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Abstract

We analyze a proof of Bruck to obtain an explicit rate of asymptotic regularity for Cesàro
means in uniformly convex Banach spaces. Our rate will only depend on a norm bound and
a modulus η of uniform convexity. One ingredient for the proof by Bruck is a result of Pisier,

which shows that every uniformly convex (in fact every uniformly nonsquare) Banach space has

some Rademacher type q > 1 with a suitable constant Cq. We explicitly determine q and Cq,

which only depend on the single value η(1) of our modulus. Beyond these specific results, we

summarize how work of Bruck has inspired developments in the proof mining program, which
applies tools from logic to obtain results in various areas of mathematics.
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1 Introduction

Proof mining is the project of applying proof-theoretic transformations to obtain new quantitative
and qualitative information from given proofs in areas of core mathematics such as nonlinear analysis,

convex optimization and geodesic geometry (see e.g. [23]). Bruck, who himself did fundamental work

on quantitative issues of metric fixed point theory ([2]), was a major source of inspiration in this

program both by providing in his research deep results which naturally asked for a more finitary
quantitative treatment as well as by introducing fundamental new notions which were particularly
suited for such a proof-theoretic enterprise.
In Section 2 we will give a short survey on the important role which results of Bruck have had in
the development of proof mining.

The most recent proof-theoretic analysis of a work of Bruck has been carried out in [15] which gives

an explicit rate of metastability (in the sense of T. Tao) for a strong nonlinear ergodic theorem

in uniformly convex Banach spaces due to [18] which in turn is crucially based on Bruck’s seminal

work on the nonlinear mean ergodic theorem [8] and the convex approximation property [9]. In [9],

the asymptotic regularity of Cesàro means in uniformly convex Banach spaces is established using
that uniformly convex Banach spaces X, which are thus B-convex, have a nontrivial Rademacher
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type q > 1. This latter fact was first established by Pisier in [37].

In Section 3 we will extract from Pisier’s proof explicit lower estimates > 1 for q and an upper
estimate for the relevant constant Cq witnessing that the space has Rademacher type q in terms a

constant δ > 0 which witnesses that X is uniformly nonsquare. If X is uniformly convex and η is

some modulus of uniform convexity, then δ can be taken as δ := η(1).

In Section 4 we will then give an explicit rate of asymptotic regularity in terms of η, q, Cq and so -

by Section 3 - in terms of η alone. Note that we do not use here the optimal modulus δX of uniform
convexity but any function η witnessing the ∀ε∃δ-definition of uniform convexity. In Remark 13 we
will comment on an alternative way to obtain a rate of asymptotic regularity, which combines our

work with a result of Zhu, Huang and Li [43].

2 Bruck and proof mining

The work of Bruck contains many important results which he proved by prima facie noneffective
means but which do ask - e.g. by their general logical form - for additional computational infor-

mation. One such example is his convergence result on an iteration scheme (for suitable sequences

(λn), (θn) in [0, 1])

xn+1 = (1− λn)xn + λnTxn − λnθn (xn − x1)

for demicontinuous (single valued) pseudo-contractions T : C → C on nonempty closed and convex

subsets C of a Hilbert space X ([7, Theorem 4]). While the Mann iteration of T is not even

asymptotically regular for pseudo-contractions (see [12]) and the Ishikawa iteration is asymptotically

regular but strongly convergent only for compact C, Bruck’s hybrid scheme converges strongly
towards a fixed point of T, if T has a fixed point, which e.g. is the case when C additionally is

bounded (Bruck’s scheme has been studied also in Banach spaces, see e.g. [39, 40, 41]). By a proof-

theoretic analysis of Bruck’s noneffective proof, Körnlein extracted in [29, 30] an explicit effective

rate of metastability in the sense of T. Tao for this convergence result. This work is based in turn on

[31], where the special case of Lipschitzian pseudo-contractions had been treated. In this situation

one has the asymptotic regularity of the iteration, i.e.

lim
n→∞

‖xn − Txn‖ = 0,

even in general Banach spaces and with easier conditions on the scalars involved by a result from

[13] from which a polynomial rate of asymptotic regularity is extracted in [31].

