
Proof-theoretic uniform boundedness and bounded collection

principles and countable Heine-Borel compactness

Ulrich Kohlenbach
Department of Mathematics

Technische Universität Darmstadt
Schlossgartenstraße 7, 64289 Darmstadt, Germany

kohlenbach@mathematik.tu-darmstadt.de

Nov.18, 2020

Abstract

In this note we show that proof-theoretic uniform boundedness or bounded collection prin-
ciples which allow one to formalize certain instances of countable Heine-Borel compactness in
proofs using abstract metric structures must be carefully distinguished from an unrestricted use
of countable Heine-Borel compactness.
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1 Introduction

In [11] we introduced formal theories of classical analysis (formulated in the language of functionals

of finite types) augmented with abstract metric and normed structures X giving rise to systems

Aω[X, d],Aω[X, d,W ] and Aω[X, ‖ · ‖, C],Aω[X, 〈·, ·〉, C] treating abstract bounded metric spaces

(X, d) or bounded W -hyperbolic spaces (X, d,W ) or bounded convex subsets C ⊆ X of normed

linear or inner product spaces (X, ‖ · ‖). These structures are added as a kind of atoms using a new

base type X for objects in X rather than stipulating X to be separable and explicitly represented as
the completion of a countable structure. This lack of any separability assumptions makes it possible
to extract uniform bounds which only depend on a bound on the metric rather than requiring any

compactness assumption. In [7], this approach is extended to unbounded metric structures and

unbounded convex subsets of normed spaces using an extension of the Howard-Bezem concept of
majorizability. General logical bound extraction metatheorems for such systems based on a mono-
tone functional interpretation have been developed for abstract classes of structures and applied
extensively during the past 15 years to obtain numerous new explicit rates of asymptotic regularity,
metastability and other effective bounds from proofs in nonlinear analysis, ergodic theory, metric

fixed point theory and continuous optimization (see [13] for a book treatment and - for a more

recent survey - [15]). In [1, 2], these techniques have subsequently also been adapted to the so-called

bounded functional interpretation (first introduced without the structures X in [5]) and applied to

specific proofs for the first time in the recent paper [4].

The aforementioned logical uniform bound extraction theorems roughly speaking allow for the ex-
traction of effective uniform bounds from proofs of ∀x∃n ∈ NA∃-sentences which only depend via
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majorants on the (universally quantified) parameters x. Here A∃ is a purely existential formula where

the existence quantifiers may range over objects of modestly restricted types including N and X. For
parameters from bounded metric structures the bounds only depend on some bound on the metric.

While these results take the form of rules one may ask whether the corresponding version formulating
them as implicative ‘nonstandard’ axioms is consistent and permitted to be utilized in formalizing

proofs while the extracted bounds are true in all structures considered (which certainly is not the

case for these new axioms themselves). This has in fact been achieved first in [12], where a so-called

uniform boundedness principle ∃-UBX is studied for bounded metric structures X. A special form
of this principle asserts

(∗) ∀x ∈ X ∃n ∈ NA∃(x, n)→ ∃n ∈ N ∀x ∈ X ∃m ≤ nA∃(x, n),

where A∃(x, n) is a purely existential formula (here the existence quantifiers may even range over

objects of arbitrary types) which may contain also parameters other than x, n.

In [12] it is shown that the use of ∃-UBX in proofs of a large class of ∀∃-theorems is tame in the

sense that it does not add to the complexity of extractable uniform bounds which can be verified to
be true in all bounded metric structures axiomatized in the respective theory.
In the context of bounded functional interpretation such uniform boundedness principles have been

studied in rather general form under the name of bounded collection bCω,Xbd in [1]. [1] shows results

on bCω,Xbd similar to ours for ∃-UBX by a proof-theoretic conservation result combined with seman-

tical considerations to obtain again the truth in all structures at hand.

While [12] (see also [13]) gives a number of general applications of the use of (∗), the first actual

application in a concrete ‘proof mining’ context has recently been made in [4]. Here the authors

show that certain uses of weak sequential compactness can be replaced by (∗) explaining in terms of

uniform boundedness why the unwinding of a proof using weak sequential compactness (in the con-

text of Hilbert spaces) in [14] was possible using only primitive recursive functionals without having

to resort to Spector’s schema of bar recursion (needed to interpret weak sequential compactness).

In the applications known so far, the required logical form of A∃ to be purely existential is a con-

sequence of the fact that this formula describes an open (in the strong topology) subset. Based on

this heuristic, (∗) is called in [4] a (countable) ‘Heine-Borel covering principle’ which -formally - can

be stated as

(CHBC) : (∀n ∈ N (Ωn is open) ∧ ∀x ∈ X ∃n ∈ N (x ∈ Ωn))→ ∃n ∈ N ∀x ∈ X ∃m ≤ n (x ∈ Ωm),

where x ∈ Ωn is a formula (with x, n among its free variables) of the formal system at hand (in [4],

CHBC is not discussed as a formal principle but merely as an informal way of thinking about bounded
collection and uniform boundedness since an instance of CHBC indeed becomes a consequence of
the former principles if the open sets can be represented in the syntactic form required which is the

case in the situation studied in [4]).

