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Abstract

For every € > 0, consider the Green matrix G¢(z,y) of the Stokes equations describing
the motion of incompressible fluids in a bounded domain Q. C R? which is a family of
perturbation of domains from Q = Qy with the smooth boundary 9f). Assuming the volume
preserving property, i.e., vol.Q2. = vol.Q for all £ > 0, we give an explicit representation
formula for 6G(z,y) = lim._, o (Go(z,y) — Go(z,y)) in terms of the boundary integral
on 99 of Go(z,y). Our result may be regarded as a classical Hadamard variational formula
for the Green functions of the elliptic boundary value problems.
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Introduction.

Let Q € RY(d > 2) be a bounded domain with smooth boundary 9. We consider the stationary
Stokes equations governing the motion of incompressible fluid.

Av—-Vqg=f inQ,

(0.1) dive =0 in €,

v=20 on 052,
where v = v(z) = (v!(x),--- ,v%(z)) and ¢ = ¢() denote the unknown velocity and the pressure
at © = (x!,--- ,x?) € Q respectively, while f = f(z) = (f!(x), -+, f%(z)) is the given external

force. The purpose of this paper is to prove the Hadamard variational formula for the Green
matrix associated with (0.1). Let {Q}c>0 be a family of domains with smooth boundary 9.
satisfying Qg = Q. For small € > 0, we regard ). as a perturbation of {2. The Green matrix
Ge(w,y) = {GL, (x,y) h<in<a, R(x,y;) = {Ren(x,y)}1<n<a for the Stokes equations on €, is
defined by

Aa:Gs,n(:Ea y) - szs,n($a y) = ené(x - y), (x,y) € Qe x Q,
(0.2) div Ga,n(x’y) =0, (7,y) € Qe x L,
Ge,n(x7y):07 37689579696;



forn=1,---,d, where {e1,---,e4} denotes a canonical basis in R?. We abbreviate Go(z,y) =
G(z,y), Ro(z,y) = R(z,y). Our aim is to show a representation formula for 6G(x,y) =
lim. ,0e 1 (Ge(x,y) — G(x,y)). Concerning the usual Laplace operator —A, such a formula was
first obtained by Hadamard [8], and later on Garabedian-Shiffer 7], Garabedian [6] and Aomoto
[2] treated more general case of perturbation 2. of Q, and gave several refined proofs. Indeed,
they consider the perturbation 2. of the domain €2 whose boundary 0€); is expressed in such a
way that 0Q. = {y = =+ ep(z)vy; x € 0N}, where p € C*°(0N) and v, is the unit outer normal
to 0. Then it holds that

0.3 R e

where do, denotes the surface element of 9. Peetre [13] and Fujiwara-Ozawa [5] investigated
a boundary value problem of general elliptic differential operators A(z, D) = >, <oy, @a(z) D"
of the 2m-th order;

(0.4) { Az, D)u(z) = f(z) for z € Q.,

Bj(xz,D)yu(x) =0, j=1,2,---,m foraz e S,

where Bj(x,D) is the boundary differential operator of order m;. Under the assumption
that the system {A(z, D), Bj(z, D)}L; satisfies the complementing condition in the sense of
Agmon-Douglis-Nirenberg [1] and that the operator A defined by (0.4) with the domain D(A) =
{u € H*™(Q); Bj(x, D)ulgg = 0,j = 1,2,--- ,m} is a bijective self-adjoint operator in L?*(Q),
Fujiwara-Ozawa [5] proved that

(0.5) 0Gy.z) ==Y - ai (Bj(z, D)G(x,y)) Sj(z, D)G(x, 2)p(x)do,
— v

where {S;(z, D)}7"; are boundary differential operators which are determined by Green’s inte-
gral formula associated with the the system {A(z, D), Bj(z, D)}, that is

(0.6) /QA(x,D)u(x)v(x)d:c—/Q u(x)A(z, D)v(x)dz

Z Ju(x) B;(x, Dyo(z)do, — Z D)u(2)S;(z, D)o(z)dos.

895 895

The Hadamard formulae (0.3) and (0.5) are based on Green’s integral formula (0.6). However,
for the rigorous proof for an arbitrary displacement p € C*°(9€2), we need to handle G(z,z) as
the function of z defined on €. for each fixed x € 2. To get around this difficulty, Fujiwara-
Ozawa [5] made use of a Whitney extension G(z,z) of G(z, ) as a function of z € R%\ {z} for
each fixed x € (1 in such a way that

(0.7) A(z,D)G(z,z) = 6(z — x) + g(z,z),

where g(-,z) € C®(R%) satisfies g(z,x) = 0 for all z € Q. Then on account of a priori estimates
for the elliptic equations due to Agmon-Douglis-Nirenberg [1], they succeed to treat g(z,z) as
the remainder term so that the desired Hadamard variational formula (0.5) can be established.



Unfortunately, such a method does not work in our case (0.2) because the Whitney extension
Gn(z,z) of Gp(z,) onto z € R\ {0} may not preserve the divergence free property, i.e.,
div én(z,x) #0,n=1,--- ,n. Therefore, we transform the Stokes equations on (). to those
on € by means of the diffeomorphsim ®, : Q — .. Because of the divergence free property of
{G}n=1,. 4, it is necessary to assume that ®. preserves the volume of €2 for all ¢ > 0. Then the
transformed equations may be regarded as those for vector fields on the compact Riemannian
manifold (Q,a.) with {a:}c>0 = ®*§ a one-parameter family of Riemannian metrics on €,
where 0 = (0;;)1<i j<a is the standard Euclidian metric on Q.. Such a procedure was first
introduced by Inoue-Wakimoto [9] who dealt with the moving boundary value problem for the
non-stationary Navier-Stokes equations. Our method relies on the construction of the parametrix
which approximates the Green matrix of the Stokes equations on ({2, a.), whose original idea
is due to Garabedian [6]. For the usual Laplace equation with the homogeneous Dirichlet
condition on 0f2, we easily construct a parametrix P(z,y) by multiplying the fundamental
solution T'(z,y) = w} 'z — y[>~? by the cut-off function a(-,y) € CF°(Q) satistying a(y,y) =
1, that is P(z,y) = a(z,y)I'(z,y). However, such a simple multiplication is unavailable to
the Stokes equations because the divergence free condition is not preserved. To recover the
divergence free property, we make use of the Bogovskii formula so that the approximating
argument is parallel to that of the Laplace equation. Similarly to (0.6), Green’s integral formula
associated with the Stokes equations on (£, a.) plays an essential role in deriving our Hadamard
variational formula. Instead of dealing with the remainder term g(z,z) as in (0.7), we shall
investigate the behavior as € — 0 of the compensating functions {qz n }n=1,... ¢ which are defined
by (271).Gen(7,y) = Ue (7, Y) + gen(z,y) With u. ,(2,y) denoting the fundamental solutions
of the Stokes equations on (£2,a.). For our proof, it is crucial to show that

Sug‘ng&n(xay)_ngo,n(x7y)‘ _>07 ‘a‘ SQ: nzlv 7d
S

for each y € Q as € — 0. To this end, we need to establish an e-independent a priori estimate
of Schauder’s type for ge (-, y) in the Horder space C2*?(€2). Such an idea goes back to Ozawa
[10], while Garabedian’s [6] another approach is to expand Ge,(x,y) by the power series of ¢
through the integral equation of the Fredholm type.

This paper is organized as follows. In Section 1, we first impose the assumption on the per-
turbation {Q}e~¢ of domains, and then state our main result. In Section 2, we introduce the
fundamental tensor in R? associated with (0.1) and investigate the properties of the singularity
near = y of the Green matrix {GZ, (z,y)}in=1,. 4. Making use of the volume preserving
diffeomorphism ®. : Q — ., we transform our equations (0.2) to those in (£2,a.). Section 3
is devoted to constructing the parametrix {Ufl}m:l .4 which approximates the Green matrix
{G%}i,nzl,..‘ - The Bogovskii formula plays an essential role in recovering the divergence free
condition in §2.. Since the Bogovskii operator has a smoothing property, our construction of the
parametrix preserves the same behavior near x = y of singularity as that of the fundamental
tensor u. (z,y), n =1,--- ,d. Finally in Section 4, we show continuous dependence as ¢ — 0
of the compensating function {gc }n=1... 4, and then prove our main theorem.
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1 Result.

To state our result, we first introduce the assumption on the perturbation {2 }.>o of domains
from €.

Assumption. For every ¢ > 0, there is a diffeomorphism ®. : Q — Q. satisfying the
following condition.

(A.2) ®g(x) =z forall x €
(A.3) There exists S = (S',5%,---,9%) € C®(Q)¢ such that K(z;¢) := ®.(x) — 2z — S(v)e

satisfies

sup | K (z;€)| +sup |[VK (z;6)| = O(e?) as e — 0;
z€Q z€Q

(A.4) It holds that

det (8(1)5(:1:)) =1 forallz e Q and all € > 0.
Ox) ij=1,,d

=1,

It should be noticed that by (A.4), ®. defines a volume preserving diffeomorphism from  onto
Q. i.e., vol(Q) = vol(Q) for all ¢ > 0. Moreover, the vector function S € C°>°(Q)? defined by
(A.3) satisfies the divergence free property. Namely, it holds that

(1.1) divS(z) =0 forall z € Q.
For the proof, see Inoue-Wakimoto[9, Proposition 2.3].
Now we can state our result.

Theorem 1.1. Let the Assumption hold. Let {G}}(x,y;€)}}mn=1,....d be the Green matriz of the
boundary value problem for (0.2). Let

Gm ) - GZL )
5Gm( Z) = hm g,n (y Z) (y Z)
n Y e—0 IS

3 mvnzla"'ad

for any y and z in Q. Then we have the variational formula

m OGZ 8G’
Gy, = /mZ{ 8% By T (z, 2)

- (Rn@,y)aacj’“(x,z) R0 G 010) ) 4} S(0) v

form,n =1,--- ,d, where v, = (v}, ,v%) is the unit outer normal to O at x € Q and o,

denotes the surface element of OS).



Remarks. (1) Garabedian [6], Garabedian-Schiffer [7] and Aomoto [2] proved the Hadamard
variational formula for the Laplace operator A in the domain §2. with the Dirichlet condition
on 0Q: = {y = = + ep(x)vy;z € 00N}, where p € C*°(09Q). Fujiwara-Ozawa [5] and Peetre
[13] generalized it to the boundary value problem of single elliptic equations of the higher order
which define the self-adjoint operators in L?(€). Our theorem enables us to deal with the elliptic
system which is not necessarily self-adjoint in L%(Q).

(2) In such a perturbation 0Q. = {y = x + ep(x)vy;x € N} with p € C*°(0N) as in the
above (1), Theorem 1.1 has a simpler expression. Indeed, by taking a function f € C*(R?) with
Vf # 0 in some neighborhood of 9, let us assume that Q = {z € R% f(z) < 0} and that

- Vi(x) }
Q=<2 =zx+eplax) =—32€Q;, >0,
~{ e
where p is extended as a smooth function on R%. Tt is easy to see that all hypotheses in the
Assumption are fulfilled provided div (pVf) =0 in Q with S = p="— v Since S(x) - vy = p(x)

VI
for all x € 9192, it follows from Theorem 1.1 that

6G (Y, 2)

9G, () 2C oG Fled i
-/ QZ{ o) o w2) = (Ra) G20 (0,2) 4 R, )52 .9) ) o | o,

x x

forally,z€ Qand m,n=1,---,d.

(3) Because of the divergence free property div v = 0 in (0.1), it is essential to assume that
the diffeomorphism ®. : Q — €. preserves the volume for all £ > 0, which is formulated by (A.4)
in the Assumption. On the the other hand, it seems to be an interesting problem to consider
the general perturbation 2. which may not preserve the volume for ¢ > 0. For instance, the
Hadamard variational formula as in Theorem 1.1 for perturbation of domains which change their
topological types for € > 0 is not obtained so far. There is another challenging problem such as
the time-dependent case or the equations on the manifold. See e.g., Ozawa [11], [12]. We will
discuss them in a forthcoming paper.

