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Consider a rigid body moving with a prescribed constant non-zero velocity
and rotating with a prescribed constant non-zero angular velocity in a three-
dimensional Navier-Stokes liquid. The asymptotic structure of a steady-state
solution to the corresponding equations of motion is analyzed. In particular,
an asymptotic expansion of the corresponding velocity field is obtained.
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1 Introduction

The aim of this this paper is to establish an asymptotic expansion of a solution to the
steady-state three-dimensional Navier-Stokes equations written in a frame attached to
a rigid body moving with non-zero translational velocity ξ ∈ R3 and non-zero angular
velocity ω ∈ R3. More specifically, we consider a body, with a connected boundary,
moving in a Navier-Stokes liquid that fills the whole exterior of the body. If we denote
by v the Eulerian velocity field of the liquid, and by p the corresponding pressure, the
steady-state equations of motion written in a frame attached to the body read

− µ∆v +∇p+ v · ∇v − ξ · ∇v − ω ∧ x · ∇v + ω ∧ v = f in Ω,

div v = 0 in Ω,

v = v∗ on ∂Ω,

lim
|x|→∞

v(x) = 0,

(1.1)
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where Ω ⊂ R3 is an exterior domain, µ the (constant) kinematic viscosity coefficient,
f an external force acting on the liquid, and v∗ the velocity distribution on the liquid-
structure boundary. We shall assume that ξ and ω are not orthogonal to each other. In
this case, due to a simple transformation, see for example [16], we may take, without
loss of generality, ξ and ω to be directed along the same axis, which we take to be
e3. Moreover, for simplicity we choose to consider only the so-called no-slip boundary
condition, and do not take into account any external force in the liquid. In an appropriate
non-dimensional form, the equations of motion then read

−∆v +∇p−R∂3v +Rv · ∇v − T
(

e3 ∧x · ∇v − e3 ∧v
)

= 0 in Ω,

div v = 0 in Ω,

v = e3 +T e3 ∧x on ∂Ω,

lim
|x|→∞

v(x) = 0,

(1.2)

where R > 0 is a dimensionless constant, and T > 0 the magnitude of the dimensionless
angular velocity. Finally, we assume, again without loss of generality, that the origin of
the frame of reference coincides with the body’s center of mass. We then have 0 ∈ R3 \Ω
and

∫
R3\Ω x dx = 0.

The above system is the classical steady-state Navier-Stokes problem with the addi-
tional term T

(
e3 ∧x · ∇v − e3 ∧v

)
, which stems from the rotating frame of reference.

Due to the unbounded coefficient e3 ∧x, this term can not be treated at a perturbation
to the Oseen operator.

The main result of this paper is an asymptotic expansion as |x| → ∞ of a so-called
Leray solution v to (1.2), that is, of a solution with a bounded Dirichlet integral, also
sometimes referred to as a D-solution. An asymptotic expansion of v is a decomposition

v(x) = Γ(x) · α+R(x) (1.3)

where Γ and α is an explicitly known function and constant, respectively, and R some
remainder term decaying faster than Γ as |x| → ∞. In the case of a translating but
non-rotating body (ω = 0, ξ 6= 0), such an expansion was established for the first time
by Finn, who showed in [9], see also [10], that any solution to (1.1) with v in the class

O
(
|x|−1/2+ε) for all ε > 0 satisfies (1.3) with the Oseen fundamental solution in the role

of Γ, the force F exerted by the liquid on the body as α, and R(x) = O
(
|x|−3/2+δ) for all

δ > 0. Babenko later proved in [1] that the same holds true for Leray solutions; Finn
had left this as an open question. The proof provided by Babenko, however, was not
complete, and it was not until [11] that a full proof was available, see also [8]. In the case
of a non-translating and non-rotating body (ω = 0, ξ = 0), an asymptotic expansion
was available only much later, and only for solutions corresponding to “small“ data.
This result is due to Korolev&Šverak [17], who showed that a Leray solution to (1.1)
satisfies (1.3), but with the leading term Γ(x) ·α replaced by a so-called Landau solution
depending only on F , and R(x) = O

(
|x|−2+δ). The result of Korolev&Šverak was

extended to the rotating body case (ω 6= 0, ξ = 0) in two papers by Farwig&Hishida [7]
and Farwig&Galdi&Kyed [5], respectively. It is shown herein that the leading term
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in this case is again the Landau solution, but depending now only on the projection of
F on the axis of rotation. In [7] the remainder term is estimated in a summability sense,
whereas [5] establishes a point-wise estimate.

