γ(q ⊕x r), A ⊕x B ⊢ C(s ⊕x t) by ⊕L.
Then we cut out the axiom !(x = t) ⊕ !(x = f) from the context, getting our
conclusion.

13.8. Now we are going to define Girard’s embeddings: two embeddings q and t of
IL

ω into ILL
ω, and one embedding i of ILLω into IL

ω. This is pictured in figure 13.2.
As curiosities, we can mention i ◦ q = id = i ◦ t (that is (Aq)i ≡ A ≡ (At)i [26,

IL
ω

q
--

t
11 ILLω

i // ILω

Figure 13.2: Girard’s embeddings q, t and i.

page 81]) and t = !q (that is ILLω ⊢ At ˛ !Aq [16, proposition 1] [22, lemma 3.2]).

164

13.9 Definition.

1. Girard’s q-embedding q [26, section 5.1] assigns to each formula A of ILω the
formula Aq of ILLω defined by recursion on the structure of A by (where Aat 6≡
⊥)

Aq
at :≡ Aat,

⊥q :≡ 0,

(A ∧B)q :≡ Aq &Bq,

(A ∨B)q :≡ !Aq ⊕ !Bq,

(A→ B)q :≡ !Aq
⊸ Bq,

(∀xA)q :≡ ∀xAq,

(∃xA)q :≡ ∃x !Aq.

2. Girard’s t-embedding t [26, page 81] assigns to each formula A of IL
ω the

formula At of ILLω defined by recursion on the structure of A by (where Aat 6≡
⊥)

At
at :≡ !Aat,

⊥t :≡ 0,

(A ∧B)t :≡ At ⊗Bt,

(A ∨B)t :≡ At ⊕Bt,

(A→ B)t :≡ !(At
⊸ Bt),

(∀xA)t :≡ !∀xAt,

(∃xA)t :≡ ∃xAt.

3. Girard’s i-embedding i [26, page 81] assigns to each formula A of ILL
ω the

formula Ai of ILω defined by induction on the structure of A by (where Aat 6≡
0,⊤)

Ai
at :≡ Aat,

0i :≡ ⊥,
⊤i :≡ ¬⊥,

(A⊗ B)i :≡ Ai ∧ Bi,

(A& B)i :≡ Ai ∧ Bi,

(A⊕ B)i :≡ Ai ∨ Bi,

(A⊸ B)i :≡ Ai → Bi,

(∀xA)i :≡ ∀xAi,

(∃xA)i :≡ ∃xAi,

(!A)i :≡ Ai.

13.10 Theorem (soundness).

1. If ILω ⊢ A, then ⊢ Aq in ILL
ω [26, section 5.1].

165

2. If ILω ⊢ A, then ⊢ At in ILL
ω [26, page 81].

3. If A1, . . . , An ⊢ B in ILL
ω, then IL

ω ⊢ Ai
1 ∧ · · · ∧Ai

n → Bi [26, page 81].

13.11 Proof. First, let us make some remarks.

1. We will frequently use points 1 and 4 of lemma 13.6 without mentioning it.

To prove ⊢ !A⊸ B it suffices to prove A ⊢ B, so we will systematically only
prove A ⊢ B.

2. For all formulas A of ILLω we have ILL
ω ⊢ At ˛ !At.

Let us prove this claim. It suffices to prove At ⊢ !At in ILL
ω since !B ⊢ B

holds always. The proof is by induction on the structure of A.

Aat The case of Aat 6≡ ⊥ is trivial since its interpretation is a banged formula
!A and !A ⊢ !!A. If Aat ≡ ⊥, then ⊥t ≡ 0 ⊢ !0 ≡ !⊥t by 0L. Analogously
for → and ∀.

∧ From At ⊢ At and Bt ⊢ Bt we get At, Bt ⊢ At ⊗ Bt by ⊗R. So At, Bt ⊢
!(At⊗Bt) by !R using that At and Bt are equivalent to banged formulas
(by the induction hypothesis). So (A ∧ B)t ≡ At ⊗ Bt ⊢ !(At ⊗ Bt) ≡
!(A ∧ B)t by ⊗L.

∨ From At ⊢ At we get At ⊢ At ⊕ Bt by ⊕R. So (∗1) At ⊢ !(At ⊕ Bt) by
!R using that At is equivalent to a banged formula (by the induction
hypothesis). Analogously, (∗2) Bt ⊢ !(At ⊕ Bt). From (∗1) and (∗2) we
conclude (A ∨ B)t ≡ At ⊕ Bt ⊢ !(At ⊕Bt) ≡ !(A ∨ B)t by ⊕L.

∃ From At ⊢ At we get At ⊢ ∃xAt by ∃R. So At ⊢ !∃xAt using that At

is equivalent to a banged formula (by the induction hypothesis). Thus
(∃xA)t ≡ ∃xAt ⊢ !∃xAt ≡ !(∃xA)t by ∃L.

Let us prove the theorem by induction on the derivation of A.

1. A ∨A→ A Its interpretation is !(!Aq ⊕ !Aq) ⊸ Aq. We have Aq ⊢ Aq, so
!Aq ⊢ A by !L, thus !Aq ⊕ !Aq ⊢ A by ⊕L. Analogously for A→ A ∧ A.

A→ A ∨B Its interpretation is !Aq
⊸ !Aq ⊕ !Bq. We have !Aq ⊢ !Aq, so

!Aq ⊢ !Aq ⊕ !Bq by ⊕R. Analogously for A ∧ B → A.

A ∨B → B ∨A Its interpretation is !(!Aq ⊕ !Bq) ⊸ !Bq ⊕ !Aq. We have
!Aq ⊢ !Aq and !Bq ⊢ !Bq, so !Aq ⊢ !Bq⊕ !Aq and !Bq ⊢ !Bq⊕ !Aq by ⊕R,
thus !Aq ⊕ !Bq ⊢ !Bq ⊕ !Aq by ⊕L. Analogously for A ∧B → B ∧ A.

A[t/x]→ ∃xA Its interpretation is !A[t/x]q ⊸ ∃x !Aq. We have !A[t/x]q ⊢
!A[t/x]q, so !A[t/x]q ⊢ ∃x !Aq by ∃R and A[t/x]q ≡ Aq[t/x]. Analogously
for ∀xA→ A[t/x].

⊥ → A Its interpretation is !0⊸ Aq. By 0L we have 0 ⊢ Aq.

A→ B, B → C /A→ C Its interpretation is !Aq ⊸ Bq, !Bq ⊸ Cq / !Aq ⊸

Cq. From !Aq ⊢ Bq and !Bq ⊢ Cq we get !Aq ⊢ Cq by !R and cut.
Analogously for A, A→ B /B.

166

A ∧B → C /A→ (B → C) Its interpretation is !(Aq & Bq) ⊸ Cq / !Aq ⊸

(!Bq ⊸ Cq). First we prove (∗) !Aq, !Bq ⊢ !(Aq & Bq): from Aq ⊢ Aq

and Bq ⊢ Bq we get !Aq, !Bq ⊢ Aq and !Aq, !Bq ⊢ Bq by !L and wkn, so
(∗) by &L and !L. From (∗) and the interpretation of the premise, that
is !(Aq &Bq) ⊢ Cq, we get !Aq, !Bq ⊢ Cq by cut.

A→ (B → C) /A ∧B → C Its interpretation is !Aq ⊸ (!Bq ⊸ Cq) / !(Aq &
Bq)⊸ Cq. First we prove (∗1) !(Aq & Bq) ⊢ !Aq: we have Aq ⊢ Aq, so
Aq & Bq ⊢ Aq by &L, thus !(Aq &Bq) ⊢ !Aq by !L and !R. Analogously,
(∗2) !(Aq & Bq) ⊢ !Bq. From (∗1), (∗2) and the interpretation of the
premise, that is !Aq, !Bq ⊢ Cq, we get !(Aq &Bq), !(Aq &Bq) ⊢ Cq by cut
twice, and so !(Aq &Bq) ⊢ Cq by con.

A→ B /C ∨A→ C ∨B Its interpretation is !Aq ⊸ Bq / !(!Cq ⊕ !Aq) ⊸
!Cq ⊕ !Bq. From the interpretation of the premise, that is !Aq ⊢ Bq,
we get (∗1) !Aq ⊢ !Cq ⊕ !Bq by !R and ⊕R. From !Cq ⊢ !Cq we get
(∗2) !Cq ⊢ !Cq ⊕ !Bq by ⊕R. From (∗1) and (∗2) we get !Cq ⊕ !Aq ⊢
!Cq ⊕ !Bq by ⊕L.

A→ B / ∃xA→ B Its interpretation is !Aq ⊸ B / !∃x !Aq ⊸ B. From the
interpretation of the premise, that is !Aq ⊢ B, we get ∃x !Aq ⊢ Bq by ∃L
and x /∈ FV(B) = FV(Bq). Analogously for A→ B /A→ ∀xB.

Aat(λx . t(x))↔ Aat(t) This axiom is of the form Aat ↔ Bat, so its interpreta-

tion is (!Aq
at⊸ Bq

at) & (!Bq
at⊸ Aq

at), and follows from the corresponding
axiom in ILL

ω (we write Aq
at instead of Aat to include both the cases

Aq
at ≡ Aat and Aq

at ≡ 0). Analogously for Aat

(
(λx . t(x))s

)
↔ Aat(t(s)),

Aat(s∨t t)↔ Aat(s), Aat(s∨f t)↔ Aat(t), x = x, x = y → y = x, ¬(t = f)
and x = t ∨ x = f.

x = y ∧ Aat[x/z]→ Aat[y/z] Its interpretation is (∗) !(x = y & Aat[x/z]
q) ⊸

Aat[y/z]
q. From !(x = y & Aat[x/z]

q) ⊢ !(x = y), !(x = y & Aat[x/z]
q) ⊢

Aat[y/z]
q and the axiom !(x = y), Aq

at[x/z] ⊢ Bq
at[y/z] we get (∗) by cut

and con. Analogously for x = y ∧ y = z → x = z.

2. A→ A ∧A Its interpretation is !(At ⊸ At ⊗ At). From At ⊢ At we get
At, At ⊢ At⊗At by⊗R, so At ⊢ At⊗At by con and remark 2. Analogously
for A ∨ A→ A.

A ∧B → A Its interpretation is !(At ⊗ Bt ⊸ At). From At ⊢ At we get
At, Bt ⊢ At by wkn and remark 2, so At ⊗ Bt ⊢ At by ⊗L. Analogously
for A→ A ∨B.

A ∧B → B ∧A Its interpretation is !(At ⊗ Bt ⊸ Bt ⊗ At). From At ⊢ At

and Bt ⊢ Bt we get At, Bt ⊢ At⊗Bt by ⊗R, that is Bt, At ⊢ At⊗Bt, so
Bt ⊗ At ⊢ At ⊗ Bt by ⊗L. Analogously for A ∨ B → B ∨ A.

⊥ → A Its interpretation is !(0⊸ At). We have 0 ⊢ At by 0L.

∀xA→ A[t/x] Its interpretation is !(!∀xAt
⊸ A[t/x]t). We have At ⊢ At, so

∀xAt ⊢ At by ∀L, thus ∀xAt ⊢ A[t/x]t by point 6 of lemma 13.6 and
A[t/x]t ≡ At[t/x]. Analogously for A[t/x]→ ∃xA.

167

A→ B, B → C /A→ C Its interpretation is !(A ⊸ B), !(B ⊸ C) / !(A ⊸
C). From A ⊢ B and B ⊢ C we get A ⊢ C by cut. Analogously for
A, A→ B /B.

A ∧B → C /A→ (B → C) Its interpretation is !(At ⊗ Bt ⊸ Ct) / !(At ⊸

!(Bt ⊸ Ct)). From At ⊗ Bt ⊢ Ct we get At, Bt ⊢ Ct by point 2 of
lemma 13.6, so At ⊢ Bt

⊸ Ct by ⊸R, thus At ⊢ !(Bt
⊸ Ct) by

remark 2 and !R. Analogously for A→ (B → C) /A ∧ B → C.

A→ B /C ∨A→ C ∨B Its interpretation is !(At⊸ Bt) / !(Ct⊕At⊸ Ct⊕
Bt). From Ct ⊢ Ct and At ⊢ Bt we get Ct ⊢ Bt ⊕ Ct and At ⊢ Bt ⊕ Ct

by ⊕R, so Ct ⊕ At ⊢ Ct ⊕ Bt by ⊕L.
A→ B /A→ ∀xB Its interpretation is !(At ⊸ Bt) / !(At ⊸ !∀xBt). From

At ⊢ Bt we get At ⊢ ∀xBt by ∀R and x /∈ FV(A) = FV(At), so At ⊢
!∀xBt by !R and remark 2.

Aat(λx . t(x))↔ Aat(t) This axiom is of the form Aat ↔ Bat, so its inter-

pretation is !(At
at ⊸ Bt

at) ⊗ !(Bt
at ⊸ At

at), and follows from the corre-
sponding axiom in ILL

ω. Analogously for Aat

(
(λx . t(x))s

)
↔ Aat(t(s)),

Aat(s∨t t)↔ Aat(s), Aat(s∨f t)↔ Aat(t), x = x, x = y → y = x, ¬(t = f)
and x = t ∨ x = f.

x = y ∧ y = z → x = z Its interpretation is !(!(x = y)⊗ !(y = z)⊸ !(x = z)).
From the axiom !(x = y), !(y = z) ⊢ x = z we get !(x = y)⊗ !(y = z) ⊢
x = z by point 2 of lemma 13.6, so !(x = y)⊗ !(y = z) ⊢ !(x = z) by !R.

x = y ∧ Aat[x/z]→ Aat[y/z] Its interpretation is !(!(x = y) ⊗ Aat[x/z]
t ⊸

Aat[y/z]
t), which follows from the corresponding axiom in ILL

ω and ⊗L.

3. In the following, if Γ ≡ A1, . . . , An, then
∧
Γi :≡ Ai

1 ∧ · · · ∧ Ai
n.

Γ, 0 ⊢ A Its interpretation is the provable
∧

Γi ∧ ⊥ → Ai. Analogously for
Γ ⊢ ⊤.

!(x = y), Aat[x/z] ⊢ Aat[y/z] Its interpretation is x = y∧Aat[x/z]
i → Aat[y/z]

i

which is provable by Aat[x/z]
i ≡ Ai

at[x/z] and Aat[y/z]
i ≡ Ai

at[y/z]. Anal-
ogously for the remaining axioms.

Γ ⊢ B /Γ ⊢ ∀xB Its interpretation is
∧
Γi → B /

∧
Γi → ∀xBi which is prov-

able by x /∈ FV(Γ) = FV(
∧

Γi). Analogously for the remaining rules.

13.12. Now we present a modified realisability of intuitionistic linear logic without
truth lr, and with truth lrt. The interest of lrt is that the compositions i◦ lrt◦q and
i ◦ lrt ◦ t will tell us how to hardwire q-truth and t-truth in a proof interpretation.

13.13 Definition.

1. Modified realisability, in the context of ILω, is defined like in definition 3.4,
except for

(A ∨B)mr(c
b, a, b) :≡ Amr(a) ∨c Bmr(b)

≡ (c = t→ Amr(a)) ∧ (c = f→ Bmr(b))

168

instead of

(A ∨B)mr(c
0, a, b) :≡ Amr(a) ∨c Bmr(b)

≡ (c =0 0→ Amr(a)) ∧ (c 6=0 0→ Bmr(b)).

Analogously for mrq and mrt [22, proof of definitions 2.1 and 2.3].

2. Linear modified realisability lr [16, definition 1] assigns to each formula A of
ILL

ω the formula Alr(x; y) defined by

(Aat)lr(;) :≡ Aat,

(A⊗ B)lr(a, c; b, d) :≡ Alr(a; b)⊗ Blr(c; d),

(A &B)lr(a, c; e
b, b, d) :≡ Alr(a; b)⊕e Blr(c; d),

(A⊕ B)lr(e
b, a, c; b, d) :≡ Alr(a; b)⊕e Blr(c; d),

(A⊸ B)lr(C,B; a, d) :≡ Alr(a;Bad)⊸ Blr(Ca; d),

(∀xA)lr(A; x, b) :≡ Alr(Ax; b),

(∃xA)lr(x, a; b) :≡ Alr(a; b),

(!A)lr(a;) :≡ !∀bAlr(a; b).

By (Aat)lr(;) we mean (Aat)lr(a; b) with the tuples a and b empty. Analogously
for (!A)lr(a;).

3. Linear modified realisability with truth lrt [22, definition 3.3] is defined analo-
gously to lr except for

(!A)lrt(a;) :≡ !∀b Alrt(a; b)⊗ !A.

13.14 Theorem (soundness). Let A1, . . . , An, B be formulas of ILLω, Γ ≡ A1, . . . , An

and Γlr(a; b) :≡ (A1)lr(a1; b1), . . . , (An)lr(an; bn), where a ≡ a1, . . . , an and b ≡
b1, . . . , bn. If Γ ⊢ B in ILL

ω, then we can extract from such a proof terms s, t
such that Γlr(a; s) ⊢ Blr(t; d) in ILL

ω, FV(s) ⊆ FV(Γ)∪FV(B)∪{a, d} and FV(t) ⊆
FV(Γ) ∪ FV(B) ∪ {a} [16, theorem 1]. Analogously for lrt [22, theorem 3.5]. The
terms constructed in the following proof for lr and lrt are the same [22, follows from
the proof of theorem 3.5].

13.15 Proof. Let us make some remark.

1. We adopt here (with the proper adaptations, including an analogous unified
treatment of variants without truth and with truth by means of t ∈ {id,⊤})
the remarks made in the beginning of proof 3.12.

2. We will treat lr and lrt in a unified manner in the following way. Let id and 1
be functions defined by Aid :≡ A and A1 :≡ 1, where A is a formula of ILLω,
and let t ∈ {id, 1}. We redefine lr by changing its clause on ! to

(!A)lr(x;) :≡ !∀y Alrt(x; y)⊗ (!A)t.

Then this redefined lr reduces to:

169

(a) the old lr when t = 1;

(b) lrt when t = id.

By reducing we mean, for example, ILLω ⊢ Alr(x; y) ˛ Alrt(x; y) in the latter
case. We prove the soundness theorem for the redefined lr, hence proving the
theorem for the original lr and lrt. Moreover, the terms working for them will
not depend on t, so they are the same.

Let us prove the theorem by induction on the derivation of Γ ⊢ B.

Γ, 0 ⊢ A We have

Γlr(a; b), 0 ⊢ Alr(c; d),

tb :≡ O, td :≡ O.

Analogously for Aat ⊢ Aat and Γ ⊢ ⊤.

Γ ⊢ A, ∆, A ⊢ B /Γ,∆ ⊢ B We have

Γlr(a; b) ⊢ Alr(c; d),

∆lr(e; f), Alr(c; d) ⊢ Blr(g; h),

Γlr(a; b),∆lr(e; f) ⊢ Blr(g; h),

tb :≡ rb[sd[rc/c]/d], tf :≡ sf [rc/c], tg :≡ sg[rc/c].

To see that the terms work, we take d = sd[rc/c] in the interpretation of
the first premise (note that this substitution does not change rc because d /∈
FV(rc)) and c = rc in the interpretation of the second premise. Then in the
interpretation of both premise we get Alr(rc; sd[rc/c]) and we can cut it out.
Note h /∈ FV(tg) because h /∈ FV(sg) ∪ FV(rc).

Γ ⊢ A, ∆ ⊢ B /Γ,∆ ⊢ A⊗ B We have

Γlr(a; b) ⊢ Alr(c; d),

∆lr(e; f) ⊢ Blr(g; h),

Γlr(a; b),∆lr(e; f) ⊢ Alr(c; d)⊗Blr(g; h),

tb :≡ rb, tf :≡ sf , tc :≡ rc, tg :≡ sg.

Analogously for Γ, A, B ⊢ C /Γ, A⊕B ⊢ C.

Γ, A ⊢ B /Γ, A1 & A2 ⊢ B We have

Γlr(a; b), Alr(c; d) ⊢ Clr(e; f),

Γlr(a; b), Alr(c; d)⊕i Blr(g; h) ⊢ Clr(e; f),

tb :≡ sb, td :≡ sd, ti :≡ t, th :≡ O, te :≡ se.

To see that the terms work, we use point 10 of lemma 13.6. Analogously for
Γ, B ⊢ C /Γ, A&B ⊢ C and Γ ⊢ Ai /Γ ⊢ A1 ⊕ A2.

170

Γ ⊢ A, Γ ⊢ B /Γ ⊢ A&B We have

Γlr(a; b) ⊢ Alr(c; d),

Γlr(a; b) ⊢ Blr(e; f),

Γlr(a; b) ⊢ Alr(c; d)⊕g Blr(e; f),

tb :≡ rb ⊕g sb, tc :≡ rc, te :≡ se.

To see that the terms work, we use point 11 of lemma 13.6.

Γ, A ⊢ C, Γ, B ⊢ C /Γ, A⊕ B ⊢ C We have

Γlr(a; b), Alr(c; d) ⊢ Clr(e; f),

Γlr(a; b), Blr(g; h) ⊢ Clr(e; f),

Γlr(a; b), Alr(c; d)⊕i Blr(g; h) ⊢ Clr(e; f),

tb :≡ rb ⊕i sb, td :≡ rd, th :≡ sh, te :≡ re ⊕i se.

To see that the terms work, we use point 12 of lemma 13.6.

Γ ⊢ A, ∆, B ⊢ C /Γ,∆, A⊸ B ⊢ C We have

Γlr(a; b) ⊢ Alr(c; d),

∆lr(e; f), Blr(g; h) ⊢ Clr(i; j),

Γlr(a; b),∆lr(e; f), Alr(c;Dch)⊸ Blr(Gc; h) ⊢ Clr(i; j),

tb :≡ rb[Drc(sh[Grc/g])/d], tf :≡ sf [Grc/g],

tc :≡ rc, th :≡ sh[Grc/g], ti :≡ si[Grc/g].

Let us see that the terms work. By induction hypothesis we have (13.1) and
(13.2), and we want to prove (13.3):

Γlr(a; rb) ⊢ Alr(rc; d), (13.1)

∆lr(e; sf), Blr(g; sh) ⊢ Clr(si; j), (13.2)

Γlr(a; rb[Drc(sh[Grc/g])/d]),∆lr(e; sf [Grc/g]),

Alr(rc;Drc(sh[Grc/g]))⊸ Blr(Grc; sh[Grc/g]) ⊢ Clr(si[Grc/g]; j).
(13.3)

Taking d = Drc(sh[Grc/g]) in (13.1) and g = Grc in (13.2), we get

Γlr(a; rb[Drc(sh[Grc/g])/d]) ⊢ Alr(rc;Drc(sh[Grc/g])),

∆lr(e; sf [Grc/g]), Blr(Grc; sh[Grc/g]) ⊢ Clr(si[Grc/g]; j),

and from here we get (13.3).

Γ, A ⊢ B /Γ ⊢ A⊸ B We have

Γlr(a; b), Alr(c; d) ⊢ Blr(e; f),

Γlr(a; b) ⊢ Alr(c;Dcf)⊸ Blr(Ec; f),

tb :≡ sb, tD :≡ λc, f . sd, tE :≡ λc . se.

171

Γ ⊢ A/Γ ⊢ ∀xA We have

Γlr(a; b) ⊢ Alr(c; d),

Γlr(a; b) ⊢ Alr(Cx; d),

tb :≡ sb, tC :≡ λx . sc.

Γ ⊢ A[t/x] / ∃xA We have

Γlr(a; b) ⊢ A[t/x]lr(c; d),

Γlr(a; b) ⊢ Alr(c; d),

tb :≡ sb, tx :≡ t, tc :≡ sc.

To see that the terms work, we use Alr(x; y)[t/z] ≡ A[t/z]lr(x; y). Analogously
for Γ, A ⊢ B /Γ, ∃xA ⊢ B and Γ, A[t/x] ⊢ B /Γ, ∀xA ⊢ B.

!Γ ⊢ A/ !Γ ⊢ !A We have

!∀bΓlr(a; b)⊗ !Γt ⊢ Alr(c; d),

!∀bΓlr(a; b)⊗ !Γt ⊢ !∀dAlr(c; d)⊗ !At,

tc :≡ sc.

To see that the terms work, in the case t = id we use that by hypothesis we
proved !Γ ⊢ A, so !Γ ⊢ !A. Analogously for Γ, A ⊢ B /Γ, !A ⊢ B.

Γ, !A, !A ⊢ B /Γ, !A ⊢ B We have

Γlr(a; b), !∀dAlr(c; d)⊗ !At, !∀f Alr(e; f)⊗ !At ⊢ Blr(g; h),

Γlr(a; b), !∀dAlr(c; d)⊗ !At,⊢ Blr(g; h),

tb :≡ sb[c/e], tg :≡ sg[c/e].

To see that the terms work, we take e = c in the interpretation of the premise
so that !∀dAlr(c; d)⊗ !At and !∀eAlr(e; f)⊗ !At become equivalent, and then
we contract them using the fact that they can be regarded as banged formulas
since ⊢ !D ⊗ !E ˛ !(D & E). Analogously for Γ ⊢ B /Γ, !A ⊢ B.

⊢ Aat(s⊕t t) ˛ Aat(s) We have

⊢ (Aat(s⊕t t)⊸ Aat(s))⊕a (Aat(s)⊸ Aat(s⊕t t)).

Analogously for ⊢ Aat(s⊕f t) ˛ Aat(t) and the axioms of λ-abstraction.

!(x = y), !(y = z) ⊢ x = y We have

!(x = y)⊗ !(x = y)t, !(y = z)⊗ !(y = z)t ⊢ x = z.

To see that the interpretation is provable, we use point 2 of lemma 13.6.
Analogously for ⊢ x = x, !(x = y) ⊢ y = x, !(x = y), Aat(x) ⊢ Aat(y), and
Γ, !(t = f) ⊢ 0.

172

!(x = t)⊕ !(x = f) We have

(!(x = t)⊗ !(x = t)t)⊕a (!(x = f)⊗ !(x = f)t),

ta :≡ x.

13.16. To motivate our first heuristic, we are going to factorise in proposition 13.17
mrq and mrt in terms of lrt and Girard’s embeddings q, t and i: mrq = ∀ ◦ i ◦ lrt ◦ q
and mrt = i ◦ lrt ◦ t. Figure 13.3 illustrates these factorisations. Then by tracking
where ∀◦ i ◦ lrt ◦ q and i ◦ lrt ◦ t are adding copies we read where q-truth and t-truth
variants should have copies added.

IL
ω mrq //

q

��

IL
ω

IL
ω mrt //

t

��

IL
ω

IL
ω

∀

OO

ILL
ω

lrt
// ILLω

i

OO

ILL
ω

lrt
// ILLω

i

OO

Figure 13.3: factorisations mrq = ∀ ◦ i ◦ lrt ◦ q and mrt = i ◦ lrt ◦ t.

13.17 Proposition (factorisations mrq = ∀ ◦ i ◦ lrt ◦ q and mrt = i ◦ lrt ◦ t).

1. For all formulas A of ILω we have ILLω ⊢ !Amrq(a)
q ˛ !∀b (Aq)lrt(a; b), therefore

IL
ω ⊢ Amrq(a)↔ ∀b (Aq)lrt(a; b)

i [22, proposition 3.7].

2. For all formulas A of ILω we have ILL
ω ⊢ Amrt(a)

t ˛ (At)lrt(a;), therefore
IL

ω ⊢ Amrt(a) ˛ (At)lrt(a;)
i [22, proposition 3.7].

13.18 Proof.

1. The proof is by induction on the structure of A. Let us only do the case of
A → B to illustrate the need for ∀b in the claim, and the case of ∃xA to
illustrate the need for ! in the claim.

A→ B Using ⊢ !∀xA ˛ !∀x !A in the first and sixth equivalences, ⊢ !(!A⊸
B) ˛ !(!A ⊸ !B) in the second and fifth equivalences, ⊢ !(A & B) ˛

!A⊗!B in the third equivalence, induction hypothesis in the fourth equiv-
alence, and ⊢ (A ⊸ ∀xB) ˛ ∀x (A ⊸ B) (with x /∈ FV(A)) in the

173

seventh equivalence, we get

!(A→ B)mrq(C)q ≡
!∀a (Amrq(a) ∧ A→ Bmrq(Ca))q ≡

!∀a
(
!(Amrq(a)

q & Aq)⊸ Bmrq(Ca)q
)
˛

!∀a !
(
!(Amrq(a)

q & Aq)⊸ Bmrq(Ca)q
)
˛

!∀a !
(
!(Amrq(a)

q & Aq)⊸ !Bmrq(Ca)q
)
˛

!∀a !
(
!Amrq(a)

q ⊗ !Aq
⊸ !Bmrq(Ca)q

)
˛

!∀a !(!∀b (Aq)lrt(a; b)⊗ !Aq
⊸ !∀d (Bq)lrt(Ca; d)) ˛

!∀a !(!∀b (Aq)lrt(a; b)⊗ !Aq
⊸ ∀d (Bq)lrt(Ca; d)) ˛

!∀a (!∀b (Aq)lrt(a; b)⊗ !Aq
⊸ ∀d (Bq)lrt(Ca; d)) ˛

!∀a, d (!∀b (Aq)lrt(a; b)⊗ !Aq
⊸ (Bq)lrt(Ca; d)) ≡

!∀a, d (!Aq
⊸ Bq)lrt(C; a, d) ≡

!∀a, d ((A→ B)q)lrt(C; a, d).

∃xA Using ⊢ !A ˛ !!A in the first equivalence, ⊢ !(A&B) ˛ !A⊗ !B in the
second equivalence, and induction hypothesis in the third equivalence, we
get

!(∃xA)mrq(x, a)
q ≡

!(Amrq(a) ∧ A)q ≡
!(Amrq(a)

q & Aq) ˛

!!(Amrq(a)
q & Aq) ˛

!(!Amrq(a)
q ⊗ !Aq) ˛

!(!∀b (Aq)lrt(a; b)⊗ !Aq) ≡
!(∃x !Aq)lrt(x, a;) ≡
!((∃xA)q)lrt(x, a;).