2 Preliminaries.

Although our main result Theorem 1.1 holds for all d > 2, for the sake of simplicity, we restrict
ourselves to the case d > 3. Indeed, it is easy to see that our argument in the subsequent sections
works even in the case d = 2.

2.1 Green matrix and fundamental identities.

In this subsection, we introduce the Green matrix of the Stokes equations. The Green matrix
{G;}i,n:17...7d. for the velocity and the Green function {R,},=1.. 4 for the pressure can be
represented by the fundamental tensor {u’,pp}in=1.. 4 of the Stokes equation (0.2) with the
compensating function {q¢’, ¢ }in=1.... 4 as follows.

(2.1) { G(,y) = up (2. y) — 4, (,),

Rn(z,y) = pn(2,y) — qn(z, ),



where

) 1 5zn (.’L’l _ yz)(xn _ yn)
U:L(Iﬁ,y) ::_2 d—2 d—2 +(d_2) d )
99 wa(d =2) ||z =y |z =yl
(2.2) n_n
"’ wq |z —yl*’
for i,n = 1,--- ,d, where wy denotes the volume of unit sphere in R%, i.e., wy := gerd//;). The

compensating function {q’}; n—1.. 4 and {g,}n=1.. 4 are chosen so that (0.2) is satisfied, that
is,

AG(2,y) — Veqn(z,y) =0, z€Q,

. 9}, (x.y)
2.3 E e ) Q
( ) — 8.%'7' Y € 6 )
¢ (z,y) = ul (2.y), x € 09, i,n=1---,d.

For any fixed y € Q, ¢,(-,y) and ¢,(-,y) are analytic functions in Q and continuous in Q. For
construction of the Hadamard variational formula, we need to investigate the behavior of the
Green matrix defined by (2.1) around the singularity, so that we have various identities of both
surface and volume integrals on 02 and (2. In this subsection, we collect some results on these
fundamental identities.

Lemma 2.1. Let {Gﬁl}m:l,...,d and {Ry}n=1.... 4 be the Green matriz for the Stokes equations
as in (2.1).
(1) We define the stress tensor for the velocity G,, and the pressure R, by

TU(Gm Rn)(xvy) = —5”Rn(l’,y) + g(::;y), i,j,n = 1, cee ,d.
Then it holds that
d
(2.4) lim Tij(Gn, Ry)(z, y)vi(m)yﬁ; do, =v"(y), n=1,---,d,
p=0 8Bp(y) ’L'Jzzl
for all y € Q and all smooth vector functions v = (v',--- ,v?) near y, where 0B,(y) denotes the

surface centered at y with the radius p and v, is the unit outer normal vector to 0B(y) at x.
(2) It holds that

d . .
oG! . O0G!
r=0 JoB,(y) Byl ox o0xJ

for all y € Q and all smooth tensors {hiji}ijk=1,...4 neary.

Proof. (1) We substitute the Green matrix {G%}in=1.. 4 and {R,}n—1... 4 to (2.4). Since the
compensating functions {q}, }i n=1,.. ¢ and {gn }n=1,... 4 are smooth in Q, it holds that

d d .
2.6) hm/ g —0Y g (z, y)v' (x)v) doy, = hm/ E ——Z " (z)vldoy =0
( p—=0 0B, (y) i,j=1 ( ( p—0 9B, (y) ij=1 g )



forn=1,---,d. Since v} = (z/ —y/)|x —y|"1, 1< j<dforze 0B,(y), it follows from (2.1)
and (2.6) that

d
i [ TG By (@) do
0B,

—0
P Y) =1

(@ )" =y
=1 +d ! doy
=imo L > (e + ) v e

=1

= lim (11(p) + L2(p)).
p—>

where

Li(p) = L zd: ( o + d(xi — )" — yn)) (vi(z) — v'(y)) do
2wq Jop, () = \ |z —y|! |z — y|dtt v
d

1 5in (z' —y") (2" — y”)) :
T = +d v'(y) doy.
20 =3, /aB,,(y> 2 (5 g )W)

We first treat I;(p). Indeed, it holds that

1 d §in (.’L‘Z _ yz)(xn —y")
I :/ < +d >Uix—viy doy
0= aB,,@); & =yl |z — y[d+! (v'(2) = ')
d . . 1
1 (2% — i) (z™ — y™) d / .
< — S = ¢ 1— -
T 2wq /8B Z |z — y\d—l iz — y|aT1 a0/, " Oz +(1—0)y)df || do
(@' —y")(a" —y") /1 4
= S +d x— Vo' (Ox + (1 — 0)y)|db do.
2wq /aBp g y|d I lz — y|dr 'l ; [Vo'( (L=0)y)|

<C maxdsupl(W )()lp,

i=1
with a constant C' independent of p, which yields

(2.7) lim I (p) = 0.
p—0

Concerning the estimate of Iy(p), we change variables x — z := % to obtain

d in % 7 n n
2%1 9B,(y) |z —y[? |z — y|9t

=1
(2.8) 1

d
= d Z vz / 22" do,
i=1 9B1(0)

— v(y), n=1,-d

for all sufficiently small p > 0. Here we note that

(2.9) / 2 do, = §in?d in=1,-.d.
8B1(0) d

7



By (2.7) and (2.8), we have (2.4).
(2) It follows from (2.6) that

d i 7 d ..
lim Z <8G"(i’ y) vl — aG”(fﬁ.’y) Vf) hiji(x) doy = hm/ Z F9%(x,y)hiji(z) do,
p=0 JaB,(y) Ryl Ox oxI P=0J8B,(y ,j,kil

= lim (J1(p) + J2(p)),
p—>

where
Ji(p) /’ S FH ) (hge() — huge(0) o
9B,(y ,jk 1
Ja(p) / Z F9%(z,y)hiji(y) doy
9B, (y) 4,7,k=1
with (o) (o)
g oul (x,y) . Oul(x,y .
k ) ) k
Fiey) = (2550 - 20N k=1
Moreover, since the unit outer normal vector v, = (v}, ,v%) to B,(y) can be represented

explicitly by 14 = (27 — )|z — y|™, 1 < j < d, we have that

ik L fra@ =)@ =) | @ =y (" -y
oy VT ot ERTE P )

|z — y|dtT |z — y[dt
Since |Ffljk(a;,y)\ < Clz —y|*=9 for all i,§,k,n = 1,--- ,d and all 2,y € Q with = # y, in the
same way as (2.7), we have

2.11 J <C max sup [(Vh; —-0 asp—0,
(211) AEISC max s |(Vhye)(a)lo ’

where C' = C(y, () is a constant independent of p. Concerning the estimate of Ja(p), we change
the variables in (2.10) by z — 2 : T and it follows from (2.9) that

(53 (z' —y")(a" — ) +(;Z-j(ac’f—y’“)(ﬂé"”‘—y’"”)>}_

d
(2.12)  Jo(p) = ——— hijk(y)/ (0572150 4 57k 35 — §n ik ik on) o
» 9B1(0)

d d
1 o .
= hi-ny/ 2'2) do, + hi-iy/ 22" do,
M(Z jn(¥) 2 i) |

ij=1 9B1(0) ij=1
d

d
— Z hmk(y)/ 2 do, — Z hiix(y) /83 o PAr daz>
1

ik=1 051(0) ik=1
d

Z hz]n 52] + Z hz]z 5]71 Z hznk 5lk Z hmk(y)ékn

3,0=1 4,7=1 i,k=1 i,k=1



By (2.11) and (2.12), we have the desired identity (2.5). O

The following lemma will be used to calculate the volume integral in €2 associated with the
Green matrix.

Lemma 2.2. Let {G%}in=1.. a be the Green matriz for the Stokes equations defined by (2.1).
Then we obtain the following identity.

d . .
W'(z,2) 0G,(z,y) , _
(213) /QZJZ:1 3wﬂ &pﬂ dr =v (ya Z)a n = 17 e 7d
for all y,z € Q with y # z and all smooth vector functions v(-,z) = (v'(-,2),-- ,v%(-,2)) €

C?(Q\ {z}) with dive(x,z) = 0 in Q\ {z} and v(z,2) = 0 for x € 0N satisfying |v(z, z)| <
Clz—2z|?>~9, where C = C(RQ, 2) is a constant which may depend on z € €, but not on x € Q\{z}.

Proof. Since v(-, z) = {v'(+,2)}i=1,... 4 is a solenoidal vector field in Q \ {z}, it holds that

d i
(2.14) UZZI —5”8”8(;;2)]%71(56,@ =0 for z€Q\{y}U{z}, n=1,---,d,
where {R,(-,y)}n=1,.. 4 is the Green function defined by (2.1). Adding (2.14) to the left hand
side of (2.13), we have by (0.2) and (2.4) that

d . .
w'(z,2) 9G,,(z,y)
2.1 - A
(2.15) /QZ]ZZI oxI Ox? dx
d o' (x, 2)
= lim T9 (G, Ry (2,y) ——— dx
p—0 \{By(y)UB,(2)} iJ’Z:1 O
d
= lim T (G, R, (z, )" (z, 2)v) do,
=0 Jo{Q\(B, (y)UB(2)}} ;1
L9
— lim —T9(Gp, Rp)(x,y)v' (z, 2) dz
P70 JON( B, (y)UB,(2)} ;1 Oz’
:Un(yvz)v n=1,--,d,
which yields the desired identity (2.13). O

2.2 Reduction of the problem via volume preserving diffeomorphism.

In this subsection, we reduce our problem in ). to that in {2 by means of the diffeomorphism @, :
r €0 — 7= (z) € in the Assumption. More precisely, we regard (£2.,5) as a Riemannian
manifold (2, a.) with a one parameter family {a.}c>0 of metrics, where § = (8;;); j=1,... 4 is the
standard Euclidean metric in R%, and where a. = {ae,z‘jhgi,jgd has an expression

d ol o~
oxk ok
ozt Oxd’

k=1

(2.16) Qe jj =

&

Zaj:]-a

9



Then the Green matrix {G. ,};n—1,.. 4 should be treated as d-vector field on (€, d) which is
transformed to g., = (®71)«Gcp, n=1,--- ,d on (9, a.) with the expression

%

d
i Z oz' .
(217) gs,n(xv y) = i ng(x,y), LN = 17 T ad'
j=1

Such an argument was first established by Inoue-Wakimoto [9]. Moreover, we introduce the
Green function {7c,(-,y)}n=1,. 4 for the pressure which is transformed on (£, a.) with the
expression

(2.18) Ten(®,y) = Ren(Z,7), n=1,---,d.

Since the Green matrix {G. ,(Z,7)}in=1,.. .4 is a solution of the Stokes equations (0.1) on
Qc, the Green matrix {GZ, (Z,7)}in=1,. 4 attains the minimum of the Dirichlet integral in
Q. \ K, o(§) with K, () := ®(B,(y)). More precisely, the Green matrix {G.,,(Z,7)}in=1, a
satisfies

4. (9G ?
2.19 / ftn i’, ~ dr = min E , n = 17 7d’
(219 Q\Kp,(7) 2 ( 61 | y)) HY(Q:\Kp. (7)) )

1,j=1

Z' 2
where E(f) := fQE\KpE(ﬂ) 2?,3:1 (%) di and H(Q) := {v € HY(Q)?; dive = 0}. Therefore
the vector functions {g, }in=1,.. 4 on Q defined by (2.17) satisfy

(2.20) /
2\5,(0)

By a standard procedure, we obtain the following transformed differential equation for the vector
functions {g; ,, }in=1,..,¢ and the Green function {7, }n=1,.. a-

d

o [0, dzk ) 2
E il N dr = mi E =1,---,d.
T {8xk <8xlga’"(x’y)> 8553} o H;(Q\lsg(y)) (£, m=1-,

(2.21) 'CE(QE,st,n)(:Ua y) =0, r e\ Bp(y)7
where L.(v,7) = (LL(v,7),---,Ld(v, 7)) has an expression as
(2.22)
L0 o (0% 0% 4 om
r — Y ks i) YE o pr re 20 =1....
‘CE(U77T)($) ‘ ik%ZI axk (CLE axs (axlv (.’IJ))) 8xpa’€ ;as 85[?1 (1’), r ) 7d

with the variable coeflicient

d
(223) a = et k,S = 1, s ,d.