This leaves open only the case of a translating and rotating body (ω 6= 0, ξ 6= 0),
which is treated in this paper. As the main result, an asymptotic expansion in the sense
of summability of a solution v will be established. The leading term in this expansion
is identified as the Oseen fundamental solution multiplied by a constant vector. A
computation of the constant will be carried out, and it will be shown that it equals the
projection on the axis of rotation of the force exerted by the liquid on the body. The
main theorem reads:

Theorem 1.1. Let Ω ⊂ R3 be a C2-smooth exterior domain, and R, T > 0. A solution

(v, p) ∈ D1,2(Ω)3 ∩ L6(Ω)3 ∩W 2,2
loc (Ω)3 ×W 1,2

loc (Ω) (1.4)

to (1.2) satisfies the asymptotic expansion (j = 1, 2, 3)

v(x) = ΓRO(x) ·
(
F · e3

)
e3 +R(x), (1.5)

∂jv(x) = ∂jΓ
R
O(x) ·

(
F · e3

)
e3 +Sj(x) (1.6)

with

∀q ∈ (4/3,∞) : R ∈ Lq(Ω)3, (1.7)

∀q ∈ (1,∞) : Sj ∈ Lq(Ω)3, (1.8)

where

F :=

∫
∂Ω

T(v, p) · n dS. (1.9)

Here, ΓRO denotes the fundamental solution to the Oseen equations, and T(v, p) the
Cauchy stress tensor of the liquid (see below for the explicit definition).

It is well-known that ΓRO is not Lq-summable in a neighborhood of infinity for small
q. More precisely, for q ∈ [1, 2] one can show ΓRO /∈ Lq

(
R3 \Br(0)

)
for any r > 0, see for

example [12, Chapter VII.3]. Thus, in the sense of summability the remainder term R
in the expansion (1.5) decays strictly faster as |x| → ∞ than the leading term. Since for
q ∈ [1, 4/3] it is known that ∇ΓRO /∈ Lq

(
R3 \Br(0)

)
for any r > 0, see again [12, Chapter

VII.3], the remainder Sj in (1.6) decays, again in the sense of summability, faster than
∇ΓRO as |x| → ∞. Consequently, the decompositions (1.5) and (1.6) constitute valid
asymptotic expansions at spatial infinity.

Note that F , as defined in (1.9), equals the total force exerted by the liquid on the
body. Since we in (1.2) consider the no-slip boundary condition, there is no contribution
from momentum flux via the liquid-structure boundary to the total force.

As mentioned above, the no-slip boundary condition has been chosen for simplicity
only. For the same reason, no external forces acting on the liquid are considered. How-
ever, with minor modifications to the proof of Theorem 1.1, arbitrary, but sufficiently
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smooth, boundary values can be included. Moreover, we can also introduce an external
force of compact support, that is, a non-homogeneous right-hand side of compact sup-
port in (1.2)1. Of course, with more general boundary values and external forces, the
expression for F must be modified accordingly.

As a direct consequence of Theorem 1.1, we find that the kinetic energy of a Navier-
Stokes flow past a rotating and translating body is infinite, unless the component in
the direction of rotation of the force exerted by the liquid on the body vanishes. This
follows from the fact that no entry of ΓRO lies in L2(Ω), which together with (1.5) and (1.7)
implies that the velocity field of the flow is square summable if and only if F · e3 = 0. A
similar result is known for a non-rotating body, and a rotating body in a linearized fluid,
see [19], but this is the first time such a property is established for the fully non-linear
Navier-Stokes flow past a rotating body.

Although a characterization of the remainder term in the expansion in terms of summa-
bility is favorable for deriving information on the energy of the flow, other applications
require a point-wise decay estimate. To prove a point-wise estimate, one needs to take
a slightly different approach than used here. This will be addressed in the forthcoming
paper [18].