2. The proof is by induction on the structure of A. Let us see only the most
difficult cases.

A ∨B Using ⊢ !A⊗ !B ˛ !(A&B) in first equivalence, induction hypothesis
in the second equivalence, ⊢ C ˛ !C with C ≡ (At)lrt(a; b) (since we can
prove by induction on the structure of A that for all formulas A of ILω

there exists a formula B of ILω such that ⊢ (At)lrt(a; b) ˛ !B in ILL
ω [22,

point (b) of the proof of proposition 3.7]) in third and fifth equivalences,
and ⊢ C ˛ !C with C ≡ (!(x = t)⊸ !A)&(!(e = f)⊸ !B) [22, point (a)
of the proof of proposition 3.7] in the fourth equivalence, we get

(A ∨ B)mrt(e, a, c)
t ≡

(
(e = t→ Amrt(a)) ∧ (e = f→ Bmrt(c))

)t ≡
!(!(e = t)⊸ Amrt(a)

t)⊗ !(!(e = f)⊸ Bmrt(c)
t) ˛

!
(
(!(e = t)⊸ Amrt(a)

t) & (!(e = f)⊸ Bmrt(c)
t)
)
˛

174

!
(
(!(e = t)⊸ (At)lrt(a;)) & (!(e = f)⊸ (Bt)lrt(c;))

)
˛

!
(
(!(e = t)⊸ !(At)lrt(a;)) & (!(e = f)⊸ !(Bt)lrt(c;))

)
˛

(!(e = t)⊸ !(At)lrt(a;)) & (!(e = f)⊸ !(Bt)lrt(c;)) ˛

(!(e = t)⊸ (At)lrt(a;)) & (!(e = f)⊸ (Bt)lrt(c;)) ≡
(At ⊕ Bt)lrt(e, a; c) ≡
((A ∨B)t)lrt(e, a; c).

∀xA Using the truth of mrt and that ILω ⊢ A ↔ B implies ILL
ω ⊢ At ˛ Bt

(by applying the soundness theorem of t to IL
ω ⊢ A → B and IL

ω ⊢
B → A) in the first equivalence, and induction hypothesis in the second
equivalence, we get

(∀xA)mrt(A)
t
˛

((∀xA)mrt(A) ∧ ∀xA)t ≡
(∀xAmrt(Ax) ∧ ∀xA)t ≡
!∀xAmrt(Ax)

t ⊗ !∀xAt
˛

!∀x (At)lrt(Ax;)⊗ !∀xAt ≡
(!∀xAt)lrt(A;) ≡
((∀xA)t)lrt(A;).

13.19 Remark. The factorisation of mrq may seem different from the factorisation
of mrt because of the bangs and the quantifications ∀b. But the difference is only
apparent because they also appear in the factorisation of mrt behind the notation
since:

1. At is equivalent to a banged formula (remark 2 in proof 13.11) [22, remark 3.8];

2. the reason why there is no second tuple of variables b is because it is quantified
in Amrt(a) and in (At)lrt(a;) [22, remark 3.8].

13.20.

1. Since mrq = ∀◦ i◦ lrt◦q and mrq has q-truth, then the composition ∀◦ i◦ lrt◦q
is adding copies of the original formulas in the right clauses. Let us see which
clauses are those:

(a) q adds bangs in the clauses of ∨, (premise of) →, and ∃;
(b) lrt adds copies of the original formulas whenever it finds a bang;

(c) i keeps the copies.

In conclusion, the composition adds copies of the original formulas in the
clauses of ∨, (premise of) →, and ∃ [22, section 3.5].

2. Analogously, the composition mrt = i◦lrt◦t adds copies of the original formulas
in the clauses of Aat, → and ∀ [22, section 3.5].

This leads us to our first heuristic on how to hardwire truth.

175

13.21 Heuristic. If we have a proof interpretation, then we should try to hardwire
in it

1. q-truth by adding copies of the original formulas in the clauses of ∨, (premise
of) →, and ∃ [22, section 3.5].

2. t-truth by adding copies of the original formulas in the clauses of Aat, → and
∀ [22, section 3.5].

13.22. By applying this heuristic to mr, br, DN, B and | we get their variants with
q- and t-truth.

13.23 Remark. For most proof interpretations there is no need to add a copy in
the clause of Aat. For mrt there is no need to add a copy in the clause of ∀ (because
∀xAmrt(A) implies ∀xA by truth [22, page 592]). For other proof interpretations
we really need to add a copy in the clause of ∀ (as discussed in paragraph 6.4 for
DNt).

13.3 Heuristic 2

13.24. Our second heuristic on how to hardwire truth consists in first hardwiring
q-truth (copying what is done for mrq) and then upgrading to t-truth. To see how
to do this upgrade, we see how mrq can be upgraded to mrt.

13.25 Proposition (factorisation mrt = mrq ∧ id). For all formulas A of ILω we
have IL

ω ⊢ Amrt(a)↔ Amrq(a) ∧A [22, theorem 2.5].

13.26 Proof. The proof is by induction on the structure of A. Let us see the case
of→; the cases of Aat, ∧, ∨, ∀ and ∃ are analogous. Using the induction hypothesis
in the first equivalence we get

(A→ B)mrt(B) ≡
∀a (Amrt(a)→ Bmrt(Ba)) ∧ (A→ B)↔

∀a (Amrq(a) ∧ A→ Bmrq(Ba) ∧B) ∧ (A→ B)↔
∀a (Amrq(a) ∧A→ Bmrq(Ba)) ∧ (A→ B) ≡

(A→ B)mrq(B) ∧ (A→ B).

13.27. There is another way of reading the factorisation mrt = mrq∧ id: it suggests
that if we have a proof interpretation with q-truth Iq (that may not have truth for
all formulas), we may try to upgrade it to a proof interpretation with t-truth It (that
will have truth for all formulas) by defining AIt :≡ AIq ∧ A (then, indeed, AIt → A
for all formulas A). This leads us to our second heuristic on how to hardwire truth.

13.28 Heuristic. If we have a proof interpretation I, we should:

1. start by hardwiring q-truth, copying what is done for mrq, getting Iq;

2. then upgrade to t-truth It by defining AIt :≡ AIq ∧A.

13.29. By applying this heuristic to mr, br, DN, B and | we get their variants with
q- and t-truth.

176

13.4 Heuristic 3

13.30. Given a proof interpretation I of HAω into itself, defined by recursion on the
structure of formulas by

(Aat)I :≡ . . . ,

(A ∧ B)I :≡ . . . ,

(A ∨ B)I :≡ . . . ,

(A→ B)I :≡ . . . ,

(∀xA)I :≡ . . . ,

(∃xA)I :≡ . . . ,

we can try to hardwire in it t-truth by adding copies of the formulas under inter-
pretation in all clauses:

(Aat)It :≡ . . . ∧ Aat,

(A ∧ B)It :≡ . . . ∧ (A ∧ B),

(A ∨ B)It :≡ . . . ∧ (A ∨ B),

(A→ B)It :≡ . . . ∧ (A→ B),

(∀xA)It :≡ . . . ∧ ∀xA,
(∃xA)It :≡ . . . ∧ ∃xA.

The resulting It trivially has the truth property AIt → A for all formulas A. But
the questions is: is It sound? We are going to study its soundness in the following
way.

1. First we define an extension HA
ω
c of HAω and two translations t and o, and we

prove the factorisation It = o ◦ I ◦ t (where I is extended to HA
ω
c) illustrated

in the right of figure 13.4.

2. Then we study the soundness of t, I (extended to HA
ω
c) and o. When we know

that t, I and o are sound, then we conclude that It = o ◦ I ◦ t is sound.
We also study along the same lines how to hardwire q-truth in I, using a translation
q instead of t, as illustrated in the left of figure 13.4.

HA
ω q //

Iq

55HA
ω
c

I // HAω
c

o // HAω
HA

ω t //

It

55HA
ω
c

I // HAω
c

o // HAω

Figure 13.4: factorisations Iq = o ◦ I ◦ q and It = o ◦ I ◦ t.

13.31 Definition. We defined the theory HA
ω
c [22, section 3.5] as follows.

1. The language of HAω
c is the language of HAω enriched with a fresh atomic

formula Ac, called copy of A, for each non-atomic formula A of HAω. For an
atomic formula Aat of HA

ω we take (Aat)c :≡ Aat.

177

2. We extend the notion of free variables to copies by FV(Ac) := FV(A), and the
notion of substitution by Ac[t/x] :≡ A[t/x]c.

3. The axioms and rules of HAω
c are the ones of HAω

c (but based on the language
of HAω

c) enriched with the axioms (A1)c → · · · → (An)c (associating → to the
right) for each theorem A1 → · · · → An (possibly with n = 1) of HAω.

13.32. Informally, for each theorem A1, . . . , An−1 ⊢ An of HAω, we add the corre-
sponding axiom (A1)c, . . . , (An−1)c ⊢ (An)c. But to avoid using the deduction theo-
rem (that fails in some versions of Heyting arithmetic), we prefer to state this with all
formulas on the right, that is in the form A1 → · · · → An and (A1)c → · · · → (An)c.

13.33 Definition.

1. To each formula A of HAω we assign the formula Aq of HAω
c [22, section 3.5]

defined by recursion on the structure of A by

Aq
at :≡ Aat,

(A ∧ B)q :≡ Aq ∧ Bq,

(A ∨ B)q :≡ (Aq ∧ Ac) ∨ (Bq ∧ Bc),

(A→ B)q :≡ Aq ∧ Ac → Bq,

(∀xA)q :≡ ∀xAq,

(∃xA)q :≡ ∃x (Aq ∧ Ac).

2. To each formula A of HAω
c we assign the formula At of HAω

c [22, section 3.5]
defined by recursion on the structure of A by

At
at :≡ Aat,

(A ∧ B)t :≡ (At ∧ Bt) ∧ (A ∧ B)c,

(A ∨ B)t :≡ (At ∨ Bt) ∧ (A ∨ B)c,

(A→ B)t :≡ (At → Bt) ∧ (A→ B)c,

(∀xA)t :≡ ∀xAt ∧ (∀xA)c,
(∃xA)t :≡ ∃xAt ∧ (∃xA)c.

3. To each formula A of HAω
c we assign the formula Ao [22, section 3.5] of HAω

defined by recursion on the structure of A by

(Ac)
o :≡ A,

(A ∧B)o :≡ Ao ∧Bo,

(A ∨B)o :≡ Ao ∨Bo,

(A→ B)o :≡ Ao → Bo,

(∀xA)o :≡ ∀xAo,

(∃xA)o :≡ ∃xAo.

13.34. The letter “o” in the symbol for the translation o comes from “original”
since this translation replaces copies Acs by their originals As.

178

13.35. In point 3 of the definition 13.33 (by recursion on the structure of A) we
took the base case to be the case of formulas of the form Ac. This is correct because
all atomic formulas B of HAω

c are of the form Ac: either B is one of the old atomic
formulas of HA

ω and so Bc :≡ B, or B is one of the new atomic formulas Ac

introduced by a non-atomic formula A of HAω.

13.36.

1. The formula Aq is obtained from A by adding copies in ∨, (the premise of)→
and ∃.

2. The formula At is obtained from A by replacing each subformula B by B∧Bc,
that is by “duplicating” with copies every subformula. Actually, in the case of
Aat, since Aat ≡ (Aat)c, we just take At

at ≡ Aat instead of At
at ≡ Aat ∧ (Aat)c.

3. The formula Ao is obtained from A by replacing each subformula of the form
Bc by B, that is by replacing every copy by its original.

13.37. As a curiosity we can mention o ◦ q = id and o ◦ t = id (that is HA
ω ⊢

(Aq)o ↔ A and HA
ω ⊢ (At)o ↔ A): for example, t maps each subformula S to

S ∧ Sc, and then o “undoes” this by mapping S ∧ Sc to S ∧ S, that is S.

13.38. The It defined above has copies in all clauses, but for example mrt, DNt
and Bt only have copies in some clauses. So it is natural to ask if It is the “right”
t-truth variant It′ of I. Indeed, it is in the sense that It and It′ are equivalent: since
AIt′ → A, then AIt′ ↔ AIt′ ∧ A, so modulo equivalence we can add copies in all
clauses of It′, resulting in our It.

13.39 Theorem (soundness).

1. If HAω ⊢ A, then HA
ω
c ⊢ Aq [22, section 3.5].

2. If HAω ⊢ A, then HA
ω
c ⊢ At [22, section 3.5].

3. If HAω
c ⊢ A, then HA

ω ⊢ Ao.

13.40 Proof. First, let us make some remarks.

1. We adopt here (with the proper adaptations) the remarks made in the begin-
ning of proof 3.12.

2. The interpretation At of an axiom A is of the form . . . ∧Ac. So to prove that
At is interpretable we have in particular to prove Ac: since A is provable, then
Ac is an axiom. Analogously, when proving the interpretation of a rule A/B
we have to prove Bc: since A is provable, then B is provable, so Bc is an axiom.
Since the argument is always the same, we will systematically omit Ac. When
we do it, we write “≡” instead of ≡.

3. For all formulas A of HAω we have HA
ω ⊢ At → Ac.

Let us the theorem by induction on the derivation of A.

179

1. A→ A ∨B We have

(A→ A ∨B)q ≡ Aq ∧ Ac → (Aq ∧ Ac) ∨ (Bq ∧ Bc).

Analogously for A→ A ∧ A, A ∨ A→ A, A ∧ B → A, A ∧ B → B ∧ A,
A ∨ B → B ∨ A and ⊥ → A.

A[t/x]→ ∃xA We have

(A[t/x]→ ∃xA)q ≡ A[t/x]q ∧A[t/x]c → ∃x (Aq ∧Ac).

Here we use A[t/x]q ≡ Aq[t/x]. Analogously for ∀xA→ A[t/x].

A ∧B → C /A→ (B → C) We have

(A ∧B → C)q ≡ (Aq ∧ Bq) ∧ (A ∧ B)c → Cq,

(A→ (B → C))q ≡ Aq ∧Ac → (Bq ∧Bc → Cq).

The non-trivial part is that we need Ac ∧Bc → (A∧B)c: it follows from
Ac → (Bc → (A ∧ B)c), which is an axiom since A→ (B → A ∧ B) is a
theorem. Analogously for A→ (B → C) /A ∧ B → C.

A→ B /C ∨A→ C ∨B We have

(A→ B)q ≡ Aq ∧Ac → Bq,

(C ∨ A→ C ∨ B)q ≡
((Cq ∧ Cc) ∨ (Aq ∧Ac)) ∧ (C ∨A)c → (Cq ∧ Cc) ∨ (Bq ∧ Bc).

The non-trivial part is that we need Ac → Bc: it is an axiom since we
are assuming that A → B is a theorem. Analogously for A, A → B /B
and A→ B, B → C /A→ C.

A→ B / ∃xA→ B We have

(A→ B)q ≡ Aq ∧Ac → Bq,

(∃xA→ B)q ≡ ∃x (Aq ∧Ac) ∧ (∃xA)c → Bq.

Here we use x /∈ FV(B) = FV(Bq). Analogously for A→ B /A→ ∀xB.

Aat(Πxy)↔ Aat(x) We have

(Aat(Πxy)↔ Aat(x))
q ≡

(Aat(Πxy) ∧Aat(Πxy)→ Aat(x)) ∧ (Aat(x) ∧ Aat(x)→ Aat(Πxy)).

Analogously for the axioms of Σ, R, =0 and S.

A[0/x], A→ A[Sx/x] /A We have

A[0/x]q,

(A→ A[Sx/x])q ≡ Aq ∧Ac → A[Sx/x]q,

Aq.

Here we use A[0/x]q ≡ Aq[0/x], A[Sx/x]q ≡ Aq[Sx/x], and that Ac is an
axiom since we are assuming that A is a theorem.

180

2. A→ A ∧A We have

(A→ A ∧ A)t “≡” At → (At ∧At) ∧ (A ∧A)c.

The only non-trivial verification is At → (A∧A)c: it follows from remark 3
and Ac → (A ∧ A)c, which is an axiom since A → A ∧ A is a theorem.
Analogously for A ∨ A→ A, A ∧ B → A, A→ A ∨ B, A ∧ B → B ∧ A,
A ∨ B → B ∨ A and ⊥ → A.

A[t/x]→ ∃xA We have

(A[t/x]→ ∃xA)t “≡” A[t/x]t → ∃xAt ∧ (∃xA)c.
We have A[t/x]t → ∃xAt by A[t/x]t ≡ At[t/x]. We have A[t/x]t →
(∃xA)c by remark 3 and A[t/x]c → (∃xA)c, which is an axiom since
A[t/x]→ ∃xA is a theorem. Analogously for ∀xA→ A[t/x].

A→ B /C ∨A→ C ∨B We have

(A→ B)t “≡” At → Bt,

(C ∨A→ C ∨ B)t “≡” (Ct ∨At) ∧ (C ∨A)c → (Ct ∨ Bt) ∧ (C ∨ B)c.

The only non-trivial verification is (C ∨ A)c → (C ∨ B)c: it is an axiom
because we are assuming that C ∨A→ C ∨B is a theorem. Analogously
for A, A→ B /B and A→ B, B → C /A→ C.

A ∧B → C /A→ (B → C) We have

(A ∧B → C)t “≡” (At ∧Bt) ∧ (A ∧ B)c → Ct, (13.4)

(A→ (B → C))t “≡” At → (Bt → Ct) ∧ (B → C)c.

First we prove (∗) At ∧ Bt → (A ∧ B)c: we have At ∧ Bt → Ac ∧ Bc

by remark 3, and we have Ac ∧ Bc → (A ∧ B)c because Ac → (Bc →
(A ∧ B)c) is an axiom since A → (B → A ∧ B) is a theorem. By (∗)
we can dismiss (A ∧B)c in (13.4). Then the only non-trivial verification
is At → (B → C)c: it follows from remark 3 and Ac → (B → C)c,
which is an axiom since A → (B → C) is a theorem. Analogously for
A→ (B → C) /A ∧ B → C.

A→ B /A→ ∀xB We have

(A→ B)t ≡ At → Bt,

(A→ ∀xB)t ≡ At → ∀xBt ∧ (∀xB)c.

Here we use x /∈ FV(A) = FV(At). The part At → (∀xB)c follows from
remark 3 and Ac → (∀xB)c, which is an axiom since we are assuming
that A→ ∀xB is a theorem. Analogously for A→ B / ∃xA→ B.

Aat(Πxy)↔ Aat(x) We have

(Aat(Πxy)↔ Aat(x))
t “≡”

(Aat(Πxy)→ Aat(x)) ∧ (Aat(Πxy)→ Aat(x))c ∧
(Aat(x)→ Aat(Πxy)) ∧ (Aat(x)→ Aat(Πxy))c.

Analogously for the axioms of Σ, R, =0 and S.

181

A[0/x], A→ A[Sx/x] /A We have

A[0/x]t,

(A→ A[Sx/x])t “≡” At → A[Sx/x]t,

At.

Here we use A[0/x]t ≡ At[0/x] and A[Sx/x]t ≡ At[Sx/x].

3. A ∨B → B ∨A We have

(A ∨ B → B ∨ A)o ≡ Ao ∨Bo → Bo ∨Ao.

Analogously for A → A ∧ A, A ∨ A → A, A ∧ B → A, A → A ∨ B,
A ∧ B → B ∧ A, ⊥ → A and for the axioms of =0, S, Π, Σ and R.

∀xA→ A[t/x] We have

(∀xA→ A[t/x])o ≡ ∀xAo → A[t/x]o.

Here we use A[t/x]o ≡ Ao[t/x]. Analogously for A[t/x]→ ∃xA.
A ∧B → B /A→ (B → C) We have

(A ∧ B → C)o ≡ Ao ∧Bo → Co,

(A→ (B → C))o ≡ Ao → (Bo → Co).

Analogously for A, A → B /B, A → B, B → C /A → C, A → (B →
C) /A ∧ B → C and A→ B /C ∨ A→ C ∨ B.

A→ B /A→ ∀xB We have

(A→ B)o ≡ Ao → Bo,

(A→ ∀xB)o ≡ Ao → ∀xBo.

Here we x /∈ FV(A) = FV(Ao). Analogously for A→ B / ∃xA→ B.

A[0/x], A→ A[Sx/x] /A We have

A[0/x]o,

(A→ A[Sx/x])o ≡ Ao → A[Sx/x]o,

Ao.

Here we use A[0/x]o ≡ Ao[0/x] and A[Sx/x]o ≡ Ao[Sx/x].

(A1)c → · · · → (An)c We have

((A1)c → · · · → (An)c)
o ≡ A1 → · · · → An.

The formula A1 → · · · → An is provable because the axiom (A1)c →
· · · → (An)c was introduced by the theorem A1 → · · · → An.

182

13.41. Our third heuristic applies to proof interpretations I that are “well-behaved”
in a certain sense, and gives variants with q-truth Iq and t-truth It. In the next
definition we define the exact meaning of “well-behaved”, and the variants Iq and
It.

13.42 Definition. Let I be a proof interpretation of HAω into HA
ω that assigns to

each formula A of HAω to the formula AI(a) of HA
ω with distinguished variables a.

1. We say that I is definable by recursion (on the structure of formulas) if and only
if there exist functions fAat , f∧, f∨, f→, f∀ and f∃ such that for all formulas
Aat, A and B of HAω we have

(Aat)I(a) ≡ fAat(Aat),

(A ∧B)I(c) ≡ f∧(AI(a), BI(b)),

(A ∨B)I(c) ≡ f∨(AI(a), BI(b)),

(A→ B)I(c) ≡ f→(AI(a), BI(b)),

(∀xA)I(c) ≡ f∀(AI(a), x),

(∃xA)I(c) ≡ f∃(AI(a), x).

2. If I is definable by recursion as above, then we define Iq by

(Aat)Iq(a) :≡ fAat(Aat),

(A ∧ B)Iq(c) :≡ f∧(AIq(a), BIq(b)),

(A ∨ B)Iq(c) :≡ f∨(AIq(a) ∧ A,BIq(b) ∧B),

(A→ B)Iq(c) :≡ f→(AIq(a) ∧A,BIq(b)),

(∀xA)Iq(c) :≡ f∀(AIq(a), x),

(∃xA)Iq(c) :≡ f∃(AIq(a) ∧ A, x),

and It by

(Aat)It(a) :≡ fAat(Aat),

(A ∧ B)It(c) :≡ f∧(AIt(a), BIt(b)) ∧ (A ∧ B),

(A ∨ B)It(c) :≡ f∨(AIt(a), BIt(b)) ∧ (A ∨ B),

(A→ B)It(c) :≡ f→(AIt(a), BIt(b)) ∧ (A→ B),

(∀xA)It(c) :≡ f∀(AIt(a), x) ∧ ∀xA,
(∃xA)It(c) :≡ f∃(AIt(a), x) ∧ ∃xA.

3. We say that I is well-behaved (with respect to truth) if and only if:

(a) I is definable by recursion as above;

(b) I leaves invariant atomic formulas, that is (Aat)I() ≡ Aat, or in other
words, fAat(B) ≡ B and no variables are distinguished;

(c) I leaves invariant implications between atomic formulas, that is (Aat →
Bat)I() ≡ Aat → Bat, or in other words, f→(Aat, Bat) ≡ Aat → Bat and
no variables are distinguished;

183

(d) I respects conjunctions, that is (A∧B)I(a, b) ≡ AI(a)∧BI(b), or in other
words, f∧(C,D) ≡ C ∧D and the distinguished variables are the ones of
C and D;

(e) the functions commute with o, that is f∧(A,B)o ≡ f∧(A
o, Bo), f∀(A, x)

o ≡
f∀(A

o, x) and analogously for fAat , f∨, f→ and f∃;

(f) I is sound under the addition of arbitrary predicate symbols;

(g) the soundness theorem of I is provable by induction on the length of
derivations.

13.43. In the next theorem we show that if a proof interpretation I is well-behaved,
then the process of hardwiring q- and t-truth in I, obtaining Iq and It, can be
decomposed in three steps: first q or t, second I, and third o, as illustrated in
figure 13.4.

13.44 Theorem (factorisations Iq = o◦ I◦q and It = o◦ I◦t). If I is a well-behaved
proof interpretation of HAω into itself, then for all formulas A of HAω we have

1. AIq(a) ≡ (Aq)I(a)
o;

2. AIt(a) ≡ (At)I(a)
o.

13.45 Proof. The proof is by induction on the structure of A.

1. Aat We have

(Aq
at)I()

o ≡
(Aat)I()

o ≡
Ao

at ≡
(Aat)Iq().

∧ Using induction hypothesis in the fourth equality, we get

((A ∧B)q)I(a, b)
o ≡

(Aq ∧Bq)I(a, b)
o ≡

((Aq)I(a) ∧ (Bq)I(b))
o ≡

(Aq)I(a)
o ∧ (Bq)I(b)

o ≡
AIq(a) ∧ BIq(b) ≡
(A ∧ B)Iq(a, b).

184

∨ Using induction hypothesis in the seventh equality, we get

((A ∨B)q)I(c)
o ≡

((Aq ∧ Ac) ∨ (Bq ∧Bc))I(c)
o ≡

f∨((A
q ∧ Ac)I(a), (B

q ∧ Bc)I(b))
o ≡

f∨((A
q)I(a) ∧ (Ac)I(), (B

q)I(b) ∧ (Bc)I())
o ≡

f∨((A
q)I(a) ∧Ac, (B

q)I(b) ∧Bc)
o ≡

f∨
(
((Aq)I(a) ∧Ac)

o, ((Bq)I(b) ∧ Bc)
o
)
≡

f∨((A
q)I(a)

o ∧A, (Bq)I(b)
o ∧B) ≡

f∨(AIq(a) ∧ A,BIq(b) ∧B) ≡
(A ∨ B)Iq(c).

Analogously for →, ∀ and ∃.

2. Aat Analogously to the case of Iq.

∧ Using induction hypothesis in the sixth equality, we get

((A ∧ B)t)I(a, b)
o ≡

((At ∧ Bt) ∧ (A ∧ B)c)I(a, b)
o ≡

(
(At ∧ Bt)I(a, b) ∧ ((A ∧B)c)I()

)o ≡
(
(At ∧ Bt)I(a, b) ∧ (A ∨ B)c

)o ≡
(
((At)I(a) ∧ (Bt)I(b)) ∧ (A ∨ B)c

)o ≡
((At)I(a)

o ∧ (Bt)I(b)
o) ∧ (A ∧B) ≡

(AIt(a) ∧ BIt(b)) ∧ (A ∧B) ≡
(A ∧B)It(a, b).

∨ Using the definition in the seventh equality, we get

((A ∨B)t)I(c)
o ≡

((At ∨Bt) ∧ (A ∨B)c)I(c)
o ≡

(
(At ∨Bt)I(c) ∧ ((A ∨ B)c)I()

)o ≡
(
(At ∨Bt)I(c) ∧ (A ∨ B)c

)o ≡
(
f∨((A

t)I(a), (B
t)I(b)) ∧ (A ∨ B)c

)o ≡
f∨((A

t)I(a), (B
t)I(b))

o ∧ (A ∨ B) ≡
f∨((A

t)I(a)
o, (Bt)I(b)

o) ∧ (A ∨ B) ≡
f∨(AIt(a), BIt(b)) ∧ (A ∨ B) ≡

(A ∨ B)It(c).

Analogously for →, ∀ and ∃.
13.46. Now let us motivate our third heuristic on how to hardwire truth. If I is a
well-behaved proof interpretation of HAω into itself, then I extends to a sound proof
interpretation of HAω

c into itself because:

185

1. the soundness of I is not spoiled by the new atomic formulas Ac;

2. we can extend the soundness proof of I to include the new axioms (A1)c →
· · · → (An)c (because the interpretations of these axioms are the axioms them-
selves, so we add the cases of these axioms to the soundness proof by induction
on the length of derivations).

So q, t, o and I (extended to HA
ω
c) are sound, thus the compositions Iq = o ◦ I ◦ q

and It = o ◦ I ◦ t are also sound. This leads us to our third heuristic on how to
hardwire truth.

13.47 Heuristic. If I is a well-behaved proof interpretation, then I has the sound
variants with truth Iq = o ◦ I ◦ q and It = o ◦ I ◦ t.

13.48. By applying this heuristic to mr, br, DN, B and | we get their variants with
q- and t-truth.

This heuristic also suggests that there is no sound Gödel’s functional interpre-
tation with truth (as discussed in paragraph 5.9): D is not well-behaved because it
is seemly not sound under the addition of arbitrary predicate symbols P since the
proof of the soundness theorem of D needs characteristic terms χP . Analogously for
MD.

13.5 Conclusion

13.49. We saw that we hardwire truth in a proof interpretation I, getting Iq and
It, by adding copies of the formulas under interpretation in some clauses of the
definition of I. The questions here are: in which clauses? and are Iq and It sound?
We answered these questions with three heuristics.

Heuristic 1 By moving back and forth between IL
ω and ILL

ω via Girard’s embed-
dings, we saw that

1. to hardwire q-truth we should add copies in the clauses of ∨, (premise
of) →, and ∃;

2. to hardwire t-truth we should add copies in the clauses of Aat, → and ∀.

Heuristic 2 Motivated by the factorisation Amrt(a) ↔ Amrq(a) ∧ A, we saw that to
hardwire truth we should

1. start by hardwiring q-truth imitating the way in which it is done for mrq;

2. then upgrade to t-truth by defining AIt :≡ AIq ∧A.

Heuristic 3 By studying the soundness of the factors in the factorisations Iq = o◦I◦q
and It = o ◦ I ◦ t, we saw that if I is well-behaved, then Iq and It are sound.

186

Chapter 14

Copies of classical logic in
intuitionistic logic

14.1 Introduction

14.1. Let us recall that a negative translation N is a embedding of CL in IL, in the
sense of having the following two properties:

Soundness theorem if CL+ Γ ⊢ A, then IL+ ΓN ⊢ AN;

Characterisation theorem CL ⊢ A↔ AN.

14.2. The image imN of a negative translation N is a copy of CL in IL because, as
the equivalence

CL ⊢ A ⇔ IL ⊢ AN

shows, the formulas AN ∈ imN mirror inside IL the behaviour of CL.

14.3. All the usual negative translations GG, Ko, Kr and Ku give (modulo equiv-
alence in IL) the same copy of CL in IL: the negative fragment NF. This lead us
to the question: is NF the only copy? In this chapter we are going to answer this
question:

1. we present three different copies;

2. we characterise why GG, Ko, Kr and Ku give the same copy.

14.2 Definitions

14.4. We give an abstract definition of negative translation. Its actually a simple
and natural definition: we simply ask for the soundness and characterisation theo-
rems to hold true. Then we define a copy of CL in IL as being the image of a negative
translation.

We also define two special behaviours of negative translations: acting as the
identity on NF, and translating into NF. They will be used to characterise the
negative translations that give the copy NF.

The definition are modulo IL, informally meaning that we identify formulas equiv-
alent in IL.