The differential equation (2.21) is the Euler-Lagrange equation with respect to the variational
problem of the Dirichlet integral (2.20) and L. is the Stokes operator on the the Rieman-
nian manifold (€2, a.). It should be noted that (a**) = ((a.s)~!) and that, implied by (A.4),

10



det(ak®) = det(ac s) = 1, where {a ps}tis=1,. 4 is the Riemannian metric defined by (2.16).
Hence the divergence operator is invariant under the diffeomorphism ®. in the sense that

d .
ou’
8563'( )=0 in £,
j=1
which is equivalent to
d ’L
Iz | =0 in Q.
Z: 2 8x3u (7) in

In the next step, let us recall the following Green integral formula for the Stokes operator
L. defined by (2.22);

/ Z e qr L1 (0, m) (@) () — £ (w, 7) ()0 (2)} do

q,r=1

/8 Z qu (v, m)(x)w(x) — Takq(w,ﬁ')(m)vq(x)} V¥ do,

Qk,q 1

(2.24)

where {a. jq}1<k,g<d is the same as in (2.16) and where {Tgkq}m:l’... d is defined by

d

s 0 (07, o7
) T = o+ Y dr e (Bw) BE kg

for vector functions v,w € C%(Q)? with divv = divew = 0 in  and scalar functions 7,7 €
C'(Q). We need to investigate the behavior as ¢ — 0 of the integral identity (2.24). For that
purpose, based on the Assumption, we expand various functions on (€2, a.) with respect for .

Proposition 2.1. Let ®. be as in the Assumption. Suppose that {ac ;;}ij=1.... 4 and {algs}kﬁ:l,... d
are the same as in (2.16) and (2.23), respectively. Then it holds that

ozt . 08! ox’ . 08I

=4 =i — 2
8xj_6j+ 9 -+ 0(g?), 55 ¥ €5 -+ 0(e7),
. 95t 05 o iy (080 08 2
Qe ij _5”+E<axj + aﬁ) +0(%), a2 =0 E(&rj + (%Z) + 0(e?),
02 925 )
0xI Oxk :Ef)xﬂf)xk +0(%),
1 _ 1 _EN(S(l')—S(y))<$—y)+0(52)

Z—glV e —yY | — y| Nt
fori,j,k=1,---,d and for N € N as € — 0, where & = ®.(z), § = P(y) for x,y € Q.

The proof is an immediate consequence of (A.3). So, we may omit the detail.

The following lemma may be regarded as a generalization of the Gaufl formula with respect
to the modified stress tensor {Tf’"}kﬂu:l’.“ .4 on the surface integral.
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Lemma 2.3. Let {gé,n}n,l=1,"‘,d be the matriz as in (2.17) and let {ren}tn=1.4 be the Green

function defined by (2.18). Then it holds that

(2.26)
. pin
hm/ Z TrU(ge p,7en) (0, y) 0 (2)VE doy, = —q(y)vq(y) +0(?), n=1,--
p—0 OB, (y ham1 —l ox
for all y € Q and all smooth vector functions v = (v',--- v?) near y as e — 0.

{Tgkq(‘a V}kg=1, a is the operator defined by (2.25).

Proof. Tt follows from (2.6) that

(2.27) lim/d Z Tr(ge 7o) (z, )0 (x)vF doy

p=0 0B, y)kq 1
= lim qu —Gj . 7), Ren(Z,9) | vi(z)vF do
i [ kZ 3 i Clald D) Rent@) | 0k o

=i Tr n )V} do,
p%/mz Zajn )op(®.9) | v'(2)} do

kq 1
d OFt
= lim — (5kq (z, —|— a }vq 2 doy.
Here we note that
ozt oz ..
(228) @8[{3] = 5;, 1,] = 1--- ,d.

Therefore, by (2.2) it suffices to prove the following identity.

p—0
0B, (y

d ~
(2.29) lim / Zquyvq )doy :Z y)+0(E?), n=1,---.,d,

as € — 0, where

Fiz,y)

1 i{Q(d_Z)5kq<f"—g">
T aug(d - 2) EE

1z — gl

12

d . _ — - - —
. o §in Gt yz Fn o yn o7t
+Zalg 97 <~~_+(d—2)( ~)(~ )> awq}ul;.

Here



Since the unit outer normal vector v, = (v}, ,v%) to dB,(y) can be represented explicitly by

x?
vh = (2F —yF)|z —y|™', 1 <k < d, by (2.23) we have a more precise expression of F(x,y) as

L ( (2 9) + fP(z, ) 4+ £z, y) + f7(z4)q($,y)> ;

2.30 F? =
(230)  Filew) =5

where

- 7") (2% — )
f(l)q (z,9) 25kq
-yl

3/|d jz —y|
f(Q)q .f(} y i (j.l _ gl) (l‘k . yk)
ik, aml 8x‘1 |z —gld |z—y|’
d y o
(3)q 7y n y ’Ll y
e = B o o e T e
d o
D,y = 3~ OF @ =) = =) (2 =)
' 7 ik l=1 0! Ot |z — g|d+2 7=y

forn,g=1,---,d. In the next step, we deal with ffll)q, fT(L2)q, fT(Lg)q and f7(L4)q. Since & = ®.(x)
and § = ®.(y), we have by the Taylor expansion around y € 2 that

d —
~i i oz’ .
(x _y) - 8$k(y)(xk_yk)+0(p2)v Z:L"' 7d7
¥ -2
d 2 d s .
1 oz, o0z , ,
- = - — G N (N — ) — oF 3
EE. (; & - ) ) (k O () 22 )@~ ) 1)+ O >>
N
d 2
= | D aep®@ —y) " —4b) +0(p* ),
7,k=1
as p = |z —y| — 0, which yields that
xt — yt) (29 — y? 1 _
8'%. d ; ; l 1 2 |.Z' - y‘
[Zﬂzl 4t (v)(@l =)ot = )]
oz" T — _
FP(,9) = -5 ) vy )
[Zdi s aa) @ = )l = o)
D=3 2 e (# — ) (=" — o) 1
" i . ‘ Slr—vy
= Sy — ) -] Y
oz" x? — y?)(zF — ¥ 1 _

PO )]

13



d  o=n i ik kY
F9(a) = - 3 O eyl O oy
= S iy ae ()@ = ) (et~ )

forn,g=1,---,d as p:= | —y| — 0. Changing variables © — L;y + y, we have by (2.30) and
(2.31) that

d
; q q
(2.32) lim / > Fi(z,y)v(z) do,
8Bp(y) =1
d A~ d A~
1 ox" i 1 ox"
= 2wy 2~ Dai (y)o?(y) X' + %0 Fpa W)Y
1 d ox* q is d d oz" q ik
by Z 8?(y)ae,qz‘(y)v (y)X +2T;d Z %(y)ag,kq(y)v (y)Z
1,8,q=1 ik,g=1
forn=1,---,d, where
: b ) (gl — 4
oo | G U
A , g
i) | S teity)(@? — )@t — o)
1
Y = do
(2.33) / ' A a 49z
i) | S deau(w)@? — )@t~ 3]
. Uyt (pd — 4
qu e / (:I; Y )(:B Y ) " dO'x

081 () | i1 0et() (@ — )l =y *

fori,g=1,---,d. By (1.1) and Proposition 2.1, we expand each term of (2.33) with respect to
€, and obtain that

o5t 4 .
(2.34) Y = doy —ed - (y)/ (2" — y")?doy + O(e?)
Bi(y) ; 0zt " /gy ()

= wq — ewqdiv S(y) + O(e?)
=wg+0(e?), as € —0.

Xt = / (& — ) (a7 — y9)do,

9B1(y)

(2.35) Ji=1 OB1(y)

—2/m (08" 984
<d+2>r<§>< i

2 .
Gt g ) EHOE), (1 izasa)

2,/7 (1_ 2t 95
(%)

W) FOE), (<i=gsa), a0,

14



21— [ @= gt - ydo,

0B1(y)

d j . , . ‘
—(d+2)e Z gil(y) / (27 — ) (2! — y") (&' — y")(2? — y?)do, + O(e?)
=1

(2.36) dl= 9B1(y)
—2y/7% (08T 98T
O 1< <d
Bk (5o + 50 )40 sizasa
) 2vF 99"
— 2¢ 0] 1<i=qg<d 0.
dF()( agg)—i— (%), (1<i=gqg<d), ase—
where I' is the gamma function. Hence it follows from (2.32)-(2.36) and Proposition 2.1 that
4 o5m
i a( a9( q 2
limy / ZF £y () doy = "(y) + €3 S ()o(y) + O()
8B, (y a=1
4 in
:Ziq(y)vq(y)+0(€2)7 n:]-v 7da
=1
as € — 0, which implies (2.29). Thus we complete the proof of Lemma 2.3. O

3 Construction of the parametrix.

Since the Green matrix {G'(%,y)}in=1..4 has the singularity at = y, which is governed
by the fundamental solution {u’(x,y)}in=1..q4 in (2.2), we need to construct a parametrix
{U}(2,y)}in=1,.. a as an approximation of {G% (z,y)}in=1.. 4. For that purpose, we prepare
several fundamental lemmas.

3.1 Bogovskil formula.

The following proposition gives a solution of the inhomogeneous divergence equation with the
Dirichlet boundary condition. In particular, when the domain is star-like with respect to some
ball, we have an explicit representation in terms of the integral kernel.

Proposition 3.1. Let D C R?, d > 2, be a star-like bounded domain with respect to the ball
B = Bpr(zo) C D. Consider the inhomogeneous divergence equation with the Dirichlet condition
on the Lipschitz boundary 0D of D;

{divv(an) = f(z) in D,

(3:1) v(x) =0 on 0D.

For any f € L1(D) with 1 < q < oo, there exists at least one solution v € Wol’q(D)d of (3.1).
Suppose that w € C3°(D) has such properties as supp(w) C B and [pw(z)dx = 1. Then the
solution v of (3.1) can be represented as

(3.2) 'v(x):/QN(a;,z)f(z) dz

15



where

(3.3) N(z,z):= H/OO w<

|.%' - Z|d z—2|

r—z d—1
|ac—z|>5 &

For the proof, see Bogovskii [3]. The proposition 3.1 is generalized to the divergence equation
in an arbitrary bounded domain in R%.

Proposition 3.2. Let Q C R%, d > 2, be a general bounded Lipschitz domain, and let 1 < q < oo,
k € N. Then for every g € Wg’q(ﬂ) with [ g(x) dx = 0, there exists at least one v € Wk+1’q(Q)d
satisfying

divv =g

with the estimate
‘|vHWé€+1vQ(Q) < CHQHWS“*‘Z(Q)?

where C' = C(k,q,Q) > 0 is a constant independent of g.

For the proof, see Borchers-Sohr [4] for instance.

In the next step, we introduce the key lemma to construct the parametrix. Proposition 3.1
assures the existence of the auxiliary function Q.. (-,y) = {Qé,n(wy)}n,l:l,...,d for any y € Q
which preserves the behavior of the singularity of {uc,(z,y)}n=1.. 4 at x = v.