Parallel to the non-linear Navier-Stokes equations, asymptotic expansions of solutions
to both the Stokes and Oseen linearizations have also been established. In the case of a
non-rotating body, such results date back to the early works of Finn, see for example [3].
In the rotating body case, we refer to [6] and [19] for the non-translating and translating
body case, respectively.

2 Notation and Preliminaries

Before proving the main theorem, we introduce some notation, recall well-known iden-
tities, and show two preliminary lemmas.

We denote by Lq(Ω), 1 ≤ q ≤ ∞, the usual Lebesgue space with norm ‖·‖q. For
m ∈ N, we use Wm,q(Ω) to denote the inhomogeneous Sobolev spaces with norm ‖·‖m,q.
We also introduce the homogeneous Sobolev space

Dm,q(Ω) := {v ∈ L1
loc(Ω) | |v|m,q <∞},

|v|m,q :=

( ∑
|α|=m

∫
R3

|∂αv(x)|q dx

) 1
q

.

Moreover, we introduce for 1 < q < 2 the space

Xq(R3) := {(w, q) ∈ D2,q(R3)3 ×D1,q(R3) | ‖(w, q)‖Xq <∞},
‖(w, q)‖Xq := ‖∇2w‖q + ‖∂3w‖q + ‖∇w‖ 4q

4−q
+ ‖w‖ 2q

2−q
+ ‖∇q‖q + ‖q‖ 3q

3−q
,

which one may identify as a canonical domain for the Oseen operator.
For functions u : R3 × R → R we let div u(x, t) := divx u(x, t), ∆u(x, t) := ∆xu(x, t)

etc., that is, unless otherwise indicated, differential operators act in the spatial variable
x only.
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We put Bm := {x ∈ R3 | |x| < m} and Bm := R3 \ Bm.
We use the Landau symbol O

(
R(x)

)
to characterize the class of functions u for which

there is a constant C > 0 such that |u(x)| ≤ C|R(x)| for large |x|.
Constants in capital letters in the proofs and theorems are global, while constants in

small letters are local to the proof in which they appear.
For a fluid velocity field v : R3 → R3 and pressure p : R3 → R, we let

T(v, p) := ∇v +∇v> − pI

denote the Cauchy stress tensor of the (Newtonian) fluid corresponding to the non-
dimensional form (1.2) of the Navier-Stokes equations. We let

ΓRO : R3 \ {0} → R3×3,
[
ΓRO(x)

]
ij

:= (δij∆− ∂i∂j)ΦR(x),

ΦR(x) :=
1

4πR

∫ R(|x|+x3)/2

0

1− e−τ

τ
dτ

denote the three-dimensional Oseen fundamental solution tensor, see [12, Chapter VII.3]
for a closed-form expression. Finally, we denote by

ΓL : R3 \ {0} → R, ΓL(x) :=
1

4π

1

|x|
the fundamental solution to the Laplace equation.

The summability properties of ΓRO will play a fundamental role in form of the following
lemma:

Lemma 2.1. Let H ∈ C∞(R3)3×3 satisfy

∀q ∈ (1,∞) : H ∈W 2,q(R3)3×3. (2.1)

Then1 (i = 1, 2, 3)

Ui(x) :=
[
ΓRO ∗ divH

]
i
(x) :=

∫
R3

[
ΓRO(y)

]
ij
∂kHjk(x− y) dy (2.2)

is well-defined with

∀q ∈ (4/3,∞) : U ∈ Lq(R3)3, (2.3)

∀q ∈ (1,∞) : ∇U ∈ Lq(R3)3×3. (2.4)

Proof. It is well-known, see for example [12, Chapter VII.3], that ΓRO enjoys the summa-
bility properties

∀q ∈ (2,∞) : ΓRO ∈ Lq(R3 \ Br)
3×3 for any r > 0, (2.5)

∀q ∈ [1, 3) : ΓRO ∈ L
q
loc(R

3)3×3, (2.6)

∀q ∈ (4/3,∞) : ∇ΓRO ∈ Lq(R3 \ Br)
3×3×3 for any r > 0, (2.7)