187

14.5 Definition. Let M and N functions mapping formulas of CL to formulas of IL,
and Γ and ∆ be sets of formulas of IL.

1. (a) We call soundness theorem of N to the following condition: for all for-
mulas A of CL and for all sets Γ of formulas of CL, if CL + Γ ⊢ A then
CL+ ΓN ⊢ AN [18, definition 1].

(b) We call characterisation theorem of N to the following condition: for all
formulas A of CL we have CL ⊢ A↔ AN [18, definition 1].

(c) We say that N is a negative translation if and only if the soundness theo-
rem of N and the characterisation theorem of N hold true [18, definition 1].

(d) We call image of N, and denote by imN, to the set of all formulas AN

(with A ranging over the formulas of CL).

2. (a) We say that Γ and ∆ are equal (modulo IL) if and only if:

i. Γ is contained (modulo IL) in ∆, that is for all A ∈ Γ there exists
B ∈ ∆ such that IL ⊢ A↔ B;

ii. ∆ is contained (modulo IL) in Γ, that is for all B ∈ ∆ there exists
A ∈ Γ such that IL ⊢ A↔ B.

(b) We say that M and N are equal (modulo IL) if and only if for all formulas
A of CL we have IL ⊢ AM ↔ AN [18, definition 3].

3. We say that Γ is a copy of CL in IL if and only if there exists a negative
translation N such that Γ and imN are equal (modulo IL).

4. (a) We say that N translates into NF (modulo IL) if and only if for all formulas
A of CL there exists B ∈ NF such that IL ⊢ AN ↔ B [18, definition 5].

(b) We say that N acts as the identity on NF (modulo IL) if and only if for
all A ∈ NF we have IL ⊢ A↔ AN [18, definition 5].

14.6 Example. We can prove that the functions Ko, GG, Ku and Kr:

1. are negative translations;

2. have images imKo, imGG, imKu and imKr equal (modulo IL) to NF;

3. are pairwise equal (modulo IL);

4. translate into NF (modulo IL);

5. act as the identity on NF (modulo IL).

(These claims are easy to check for GG, and they also apply to Ko, Ku and Kr by
proposition 2.7.)

188

14.3 Three different copies

14.7. We saw that the usual negative translations Ko, GG, Ku and Kr all give the
same image, that is the same copy of CL in IL, namely the negative fragment NF.
This raises the question: is NF the only copy? The answer is no, and we show this
by proving that

NF, NF ∨ F := {A ∨ F : A ∈ NF}, NF[F/⊥] := {A[F/⊥] : A ∈ NF}

(where F is a suitable formula) are three different copies.

14.8 Definition. Let us fix a formula F of IL. We define the functions N1 and N2,
mapping formulas of CL to formulas of IL, by:

1. AN1 :≡ AGG ∨ F [18, definition 6];

2. AN2 :≡ AGG[F/⊥] [8, section 2.3] [40, definition 6].

14.9. As a curiosity, we can mention the following. Let minimal logic ML be IL

without the ex falso quodlibet ⊥ → A [78, definition 3.2 in chapter 2].

FD The Friedman-Dragalin translation FD [17, section 1] [12, page 463 of the trans-
lation] (also known as Friedman’s A-translation) assigns to each formula A of
IL the formula AFD obtained from A by simultaneously replacing ⊥ by F and
all atomic subformulas Aat by Aat ∨ F . It is sound in the following sense: if
IL ⊢ A, then ML ⊢ AFD [17, theorem 1.2] [12, page 463 of the translation].

FD′ There is a variant FD′ [4, lemma 2.1] where we only replace ⊥ by F , but it is

only sound in the following sense: if ML ⊢ A, then ML ⊢ AFD′

[4, lemma 2.1].

The curiosity is that we have the factorisations N2 = FD ◦GG and N2 = FD′ ◦GG:
for all formulas A of CL we have ML ⊢ AN2 ↔ (AGG)FD and AN2 ≡ (AGG)FD

′

[18,
proposition 11].

14.10 Theorem.

1. The function N1 has a soundness theorem for all formulas F of IL. Analogously
for N2 [18, theorem 8.1].

2. The function N1 has a characterisation theorem if and only if CL ⊢ ¬F . Anal-
ogously for N2 [18, theorem 8.2].

3. The sets imN1 and NF ∨ F := {A ∨ F : A ∈ NF} are equal (modulo IL), and
the sets imN2 and NF[F/⊥] := {A[F/⊥] : A ∈ NF} are equal (modulo IL).

4. The image imN1 is equal to NF (modulo IL) if and only if IL ⊢ ¬F . Analo-
gously for N2 [18, theorem 8.3].

5. The images imN1 and imN2 are not equal (modulo IL) if CL ⊢ ¬F and IL 0
¬F [18, proposition 9].

6. There exists a formula F of CL such that CL ⊢ ¬F but IL 0 ¬F .

189

IL ⊢ F

strongly
provable

CL ⊢ F
IL 0 F

provable

CL 0 F
CL 0 ¬F

undecidable

CL ⊢ ¬F
IL 0 ¬F
refutable

IL ⊢ ¬F
strongly
refutable

soundness
characterisation

NF ∨ F ,
NF[F/⊥],

NF different

NF ∨ F ,
NF[F/⊥],
NF equal

Figure 14.1: summary of theorem 14.10.

So for a formula F of CL such that CL ⊢ ¬F but IL 0 ¬F , the sets NF, NF∨F and
NF[F/⊥] are pairwise not equal (modulo IL) copies of CL in IL. This is summarised
in figure 14.1.

14.11 Proof.

1. N1 Let us assume CL+Γ ⊢ A and prove IL+ΓN1 ⊢ AN1. From the assumption
we get CL+A1+ · · ·+An ⊢ A for some A1, . . . , An ∈ Γ. By the soundness
theorem of GG we get IL + AGG

1 + · · · + AGG
n ⊢ AGG. Then IL + AGG

1 ∨
F + · · ·+ AGG

n ∨ F ⊢ AGG ∨ F , that is IL+ AN1
1 + · · ·+ AN1

n ⊢ AN1. We
conclude IL+ ΓN1 ⊢ AN1 .

N2 Let us assume CL + Γ ⊢ A and prove IL+ ΓN2 ⊢ AN2 . We can prove that
GG has a soundness theorem from CL into ML: if CL + Γ ⊢ A, then
ML + ΓGG ⊢ AGG [78, theorem 3.5 in chapter 2]. So by the assumption
we get ML+ΓGG ⊢ AGG. Since ⊥ is treated as an arbitrary propositional
letter in ML [78, NB after the definition 3.2 in chapter 2], then ML +
ΓGG[F/⊥] ⊢ AGG[F/⊥], that is ML+ΓN2 ⊢ AN2 . We conclude IL+ΓN2 ⊢
AN2 .

2. Let us do the proof for N2; the case of N1 is analogous.

⇒ If N2 has a characterisation theorem, then CL ⊢ ⊥N2 ↔ ⊥, that is CL ⊢
F ↔ ⊥, so CL ⊢ ¬F .

⇐ If CL ⊢ ¬F , then CL ⊢ AGG[F/⊥] ↔ AGG, that is CL ⊢ AN2 ↔ AGG, so

CL ⊢ AN2 ↔ A by the characterisation theorem of GG, concluding that
N2 has a characterisation theorem.

3. Let us prove that imN2 and NF[F/⊥] are equal (modulo IL).

⊆ If AGG[F/⊥] ∈ imN2, then AGG[F/⊥] ∈ NF[F/⊥] because AGG ∈ NF.

⊇ If A[F/⊥] ∈ NF[F/⊥] where A ∈ NF, then IL ⊢ A[F/⊥] ↔ AGG[F/⊥]
where AGG[F/⊥] ∈ imN2, because we can prove ML ⊢ A ↔ AGG by
induction on the structure of A ∈ NF.

Analogously for N1.

190

4. Let us do the proof for N2; the case of N1 is analogous. Since imGG is equal
(modulo IL) to NF, it suffices to prove: imN2 and imGG are equal (modulo IL)
if and only if IL ⊢ ¬F . In turn, to prove this it suffices by (∗1) below to prove:
N2 and GG are not equal (modulo IL).

Let us prove the following for negative translations M and N: (∗1) imM and
imN are equal (modulo IL) if and only if N and M are equal (modulo IL). The
right-to-left implication is trivial, so let us prove the left-to-right implication.
Let us assume that imM and imN are equal (modulo IL), take an arbitrary
formula A of CL and prove (∗2) IL ⊢ AM ↔ AN. By the assumption there exists
a formula B of CL such that (∗3) IL ⊢ AM ↔ BN. By the characterisation
theorems of M and N we get CL ⊢ A ↔ B, so CL + B ⊢ A and CL + A ⊢ B.
By the soundness theorems of N we get IL + AN ⊢ BN and IL + BN ⊢ AN, so
(∗4) IL ⊢ AN ↔ BN by the deduction theorem of IL. From (∗3) and (∗4) we
get (∗2).
Taking A ≡ ⊥ in the left-to-right implication of the last equivalence below,
we get

imN2 and imGG are equal (modulo IL) if and only if

for all formulas A of CL we have IL ⊢ AN2 ↔ AGG if and only if

for all formulas A of CL we have IL ⊢ AGG[F/⊥]↔ AGG if and only if

IL ⊢ ¬F .

5. Let us assume CL ⊢ ¬F and IL 0 ¬F . Let P be a fresh (that is different from
⊥ and not occurring in F) nullary predicate symbol. By (∗1) it suffices to
prove IL 0 PN1 ↔ PN2, that is IL 0 ¬¬P ∨ F ↔ ((P → F) → F). We do so
by presenting a Kripke model forcing (P → F)→ F but not forcing ¬¬P ∨F .

K There exists a Kripke model K with a bottom node, forcing ¬F and P .
Indeed, just take a classical model K (which forces ¬F since CL ⊢ ¬F),
consider it as a one-node Kripke model and force P in the model [80].

L There exists a Kripke model L with a bottom node and forcing F and ¬P .
Indeed, there exists a Kripke model L′ with some node n not forcing F
(because IL 0 F) and forcing ¬P (because P is fresh), so we take L to be
L′ restricted to the nodes above or equal to n.

M We can assume (renaming elements if needed) that the domains of the
bottom nodes of K and L share a node d. Let M be the Kripke model
constructed from K and L by connecting their bottom nodes to a new
node 0 with domain {d} (so that the domains of M are monotone as
required to be Kripke model), as illustrated in figure 14.2. The node 0
does not force ((P → F)→ F)→ ¬¬P ∨ F because 0:

(a) forces (P → F)→ F since K does not force P → F , L forces P , and
0 does not force P → F (otherwise K would force P → F);

(b) does not force ¬¬P since L forces ¬P ;

(c) does not force F since K forces ¬F .

191

(forces ¬F, P) K L (forces F,¬P)

0

✷✷✷✷✷✷✷

☞☞☞☞☞☞☞

Figure 14.2: the Kripke modelM.

6. Let P (x) be a unary predicate symbol, F ′ :≡ ∀x¬¬P (x) → ¬¬∀xP (x) (an
instance of the double negation shift) and F :≡ ¬F ′ [62]. We have CL ⊢ ¬F ,
but IL 0 ¬F because IL ⊢ ¬F ↔ F ′ and IL 0 F ′ [79, page 166].

14.12. To be sure, by now we have three copies of CL in IL that are not equal
(modulo IL): NF, NF ∨ F and NF[F/⊥] (with CL ⊢ ¬F and IL 0 F). This is
illustrated in figure 14.3.

CL

CL

IL

NF

NF ∨ F NF[F/⊥]

Ko GG

Ku Kr

N1

N2

Figure 14.3: the three copies NF, NF ∨ F and NF[F/⊥] of CL in IL.

14.4 Characterisation

14.13. We saw that there are different copies of CL in IL, but all the usual negative
translations (Ko, GG, Ku and Kr) give the same copy NF. Is this just a coincidence,
or is there a reason why the usual negative translations all give the same copy? In
the next theorem we determine why the usual negative translations give the same
copy: because they are all “well-behaved” with respect to NF, in the sense of

1. translating into NF (modulo IL);

2. acting as the identity on NF (modulo IL).

The latter property is of especial importance because it plays a central role in proving
point 1 of theorem 2.17.

14.14 Theorem. Let N be a negative translation. The following conditions are
equivalent:

1. imN and NF are equal (modulo IL);

2. N and GG are equal (modulo IL) [18, theorem 13];

192

3. N translates into NF (modulo IL) [75, section 1.10.1] [18, theorem 13];

4. N acts as the identity on NF (modulo IL) [18, theorem 13].

14.15 Proof.

1⇔ 2 We already saw this equivalence in point 4 of proof 14.11.

2⇒ 3 Follows from GG translating into NF (modulo IL).

3⇒ 4 We assume that N translates into NF (modulo IL), take an arbitrary A ∈ NF

and prove IL ⊢ AN ↔ A. By the characterisation theorem of N we have
CL ⊢ AN ↔ A where, by our assumption, AN ↔ A is equivalent in IL to a
formula in NF. By point 1 of theorem 2.17 we get IL ⊢ AN ↔ A.

4⇒ 2 We assume that N acts as the identity on NF (modulo IL), take an arbitrary

formula A of CL and prove IL ⊢ AN ↔ AGG. By the characterisation theorem
of GG we have CL ⊢ A↔ AGG, so CL+ A ⊢ AGG and CL+ AGG ⊢ A. By the
soundness theorem of N we get IL + AN ⊢ (AGG)N and IL + (AGG)N ⊢ AN, so
IL ⊢ AN ↔ (AGG)N by the deduction theorem of IL. Since AGG ∈ NF, then by
our assumption we get IL ⊢ AN ↔ AGG.

14.5 Conclusion

14.16. We saw that all the usual negative translations (GG, Ko, Kr and Ku) give
the same copy of CL in IL: NF. This raised the question: is NF the only copy? The
answer is no, and we presented three different copies:

NF, NF ∨ F, NF[F/⊥].

14.17. The fact that there are different copies but still the usual negative transla-
tions all give the same copy raises another question: why do all the usual negative
translations give the same copy? Our answer to this question is: because they are
“well-behaved” with respect to the negative fragment (in the sense of translating
into NF and acting as the identity on NF).

193

194

Part IV

Practical contributions

195

Chapter 15

“Finitary” infinite pigeonhole
principles

15.1 Introduction

15.1. In 2007 and 2008, Terence Tao wrote on his blog essays [71, 73] about the
finitisation of principles in analysis. To introduce Tao’s notion of finitisation, first
we need to recall the notions of soft analysis and hard analysis.

Soft analysis It is the part of analysis that deals with infinite objects (such as se-
quences and σ-algebras) and their qualitative properties (such as convergence
and compactness).

Hard analysis It is the part of analysis that deals with finite objects (such as finite
sets and the value of convergent integrals) and their quantitative properties
(such as the cardinality of finite sets and bounds).

Finitisation A finitisation of a soft analysis statement is an equivalent hard analysis
statement.

Tao’s finitisations are usually achieved by strong ineffective methods: proof by
contradiction and sequential compactness. An intuitive explanation for this is that
Tao relies only on the truth of the statement that he finitises, so he needs to com-
pensate by using strong methods. As a consequence, Tao does not get numerical
bounds. In proof theory, we rely not on the truth but on a proof of the statement,
so we can avoid the strong methods and get numerical bounds.

15.2. Tao has several reasons for being interested in finitisations.

Green-Tao theorem Tao achieved improved results by reducing soft analysis parts
of proofs to their hard analysis skeleton. For example, the Green-Tao theorem
(proving the existence of arbitrary long arithmetic sequences of primes) uses
a sort of finitary ergodic theory [71, footnote 4].

Exact relations Tao believes that there is a close relation between the two types
of analysis: a hard analysis statement is a soft analysis statement with the
exact relations between objects made explicit; or in other words, a soft analysis

197

statement is a hard analysis statement with the exact relations between objects
concealed by the use of infinitary notions [71].

For example, letting the sequence (xn)n∈N\{0} be defined by xn := 1/n2, in
table 15.1 we give the statement xn → 0 with the exact relation between
quantities first hidden and then explicitly showed.

soft analysis ∀ε > 0 ∃N ∀n > N (|xn − 0| < ε) no relation between ε and N

hard analysis ∀ε > 0 ∀n > 1/
√
ε (|xn − 0| < ε) N = 1/

√
ε

Table 15.1: the statement xn := 1/n2 → 0 with the exact relation between quantities
hidden and shown.

Long/short range mathematics Soft analysis is good for “long-range” mathematics:
it allows us to move faster by ignoring the exact relation between quantities.
Hard analysis is good for “short-range” mathematics: it allows us to refine
existing results by relating the exact quantities [71, footnote 4].

Best of both worlds There are connections between soft analysis and hard analysis
that allow us to move back and forth between the two, taking advantage of
both worlds.

In table 15.2 we give two examples of such connections [73, sections 3 and 6].

soft analysis hard analysis connection

ergodic theory combinatorial number
theory

Furstenberg correspondence
principle

ergodic graph theory graph theory graph correspondence prin-
ciple

Table 15.2: examples of connections between soft analysis and hard analysis.

15.3 Example. One of Tao’s prime examples is an almost finitisation of the infinite
pigeonhole principle. To present this example, first we need the following notions.

Weak convergence We say that a sequence (An)n∈N of finite subsets of N weakly
converges to an infinite subset I of N if and only if for all finite subsets B of
N we have An ∩B = I ∩B for n large enough [71].

Asymptotic stability near infinite sets We say that a function F , that takes as input
finite subsets of N and outputs natural numbers, is asymptotically stable near
infinite sets, and write F ∈ ASNIS, if and only if it stabilises over all weakly
convergent sequences [71].

Notation Let us denote the initial segment {0, 1, 2, . . . , n− 1} of N by n.

198

Now let us present Tao’s example. The infinite pigeonhole principle IPP is the
following principle.

Every colouring of N with finitely many colours has an infinite colour
class.

It is a soft analysis statement because:

1. it talks about infinite objects, namely a colouring of the natural numbers;

2. it talks about qualitative properties, namely a colour class being infinite.

The infinite pigeonhole principle IPP almost finitises into the third “finitary”
infinite pigeonhole principle FIPP3 (later on we will introduce the first two “finitary”
infinite pigeonhole principles), that is the following principle.

For every number of colours n and for every asymptotically stable near
infinite sets function F , there exists an initial segment k of the natural
numbers such that any colouring f : k → n of k with n colours has
a “big” colour class A = f−1(c) in the sense of |A| > F (A) [71]. In
symbols:

∀n ∀F ∈ ASNIS ∃k ∀f : k → n ∃c ∈ n
(
|f−1(c)| > F (f−1(c))

)
. (15.1)

It is almost a hard analysis statement because:

1. it talks about a finite object, namely the colouring f ;

2. it talks about quantitative properties, namely the inequality |A| > F (A);

3. but it is not completely finitary because it also talks about infinite objects
and qualitative properties, namely the asymptotically stable near infinite sets
function F (that is why “finitary” is written in quotation marks).

15.4. The story of Tao’s finitary infinite pigeonhole principle is involved. There are
three variants of the “finitary” infinite pigeonhole principle.

FIPP1 Analogous to (15.1) but with the class ASNIS replaced by a larger class AS;

FIPP2 Analogous to (15.1) but with ASNIS replaced by AS and only stating the
existence of a “big” monochromatic set A ⊆ f−1(c);

FIPP3 The one from (15.1).

Initially Tao proposed FIPP1 as an almost finitisation of IPP, but gave no proof
of the equivalence between IPP and FIPP1. When we tried to prove it, we were only
able to show that IPP implies the weaker FIPP2. It turned out that FIPP1 is false
(so not equivalent to the true IPP) and we gave a counter-example to it.

The principle FIPP2 results from translating (IPPKu)D into Tao’s language (that
uses sets, set theoretic functions and asymptotic stability). Since D finitises a for-
mula (although in the different sense of making explicit its computational content),
we take this as evidence that FIPP2 is a natural finitisation of IPP.

When Tao was made aware of our counter-example, he corrected FIPP1 by re-
ducing the class AS to ASNIS, arriving at FIPP3.

199

15.5. Having two proposed finitisations FIPP2 and FIPP3 of IPP (FIPP1 is excluded
by the counter-example), we naturally ask how they compare. To do so, we try to
determine which one is a more faithful finitisation of IPP. This leads us to discuss
the notion of “faithfulness”. Consider the following silly finitisation of IPP: 0 = 0
is a finitisation of IPP because it is a hard analysis statement and is equivalent
to IPP (since both IPP and 0 = 0 happen to be true). The problem with this
finitisation is that a proof of IPP → 0 = 0 does not even use IPP, and a proof
of 0 = 0 → IPP is a proof of IPP from scratch. This because our setting theory
(whatever it may be) already proves 0 = 0. So we should study the provability
of IPP ↔ FIPP2/3 in theories T weaker than IPP and than FIPP2/3. Then we say
that a finitisation FIPP2/3 of IPP is more faithful the weaker the theory T that
proves IPP ↔ FIPP2/3. To achieve this we turn to reverse mathematics and slide
T along the “big five” subsystems of second order arithmetic that give us the scale
of strength from figure 15.1. We are going to conclude WKL0 ⊢ IPP ↔ FIPP2 and

weaker •RCA0oo❴ ❴ ❴ ❴ ❴ ❴ •WKL0 •ACA0 •ATR0 • //❴❴❴❴❴❴
Π1

1-CA0

stronger

Figure 15.1: the “big five” subsystems of second order arithmetic.

ACA0 ⊢ IPP ↔ FIPP3, suggesting that FIPP2 is a more faithful finitisation of IPP
than FIPP3 (but to give a definite answer we would need to show WKL0 0 IPP ↔
FIPP3). (Studying IPP ↔ FIPP2 in WKL0 is of interest because WKL0 0 IPP [38,
corollary 6.5], but studying IPP ↔ FIPP3 in ACA0 is more questionable because
ACA0 ⊢ IPP [64, lemma III.7.4] [21, page 359].)

15.2 Asymptotic stability

15.6. Now we introduce the notion of asymptotic stability. Roughly speaking, a
function is asymptotically stable if it is sequentially continuous on the Cantor space
P(N). Actually, Tao did not formulate the notion of asymptotic stability in this
way, but rather talking about functions stabilising over sequences of subsets of N.
So first we give the definitions in Tao’s terms, and then we recast them in terms of
the Cantor space.

15.7 Definition. Let us denote by P(N) the set of all subsets of N, by Pfin(N) the
set of all finite subsets of N and by Pinf(N) the set of all infinite subsets of N. Also,
given a natural number n, let us denote by n the set {0, 1, 2, . . . , n−1}. Let (An)n∈N
be a sequence with terms in Pfin(N), F : Pfin(N)→ N be a function and I ∈ Pinf(N).

1. We say that (An)n∈N is a nested if and only if A0 ⊆ A1 ⊆ A2 ⊆ · · · [21,
definition 5.1].

2. We say that (An)n∈N weakly converges to I if and only if for all B ∈ Pfin(N)
we eventually have An ∩B = I ∩B for all n sufficient large [71]. We say that
(An)n∈N weakly converges if and only if (An)n∈N weakly converges to some
I ∈ Pinf(N).

200

3. We say that F is asymptotically stable, and denote by F ∈ AS, if and only if F
stabilises (that is eventually becomes constant) over all nested sequences [71].

4. We say that F is asymptotically stable near infinite sets, and denote by F ∈
ASNIS, if and only if F stabilises over all weakly convergent sequences [71].

15.8 Example.

1. The sequence (An)n∈N defined by An := {0, . . . , n} is nested and asymptoti-
cally converges to N.

2. The function F : Pfin(N) → N defined by F (A) := minA (with the non-
standard convention min ∅ := 0) satisfies F ∈ AS and F ∈ ASNIS [71].

15.9. Although we are going to use the previous definitions as Tao gave them, as
a curiosity in the next proposition we recast these definitions in the more stan-
dard terms of Cantor space. Roughly speaking, weakly convergent sequences are
the convergent sequences (in the Cantor space), and asymptotically stable func-
tions are sequentially continuous functions (on the Cantor space). (To be sure, the
point 1 of the proposition is really trivial: it simply remarks that “nested” and
“non-decreasing” are synonymous.)

15.10 Proposition. Consider the Cantor space P(N) with the order given by set
inclusion and the distance

d(A,B) :=

{
0 if A = B

1/n if n = µn ∈ N . A ∩ n 6= B ∩ n
.

Let (An)n∈N be a sequence with terms in Pfin(N), F : Pfin(N)→ N be a function and
I ∈ Pinf(N).

1. The sequence (An)n∈N is nested if and only if (An)n∈N is non-decreasing.

2. The sequence (An)n∈N weakly converges to I if and only if (An)n∈N converges
(in the Cantor space) to I.

3. We have F ∈ AS if and only if F stabilises over all non-decreasing sequences
with terms in Pfin(N).

4. We have F ∈ ASNIS if and only if F stabilises over all convergent (in the
Cantor space) sequences with terms in Pfin(N) and with infinite limit.

To better compare the points 3 and 4, we rewrite point 3:

3′. We have F ∈ AS if and only if F stabilises over all non-decreasing convergent
(in the Cantor space) sequences with terms in Pfin(N) and with infinite limit.

15.11 Proof. Let us only prove the non-trivial points.

2. We have An ∩ k = I ∩ k ⇔ d(An, I) ≤ 1
k+1

. A sequence (An)n∈N weakly
converges to I if and only if ∀k ∈ N ∃m ∈ N ∀n ≥ m (An ∩ k = I ∩ k), that
is ∀k ∈ N ∃m ∈ N ∀n ≥ m

(
d(An, I) ≤ 1

k+1

)
, that is (An)n∈N converges (in the

Cantor space) to I.

201

3′. To rewrite point 3, we use that a non-decreasing sequence converges (in the
Cantor space) to its union, and if the union is finite then the sequence even-
tually becomes constant.

15.12. The next proposition clarifies the relation between nested sequences and
weakly convergent sequences, and between AS and ASNIS. The proposition is pic-
tured in figure 15.2.

15.13 Proposition. Let (An)n∈N be a sequence with terms in Pfin(N) and with
union A, and let F : Pfin(N)→ N be a function.

1. (a) If (An)n∈N is nested and A is finite, then (An)n∈N is not weakly conver-
gent [21, remark 6].

(b) If (An)n∈N is nested and A is infinite, then (An)n∈N is weakly convergent
to A [21, remark 6].

(c) There is a weakly convergent (An)n∈N that is not nested [72] [21, re-
mark 6].

2. (a) If F ∈ ASNIS, then F ∈ AS [21, remark 6].

(b) There is an F ∈ AS such that F /∈ ASNIS [72] [21, remark 6].

nested

nested with
infinite union

weakly
convergent

AS

ASNIS

Figure 15.2: relation between nested sequences and weakly convergent sequences,
and between AS and ASNIS.

15.14 Proof.

1. (a) If the sequence (An)n∈N were weakly convergent, then it would converge
to A, but the limit of a weakly convergent sequence is (by definition)
infinite.

(b) Let us take an arbitrary B ∈ Pfin(N) and construct an m ∈ N such
that for all n ≥ m we have An ∩ B = A ∩ B. Since A ∩ B is finite,
say A ∩ B = {x1, . . . , xk}. Each xi is in some Ami

, thus {x1, . . . , xk} ⊆
Am1 ∪ · · · ∪ Amk

. Since (An)n∈N is nested, Am1 ∪ · · · ∪ Amk
= Am for

m := max(m1, . . . , mk). Therefore A ∩ B ⊆ Am. So, for n ≥ m, we
have A ∩ B ⊆ Am ∩ B ⊆ An ∩ B ⊆ A ∩ B (using Am ⊆ An ⊆ A), thus
An ∩ B = A ∩B.

202

(c) The sequence An := {0, . . . , n} ∪ {n+ 2} weakly converges to N but it is
not nested.

2. (a) An F ∈ ASNIS stabilises over nested sequences with infinite union (be-
cause they are weakly convergent) and over nested sequences with finite
union (because such sequences eventually become constant). So F ∈ AS.

(b) In proof 15.36 we construct an F ∈ AS such that F /∈ ASNIS (otherwise
F would be a counterexample to the true FIPP3).

15.3 “Finitary” infinite pigeonhole principles

15.15. Now we present the three “finitary” infinite pigeonhole principles FIPP1,
FIPP2 and FIPP3. Roughly speaking, they say that all colourings (with a finite
number of colours) of sufficient long initial segments of N have “large” monochro-
matic sets A. They differ in whatever the “large” monochromatic sets are full colour
classes or not, and in what “large” exactly means

15.16 Definition.

1. The infinite pigeonhole principle IPP is the following principle: for every num-
ber of colours n, any colouring f : N → n of N with n colours has an infinite
colour class f−1(c) with colour c ∈ n [71] [21, definition 7.1]. In symbols:

∀n ∀f : N→ n ∃c ∈ n (|f−1(c)| =∞).

2. The first “finitary” infinite pigeonhole principle FIPP1 is the following princi-
ple: for every number of colours n and for every asymptotically stable func-
tion F , there exists an initial segment k of the natural numbers such that any
colouring f : k → n of k with n colours has a “big” colour class A = f−1(c) in
the sense of |A| > F (A) [71] [21, definition 7.2]. In symbols:

∀n ∀F ∈ AS ∃k ∀f : k → n ∃c ∈ n
(
|f−1(c)| > F (f−1(c))

)
.

3. The second “finitary” infinite pigeonhole principle FIPP2 is analogous to FIPP1

but only claiming the existence of a “big” subset of a colour class [21, definition
7.3]. In symbols:

∀n ∀F ∈ AS ∃k ∀f : k → n ∃c ∈ n ∃A ⊆ f−1(c) (|A| > F (A)).

4. The third “finitary” infinite pigeonhole principle FIPP3 is analogous to FIPP1

but replacing AS by ASNIS [71] [21, definition 7.4].

15.17. We can informally derive FIPP2 from IPP in the following way [50, pages
35–37]. This derivation shows the that FIPP2 can be obtained by first deriving
(IPPKu)D, then performing a majorisation-by-compactness argument, and finally
translating everything into Tao’s language (that talks about sets, set functions and
asymptotically stability).

203

1. Consider any number of colours n and any colouring f : N → n of N with
n colours. By IPP we get an infinite colour class f−1(c) with colour c ∈ n.
So given any l we can construct a monochromatic strictly increasing sequence
m0, . . . , ml ∈ f−1(c) coded by a single natural number m, getting (15.2) below
(we discard the condition mi > mi−1 for i = 0 since m−1 is undefined).