Another inspiration for proof mining came from Bruck’s nonconstructive proof of the existence of

sunny nonexpansive retractions [5] onto fixed point sets Fix(T ) of nonexpansive mappings T : C → C

with C ⊆ X, where X is reflexive, C is bounded, closed and convex (actually Bruck’s conditions

are still weaker) and T satisfies the so-called conditional fixed point property CFP. These conditions

always hold e.g. for uniformly smooth spaces. In [4], Bruck had shown that Fix(T ) is a nonexpansive

retract whenever the underlying space X is a reflexive strictly convex Banach space making use of
Zorn’s lemma. IfX is uniformly smooth, then there is even a sunny nonexpansive retraction and there

can – already in smooth spaces – only be at most one such sunny nonexpansive retraction [6]. The

first more constructive way of approaching this unique sunny nonexpansive retraction is Reich’s [41]

fundamental result that in uniformly smooth Banach spaces the sequence (xn) defined by xn being

the fixed point of the strict contraction

Tn : C → C with Tn(x) :=

(
1− 1

n

)
T (x) +

1

n
u for u ∈ C
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strongly converges to the sunny nonexpansive retraction onto Fix(T ) applied to u. Reich’s result

actually is more general and, in particular, even applies to the aforementioned pseudo-contractions.
However, the convergence proof is highly noneffective and, in fact, one can show that even for simple

situations (like X := R) there in general is no computable rate of convergence.

In [28], a completely constructive proof for the metastable reformulation of the convergence of (xn)

(which – noneffectively – trivially is equivalent to the latter) is given together with an explicit rate

of metastability.

A different aspect by which Bruck’s research is particularly attractive in the course of the proof
mining paradigm is his formulation of important classes of mappings such as the firmly nonexpansive

mappings [5] and – together with Reich – the averaged and strongly nonexpansive (SNE) mappings

[11] as well as the strongly quasi-nonexpansive mappings [10]. All these classes beautifully fit the

requirements for proof-theoretically well-behaved classes of nonlinear mappings and play a crucial

rule in papers using the proof mining methodology such as [1, 36, 22]. For example, the condition

of being firmly nonexpansive is purely universal and hence ‘tame’ in the context of the functional
interpretations used in proof mining. The same is true for averaged mappings once one has an

averaging constant α ∈ (0, 1) together with a witness N ∈ N such that α ∈ [ 1
N , 1 −

1
N ] given. In

this case, extracted bounds will additionally depend on N (but not on α). Being SNE in its original

formulation seemingly has a very high logical complexity but, in fact, is equivalent to the existence

of a number-theoretic function ω satisfying a purely universal condition (see [22]):

∀c, k ∈ N∀x, y ∈ C(
‖x− y‖ ≤ c ∧ ‖x− y‖ − ‖Tx− Ty‖ < 2−ω(k) → ‖(x− y)− (Tx− Ty)‖ ≤ 2−k

)
.

Then extractable bounds will depend additionally on ω. Moreover, from any proof of the property
SNE for a class of mappings which satisfy the logical conditions in the metamathematical bound
extraction theorems in proof mining one can extract such an SNE-modulus. This e.g. has been done

for the class of firmly nonexpansive mappings in uniformly convex Banach spaces in [22] and for

the averaged mappings in Hilbert space in [42]. The important property of SNE-mappings being

closed under composition results in a simple computation of an SNE-modulus for compositions of
SNE-mappings in terms of SNE-moduli for the individual mappings. All this plays a crucial role in

the extraction of a polynomial rate of asymptotic regularity in [24] for Bauschke’s solution of the zero

displacement conjecture (see also the recent generalization of [24] in [42]) as well as the quantitative

analysis of proximal point type algorithms in [26, 25, 27]. In the latter papers it is crucially used

that all firmly nonexpansive mappings in uniformly convex Banach spaces (and so all resolvents)

have a common SNE-modulus and that all averaged mappings in Hilbert space with some control
on the averaging constants have a common SNE-modulus as well.

Also the property of being strongly quasi-nonexpansive is logically very well-behaved (when localized

to some fixed point p of T ) and gives rise to a corresponding modulus which witnesses this property

quantitatively and which is used in the extraction of explicit rates of asymptotic regularity and
metastability of algorithms which compute common fixed points of such mappings in geodesic settings

such as CAT(κ)-spaces with κ > 0 (see [22]).