∀q ∈ [1, 3/2) : ∇ΓRO ∈ L
q
loc(R

3)3×3×3, (2.8)

∀q ∈ (1,∞) : ∇2ΓRO ∈ Lq(R3 \ Br)
3×3×3×3 for any r > 0. (2.9)

1Following the summation convention, we implicitly sum over repeated indices.
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By (2.5), (2.6), and Young’s inequality, it is clear that the convolution in (2.2) is well-
defined. Taking into account (2.7) and (2.8), we further see that U = ∇ΓRO ∗H ∈ Lq(R3)3

for all q ∈ (4/3,∞). Thus we deduce (2.3). To prove (2.4), we split

∂lUi(x) =

∫
R3

∂l
[
ΓRO(y)

]
ij
∂kHjk(x− y) dy

=

∫
B1

∂l
[
ΓRO(y)

]
ij
∂kHjk(x− y) dy

+

∫
∂ B1

∂l
[
ΓRO(y)

]
ij
Hjk(x− y)nk(y) dS(y)

−
∫
R3\B1

∂k∂l
[
ΓRO(y)

]
ij
Hjk(x− y) dy =: I(x) + J(x) +K(x).

We again employ Young’s inequality and deduce from (2.8) that I ∈ Lq(R3)3 for all
q ∈ (1,∞). Minkowski’s inequality yields for any q ∈ (1,∞)

‖J‖q ≤
∫
∂ B1

(∫
R3

|ΓRO(y)|q|H(x− y)|q dx

) 1
q

dS(y) = ‖ΓRO‖L1(∂ B1)‖H‖q <∞.

Finally, by (2.9) and Young’s inequality, we have K ∈ Lq(R3)3 for all q ∈ (1,∞). We
conclude (2.4).

Next, we consider the linearization of (1.2) and establish a very strong Lq-estimate for
solutions corresponding to a special class of data. For this purpose, let E3 ∈ skew3×3(R)
denote the skew-symmetric adjoint of e3, and put

Q(t) := exp(T E3t) =

cos(T t) − sin(T t) 0
sin(T t) cos(T t) 0

0 0 1

 . (2.10)

We then have the following lemma:

Lemma 2.2. Let R, T > 0 and 1 < q <∞. For any f ∈ Lq(R3)3 ∩C∞(R3)3 satisfying∫ 2π/T

0
Q(t)f

(
Q(t)>x

)
dt = 0 (2.11)

there exists a solution (w, q) ∈W 2,q(R3)3 ×D1,q(R3) to{
−∆w +∇q−R∂3w − T

(
e3 ∧x · ∇w − e3 ∧w

)
= f in R3,

divw = 0 in R3
(2.12)

that satisfies

‖w‖2,q + ‖∇q‖q ≤ C1‖f‖q, (2.13)

where C1 = C1(R, T ). Moreover, if, for some 1 < r, s < ∞, (w̃, q̃) ∈ Lr(R3)3 ∩
W 2,s
loc (R3)3 ×W 1,s

loc (R3) is another solution, then necessarily w = w̃ and q = q̃ + c for
some constant c ∈ R.
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Proof. The uniqueness statement of the lemma follows directly from [15, Lemma 4.1].
We therefore only need to show the existence of a solution (w, q) to (2.12) that satisfies
(2.13).

Consider first 1 < q < 2. By [4, Theorem 1.1 and Corollary 1.2], see also [14, Theorem
1.1], there exists for any f ∈ Lq(R3)3 a solution (w, q) ∈ Xq(R3) to (2.12) that satisfies

‖∇2w‖q + ‖∇q‖q ≤ c1‖f‖q. (2.14)

If f is smooth, standard regularity theory for elliptic systems implies that also w and
q are smooth. We shall now show that when f ∈ Lq(R3)3 ∩ C∞(R3)3 further satisfies
(2.11), additional summability of w can be established. For this purpose, put

u : R3 ×
[
0,

2π

T

]
→ R3, u(x, t) := Q(t)w

(
Q(t)>x

)
,

p : R3 ×
[
0,

2π

T

]
→ R, p(x, t) := q

(
Q(t)>x

)
,

F : R3 ×
[
0,

2π

T

]
→ R3, F (x, t) := Q(t)f

(
Q(t)>x

)
.