2. We takem as a function g of l (by QF-AC to be in line with the characterisation
theorem PA

ω + QF-AC ⊢ A ↔ (AN)D of D after N ∈ {GG,Ko,Kr,Ku} [55,
section 5.1] [50, proposition 10.13], like the characterisation theorem of S),
getting (15.3).

3. We take l as a function F of c and g (by QF-AC), getting (15.4). This formula
is essentially (IPPKu)D (written as a ∀∃ formula, before a last application of
QF-AC transforms it into a ∃∀ formula).

4. Now we restrict ourselves to continuous functionals F , so g can be replaced by
a long enough initial segment m̄ of g coded by a natural number m, getting
(15.5). (The restriction is without loss of generality because if (15.4) is false
for a discontinuous F , then (15.3) is false, so (15.4) is false for the continuous
F (c, g) := µl .¬∀i ≤ l

(
f(g(l)i) = c ∧ g(l)i > g(l)i−1

)
[52].)

5. Consider the functional that assigns to f the least code of a pair (c,m) such
that c ∈ n and (∗) holds true. This functional is continuous because f is
only evaluated at finitely many points, therefore it is bounded on the compact
Cantor space nN. So there exists a strict bound k on m, thus we get (15.6).

6. Since f is evaluated only at the mis and mi ≤ m < k, then we can restrict f
to the set k getting (15.7).

7. Define the strictly increasing with colour c sequence xi := m̄(F (c, m̄))i for
i = 0, . . . , l where l := F (c, m̄), and A := {x0, . . . , xl}. Then A ⊆ f−1(c) and
|A| = l + 1 > F (c, m̄). By abuse of notation we replace F (c, m̄) by F (c, A).
We get (15.8).

8. Since any F : Pfin(N)
cont−→ N can be “extended” to an F̄ : n×Pfin(N)

cont−→ N by
making F̄ constant on the first argument, we get (15.9).

9. Finally, replacing the standard notion of continuity in the Cantor space by
Tao’s non-standard notion of asymptotic stability, we arrive at FIPP2.

204

IPP

∀n ∀f : N→ n ∃c ∈ n ∀l ∃m ∀i ≤ l (f(mi) = c ∧mi > mi−1) (15.2)

∀n ∀f : N→ n ∃c ∈ n ∃g : N→ N ∀l ∀i ≤ l(
f(g(l)i) = c ∧ g(l)i > g(l)i−1

) (15.3)

∀n ∀f : N→ n ∀F : n× NN → N ∃c ∈ n ∃g : N→ N ∀i ≤ F (c, g)(
f
(
g(F (c, g))i

)
= c ∧ g(F (c, g))i > g(F (c, g))i−1

) (15.4)

∀n ∀f : N→ n ∀F : n× NN cont−→ N ∃c ∈ n ∃m
∀i ≤ F (c, m̄)

(
f
(
m̄(F (c, m̄))i

)
= c ∧ m̄(F (c, m̄))i > m̄(F (c, m̄))i−1

)
︸ ︷︷ ︸

(∗)

 (15.5)

∀n ∀F : n× NN cont−→ N ∃k ∀f : N→ n ∃c ∈ n ∃m < k ∀i ≤ F (c, m̄)(
f
(
m̄(F (c, m̄))i

)
= c ∧ m̄(F (c, m̄))i > m̄(F (c, m̄))i−1

) (15.6)

∀n ∀F : n× NN cont−→ N ∃k ∀f : k → n ∃c ∈ n ∃m ∀i ≤ F (c, m̄)(
f
(
m̄(F (c, m̄))i

)
= c ∧ m̄(F (c, m̄))i > m̄(F (c, m̄))i−1

) (15.7)

∀n ∀F : n× Pfin(N)
cont−→ N ∃k ∀f : k → n

∃c ∈ n ∃A ⊆ f−1(c) (|A| > F (c, A))
 (15.8)

∀n ∀F : Pfin(N)
cont−→ N ∃k ∀f : k → n ∃c ∈ n ∃A ⊆ f−1(c) (|A| > F (A)) (15.9)

FIPP2.

15.18. Now we give two proofs that IPP and FIPP2 are equivalent, not in the sense
that both happen to be true but in the (non-rigorous) sense that from one we can
derive the other by an argument where one plays a meaningful role in the deduction
of the other. The proofs use different forms of compactness.

Heine-Borel compactness A set is Heine-Borel compact if and only if every open
cover has a finite subcover. This is equivalently (in metric spaces) to every
real-valued continuous function being bounded on the set [59].

Sequential compactness A set is sequentially compact if and only if every sequence
with terms in the set has a convergent subsequence.

The first proof (proof 15.20) uses Heine-Borel compactness and the second proof
(proof 15.21) uses sequential compactness. Regarding the equivalence of IPP and
FIPP3, we only give one proof (proof 15.21) using sequential compactness; we do not
know a proof using Heine-Borel compactness. (Trying to adapt the proof 15.21 to
FIPP3 fails because even if we know A = f−1(c) ∩ p in (15.12), in (15.13) we only
get A ⊆ f−1(c) ∩ k, so A may not be the full colour class required by FIPP3.)

15.19 Proposition.

1. IPP⇔ FIPP2 [48, for the way that ⇒ is proved].

2. IPP⇔ FIPP3 [71].

205

15.20 Proof.

1. Let us abbreviate “A ⊆ B and A is finite” by A ⊆fin B. We are going to prove
IPP⇔ (15.10)⇔ (15.11)⇔ (15.12)⇔ (15.13)⇔ FIPP2, where

∀n ∀F ∈ AS ∀f : N→ n ∃c ∈ n ∃A ⊆fin f−1(c) (|A| > F (A)), (15.10)

∀n ∀F ∈ AS ∀f : N→ n ∃c ∈ n ∃p ∃A ⊆ f−1(c) ∩ p (|A| > F (A)), (15.11)

∀n ∀F ∈ AS ∃k ∀f : N→ n

∃c ∈ n ∃p ≤ k ∃A ⊆ f−1(c) ∩ p (|A| > F (A)),
(15.12)

∀n ∀F ∈ AS ∃k ∀f : N→ n ∃c ∈ n ∃A ⊆ f−1(c) ∩ k (|A| > F (A)). (15.13)

IPP⇔ (15.10)

⇒ Let us assume IPP. Consider arbitrary n, F ∈ AS and f : N→ n. By
IPP, f has an infinite colour class f−1(c). The function F stabilises
over the nested sequence (f−1(c) ∩ k)k∈N, but the cardinality of the
elements of the sequence goes to infinite, so for k sufficient large and
A := f−1(c) ∩ k we have |A| > F (A).

⇐ Let us assume (15.10) and, by contradiction, ¬IPP. Then there exists
n and f : N → n such that all colour classes f−1(c) are finite. So
we can define the constant asymptotically stable function F (A) :=
max{|f−1(c)| : c ∈ n}. Then by (15.10) there exists c ∈ n and A ⊆fin

f−1(c) such that |A| > F (A). But this leads to the contradiction
|f−1(c)| ≥ |A| > F (A) ≥ |f−1(c)|.

(15.10)⇔ (15.11) It follows from ∃A ⊆fin f−1(c) (. . .) being equivalent to

∃p ∃A ⊆ f−1(c) ∩ p (. . .).

(15.11)⇔ (15.12) The right-to-left implication is trivial, so let us see the left-
to-right implication. Let us assume (15.11). Consider arbitrary n, F ∈
AS. By (15.11), for all f : N→ n there exists c ∈ n, p and A ⊆ f−1(c)∩p
such that |A| > F (A). So we can define F (f) := min{q ≤ p : ∃c ∈
n ∃A ⊆ f−1(c) ∩ q (|A| > F (A))} because the set is non-empty since p is
in it. The colouring f is only evaluated on the set p, so F is continuous
on the compact Cantor space nN, thus F is bounded by some k. Then
we take p := F (f) ≤ k in (15.12).

(15.12)⇔ (15.13) It follows from ∃p ≤ k ∃A ⊆ f−1(c)∩p (. . .) being equivalent
to ∃A ⊆ f−1(c) ∩ k (. . .).

(15.13)⇔ FIPP2 This equivalence follows from the fact that f is only eval-
uated on k, so it makes no difference for f to be defined on N or on
k.

15.21 Proof. First we prove the following claim: assuming IPP, for all number of
colours n and for all sequences (fk)k∈N of colourings fk : k → n of k with n colours,
there exists a colour c ∈ n such that:

1. there exists a subsequence (fik)k∈N of (fk)k∈N such that the sequence (Aik)k∈N
of colour classes Aik := (fik)

−1(c) weakly converges to an infinite set I and
|Aik | → ∞;

206

2. there exists a sequence (Bik)k∈N of finite subsets Bik of Aik that is nested and
|Bik | → ∞.

Let us prove the claim. We extend each fk : k → n to f̄k : N→ n+ 1 by f̄k(m) := n
for m ≥ k. The f̄ks belongs to the compact Cantor space (n + 1)N, so there
exists a subsequence (fjk)k∈N that converges to some limit f : N → n, that is
∀m ∃km ∀k ≥ km (f̄jk |m = f |m), and in particular ∀m (f̄jkm |m = f |m). So f takes
values even in n. Therefore f has an infinite colour class f−1(c) (with c ∈ n) by IPP.
Then ∀m ((f̄jkm |m)−1(c) = (f |m)−1(c)) where (fjkm |m)−1(c) = (fjkm)

−1(c) ∩ m and
(f |m)−1(c) = f−1(c) ∩ m. From here, by taking im := jkm and I := f−1(c) we get
point 1, and by taking Bim := (fjkm)

−1(c) ∩m we get point 2 (it may help to note
that in the definition of weakly convergent sequence we can equivalently restrict the
quantification over finite sets to initial segments m of N).

Now we prove the theorem.

1. ⇒ Let us assume IPP and, by contradiction, ¬FIPP2. So there exists n and
F ∈ AS such that for all k there exists fk : k → n (that we take as
a sequence (fk)k∈N) such that no subset A of some (fk)

−1(c) satisfies
|A| > F (A). By point 2 there exists a nested sequence (Bik)k∈N of sub-
sets of some (fik)

−1(c), such that |Bik | → ∞. Since F eventually stabilises
over this nested sequence, then for some k we have |Bik | > F (Bik), con-
tradicting that there is no such set A.

⇐ Let us assume FIPP2 and, by contradiction, ¬IPP. So there exists n and
f : N→ n such that all colour classes of f are finite. Then we can define
the constant asymptotically stable function F (A) := max{|f−1(c)| : c ∈
n}. By FIPP2 applied to f |k there exists A ⊆ (f |k)−1(c) (for some c ∈
n) such that |A| > F (A). This leads to the contradiction |f−1(c)| ≥
|(f |k)−1(c)| ≥ |A| > F (A) ≥ |f−1(c)|.

2. Analogously to the previous point (but using point 1 of the claim in the be-
ginning of the proof instead of point 2).

15.4 Reverse mathematics

15.22. Reverse mathematics is a research project that attempts to measure the
strength of theorems by determining which axioms are need to prove them. For
example, over set theory ZF, to prove the theorem “every vector space has a basis”
we need exactly the axiom of choice. However, reverse mathematics usually does
not deal with set theory but with a hierarchy of five subsystems RCA0, WKL0,
ACA0, ATR0 and Π1

1-CA0 of second order arithmetic Z2, pictured in figure 15.1.
Informally, Z2 is Peano arithmetic extended to talk about sets of natural numbers,
or equivalently, it is set theory restricted to natural numbers and sets of natural
numbers. Here we are only going to need the first three systems RCA0, WKL0 and
ACA0. In order to give a feeling of how powerful they are, we describe in table 15.3
their first and second order parts [64, remarks I.3.3, I.7.6 and I.10.5] [82].

15.23 Definition. Let us define the second order arithmetic Z2 [64, definition I.2.4].

207

RCA0 WKL0 ACA0

first
order
part

Peano arithmetic with
only Σ0

1 induction
Peano arithmetic with
only Σ0

1 induction
full Peano arithmetic

second
order
part

only proves the exis-
tence of computable
sets

proves the existence of
some non-computable
sets

proves the existence of
all arithmetical sets

Table 15.3: first and second order parts of RCA0, WKL0 and ACA0.

1. The language of Z2 is the following.

(a) The language of Z2 has the following symbols.

i. Number variables (usually denoted by lower case letters).

ii. Set variables (usually denoted by upper case letters).

iii. The constant zero 0.

iv. The constant one 1.

v. The binary operation symbol addition +.

vi. The binary operation symbol multiplication ·.
vii. The binary relation equality =.

viii. The binary relation strict inequality <.

ix. The binary relation membership ∈.
x. The logical constants ∧, ∨, ¬, →, ↔, ∃x, ∃X , ∀x and ∀X (where x

is a number variable and X is a set variable).

(b) Terms are defined as follows.

i. Variables and (non-logical) constants are terms.

ii. If s and t are terms, then s+ t and s · t are terms.

(c) Formulas are defined as follows.

i. The expressions s = t, s < t and s ∈ X are atomic formulas (where
s and t are numerical terms and X is a set variable).

ii. Formulas are built from atomic formulas by means of ∧, ∨, ¬, →,
↔, ∃x, ∃X , ∀x and ∀X .

2. The axioms of Z2 are the ones of CL, the usual axioms of equality and the ones
given in table 15.4.

15.24. We have the following interpretation in mind for the language of Z2: numer-
ical terms are intended to range in N, and set variables are intended to range over
all subsets of N. Let us quickly comment on the role of the axioms of Z2.

1. The axioms of successor characterise the behaviour of x 7→ x+ 1.

2. The axioms of + and · define these operations by recursion.

208

axioms of successor
x+ 1 6= 0

x+ 1 = y + 1→ x = y

axioms of +
x+ 0 = x

x+ (y + 1) = (x+ y) + 1

axioms of · x · 0 = 0

x · (y + 1) = x · y + y

axioms of <
x ≮ 0

x < y + 1↔ x < y ∨ x = y

induction axiom (schema) A(0) ∧ ∀x (A(x)→ A(x+ 1))→ ∀xA(x)

comprehension axiom (schema)
∃X ∀x (x ∈ X ↔ A(x))

(x /∈ FV(A))

Table 15.4: axioms of Z2 (in addition to the ones of CL and the usual axioms of
equality).

3. The axioms of < suffice (in the presence of a small amount of induction) to
show that < is a strict total order (that is irreflexive, asymmetric, transitive
and trichotomous) compatible with + and · (in the sense of x < y ↔ x+ z <
y + z, and x < y ↔ xz < yz if z 6= 0) [64, lemma II.2.1].

4. The comprehension axiom for the formula A(x) says that we can form the set
X = {x ∈ N : A(x)}.

15.25. We are not going to develop in detail Z2 and its subsystems RCA0, WKL0

and ACA0 because that by itself would be much longer than the use that we make
of these systems. Instead, we quickly outline now what we need. In the presence of
a small amount of induction and comprehension (for example, in RCA0 from point 1
of definition 15.27), we can code finite sets and finite sequences of numbers by
numbers [64, section II.2]. Furthermore, we can code functions f : X ⊆ N→ Y ⊆ N
by sets [64, definition II.3.1]. In particular, we can code binary trees, that is sets
of sequences of 0s and 1s closed under initial segments. An infinite path through a
tree is a function f : N → N such that any initial segment of f is in the tree [64,
definition I.6.5]. We can also formalise the notion |A| = n [21, definition 4]. All this
allows us to talk in RCA0 about sequences, functions, trees, finite cardinals, and so
on. To deal with sequences and codes, we need the following notation. Let s and t
be finite sequences of natural numbers, and f : N→ N be a function.

1. We denote by As the set {s(i) : i < lh s} coded by s [21, definition 2] (where
lh s is the length of s and s(i) is the i-th term of s [64, definition II.2.6]).

2. We denote by s̄n and f̄n the initial segment of length n of s and f , respectively.

3. We denote by Seq the set of all codes of finite sequences [64, definition II.2.6].

209

Given functions f, g : N → N, sometimes we write f̄n = ḡn (to fit the language of
RCA0) instead of f |n = g|n (that is f and g agree on the first n natural numbers).

15.26. Now we are going to define the subsystems RCA0, WKL0 and ACA0 of Z2.
These subsystems are obtained from Z2 by restricting induction and comprehension
to certain classes of formulas.

15.27 Definition. Let us define the notions of Σ0
n, Π

0
n and ∆0

n as usual but with
bounded matrices (that is formulas without unbounded quantifications but possibly
with the bounded quantifications ∀x < tA :≡ ∀x (x < t → A) and ∃x < tA :≡
∃x (x < t ∧ A) where the number variable x does not occur in the numerical term
t) [64, definitions II.1.1 and II.1.2]. An arithmetical formula is a formula without
set quantifiers [64, definition II.1.2].

1. The recursive comprehension axiom RCA0 [64, definition I.7.4] is the subsystem
of Z2 obtained by restricting the second order induction axiom (schema) to Σ0

1

formulas and restricting the comprehension axiom (schema) to ∆0
1 formulas.

2. The weak Kőnig’s lemma WKL0 [64, definition I.10.1] is the subsystem of Z2

obtained by adding to RCA0 the following principle also called weak Kőnig’s
lemma: every infinite binary tree has an infinite path.

3. The arithmetical comprehension axiom ACA0 [64, definition I.3.2] is the subsys-
tem of Z2 obtained by restricting the second order induction axiom (schema)
and the comprehension axiom (schema) to arithmetical formulas.

15.28 Remark. We have RCA0 ⊢ A ⇒
: WKL0 ⊢ A ⇒

: ACA0 ⊢ A [64, re-
mark I.10.2].

15.29 Example. First, we need to introduce some notions.

Countable field A countable field [64, definition II.9.1] is a set K ⊆ N together with
operations +K , ·K and −K over K satisfying the field axioms.

Polynomial A polynomial [64, definition II.9.1] overK is a finite sequence 〈a0, . . . , an〉
of elements of K, usually written anx

n + · · ·+ a1x+ a0.

Weak algebraic closure A weak algebraic closure [64, definition II.9.2] of K is a
countable field L, together with a monomorphism h : K → L, such that L is:

Algebraic closed every non-constant polynomial over L has a root in L;

Algebraic over K every element of L is a root of some non-zero polynomial
p(x) = anx

n+· · ·+a1x+a0 overK (more precisely, of the image h(p)(x) :=
h(an)x

n + · · ·h(a1)x+ h(a0) of p by h).

Strong algebraic closure A strong algebraic closure [64, definition III.3.1] of K is a
weak algebraic closure L, h of K together with the image h(K) of h. (The
condition that h(K) exists is not superfluous because in general RCA0 does
not prove its existence.)

210

Uniqueness We say that the algebraic closure of K is unique if and only if any for all
algebraic closures L, h and L′, h′ of K, there exists an isomorphism i : L→ L′

such that i ◦ h = h′.

The following result shows (by measuring their strength against RCA0, WKL0 and
ACA0) that the existence of a weak algebraic closure is weaker than the existence and
uniqueness of a weak algebraic closure, which in turn is weaker than the existence
and uniqueness of a strong algebraic closure. RCA0 proves:

1. every countable field has a weak algebraic closure [64, theorem II.9.4];

2. WKL0 is equivalent to every countable field having a unique weak algebraic
closure [64, theorem IV.5.1];

3. ACA0 is equivalent to every countable field having a unique strong algebraic
closure [64, theorem III.3.2].

15.30 Example. First, we need to introduce some notions.

Complete separable metric space A complete separable metric space Â [64, defini-
tion II.5.1] is (coded by) a non-empty set A ⊆ N together with a pseudo-
metric d : A × A → R (defined like a metric but excluding the condition
(∗) d(x, y) = 0→ x = y).

Points The points of Â are fast Cauchy sequences x = (xn)n∈N (that is ∀m ∀n <
m (d(xm, xn) ≤ 2−n)) with terms in A;

Metric The metric of Â is d̂(x, y) := lim d(xn, yn), for which (∗) holds by the

definition x = y :≡ d̂(x, y) = 0.

Compact metric space A compact metric space Â is a complete separable metric
space such that there exists a sequence (∗) ((Bij)i≤nj

)j∈N of finite sequences

(Bij)i≤nj
of open balls Bij of radius 2−j such that each (Bij)i≤nj

covers Â

(formally, to avoid forming the sets Bij , we work with the centre cij ∈ Â of
Bij, so (∗) becomes ((cij)i≤nj

)j∈N) [64, definition III.2.3].

The notions of open set [64, definition I.4.7] and continuous functions [64, defini-
tion I.4.6] have to be coded along similar lines, but let us skip this to keep the
example light.

We discussed in paragraph 15.18 two forms of compactness: Heine-Borel com-
pactness and sequential compactness. The following result shows (by measuring
their strength against WKL0 and ACA0) that Heine-Borel compactness is weaker
than sequential compactness. RCA0 proves:

1. WKL0 is equivalent to Heine-Borel compactness in the form “every countable
open cover of a compact metric space has a finite subcover” and also in the
form “every real-valued continuous function is bounded on a compact metric
space” [64, theorem I.10.3];

2. ACA0 is equivalent to sequential compactness in the form “every sequence
with terms in a compact metric space has a convergent subsequence” [64,
theorem III.2.7].

211

15.5 Reverse mathematics of the “finitary” infi-

nite pigeonhole principles

15.31. The principles FIPP1, FIPP2 and FIPP3 talk about sequences (An)n∈N with
terms in Pfin(N), and functions F : Pfin(N) → N. But these objects do not fit the
language of RCA0. So we rewrite the principles to make them fit the language in the
following way.

1. Instead of talking about sequences (An)n∈N of finite sets, we talk about se-
quences (ln)n∈N of codes of finite sets.

2. Instead of talking about functions F : Pfin(N) → N that take finite sets as
input, we talk about functions F : N → N that take codes of finite sets as
input. Because the same set can have more than one code, but the value of F
is suppose to depend only on the set and not on the chosen code, we assume
that F is extensional, that is ∀l, l′ ∈ Seq (Al → Al′ → F (l) = F (l′)) [21,
definition 5.3].

To be sure, let us briefly rewrite the definitions 15.7 and 15.16 (omitting the refer-
ences to the literature since they are the same as before).

15.32 Definition. Let (ln)n∈N be a sequence with terms in Seq, F : N → N be an
extensional function and I ∈ Pinf(N). We define the following in RCA0 (where f

−1(c)
exists by Σ0

0 comprehension).

1. We say that (ln)n∈N is a nested if and only if ∀n (Aln ⊆ Aln+1) and
⋃

n∈N exists.

2. We say that (ln)n∈N weakly converges to I if and only if for all finite B ⊆ N
we eventually have Aln ∩ B = I ∩ B for all n sufficient large.

3. We write F ∈ AS if and only if F stabilises over all nested sequences.

4. We write F ∈ ASNIS if and only if F stabilises over all weakly convergent
sequences.

5. The principles IPP, FIPP1, FIPP2 and FIPP3 are, respectively,

∀n ∀f : N→ n ∃c ∈ n (|f−1(c)| =∞),

∀n ∀F ∈ AS ∃k ∀f : k → n ∃c ∈ n ∃l ∈ Seq (Al = f−1(c) ∧ |Al| > F (l)),

∀n ∀F ∈ AS ∃k ∀f : k → n ∃c ∈ n ∃l ∈ Seq (Al ⊆ f−1(c) ∧ |Al| > F (l)),

∀n ∀F ∈ ASNIS ∃k ∀f : k → n ∃c ∈ n ∃l ∈ Seq (Al = f−1(c) ∧ |Al| > F (l)).

15.33. We adopt the following scheme in the proofs that follow.

Mathematical argument In a first part of the proofs we argue informally, that is
without adhering to the language of RCA0 (by talking about sequences (An)n∈N
with terms in Pfin(N), and functions F : Pfin(N) → A) and to the axioms of
RCA0 (by using induction and comprehension at will).

212

Logical argument If necessary, in a second part of the proof we say what needs to
be added to or changed in the first part to formalise the proof in RCA0.

We strive to get a balance between a clear presentation of the mathematical argu-
ments and giving some detail about the logical arguments. Admittedly, the logical
arguments are not so detailed here as in other parts of the text or in our paper [21].
This is by design, since filling the proofs with the technicalities of the logical argu-
ments easily obscure the mathematical arguments, and anyway most of the techni-
calities are just bureaucratic verifications.

15.34. We start by giving a counterexample to FIPP1, Tao’s original proposed fini-
tisation of IPP. This counterexample led us to propose FIPP2 and Tao to propose
FIPP3.

15.35 Theorem. RCA0 ⊢ ¬FIPP1 [21, theorem 15].

15.36 Proof. Let us show

RCA0 ⊢ ∃n ∃F ∈ AS ∀k ∃fk : k → n ∀c ∈ n
(
|f−1(c)| > F (f−1(c))

)
.

Let us take n := 2 colours. Let O and E be the sets of odd and even natural numbers,
respectively, and define F (A) := min(A∩O)+min(A∩E)+2 with the non-standard
convention min ∅ := 0. Note F ∈ AS because the function min stabilise over nested
sequences. Finally, for each k let the colouring fk assign to odd numbers the colour
0 and to even numbers the colour 1, except for the last two numbers k−2 and k−1
of the set k, to which we reverse the assignment of colours. We write in figure 15.3
the coloured sets k, with the numbers with colour 0 and 1 marked with one and two
dots, respectively, and on the left of each set we write the value of F over its colour
classes. We can see that the cardinality |(fk)−1(c)| of each colour class is less than
or equal than the value F ((fk)

−1(c)) of F over that colour class, because the former
is less than or equal to k and the latter is greater than or equal to k.

2̇ 2̈ 0 = { }
2̇ 2̈ 1 = { 0̇ }
2̇ 3̈ 2 = { 0̇, 1̈ }
4̇ 3̈ 3 = { 0̈, 1̈, 2̇ }
5̇ 5̈ 4 = { 0̈, 1̇, 2̇, 3̈ }
7̇ 5̈ 5 = { 0̈, 1̇, 2̈, 3̈, 4̇ }
7̇ 7̈ 6 = { 0̈, 1̇, 2̈, 3̇, 4̇, 5̈ }
9̇ 7̈ 7 = { 0̈, 1̇, 2̈, 3̇, 4̈, 5̈, 6̇ }
...

...
...

...
...

...
...

...
...

...
. . .

Figure 15.3: the colourings fk and the value of F over their colour classes.

To formalise the proof in RCA0, we replace our F by the extensional function
F : N→ N defined by Σ0

1 comprehension by

F (l) :=

{
min(Al ∩O) + min(Al ∩ E) + 2 if l ∈ Seq

0 if l /∈ Seq
.

213

15.37. With FIPP1 out of the way, now we turn to FIPP2 and FIPP3. We want
to determine which of the finitisations FIPP2 and FIPP3 of IPP is more faithful,
that is which of the equivalences IPP ↔ FIPP2 and IPP ↔ FIPP3 is provable in
a weaker theory. Our candidate theories are RCA0, WKL0 and ACA0. Instead of
directly comparing IPP ↔ FIPP2 and IPP ↔ FIPP3 with RCA0, WKL0 and ACA0,
we introduce the continuous uniform boundedness principle CUB as an intermediate
step. This principle is a form of “fan principle”, a type of principle prominent in
intuitionistic mathematics.

15.38 Definition. Let A(f, x) be a formula with a distinguished set variable f and
with distinguished number variables x. Let n /∈ FV(A(f, x)).

1. Let us fix a number of colours n. We say that A is continuous with respect to
f, x, and write cont(A(f, x)), if and only if for all colourings f : N → n of N
with n colours and for any bound z on x, if a colouring g : N→ n agrees with f
over a long enough initial segment y of N, then A does not “see the difference”
between f by g for x ≤ z, in the sense of ∀x ≤ z (A(f, x)↔ A(g, x)) [49] [21,
definition 18.1]. In symbols:

∀f : N→ n ∀z ∃y ∀g : N→ n
(
f̄ y = ḡy → ∀x ≤ z (A(f, x)↔ A(g, x))

)
.

2. The continuous uniform boundedness principle CUB is the following principle:
for any number of colours n, if cont(A(f, x)) and for all colourings f : N→ n
there exist x such that A(f, x), then there exists a bound z on x uniformly on
f [49] [21, definition 18.1]. In symbols:

∀n
(
cont(A(f, x)) ∧ ∀f : N→ n ∃xA(f, x)→ ∃z ∀f : N→ n ∃x ≤ z A(f, x)

)
.

We denote by Σ0
0-CUB the restriction of CUB to Σ0

0 formulas, and analogously
for Σ0

1 and Π0
1 formulas.

15.39. We can think of cont(A(f, x)) as the translation of the notion (15.14) below
of a continuous functional φ : nN×Nk → N to formulas A(f, x), resulting in (15.15),
with some bounded collection ∀z (∀x ≤ z ∃y A(y) → ∃y ∀x ≤ z ∃y′ ≤ y A(y′))
hardwired in step (15.16):

∀f : N→ n ∀x ∃y ∀g : N→ n (f̄ y = ḡy → φ(f, x) = φ(g, x)) (15.14)

∀f : N→ n ∀x ∃y ∀g : N→ n
(
f̄ y = ḡy → (A(f, x)↔ A(g, x))

)
↔ (15.15)

∀f : N→ n ∀z ∀x ≤ z ∃y ∀g : N→ n
(
f̄ y = ḡy → (A(f, x)↔ A(g, x))

)
↔

∀f : N→ n ∀z ∃y ∀x ≤ z ∃y′ ≤ y ∀g : N→ n(
f̄ y′ = ḡy′ → (A(f, x)↔ A(g, x))

)↔ (15.16)

∀f : N→ n ∀z ∃y ∀x ≤ z ∀g : N→ n
(
f̄ y = ḡy → (A(f, x)↔ A(g, x))

)
↔

cont(A(f, x)).

Then we can think of CUB as saying that if a formula A(f, x) is continuous and
“defines” a function f 7→ x (that is ∀f : N → n ∃xA(f, x)), then the function
is bounded by some z on the compact Cantor space nN: f 7→ x ≤ z (that is
∀f : N→ n ∃x ≤ z A(f, x)).