As mentioned already in the introduction, in the course of extracting explicit rates for a strong

nonlinear ergodic theorem due to [18] which is carried out in [15] we recently, in particular, analysed

two proofs from [8] and [9], respectively. The first proof concerns the existence of a convex continuous

and unbounded function γ : [0,∞)→ [0,∞) such that γ(0) = 0 and for all x1, x2 ∈ C and λ ∈ [0, 1]

γ(‖T (λx1 + (1− λ)x2)− (λTx1 + (1− λ)Tx2)‖) ≤ ‖x1 − x2‖ − ‖Tx1 − Tx2‖
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and the second one proves the convex approximation property of B-convex Banach spaces using the

fact that such spaces have Rademacher type q > 1 by a result due to Pisier [37]. The latter property

is used in [9] to show that in uniformly convex Banach spaces the Cesàro means

xn :=
1

n

n−1∑
i=0

T ix

of a nonexpansive map T satisfy the asymptotic regularity property

lim
n→∞

‖xn − Txn‖ = 0.

In the remaining sections we will provide an explicit rate of convergence that only depends on some
norm bound b and a given modulus of uniform convexity η.

3 On the Rademacher type of uniformly nonsquare Banach
spaces

In this section, we analyse a proof of Pisier [37] to extract quantitative information on the Rademacher

types of uniformly nonsquare Banach spaces. We then derive information on a probabilistic charac-

terization of B-convexity, which is also due to Pisier [37]. This supplements the quantitative analysis

of a proof by Bruck [9] that has been carried out in [15].

Consider a sequence (εi) of independent random variables that take values ±1 with probability 1/2.

These are conveniently realized by Rademacher functions ri on [0, 1] (see e. g. [34, Theorem 2.b.3]).

For 1 ≤ q <∞ and points x1, . . . , xn in a given Banach space X, we consider the expected value

E

(∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
q)

=
1

2n

∑
ε1,...,εn∈{−1,1}

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
q

=

∫ 1

0

∥∥∥∥∥
n∑
i=1

ri(t)xi

∥∥∥∥∥
q

dt.

We now recall the definition of Rademacher type (see [33, Section 9.2] or [35, Definition 1.e.12]):

Definition 1. A Banach space (X, ‖ · ‖) is said to have Rademacher type q ∈ [1, 2] with constant Cq

if all finite sequences (x1, . . . , xn) in X validate

E

(∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
q)1/q

≤ Cq ·

(
n∑
i=1

‖xi‖q
)1/q

. (∗)

Let us also recall the notion of uniformly nonsquare Banach space, which is due to James [17] and

can be equivalently expressed as follows:

Definition 2. A Banach space (X, ‖ · ‖) is uniformly nonsquare if there exists a δ ∈ (0, 1] such that

min

{
‖x− y‖

2
,
‖x+ y‖

2

}
≤ (1− δ) ·max{‖x‖, ‖y‖}

holds for all x, y ∈ X.

We can now state our goal more precisely: Given δ > 0, we want to determine q and Cq such that

any Banach space that is uniformly nonsquare for δ has Rademacher type q with constant Cq. Let

us first give a quantitative version of the result that uniformly convex entails uniformly nonsquare:
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Lemma 3. Consider a uniformly convex Banach space (X, ‖ · ‖) with a given modulus of convexity

η : (0, 2]→ (0, 1], which means that all ε ∈ (0, 2] and x, y ∈ X validate

‖x‖, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε ⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− η(ε).

Then X is uniformly nonsquare, where we may take δ := η(1) in Definition 2.

Also note that if Definition 2 holds for δ, then 1− δ is an upper bound for λ2(X) from [37, p. VII.1].

Proof (see also the proof of Theorem 2.2.5 in [14]): Put λ := 1 − η(1) < 1. Since we may assume

that X is non-trivial, let e ∈ X be such that ‖e‖ = 1. Then the fact that η is a modulus of convexity

(applied to x := 0, y := e and ε := 1) yields η(1) ≤ 1
2 and thus λ ∈ [ 12 , 1). For any x, y ∈ X, we show

min{‖x− y‖, ‖x+ y‖} ≤ 2λ ·max{‖x‖, ‖y‖}.

Without loss of generality, we assume ‖x‖ ≥ ‖y‖. If we have ‖x‖ = 0, then the claim holds trivially.

We may thus assume ‖x‖ > 0, so that we can set x̃ := x/‖x‖ and ỹ := y/‖x‖ to get ‖x̃‖ = 1

and ‖ỹ‖ ≤ 1. Due to λ ≥ 1/2, the claim holds if we have ‖x− y‖ ≤ ‖x‖. In the remaining case we

have ‖x̃− ỹ‖ > 1, so that uniform convexity yields ‖x̃+ ỹ‖/2 ≤ 1− η(1) = λ and hence

‖x+ y‖ = ‖x̃+ ỹ‖ · ‖x‖ ≤ 2λ · ‖x‖,

as required.