As one may easily verify, (u, p) satisfies
∂tu−∆u+∇p−R∂3u = F in R3 ×

[
0,

2π

T

]
,

div u = 0 in R3 ×
[
0,

2π

T

]
.

(2.15)

Note that u, p, and F are smooth and 2π
T -periodic in t. We can therefore expand these

fields in their Fourier-series with respect to t. More precisely, we have

u(x, t) =
∑
k∈Z

uk(x) eiT kt, p(x, t) =
∑
k∈Z

pk(x) eiT kt,

F (x, t) =
∑
k∈Z

Fk(x) eiT kt,
(2.16)

with

uk(x) :=
T
2π

∫ 2π/T

0
u(x, t) e−iT kt dt, pk(x) :=

T
2π

∫ 2π/T

0
p(x, t) e−iT kt dt,

Fk(x) :=
T
2π

∫ 2π/T

0
F (x, t) e−iT kt dt.

Inserting the Fourier series from (2.16) into (2.15), we find that each Fourier coefficient
satisfies {

iT kuk −∆uk +∇pk −R∂3uk = Fk in R3,

div uk = 0 in R3.
(2.17)
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Clearly, (uk, pk) enjoys the same summability properties as (w, q), that is, we have
(uk, pk) ∈ Xq(R3). We now use that f satisfies (2.11), which implies that F0 = 0.
Consequently, (u0, p0) is a solution to the homogeneous whole space Oseen problem. It
follows that u0 = 0. Now consider k 6= 0. Using Minkowski’s integral inequality, we
obtain

‖∇2uk‖q ≤
T
2π

∫ 2π/T

0

(∫
R3

|∇2u(x, t)|q dx

)1/q

dt ≤ ‖∇2w‖q = c1‖f‖q,

and similarly ‖∇pk‖q ≤ c1‖f‖q. Consequently, we can deduce directly from (2.17) that

|T k|‖uk‖q ≤ ‖∆uk‖q + ‖∇pk‖q +R‖∂3uk‖q + ‖Fk‖q
≤ c2‖f‖q +R‖∂3uk‖q.

(2.18)

A simple interpolation argument yields

‖∂3uk‖q ≤ c3

(
ε‖uk‖q + ε−1‖∇2uk‖q

)
(2.19)

for all ε > 0. We choose ε = |T k|/(2Rc3) in (2.19), and apply the resulting estimate in
(2.18) to obtain

‖uk‖q ≤ c4
1

|T k|

(
1 +

R2

|T k|

)
‖f‖q (k 6= 0), (2.20)

with c4 independent of k. We can now estimate ‖w‖q. First, observe that

‖w‖qq =

(
T
2π

∫ 2π/T

0

[ ∫
R3

|u(x, t)|q dx

] 1
q−1

dt

)q−1

.

Since 1 < q < 2, Minkowski’s integral inequality yields

‖w‖qq ≤
∫
R3

(
T
2π

∫ 2π/T

0
|u(x, t)|

q
q−1 dt

)q−1

dx.

Employing the Hausdorff-Young inequality for Fourier series, see for example [2, Propo-
sition 4.2.7], we then find that

‖w‖qq ≤
∫
R3

∑
k∈Z
|uk(x)|q =

∑
k∈Z
‖uk‖qq.

We now recall (2.20) and the fact that u0 = 0, and finally obtain

‖w‖q ≤ c4

(∑
k 6=0

1

|T k|q
(

1 +
R2

T

)q
‖f‖qq

)1/q

≤ c5‖f‖q, (2.21)

with c5 = c5(R, T ). By (2.14) and (2.21), we conclude (2.13) in the case 1 < q < 2.
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In the case q = 2, the existence of a solution (w, q) ∈ D2,2(R3)3∩D1,2(R3)3∩L6(R3)3×
D1,2(R3) ∩ L6(R3) was shown in [13, Lemma 4.14] and [16, Theorem 2]. With this
solution, we repeat the arguments above and obtain (2.13) also in the case q = 2.