214

15.40. Now we show that the implications and equivalences of figure 15.4 hold in
RCA0. The implications in RCA0 and WKL0 are meaningful because these systems
do not prove IPP [38, corollary 6.5], FIPP2 and FIPP3 [21, corollary 17], but the
implication in ACA0 is not so meaningful because ACA0 proves IPP [64, lemma III.7.4]
[21, page 359]. The equivalences calibrate CUB in terms of WKL0 and ACA0 (we
could further add that RCA0 plus unrestricted induction proves Z2 ↔ CUB [49] [21,
theorem 22.3], but this does not fit so nicely our framework and is not needed). The
figure suggests that FIPP2 is a more faithful finitisation of IPP than FIPP3 because
the equivalence IPP ↔ FIPP2 is provable in WKL0, while IPP ↔ FIPP3 is provable
in ACA0. However, we did not exclude that IPP↔ FIPP3 may be provable in WKL0,
so we cannot come to a definitive conclusion.

ACA0
oo // Π0

1-CUB
// (IPP→ FIPP3)

WKL0

(

OO

oo // Σ0
0-CUB

// (IPP→ FIPP2)

RCA0

(

OO

// (FIPP2/3 → IPP)

Figure 15.4: reverse mathematics of “finitary” infinite pigeonhole principles.

15.41 Theorem.

1. RCA0 ⊢ FIPP2 → IPP [49] [21, theorem 16.1].

2. RCA0 ⊢ FIPP3 → IPP [21, theorem 16.1].

15.42 Proof.

1. Let us assume FIPP2 and, by contradiction, ¬IPP. So there exists n and
f : N → n such that all colour classes of f are finite. Thus we can define the
function F : Pfin(N)→ N by

F (A) :=

{
|A| if A is monochromatic

0 otherwise
.

Note F ∈ AS: given any nested sequence (Am)m∈N with union A, if A is finite
then (Am)m∈N eventually becomes constant so F stabilises over (Am)m∈N, and
if A is infinite then Am is not monochromatic for large enoughm so F stabilises
with value 0 over the sequence. Thus we have an F ∈ AS such that |A| > F (A)
for no monochromatic finite set A, contradicting FIPP2.

To formalise the proof in RCA0, we do the following.

(a) We replace (Am)m∈N by (Alm)m∈N (with lm ∈ Seq), and A by Al (with
l ∈ Seq).

215

(b) The formula |Al| ≤ n ∨ ∃x, y ∈ Al (f(x) 6= f(y)) is equivalent in RCA0

to a Σ0
0 formula because the quantifications can be bounded (by a term

depending on l) and the extraction of the values f(x) and f(y) from
the graph of f uses bounded (by n) quantifiers. So we can define the
extensional function F : N→ N by primitive recursion by

F (l) :=

{
µm . |Al| ≤ m ∨ ∃x, y ∈ Al (f(x) 6= f(y)) if l ∈ Seq

0 otherwise
.

(c) Let us prove that if the union A of the nested sequence (Alm)m∈N is
finite, then (Alm)m∈N stabilises. We assume that A is finite, that is
∃y ∀x ∈ A (x ≤ y). By the strong Σ0

1 bounding schema ∀y ∃z ∀x ≤
y (∃mB(x,m) → ∃m ≤ z B(x,m)) where B(x,m) is Σ0

1 (which is prov-
able in RCA0 [64, exercise II.3.14]) we have ∃z ∀x ≤ y (∃m (x ∈ Alm) →
∃m ≤ z (x ∈ Alm)). So A = Alz , therefore (Alm)m∈N is constant for
m ≥ z.

2. This point is proved analogously to the the previous point, except that here we
argue F ∈ ASNIS. Consider an arbitrary sequence (Am)m∈N weakly converging
to an infinite set A. So A is not monochromatic, that is there exists x, y ∈ A
such that f(x) 6= f(y). Let z := max(x, y) + 1 and note x, y ∈ z. Since
(Am)m∈N weakly converges to A, then we have Am∩z = A∩z for large enough
m, thus x, y ∈ Am. So Am is not monochromatic for large enough m, therefore
F stabilises over (Am)m∈N with value 0.

15.43 Theorem.

1. RCA0 ⊢ WKL0 ↔ Σ0
0-CUB [49] [21, theorem 22.1].

2. RCA0 ⊢ ACA0 ↔ Π0
1-CUB [49] [21, theorem 22.2].

15.44 Proof.

1. → First, let us remark informally that if A(f, x) (where f : N → n is a func-
tion) is Σ0

0, then there are no quantifiers in it making the variables running
through infinite many values, so f is only instantiated at finitely many
points, thus f can be replaced by f̄m for m large enough. This being
said, we can write A(f, x) as ∀mB(f̄m, x) where B(f, x) is a Σ0

0 formula
that expresses “if m is large enough, then A(f̄m, x)” [21, lemma 13.3].
Formally, we take B(s, x) :≡ m ≥ t → A′(s, x), where A′(s, x) (with
s ∈ Seq) is obtained from A(f, x) by replacing each instance of r ∈ f
(where r is term) by ∃x, y ≤ r (r = (x, y) ∧ s(x) = y), and the term t is
such that RCA0 ⊢ ∀f : N → n

(
m ≥ t→ (A(f, x) ↔ A′(f̄m, x))

)
. Let us

prove the existence of t by induction on the structure of A.

Aat If f /∈ FV(Aat(f, x)), then the result is trivial, so let us assume
f ∈ FV(Aat(f, x)). Then Aat(f, x) ≡ r ∈ f , that is ∃x, y ≤ r (r =
(x, y) ∧ f(x) = y), for some term r. So t := r + 1 works.

216

∧ For A ∧ B we take for t the sum of the ts that work for A and B.
Analogously for ¬, ∨, → and ↔.

∀< By induction hypothesis we have t(w) working for A(f, x, w), so t(r)
works for ∀w < rA(f, x, w) (using w ≤ r → t(w) ≤ t(r), which is
provable by induction on the structure of t). Analogously for ∃<.

Let us assume WKL0 and prove Σ0
0-CUB by contraposition. We assume

(∗) ∀k ∃f : N → n ∀x ≤ k A(f, x) where A is Σ0
0. Consider the bounded

tree T := {τ : l → n | ∀x,m ≤ l B(τ̄m, x)}. Then T is infinite because
for any l there is a τ : l → n in T : taking k = l in (∗) we get an f : N→ n
such that ∀x ≤ k A(f, x), that is ∀x ≤ k ∀mB(f̄m, x), so τ := f̄ l ∈ T .
By WKL0 (actually by the equivalent bounded weak Kőnig’s lemma [64,
lemma IV.1.4]) we have an infinite path f : N → n through T , that is

for all l we have ∀x,m ≤ l B(f̄ lm, x) where f̄ lm = f̄m. Then given any
x,m, taking l = max(x,m) we get B(f̄m, x). So we have ∀x,mB(f̄m, x),
that is ∀xA(f, x). We conclude ∃f : N→ n ∀xA(f, x).

← First let us prove that all Σ0
0 formulas A(f, x) are continuous by showing

RCA0 ⊢ ∀z ∃y ∀f, g : N → n
(
f̄y = ḡy → ∀x ≤ z (A(f) ↔ A(g))

)
by

induction on the structure of A [21, lemma 13.1].

Aat If f /∈ FV(Aat) then the result is trivial, so let us assume x ∈
FV(Aat). Then Aat ≡ t ∈ f , that is ∃x, y ≤ t (t = (x, y) ∧ f(x) = y),
for some term t. We can prove ∃w ∀x ≤ t (t ≤ w) by induction on
the structure of t. So y := w + 1 works.

∧ For A ∧ B we take for y the sum of the ys that work for A and B.
Analogously for ¬, ∨, → and ↔.

∀< We want to construct a y for ∀w < tA. By induction hypothesis we

have ∀z′ ∃y ∀f, g : N → n
(
f̄y = ḡy → ∀x, w ≤ z′ (A(f) ↔ A(g))

)
.

Taking z′ := max(z, t) we get ∀z ∃y ∀f, g : N → n
(
f̄y = ḡy → ∀x ≤

z (∀w < tA(f)↔ ∀w < tA(g))
)
. Analogously for ∃<.

Now let us prove the implication of the theorem. We assume Σ0
0-CUB and,

by contradiction, the negation of the weak Kőnig’s lemma. Then there
exists an infinite binary tree T with no infinite path, that is ∀f : N →
2 ∃x (f̄x /∈ T). By Σ0

0-CUB (actually by Σ0
1-CUB that results from Σ0

0-CUB

knowing that any Σ0
0 formula is continuous) applied to the ∆0

1 formula
f̄x /∈ T we get a k such that ∀f : N → 2 ∃x ≤ k (f̄x /∈ T). So every
branch in T has length bounded by k, therefore T is actually finite, a
contradiction.

2. We show that Π0
1-CUB is equivalent to Π0

1 comprehension, which is equivalent
to Σ0

1 comprehension, which in turn is equivalent to ACA0 [64, lemma III.1.3].

→ Let ∀mA(x,m) be a Π0
1 formula where A is a Σ0

0 formula. By contradiction,
we assume that there is no set X such that ∀x (x ∈ X ↔ ∀mA(x,m)),
that is there is no characteristic function f : N→ 2 of a set X such that
∀x (f(x) = 1↔ ∀mA(x,m)). So

∀f : N→ 2 ∃x,m∀m′ ¬
(
(f(x) = 1→ A(x,m))∧ (A(x,m′)→ f(x) = 1)

)
.

217

Note that subformula starting with ∀m′ is Π0
1 and is continuous with

respect to f, x,m, so by Π0
1-CUB we get a bound z on x,m uniformly on

f , that is

∀f : N→ 2 ∃x ≤ z

¬
(
(f(x) = 1→ ∀m ≤ z A(x,m)) ∧ (∀m′ A(x,m′)→ f(x) = 1)

)
.

But this is contradicted by the function f : N→ 2 defined by

f(x) :=

{
1 if ∀m ≤ z A(x,m)

0 otherwise
.

← Let us assume the premises cont(A(f, x)) and ∀f : N → n ∃xA(f, x) of
Π0

1-CUB, where A is a Π0
1 formula. So we can consider the total and

continuous functional φ : nN → N defined by φ(f) := µz . ∃x ≤ z A(f, x).
Since the Cantor space nN is compact [64, example III.2.6], then φ is
bounded by some z on nN. We conclude ∀f : N→ n ∃x ≤ z A(f, x).

To formalise the proof in RCA0 we show that the third order object φ (that
does not fit the language of RCA0) has a code in ACA0 as a continuous
functional [64, definition II.6.1]. It suffices to show that φ has an associate
α : N→ N [47, proposition 4.4] [21, lemma 11], namely

α(l) :=

µz . ∃x ≤ z A(la0, x) + 1 if l ∈ Seq≤n ∧ ∀l′ ∈ Seq≤n (l ⊆ l′ →
µz . ∃x ≤ z A(la0, x) =

µz . ∃x ≤ z A(l′a0, x))

0 otherwise

where la0: N → N is the extension of l by zeros, l ∈ Seq≤n :≡ l ∈
Seq ∧ la0: N→ n and l ⊆ l′ means that l is an initial segment of l′. Let
us prove that α is an associate of φ, that is α satisfies the following two
conditions.

∀β : N→ n ∃m (α(β̄m) > 0) Taking f = β and z = µz . ∃x ≤ z A(β, x)
in cont(A(f, x)) (using the notation of point 1 of definition 15.38)
we get a y such that ∀g : N → n

(
β̄y = ḡy → ∀x ≤ µz . ∃x ≤

z A(β, x) (A(β, x)↔ A(g, x))
)
, so

∀g, g′ : N→ n (β̄y = ḡy = ḡ′y → µz . ∃x ≤ z A(β, x) =

µz . ∃x ≤ z A(g, x) = µz . ∃x ≤ z A(g′, x)).
(15.17)

Let m := y. Taking g = β̄ma0 and g′ = l′a0 (where l′ ∈ Seq≤n)
in (15.17) we get β̄m ⊆ l′ → µz . ∃x ≤ z A(β̄ma0, x) = µz . ∃x ≤
z A(l′a0, x), so α(β̄m) = µ(β̄m) + 1 > 0.

∀β : N→ n
(
α(µm . α(β̄m) > 0) = φ(β) + 1

)
Let m := µm . α(β̄m) > 0

and m′ := max(m, y). Using the definition of α in the first two
equalities, and (15.17) with g = β̄m′a0 in the third equality, we get
α(β̄m) = µz . ∃x ≤ z A(β̄ma0, x)+1 = µz . ∃x ≤ z A(β̄m′a0, x)+1 =
µz . ∃x ≤ z A(β, x) + 1 = φ(β) + 1.

218

15.45 Theorem.

1. RCA0 ⊢ Σ0
0-CUB→ (IPP→ FIPP2) [49] [21, theorem 24].

2. RCA0 ⊢ Π0
1-CUB→ (IPP→ FIPP3) [21, theorem 24].

15.46 Proof.

1. Let us assume Σ0
0-CUB and IPP. First we prove

∀n ∀F ∈ AS ∀f : N→ n ∃mB(f,m),

B(f,m) :≡ ∃c ∈ n ∃A ⊆ f−1(c) ∩m (|A| > F (A)).

Consider arbitrary n, F ∈ AS and f : N → n. By IPP, f has an infinite
colour class f−1(c). Since F ∈ AS, then F stabilises over the nested sequence
Am := f−1(c) ∩m with union f−1(c). But |Am| → ∞. So for m large enough
we have |Am| > F (Am). Take A := Am for such an m.

Note cont(B(f,m)) and that B is a Σ0
1 formula, so by Σ0

0-CUB (actually by
Σ0

1-CUB that results from Σ0
0-CUB as showed in point 1 of proof 15.44) we get

a bound k on m uniformly on f . Then by restricting f to the set k, and noting
that ∃m ≤ k B(f,m) implies B(f, k), we conclude FIPP2.

To formalise this proof in RCA0, we replace the set quantification of A in B
by a number quantification of a code of A, so that B becomes a genuine Σ0

1

formula.

2. The proof is similar to the previous point, but taking B(f,m) :≡ ∃c ∈
n ∀A (A∩m = f−1(c)∩m→ |A| > F (A)), which is equivalent to a Π0

1 formula
(namely ∀l′ ∃c ∈ n ∀l ≤ l′ (l ∈ Seq ∧ Al ∩ m = f−1(c) ∩ m → |Al| > F (Al))
by the strong Σ0

1 bounding schema which is provable in RCA0 [64, exer-
cise II.3.14]). Then once we get a bound k, the universal quantification on
A in B(f, k) allows us to take A = Ak, that is A = (f |k)−1(c), and to conclude
|A| > F (A).

15.47. Taking a look at point 2 of proof 15.46, we see that the reason why we need
Π0

1-CUB (rather than only Σ0
0-CUB) is because we need a universal quantification

∀A in the formula B(f,m) to ensure that A is not just (essentially) a subset of a
colour class but it is even the full colour class. The requirement that A is maximal
increases the complexity of the instance of CUB used (from Σ0

0-CUB to Π0
1-CUB),

forcing us to upgrade from WKL0 to ACA0 (according to theorem 15.43).

15.6 Conclusion

15.48. We discussed that Tao wants to finitise statements in analysis: to assign to
soft analysis statements (infinitary and qualitative) equivalent hard analysis state-
ments (finitary and quantitative). One of his prime examples is an almost finitisation
of the infinite pigeonhole principle IPP. There are three proposed finitisations of IPP:

FIPP1 Tao’s original finitisation, we gave a counterexample to it;

219

FIPP2 Our proposed correction;

FIPP3 Tao’s proposed correction.

We investigated, in the context of reverse mathematics, which one of the two
corrections is a more faithful finitisation, that is which of the equivalence IPP ↔
FIPP2 and IPP↔ FIPP3 is provable in a weaker theory. We concluded

WKL0 ⊢ IPP↔ FIPP2,

ACA0 ⊢ IPP↔ FIPP3.

This suggest that FIPP2 is a more faithful finitisation of IPP than FIPP3 (but without
showing WKL0 0 IPP↔ FIPP3 we arrive at no definitive answer).

220

Chapter 16

Proof mining Hillam’s theorem

16.1 Introduction

16.1. The fixed point iteration is a method of computing fixed points of continuous
functions φ : [0, 1]→ [0, 1] (here we restrict ourselves to [0, 1]):

Fix v0 ∈ [0, 1] and define the sequence (vk)k∈N by vk+1 := φ(vk). If
vk → x, then x is a fixed point of φ.

What this method does not tell us is when (vk)k∈N converges. Hillam’s theorem [37]
answers this question:

The sequence (vk)k∈N converges if and only if vk+1 − vk → 0.

The left-to-right implication is well-known; the right-to-left implication is the inter-
esting one.

16.2. We are going to proof mine Hillam’s theorem, that is to extract computa-
tional content from Hillam’s proof. In more detail, we are going to give a rate of
metastability (a kind of “finitary rate of convergence”) of (vk)k∈N in terms of a rate of
metastability of (vk+1−vk)k∈N and a rate of uniform continuity of φ. Schematically:

rate of metastability
of (vk)k∈N

= f
(
rate of uniform
continuity of φ

, rate of metastability
of (vk+1 − vk)k∈N

)
. (16.1)

This is done in the following way. Let

A :≡ “φ is continuous”,

B :≡ “vk+1 − vk → 0”,

C :≡ “(vk)k∈N is a Cauchy sequence”.

We write the right-to-left implication of Hillam’s theorem as A, B /C, and we in-
terpret it with MD ◦ GG, getting a witness γ(α, β) for (CGG)MD as a function of
witnesses α for (AGG)MD and β for (BGG)MD:

A B
C

α for (AGG)MD β for (BGG)MD

γ(α, β) for (CGG)MD
.

221

Then α, β and γ are the rates that we talk about in (16.1):

rate of metastability
of (vk)k∈N︸ ︷︷ ︸

γ(α,β) for (CGG)MD

= f︸︷︷︸
γ

(
rate of uniform
continuity of φ︸ ︷︷ ︸

α for (AGG)MD

, rate of metastability
of (vk+1 − vk)k∈N︸ ︷︷ ︸

β for (BGG)MD

)
.

16.3. We are going to present two proof mined versions of Hillam’s theorem.

1. A version that uses a rate of convergence of (vk+1 − vk)k∈N.

(a) This version is only partially proof mined (because the soundness theorem
of MD predicts that we should be able to use only a rate of metastability
instead of a full rate of convergence).

(b) This version has the advantage of giving a simpler γ.

2. A version that uses a rate of metastability of (vk+1 − vk)k∈N.

(a) This version is fully proof mined (because it only uses what the soundness
theorem of MD predicts that should be used).

(b) This version has the disadvantage of giving a more complicated γ (because
it uses a complicated term witnessing the interpretation (IPPGG)MD of the
infinite pigeonhole principle IPP).

We end with numerical tests on γ to get an idea of how good or bad this rate is.

16.2 Formalising the proof

16.4. In order to proof mine the proof of Hillam’s theorem, we start by the theorem
with (essentially) its original proof.

16.5 Theorem (Hillam’s theorem). Consider a function φ : [0, 1] → [0, 1], take
an arbitrary v0 ∈ [0, 1] and define the sequence (vk)k∈N by vk+1 := φ(vk). If φ is
continuous and vk+1 − vk → 0, then (vk)k∈N converges [37].

16.6 Proof. By contradiction, let us assume that (vk)k∈N diverges. Then there
exist two subsequences converging to distinct cluster points l1 and l2 of (vk)k∈N. Say
l1 < l2 and let I :=]l1, l2[. We consider two cases.

∀x ∈ I (|φ(x)− x| = 0) Since vk+1 − vk → 0, and l1 and l2 are cluster points of
(vk)k∈N, then eventually vk ∈ I for some k ∈ N. Then vk+1 = φ(vk) = vk by
∀x ∈ I (φ(x) = x), and analogously vk = vk+1 = vk+2 = · · · . But then (vk)k∈N
converges, contradicting the assumption that it diverges.

∃x ∈ I (|φ(x)− x| > 0) By the continuity of φ, there exist ε, δ > 0 such that (∗1) ∀y ∈
J :=]x − ε, x + ε[⊆ I (|φ(y) − y| > δ). Since vk+1 − vk → 0, and l1 and l2
are cluster points of (vk)k∈N, then eventually vk ∈ J and (∗2) |vk+1 − vk| < δ,
for some k ∈ N. But then |vk+1− vk| = |φ(vk)− vk| > δ by (∗1), contradicting
(∗2). This is pictured in figure 16.1.

222

0 1

I
J

l1 l2xx−ε x+ε

Figure 16.1: the intervals I and J .

16.7.

1. The proof 16.6 uses the Bolzano-Weierstrass theorem to produce an interval
J such that (vk)k∈N crosses J infinitely often. The way the proof does this is
by assuming that (vk)k∈N diverges and vk+1− vk → 0, then using the Bolzano-
Weierstrass theorem to get two distinct cluster points l1 and l2 (with l1 < l2)
of (vk)k∈N, and taking J =]x − ε, x + ε[⊆]l1, l2[. So (vk)k∈N will oscillate
infinitely often between l1 and l1, and for large enough k will do so entering J .

In order to give (in proof 16.15 below) a proof of theorem 16.5 in (typed)
Peano arithmetic, we are going to replace the full Bolzano-Weierstrass theorem
(which requires full arithmetic comprehension because it is equivalent in RCA0

to ACA0 [64, theorem III.2.2], similarly to example 15.30) by a “discrete” ver-
sion of the Bolzano-Weierstrass theorem: the infinite pigeonhole principle IPP
(which is provable in Peano arithmetic). That is we will argue the existence of
such an interval J using IPP. We sketch the argument. We assume that (vk)k∈N
diverges (that is there exists an ε > 0 such that ∀n ∈ N ∃k > n (|vn−vk| ≥ ε))
and vk+1 − vk → 0. We divide [0, 1] into intervals Ii small enough (that is
with length lh Ii < ε/3) such that the assumption that (vk)k∈N diverges im-
plies that (vk)k∈N will always eventually move from one Ii0 into a nonadjacent
Ii1 (that is if vn ∈ Ii0, then there exists a k > n such that vk ∈ Ii1 for some
i1 such that |i0 − i1| ≥ 2). By IPP, (vk)k∈N enters infinitely often some Ii0 .
Once inside Ii0, (vk)k∈N will eventually jump to a nonadjacent interval. So, by
IPP, (vk)k∈N enters infinitely often some Ii1 nonadjacent to Ii0 . Let J be an
interval between Ii0 and Ii1. So (vk)k∈N will oscillate infinitely often between
Ii0 and Ii1 , and for k large enough it will do so entering J . This is illustrated
in figure 16.2 [51].

0 1

I0 I1 I2 Ii0 J Ii1

(vk)k∈N

Figure 16.2: the intervals Ii and (vk)k∈N crossing J as it goes from Ii0 to Ii1 .

2. In proof 16.6 we considered two cases: ∀x ∈ I (|φ(x) − x| = 0) and ∃x ∈
I (|φ(x) − x| > 0). To proof mine the proof, the second case is problematic
because we do not know x, so we cannot estimate the value of |φ(x) − x|.
Therefore in proof 16.15 we are going to replace these two cases by ε-versions
of the two cases: ∀x ∈ I (|φ(x)− x| ≤ ε) and ∃x ∈ I (|φ(x)− x| > ε), where ε

223

is a constant constructed using the parameters of the theorem (like a rate of
uniform continuity of φ).

16.8. The proof of Hillam’s theorem talks about real numbers in [0, 1], the difference
between two real numbers, inequality between two real numbers, and so on. So to
formalise the proof in WE-PA

ω we need to represent all those notions in the language
of WE-PA

ω. Let us sketch these representations [50, chapter 4]. Two things will be
particularly important later on:

1. the inequalities r1 < r2 and r1 ≤ r2 between real numbers are represented by
Σ0

1 and Π0
1 formulas, respectively;

2. there exists a term M such that the elements of [0, 1] can be represented by
terms bounded by M .

(We use WE-PA
ω instead of PAω not because we noticed a need for the extensionality

rule, but just to rely on literature that uses WE-PA
ω [50, chapter 4].)

16.9 Definition.

Q By definition 1.37, let j000 be a term ofWE-HA
ω representing a primitive recursive

Cantor pairing function j : N × N → N. Every (x, y) ∈ N × N can be coded
by the natural number j(x, y). We represent (x, y) in WE-HA

ω by the term
j000x0y0.

Every q ∈ Q can be written as x/2
y+1

with x, y ∈ N and x even, or as − (x+1)/2
y+1

with x, y ∈ N and x odd. We represent q in WE-HA
ω by the term 〈q〉 :≡ jxy.

By definition 1.37, let e000 be a term representing the primitive recursive func-
tion e : N × N → {0, 1} such that for all q1, q2 ∈ Q we have: e(〈q1〉, 〈q2〉) = 0
if and only if q1 = q2. We represent in WE-HA

ω the equality between rational
numbers by e000x0y0 =0 0. Analogously for <Q, ≥Q, +Q, −Q and |·|Q.

R Every r ∈ R is the limit of some Cauchy sequence (rn)n∈N of rational numbers

that converges fast, that is ∀n ∈ N (|rn+1 − rn| < 2−(n+1)). We represent r in
WE-HA

ω by a term r1 such that WE-HA
ω ⊢ R(r) where R(r) :≡ ∀n0 (|r(Sn)−Q

rn|Q <Q 〈2−(n+1)〉).
At first sight, a quantification ∀r ∈ RA(r) would be represented in WE-HA

ω

by ∀r1 (R(r)→ A(r)), therefore affecting the complexity of formulas. We can
avoid this by using the fast convergence: we define in WE-HA

ω the functional
r1 7→ r̂1 by

r̂n0 :=

{
rn if ∀m ≤ n (|r(Sm)− rm|Q <Q 〈2−(m+1)〉)
rk if k = µm . |r(Sm)− rm|Q ≥Q 〈2−(m+1)〉 ,

such thatWE-HA
ω ⊢ ∀r1R(r̂), and then ∀r ∈ RA(r) is represented inWE-HA

ω

by ∀r1A(r̂).

224

We represent in WE-HA
ω equality and inequality between real numbers by

r1 =R r2 :≡ ∀n0 (|r̂1(Sn)−Q r̂2(Sn)|Q <Q 〈2−n〉),
r1 <R r2 :≡ ∃n0 (r̂2(Sn)−Q r̂1(Sn) ≥Q 〈2−n〉),
r1 ≤R r2 :≡ ∀n0 (r̂1(Sn)−Q r̂2(Sn) <Q 〈2−n〉).

Also, we represent in WE-HA
ω the addition of real numbers by r1 +R r2 :≡

λn . (r̂1(Sn) +Q r̂2(Sn)) (the change from r̂i(n) to r̂i(Sn) ensures that r1 +R r2
converges fast), and analogously for −R, ·R and /R.

[0, 1] There exists a primitive recursive function M : N→ N such that real numbers

in [0, 1] can be represented in WE-HA
ω by r̃1 such that r̃ ≤e M . Let us sketch

this construction.

For each k ∈ N, consider the “2−n-fine net of points” Nn := {2−ni : i =
0, . . . , 2n}. Let M(n) := maxq∈Nn

〈q〉. Since N0 ⊆ N1 ⊆ · · · , then M(0) ≤
M(1) ≤ · · · , thus M ≤e M .

Every r ∈ [0, 1] is within a distance 2−(n+1) of some q ∈ Nn, so we can define
the sequence r̃ = (r̃n)n∈N by r̃n := 〈µq ∈ Nn . |r − q| ≤ 2−(n+1)〉. Informally,
this is a sequence, of (codes 〈q〉 of) rational numbers q ∈ Nn, converging to r.
This is illustrated in figure 16.3. Since these codes are bounded M(n), then
the sequence is bounded by M .

N4

N3

N2

N1

N0
rr̃0

r̃1

r̃2

r̃3

r̃4

Figure 16.3: the sequence (r̃n)n∈N approximating r over the nets Nn.

16.10 Lemma.

1. There exists a primitive recursive and bijective pairing function 〈·, ·〉 : N×N→
N such that for all n ∈ N, the pairs (p, q) ∈ N× N with p, q < n are coded by
〈p, q〉 < n2 [65, page 20].

2. We have ∀w, x, y, z ∈ R (|x− y| ≥ |w− z| − |w−x| − |y− z|). This is pictured
in figure 16.4.

3. Let J = [a, b] be a interval in R and lh J := b− a its length. Let x ∈ J , ε > 0
and I =]x− ε, x+ ε[. If lh J ≥ ε, then lh(I ∩ J) ≥ ε.

225

w x y z

Figure 16.4: the dashed distance is greater than or equal to the big distance minus
the two small distances, that is |x− y| ≥ |w − z| − |w − x| − |y − z|.

p
...

...
...

...
...

...
4 16 17 18 19 20 · · ·
3 9 10 11 12 21 · · ·
2 4 5 6 13 22 · · ·
1 1 2 7 14 23 · · ·
0 0 3 8 15 24 · · ·

0 1 2 3 4 · · · q

Figure 16.5: a bijective pairing 〈·, ·〉 such that 〈p, q〉 < n2 whenever p, q < n.

16.11 Proof.

1. The pairing function is illustrated in figure 16.5.

2. Using twice the triangular inequality we have |w − z| = |(w − x) + (x− y) +
(y − z)| ≤ |w − x| + |x− y|+ |y − z|.

3. We consider the two cases x − ε < a and x − ε ≥ a. For each one of these
cases, we consider the two subcases x + ε < b and x + ε ≥ b. For each case
and subcase, we present in table 16.1 an interval with length at least ε that is
contained in I ∩ J . So lh(I ∩ J) ≥ ε, as we wanted.

x+ ε < b x+ ε ≥ b

x− ε < a [x, x+ ε[⊆ I ∩ J J ⊆ I ∩ J
x− ε ≥ a I ⊆ I ∩ J]x− ε, x] ⊆ I ∩ J

Table 16.1: intervals, with length greater than or equal to ε, contained in I ∩ J .

16.12. Let Π0
1-AC

0,0 be AC restricted to Π0
1 formulas and variables of type 0 (that is

∀x0 ∃y0A(x, y) → ∃Y ∀xA(x, Y x) where A(x, y) is Π0
1), and analogously we define

Σ0
1-AC

0,0 and QF-AC
0,0. In the next theorem we show that there are proofs of

theorem 16.5 in WE-PA
ω +Π0

1-AC
0,0 and even in WE-PA

ω + QF-AC
0,0.

1. The proof in WE-PA
ω + Π0

1-AC
0,0 splits the interval [0, 1] into closed intervals

Ii :=
[
i
n
, i+1

n

]
, and has simpler computations but at the expense of using

Π0
1-AC

0,0 (because the formula x ∈ Ii is Π
0
1).

It is this proof, with its simpler computations, that we are actually going to
proof mine.