In order to connect with an equivalent definition of Rademacher type, we will use the following:

Proposition 4 (Kahane-Kintchine inequality). For q > 1 there exists a constant Kq such that all

finite sequences (x1, . . . , xn) in any Banach space X validate

∫ 1

0

∥∥∥∥∥
n∑
i=1

ri(t)xi

∥∥∥∥∥ dt ≤
(∫ 1

0

∥∥∥∥∥
n∑
i=1

ri(t)xi

∥∥∥∥∥
q

dt

)1/q

≤ Kq ·
∫ 1

0

∥∥∥∥∥
n∑
i=1

ri(t)xi

∥∥∥∥∥ dt.
Indeed, we may take Kq :=

(
(2q − 1)/(q − 1)

)q−1
.

Proof: The result coincides with Theorem 1.e.13 of [35] (where Kq is given in the proof). �

Pisier in [37] uses a different definition of Rademacher type q, which demands a constant cq with

E

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2
1/2

≤ cq ·

(
n∑
i=1

‖xi‖q
)1/q

. (∗∗)

Using the Kahane-Kintchine inequality, one sees that (∗) for Cq entails (∗∗) for cq := K2 ·Cq. In the

converse direction, one can keep the constant and does not need Kahane-Kintchine:

Lemma 5. 1. If (∗) holds for Cq, then (∗∗) holds for cq := K2Cq.

2. If (∗∗) holds for cq, then (∗) holds for Cq := cq, where q ∈ [1, 2] can be arbitrary.
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Proof: 1) Given (∗), we get from the Kahane-Kintchine inequality

E

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2
1/2

=

∫ 1

0

∥∥∥∥∥
n∑
i=1

ri(t)xi

∥∥∥∥∥
2

dt

1/2

≤ K2 ·
∫ 1

0

∥∥∥∥∥
n∑
i=1

ri(t)xi

∥∥∥∥∥ dt ≤
≤ K2 ·

(∫ 1

0

∥∥∥∥∥
n∑
i=1

ri(t)xi

∥∥∥∥∥
q

dt

)1/q

= K2 · E

(∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
q)1/q

≤ K2 · Cq ·

(
n∑
i=1

‖xi‖q
)1/q

.

2) Given (∗∗), we get

E

(∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
q)

=

∫ 1

0

∥∥∥∥∥
n∑
i=1

ri(t)xi

∥∥∥∥∥
q

dt ≤

∫ 1

0

∥∥∥∥∥
n∑
i=1

ri(t)xi

∥∥∥∥∥
2

dt

q/2

=

=

E

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2
q/2

≤ cqq ·
n∑
i=1

‖xi‖q,

as
(∫ 1

0
|f(t)|qdt

)1/q
≤
(∫ 1

0
|f(t)|2dt

)1/2
holds for square-integrable f and q ∈ [1, 2].

By analysing the proof of Corollary 1 in [37], we obtain the following numerical estimate:

Theorem 6. Let (X, ‖ · ‖) be a uniformly nonsquare Banach space with δ ∈ (0, 1) witnessing this

property. Define λ := 1− δ. Assume that ξ ∈ (0, 1) is so small and that p′ ∈ [2,∞) is so large that

1− ξ
1 + 2

√
2ξ
≥ 1

2

√
2λ2 + 2 and

1

21/p′
≥ 1− ξ.

Take p with 1 = 1
p + 1

p′ . Then for any q ∈ (1, p), the space X has Rademacher type q with constant

Cq = 3 · 21/q

2(1/q)−(1/p) − 1
.

Proof: For n ∈ N, Pisier [37] defines µn(X) as the least real µ ≥ 0 such that∫ 1

0

∥∥∥∥∥
n∑
i=1

ri(t)xi

∥∥∥∥∥
2

dt

1/2

≤ µ · n · max
1≤i≤n

‖xi‖

holds for any finite sequence (x1, . . . , xn) in X. Similarly, he defines νn(X) as the least ν ≥ 0 with∫ 1

0

∥∥∥∥∥
n∑
i=1

ri(t)xi

∥∥∥∥∥
2

dt

1/2

≤ ν ·
√
n ·

(
n∑
i=1

‖xi‖2
)1/2

.

The λ of the present theorem is an upper bound for λ2(X) from [37], as noted after Lemma 3 above.