Consider now 2 < q <∞. In this case, we can not utilize the inequalities of Hausdorff-
Young and Minkowski as above. Instead, we shall use a duality argument. Assume for
the moment that f ∈ C∞0 (R3)3 and satisfies (2.11). The existence of a solution (w, q) ∈
D2,q(R3)3 ×D1,q(R3) satisfying (2.14) follows by [4, Theorem 1.1]. Since f ∈ C∞0 (R3)3,
[4, Corollary 1.2] even yields (w, q) ∈ Xr(R3) for all 1 < r < 2. Moreover, by standard
regularity theory for elliptic systems, w and q are smooth. Now let ϕ ∈ C∞0 (R3)3 and
put

ϕ̃(x) := ϕ− T
2π

∫ 2π/T

0
Q(t)ϕ

(
Q(t)>x

)
dt.

Then ϕ̃ satisfies (2.11). Observe that q′ ∈ (1, 2), where q′ denotes the Hölder conjugate
of q. Consequently, by arguments as above, there exists a solution (ψ, η) ∈W 2,q′(R3)3×
D1,q′(R3) to the adjoint problem{

−∆ψ −∇η +R∂3ψ + T
(

e3 ∧x · ∇ψ − e3 ∧ψ
)

= ϕ̃ in R3,

divψ = 0 in R3

satisfying

‖ψ‖2,q′ + ‖∇η‖q′ ≤ c6‖ϕ̃‖q′ ≤ c7‖ϕ‖q′ .

In view of the good summability properties of both (w, q) and (ψ, η), we compute∣∣ ∫
R3

w · ϕ̃dx
∣∣

=
∣∣ lim
R→∞

∫
BR

w ·
[
−∆ψ −∇η +R∂3ψ + T

(
e3 ∧x · ∇ψ − e3 ∧ψ

)]
dx
∣∣

=
∣∣ lim
R→∞

∫
BR

[
−∆w +∇q−R∂3w − T

(
e3 ∧x · ∇w − e3 ∧w

)]
· ψ dx

∣∣
=
∣∣ ∫

R3

f · ψ dx
∣∣ ≤ ‖f‖q‖ψ‖q′ ≤ c7‖f‖q‖ϕ‖q′ .

(2.22)

Note that in order derive the second equality above, it is used that∫
BR

w ·
(

e3 ∧x · ∇ψ
)

dx =

∫
∂ BR

w · ψ
[
(e3 ∧x) · n

]
dS −

∫
BR

ψ ·
(

e3 ∧x · ∇w
)

dx

= −
∫

BR

ψ ·
(

e3 ∧x · ∇w
)

dx,

where the boundary integral vanishes due to n = x/|x| on ∂ BR. We can now reintroduce
u, p, F and the Fourier coefficients uk, pk, Fk from the first part of the proof. Recall
that (2.11) implies F0 = 0 and thus u0 = 0. Consequently,∫

R3

w(x) ·
[
T
2π

∫ 2π/T

0
Q(t)ϕ

(
Q(t)>x

)
dt

]
dx =

∫
R3

u0(x) · ϕ(x) dx = 0. (2.23)
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Combining (2.22) and (2.23), we find∣∣ ∫
R3

w · ϕdx
∣∣ ≤ c7‖f‖q‖ϕ‖q′ .

Since ϕ ∈ C∞0 (R3)3 was arbitrary, we conclude ‖w‖q ≤ c7‖f‖q, which, combined with
the fact that (w, q) satisfies (2.14), implies (2.13). By a standard density argument, we
finally extend this assertion to all f ∈ Lq(R3)3 ∩ C∞(R3)3 that satisfies (2.11).

Remark 2.3. The assertions in Lemma 2.2 remain true also for non-smooth f ∈ Lq(R3)3.
In this case, the integral in (2.11) should be understood as a Bochner integral in the
space Lq(R3)3. Such an interpretation is valid since the mapping t → Q(t)f

(
Q(t)>x

)
belongs to the space C

(
[0, 2π/T ];Lq(R3)3

)
. The estimate (2.13) can then be established

for a general f ∈ Lq(R3)3 by a density argument. In this paper, however, we only need
Lemma 2.2 in a context of smooth data f .