226

For the expert, we remark that when proof mining this proof, it could happen
that the terms extracted use bar recursion because of Π0

1-AC
0,0. This will not

happen because the use of Π0
1-AC

0,0 is unessential. Indeed, taking a close look
at the proof, we see that there are two places where we use Π0

1-AC
0,0:

(a) in the first place we can replace Π0
1-AC

0,0 by QF-AC
0,0 (from which we get

Σ0
1-AC

0,0) by replacing the Π0
1 formula |vi − vj | ≥ 2−f by the Σ0

1 formula
|vi − vj | > 2−(f+1) [52];

(b) in the second place we can replace Π0
1-AC

0,0 by the (very particular)
bounded rule of choice ∀x0 ∃y ≤0 ZxA(x, y) / ∃Y ≤ Z ∀xA(x, Y x) [50,
page 142] where A(x, y) is Π0

1, and then eliminate the rule by adding the
premise (of the instance of the rule that we use) to Γ and the conclusion
to Γ′ in the soundness theorem of MD [52].

Nevertheless, to keep the proof simple, we prefer not to do this two changes
to the proof, and instead to do the proof with Π0

1-AC
0,0.

2. The proof in WE-PA
ω + QF-AC

0,0 splits the interval [0, 1] into open intervals

I ′i :=
]
i
n
− 1/3

n
, i+1

n
+ 1/3

n

[
, and uses QF-AC0,0 (because the formula x ∈ I ′i is Σ

0
1,

and Σ0
1-AC

0,0 follows from QF-AC
0,0) but at the expense of more complicated

computations.

We use this proof only to give a theoretical guarantee that there are terms
witnessing the interpretation by MD ◦GG of theorem 16.5.

16.13. Below we formulate the Cauchy property of (vk)k∈N in the slightly convoluted
form (16.4) instead of the more usual form ∀f ∈ N ∃g ∈ N ∀i, j ≥ g (|vi−vj | < 2−f).
The reason for this is that the interpretation by MD ◦GG of the former form gives
us (roughly speaking) an interval where the terms of the sequence are close to each
other, while the interpretation of the latter form gives us only a pair of points close
to each other.

16.14 Theorem. The following is provable in WE-PA
ω + Π0

1-AC
0,0 and even in

WE-PA
ω + QF-AC

0,0. Consider a function φ : [0, 1] → [0, 1], take an arbitrary v0 ∈
[0, 1] and define the sequence (vk)k∈N by vk+1 := φ(vk). If

1. the function φ is (uniformly) continuous, that is

∀a ∈ N ∃b ∈ N ∀x, y ∈ [0, 1] (|x− y| < 2−b → |φ(x)− φ(y)| < 2−a); (16.2)

2. we have vk+1 − vk → 0, that is

∀c ∈ N ∃d ∈ N ∀e ∈ N (|vd+e+1 − vd+e| < 2−c); (16.3)

then (vk)k∈N converges (is a Cauchy sequence), that is

∀f ∈ N ∃g ∈ N ∀h ∈ N ∀i, j ∈ [g; g + h] (|vi − vj | < 2−f). (16.4)

227

16.15 Proof. In the first point below we give a proof in WE-PA
ω + Π0

1-AC
0,0 in

some detail. Then in the second point below we sketch how to adapt it to a proof
in WE-PA

ω +QF-AC
0,0. Through the proof, our main concern is that when we apply

AC to some formula, we have to pay attention to the complexity of the formula.

1. By contradiction, we assume the negation of (16.4), that is there exists an
f ∈ N such that ∀g ∈ N ∃h ∈ N ∃i, j ∈ [g; g + h] (|vi − vj | ≥ 2−f), thus
∀g ∈ N ∃h ∈ N ∃h′ ∈]g; g+ h] (|vg − vh′ | ≥ 2−(f+1)), where |vg − vh′| ≥ 2−(f+1)

is Π0
1. By Π0

1-AC
0,0 we get H,H ′ : N → N such that (∗) ∀g ∈ N (H ′(g) ∈

]g; g +H(g)] ∧ |vg − vH′(g)| ≥ 2−(f+1)).

Let n := 3× 2f+1 and [0, 1] =
⋃n−1

i=0 Ii where Ii :=
[
i
n
, i+1

n

]
. Then ∀k ∈ N ∃i <

n (vk ∈ Ii), where vk ∈ Ii is Π0
1. By Π0

1-AC
0,0 we get an F : N → n (where n

denotes {0, 1, 2, . . . , n−1}) such that ∀k ∈ N (vk ∈ IF (k)). Define the colouring
F ′ : N → n2 with n2 colours by F ′(k) := 〈F (k), F (H ′(k))〉, where 〈·, ·〉 is the
pairing of point 1 of lemma 16.10.

By IPP (which is provable in PA
ω) we get an i < n2 such that ∀k ∈ N ∃p ∈

N (p ≥ k ∧ F ′(p) = i). By QF-AC
0,0 we get a P : N → N such that ∀k ∈

N
(
P (k) ≥ k ∧ F ′(P (k)) = i

)
. Say i = 〈i0, i1〉 where i0, i1 < n. Then

F ′(P (k)) = i is equivalent to F (P (k)) = i0∧F
(
H ′(P (k))

)
= i1, which implies

vP (k) ∈ Ii0∧vH′(P (k)) ∈ Ii1 . Moreover, P (k) < H ′(P (k)) ≤ P (k)+H(P (k)) (by
(∗)) and |i0 − i1| ≥ 2 (since |vP (k) − vH′(P (k))| ≥ 2−(f+1) by (∗)). In particular,
H(P (k)) > 0, so below we can write 1

2nH(P (d))
.

Consider Ii0±1, where we choose the plus sign if i0 + 1 < i1, and the minus
sign if i1 + 1 < i0, so that Ii0±1 is between Ii0 and Ii1 . This is illustrated in
figure 16.6.

0 1

I0 I1 I2 Ii0 Ii0±1 Ii1

Figure 16.6: the intervals Ii.

Taking c = 1 + ⌈log2 n⌉ in (16.3) we get a d ∈ N such that ∀e ∈ N (|vd+e+1 −
vd+e| < 1

2n
). Now we consider two cases.

∀x ∈ Ii0±1

(
|φ(x)− x| < 1

2nH(P (d))

)
The sequence (vk)k∈N goes from vP (d) ∈ Ii0

to vH′(P (d)) ∈ Ii1 in steps strictly smaller than 1
2n
, that is half of the

length of Ii0±1. Thus vk enters the half of Ii0±1 closest to Ii0 , for some
k ∈ [P (d);H ′(P (d))]. Then, to reach Ii1 , the sequence (vk)k∈N

(a) has to cover the other half of Ii0±1;

(b) in at most H ′(P (d))− P (d) ≤ H(P (d)) steps;

(c) and inside Ii0±1 (that is for all k ∈ N such that vk ∈ Ii0±1) each step
has length |vk+1 − vk| = |φ(vk)− vk| ≤ 1

2nH(P (d))
.

228

But this is impossible because in at most H(P (d)) steps strictly smaller
than 1

2nH(P (d))
the sequence (vk)k∈N covers a distance strictly smaller than

1
2n
, that is strictly smaller than the length of half of Ii0±1.

∃x ∈ Ii0±1

(
|φ(x)− x| ≥ 1

2nH(P (d))

)
Taking a :=

⌈
log2

(
6nH(P (d))

)⌉
in (16.2)

we get a b ∈ N such that (16.5), and taking c := max(a, b) in (16.3) we
get a d′ ∈ N such that (16.6):

∀y ∈ [0, 1]

(
|x− y| < 2−b → |φ(x)− φ(y)| < 1

6nH(P (d))

)
, (16.5)

∀e ∈ N

(
|vd′+e+1 − vd′+e| < 2−c ≤ 1

6nH(P (d))
, 2−b

)
. (16.6)

Let J :=]x− 2−c, x+ 2−c[. By point 2 of lemma 16.10 we have

∀y ∈ J

(
|φ(y)− y| ≥

|φ(x)− x|︸ ︷︷ ︸
≥ 1

2nH(P (d))

− |φ(x)− φ(y)|︸ ︷︷ ︸
< 1

6nH(P (d))

− |y − x|︸ ︷︷ ︸
< 1

6nH(P (d))

>
1

6nH(P (d))

)
.

(16.7)

Since 2−c ≤ lh Ii0±1 (because 2−c ≤ 1
6nH(P (d))

and lh Ii0±1 = 1/n), then

by point 3 of lemma 16.10 we have 2−c ≤ lh(Ii0±1 ∩ J). So, by (16.6),
as (vk)k∈N goes from vP (d′) ∈ Ii0 to vH′(P (d′)) ∈ Ii1 it enters J for some
k ∈ [P (d′);H ′(P (d′))]. But then |vk+1 − vk| = |φ(vk)− vk| > 1

6nH(P (d))
by

(16.7), contradicting (16.6).

2. As before, we assume the negation of (16.4), getting f ∈ N. Let f ′ := 2f . Then
∀g ∈ N ∃h ∈ N ∃h′ ∈]h; g+ h] (|vg − vh′| > 2−(f ′+1)) where |vg − vh′ | > 2−(f ′+1)

is Σ0
1. By QF-AC

0,0 (that implies Σ0
1-AC

0,0) we get h and h′ as respectively
functions H and H ′ of g.

Let n := 3 × 2f
′+1 and [0, 1] ⊆ ⋃n−1

i=0 I ′i where I ′i :=
]
i
n
− 1/3

n
, i+1

n
+ 1/3

n

[
. As

before we get a P such that vP (k) ∈ Ii0 ∧ vH′(P (k)) ∈ Ii1 .

Let I := Ii0±1 \ (Ii0 ∪ Ii1), which has length lh I ≥ 1
3n
. This is pictured in

figure 16.7.

0 1

I ′0

I ′1

I ′2

I ′i0 I ′i1I

Figure 16.7: the intervals I ′i.

Taking c = ⌈log2(6n)⌉ in (16.3) we get a d ∈ N such that ∀e ∈ N
(
|vd+e+1 −

vd+e| < 1
6n

)
. We consider two cases.

229

∀x ∈ I
(
|φ(x)− x| < 1

6nH(P (d))

)
For some k ∈ [P (d);H ′(P (d))], the sequence

(vk)k∈N enters the half of I closest to Ii0 . Then (vk)k∈N cannot cover
the other half, which has length greater than or equal to 1

6n
, in at most

H(P (d)) steps of length strictly smaller than 1
6nH(P (d))

.

∃x ∈ I
(
|φ(x)− x| ≥ 1

6nH(P (d))

)
Taking a :=

⌈
log2

(
18nH(P (d))

)⌉
in (16.2) we

get a b ∈ N such that (16.8), and taking c := max(a, b) in (16.3) we get
a d′ ∈ N such that (16.9):

∀y ∈ [0, 1]

(
|x− y| < 2−b → |φ(x)− φ(y)| < 1

18nH(P (d))

)
, (16.8)

∀e ∈ N

(
|vd′+e+1 − vd′+e| < 2−c ≤ 1

18nH(P (d))
, 2−b

)
. (16.9)

Let J :=]x− 2−c, x+ 2−c[. We have

∀y ∈ J

(
|φ(y)− y| ≥

|φ(x)− x|︸ ︷︷ ︸
≥ 1

6nH(P (d))

− |φ(x)− φ(y)|︸ ︷︷ ︸
< 1

18nH(P (d))

− |y − x|︸ ︷︷ ︸
< 1

18nH(P (d))

>
1

18nH(P (d))

)
.

(16.10)

As (vk)k∈N goes from vP (d′) ∈ Ii0 to vH′(P (d′)) ∈ Ii1 it enters J for some
k ∈ [P (d′);H ′(P (d′))]. But then |vk+1 − vk| = |φ(vk) − vk| > 1

18nH(P (d))

by (16.10), contradicting (16.9).

16.3 Rates of uniform continuity, convergence and

metastability

16.16. In the next definition we are going to define the notions of rate of uniform
continuity, rate of convergence and rate of metastability. Let us motivate this defi-
nitions. The motivation takes place at a mathematical level, not at a logic level, so
we are not going to concern ourselves much with the amounts of logic and of axiom
of choice used. Let φ : [0, 1] → [0, 1] be a function, (vk)k∈N be a sequence of real
numbers, and l ∈ R.

Rate of uniform continuity of φ By definition, φ is uniformly continuous if and only
if (16.11) below holds true. Equivalently, we can restrict this formula to ε and
δ of the form 2−a and 2−b (with a, b ∈ N) respectively, getting (16.12). Taking
b as a function of a (by AC) we get an α : N → N satisfying (16.13). We call
rate of uniform continuity of φ to such an α.

∀ε > 0 ∃δ > 0 ∀x, y ∈ [0, 1] (|x− y| < δ → |φ(x)− φ(y)| < ε) ⇔ (16.11)

∀a ∈ N ∃b ∈ N ∀x, y ∈ [0, 1]

(|x− y| < 2−b → |φ(x)− φ(y)| < 2−a)
⇔ (16.12)

∃α : N→ N ∀a ∈ N ∀x, y ∈ [0, 1]

(|x− y| < 2−α(a) → |φ(x)− φ(y)| < 2−a).
(16.13)

230

Rate of convergence of (vk)k∈N (with limit l) By definition, (vk)k∈N converges to l
if and only if the formula (16.14) below holds true. Making the change of
variable e = e′ − d we get (16.15). Equivalently, we can restrict this formula
to ε of the form 2−c (with c ∈ N), getting (16.16). Taking d as a function of c
(by AC) we get a β : N→ N satisfying (16.17). We call rate of convergence of
(vk)k∈N (with limit l) to such a β.

∀ε > 0 ∃d ∈ N ∀e′ ≥ d (|ve′ − l| < ε) ⇔ (16.14)

∀ε > 0 ∃d ∈ N ∀e ∈ N (|vd+e − l| < ε) ⇔ (16.15)

∀c ∈ N ∃d ∈ N ∀e ∈ N (|vd+e − l| < 2−c) ⇔ (16.16)

∃β : N→ N ∀c, e ∈ N (|vβ(c)+e − l| < 2−c). (16.17)

Rate of metastability of (vk)k∈N (with limit l) By definition, (vk)k∈N converges to l
if and only if the formula (16.18) below holds true. Making the change of
variable e = e′ − d we get (16.19). Equivalently, we can restrict this formula
to ε of the form 2−c (with c ∈ N), getting (16.20). Adding a double negation
and moving one negation inside we get formulas (16.21) and (16.22). Taking
e as a function of d (by AC, but could be done by QF-AC by adapting the
derivation so that where is |vd+e− l| ≥ 2−c would be |vd+e− l| > 2−(c+1), to be
in line with the characterisation theorem WE-PA

ω + QF-AC ⊢ A ↔ (AN)D of
D after N ∈ {GG,Ko,Kr,Ku} [55, section 5.1] [50, proposition 10.13], like the
characterisation theorem of S) we get (16.23). Moving the remaining negation
inside we get (16.24). Finally, bounding d as a function of c and E we get
a β : N × NN → N satisfying (16.25). We call rate of metastability of (vk)k∈N
(with limit l) to such a β.

∀ε > 0 ∃d ∈ N ∀e′ ≥ d (|ve′ − l| < ε) ⇔ (16.18)

∀ε > 0 ∃d ∈ N ∀e ∈ N (|vd+e − l| < ε) ⇔ (16.19)

∀c ∈ N ∃d ∈ N ∀e ∈ N (|vd+e − l| < 2−c) ⇔ (16.20)

¬¬∀c ∈ N ∃d ∈ N ∀e ∈ N (|vd+e − l| < 2−c) ⇔ (16.21)

¬∃c ∈ N ∀d ∈ N ∃e ∈ N (|vd+e − l| ≥ 2−c) ⇔ (16.22)

¬∃c ∈ N ∃E : N→ N ∀d ∈ N (|vd+E(d) − l| ≥ 2−c) ⇔ (16.23)

∀c ∈ N ∀E : N→ N ∃d ∈ N (|vd+E(d) − l| < 2−c) ⇔ (16.24)

∃β : N× NN → N ∀c ∈ N ∀E : N→ N ∃d ≤ β(c, E)

(|vd+E(d) − l| < 2−c).
(16.25)

Alternatively, negating both sides of the axiom of choice ∀d ∈ N ∃e ∈ N¬A(e)↔
∃E : N→ N ∀d ∈ N¬A(E(d)) we get ∃d ∈ N ∀e ∈ NA(e)↔ ∀E : N→ N ∃d ∈
NA(E(d)), and use this to get (16.26) below.

∀ε > 0 ∃d ∈ N ∀e′ ≥ d (|ve′ − l| < ε) ⇔
∀ε > 0 ∃d ∈ N ∀e ∈ N (|vd+e − l| < ε) ⇔

∀c ∈ N ∃d ∈ N ∀e ∈ N (|vd+e − l| < 2−c) ⇔
∀c ∈ N ∀E : N→ N ∃d ∈ N (|vd+E(d) − l| < 2−c) ⇔ (16.26)

231

∃β : N× NN → N ∀c ∈ N ∀E : N→ N ∃d ≤ β(c, E)

(|vd+E(d) − l| < 2−c).

Formula (16.25) gives us a single index d + E(d) such that vd+E(d) is close to
l. We can actually upgrade this to an entire interval [d; d + H(d)] = {d, d +
1, . . . , d+H(d)} (where H : N→ N is an arbitrary function) such that for all
k ∈ [d; d+H(d)] we have that vk is close to l:

∃β ′ ∈ N× NN → N ∀c ∈ N ∀H : N→ N ∃d ≤ β ′(c,H)

∀k ∈ [d; d+H(d)] (|vk − l| < 2−c).
(16.27)

Indeed, let us define EH : N→ N and β ′ : N× NN → N by

EH(d) := µn ≤ H(d) . ∀k ∈ [d; d+H(d)] (|vk − l| ≤ |vn+d − l|),
β ′(c,H) := β(c, EH)

(note that EH is well defined because when n runs from 0 to H(d), the value
n+d runs through [d; d+H(d)], so the k that maximises |vk−l| over [d; d+H(d)]
will be met by n + d). Taking E = EH in (16.25) we get a d ≤ β(c, EH) such
that |vd+EH (d) − l| < 2−c. But ∀k ∈ [d; d+H(d)] (|vk − l| ≤ |vd+EH (d) − l|) by
definition of EH . From these two formulas we conclude ∀k ∈ [d; d+H(d)] (|vk−
l| < 2−c), proving (16.27), as we wanted.

Rate of metastability of (vk)k∈N (without mentioning a limit) By definition, (vk)k∈N
is a Cauchy sequence if and only if the formula (16.28) below holds true. This
formula is equivalent to (16.29). Equivalently, we can restrict (16.29) to ε of
the form 2−f (with f ∈ N), getting (16.30). Adding a double negation and
moving one negation inside we get formulas (16.31) and (16.32). Taking h as
a function of g (by AC, but could be done by QF-AC as before) we get (16.33).
Moving the remaining negation inside we get (16.34). Finally, bounding g as
a function of f and H we get a γ : N × NN → N satisfying (16.35). We call
rate of metastability of (vk)k∈N (without mentioning a limit) to such a γ.

∀ε > 0 ∃g ∈ N ∀i, j ≥ g (|vi − vj| < ε) ⇔ (16.28)

∀ε > 0 ∃g ∈ N ∀h ∈ N ∀i, j ∈ [g; g + h] (|vi − vj| < ε) ⇔ (16.29)

∀f ∈ N ∃g ∈ N ∀h ∈ N ∀i, j ∈ [g; g + h] (|vi − vj | < 2−f) ⇔ (16.30)

¬¬∀f ∈ N ∃g ∈ N ∀h ∈ N ∀i, j ∈ [g; g + h] (|vi − vj | < 2−f) ⇔ (16.31)

¬∃f ∈ N ∀g ∈ N ∃h ∈ N ∃i, j ∈ [g; g + h] (|vi − vj| ≥ 2−f) ⇔ (16.32)

¬∃f ∈ N ∃H : N→ N ∀g ∈ N

∃i, j ∈ [g; g +H(g)] (|vi − vj| ≥ 2−f)
⇔ (16.33)

∀f ∈ N ∀H : N→ N ∃g ∈ N ∀i, j ∈ [g; g +H(g)] (|vi − vj | < 2−f) ⇔ (16.34)

∃γ ∈ N× NN → N ∀f ∈ N ∀H : N→ N ∃g ≤ γ(c,H)

∀i, j ∈ [g; g +H(g)] (|vi − vj| < 2−f).
(16.35)

232

Alternatively, negating both sides of the axiom of choice as before, we get
(16.36) below.

∀ε > 0 ∃g ∈ N ∀i, j ≥ g (|vi − vj| < ε) ⇔
∀ε > 0 ∃g ∈ N ∀h ∈ N ∀i, j ∈ [g; g + h] (|vi − vj| < ε) ⇔

∀f ∈ N ∃g ∈ N ∀h ∈ N ∀i, j ∈ [g; g + h] (|vi − vj | < 2−f) ⇔
∀f ∈ N ∀H : N→ N ∃g ∈ N ∀i, j ∈ [g; g +H(g)] (|vi − vj | < 2−f) ⇔ (16.36)

∃γ ∈ N× NN → N ∀f ∈ N ∀H : N→ N ∃g ≤ γ(c,H)

∀i, j ∈ [g; g +H(g)] (|vi − vj| < 2−f).

16.17 Definition. Let φ : [0, 1]→ [0, 1] be a function, (vk)k∈N be a sequence of real
numbers, and l ∈ R.

1. We say that α ∈ N→ N is a rate of uniform continuity of φ if and only if

∀a ∈ N ∀x, y ∈ [0, 1] (|x− y| < 2−α(a) → |φ(x)− φ(y)| < 2−a).

2. We say that β : N→ N is a rate of convergence of (vk)k∈N (with limit l) if and
only if

∀c, e ∈ N (|vβ(e)+e − l| < 2−c).

3. We say that β : N×NN → N is a rate of metastability of (vk)k∈N (with limit l)
if and only if

∀c ∈ N ∀E : N→ N ∃d ≤ β(c, E) (|vd+E(d) − l| < 2−c).

4. We say that γ : N × NN → N is a rate of metastability of (vk)k∈N (without
mentioning a limit) if and only if

∀f ∈ N ∀H : N→ N ∃g ≤ γ(f,H) ∀i, j ∈ [g; g +H(g)] (|vi − vj | < 2−f).

16.18. In general, a functional f has no majorant, that is there is no functional fM

such that f ≤e fM [50, proposition 3.70.2]. But if f is a function f : Nn → N (or
in other words, f has type 0 · · ·0) we can construct a majorant fM (we can even
construct the functional f 7→ fM in HA

ω). This will be needed later on and so we
do it in the next definition.

16.19 Definition. For each function f : Nn → N, we define the function fM : Nn →
N [50, definition 3.65] by

fM(k1, . . . , kn) := max{f(l1, . . . , ln) : 0 ≤ l1 ≤ k1 ∧ · · · ∧ 0 ≤ ln ≤ kn}.

16.20. Theorem 16.14 is of the form T :≡ A ∧B → C where

A :≡ “φ is continuous”,

B :≡ “vk+1 − vk → 0”,

C :≡ “(vk)k∈N is a Cauchy sequence”.

233

(Actually, to represent the theorem in WE-PA
ω + QF-AC we could need to use the

hypothesis “φ is a function”, that is ∀x, y ∈ [0, 1] (x = y → φx = φy), but it
turns out that its interpretation by MD ◦ GG is unnecessary because it essentially
duplicates the interpretation of A.) Since WE-PA

ω + QF-AC ⊢ T by theorem 16.14,
then WE-HA

ω+QF-AC ⊢ TGG (where TGG ≡ AGG∧BGG → CGG) by the soundness
of GG, thus there are (closed monotone) terms q ofWE-HA

ω such that (∗)WE-HA
ω+

QF-AC ⊢ ∃x ≤e q ∀y (TGG)D(xℓ; y) (where FV(T) = {ℓ}) by the soundness theorem
of MD. However, instead of extracting terms q such that (∗), it is simpler to extract
terms t(r, s) such that holds the rule

∃a ≤e r ∀b (AGG)D(aℓ; b) ∃c ≤e s ∀d (BGG)D(cℓ; d)

∃e ≤e t(r, s) ∀f (CGG)D(eℓ; f)

(the terms t(r, s) exist because if the premises of the rule are provable in WE-HA
ω+

QF-AC, then we have terms working for A∧B, and so by (∗) and the fact that MD
interprets modus ponens we get terms working for C, that is we get the conclusion
of the rule). So now we compute the interpretation of A, B and C by MD ◦ GG.
The formulas A, B and C are (essentially) Π3 formulas, so it saves us some work to
compute in general the interpretation by MD ◦ GG of a Π3 formula. That is what
we do in the next proposition.

16.21 Proposition. Let each variable in ℓ, w, y, z have type 0 or 00, x have type 0,

(A(w, x, y)GG)D ≡ ∃z Aqf(w, x, y, z),

FV(∀w ∃x ∀y A(w, x, y)) = {ℓ},
(
(∀w ∃x ∀y A(w, x, y))GG

)
MD ≡ ∃̃a∃B ≤e a ∀ℓ, c ((∀w ∃x ∀y A(w, x, y))GG)D(Bℓ; c).

1. We have

WE-PA
ω + AC ⊢ ∃̃a ∃B ≤e a ∀ℓ, c

(
(∀w ∃x ∀y A(w, x, y))GG

)
D
(Bℓ; c)→

∃̃X ∀ℓ, w, Y ∃x ≤e XℓwY A(w, x, Y x).

2. From closed monotone terms ta witnessing a we can construct closed monotone
terms tX witnessing X:

WE-PA
ω + AC ⊢ ∃B ≤e ta ∀ℓ, c

(
(∀w ∃x ∀y A(w, x, y))GG

)
D
(Bℓ; c)→

∀ℓ, w, Y ∃x ≤e tXℓwY A(w, x, Y x).

3. If some variables in w, y range in [0, 1], then we can assume that the bounds
X and the terms tX are independent of those variables.

16.22 Proof.

1. Below, in step (16.37) we compute the translation by GG (simplified using
the intuitionistic ¬∀x1 ¬ · · · ¬∀xn ¬B ↔ ¬∀x1, . . . , xn ¬B). In step (16.38)
we compute the interpretation by D. In step (16.39) we compute the in-
terpretation by MD. In implication (16.40) we remove the double negation.

234

In implication (16.41) we take Y = λx, Z . Y x. In implication (16.42) we
take z = Zℓw(λx, Z . Y x)(Y (Xℓwλx, Z . Y x)). In implication (16.43) we take
x = Xℓwλx, Z . Y x (note that ℓM, wM, Y Mx are defined because of the re-
strictions on the types of ℓ, w, y, and that λx, Z . Y x ≤e λx, Z . Y Mx). In

implication (16.44) we take X = λℓ, w, Y .X′ℓMwMλx, Z . Y Mx. In implication
(16.45) we use that (A(w, x, Y x)GG)D ≡ ∃z Aqf(w, x, Y x, z) is equivalent to
A(w, x, Y x) by the characterisation theorems of D and GG.

∀w ∃x ∀y A(w, x, y) (16.37)

∀w¬∀x¬∀y AGG(w, x, y) (16.38)

∃X,Z∀w,Y
¬¬Aqf

(
w,XwY,Y(XwY)(ZwY),ZwY(Y(XwY)(ZwY))

) (16.39)

∃̃X′,Z′ ∃X,Z ≤e X′,Z′ ∀ℓ, w,Y
¬¬Aqf

(
w,XℓwY,Y(XℓwY)(ZℓwY),ZℓwY(Y(XℓwY)(ZℓwY))

)→ (16.40)

∃̃X′,Z′ ∃X,Z ≤e X′,Z′ ∀ℓ, w,Y
Aqf

(
w,XℓwY,Y(XℓwY)(ZℓwY),ZℓwY(Y(XℓwY)(ZℓwY))

)→ (16.41)

∃̃X′,Z′ ∃X,Z ≤e X′,Z′ ∀ℓ, w, Y
Aqf

(
w,Xℓwλx, Z . Y x, Y (Xℓwλx, Z . Y x),

Zℓw(λx, Z . Y x)(Y (Xℓwλx, Z . Y x))
)
→ (16.42)

∃̃X′ ∃X ≤e X′ ∀ℓ, w, Y ∃z
Aqf(w,Xℓwλx, Z . Y x, Y (Xℓwλx, Z . Y x), z)

→ (16.43)

∃̃X′ ∀ℓ, w, Y ∃x ≤e X′ℓMwMλx, Z . Y Mx ∃z Aqf(w, x, Y x, z)→ (16.44)

∃̃X∀ℓ, w, Y ∃x ≤e XℓwY ∃z Aqf(w, x, Y x, z)→ (16.45)

∃̃X∀ℓ, w, Y ∃x ≤e XℓwY A(w, x, Y x).

2. The terms ta contain witnesses for X′, and the previous point describes how
to construct X from X′.

3. If, for example, y is intended to represent real numbers in [0, 1], then we can
assume y ≤e M , so Y ≤e λx .M , therefore we can replace the bound XℓwY
by the greater than or equal to bound Xℓw(λx .M), which is independent of
Y .

16.23. Now let us return to the question of computing the interpretation of A, B
and C by MD ◦GG. In rigour, we are not going to compute the exact complicated
interpretations by MD ◦GG, but the simpler formulas given by proposition 16.21.

φ is continuous We rewrite this statement, that is (16.46) below, as (16.47), where
now we prefer to have the inequality ≤R in the premise so that the interpre-
tation of (|x̃ − ỹ| ≤ 2−b → |φx̃ − φỹ| < 2−a) by MD ◦ GG is an existential
formula as necessary to use the proposition 16.21. By points 1 and 3 of propo-
sition 16.21 we get (16.48). In equivalence (16.48) we use that quantifying over

235

y or Y makes no difference, and that we can replace ≤ by < and vice-versa
(adjusting b and B as necessary).

∀ε > 0 ∀x ∈ [0, 1] ∃δ > 0 ∀y ∈ [0, 1]

(|x− y| < δ → |φx− φy| ≤ ε)
↔ (16.46)

∀a ∀x ∃b∀y (|x̃− ỹ| ≤ 2−b → |φx̃− φỹ| < 2−a) (16.47)

∃̃B ∀a, x, Y ∃b ≤ Ba (|x̃− ỹ| ≤ 2−b → |φx̃− φỸ b| < 2−a)↔ (16.48)

∃̃B ∀a ∀x, y ∈ [0, 1] ∃b ≤ Ba (|x− y| < 2−b → |φx− φy| < 2−a)↔ (16.49)

∃̃B ∀a ∀x, y ∈ [0, 1] (|x− y| < 2−Ba → |φx− φy| < 2−a). (16.50)

Formula (16.50) says that B is a monotone rate of uniform continuity of φ.

vk+1 − vk → 0 We rewrite this statement, that is (16.51) below, as (16.52). By
point 1 of proposition 16.21 we get (16.53).