Together with inequality (2) on page VII.10 of [37] (corrected with the missing factor 1/n), we get

µ2(X) ≤ 1

2

[
4λ2 + 4

2

]1/2
=

1

2

√
2λ2 + 2 ∈ (0, 1).
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For ξ and p′ as in the present theorem, the argument on pages VII.10-11 of [37] does now yield

ν2(X) ≤ 1− ξ ≤ 1

21/p′
.

By Lemma 4 of [37] it follows that X has Rademacher type q with a suitable constant Cq, for any q

as in the present theorem. To determine Cq, we work out the proof of the cited lemma (which Pisier

describes as analogous to the one of Lemma 2 from [37]). Assume we have νN (X) ≤ 1/N1/p′ for

some integer N ≥ 2 and real p′ ≥ 2 (we only need N = 2 but state the original more general result).

Given q ∈ (1, p) with 1 = (1/p) + (1/p′), we shall establish (∗∗) for suitable cq. Due to Lemma 5,

it will follow that the Rademacher property (∗) holds for Cq := cq. Aiming at (∗∗), we consider an

arbitrary sequence (x1, . . . , xn) in X. For k ∈ N we put

A(k) :=

{
j ∈ {1, . . . , n} :

(∑n
i=1 ‖xi‖q

Nk+1

)1/q

< ‖xj‖ ≤
(∑n

i=1 ‖xi‖q

Nk

)1/q
}
.

Write |A(k)| for the cardinality of A(k). We pick a bijection f : {1, . . . , |A(k)|} → A(k) and compute∫ 1

0

∥∥∥∥∥∥
∑
i∈A(k)

ri(t)xi

∥∥∥∥∥∥
2

dt


1/2

=

∫ 1

0

∥∥∥∥∥∥
|A(k)|∑
i=1

ri(t)xf(i)

∥∥∥∥∥∥
2

dt


1/2

≤ µ|A(k)|(X) · |A(k)| · max
i∈A(k)

‖xi‖.

Here the inequality holds by the definition of µn(X). The equality relies on the fact that the Rade-

macher functions represent independent copies of the same random variable, which allows us to omit

the index shift from ri to rf(i). For each i ∈ {1, . . . , n} with xi 6= 0, we have i ∈ A(k) for a unique

integer k ≥ 0 (so that almost all A(k) are empty). Using the Kahane-Kintchine inequality, we get

E

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2
1/2

=

∫ 1

0

∥∥∥∥∥
n∑
i=1

ri(t)xi

∥∥∥∥∥
2

dt

1/2

≤ K2 ·
∫ 1

0

∞∑
k=0

∥∥∥∥∥∥
∑
i∈A(k)

ri(t)xi

∥∥∥∥∥∥ dt ≤

K2 ·
∞∑
k=0

∫ 1

0

∥∥∥∥∥∥
∑
i∈A(k)

ri(t)xi

∥∥∥∥∥∥
2

dt


1/2

≤ K2 ·

( ∞∑
k=0

µ|A(k)|(X) · |A(k)|
Nk/q

)
·

(
n∑
i=1

‖xi‖q
)1/q

,

which is already close to (∗∗). We have |A(k)| ≤ Nk+1, as on page VII.5 of [37]. By Proposition 3

and Lemma 3 from the same reference, this yields the first inequality in

µ|A(k)|(X) · |A(k)| ≤ νN (X)k+1 ·Nk+1 ≤ Nk+1

N (k+1)/p′
= N (k+1)/p.

The second inequality and equality rely on the assumptions νN (X) ≤ 1/N1/p′ and 1 = (1/p)+(1/p′).

One can conclude

K2 ·
∞∑
k=0

µ|A(k)|(X) · |A(k)|
Nk/q

≤ K2 ·
∞∑
k=0

N1/p

Nk·(1/q−1/p) = K2 ·
N1/q

N (1/q)−(1/p) − 1
=: cN,q.

We have thus established (∗∗) with cN,q at the place of cq. Under the assumptions of the theorem,

we get the Rademacher property (∗) for Cq := c2,q, as seen above. Now we only need to note that
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K2 = 3.

In the next section we will need the following consequence of the Rademacher property:

Proposition 7 ([33, Proposition 9.11]). Assume that (X, ‖ · ‖) is a Banach space of Rademacher

type q ∈ [1, 2] with constant Cq. Then, for every finite sequence X1, . . . , Xn of independent mean

zero Radon random variables in Lq(X), one has

E

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
q)1/q

≤ 2Cq ·

(
n∑
i=1

E (‖Xi‖q)

)1/q

. (+)

Together with the previous results, the proposition yields c and q as in condition (9) of [15].