3 Proof of Main Theorem

We are now in a position to prove the main theorem.

Proof of Theorem 1.1. In the first step of the proof, we will reduce (1.2) to a whole space
problem. For this purpose, choose ρ > 0 so large that R3 \ Ω ⊂ Bρ. Let ψρ ∈ C∞(R3)
be a “cut-off“ function with ψρ = 0 in Bρ and ψρ = 1 in R3 \ B2ρ. Since (v, p) solves
(1.2), standard regularity theory for elliptic systems implies that (v, p) ∈ C∞(Ω \Bρ)

3×
C∞(Ω \ Bρ). We can therefore define

w : R3 → R3, w(x) := ψρ(x)v(x)−B[∇ψρ · v](x),

q : R3 → R, q(x) := ψρ(x)p(x),
(3.1)

where B denotes the so-called “Bogovskĭı operator”, that is, an operator

B : C∞0 (B2ρ)→ C∞0 (B2ρ)
3

with the property that divB(f) = f whenever
∫

B2ρ
f(x) dx = 0. We refer to [12,

Theorem III.3.2] for details on this operator. Observe that∫
B2ρ

∇ψρ · v dx =

∫
∂ B2ρ

v · n dx =

∫
∂Ω
v · n dS

=

∫
∂Ω

(e3 +T e3 ∧x) · n dS

=

∫
R3\Ω

div(e3 +T e3 ∧x) dx = 0,

(3.2)

whence (w, q) is a smooth solution in the class (1.4) to the whole space problem{
−∆w +∇q−R∂3w − T

(
e3 ∧x · ∇w − e3 ∧w

)
= g −Rw · ∇w in R3,

divw = 0 in R3
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with g ∈ C∞0 (R3)3 and supp g ⊂ B2ρ. In addition, from [15, Theorem 4.4] we obtain

∀r ∈ (1, 2) : (w, q) ∈ Xr(R3). (3.3)

In the next step, we proceed as in the proof of Lemma 2.2 and transform the whole
space problem above into an equivalent time dependent Oseen problem. As in the proof
of Lemma 2.2, we put

u : R3 ×
[
0,

2π

T

]
→ R3, u(x, t) := Q(t)w

(
Q(t)>x

)
,

p : R3 ×
[
0,

2π

T

]
→ R, p(x, t) := q

(
Q(t)>x

)
,

G : R3 ×
[
0,

2π

T

]
→ R3, G(x, t) := Q(t)g

(
Q(t)>x

)
.

(3.4)

Then (u, p) satisfies
∂tu−∆u+∇p−R∂3u = G−Ru · ∇u in R3 ×

[
0,

2π

T

]
,

div u = 0 in R3 ×
[
0,

2π

T

]
.

(3.5)

Since u, p, and G are smooth and 2π
T -periodic in t, we can expand these fields in their

Fourier-series with respect to t:

u(x, t) =
∑
k∈Z

uk(x) eiT kt, p(x, t) =
∑
k∈Z

pk(x) eiT kt,

G(x, t) =
∑
k∈Z

Gk(x) eiT kt,
(3.6)

with

uk(x) :=
T
2π

∫ 2π/T

0
u(x, t) e−iT kt dt, pk(x) :=

T
2π

∫ 2π/T

0
p(x, t) e−iT kt dt,

Gk(x) :=
T
2π

∫ 2π/T

0
G(x, t) e−iT kt dt.

Note that Gk ∈ C∞0 (R3)3 and that (uk, pk) enjoys the same summability properties as
(w, q), that is, (uk, pk) ∈ Xr(R3) for all r ∈ (1, 2). Inserting the Fourier series from (3.6)
into (3.5), we find that each Fourier coefficient satisfies{

iT kuk −∆uk +∇pk −R∂3uk = Gk − divHk in R3,

div uk = 0 in R3,
(3.7)

where

Hk(x) := R T
2π

∫ 2π/T

0
u(x, t)⊗ u(x, t) e−iT kt dt. (3.8)

11



Observe that Hk has the same summability properties as w⊗w. Recalling (3.3) and the
fact that w is smooth, we thus deduce that Hk ∈ C∞(R3)3×3 and satisfies (2.1).