Lemma 3.1. For each fized y € 2, we define a cut-off function a(-,y) € C§° () satisfying

1 forallx € By, (y),
4

3.4 alxr,y) =
(3:4) (@9) 0 forallxz e Q\ Ba, (y),

2
where dy, := dist(y, Q). Suppose that w, (-, ) = {u’(-,§) }in=1,... a is the fundamental tensor of
the Stokes equations in R, i.e. ,

i1 " @ —ghEn —gn) R
uy (2,79) = ){~ - + (d—2) }, , 1,---,d.

2wq(d — | — g|+? | — 7|

For every 0 < e < 1 we define uz ,(-,y) = {uén(-,y)}i,nzlj...,d b

d
(3.5) ul (2, y) Z in=1,---,d.

:Bl”

Then there ezists Qe pn(z,y) = {an($ Y ni=t,..a € WH(Q)? for all v € (1, ﬁ) such that

d
i Qunfe) = 3 sy (a St a(o)) in
Qe,n(x;y)zo on aQ’ n=1---.d,

(3.6)
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where {ac i;}ij=1.... 4 and {aék}iykzly...yd are the same as in (2.16) and (2.23), respectively. More-
over, such a Q.. satisfies the following additional properties;

y
(3.7) ’Qs,n(-x:y” < m’
eC,
3.8 n n ) < 73!7
( ) ’(Qé‘, QO, )(.73 y)‘ = ‘l’ _ y‘d_g
i Cy
eCy
(3.10) Vo (QLy — Qb ) (2,y)| < EE=l
C
(3.11) IVE(QL,) (,y)] < W
2 eCy
(3.12) VHQtn — Qom)(z,y)] < EEpT=E
forallz € Q and all0 <e <1, i,n=1,---,d, where Cy is a constant which may depend on y,

but not on x, €.

Remark 3.1. We regard 2 as the Riemannian manifold with the metric a. = {ac.;}ij=1,... d-
Hence the operator div in (3.6) should be understood as the divergence operator on (£, a.).
However, on account of (A.4), we may treat it as the usual divergence operator in the standard
Euclidean space (2, 6).

Proof. First of all, we prove the existence of the solution of (3.6). Since

d
Zae,ijaikzé‘;ﬂa kvjzla 7d7

by integration by parts, it holds that

/Za“] 7 asydaz—/z j;n Jy) da

i,5,k=1
d
= lim { —/ a(z,y)divue ,(z,y) dx —|—/ oz, y)ul ,(z NIz dax}
=0 L Jas,w) ) O(2\B, (1)) ;1
= 0.

Here, we have used
uen(z,y)| = O(lz —y[*~"), n=1,---,d, asz—y.

Since e, (-, y) € L(Q)? for all r € (1, 7%45), it follows from Proposition 3.2 that there exists a
solution Q: (-, y) € WOI’T(Q)d of (3.6) for all r € (1, d%dQ).
In the next step, we prove estimates from (3.7) to (3.12). We choose a special solution

Q:n(-y) € W(}’T(Q)d of (3.6) which is represented by the kernel function as in (3.2) with the
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analogue of Borchers-Sohr [4]. For that purpose, let us take bounded domains U; and functions
Y € C(U;),i = 1,---,N so that Q C UN,Q;, Q; := QN U; are star like, and so that
ZZ L ¥i(z) =1 for all z € Q. Then for every f € Ll(Q Wlth Jo f(x)dz =0, we can decompose
fas f=T1(f) +T2(f) + -+ T'n(f) in such a way that

[ @@de =0, supTi) o im1e N
Although N may be a large natural number, we can reduce such a decompositions of 2 and f to

that in the case N = 2. This is due to an inductive argument as in Borchers-Sohr [4, Theorem
2.4]. See also Sohr [14, II. 2.3]. Hence it suffices to deal with the following simpler case like

Iy (f) = f — ( /Q by fd)n

Lo(f) = f = T1(f),
where supp ¢; C Q;, i = 1,2, ¢1(x) + ¢o(z) = 1 for x € Q and n € C(Q N Q) with
meQQ n(x)dz = 1. We define {Q€7n}n:17...’d by

(3.13)

oo .
B1)  Qunlry)= Z / > ey (gt ) | 2N,
l,7,k=1

forn =1,---,d, where N;(z,z) is defined as in (3.3) with D replaced by €; for i = 1,2. By
Propositions 3.1 and 3.2, we see that this {Q: 5 }n=1,.. 4 solves (3.6).
On the other hand, it follows from (3.3) that

C

for all x,z € Q with x # z and all i = 1, 2,

where C' = C(9Q) is a constant independent of z, z € 2. Moreover, by the definition of {I';};=1 2.
n (3.13), for any fixed y € €2, we obtain that

d
Oa
(316) I'y Z Qe 15 <alka kug n> (yvz)

1jk=1




with C' = C(y,Q?) depending on y € € but not on z € Q. On the other hand, by (A.3) and
Proposition 2.1, it holds that

ul ,(z,y)
d ozt
= Z 97l uil("i‘7g)
=1
L 08 o
— lz; ((5l €M($)> uﬁl(x 7) + 0(82)
1 ¢ a5’ 5in (@ — §HE" — ) )
=2 2= <55 "o (‘”) {|5c R } O
1 d 557
T 2wg(d—2) ; <5i N gaxl(x)>
gt oy @ ="~y
[<|x—y|d—2 L A P )
LT (S (@) = SR(y) (k= b
(d 2){ |z — y|?
_(SY@) = Sl ) @™ — y") + (S"(x) — S () (' — 3
|z — y|d
d k(y) — Sk o N Y e
L S8 @) — S (Zﬂl)(waz )(z! =y (@ —y )H Lo
= u),(z,y)
c d 8Sj 5177, (a:l—yl)(xn—yn)
" (d—?) LE @ (s - )
I (M) = SE) ek — )
(d 2>{ |z — y|?
_(8(x) = S () (& —y™") + (S"(x) = S"(y) (' —y7)
|z — y|d

(3.17)

d J a3 " — yn
TR =S e Z e ] L ey

for jyn=1,---,d, as ¢ = 0. Hence by (3.16), we have

d
da
n ( > (lkaiu)) (v:2)

l’j?kzl

1 1 1
§C+C’(/ da:+€/dx>+0 g2
ly — 2|42 Q |z —yl? Qo —yl? 2
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J

1
n=1---,d for all z € 1 with z # vy,

¢
ly — 2|42

|z — yl‘de

where C' = C(y,2) is a constant depending on y € 2 but not on z € Q. Similarly, for i = 2, we
have

d

0 C
Iy Z Qe 1 (aékaxozuj ) (y, 2) <W, n=1,---,d for all z € Qy with z #£ y,
l?jvk:]-

where C' = C(y, ) is a constant depending on y € €2 but not on z € Q. Hence it follows from
(3.14) that

d
Ja .
(3.18) Qe n(z,y)| = Z/ > acy <al€ka$kug’"> (y, 2)Ni(z, z) dz
l,j,k=1
2 d 9
< [ X e (55 | n)| Nt 2)
i=1 7 Ljk=1
1 1
<C d
aly — 2|72 |z — 2|41
C .
z— g3 n=1,---,d for all z € Q with = # y,

where C' = C(y, ). This implies (3.7).
Next, we prove (3.8). In the same manner as in (3.7), (3.15), we have by (3.13) and (3.17)
that

d
da
oY e (a; 8xkug,n)—<Va-un> (4.2)
1

1,j,k=
kaa j
=TIy Zéj?u&n—(Va un) | (y,2)
k=1
4 a
j=1
d Oo : d O .
= [ | 25 55 k=) 02 | - | v | X a5 Ot =) ) | | )
§C|(ug —ul) (y, 2 ‘—1—C/| —uJ ,l‘)‘dl‘
|y_CZE|d 5, n=1---.d for all z € ; with y # z and i = 1,2
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with C' = C(y, ). Therefore, similarly to (3.16), we have
’(Qen - QO n)(xvy)‘

d
oo
Z / > o (aé’“axkuzn)—w-un (9, 2)Ni(x, =) d2
=1

1
<C
5/9 |y—z\d_2 |z — 2|41
Ce .
—W’ n=1---,d forall x € Q with x # v,

where C' = C(y, ), which implies (3.8).
Since the rest of proofs for (3.9)—(3.12) can be handled similarly as above, we may omit
it. O

Lemma 3.1 shows that the order of the singularity of Q. ,(z,y) = {QE (@, Y) bin=1,.. 4 near
x = y is weaker by one degree than that of the fundamental solutions as in (2.2). Making use
of the Q¢ n(z,y) = {Qén(x Y)}i.n=1,. 4, we shall construct a parametrix in the following way.

Let us define pe (-, y) := {pen (¥ )}n 1,--,d by

(3.19) Pen(,y) = pp(Pe(z), (),
where p, is the fundamental solutions of the Stokes equations (2.2) for the pressure, that is,
- 1 (@"—g")
= =1,---,d.
p’n(ny) (,Ud ’.’i—’g|d ? n Y b

Now we define the parametrix {U. (-, y)}1,n=1,... 4 for the velocity and {P- (-, y)}n=1,.. 4 for the
pressure by

Ua,n(-rv y) = a(w, y)ua,n(xa y) - Qa,n(xv y),

3.20)
( P. o (z,y) = a(z,y)pe n(z,v), n=1,---.d,

where a(-,y) and uc (-, y) = {ul,,(-,y) }in=1.... 4 are the same as in (3.4) and (3.5), respectively.
We may regard Q. (-, y) == {Qa,n( Y )}Zyn_L... .4 as a compensation for recovery of the divergence
free condition of the parametrix {Uel,n(-, Y) Yin=1,.. 4 in Q.

3.2 Properties of the parametrix.

In this subsection, we shall show several properties of the parametrix {U. », P: n }n=1.... 4 defined
by (3.20).

Lemma 3.2. Forany0 < ¢ < 1 and for each firedy € 0, the parametriz Ue 5, = {Uc 5, (-, Y) }n=1,.-- d
and P.p, = {Pen(-,y) bn=1,... 4 defined by (3.20) satisfy the following properties.
(1) It holds that

i n\" =0 i Qa
(3.21) {leU& (,y) in

Uen(y) =0 ondQ, n=1,--,d

21



(2) The parametrix {Uém(yy)}n,l:l’...,d and {FPon (-, ¥)}n=1,. 4 approximate the Green ma-
trix {G%(~,y)}n7l:17“.,d and {R,(-,¥)}n=1,.. 4 in the sense that

d
(3.22) lim Va (G’ln(ac, y) — U(l)m(x, y)) - vpvt(z) doy =0,
P=0JoB,(y) ;
(3.23) lim (Rn(z,y) — Pop(z,y))(v(x) - vp)dog =0
P=0J0B,(v)
forn=1,---,d, where v = {vl}lzl’...yd_ is a smooth vector function around y € €2, v, denotes

the unit outer normal vector to 0B,(y) and do, denotes the surface element of 0B,(y).
(3) It holds that

Ce
(3.24) \Uen(7,y) — Uon(,y)| < o= gi2’
Ce
(3.25) |P-n(z,y) — Pon(z,y)| < Ty n=1,---,d

for all z € Q with x # y, where C' = C(y,d) is a constant which may depend on y, but not on
x € €.

(4) For the operator L. defined by (2.22), we obtain the following estimate.

Ce

(326) ’Lg(Gn - U()7n + U57n7 Rn — P()7n + ngn)(.fc, y)| S W,

n=1,---,d
for x € Q with x # y, where C = C(y,d) is a constant which may depend on y, but not on
x € .