Remark 8. We will only need the special case of Proposition 7 in which each of the Xi assumes

value (xj − x)/q with probability λj , for a given convex combination x =
∑
λjxj . In this case, one

can deduce the proposition by elementary manipulations of finite sums.

4 A rate of asymptotic regularity for ergodic averages in uni-
formly convex Banach spaces

For Hilbert spaces, there is an easy quadratic rate of asymptotic regularity for the sequence of Cesàro

means, which is given (see e. g. [3] and [21]) by∥∥∥∥∥ 1

n

n−1∑
i=0

T ix− T

(
1

n

n−1∑
i=0

T ix

)∥∥∥∥∥ ≤ 1√
n
· diam(C) for n ∈ N\{0}.

The asymptotic regularity for the Cesàro means in uniformly convex Banach spaces was first proved

in [9]. Although this proof by Bruck is essentially constructive, the concrete rate of convergence

hidden in the proof is left implicit. In this section we extract the explicit rate that is specified in the
following theorem. Let us emphasize that q and Cq can be chosen according to Theorem 6, where we

may take δ = η(1) due to Lemma 3. Hence our rate depends on η and b only, where η is a modulus

of uniform convexity of the space in question and b > 0 is such that C ⊆ Bb/2(0) := {x ∈ X : ‖x‖ ≤
b/2}. We point out that the superscript of ξ denotes iterations, which are explained by ξ0(t) := t

and ξp+1(t) := ξ(ξp(t)).

Theorem 9. Let (X, ‖ · ‖) be a Banach space that is uniformly convex with modulus η. Consider a

nonexpansive map T : C → C on a nonempty subset C ⊆ Bb/2(0) that is closed and convex. Assume

that X is of Rademacher type q ∈ (1, 2] with constant Cq. Given ε > 0, pick p̃ ∈ N so large that we

have 2Cq · p̃(1−q)/q ≤ ε/(9b). Consider p ∈ N with p ≥ 2b/δ2 for

δ := ξp̃
(ε

9

)
with ξ(t) :=

t

12
· η
(

min

{
2,
t

b

})
.

For any α < ξp−1(δ2/2) with 0 < α < ε/3 and arbitrary x ∈ C, we then have∥∥∥∥∥ 1

n

n−1∑
i=0

T ix− T

(
1

n

n−1∑
i=0

T ix

)∥∥∥∥∥ ≤ ε for all n ≥ b

α
.
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The proof of the theorem will occupy us for the rest of this section. As noted before, we use a

modulus η : (0, 2]→ (0, 1] that satisfies the condition in Lemma 3 but need not be optimal. We set

η1(0) := 0 and η1(ε) := sup {η(ε′) | 0 < ε′ ≤ min{2, ε}}

to get a function η1 : [0,∞)→ [0, 1] that is increasing. Now let η̃ : [0,∞)→ [0,∞) be given by

η̃(ε) :=
1

2
·
∫ ε

0

η1(t)dt.

The point is that this makes η̃ convex. Given that ε ∈ (0, 2] entails 0 < η̃(ε) ≤ η1(ε), we see that

η̃ is still a modulus of uniform convexity for X. We now consider the function γ : [0,∞) → [0,∞)

with

γ(ε) :=
b

2
· η̃
(

4ε

b

)
.

Let us note that γ is continuous and strictly increasing with image [0,∞). We thus get a continuous

and strictly increasing inverse γ−1 : [0,∞) → [0,∞). Furthermore, the function γ is convex. Our

functions η̃ and γ coincide with η and γ2 from Remark 2.3 and Definition 2.1 of [15], respectively

(given that η1(t) ≤ 1 entails η̃(ε) ≤ ε/2 and hence γ(ε) ≤ ε). By [15, Lemma 2.2] (essentially a

result of Bruck [8]), we learn that T is of type (γ), i. e., that

γ(‖T (λx1 + (1− λ)x2)− (λTx1 + (1− λ)Tx2)‖) ≤ ‖x1 − x2‖ − ‖Tx1 − Tx2‖

holds for any x1, x2 ∈ C and all λ ∈ [0, 1].

Lemma 10. For q̃ : [0,∞)→ [0,∞) with q̃(ε) := γ−1(3ε) + ε and for ξ as in Theorem 9, we have

t ∈
[
0, ξp(ε)

)
⇒ q̃p(t) ∈ [0, ε).