∀ε > 0 ∃d ∈ N ∀e ≥ d (|ve+1 − ve| < ε)↔ (16.51)

∀c ∃d ∀e (|vd+e+1 − vd+e < 2−c) (16.52)

∃̃D ∀c, E ∃d ≤e DcE (|vd+Ed+1 − vd+Ed < 2−c). (16.53)

Formula (16.53) says that D is a monotone rate of metastability of (vk+1 −
vk)k∈N (with limit 0).

(vk)k∈N is a Cauchy sequence We rewrite this statement, that is (16.54) below, as
(16.56). By points 1 and 3 of proposition 16.21 we get (16.56).

∀ε > 0 ∃g ∈ N ∀i, j ≥ g (|vi − vj | < ε)↔ (16.54)

∀f ∃g ∀h ∀i, j ∈ [g; g + h] (|vi − vj | < 2−f) (16.55)

∃̃G ∀f,H, I, J ∃g ≤ GfH

(Ig, Jg ∈ [g; g +Hg]→ |vIg − vJg| < 2−f)
↔ (16.56)

∃̃G ∀f,H ∃g ≤ GfH ∀i, j ∈ [g; g +Hg] (|vi − vj | < 2−f). (16.57)

Formula (16.57) says that G is a monotone rate of metastability of (vk)k∈N
(with mentioning a limit).

16.24. Let us put together the picture that developed in this section. To keep the
picture simple, we leave rigour aside for a moment.

1. Theorem 16.14 is of the form A ∧B → C where

A :≡ “φ is continuous”,

B :≡ “vk+1 − vk → 0”,

C :≡ “(vk)k∈N is a Cauchy sequence”.

2. The soundness theorem of MD (composed with GG) predicts that we have
(CGG)MD as a function f of (AGG)MD and (BGG)MD:

(CGG)MD = f
(
(AGG)MD, (BGG)MD

)
.

236

3. We computed:

(AGG)MD ≡ “rate of uniform continuity of φ”,

(BGG)MD ≡ “rate of metastability of (vk+1 − vk)k∈N”,

(CGG)MD ≡ “rate of metastability of (vk)k∈N”.

4. Putting all together, MD ◦GG predicts

rate of metastability
of (vk)k∈N

= f
(
rate of uniform
continuity of φ

, rate of metastability
of (vk+1 − vk)k∈N

)
.

Now our task is to find f .

16.4 Partial proof mining

16.25. In the next theorem we present a partially proof mined version of theo-
rem 16.5. The reason why it is only partially proof mined is because we use the
hypothesis “β is a rate of convergence of (vk+1 − vk)k∈N (with limit 0)” instead of
“β is a rate of metastability of (vk+1 − vk)k∈N (with limit 0)”. The former one is
stronger, and the latter one is the what gives us the interpretation of vk+1− vk → 0
by MD ◦GG.

16.26. At some point in proof 16.28 we have a number l ∈ N, a function L : N→ N
and a colouring f : N → n, and want to get two points p and q such that p and q
have the same colour i (that is f(p) = f(q) = i), p occurs after l (that is l ≤ p) and
q occurs after L(p) (that is L(p) ≤ q).

1. One way of doing this is to use IPP to get a colour i that occurs infinitely
often. Then we take p to be some occurrence of i after l, and q to be some
occurrence of i after L(p).

2. Another way of doing this is to consider a strictly monotone bound L′ on L,
in the sense of ∀n ∈ N (L′(n) < L′(n + 1)) and ∀n ∈ N (L(n) ≤ L′(n)). For
example, we can define L′ by L′(0) := L(0) and L′(n + 1) := max(L′(n) +
1, L(n + 1)). Then we consider the finite sequence L′0(l) < · · · < L′n(l)
composed of n + 1 distinct terms, where L′0(l) := l, L′1(l) := L′(l), L′2(l) :=
L′(L′(l)), and so on. By the (finite) pigeonhole principle there exists a colour
i ∈ n and indices u, v ≤ n, with u < v, such that L′u(l) and L′v(l) have colour
i. Then we take p := L′u(k) and q := L′v(l).

In the next theorem, β will be a rate of convergence and we will be using the latter
way of getting p and q with l = β(c) and L = β ◦C (for the moment let us not mind
about what c and C are).

16.27 Theorem. Consider a function φ : [0, 1]→ [0, 1], take an arbitrary v0 ∈ [0, 1]
and define the sequence (vk)k∈N by vk+1 := φ(vk). If

237

1. the function φ is uniformly continuous and α : N→ N is a modulus of uniform
continuity of φ, that is

∀a ∈ N ∀x, y ∈ [0, 1] (|x− y| < 2−α(a) → |φ(x)− φ(y)| < 2−a); (16.58)

2. we have vk+1−vk → 0 and β : N→ N is a rate of convergence of (vk+1−vk)k∈N
(with limit 0), that is

∀c, e ∈ N (|vβ(c)+e+1 − vβ(c)+e| < 2−c); (16.59)

then Φ(α, β, ·, ·) ∈ N × NN → N is a rate of metastability of (vk)k∈N (without
mentioning a limit), that is

∀f ∈ N ∀H : N→ N ∃g ≤ Φ(α, β, f,H) ∀i, j ∈ [g; g+H(g)] (|vi−vj | < 2−f), (16.60)

where we defined

1. n := 3× 2f+1;

2. c := 1 + ⌈log2 n⌉;
3. A : N→ N by A(k) := ⌈log2max(6nH(k), 1)⌉;
4. C : N→ N by C(k) := max

(
A(k), α(A(k))

)
;

5. (uk)k∈N by u0 := β(c) and uk+1 := max
(
uk + 1, β(C(uk))

)
;

6. Φ ∈ NN × NN × N× NN → N by Φ(α, β, f,H) := un2.

16.28 Proof. First, let us note ∀k ∈ N (uk < uk+1), ∀k ∈ N (β(c) ≤ uk), and
∀k ∈ N

(
β(C(uk)) ≤ uk+1

)
.

By contradiction, we assume the negation of (16.60), that is there exist f ∈ N and
H : ∈ N→ N such that ∀g ≤ Φ(α, β, f,H) ∃i, j ∈ [g; g+H(g)] (|vi−vj | ≥ 2−f), thus
∀g ≤ Φ(α, β, f,H) ∃h′ ∈]g; g +H(g)] (|vg − vh′| ≥ 2−(f+1)). So define H ′ : N → N
by

H ′(g) :=

{
µh′ ∈]g; g +H(g)] . |vg − vh′| ≥ 2−(f+1) if g ≤ Φ(α, β, f,H)

0 otherwise
.

We have [0, 1] =
⋃n−1

i=0 Ii where Ii :=
[
i
n
, i+1

n

]
. So define F ∈ N→ n by F (k) :=

µm < n . vk ∈ Im. Define the colouring F ′ : N → n2 with n2 colours by F ′(k) :=
〈F (k), F (H ′(k))〉, where 〈·, ·〉 is the pairing of point 1 of lemma 16.10.

By the (finite) pigeonhole principle (applied to the list of n2+1 distinct numbers
u0, . . . , un2 coloured by F ′ with n2 colours) there exist i < n2 and j0, j1 ≤ n2,
with j0 < j1, such that F ′(uj0) = F ′(uj1) = i. Say i = 〈i0, i1〉 where i0, i1 < n.
Then F ′(uj0) = F ′(uj1) = i is equivalent to F (uj0) = F (uj1) = i0 ∧ F (H ′(uj0)) =
F (H ′(uj1)) = i1, which implies vuj0

, vuj1
∈ Ii0 ∧ vH′(uj0

), vH′(uj1
) ∈ Ii1 . Moreover,

uj0 < H ′(uj0) ≤ uj0 +H(uj0) and uj1 < H ′(uj1) ≤ uj1 +H(uj1) (by definition of H ′,
since uj0, uj1 ≤ un2 = Φ(α, β, f,H)) and |i0− i1| ≥ 2 (since |vuj0

−vH′(uj0
)| ≥ 2−(f+1)

by definition of H ′). In particular, H(uj0) > 0, so below we can write 1
2nH(uj0

)
. This

is pictured in figure 16.8.
Consider Ii0±1, where we choose the plus sign if i0 + 1 < i1, and the minus sign

if i1 + 1 < i0, so that Ii0±1 is between Ii0 and Ii1. Now we consider two cases.

238

After β(c):
Ii0 Ii0+1 Ii1

vuj0
vH′(uj0

)

After β(C(uj0)):
Ii0 Ii0+1 Ii1

vuj1
vH′(uj1

)

Figure 16.8: the sequence (vk)k∈N jumping from Ii0 into Ii1 .

∀x ∈ Ii0±1

(
|φ(x)− x| < 1

2nH(uj0
)

)
By (16.59) we have ∀e ∈ N (|vβ(c)+e+1− vβ(c)+e| <

1
2n
). So (vk)k∈N goes from vuj0

∈ Ii0 to vH′(uj0
) ∈ Ii1 in steps strictly smaller

than 1
2n
, that is half of the length of Ii0±1. Thus vk enters the half of Ii0±1

closest to Ii0, for some k ∈ [uj0;H
′(uj0)]. Then, to reach Ii1 , the sequence

(vk)k∈N

1. has to cover the other half of Ii0±1;

2. in at most H ′(uj0)− uj0 ≤ H(uj0) steps;

3. and inside Ii0±1 (that is for all k ∈ N such that vk ∈ Ii0±1) each step has
length |vk+1 − vk| = |φ(vk)− vk| ≤ 1

2nH(uj0
)
.

But this is impossible because in at most H(uj0) steps strictly smaller than
1

2nH(uj0
)
the sequence (vk)k∈N covers a distance strictly smaller than 1

2n
, that

is strictly smaller than the length of half of Ii0±1.

∃x ∈ Ii0±1

(
|φ(x)− x| ≥ 1

2nH(uj0
)

)
By (16.58) and (16.59) we have

∀y ∈ [0, 1]

(
|x− y| < 2−α(A(uj0

)) → |φ(x)− φ(y)| < 1

6nH(uj0)

)
,

∀e ∈ N(
|vβ(C(uj0

))+e+1 − vβ(C(uj0
))+e| < 2−C(uj0

) ≤ 1

6nH(uj0)
, 2−α(A(uj0

))

)
.

(16.61)

Let J :=]x− 2−C(uj0
), x+ 2−C(uj0

)[. By point 2 of lemma 16.10 we have

∀y ∈ J(
|φ(y)− y| ≥ |φ(x)− x|︸ ︷︷ ︸

≥ 1
2nH(uj0

)

− |φ(x)− φ(y)|︸ ︷︷ ︸
< 1

6nH(uj0
)

− |y − x|︸ ︷︷ ︸
< 1

6nH(uj0
)

>
1

6nH(uj0)

)
. (16.62)

Since 2−C(uj0
) ≤ lh Ii0±1 (because 2−C(uj0

) ≤ 1
6nH(uj0

)
and lh Ii0±1 = 1/n), then

by point 3 of lemma 16.10 we have 2−C(uj0
) ≤ lh(Ii0±1∩J). Since j0 < j1, then

β(C(uj0)) ≤ uj1. So, by (16.61), as (vk)k∈N goes from vuj1
∈ Ii0 to vH′(uj1

) ∈ Ii1
it enters J for some k ∈ [uj1;H

′(uj1)]. But then |vk+1 − vk| = |φ(vk) − vk| >
1

6nH(uj0
)
by (16.62), contradicting (16.61).

239

16.29. The bound Φ presented in the previous theorem has low complexity: it is
primitive recursive on α, β and H (the use of the full β is essential because β is
iterated a variable number of times).

The bound Φ is independent of v0 and φ. Let us explain this.

v0 The independence from v0 ∈ [0, 1] can be explained because (∗) real numbers in
[0, 1] can be represented by r̃1 such that r̃ ≤e M (see definition 16.9).

φ The independence from φ : [0, 1] → [0, 1] can be explained in the following way:
given a modulus of uniform continuity α of φ, we can restrict ourselves to
φ : [0, 1]∩Q→ [0, 1], and consider φ : N→ [0, 1] (by identifying Q∩ [0, 1] with
a enumeration of it), and so φ ≤e λx0 .M by (∗) [52].

16.5 Full proof mining

16.30. In theorem 16.27 we avoided dealing with IPP by replacing it by the (finite)
pigeonhole principle. The price to pay is that we need the stronger hypothesis “β
is a rate of convergence of (vk+1 − vk)k∈N (with limit 0)” instead of the weaker “β
is a rate of metastability of (vk+1− vk)k∈N (with limit 0)”. The theorem is not fully
proof mined because MD ◦ GG gives us the weaker hypothesis, not the stronger
hypothesis.

So, to “officially” follow MD ◦GG, in the next theorem we use only the weaker
hypothesis, getting a fully proof mined theorem. But now the price to pay is that
we have to deal with IPP. This will take the form of a term γ witnessing (IPPGG)MD

and constructing a bound that uses γ. In the full proof mining we never look into
what exactly γ is, but rather treat it as an “oracle”, because it is difficult to write
down γ. However, in the next remark we sketch a description of γ.

16.31 Remark. In order to appreciate the complexity of the term γ witnessing
(IPPGG)MD, let us sketch it. In (16.63) below we write IPP. In equivalence (16.63)
we replace ∀f : N → nA(f) by its official meaning ∀f 1A(fn) where fn(m) :=
min(f(m), k) (to be really formal we should write ∀f 1A(tnf) where t010 is a term
such that WE-HA

ω ⊢ tnfm =0 min(f(m), n)). In step (16.64) we compute the
translation by GG. In step (16.65) we compute the interpretation by D. Finally, in
equivalence (16.66) we use QF-AC to get the more readable (16.67).

∀n0 ∀f : N→ n ∃i ≤0 n ∀k0 ∃m ≥0 k (fm =0 i)↔ (16.63)

∀n, f 1 ∃i
(
i ≤ n ∧ ∀k ∃m (m ≥ k ∧min(fm, n) = i)

)
 (16.64)

∀n, f 1 ¬∀i¬
(
i ≤ n ∧ ∀k ¬∀m¬(m ≥ k ∧min(fm, n) = i)

)
 (16.65)

∃I,M ∀n, f,K
(
InfK︸ ︷︷ ︸
≡:α

≤ n ∧

MnfK(

β:≡︷ ︸︸ ︷
Kα(MnfK))︸ ︷︷ ︸
≡:δ

≥ β ∧min(fδ, n) = α
)↔ (16.66)

∀n ∀f : N→ n ∀K ∃i,M
(
i ≤ n ∧M(KiM) ≥ KiM ∧ f(M(KiM)) = i

)
. (16.67)

Let us fix some bijective coding 〈·〉 : ⋃
n∈NN

n → N of tuples of natural numbers,
and let us denote by (s)i the i-th component of the tuple coded by s ∈ N, denote

240

by lh s the length of that tuple, and denote by a the concatenation of tuples. Using
mainly the recursor R1, we can define a term B, called finite bar recursion, by

BG010g1n0s0 :=0

{
〈〉 if lh s > n

XsaBGgn(saXs) if lh s ≤ n
,

gs := λx . f(sa〈x〉aBGgn(sa〈x〉)), Xs := G(lh s)gs.

Informally (and dropping G, g and n in BFfns to keep the notation simple), B
defines a backward recursion: we start with the value B〈s0, . . . , sn〉 = 〈〉, then
compute B〈s0, . . . , sn−1〉 = 〈xn〉 having access to the function x 7→ B〈s0, . . . , sn−1, x〉
(that is to all values B〈s0, . . . , sn−1, x〉 with x running through N), and then compute
B〈s0, . . . , sn−2〉 = 〈xn−1, xn〉 having access to x 7→ B〈s0, . . . , sn−2, x〉, and so on,
until we achieve a final result B〈〉 = 〈x0, . . . , xn〉.

Taking G = K and g defined by gs = max((s)0, . . . , (s)lh s−1) in BGgns, we get
〈x0, . . . , xn〉 := BGgn〈〉. Then we define Mk := g〈x0,...,xk〉 for k = 0, . . . , n, and
i := f(M0(K0M0)) ≤ n (these i and M depend on n, f and K). We can prove that
i and M := Mi witness (16.67). So M := λn, f,K .M and I := λn, f,K . i witness
the (16.66) [50, pages 213–214] [61].

Finally, we take γ as being a term majorising M. Officially, we should also give
term majorising I, but this is trivial since i ≤ n: take λn, f,K . n.

Let us remark that we can assume that γ does not take f as an input. Since
fn ≤e n1 where n1 := λk0 . n, then γ ≤e γ′ where γ′ := λn,K . (γnn1K), so we can
replace the bound γ by γ′ that does not take f as an input.

16.32. Analogously to paragraph 16.26, at some point in proof 16.34 we have a
number l ∈ N, a function L : N→ N and a colouring f : N→ n, and want to get two
points p and q such that p and q have the same colour i (that is f(p) = f(q) = i), p
occurs after l (that is l ≤ p) and q occurs after L(p) (that is L(p) ≤ q). But, at first
sight, (16.67) seems to only gives us p: taking KiM := l we get i and M such that
p := M(KiM) ≥ KiM = l and fp = i. So the problem is to choose a K so good
that (16.67) gives us both p and q. The solution [56] is to take

KiM =

{
l if Ml < l ∨ f(Ml) 6= i

L(Ml) otherwise
.

Indeed, for this K the formula (16.67) gives us i and M such that (∗1) M(KiM) ≥
KiM and (∗2) f(M(KiM)) = i, and then we define the following p and q.

p Let p := Ml. Let us argue p ≥ l and fp = i.

p ≥ l If p < l, then KiM = l, thus (∗1) means p ≥ l, and we get a contradic-
tion.

fp = i If fp 6= i, then KiM = l, thus (∗2) means fp = i, and we get a
contradiction.

q Let q := M(L(Ml)). Let us argue q ≥ Lp and fq = i. Since we already proved
p ≥ l ∧ fp = i, that is Ml ≥ l ∧ f(Ml) = i, we have KiM = L(Ml) = Lp.

241

q ≥ Lp The formula (∗1) means q ≥ Lp.

fq = i The formula (∗2) means fq = i.

The definition of K is reminiscent of the way that D interprets the contraction
axiom A→ A ∧ A: its interpretation (essentially) asks for terms t such that

AD(a; t)→ AD(a; d) ∧ AD(a; f)

like

t :=

{
f if AD(a; d)

d if ¬AD(a; d)

(the exact details are given in proof 5.8).

16.33 Theorem. Consider a function φ : [0, 1]→ [0, 1], take an arbitrary v0 ∈ [0, 1]
and define the sequence (vk)k∈N by vk+1 := φ(vk). If

1. the function φ is continuous and α : N→ N is a modulus of uniform continuity
of φ, that is

∀a ∈ N ∀x, y ∈ [0, 1] (|x− y| < 2−α(a) → |φ(x)− φ(y)| < 2−a); (16.68)

2. we have vk+1−vk → 0 and β : N×NN → N is a monotone rate of metastability
of (vk+1 − vk)k∈N, so β ≤e β and

∀c ∈ N ∀E ′ : N→ N ∀E ≤e E ′ ∃d ≤ β(c, E ′)

(|vd+E(d)+1 − vd+E(d)| < 2−c);
(16.69)

3. the functional γ : N× N(N×NN) → NN witnesses (IPPGG)MD, so γ ≤e γ and

∀n ∈ N ∀F ′ : N→ n ∀K ′ : n× NN → N ∀K ≤e K ′ ∃i < n

∃L ≤e γ(n,K ′)
(
L(K(i, L)) ≥ K(i, L) ∧ F ′(L(K(i, L))

)
= i

)
;

(16.70)

then Ψ(α, β, γ, ·, ·) : N× NN → N is a rate of metastability of (vn)k∈N, that is

∀f ∈ N ∀H : N→ N ∃g ≤ Ψ(α, β, γ, f,H)

∀i, j ∈ [g; g +H(g)] (|vi − vj| < 2−f),
(16.71)

where we defined

1. n := 3× 2f+1;

2. c := 1 + ⌈log2 n⌉;

3. E ′ : NN × N→ N by E ′(L, d) := (H + id)M
(
max(LM(d), d)

)
;

4. D′ : NN × N→ N by D′(L, c′) := β(c′, E ′(LM, ·));

5. A : N→ N by A(k) := ⌈log2max(6nH(k), 1)⌉;

242

6. C : N→ N by C(k) := max
(
A(k), α(A(k))

)
;

7. K ′ : N×NN → N byK ′(i, L) := max
(
D′(LM, c), D′(LM, CM

(
LM(D′(LM, c))

)))
;

8. Ψ: NN × NN×NN × (NN)(N×N(N×N
N)) × N × NN → N by Ψ(α, β, γ, f,H) :=

γ(n2, K ′)
(
K ′(0, γ(n2, K ′))

)
.

16.34 Proof.

1. Let us define

(a) ILd :=
[
max(L(d), d); (H + id)

(
max(L(d), d)

)[
;

(b) E : NN×N→ N by E(L, d) := µk . d+k ∈ ILd∧∀m ∈ ILd (|vm+1− vm| ≤
|vd+k+1 − vd+k|);

(c) D : NN × N→ N by D(L, c′) := µd ≤ β(c′, E ′(LM, ·)) . ∀m ∈ ILd (|vm+1 −
vm| < 2−c′);

(d) KF ′ : N× NN → N (depending on an F ′ : N→ n2) by

KF ′(i, L) :=

D(L, c) if L(D(L, c)) < D(L, c) ∨
F ′(L(D(L, c))

)
6= i

D
(
L,C

(
L(D(L, c))

))
otherwise

.

Now let us remark that A, D and E are well-defined.

A In A, the logarithm is applied to max(6nH(k), 1) ≥ 1.

D Later we are going to prove E ≤e E ′, so E(L, ·) ≤e E ′(LM, ·). By (16.69) we

have ∀c′ ∈ N ∀L : N → N ∃d ≤ β(c′, E ′(LM, ·)) ∀m ∈ ILd (|vm+1 − vm| ≤
|vd+E(L,d)+1 − vd+E(L,d)| < 2−c′), so D is defined everywhere.

E When k runs through N, d + k runs through [d; +∞[which contains ILd.
So, for some k, the number d + k will eventually take the value m ∈ ILd
that maximises |vm+1 − vm| on ILd.

2. Now let us prove

∀L ≤e γ(n2, K ′)(
L(D(L, c)), L

(
D
(
L,C

(
L(D(L, c))

)))
≤e

0 Ψ(α, β, γ, f,H)
)
.

(16.72)

To do so, we start by proving E ≤e E ′, D ≤e D′ and KF ′ ≤e K ′.

E ≤e E ′ We take arbitrary L ≤e L′ and d ≤e d′, and prove E(L, d) ≤e
0

E ′(L′, d′) and E ′(L, d) ≤e
0 E

′(L′, d′):

E(L, d) ≤
(H + id)

(
max(L(d), d)

)
≤ (H + id ≤e (H + id)M, L ≤e LM)

(H + id)M
(
max(LM(d), d)

)
=

E ′(L, d) ≤ ((H + id)M ≤e (H + id)M, LM ≤e L′M)

E ′(L′, d′).

243

D ≤e D′ We take arbitrary L ≤e L′ and c′ ≤e c′′, and prove D(L, c′) ≤e
0

D′(L′, c′′) and D′(L, c′) ≤e
0 D

′(L′, c′′):

D(L, c′) ≤
β(c′, E ′(LM, ·)) =

D′(L, c′) ≤ (β ≤e β, E ′ ≤e E ′, LM ≤e L′M)

D′(L′, c′′).

KF ′ ≤e K ′ We take arbitrary i ≤e i′ and L ≤e L′, and prove KF ′(i, L) ≤e
0

K ′(i′, L′) and K ′(i, L) ≤e
0 K

′(i′, L′):

KF ′(i, L) ≤

max
(
D(L, c), D

(
L,C

(
L(D(L, c))

)))
≤

(D ≤e D′,

L ≤e LM,

C ≤e CM)

max
(
D′(LM, c), D′(LM, CM

(
LM(D′(LM, c))

)))
=

K ′(i, L) ≤
(D′ ≤e D′,

LM ≤e L′M,

CM ≤e CM)

K ′(i′, L′).

Proof of (16.72) We take arbitrary L ≤e γ(n2, K ′). First, we compute

D(L, c), D
(
L,C

(
L(D(L, c))

))
≤

max
(
D(L, c), D

(
L,C

(
L(D(L, c))

)))
≤ (previous point)

K ′(i, L) = (K ′ does not depend on i)

K ′(0, L) ≤ (K ′ ≤e K ′, L ≤e γ(n2, K ′))

K ′(0, γ(n2, K ′)).

Since we just proved D(L, c), D
(
L,C

(
L(D(L, c))

))
≤e K ′(0, γ(n2, K ′)),

then applying the left side to L and the right side to γ(n2, K ′) we get
(16.72).

3. By contradiction, we assume the negation of (16.71), that is there exist f ∈ N
and H : N→ N such that ∀g ≤ Ψ(α, β, γ, f,H) ∃i, j ∈ [g; g+H(g)] (|vi− vj | ≥
2−f), thus ∀g ≤ Ψ(α, β, γ, f,H) ∃h′ ∈]g; g + H(g)] (|vg − vh′| ≥ 2−(f+1)). So
define H ′ : N→ N by

H ′(g) :=

{
µh′ ∈]g; g +H(g)] . |vg − vh′ | ≥ 2−(f+1) if g ≤ Ψ(α, β, γ, f,H)

0 otherwise
.

We have [0, 1] =
⋃n−1

i=0 Ii where Ii := [i
n
, i+1

n
] (not to be confused with ILd

defined above). So define F : N→ n by F (k) := µm < n . vk ∈ Im. Define the

244

colouring F ′ : N → n2 with n2 colours by F ′(k) := 〈F (k), F (H ′(k))〉, where
〈·, ·〉 is the pairing of point 1 of lemma 16.10.

By (16.70) there exist i < n2 and L ≤e γ(n2, K ′) such that (∗1) L(KF ′(i, L)) ≥
KF ′(i, L) and (∗2) F ′(L(KF ′(i, L))

)
= i. Let

d0 := D(L, c), j0 := L(

=d0︷ ︸︸ ︷
D(L, c)),

d1 := D
(
L,C

(
L(D(L, c))︸ ︷︷ ︸

=j0

))
, j1 := L

(
D
(
L,C

(
L(D(L, c))

)
︸ ︷︷ ︸

=d1

))
.

Say i = 〈i0, i1〉 with i0, i1 < n. Let us prove some statements.

j0 ≥ d0 If j0 < d0, then KF ′(i, L) = d0, thus (∗1) is j0 ≥ d0, and we arrive at
a contradiction.

vj0 ∈ Ii0 and vH′(j0) ∈ Ii1 By definition of F and F ′, it suffices to show F ′(j0) =

i. If F ′(j0) 6= i, then KF ′(i, L) = d0, so (∗2) is F ′(j0) = i, and we arrive
at a contradiction.

j1 ≥ d1 By the first previous point and the proof of the second previous point,
we have ¬(j0 < d0 ∨ F ′(j0) 6= i), so KF ′(i, L) = d1, thus (∗1) is j1 ≥ d1.

vj1 ∈ Ii0 and vH′(j1) ∈ Ii1 By definition of F and F ′, it suffices to show F ′(j1) =

i. We already know KF ′(i, L) = d1, so (∗2) is F ′(j1) = i.

j0, j1 ≤ Ψ(α, β, γ, f,H) It follows from (16.72) since L ≤e γ(n2, K ′).

|i0 − i1| ≥ 2 It follows from |vj0 − vH′(j0)| ≥ 2−(f+1) (by j0 ≤ Ψ(α, β, γ, f,H)
and definition of H ′), and vj0 ∈ Ii0 and vH′(j0) ∈ Ii1 .

j0 < H ′(j0) and j1 < H ′(j1) It follows from j0, j1 ≤ Ψ(α, β, γ, f,H) and the
definition of H ′.

Below we can write 1
2nH(j0)

since H(j0) 6= 0 because j0 < H ′(j0) ≤ j0 +H(j0).

Consider Ii0±1, where we choose the plus sign if i0+1 < i1 and the minus sign
if i1 + 1 < i0, so that Ii0±1 is between Ii0 and Ii1 . We consider two cases.

∀x ∈ Ii0±1

(
|φ(x)− x| < 1

2nH(j0)

)
By (16.69) and the definition of E, we have

∀e ∈ ILd0 (|ve+1 − ve| < 1
2n
), where ILd0 = [j0; (H + id)(j0)[⊇ [j0;H

′(j0)[
(because L(d0) = j0 ≥ d0 and H ′(j0) ≤ (H + id)(j0)). So (vk)k∈N goes
from vj0 ∈ Ii0 to vH′(j0) ∈ Ii1 in steps strictly smaller than 1

2n
, that is half

of the length of Ii0±1. Thus vk enters the half of Ii0±1 closest to Ii0 , for
some k ∈ [j0;H

′(j0)]. Then, to reach Ii1 , the sequence (vk)k∈N

(a) has to cover the other half of Ii0±1;

(b) in at most H ′(j0)− j0 ≤ H(j0) steps;

(c) and inside Ii0±1 (that is for all k ∈ N such that vk ∈ Ii0±1) each step
has length |vk+1 − vk| = |φ(vk)− vk| < 1

2nH(j0)
.

But this is impossible because in at most H(j0) steps strictly smaller
than 1

2nH(j0)
the sequence (vk)k∈N covers a distance strictly smaller than

1
2n
, that is strictly smaller than the length of half of Ii0±1.

245

∃x ∈ Ii0±1

(
|φ(x)− x| ≥ 1

2nH(j0)

)
By (16.68), (16.69) and the definitions of d0,

D and C, we have

∀y ∈ [0, 1]

(
|x− y| < 2−α(A(j0)) → |φ(x)− φ(y)| < 1

6nH(j0)

)
,

∀e ∈ ILd1 ⊇ [j1;H
′(j1)[(

|ve+1 − ve| < 2−C(j0) ≤ 1

6nH(j0)
, 2−α(A(j0))

)
(16.73)

where ILd1 ⊇ [j1;H
′(j1)[(because L(d1) = j1 ≥ d1 and H ′(j1) ≤ (H +

id)(j1)). Let J :=]x − 2−C(j0), x + 2−C(j0)[. By point 2 of lemma 16.10
we have

∀y ∈ J

(
|φ(y)− y| ≥

|φ(x)− x|︸ ︷︷ ︸
≥ 1

2nH(j0)

− |φ(x)− φ(y)|︸ ︷︷ ︸
< 1

6nH(j0)

− |y − x|︸ ︷︷ ︸
< 1

6nH(j0)

>
1

6nH(j0)

)
.