Proof. (1) we see that (3.21) is an immediate consequence of (3.4), (3.6) and (3.20).
(2) Let us show (3.22) and (3.23). First we note that

(327) Ubn(,9) = oz, y)ul(z,9) — Qou(x,y),  nil=1,--,d,

where uy,(+,y) := {u}(-,y)}ni=1.. 4 is the fundamental solution of the Stokes equations intro-
duced by (2.2). Since u,(z,y) = O(|z —y|?~2) for n =1,--- ,d, as x — y, we obtain from (2.6)
and (3.9) that

lim/ Vo (GL(z,y) = UL, (2,9)) - vad'(z) doy
p—0 BBp(y); ( ’ )
d l
%) o) 9Q
i 9 4 ! 1_ g n ! ko
iy [ > { (1= ol o)+ (1= o)) o) + 5 o) ol oo do
d 9
:lim/ 1 —alz,y) = (z, )0 (z)vf do,
) . MZZI( (@,9)) 5% tn(2,y)V'(2)
d
:lim/ a(y,y) —alz,y —u% x,yleuﬁdax
tiy [ ) 3 (@) el b))
= lim I,(p), n=1,---.,d
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Since V ul (x,y) = O(|lz — y|9~!) for I,n = 1,--- ,d, as © — vy, in the same way as (2.11), we
have
|In(,0)|SCSUPKV;EOZ)(J/‘,QJ)IP—)O, nzla >d7 as p_>0
e

with a constant C' = C(y, Q) independent of p, which implies (3.22). It is easy to see that (3.23)
can be handled similarly to (3.22).
(3) We next show (3.24) and (3.25). By (3.20), (3.17) and (3.8), it holds that

U2 (2,y) = Up (2, 9)] < sup Ja(e, )l (2,y) = up (@) + QL (2, 9) — Qb p(z,y)]

SCf‘c:{|'fc_y|2 d+‘$_y’3 d}7 n:17"'7d
with a constant C' = C(y, ), which yields that

Ce

Uz n(z,y) — U p(x,y)] < =t n=1,---.d,

where C' = C(y,2) is a constant. This implies (3.24). The proof of (3.25) is parallel to that of
(3.24).
(4) Since the Green matrix G, (z,y) = {G,(z,9) }ni=1.. a and the Green function R, (z,y) =
{Rn(z,y)}n=1,... 4 satisfy the Stokes equations (0.2), we obtain that
‘Eg(Gn - UO,n + Ua,n7 Rn - PO,n + Pe,n)(xy y)‘
= |£§(Ua,n7pa n)(x y) - ﬁr(UO ny PO n)(x Z/)
+£ (G UOm POn)( 7y £6<Gn_UO,mRn_PO,n)(xay)’
S |LLUen, Pen) (2, y) — Lo(Uon, PO n)(@,9)]
+ |££(Gn - UO,na n PO n)(x7 ) £6(6;’n - UO,m Rn - PO,n)(x7y)‘
for n,r =1,--- ,d. Therefore, for the proof of (3.26), it suffices to show that

Ce
(3.28) |LE(Ueny, Pen) (@, y) — Lo(Uon, Pop)(w,y)| < Wa

Ce
(3-29) ’EQ(Gn - UO,m Ry, — PO,n)($ay) - ES(Gn - UO,m R, — P n)( y)l < W

for n,r =1,--- ,d, where C = C(y, d).
First we treat (3.28). Since ug, = uy,, it follows from (3.20) that

££(Ue,n> Pe,n)($a y) - ‘CS(UO,TH PO,n)(-ra y)

= E; (aus,na aps,n)(z:» y) - ‘CS (auo,m apO,n)($a y) - £;(Q€,m 0) (1'7 y) + ES(QO,TU 0)($> y)
d P e

= 2 g«

i,7,k,l,p,s=1
O (tate.ui o) b7 552 ate, i)

.. 8 ’ n ’ ‘ axz ? )
,9,k,l,p,s=1 =1

£(Qens 0)(z,y) + L5(Qon, 0)(z,y)

(3.30)
3 2 (et isuen) } oo
s 2
L

Zae e 1{04 T, Y)pn (T, )}

5ks
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d

= > ;Zk{ lgsais (e, y)up (3, y))} gi;agf - Z Ge aaz{o‘(x y)pn (@, )}

i7k’p75:1
d d
a ks 8 7 ip Spr rii
LZW {6 9 (a<m,y>un<x,y>)}a 5 gé W{a(sc,y)pn(x,y)}]

— LL(Qcn,0)(z,y) + LH(Qo,n,0)(x,y)
= I;[r,n + 157,,1 + Ig,n + Ii,n + Ig,n + Igﬁl’ n,r = 1,--- ’d’

where

d d .
0% 09 0% 9*u! ;0% Op
T ks _pr ~ 9~ n  ~ ~
Il,n T O‘(‘T’y) ( Z Qe ag axp ok 61’5 axqaﬂ( ’y) - Z as a$z O (xay))

i,5,k,l,p,q,5=1 1,=1

i,k,p,s=1 i=1

d - 0%l d dp
awg) | D0 e () = S ) |

d s . . .
daks o0x' 037 ou’ 9% ot Gu
7T = e _pr Nz 5 ks pr ~
ey 'jga:s_l <8xk 9 Bap oz 030 V) T G e e g ’y)>
aa’gs o ozt .

[g,n :_Zasa i xypnwy +Z(5m

d — g
_— Oa 0¥’ Oa 07\ g pp 0T oxt oul,
Tin = Z <8xk (z,y) oz’ * oxs (z,y) 8&0’“) Ue U= Hup O 7 (@9)

5 (& ¥)Pn(2,9),

i,7,k,p,s=1
d . .
, Oa out, Oa ou!
ks cip spr . -_n
X a0 (e G+ e G e)).
i,k,p,s=1
d o d
r 620‘ ra ‘ 1~ 7 r 8205 7
I5, = Z m(%y)aksa}) Oz pun(ﬂf - Z §Ee 5P m(%y)un(iﬂay),
i,k,p,s=1 i,k,p,s=1

Ig,n = _{[’Q(Qa,na 0)(1:) y) - EG(QO,’IM 0)(.17, y)}7 n,r = ]-7 e 7d°
Concerning the identity of I7,,, it follows from (2.16) and (2.28) that

d d .
0z x4 (%UJ 82 ‘ 0373 8
ks pr 2% ~ o~ i
o 5 o s - St o)

1,,k,p,q,5=1 3,j=1

(3.31) oy O (5.7
_ i Opa(3,9)
) S e
=0, n,r=1,---.,d,
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Similarly, since {un(2,y), pn(x,y)}n=1,.. .4 solves the Stokes equations in 2 for x # y, it holds
that Lo(wn,pn)(z,y) =0 for z,y € Q with x # y, which yields

(3.32) ( > e 8“ (z,) Za” p” )

i,k,p,s=1
r dp
— afa) (M) - W(:c,w)
=0, n,r=1---,d, for xz € Q with z # y.

This implies I7, = 0 for n,r = 1,--- ,d and for z,y € Q with z # y. By Proposition 2.1, we
have

. o
- £ (S 22 2080 )
I o, oak  0F Ce
| 2 T g gt B0 <
n,r=1---,d, for x € Q with z # y,
d
1l = |3 (o gt (00) = " G y>)|

S

Q

azl zd: (5” < 5 + gi:) - 0(52)>

=1

% (pn(229) + €V apule 9) {(F — ) + (5 — B} + O() — 5 pa(, y>}\

Zili (5 + 55 ) matea + 0

W? n,r=1,---,d, for x € Q with z # y,
T —

oo 0%l Oda ox? s pp 0T OUl
S (pale i+ g ) dar )

o € OxP 0%
i,5,k,p,s=1
d ' |
3 aa 8UZ aa auz
— ks sip spr da aui,
ik;zl(s 5P (a EmdCE y)a (z y)+8x3(x,y)axk(x,y)>‘
d .
804 ] 85 80[ . 85
) 2{6”’) (07450 + 060 + gt (8 + 5 +0e)) |

oSk 0s° asP  0S”
X <5’“ +e (8935 W) + 0(52)> (51”" +e <8x7” a;w) - 0(52))
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; a5? oul,
X <5p+58+0( )> 957 “(Z,7)

s cip opr [ O oul, Jda oul,
-3 e (B2 s e ),

i,k,p,s=1
ﬁ’ n,r=1,---,d, for xe€Qwithx#y,
r—y
- 0%a k oz’ k 0 .
.| = S A PT Ny S i T i
|I57n’ B k:z 1 (W(l"y)a ag oz pun( ) Y 51’5!’ Gm’f@:ps (x’y)un(xvy))
1,R,P,8=

S0

S ra A EXV T, 1
= Z axkaxs (z,y) (ak a? P U (2, 9) — S5 §PT (7, y))

i,k,p,s=1

d

> 5o
L Oxkdxs
i,k,p,s=1

oSk 958 oSP 98"
x H (5’“ +e <6x3 + M) + 0(52)) (6” +e (83:’" + &Up) + 0(52)>

%

‘ <5 T o<e2>) (il (2, y) + eVt (2, 9){(E — )+ (y — )} + 0<62>>}

— RS 5P L (x, y)} ‘

Ce

< — n,r=1,---,d, for z € Q with z # y,
|z =yl

g0l = |LE(Qein, 0) (2, y) — CS(Qo ns 0)(9«% y)l

B Z 0 e 0
. dzk | ¢ Oz c%cl
i,k,l,p,s=1
d
o ,
Z { = (7" Qb y))}é””éf”
ikl
< i+ o n,r=1,---,d,
where
920! d 2l
QL , oo 0°Qp
roo ks ks sil sip spr n
i = Z ag’as prag’ axkaxs - Z 070" Oxkoxs |’
k,lp,s=1 i,k,l,p,s=1
d ~i 50! ~i ! 7 L 7
T aafs oz’ 8Qe,n ks 821'1 aQe,n 821'1 aQSyn oz pr
Jon = ik%:sl{ oxk 0x! Oz +ae Oxs0xt Oxk +8x38xl Oxk o ¢

i 0z daks 023 ox!
k87 pr € pr p— 1 ... d.
+'Lk%):s 1{ e axsaxkaleanaxp e T Ok axsaleanaxp € }'a n,r ) )
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By (3.7), (3.9), (3.11), (3.12) and Proposition 2.1, we have that

d
ask  as® asr oS
Fa=1 3 <5’“8—5 (8:1;5 + aﬁ) +0(e )) <5pl+s (a l +8xp> +O(e2)>
k,l,p,s=1
osP ST 9°Q! 2 1 cip spr O
pr 2 en 5ks5zl52p6pr 0,n
<(#+e (5r + ) + O o sl 00
§|C€|d1, n,r=1---,d, for all x € Q with x # y.
r—y

Similarly, we have

- Ce

JQ’HSW, n,r=1---,d, for all z € Q2 with x # y,

where C'= C(y,2). These two estimates of J,, and J3, for n,r =1,--- ,d yield that

Ce

—| |d 1° n7T:17"'7d> fOI'aHIL‘GQWlthIL‘#y

|16n|

with C' = C(y, ). From above estimates, we see that

Ce

j=1,---,6, n,r=1,---.,d, for all x € Q) with x # vy,

where C' = C(y,?) is independent of z € Q. By (3.30) and (3.33), we have (3.28).
In the next step, let us show (3.29). Since ug, = uy, it follows from (2.1) and (3.20) that