Proof: We use induction to reduce to the case of p = 1. The claim is immediate for p = 0. In the

induction step, the case of p = 1 (with ξp(ε) at the place of ε) and the induction hypothesis yield

t ∈
[
0, ξp+1(ε)

)
=
[
0, ξ(ξp(ε))

)
⇒ q̃(t) ∈

[
0, ξp(ε)

)
⇒ q̃p+1(t) = q̃p(q̃(p)) ∈ [0, ε).

To establish the result for p = 1, we first observe that we have

η̃(ε) ≥ 1

2
· ε

2
· η1

(ε
2

)
≥ ε

4
· η
(

min
{

2,
ε

2

})
,

as η1 is increasing. With 2ε/b at the place of ε, we get

ξ(ε) =
ε

12
· η
(

min
{

2,
ε

b

})
≤ b

6
· η̃
(

2ε

b

)
=

1

3
· γ
(ε

2

)
.

Since q̃ is strictly increasing, it follows that t < ξ(ε) entails

q̃(t) < q̃

(
1

3
· γ
(ε

2

))
= γ−1

(
γ
(ε

2

))
+

1

3
· γ
(ε

2

)
< ε.

Here the last inequality holds because we have γ(t) ≤ t, as observed above.

The following is a final preparation for the proof of our main theorem.
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Lemma 11. For n ∈ N\{0}, we consider qn : [0,∞) → [0,∞) with qn(ε) := γ−1(2ε + (b/n)) + ε.

Given ε > 0, we get

n ≥ b

ε
⇒ qpn(ε) ≤ q̃p(ε) for all p ∈ N .

Proof: Since n ≥ b/ε entails 2ε+ (b/n) ≤ 3ε, the result for p = 1 follows from the fact that γ−1 is

increasing. We derive the general case by induction on p. As before, the case of p = 0 is immediate.
In the induction step, the induction hypothesis and the fact that qn is increasing yield

qp+1
n (ε) = qn(qpn(ε)) ≤ qn(q̃p(ε)).

Since q̃ is increasing with ε ≤ q̃(ε), we get ε ≤ q̃p(ε) by an auxiliary induction on p. Given n ≥ b/ε,
we thus have n ≥ b/q̃p(ε). Now the result for p = 1 (with q̃p(ε) at the place of ε) yields

qn(q̃p(ε)) ≤ q̃(q̃p(ε)) = q̃p+1(ε),

as needed to complete the induction step.

We now have all ingredients to show the result that was stated above:

Proof of Theorem 9: Let Fδ(T ) = {x ∈ C : ‖x − Tx‖ ≤ δ} be the set of δ-approximate fixed

points of T . For S ⊆ X, we write

cop(S) :=

{
n∑
i=1

λixi

∣∣∣∣∣ xi ∈ S and λi ≥ 0 with

n∑
i=0

λi = 1 for n ≤ p

}

for the set of convex combinations of at most p elements. By co(S) :=
⋃
p∈N cop(S) we denote the

convex hull. For arbitrary ε > 0, we will show that the δ that is specified in Theorem 9 validates

co(Fδ(T )) ⊆ Fε/3(T ). (++)

Before we prove this, we show how to deduce the theorem. First note that the closure of co(Fδ(T ))

will still be contained in Fε/3(T ), as the latter is closed. As in Theorem 9, we assume p ≥ 2b/δ2

and α < ξp−1(δ2/2). For q̃ and qn as above, Lemmas 10 and 11 yield

qp−1n (α) ≤ q̃p−1(α) <
δ2

2
for all n ≥ b

α
.

For xn := Tnx we clearly get ‖xn+1 − Txn‖ = 0 ≤ α. We have established all properties that are

used in the proof of Theorem 1.3 from [9], which shows that any x ∈ C validates

1

n
·
n−1∑
i=0

T ix ∈ Fε(T ) for all n ≥ b

α
.

This coincides with the conclusion of the desired Theorem 9. It remains to show that the δ from the
theorem satisfies (++). Due to the assumption that X has Rademacher type q with constant Cq,

we can apply Proposition 7. As noted above, this yields condition (9) of [15], with X and 2Cq at the

place of X2 and c. Essentially by [15, Lemma 2.6] (based on the proof of [9, Theorem 1.1]), we get

co(M) ⊆ cop̃(M) +Bε/9 for any M ⊆ Bb/2,
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provided we have 2Cq · p̃(1−q)/q ≤ ε/(9b) as in Theorem 9. The function q̃ is continuous and strictly

increasing with image [0,∞), as the same holds for γ. Let σ = q̃−1 : [0,∞)→ [0,∞) be its inverse.