In this paper we show that despite of this useful heuristic, the uniform bounded principle ∃-UBX

needs to be strictly distinguished from general countable Heine-Borel compactness as it can be shown

to not imply the latter for certain definable (in the respective system) sequence of (even provably)

open subsets Ωn. The issue here is that x ∈ Ωn in general cannot be written as a formula having

the required logic form (e.g. being purely existential in the case of ∃-UBX). In fact, we establish

this by showing that the respective instance of CHBC does indeed prove ∀∃-theorems of the form

permitted in the aforementioned ∃-UBX -elimination theorems which are not true in general in the

class of metric structures considered (not even in general bounded closed and convex subsets of l2).
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So these uniform bound extraction theorems which hold for ∃-UBX are false if ∃-UBX is replaced by

CHBC and ∃-UBX is rather to be considered as a logical compactness principle (than as a principle

stating some form of compactness of X).

In [4], X is a bounded closed convex subset of a Hilbert space as this is the context of the particular

application studied. In our paper we choose the setting of bounded W-hyperbolic spaces (which

are metric generalizations of bounded convex subsets of normed linear spaces) as this makes the

principles particularly easy to state since we do not have to axiomatize the ambient unbounded

normed space (which, nevertheless, is not a problem and has been done already in [11]). Our actual

counterexample, however, is indeed a bounded convex subset of a normed space which can also be
adapted to get a counterexample in the Hilbert space case.

2 Main Result

We work in the framework of so-called (W-)hyperbolic spaces which are a metric generalization of

convex subsets of normed linear spaces:

Definition 1 ([11]). (X, d,W ) is called a hyperbolic space if (X, d) is a metric space and W :

X ×X × [0, 1]→ X a function satisfying

(i) ∀x, y, z ∈ X∀λ ∈ [0, 1]
(
d(z,W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y)

)
,

(ii) ∀x, y ∈ X∀λ1, λ2 ∈ [0, 1]
(
d(W (x, y, λ1),W (x, y, λ2)) = |λ1 − λ2| · d(x, y)

)
,

(iii) ∀x, y ∈ X∀λ ∈ [0, 1]
(
W (x, y, λ) = W (y, x, 1− λ)

)
,

(iv) ∀x, y, z, w ∈ X,λ ∈ [0, 1]
(
d(W (x, z, λ),W (y, w, λ)) ≤ (1− λ)d(x, y) + λd(z, w)

)
.

For a discussion of this notion and its relation to various other related notions in the literature, see

[11].

W (x, y, λ) should be viewed of as a generalized concept of a convex combination and we use the

notation (1− λ)x⊕ λy to denote W (x, y, λ).

As a special case of [12](Theorem 3.5.2) (see also [13](Theorem 17.101) we have

Theorem 2 ([12]). Let

A :≡ ∀k ∈ N∀g ∈ NN ∀x0 ∈ X ∀T : X → X ∃n ∈ NA∃

be a sentence of L(Aω[X, d,W ]), where A∃ is an ∃-formula. From a proof

Aω[X, d,W ] + ∃-UBX ` A

one can extract a (bar-recursively) computable functional Φ : NN × N2 → N such that

∀k ∈ N ∀g ∈ NN ∀x0 ∈ X ∀T : X → X ∃n ≤ Φ(g, k, b)A∃

holds in any b-bounded hyperbolic space (X, d,W ).

Let (X, d,W ) be a bounded (W-)hyperbolic space and T : X → X be a nonexpansive mapping. For

x0 ∈ X we define the Krasnoselski iteration of T with starting point x0 by

xn+1 :=
1

2
xn ⊕

1

2
Txn.
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As has been shown in [8] (generalizing a result from [9] from the linear to the geodesic setting)

one has (as a special case of a much more general result) asymptotic regularity in the sense that

lim
n→∞

d(xn, Txn) = 0.

Using a logic-based approach (‘proof mining’) and the fact that this convergence proof can be

formalized in Aω[X, d,W ], an explicit rate of convergence Φ(k, b) (depending only on the error 2−k

and a bound b ≥ diam(X)) has been extracted from the convergence proof in [17]. In this note we

only need that

(1) Aω[X, d,W ] ` T : X → X nonexpansive → lim
n→∞

d(xn, Txn) = 0.

The sequence (xn) is easily shown to be Féjer monotone w.r.t. the fixed point set F (T ) of T, i.e.