ﬁg(Gn - UO,n; Rn - PO,n)(x y) - £T(G - UO My Rn - PO,n)(xvy)
= LU(1 = a)un, (1 = a)pn)(2,y) = Lo((1 = @)un, (1 — @)pa)(z,y)
+ L"Z(QO,’I’Z? 0)(.%, y) - EG(QO,nv )(JJ, y)

d ~i 7 d
- fk{’“ai (gzl(l oz, )l (z y>)}gﬂagr—za”;;{(l—a(x,y»pn@:,y)}

i,k,l,p,s=1 i=1
9 P i
- s a(1 — ! ipSpr _ ri 9 (1
L o {0 g (3001~ ey o707 =S (1 ey}
+ [’g(QO,ru O)(ﬂ?, y) - [’S(QO,n, 0)(1}, y)
= E{,n + Eg,” + Eg,n + Ein + Eg,n + Eg,nv n,r=1,---,d,
where J o ) l ]
T _ ksY pr - ri VPN
in = (1-a@y) (ik%;l Y 5l ozp e 83:’“8375 ;aa axi)

i,k,p,s=1 i=1

d 0%ul d op
_(1— ksg. _—n ri ZEm
(1—a(x,y)) E 8% 8ip0pr Bk B g ) 5 |
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Eyp = (1= alz,y))
d

ks I 251 9,1 250 5,1 =i
" Z {8& 07t 07 praun+aks< 0%z 8UN+ 0%z Bun>}8x P

1,k,l,p,s=1 axk axl OxP o Oxs c 8$Sa$l axk kaaxl oxs oxP €
d y
8aks (92302
"> h@&%wvw@w
i,k,l,p,s=1
o35t o7t 82(1 _a(x y))
ks Y4 0*(1 — a(z,y))
+ ag <8xkax58$l (1—a(z,y))+ 9l p

n 0?7 9(1 — a(x,y)) Oz (1 —afx,y)\ | 0 .
Bxsaxl ozk dzrkdz! s dap e

ar " ©
By, =Y —d —Z n+26” y))pm

=1
(1 — a(z,y)) oul, (1 — a(z,y)) oul
L— ks T n n
Ein = Z 0c e p 0z ( dxk oz dx® dxk
k,l,p,s=1
D e (1 — a(z,y)) Oui, (1 — alw,y)) Oul,
Z 0™ ip0pr Oxk oxs + oxs oxk )’
i,k,p,s=1
d
97’ 9*(1 — a(x,y)) 0 (1 —a(x,y)) ;
roo._ ks ro 1 ks 1
R S S
i,k,l,p,s=1 k,p,q,s=1

Eg,n = ﬁg(QO,TMO)(wvy) - ﬁS(QO,mO)(Q%y), n,r= 17 T 7d'

First we consider E . Since the cut-off function a(z,y) =1 for = € By, (y) as in (3.4), we have

4
|1 —a(x,y)| < Clz —y| for all x € Ba, (y), which yields that
4

d i ; d
0T 01" 0%ul, - Jp Ce
1— ks ¥ pr _ ri ZEn < 7=
(1= alz,y) klz%:s—l U 9al 9zr " Bxk(“)xs ;ag ozt || = o —yl-’

for n,r =1,--- ,d and all x € Q with z # y, where C = C(y, ).

In the same manner as for Iy ,,, 13 ., I3 ., I§ .. If , and I¢ ,,, we can handle E; ., forj=1,---,6

and n,r =1,--- ,d so that (3. 29) is established. This completes the proof of Lemma 3.2. O

4 Proof of the theorem.

4.1 Expansion of G..

Our aim of this subsection is to investigate a continuous e-dependence of G, which yields
necessarily an explicit representation of G¢ by means of the volume integral form containing the
parametrix as in (3.20).
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Lemma 4.1. Let {Gln}n,lzl,m,d and {Rp}n=1,...4 be the Green matriz and the Green function

defined by (2.1). Let U., = {Ué,n}n,lzl,--~,d and {P:p}tn=1,.4 be the parametriz defined by
(8.20). Then we have

(41) ngn(g’ ~) - Gm(y7 )

ar

= {~Ufm(2, y)+U?m(zy}+€Z 2)Gr(2,y)

Orl .
Z e LL(Gp — U + Uz, Ry — Poy + P ) (, y)a—:;zGZm(x, z) dz + o(¢)

1,q,r=1
form,n=1,---.d and for ally,z € Q, as € — 0.

For the proof of Lemma 4.1, by the Green integral formula as in (2.24), we first express G.
by an integral equation of the Fredholm type.

Proposition 4.1. Let {G%}l,n=1,~--,d and {Ry}n=1... 4 be the Green matriz and function as in

(2.1). Let {UL  }ni=1,. a and {Pep}n=1,.. a be the parametriz as in (3.20). Then we have
G2 (9, 2)

m

()G (y)

42) ={G7'(%9) = Ugu(z9) + UZn(2y }+€Z

Z Qg qr G UO n + Ua s R PO,n + Pe,n)(x7 y)gg,m(xa Z) dr + 0(52)
Q 7= 1

formyn =1,--- d and for all y,z € Q as e — 0, where L. is the operator defined by (2.22),

{94 mYm.g=1... a is the function defined by (2.17) and where {S'};_1 ... 4 is the vector function as

Proof. We apply the Green integral formula (2.24) in Q\ B,(y) U B,(2) to the functions

{ vi(z) = Giy(2,y) — U§ o (2,9) + UL, (2, ),
(@) = Ru(2,y) — Pos(,) + Pe(2,y),

w'(z) = gl g2, 2),
m(z) = rem(z, 2), imn=1--,d.

Since G% (-, 1), Uo n (5 ), Uei,

(-, y) and gg7m(~,z) vanish on 0Q2 for all y,z € Q, i,m,n=1,--- ,d,
we have by (2. 21) and (2.24) t

d

(4.3) Z aaqr{ﬁg(Gn —Uopn +Uen, Ry — Pon + Pep) (2, 9)92 (2, 2)
Q\By(y)UB,(=) ¥

— LL{Geims o) (@, 2)(Gh = Ug,, + UL, () } do
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d
- / { Z thkq(Gn - Uo,n + Uz—:,ny Rn - PO,n + Pe,n)(:pv y)ggm(gj) Z)V;{cc
0B, (y)UdB,(z) K471

— TE9(Geims o) (@, 2)(G = U, + UZ,) (@, )k } do

for m,n = 1,--- ,d and for all sufficiently small p > 0. By (3.9), (3.22) and (3.23), we have
similarly to (2.27) that

d
lim / Z TF(G,, — Uy + Ue iy Ry — Poy 4 Pe)(2,9) 92,0 (2, 2)V% do,
p—0 ’

OB, (y)UdB,(z) F4=1
d

BT kq q k
N ;I—I}%J Z TE (Ua,n, Pa,n)(xy y)gs,m(xa Z)Va: do-l’

0B, (y) Fa=1

d
= lim / Z Tekq(oz'l.tan,ozp,gjn)(:z,y)gg’m(a:,z)l/f;C doy

0By(y) k.a=1
d oxr .
=l [ YT} ol (@), apa(E9) | g (w,2)vy do

83/)(1!) kia=1 -

d A
oz" 9

(4.4) = 3 qgam(y,z)+0(e ), m,n =1, ,d, ase—0.
x 9
q=1

Note that a(y,y) = 1 and that

do
4.5 / Vea(z, y)||un(Z, §)|dor < Cy / —_—
(4.5) aBp(y)l (@, 9)|lun(Z, 7)| (y) o5, 17— 12
doy

< C(y) +0(e?)

9B, (y) ’x _y‘d_2
— 0(£?), n=1,---,d, asp—0.

By Lemma 2.3 with y replaced by z, we have

d
(16)  lim / S TH9gen, o) (@, 2) (G — UL, + UL, y)hdo,

0B, (y) kia=1

d ~m
= 8L("Z’,)(CJ%_(jg,n—i_[]g,n)(‘z?y)—i_O(EQ)ﬂ manzlv"' 7da as e — 0.

Letting p — 0 in (4.3), we obtain from (4.4), (4.5) and (4.6) with the aid of Proposition 2.1 and
(3.24) that

d
[ 3 tear (G = U+ U B = Po + P02 0)g2 (5 2) o,
(9] Q7T:1
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d ~
oz" o™
= Z; {axq(y)gg,m(% 2) = 5 (NG = UG, + Ué{n)(z,y)}
q:
d ~ d
ox™ &rq 98™
_ et mq 2 q _ 174 q
,Z ox4 6@' <5 - E + 0(5 )> (Gn UO,n + Ue,n)(zv y)
J.q=1 q=1
d m
n Y m m m S q
= Gg7m(y7 Z) - Gn <Z,y> _UOJL(Z?y) +Ua7n<zvy) +€Z awq ( )G (Z,y) +O( )
q=1

for m,n=1,---,d, as € — 0, which implies (4.2). O

Since {gZ,,}mr=1,..,4 is expressed by G¢ as in (2.17), we may regard (4.2) as an integral
equation for G, of the Fredholm type. Garabedian [6] and Garabedian-Schiffer [7] solved this
integral equation for G, in terms of the Fredholm alternative theorem. On the other hand,
our method relies on treating G. directly by means of the fundamental solution u. and the
compensation term gq. . Such an idea was introduced by Ozawa [10]. To this end, we need to

investigate the behavior of q. , as € — 0. We first establish an a priori estimate for the operator
Le.

Proposition 4.2. Let Q C R? be a bounded domain with the C*t?-boundary 0Q, 0 < 6 < 1.
There exist €0(€2) > 0 and C(Q2) > 0 such that if € < e¢, then it holds that

(4.7) [ollcaso + 9T loo@ < € (10, o + IWllc2+oan))

for allv € C?T9(Q)? and 7 € C*H9(Q).
Proof. We shall show by a contradiction argument. Suppose that (4.7) is not true. Then for any

m=1,2,--- , there exist v,,, € C>*?(Q)¢ and 7,,, € C'T9(Q) with ||’Um||cz+6 —i—HVTrmHCg =1
such that

1
(4.8) — > (I1£2 @ns ) lony + llomllczsoony ) m=1,2, -

On the other hand, by (A.3), (4.8) and an a priori estimate for the Stokes equations(see e.g.,
(Solonnikov [15, Theorem 3.1]), it holds that

(4.9) H'Uch2+0 + HVﬂ'chH(Q)
<Mﬂwmmmww )+ lvmllcaroon))

< M (€0 = £.1)(@ms mm)lco@) + 1.1 s )l ooy + Iomllcsogon

< M { S (Iomllemssg + 19Tl o) + 1€ (0T lesg + omllcasoon) |

1
§2M—%0, as m — oo,

where M is a constant independent of m. Since [[vpm || c2+o )+ Vm|lco@) = 1 form = 1,2, - -
this causes a contradiction. O
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We define the compensation term of the Green function {q. n, ¢n}n=1,....4 by
(410) q&‘,n(l') y) = g&.’n(l‘, y) — ua7n(x’ y)
Qe,n(x, y) = Ta,n($7y) - pg,n(:z:,y), n=1,---.d,

where {ge n}tn=1,. d {Uen 1, dr {Ten (@, ) }1,. g and {Pen}i,... g are introduced by (2.17), (3.5),
(2.1) and (3.19), respectively.

By Proposition 4.2, we have a continuous e-dependence of the compensation term {q. , }n=1.... 4
defined in (4.10) in the topology of C**?(Q). Indeed, it holds;

Proposition 4.3. For every y € ), we have

(4.11) @en (5 y) — qo,n('7y)‘|c2+e(§) — 0, n=1,---,d as € —0,
where {ge ntn=1.. 4 is the compensation term defined by (4.10).

Proof. By Proposition 4.2, we have

(4.12) ann('ay)HcHG(ﬁ) + HVqs,n(ny)llce@)
<C (H»cs(qe,nvQS,n)('vy)H(ﬁ(ﬁ) + ||qs,n('7y)||c2+9(a§z)> :
for all € < 9. On the other hand, for each fixed y € €, there exists an £((y) > 0 such that

(4.13) (= (s W)l o240 00) = [wen (5 y)|lc2roa0) < 2llwon (- y)llo2+oan)

for all 0 < & < e((y). Since Le(gen; ¢en)(-,y) = 0, implied by (4.10), it follows from (4.12) and
(4.13) that

(414)  lgenC9)llozo@) + Vgm0l oo < 2000l 9)lczsogon) = Cy

for all 0 < ¢ < min{eg, e((y)}, where Cy is the constant depending only on y € Q.
Furthermore, by a direct calculation, we see that the pair {q:» — qon,ge.n — qon} is subject
to the following identities.