As in the proof of Theorem 1.2 in [9], one can show

δ ≤ σp̃(ε/9) ⇒ co(Fδ(T )) ⊆ Fε/3(T ).

To obtain (++) for δ = ξp̃(ε/9) as in Theorem 9, we show ξi(t) ≤ σi(t) by induction on i ∈ N. Let

us first note that Lemma 10 yields q̃(ξ(s)) ≤ s, as q̃ is continuous. Since σ = q̃−1 is increasing, we

can conclude ξ(s) ≤ σ(s). Given s := ξi(t) ≤ σi(t), we thus get

ξi+1(t) = ξ(ξi(t)) ≤ σ(ξi(t)) ≤ σ(σi(t)) = σi+1(t),

as needed for the induction step.

As promised in the introduction, we now discuss an alternative rate of asymptotic regularity:

Remark 12. As shown by Bruck (see [9, Theorem 2.1]), the above function γ can be transformed

into a continuous, strictly increasing and convex γ̃ : [0,∞)→ [0,∞) with γ̃(0) = 0 such that

γ̃

(∥∥∥∥∥T
(

n∑
i=1

λixi

)
−

n∑
i=1

λiTxi

∥∥∥∥∥
)
≤ max

1≤i,j≤n
(‖xi − xj‖ − ‖Txi − Txj‖)

holds for any convex combination
∑
λixi. By a result of Zhu, Huang and Li, the conclusion of our

Theorem 9 holds for all n above a certain n0 that depends on such a γ̃ (see Lemma 3.5 of [43],

which works in a more general semigroup setting). In Section 2 of [15], we have shown how γ̃ can

be expressed in terms of b, c, q and η, assuming that X2 has Rademacher type q with constant c

(but note that the γ̃ in [15] is not made convex). Now Section 3 of the present paper shows how

to express c and q in terms of η. This makes it possible to express the rate of Zhu, Huang and Li
in terms of η and b. A very rough comparison suggests that our rate from Theorem 9 is better, as
it involves fewer iterations of η when q is close to 1. However, we have not established a precise
comparison between the two rates.

To conclude, we observe how certain assumptions can be weakened:

Remark 13. First, note that the proof above involves xn = Tnx with ‖xn+1 − Txn‖ = 0. The

argument does also go through for different xn that satisfy ‖xn+1 − Txn‖ ≤ α for all n. Secondly,

the assumption that C ⊆ Bb/2(0) is bounded can be secured when T : C ′ → C ′ is defined on an

unbounded set C ′ (still assumed to be closed and convex) and has a fixed point f = T (f), as pointed

out in [15]. Indeed, for given x ∈ C ′ we can then consider

C := C ′ ∩B‖x−f‖(f) ⊆ B‖x−f‖+‖f‖(0),

which is closed and convex with T (C) ⊆ C 3 x. In fact, it is enough to have a d > 0 such that T

has arbitrarily good approximate fixed points in Bd(0), i. e., such that Bd(0) ∩ Fε(T ) 6= ∅ holds for

all ε > 0. Indeed, for any f ∈ Fε(T ) we inductively get

‖Tnf − f‖ ≤ ‖Tnf − Tn−1f‖+ ‖Tn−1f − f‖ ≤ ‖Tf − f‖+ (n− 1) · ε ≤ n · ε.

Given n ∈ N\{0} and for arbitrary ε > 0, we now pick f ∈ Bd(0) ∩ Fε/n(0) to obtain

‖Tnx‖ ≤ ‖Tnx− Tnf‖+ ‖Tnf − f‖+ ‖f‖ ≤ ‖x− f‖+ ε+ ‖f‖ ≤ ‖x‖+ 2 · d+ ε.
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As ε > 0 was arbitrary, we may now omit it, for each n ∈ N. This allows us to consider

R := lim sup
n→∞

‖x− Tnx‖ ≤ 2 · (‖x‖+ d).

As in the proof of [38, Theorem 1] (for the simple case where (ank) is the identity matrix), the set

C :=

{
y ∈ C ′

∣∣∣∣ lim sup
n→∞

‖y − Tnx‖ ≤ R
}
⊆ BR+‖x‖+2d(0)

is closed and convex with T (C) ⊆ C 3 x. Note that the Browder-Göhde-Kirk fixed point theorem

will now yield an actual fixed point in C. The fact that approximate fixed points can play the role

of actual ones is also guaranteed by logical metatheorems from proof mining (see Corollaries 5.2

and 6.8 as well as the comment following Remark 5.9 of [16]).
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