(16.74)

Since 2−C(j0) ≤ lh Ii0±1 (because 2−C(j0) ≤ 1
6nH(j0)

and lh Ii0±1 = 1/n),

then by point 3 of lemma 16.10 we have 2−C(j0) ≤ lh(Ii0±1 ∩ J). So, by
(16.73), as (vk)k∈N goes from vj1 ∈ Ii0 to vH′(j1) ∈ Ii1 it enters J for some
k ∈ [j1;H

′(j1)[. But then |vk+1 − vk| = |φ(vk)− vk| > 1
6nH(j0)

by (16.74),

contradicting (16.73).

16.35. The bound Ψ presented in the previous theorem has low complexity: it is
primitive recursive (almost only uses addition, multiplication and exponentiation)
on α, β, γ and H . We can say that all the complexity of the bound is contained in
γ arising from (IPPGG)MD. The bound is also uniform on v0 and φ (analogously to
paragraph 16.29).

16.6 Computer testing

16.36. In theorems 16.27 and 16.33 we gave bounds Ω(α, β, f,H) on g. It is natural
to ask if this bounds are good or bad, that is if their value is close to g or not, or in
other words if Ω/g is close to 1 or if Ω/g is very large. In this section we are going
to experimentally answer this question: we are going to choose some φ, v0, f and
H , find rates α and β, and compute the value of Ω/g.

Since the βs that we are going to find are not just rates of metastability but even
rates of convergence, we take Ω as being the simpler bound Φ given in theorem 16.27,
which makes use of rates of convergence. This also saves us from dealing with the
term γ witnessing (IPPGG)MD which, as explained in remark 16.31, is difficult to
write down.

16.37 Proposition. In table 16.2 we list, for several functions φ : [0, 1]→ [0, 1] and
initial points v0 ∈ [0, 1]:

246

1. rates of uniformity continuity α : N→ N of φ;

2. rates of convergence β : N→ N of (vk+1− vk)k∈N (with limit 0), where (vk)k∈N
is defined by vk+1 := φ(vk).

φ(x) v0 α(a) β(c)

1− x/2 1 max(0, a− 1) c
1

1+x
1 a c

cosx 1 a 5max(0, c− 1)
(x− 1/2)3 + 1/2 0 a 3max(0, c− 1)

Table 16.2: rates of uniformity continuity α of φ and rates of convergence β of
(vk+1 − vk)k∈N (with limit 0).

16.38 Proof. First, let us make two remarks.

1. If φ : [a, b] → [a, b] (with a, b ∈ R) is continuously differentiable, then φ is
Lipschitz continuous with Lipschitz constant c := maxx∈[a,b]|f ′(x)|, that is
∀x, y ∈ [a, b] (|φ(x)− φ(y)| ≤ c|x− y|).
Let us sketch the proof: by the fundamental theorem of calculus and the mono-
tonicity of the integral we have |φ(x)−φ(y)| =

∣∣ ∫ y

x
φ′(z) dz

∣∣ ≤
∣∣ ∫ y

x
|φ′(z)| dz

∣∣ ≤∣∣ ∫ y

x
c dz

∣∣ = c|x− y|.

2. If φ : [a, b] → [a, b] (with a, b ∈ R) is Lipschitz continuous with Lipschitz
constant c and v0 ∈ [a, b], then the sequence (vk)k∈N defined by vk+1 := φ(vk)
satisfies ∀k ∈ N (|vk+1 − vk| ≤ ck|v1 − v0|) (with c 6= 0 for c0 to be defined).

Let us sketch the proof by induction on k: in the induction step we assume
|vk+1 − vk| ≤ ck|v1 − v0| by induction hypothesis, and so |vk+2 − vk+1| =
|φ(vk+1)− φ(vk)| ≤ c|vk+1− vk| ≤ c · ck|v1 − v0| = ck+1|v1 − v0|, as we wanted.

Let us prove that the αs and βs in table 16.2 are correct rates. In the i-th item
below we take care of the α and β in the (i+1)-th line of table 16.2: the α is taken
care in the first subitem and the β in the second subitem.

1. (a) We take arbitrary x, y ∈ [0, 1]. By remark 1 we have |φ(x) − φ(y)| ≤
1
2
|x − y|. So, if |x − y| < 2−α(a) = 2−max(0,a−1), then |φ(x) − φ(y)| ≤

1
2
|x− y| < 1

2
· 2−max(0,a−1) ≤ 2−a, as we wanted.

(b) By remark 2 we have ∀k ∈ N (|vk+1 − vk| ≤ (1/2)k|1/2 − 1| < 2−k), so
∀c, e ∈ N (|vβ(c)+e+1 − vβ(c)+e| < 2−(β(c)+e) ≤ 2−c), as we wanted.

2. (a) We take arbitrary x, y ∈ [0, 1]. By remark 1 we have |φ(x) − φ(y)| ≤
1|x− y|. So, if |x− y| < 2−α(a) = 2−a, then |φ(x)−φ(y)| ≤ |x− y| < 2−a,
as we wanted.

(b) By remark 2, applied to φ restricted to [a, b] = [1/2, 1], we have ∀k ∈
N (|vk+1−vk| ≤ (4/9)k|1/2−1| < 2−k), so ∀c, e ∈ N (|vβ(c)+e+1−vβ(c)+e| <
2−(β(c)+e) ≤ 2−c), as we wanted.

247

3. (a) We take arbitrary x, y ∈ [0, 1]. By remark 1 we have |φ(x) − φ(y)| ≤
(sin 1)|x−y|. So, if |x−y| < 2−α(a) = 2−a, then |φ(x)−φ(y)| ≤ (sin 1)|x−
y| ≤ |x− y| < 2−a, as we wanted.

(b) By remark 2 we have ∀k ∈ N (|vk+1− vk| ≤ (sin 1)k|cos 1−1| < 2−(k/5+1))
(because sin 1 < 2−1/5 and |cos 1− 1| < 2−1), thus ∀c, e ∈ N (|vβ(c)+e+1 −
vβ(c)+e| < 2−((β(c)+e)/5+1) ≤ 2−(β(c)/5+1) ≤ 2−c), as we wanted.

4. (a) We take arbitrary x, y ∈ [0, 1]. By remark 1 we have |φ(x) − φ(y)| ≤
3
4
|x − y|. So, if |x − y| < 2−α(a) = 2−a, then |φ(x) − φ(y)| ≤ 3

4
|x − y| ≤

|x− y| < 2−a, as we wanted.

(b) By remark 2 we have ∀k ∈ N (|vk+1 − vk| ≤ (3/4)k|3/8 − 0| < 2−(k/3+1))
(because 3/4 < 2−1/3 and |3/8 − 0| < 2−1), thus ∀c, e ∈ N (|vβ(c)+e+1 −
vβ(c)+e| < 2−((β(c)+e)/3+1) ≤ 2−(β(c)/3+1) ≤ 2−c), as we wanted.

16.39 Remark.

1. The unique fixed point of φ(x) = 1− x/2 is 2/3.

2. The unique fixed point (in [0, 1]) of φ(x) = 1
1+x

is
√
5−1
2

= 0.618033 . . . and

is equal to both 1/ϕ and ϕ − 1 where ϕ =
√
5+1
2

= 1.618033 . . . is the golden
ratio.

3. The unique fixed point of cos is 0.739085 . . . and is called Dottie number. It
is named after the professor of French that noted that inserting any num-
ber in a calculator and pressing repeatedly the cos button always produces
0.739085 . . . [42]. We can prove by contradiction that the Dottie number is
transcendental using this result: if x 6= 0 is an algebraic number, then cosx is
transcendental [60, theorem 9.11].

4. The unique fixed point (in [0, 1]) of φ(x) = (x− 1/2)3 + 1/2 is 1/2.

These fixed points are illustrated in figure 16.9.

16.40 Program. Below we present a program, written in the numerically oriented
programming language of the numerical computational software Scilab [7]. For
better readability, the program is divided into three listings.

In lines 1 to 6 of listing 16.1 we define the function φ. Since we are going
do numerically test the bound for the four functions φ in table 16.2, there are
four possible definitions listed in lines 2 to 5. The definition in use is the one not
commented out by “//”. The remaining lines define v0, (vk)k∈N, α, β, f and H .

f unc t i on y = phi (x)
y = 1 − x / 2

// y = 1 / (1 + x)
// y = cos (x)
// y = (x − 1 / 2)ˆ3 + 1 / 2

endfunct ion

248

0 1

1

(∗1)
0 1

1

(∗2)

0 1

1

(∗3)
0 1

1

(∗4)

Figure 16.9: the fixed points of (∗1) φ(x) = 1 − x/2, (∗2) φ(x) = 1
1+x

, (∗3) φ(x) =
cosx and (∗4) φ(x) = (x− 1/2)3 + 1/2.

v0 = 1
// v0 = 1
// v0 = 1
// v0 = 0

funct i on y = v(k)
i f k == 0 then

y = v0
e l s e

y = phi (v (k − 1))
end

endfunct ion

funct i on y = alp (a)
y = max([0 a − 1])

// y = a
// y = a
// y = a

endfunct ion

funct i on y = bet (c)
y = c

249

// y = c
// y = 5 ∗ max([0 c − 1])
// y = 3 ∗ max([0 c − 1])

endfunct ion

f = 2
// f = 3
// f = 4
// f = 5

funct i on y = H(k)
y = 1

// y = modulo (k , 3) + 1
// y = k + 1
// y = kˆ2 + 1

endfunct ion

Listing 16.1: definitions of φ, (vk)k∈N, α, β, f and H .

In listing 16.2 we compute the bound Φ(α, β, f,H) of theorem 16.27. To do so, in
this listing we define the numbers n and c, the functions A and C, and the sequence
(uk)k∈N by an iterative method (to avoid memory limitations associated to recursive
methods).

n = 3 ∗ 2ˆ(f + 1)

c = 1 + c e i l (l og2 (n))

func t i on y = A(k)
y = c e i l (l og2 (max([6 ∗ n ∗ H(k) 1])))

endfunct ion

funct i on y = C(k)
y = max ([A(k) a lp (A(k))])

endfunct ion

funct i on y = u(k)
pr ev i ous = bet (c)
f o r i = 1 : k

next = max ([p r ev i ous + 1 bet (C(pr ev i ous))])
p r ev i ous = next

end
y = prev i ous

endfunct ion

funct i on y = Phi
y = u(nˆ2)

250

endfunct ion

Listing 16.2: computation of Φ(α, β, f,H).

Finally, in listing 16.3 we compute the least g ∈ N such that ∀i, j ∈ [g; g +
H(g)] (|vi − vj | < 2−f). To do so, we start with g = 0 (resulting from combining
lines 2 and 5), and we keep increasing the value of g by 1 as long as ¬∀i, j ∈
[g; g +H(g)] |vi − vj | < 2−f .

f unc t i on f indLea s tg
g = −1
found = %f
whi l e ˜ found

g = g + 1
found = %t
f o r i = g : g + H(g)

f o r j = g : g + H(g)
i f abs (v (i) − v (j)) >= 2ˆ− f then

found = %f
end

end
end

end
di sp (g)

endfunct ion

Listing 16.3: computation of the least g ∈ N such that ∀i, j ∈ [g; g+H(g)] (|vi−vj | <
2−f).

In table 16.3 we list in the first six columns the inputs of the program, in the
seventh and eighth columns the outputs of the program, and in last column the
quotient Φ/g rounded (where g is the least g ∈ N such that ∀i, j ∈ [g; g+H(g)] (|vi−
vj| < 2−f)). We can see that, in average, Φ/g ≈ 5000.

φ(x) v0 α(a) β(c) f H(k) Φ g Φ/g

1− x
2

1 max(0, a− 1) c 2 1 583 2 292
1

1+x
1 a c 3 k mod 3 + 1 2313 2 1157

cosx 1 a 5max(0, c− 1) 4 k + 1 9289 6 1548
(x− 1

2
)3 + 1

2
0 a 3max(0, c− 1) 5 k2 + 1 36927 2 18464

Table 16.3: values of Φ(α, β, f,H), the least g ∈ N such that ∀i, j ∈ [g; g+H(g)] (|vi−
vj| < 2−f), and Φ(α, β, f,H)/g rounded.

16.41. From table 16.3, the conclusion that we reach on how the bound Φ compares
with the least g is Φ/g ≈ 5000.

251

16.7 Conclusion

16.42. We considered Hillam’s theorem characterising the convergence of a fixed
point iteration vk+1 := φ(vk) of a continuous function φ : [0, 1]→ [0, 1]: the sequence
(vk)k∈N converges if and only if vk+1 − vk → 0. We extract computational content
from Hillam’s theorem. This was done in three steps.

1. We showed that Hillam’s theorem is provable WE-HA
ω+QF-AC, so the sound-

ness theorem of MD (composed with GG) predicts that we can extract com-
putational content.

2. We computed what form the computational should take:

rate of metastability
of (vk)k∈N

= f
(
rate of uniform
continuity of φ

, rate of metastability
of (vk+1 − vk)k∈N

)
.

3. We presented two proof mined versions of Hillam’s theorem.

Partial proof mining It gives a simpler rate/bound, but a weaker proof mining
(which uses a full rate of convergence of (vk+1 − vk)k∈N).

Full proof mining It gives a more complicated rate/bound, but a stronger
proof mining (which uses only a rate of metastability of (vk+1 − vk)k∈N).

Then we did a computer testing and conclude that our bound is about 5000 times
greater than the exact value.

252

Bibliography

[1] Peter Aczel. Saturated intuitionistic theories. In Contributions to Mathemat-
ical Logic, pages 1–11. North-Holland Publishing Company, Amsterdam, the
Netherlands, 1968.

[2] Jeremy Avigad. A variant of the double-negation translation. Technical Report
CMU-PHIL-179, Carnegie Mellon University, the United States of America,
August 2006.

[3] Jeremy Avigad and Solomon Feferman. Gödel’s functional (“Dialectica”) inter-
pretation. In Samuel R. Buss, editor, Handbook of Proof Theory, volume 137 of
Studies in Logic and the Foundations of Mathematics, pages 337–405. Elsevier
Science B.V., Amsterdam, the Netherlands, 1998.

[4] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Refined pro-
gram extraction from classical proofs. Annals of Pure and Applied Logic,
114(1–3):3–25, April 2002.

[5] Marc Bezem. Strongly majorizable functionals of finite type: A model for
barrecursion containing discontinuous functionals. The Journal of Symbolic
Logic, 50(3):652–660, September 1985.

[6] Luitzen E. J. Brouwer. On the Foundations of Mathematics (Dutch). PhD
thesis, University of Amsterdam, the Netherlands, 1907.

[7] Scilab Consortium and Digiteo. http://www.scilab.org, 2011. Website of
the numerical computational software Scilab.

[8] Thierry Coquand. Computational content of classical logic. In Andrew M. Pitts
and Peter Dybjer, editors, Semantics and Logics of Computation, pages 33–78.
Cambridge University Press, Cambridge, the United Kingdom, 1997.

[9] John W. Dawson, Jr. Logical Dilemmas: The Life and Work of Kurt Gödel.
A K Peters, Ltd., Wellesley, Massachusetts, the United States of America, 1997.

[10] Justus Diller and Werner Nahm. Eine Variante zur Dialectica-Interpretation
der Heyting-Arithmetik endlicher Typen. Archiv für mathematische Logik und
Grundlagenforschung, 16(1–2):49–66, March 1974.

[11] Albert G. Dragalin. New forms of realizability and Markov’s rule. Soviet Math-
ematics Doklady, 21(2):461–464, March–April 1980.

253

[12] Albert G. Dragalin. New forms of realizability and Markov’s rule (Russian).
Doklady Akademii Nauk SSSR, 251:534–537, 1980. Translated to English else-
where [11].

[13] Fernando Ferreira. Injecting uniformities into Peano arithmetic. Annals of Pure
and Applied Logic, 157(2–3):122–129, February 2009.

[14] Fernando Ferreira and Ana Nunes. Bounded modified realizability. The Journal
of Symbolic Logic, 71(1):329–346, March 2006.

[15] Fernando Ferreira and Paulo Oliva. Bounded functional interpretation. Annals
of Pure and Applied Logic, 135(1–3):73–112, September 2005.

[16] Gilda Ferreira and Paulo Oliva. Functional interpretations of intuitionistic
linear logic. In Erich Grädel and Reinhard Kahle, editors, Computer Science
Logic, volume 5771 of Lecture Notes in Computer Science, pages 3–19, Berlin,
Germany, and Heidelberg, Germany, 2009. Springer-Verlag. Proceedings of
the 23rd International Workshop, Computer Science Logic 2009, 18th Annual
Conference of the European Association for Computer Science Logic, Coimbra,
Portugal, 7–11 September 2009.

[17] Harvey Friedman. Classically and intuitionistically provably recursive func-
tions. In Gert H. Müller and Dana S. Scott, editors, Higher Set Theory, vol-
ume 669 of Lecture Notes in Mathematics, pages 21–27, Berlin, Germany, and
Heidelberg, Germany, 1978. Springer-Verlag. Proceedings of Higher Set The-
ory, Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach, Germany,
13–23 April 1977.

[18] Jaime Gaspar. Negative translations not intuitionistically equivalent to the
usual ones. To appear in Studia Logica.

[19] Jaime Gaspar. Around the functional interpretations of arithmetic (Por-
tuguese). Master’s thesis, Faculty of Sciences of the University of Lisbon,
Portugal, 2007.

[20] Jaime Gaspar. Factorization of the Shoenfield-like bounded functional inter-
pretation. Notre Dame Journal of Formal Logic, 50(1):53–60, 2009.

[21] Jaime Gaspar and Ulrich Kohlenbach. On Tao’s “finitary” infinite pigeonhole
principle. The Journal of Symbolic Logic, 75(1):355–371, March 2010.

[22] Jaime Gaspar and Paulo Oliva. Proof interpretations with truth. Mathematical
Logic Quarterly, 56(6):591–610, December 2010.

[23] Gerhard Gentzen. Über das Verhältnis zwischen intuitionistischer und klassis-
cher Arithmetik, 1933. Galley proof from Mathematische Annalen. Appeared
elsewhere [25]. Translated to English elsewhere [24].

[24] Gerhard Gentzen. On the relation between intuitionistic and classical arith-
metic. In Manfred E. Szabo, editor, The Collected Papers of Gerhard Gentzen,

254

pages 53–67. North-Holland Publishing Company, Amsterdam, the Nether-
lands, and London, the United Kingdom, 1969.

[25] Gerhard Gentzen. Über das Verhältnis zwischen intuitionistischer und klassis-
cher Arithmetik. Archiv für mathematische Logik und Grundlagenforschung,
16:119–132, 1974.

[26] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102,
1987.

[27] Kurt Gödel. Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse
eines mathematischen Kolloquiums, 4:34–38, 1933. Translated to English else-
where [29].

[28] Kurt Gödel. Über eine bisher noch nicht benützte erweiterung des finiten Stand-
punktes. Dialectica, 12(3–4):280–287, December 1958. Translated to English
elsewhere [30].

[29] Kurt Gödel. On intuitionistic arithmetic and number theory. In Solomon Fefer-
man et al., editors, Collected Works, volume I, pages 286–295. Oxford University
Press Inc., New York, the United States of America, 1986.

[30] Kurt Gödel. On a hitherto unutilized extension of the finitary standpoint. In
Solomon Feferman et al., editors, Collected Works, volume II, pages 240–280.
Oxford University Press Inc., New York, the United States of America, 1990.

[31] Robin John Grayson. Derived rules obtained by a model-theoretic approach to
realisability. Handwritten notes from Münster University, Germany, 1981.

[32] Arend Heyting. Die formalen Regeln der intuitionistischen Logik.
Sitzungsberichte der preußischen Akademie der Wissenschaften, Physikalisch-
mathematische Klasse, 16(1, 10–12):42–71, 158–169, 1930.

[33] Arend Heyting. Mathematische Grundlagenforschung Intuitionismus Beweis-
theorie, volume 3 of Ergebnisse der Mathematik und ihrer Grenzgebiete.
Springer-Verlag, Berlin, Germany, 1934. Reprint from 1974.

[34] David Hilbert. Über das Unendliche. Mathematische Annalen, 95(1):161–190,
December 1926.

[35] David Hilbert. Die Grundlegung der elementaren Zahlenlehre. Mathematische
Annalen, 104(1):485–494, December 1931. Translated to English elsewhere [36].

[36] David Hilbert. The grounding of elementary number theory. In William Ewald,
editor, From Kant to Hilbert: A Source Book in the Foundations of Mathemat-
ics, volume II, chapter 24, pages 1148–1157. Oxford University Press Inc., New
York, the United States of America, 1996.

[37] Bruce P. Hillam. A characterization of the convergence of successive approxi-
mations. The American Mathematical Monthly, 83:273, April 1976.

255

[38] Jeffry Lynn Hirst. Combinatorics in Subsystems of Second Order Arithmetic.
PhD thesis, Pennsylvania State University, the United States of America, Au-
gust 1987.

[39] William A. Howard. Hereditarily majorizable functionals of finite type. In
Anne S. Troelstra’sMetamathematical Investigation of Intuitionistic Arithmetic
and Analysis, number 344 in Lecture Notes in Mathematics, pages 454–461.
Springer-Verlag, Berlin, Germany, and Heidelberg, Germany, August 1973.

[40] Hajime Ishihara. A note on the Gödel-Gentzen translation. Mathematical Logic
Quarterly, 46(1):135–137, January 2000.

[41] Klaus Frovin Jørgensen. Finite type arithmetic: Computable existence anal-
ysed by modified realisability and functional interpretation. Master’s thesis,
University of Roskilde, Denmark, March 2001.

[42] Samuel R. Kaplan. The Dottie number. Mathematics Magazine, 80(1):73–74,
February 2007.

[43] Stephen C. Kleene. On the interpretation of intuitionistic number theory. The
Journal of Symbolic Logic, 10(4):109–124, December 1945.

[44] Stephen C. Kleene. Disjunction and existence under implication in elementary
intuitionistic formalisms. The Journal of Symbolic Logic, 27(1):11–18, March
1962.

[45] Stephen C. Kleene. Formalized Recursive Functionals and Formalized Realiz-
ability. Number 89 in Memoirs of the American Mathematical Society. American
Mathematical Society, Providence, Rhode Island, the United States of America,
1969.

[46] Ulrich Kohlenbach. Analysing proofs in analysis. In Wilfrid Hodges, Martin
Hyland, Charles Steinhorn, and John Truss, editors, Logic: from Foundations
to Applications, pages 225–260, New York, the United States of America, 1996.
Oxford University Press Inc. Proceedings of the European Logic Colloquium
1993, European Meeting of the Association for Symbolic Logic, University of
Keele, Staffordshire, the United Kingdom, 20–29 July 1993.

[47] Ulrich Kohlenbach. Foundational and mathematical uses of higher types. In
Wilfried Sieg, Richard Sommer, and Carolyn Talcott, editors, Reflections on the
Foundations of Mathematics: Essays in Honor of Solomon Feferman, volume 15
of Lecture Notes in Logic, pages 92–116, Natick, Massachusetts, the United
States of America, and Urbana, Illinois, the United States of America, 2002. The
Association for Symbolic Logic / A K Peters, Ltd. Proceedings of Reflections,
Stanford University, the United States of America, 11–13 December 1998.

[48] Ulrich Kohlenbach, 2008. Private communication.

[49] Ulrich Kohlenbach. Handwritten notes from the Technical University of Darm-
stadt, Germany, 2008.

256

[50] Ulrich Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use
in Mathematics. Springer Monographs in Mathematics. Springer, first edition,
2008.

[51] Ulrich Kohlenbach, 2010. Private communication.

[52] Ulrich Kohlenbach, 2011. Private communication.

[53] Andrei Nikolaevich Kolmogorov. On the principle of excluded middle. In Jean
van Heijenoort, editor, From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931, Source Books in the History of the Sciences, pages 414–
437. Harvard University Press, Cambridge, Massachusetts, the United States
of America, 1967.

[54] Andrey Nikolaevich Kolmogorov. On the principle of tertium non datur (Rus-
sian). Matematicheskii Sbornik, 32(4):646–667, 1925. Translated to English
elsewhere [53].

[55] Georg Kreisel. Interpretation of analysis by means of constructive function-
als of finite types. In Arend Heyting, editor, Constructivity in Mathematics,
pages 101–128, Amsterdam, the Netherlands, 1959. North-Holland Publish-
ing Company. Proceedings of the International Colloquium Constructivity in
Mathematics, Amsterdam, the Netherlands, 26–31 August 1957.

[56] Alexander Kreuzer, 2011. Private communication.

[57] Sigekatu Kuroda. Intuitionistische Untersuchungen der formalistischen Logik.
Nagoya Mathematical Journal, 2:35–47, February 1951.

[58] Horst Luckhardt. Extensional Gödel functional interpretation: A Consistency
Proof of Classical Analysis, volume 306 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, Germany, and Heidelberg, Germany, 1973.

[59] Boudewijn Moonen. http://www.math.niu.edu/~rusin/known-math/99/

cpt_metric, March 1999.

[60] Ivan Niven. Irrational Numbers. Number 11 in The Carus Mathematical Mono-
graphs. The Mathematical Association of America, second edition, April 1963.
First published in 1956.

[61] Paulo Oliva. Understanding and using Spector’s bar recursive interpretation
of classical analysis. In Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and
John V. Tucker, editors, Logical Approaches to Computational Barriers, volume
3988 of Lecture Notes in Computer Science, pages 423–434, Berlin, Germany,
and Heidelberg, Germany, 2006. Springer-Verlag. Proceedings of the Second
Conference on Computability in Europe (CiE 2006), Swansea University, Wales,
the United Kingdom, 30 June–5 July 2006.

[62] Paulo Oliva, April 2011. Private communication.

257

[63] Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley Series in Logic.
Addison-Wesley Publishing Company, Reading, Massachusetts, the United
States of America, 1967.

[64] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in
Logic. Cambridge University Press and The Association for Symbolic Logic,
New York, the United States of America, and Cornell University, Ithaca, New
York, the United States of America, second edition, 2009. First published in
1999.

[65] Craig Smoryński. Logical Number Theory I: An Introduction. Universitext.
Springer-Verlag, Berlin, Germany, May 1991.

[66] Clifford Spector. Provably recursive functionals of analysis: A consistency proof
of analysis by an extension of principles formulated in current intuitionistic
mathematics. In Jacob C. E. Dekker, editor, Recursive Function Theory, vol-
ume V of Proceedings of Symposia in Pure Mathematics, pages 1–27, Provi-
dence, Rhode Island, the United States of America, 1962. American Mathe-
matical Society. Proceedings of the Fifth Symposium in Pure Mathematics of
the American Mathematical Society, Hotel New Yorker, New York, the United
States of America, 6–7 April 1961.

[67] Martin Stein. Eine Hybrid-Interpretation der Heyting-Arithmetik endlicher
Typen. Master’s thesis, University of Münster, Germany, 1974.

[68] Thomas Streicher, February 2010. Private communication.

[69] Thomas Streicher and Ulrich Kohlenbach. Shoenfield is Gödel after Krivine.
Mathematical Logic Quarterly, 53(2):176–179, April 2007.

[70] William W. Tait. Intensional interpretations of functionals of finite type I. The
Journal of Symbolic Logic, 32(2):198–212, June 1967.

[71] Terence Tao. Soft analysis, hard analysis, and the finite convergence prin-
ciple. http://terrytao.wordpress.com/2007/05/23, May 2007. Appeared
elsewhere [74, pages 17–29].

[72] Terence Tao, August 2008. Private communication.

[73] Terence Tao. The correspondence principle and finitary ergodic theory. http:
//terrytao.wordpress.com/2008/08/30, August 2008.

[74] Terence Tao. Structure and Randomness: Pages from Year One of a Mathe-
matical Blog. American Mathematical Society, Providence, Rhode Island, the
United States of America, first edition, 2008.

[75] Anne S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis. Number 344 in Lecture Notes in Mathematics. Springer-Verlag,
Berlin, Germany, and Heidelberg, Germany, 1973.

258

[76] Anne S. Troelstra. Introductory note to 1958 and 1972. In Solomon Feferman
et al., editors, Kurt Gödel’s Collected Works, volume II, pages 217–241. Oxford
University Press Inc., New York, the United States of America, 1990.

[77] Anne S. Troelstra. Lectures on Linear Logic. Number 29 in Lecture Notes.
Center for the Study of Language and Information, Leland Stanford Junior
University, Stanford, California, the United States of America, 1992.

[78] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics: An
Introduction. Number 121 and 123 in Studies in Logic and the Foundations of
Mathematics. Elsevier Science Publishers B.V., Amsterdam, the Netherlands,
1988.

[79] Dirk van Dalen. Logic and Structure. Universitext. Springer-Verlag, Berlin,
Germany, and Heidelberg, Germany, fourth edition, 2004. First published in
1988.

[80] Benno van den Berg, 2010. Private communication.

[81] Wikipedia, The Free Encyclopedia. Hilbert’s program. http://en.wikipedia.
org/wiki/Hilbert’s_program, February 2010.

[82] Wikipedia, The Free Encyclopedia. Reverse mathematics. http://en.

wikipedia.org/wiki/Reverse_mathematics, June 2011.

259

260

Curriculum vitae

2005 Licenciatura in Mathematics
Faculty of Sciences of the University of Lisbon, Portugal

2007 Master in Mathematics
Faculty of Sciences of the University of Lisbon, Portugal
Thesis: Around the functional interpretations of arithmetic (Portuguese)
Advisor: Prof. Dr. Fernando Ferreira

2011 Working towards PhD
Technical University of Darmstadt, Germany
Thesis: Proof interpretations: theoretical and practical aspects
Advisor: Prof. Dr. Ulrich Kohlenbach

261

Financially supported by the Portuguese Fundação para a Ciência e a Tecnologia under

grant SFRH/BD/36358/2007 co-financed by Programa Operacional Potencial Humano /

Quadro de Referência Estratégico Nacional / Fundo Social Europeu (União Europeia).

Qualificar

é crescer