E(Qs,n —qo,n,9en — QO,n)(xa y) = (£ - ‘CE)(qE,nv QE,n)(x7 y), HANS Q,
(4.15) div (gen — qon)(z,y) =0, x €,
(qe,n - q0,n)(x7 y) = (_ua,n + uO,n)(xa y)7 x € 00

for n = 1,--- ,d. Hence by (4.14), (A.3) and an a priori estimate for the Stokes equations(see
e.g., Solonnikov [15, Theorem 3.1]), we have that

1(gen — @0.0) > 9l cevoy + 1V (g — do) (9l oy
< M (£ = £)(@eims @en) 9oy + I(=ttern + w0.0) (- 9)llc2s0 00

< M{e(llgen(y)llczro + 1Vgen () looy) + 1(=tten +uo0a) (- 9)lc2e000) }
< M(eCy + |[(—ten + w0.0) (- 9)ll o240 (002))

for all 0 < & < min{eg, & (y)}. Since M is the constant independent of ¢ as in (4.9), from (3.17)
and this estimate, we obtain the desired result (4.11). O
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Proposition 4.3 enables us to expand G¢ in terms of Gy with respect to ¢ < 1. Now by (4.2)
and (4.11), we are in a position to prove Lemma 4.1.

Proof of Lemma 4.1. We deal with the volume integral of the right hand side of (4.2). It holds
by (2.17) that

(4.16) /Zaeqr (Gn = Uop +Ueny Ry — Pon + Pen) (2,9)92 (2, 2) da
Q 4m= 1

q

ox
/ Z aaqr (G UOn"‘UEmR POn"‘Pen)(x y)

o -GL (8, 2) d
t,q,r=1

oxd .

Z Geiar LG = Ut + Uspy B = Po + Pon) (@,9) 5 G (@,2) do + 1,
2,q,r=1

where

Ox4
1 _/ Z ae,qrLL(Grn — Uop + Ue iy Ry — Pon + Pen) (2, y) :

o (G (3,2) = Gl (@,2)) da
i,q,r=1

for m,n=1,---,d. By (2.1), (3.5), (4.10) and Proposition 2.1, we have

- gafj(GSm(i,é) Gl (z,2))
= ; @f G on(2,2) — P2 z))
— izd; {gﬁGém(i z) — <5q1 ?)i ) G! (z, )} +O(e2)

= {(ul (2, 2) = ¢ (2, 2)) = (uh (2, 2) — gl (2, 2) }+6ZTGZ (z,2) + O(%)

(W :2) 0 2) — () — o D} 23 2 (3, 2) 4 O()
=1

for m,q=1,--- ,d, as € — 0. Therefore, I can be divided to the following three terms,

I=0L+L+I3+0(%), as e—0,

where

I = / Zaw "(Gy — U + Ueyp, Ry — Py + Pe) (m,y) (Wl (2, 2) — ul (2, 2)) da,

q,r=1

/ Z ae,qrLL(Gn — Uon + Ue , Ry — Pon + Pen) (7, y)(2 (7, 2) — qf, (2, 2)) dz,
q,r=1
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d

. 051 i
Is=¢ Z e,qrLe(Gn — Uon + Ueny Ry — Pon + Pep)(2,9) ) ~(2)G, (2, 2) da.
Qi,q,r:l:l z*
First we consider I;. Since we have by (3.17)
’U,g’m(.’ﬂ,z):u%($,2)+0(5‘$—2’27d), m,q = 17 7d7 a'SE_>07 T — z,

it follows from (3.26) that

eC
(417) I]_ S/QW’UE7m($,Z) —'U/m(l',Z)’dCU

1 1
<20 dx
o lz =yl o — 2|42

< 52C’|y _ Z|d737

where C' = C(y,2). Concerning I, by Proposition 4.3, we have similarly that

1

4.18 I, <eCll¢?,, (-, 2) — gL (-, 2)||co /dm
(4.18) 2 162 (> 2) = @ (-5 2) | coge) o g

<eCl|gem (-, 2) = qm(, 2)lco@) = 0, ase =0,
where C'= C(y,2). Finally in the same manner as in I;, we obtain
(4.19) I3 < 2Cly — 2|43,
where C' = C(y,2). Hence by (4.17), (4.18) and (4.19), it holds that I = o(¢) as ¢ — 0, from
which and (4.2) with (4.16), we obtain the desired identity (4.1). This proves Lemma 4.1. [
4.2 How to handle the parametrix.

In the previous subsection, we obtain the representation for G, by the integral equation with the
parametrix. In this subsection, we shall establish an expression for G, without the parametrix.

Lemma 4.2. Let {G%}n,lzl,...,d and {Rp}n=1.... 4 be the Green matriz and the Green function
defined by (2.1). Then we have

(4.20)
GLn(9,2) = G(y, 2)
d
B o8™ i
- EZ axk (Z)Gn(zay)
k=1
< 3 (954 | 05°(0) 0Gh(w.y) 9Gi(a:2) g 05'(2) OGa.y) OGin(a2)
ol —, oxs Ok Ok oxs T O Ok Ok
d d i
0S*(x) 0G 0?5t (x oG (x, z) 9
* Z oxJ B y)—5 & Z &xk@xl z,y) oxk }dijO(E)
7,k=1 i,k,l=1
form,n = 1,--- ,d and for all y,z € Q as € — 0, where {Si}izl’...’d is the wvector function

introduced by (A.3).
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For the proof of Lemma 4.2, we need to investigate the volume integral of the right hand
side of (4.1) as in Lemma 4.1.

Proposition 4.4. Let {Gfl}n,lzl,...,d and {Rp}p=1..q4 be the Green matrix and the Green

function defined by (2.1). Let {Ué,n}n,lily",d and {P.}n=1,.. .4 be the parametrix defined by
(3.20). Then we have

oxl .
(4.21) / Z e grL2(Gr = Uon + Uen B = Pon + Pen) (2,4) 5= Gl (2, 2) dar
J,q,r=1
- UO n(zv y) U ,n )
i 05" (x 855( )\ 0Gi (2,y) 0GE (z, 2)
Q i kel 8%8 xk 8xk oxs
d ; ; d j
05 (x) 0G., (x,y) 0G! (x, 2) 0S¥ (x) OGh(x, 2)
" Z ot ozk ok T , xJ n(@Y) oz
i,k,l=1 7,k=1
d . .
8>S (x) G, (, z) 2
+ikl:1 8xk6mlG”(x’y)axk}dx+O(€ ), myn=1,--,d

for all y, z € Q as e — 0, where L. is the operator defined by (2.22) and {S*};—1 ... 4 is the vector
function introduced by (A.3).

Proof of Lemma 4.2. 1t is easy to see that Lemma 4.1 and Proposition 4.4 yield Lemma 4.2. [J

Now, it remains to prove Proposition 4.4.

Proof of Proposition 4.4. Integrating by parts, we have by (3.22), (3.23) and Lemma 2.3 that

(4 22)
axq .
Z aeqr G U0n+U€n7R PO,n+Ps,n)(may)ajj m(x,z)dz:
7,p,r=1
d
= lim Y TF(G, — U+ Uep, Ry = Po+ Pep) (@, y) 5 ave I (x, 2)vf doy
p_>0 ) ’ ) ) ) 8
0B, (y) Jikp=1
d
o [0x? .
_ 1 _Ska _ = J
;li% / |: Z d (Rn PO,n + PE,n)(xa y) Ok { o7 m(x’ Z)}

N
N\ By (y) Jkop

d
s 0 8:5‘ o [o0x* 8xq

Z'7‘7'7I€7l7q7s:1

d ~
oz" | Oxf i

35



d

_/[ Z _5kq(Rn_p07n—|-PE7n)(3:,y)8{axq (@, )}

, ozk | 0z
Q Jkag=1
Gt (z,2)
! Tmis <)
+zk§ ) 5 ors <6.’L’l (G U0n+Uan)($ay)> Ok :|d£L‘
=Gy, 2)
0 [0z .
—gka — J
S R P {2 o)
Q Jikag=1
0G: (z,z)
l l l mi’ p o e
+Zkl28: X ac” Ozs <8$1(G Uo.n+Us.n)(937y)> B }d:c, m,n=1,---,d.

Applying Proposition 2.1 and Lemma 3.2 together with the fact that divG,, = 0, and then
using Lemma 2.2 to the second and third terms of the right hand side, we have

(4. 23)
ozt
Z e LL(Gn — U + Uz, Ry — Poyy + Pe ) (2, y) 257 G’ (z,z)dx
qu‘ 1
= G(y, )
/ — Ui + Uz (@,9) Gy, (. 2)
oxk oxk
i,k=1
/ i: 925 (x )a ), f 8Si(z) GL (z,y) G! (z, 2)

i a:k'(?a:l wY — xl oxk Oxk

Zd: )8G Zd: 05M() , 05°(x) G (r.y) ICi(x.2)\ |

wY Oxs Oxk Oxk Oxs
7,k i,k,s=1
Ed: ask 855( N 0Gi (z,y) G (2,2) o~ 0Si(z) AGL (z,y) IG! (x,2)
85175 xk Ok s axl Ok Ok
i,k,s=1 i,k,l=1
d d ;
oS k(:): 0G 0?5 (x oG (x, z) 9

* Z i (@)= Z axkaxl z9) Ok }dl’—{—O(aE )

Jk=1 i,k,l=1
form,n=1,---,d as € — 0, which implies (4.21). O

4.3 Expression by the surface integral.

By Lemma 4.2, we have succeeded to express G. by means of the volume integral over 2. In
this subsection, we shall establish a representation in terms of the surface integral on 0f2.
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Lemma 4.3. Let {Gln}n,lzl,-n,d and {Rp}n=1,...4 be the Green matriz and the Green function
defined by (2.1). Then we have

Em(9,2) — Gy, )
4 raGn ( y AG™ (y, 2)
= . (y) + —2225%(2)
sz_:l < 0z )
d

(z,2) 0GY,(z,y)
+5/3Q;{ 8Vx vy

_ <Rm(m,z>3Gg<f’y) + 8Ggf”’z)Rn<m,y>> vi}S(@) vedoy +o(e), mon=1,d

for all y,z € Q as ¢ — 0, where {S'};—1.... 4 is the vector function introduced by (A.3), v, =
(vk, -+ vd) is the unit outer normal to O at x € O and o, denotes the surface element of

o09Q.

For the proof of Lemma 4.3, we should investigate the volume integral as in Lemma 4.2. By
a direct calculation, we have the following representation for the volume integral in (4.20).

Proposition 4.5. The volume integral over ) in (4.20) can be expressed by the following surface
integral on 0X). Namely, we have the identity

(4.24)
/ Zd: 05H(z) , 05°(x) G (r.y) ICin(x.2) | Zd: 8Si(z) GL (z,y) OG! (x, 2)
8:1:5 ok ok ors , ox! oxk ok
1,k,s=1 ik,l=1
d d ;
0S¥ (x) oG 025 (x 0G! (z,2)
YR, (x, Iom\T, 2)
+j%_:1 Ozd Bul@y) =57 — 1%21 Oackﬁacl z9) dxk } !

95 L (0GR (5,Y) oo, 1 OGE(Y:2)
= Z ok (2)Gh(z,y) — SZ:; (8285 (y) + Tyss (?J))

k=1
d : ; .
6G:L($,y) aG;n( ) S ik aG:n(x?Z) s k
+ {'Z e 5 ) Z TG, Ry, y)— 5 5% (@)}
o0 Z,]C,Sil ’Lk‘s 1
d 1 .
o Z le(Gm,Rm)($,Z)8(;g(':z,y)Sl($)U§}dO‘z, m,nzl,-'- 7d
i,k,l=1

for all y, z € Q, where {S%};—1.... 4 is the vector function introduced by (A.3), vy = VL, -+ ,v2)
is the unit outer normal to 002 at x € 02 and o, denotes the surface element of OS).