(2) Aω[X, d,W ] ` T : X → X nonexpansive→ ∀p ∈ F (T )∀n ∈ N (d(xn+1, p) ≤ d(xn, p)) .

We can now prove our main result:

Theorem 3. Aω[X, d,W ]+CHBC proves a sentence A of the form considered in Theorem 2 such

that A does not hold in general in bounded hyperbolic spaces (not even bounded closed convex subsets

of a Hilbert space).

Proof: Trivially one has (taking p := x)

Aω[X, d,W ] ` ∀k ∈ N∀T : X → X ∀x ∈ X
(
∀n ∈ N (d(x, Tx) ≤ 2−n)→ ∃p ∈ F (T ) (d(p, x) < 2−k)

)
and so by (classical) logic

Aω[X, d,W ] ` ∀k ∈ N ∀T : X → X ∀x ∈ X ∃n ∈ N
(
d(x, Tx) ≤ 2−n → ∃p ∈ F (T ) (d(p, x) < 2−k)

)
If T is nonexpansive then (provably in Aω[X, d,W ]) for all k, n

Un := {y ∈ X : d(y, Ty) ≤ 2−n → ∃p ∈ F (T ) (d(p, y) < 2−k)}

is an open set: let x ∈ Un.
Case 1: for some p ∈ F (T ) one has that d(p, x) < 2−k. Let ε > 0 be so small that d(p, x) + ε < 2−k.

Then each y in the open ball Bε(x) with center x and radius ε satisfies

d(p, y) < d(p, x) + ε < 2−k

and so belongs to Un.

Case 2: not Case 1. Then d(x, Tx) > 2−n. Let ε > 0 be so small that d(x, Tx) − 2ε > 2−n. If

y ∈ Bε(x), then d(y, Ty) > d(x, Tx)− 2ε > 2−n and so y ∈ Un.
So in either case we found an ε-ball around x ∈ Un which belongs to Un.

By CHBC we can now infer (using the monotonicity of the formula in n)

Aω[X, d,W ] + CHBC `
∀T : X → X

(
T n.e.→ ∀k ∈ N ∃nk ∈ N∀x ∈ X (d(x, Tx) ≤ 2−nk → ∃p ∈ F (T ) (d(p, x) < 2−k))

)
.

Here ‘n.e.’ abbreviates ‘nonexpansive’. Now we can reason as in the proof of Theorem 4.1 in [18]

to show that (xn) (for any x0 ∈ X) is a Cauchy sequence: let k ∈ N. By (1) above let N ∈ N be so

large that d(xN , TxN ) ≤ 2−nk . Then there exists a p ∈ F (T ) with d(p, xN ) < 2−k and so by (2)

∀n ≥ N (d(xn, p) ≤ d(xN , p) < 2−k).
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Thus
∀n,m ≥ N (d(xn, xm) < 2−k+1).

In particular, we can prove the metastable version (see [19]) of the Cauchy property (which - non-

effectively - implies back the Cauchy property)

Aω[X, d,W ] + CHBC `
∀T : X → X ∀x0 ∈ X ∀k ∈ N ∀g ∈ NN (

T n.e.→ ∃n ∈ N (d(xn, xn+g(n)) < 2−k)
)
.

Modulo prenexing ‘
(
T n.e. → ∃n ∈ N (d(xn, xn+g(n)) < 2−k)

)
’ (since ‘T n.e’ is a ∀-formula) this

sentence has the logical form of a sentence A as stated in the theorem but in general it fails to hold

in bounded hyperbolic spaces (even in bounded closed convex subsets of l2) as we show now: first

take X to be the bounded, closed and convex subset

B+
c0 := {(xn) ∈ c0 : 0 ≤ xn ≤ 1, all n} ⊂ c0

of the Banach space c0 (of all sequences in R which converge to 0 with the sup-norm) and take

as T one of the well-known fixed point-free nonexpansive selfmappings : B+
c0 → B+

c0 , e.g. take

T (xn) := (1, x1, x2, . . .) (see [10], Example 2.1 on p.36.).

Clearly, B+
c0 is a complete hyperbolic space (X, d,W ) with d induced by the norm and W (x, y, λ) :=

(1 − λ)x + λy. If A would hold in this structure, then (xn) defined in terms of such a T would be

Cauchy and hence convergent. By the continuity of T and (1) the limit had to be a fixed point

of T, contradiction. To get a counterexample in the Hilbert space case, we can use a construction

from [6] who produce a bounded closed and convex subset C ⊂ l2 and a nonexpansive selfmapping

T : C → C and a point x0 ∈ C such that the Krasnoselski iteration (xn) of T starting with x0 does

not converge strongly (although here, by the Browder-Göhde-Kirk fixed point theorem, T clearly

does have a fixed point). �

Corollary 4. Theorem 2 does not hold if ∃-UBX is replaced by CHBC. In particular, Aω[X, d,W ]+

∃-UBX does not prove CHBC.