Proof of Lemma 4.5. Since {G%}in=1.. 4 = 0 on 99, we have

OGH(z,y) _ 0Gy(@.y)

(425) Ok vy T

i7k7n:15"' )d7
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for x € 09). Then it is easy to see that Lemma 4.2 and Proposition 4.5 yield Lemma 4.3. O
Now, it remains to prove Proposition 4.5.

Proof of Proposition 4.5. It follows from (1.1) that

. 92Si(x)

 Oxkor!
k,l,qg=1

(4.26) M Ry (2, 2)GL (2,9) =0, m,n=1,---.d,

for all x € . Adding the left hand side of (4.26) to that of (4.24), we have by integration by
parts that

(4 27)
zd: ask | 95°(x) 9Gi(x.y) 9Ch, z": 8Si(z) OGL (z,y) 8G! (z, 2)
~ Ok Ok 8375 o aa:l 8xk Ok
d :
928! (x oG (x, z)
Z ,y) Z axkaxl y)&nk} dz
j=1 i,k,l=1
B / - Zd: 05" (x) | 95*(x)\ 0Gi(x.y) IGiy(x.2)
o =\ O Ok Ok s
05 (x) 0G. (x,y) 0G! (x, 2) 0S*(x) oG (z, 2)
* Z O Oxk Oxk + , OxJ Bn(,y) Oxk
Z,k,lzl J,k:l
L 92Si(x) ., OGL( i 5,ﬂ l ]
+ig;1 Ok ! Gn(x,y) @xk Z R, (va)Gn(xay) €z
d d . .
. aGZ l‘ y aG ( ) k S aG;L’L(‘T7y) aan("E’z) s k
_,1)1_1,% kzl Ok O S*(x)vy ‘;1 Ok O S*(z)vg
O{\B,(y)UB,(2)} bk,s ik,s=
d d
aGl !L" Z/ (’3G ( ) i l 8G ( ) k
Ty T AR S @+ Y Raley) g S @)
i,k,l=1 7,k=1
d i
. ,Z TG )0, ) P Pk
i,k,l=1
d d
: 0*Gl (z,y) 0G! (z, 2) OGL(2,y) « i
7;1;1;% dxsoxk Ox® +ZTAG (z,2) | §°(x)
Q\B,(y )qu(z =1 \is=1 i=1

Mg

1

©
Il

i d i 2
( i (G Ry) )0Ggi:§,z) n Z 0G} (z,y) 0 Gm(x,z)) 55 ()

, ozk Oxkoxs
1 i,k=1
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S'(x)

i G (x,y) 0°G! (x, 2)

+ oxk oxloxk
i,k,l=1
+

i, d (a
(Z %*afrk) T (G, Bin) (2, 2) + L(Gom, Bn) (2, 2) Gl (. y>> gas } o
=1 “k=1

i,

=1+ (I + 1),

where
d d , .
8GZ (z,y) OG}, 5 9Gi (z,y) 0Gi (z,2) .,
I, = limy -y Xl 00, D) gy 5 PO D)
O{Q\B,(y)UB,(2)} i,k,5=1 i.k,s=1
d d ,
G (z,y) 0G! (z, 2 ; oG (z, 2 ,
+ Z Ok aik S'(x)v, + Z (Jfay)aa(ck)sk(:z:)y%
i,k,l=1 k=1
d
' 0S5 (x)
le ms Lim ! k -
+%::1 (G o) (2, 2) G (,9) x}d(f,
d , . J ‘
- 52G(z,y) OC (x, 2 O (1) « .
Ii = —},ﬂ% / o Z 8$S(833k ) &is )Sk(m) + Z (aka)AGm(iU,Z)Sk(xO
By (y)UBy(2) i,k,5=1 ik=1
d
G (z,y) 0°Gi (z,2)
+Z§1 Ok Dlok S(:L‘)}d:v,
d
: 0G! (x,y) 0°Gt (x, 2)
2 :=—1 _
! pg% k:zjl Ok Oxkoxs ()
Q\B,(y)UB, (2) bk,

d .
i,k,l=1

In the above calculation, we have used the fact that div G, = 0 in Q and £(G,, R,)(z,y) =
LG, Rn)(z,2) = 0in Q\ B,(y) N By(2), i,m,n = 1,--- ,d. Since divS = divG, =0 in Q,
we have by integration by parts that

d
: G (x,y) OGE (x, 2)
Be-tm D S (@)

Pl ozk
H{O\B,(y)UB,(2)} bh,s=

d ! x ; .
+ > WT%k(Gm,Rm)(m,z)SZ( ) ;}dam

. X
i,k,l=1

d . .
. 0?Gi (x,y) 0G! (v, 2)
i f T2 Taparr gk 0@

Q\By(y)UBy(2)
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d

N Z G (z,v) <<92an(3«"az) _ykaRm(f’z)) S"(;p)}dw

Oxk Oxtozk Ox
i,k,l=1
for m,n =1,--- ,d. Since we note that {Gy, Ry, }n=1,... 4 is a solution of the Stokes equations,
it follows from the above calculation that
(4.28)
d
: G (z,y) 0G! (z, 2)
1 2 _ _ s s
I, +1I; = ll)% / kz;l ok Ok S*(z)vy
O{Q\B,(y)UB,(2)} bk,s

d l ‘
+ Y aG (@ y oY) pik (G Ron) (2, 2) S () i}dax
i,k,l=1

G (x,y) .
st [ 3 F LG R, 2)5 @) do
Q\B,(y)UB,(z) “F=1

d i i
= — lim / Z { - 8Gn(xvy) aGm(CISaz) SS(IL‘)V;
k,s=1

p—0 ) < afL’k ox
I{\B,(y)UB,(2)} W57
G (x

G (2, y) rin )t

for m,n=1,---,d. Applying (4.28) to (4.27), we have that
(4.29)

/ - Zd: 08" (x) | 05*(x)\ 0CG(z.y) IC1,(x.7)
Q = Oxs Oxk Oxk Oxs
. Zd: 05'(x) 9G () 0Gi (2.2) 4. 95k (z)
Ox! Oxk Oxk . OxJ
i,k,l=1 k,j=1
d

d .
82 Z 8 825@ o l
Z,k,l 1 ’Lkl 1
d
- I / { >

H{O\B, (y)UB,(2)}

i

r,y) 0G! (z,
xk Oxk

d (2
2, ) TGy R (, 2)0F + Z aGa
i,k,s=1

d 9Gi (z AGL (z,y)
i,k,s=1 ik, =1

for myn=1,---,d. We next investigate the limit as p — 0 at the points y and z of the above
surface integral. Since div G, = 0 in €2, we have an identity

d 8G Lz, y)
ik l l
(4.30) —“3215 R (z, 2 WS (x)v, =0, mn=1,---,d,
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for all z € Q. Adding the the left hand side of (4.30) to the right hand side of (4.29) , we have
by (2.4) and (2.5) that

(4.31)

d ; d
: 95" (x) ik 0G,, (z,y) 0GH, (7, 2) l
lim { Gl (2,y)T* (G, R (, 2)VF + St (),
=0 JaB,(y) i,§1 ox! z§1 Oxk Oxk

d .

i 0G:,(x,y i oG}, (z,2) s
— > 6" Rp(z, )&ik)sl( Z T*(Gp, Ry)(z, )83(68)5 (z)F
i,k,l=1 ik,s=1

l .
Mgg’y)sz(x)vﬁ} doy

= —lim/ Z T*(Gp, Ry)(z, )Mssmuﬁd%
B, (y x

d
- Z T™*(Gy Rn)(, 2)

=0 zks 1 Ox*
l ) l )
p—0 OB, (y) k=1 ox ox
d n
:_ZMSS@)’ mn=1,---,d.
s=1 ays

We can also handle I + (I} + I2) around the singularity z in the same manner as the case of y
and obtain

(4.32)
d d
: 98" (x ik 9G, (z,y) 9G,(z,2) l
CYMRPIE LT CRNTES z L 2t
d .
G, (7, 2) 9G}(2,Y)
zk m s lk n\*» % k
= D THGn, Ra)(wy) =5 5 5%(w) Z T (G, Ron) (3, 2) = 5" (w)u  dor
ik,s=1 ik, l=1
d
9G (2, )
k n \< s
n A% J) —1.--- . d
2 2)Gy(z,y) — ; 5ss S*(y), m,n=1,---,d
Since {G%}in=1,..a = 0 on 98, by (4.31) and (4.32), we have the desired identity (4.24).
This proves Proposition 4.5. O

4.4 Proof of Theorem 1.1.

The proof of Theorem 1.1 is based on Lemma 4.3. We first need to express {G7,,,(7, Z) }nm=1,- d

by means of {GZ,,,(y, 2) }n,m=1,. 4 for § = c(y), Z = P(2) with (y, z) € Q2 x Q. By the Taylor
expansion of {Ggm(yj, Z)}nm=1,-. a around (y, z) € Q x , we have

(4.33)
G?,m(ga'z) - G?, ( )
= VGl (y,2) - (0 —y) + VGl (Y, 2) - (2= 2) + VaVyGL,(y, 2+ 01(2 — 2)) (5 —y) - (2 — 2)
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+ %VﬁG?,m(y +02(7—y),2) T —y)- (T—y) + %VEG?,m(% z+03(2—2))(2—2) (2 —2)

for some 0 < 61,605,603 < 1.
By (A.3) and (4.14), it holds that

(4.34) sup |V:VyGL,, (y, 2 + 01(2 = 2))| < C
e>0

with some constant C' which may depend on y, z € Q. Hence we have again by (A.3) that
vzv?ngm(y7 zZ+ ‘91(5 - Z))(g - y) : (2 - Z) = 0(82)’ n,m= 17 e 7d7

as € — 0. The last two remainders of the right hand side of (4.33) can be handled in same way
and we have

(4.35)

GLn(9,2) = GEm(y,2) = VGl (y.2) - (§ = y) + VzGln(y,2) - (2= 2) + O(%), mn=1,-- .4,
for all y, z € Q with § = ®.(y), 2 = ®.(2) as ¢ — 0. In the above argument, it should be noted

that GZ,, = GL,,(%,7) is regarded as a function on Q. x Q. with variables (Z,7). By (A.3),
(4.14), (4.35) and Lemma 4.3, it holds that

GZm(y,2) — G (y,2)
=3 { (%) - Py ) 5oy (B - Wy ) 5700

s=1 8
430 / S~ [ 2Gin(2:2) 96,0
o0 i1 81/90 81/36
_ (Rm(w’ Z>8Gg(yj’y) + 8Gg£f’ Z)Rn(a?,y)> y;}S(a;) Vg dog + o(e),
for m,n =1,---,d. Since sup, ‘ (gj% (x))‘ <oofori,j=1,---,d and for all z € €, it follows
from (2.17), (4.10) and Proposition 4.3 that
(437) hm ’V Ge m(ya ) vyGnm(ya Z)| =0,

hm]V Ge oy, 2) — V.Gr(y,2)]=0, mn=1,---,d

for all y, z € 2. Now from (4.36) and (4.37), we obtain

oGy (y, 2)
zd: { <8G” 6g§;m (v, 2)> S*(y) + (aai:,’% (y,2) — agg;m (v, z)) SS(z)}
(e

oGt oGt )
- (Rm<x,z> a(ty) | Cm(@:2) Rn<x,y>) u;}sw Vo do
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/ d {aGw,szz(x,y)
Clo Rt

: Ovy oV
0G! (x,y)  OGL (z,2) ; B
_ (Rm(ZIT,Z) 51/1 + 8]/33 Rn(.’L’,y) U, S(I) “ Uy do’x7 m,n = 1’ ’d’

which implies Theorem 1.1. [l
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