Remark 5. Theorem 2 also holds if one adds new constants cρ (of suitably restricted type ρ which

includes the type X(X)) to the language together with universal axioms (again with some type restric-

tions) implying that c is majorized by some closed term of L(Aω) ∪ {b0X}, where bX is the constant

used to express the boundedness of X. This e.g. applies to adding a constant TX(X) to the language

together with the axiom stating that T is nonexpansive. In this theory (with e.g. fixing x0 as 0X),

it is then provable that Un is open for all n (and k). So even for provably open sequences of open

sets which are explicitly definable in the language of our theory, CHBC in general cannot be inferred

from ∃-UBX .

Instead of using Aω[X, d,W ] one can also use the framework Aω[X, 〈·, ·〉, C] from [11] which ax-

iomatizes C as a bounded convex subset of an abstract inner product space X and formulate (the

required special form of) ∃-UBX as

∀x ∈ C ∃nA∃(x, n)→ ∃n ∈ N ∀x ∈ C ∃m ≤ nA∃(x,m).

Theorem 2 can easily adapted to this context in which one can prove a-fortiori that ‖xn−Txn‖ → 0

for Krasnoselski iterations of nonexpansive mappings T : C → C. Since the counterexample at the
end of the proof of Theorem 3 lives in the context of bounded convex subsets of the Hilbert space l2
it follows as in the previous Corollary that:
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Corollary 6. Aω[X, 〈·, ·〉, C] + ∃-UBX does not prove CHBC.

Let us discuss the counterexample constructed in the proof of Theorem 3 a bit further. What

(+) ∀k ∈ N∃nk ∈ N ∀x ∈ X (d(x, Tx) ≤ 2−nk → ∃p ∈ F (T ) (d(p, x) < 2−k))

expresses is that T is metrically regular w.r.t. F (T ) in the sense of [18], where any function Φ(k)

providing nk as a function of k is called a ‘modulus of regularity’ of T w.r.t. F (T ) (in [18] we use

for convenience the more common ε/δ-formulation of this fact). Our argument based on countable

Heine-Borel compactness given above is used in [18] to show the (noneffective) existence of a mod-

ulus of regularity whenever X is (boundedly) compact. In [16], we analyzed the situation from the

perspective of both reverse mathematics and computability theory and showed that if X is repre-

sented as a complete totally bounded space then arithmetical comprehension (ACA0) is sufficient

and necessary to prove the existence of Φ while the version (+) without the existence of a modulus

function can be proved by (and is equivalent to) the weak König’s lemma WKL. However, in our

formal systems X is treated as an abstract space and not represented as a completion of a countable

(pseudo-)metric space and although CHBC is known to imply full Heine-Borel compactness of metric

spaces and hence total boundedness this is not a fact we can already use when formalizing CHBC.
This is why - in order to bring

d(x, Tx) ≤ 2−n → ∃p ∈ F (T ) (d(p, x) < 2−k)

into the syntactic form required in ∃-UBX - we would have to add e.g. a comprehension functional
Φ : X × N→ N in x ∈ X such that

Φ(x, k) = 0↔ ∃p ∈ F (T ) (d(p, x) < 2−k).

With the inessential change of using ‘≤’ instead of ‘<’, we could use ∃-UBX to rewrite ‘∃p ∈
F (T ) (d(p, x) ≤ 2−k)’ equivalently as ‘∀m ∈ N∃p ∈ X (d(p, x) ≤ 2−k ∧ d(p, Tp) ≤ 2−m)’. Alterna-

tively, a more local comprehension functional Φ : X → N

Φ(p) = 0↔ p ∈ F (T )

would also be sufficient. In either case, one would need a comprehension over points x or p in X

using a formula which contains a universal quantifier over natural numbers (hidden in p ∈ F (T ) resp.

present as ∀m ∈ N) which is not available in our formal system. In the situation studied in [16] we

could, relying on the representation of X being totally bounded, replace the dependence on x by that
of indices ∈ N of suitable elements from an ε-net to make the comprehension a comprehension over

numbers (which - by subsequent arguments - is even an arithmetical comprehension over natural

numbers).

The results in this note carry over mutatis mutandis to the bounded collection principle bCω,Xbd

from [1, 2] showing that this principle does not imply CHBC over the framework PAω,X
E used in the

bounded functional interpretation.

Final comment: as a reaction to our note, Fernando Ferreira communicated to us a different example
showing that in formal systems of infinite dimensional Hilbert spaces, CHBC actually can be shown

to be inconsistent ([3]).
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