We now focus on the Fourier coefficient u0. By (3.7), (u0, p0) satisfies the classical
whole space Oseen problem with non-homogeneous data G0 − divH0. Consequently,

u0(x) = ΓRO ∗
[
G0 − divH0

]
(x). (3.9)

We shall briefly prove this assertion. As in the proof of Lemma 2.1, it follows from the
summability properties (2.5) and (2.6) in combination with Young’s inequality that the
convolution above is well-defined as an element in Lr(R3)3 for all r ∈ (2,∞). Consider
now l ∈ (1, 2). Let {hn}∞n=1 ⊂ C∞0 (R3)3 be a sequence with limn→∞ hn = G0 − divH0

in Ls(R3) for all s ∈ (1,∞). Then, by well-known theory for the Oseen problem, (ΓRO ∗
hn,∇ΓL ∗ hn) ∈ Xl(R3) and satisfies the whole space Oseen problem with respect to
data hn, see for example [12, Theorem VII.4.1]. Moreover, {(ΓRO ∗ hn,∇ΓL ∗ hn)}∞n=1 is
a Cauchy sequence in Xl(R3), and thus converges to some element (ũ0, p̃0) ∈ Xl(R3).
Clearly, (ũ0, p̃0) satisfies the whole space Oseen problem with respect to data G0−divH0.
Hence, by classical uniqueness results for the Oseen problem, (ũ0, p̃0) = (u0, p0). On the
other hand we have, by Young’s inequality,

‖ΓRO ∗ hn − ΓRO ∗
[
G0 − divH0

]
‖ 2l

2−l
≤ ‖hn −

[
G0 − divH0

]
‖s‖ΓRO‖r

with r ∈ (2, 3) and s ∈ (1, 2). Letting n → ∞, we conclude (3.9). We now employ
Lemma 2.1 and find, by (2.3), that

∀q ∈ (4/3,∞) : ΓRO ∗ divH0 ∈ Lq(R3)3. (3.10)

Since G0 ∈ C∞0 (R3)3, it is well known, see for example [12, Chapter VII.3], that

ΓRO ∗G0(x) = ΓRO(x) ·
(∫

R3

G0(y) dy

)
+O

(
∇ΓRO(x)

)
as |x| → ∞,

from which we infer, by the summability property (2.7) of ∇ΓRO , that

∀q ∈ (4/3,∞) : ΓRO ∗G0 − ΓRO ·
(∫

R3

G0(y) dy

)
∈ Lq(R3)3. (3.11)

We now wish to evaluate the integral in the identity above. We start by computing∫
R3

g dx =

∫
B2ρ

div
[
− T(w, q)−Rw ⊗ e3−T w ⊗ (e3 ∧x) + T (e3 ∧x)⊗ w

+Rw ⊗ w
]

dx

=

∫
∂ B2ρ

[
− T(v, p)−Rv ⊗ e3−T v ⊗ (e3 ∧x) + T (e3 ∧x)⊗ v

+Rv ⊗ v
]
· n dS

= −
∫
∂Ω

[
− T(v, p)−Rv ⊗ e3−T v ⊗ (e3 ∧x) + T (e3 ∧x)⊗ v

+Rv ⊗ v
]
· n dS.
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Inserting the boundary values (1.2)3 for v on ∂Ω, an elementary calculation similar to
(3.2) shows that all but the first term in the last integral above vanish. Thus∫

R3

g dx =

∫
∂Ω

T(v, p) · n dS = F .

We then find, by the definition of G0, that∫
R3

G0(y) dy =

∫
R3

T
2π

∫ 2π/T

0
Q(t)g(Q(t)>y) dtdy

=
T
2π

∫ 2π/T

0
Q(t)

(∫
R3

g(y) dy

)
dt =

(
F · e3

)
e3 .

(3.12)

Combining now (3.9), (3.10), (3.11), and (3.12), we conclude

∀q ∈ (4/3,∞) : u0 − ΓRO · (F · e3) e3 ∈ Lq(R3)3. (3.13)

We now return to the expansion (1.5) of v. By standard regularity theory for elliptic
systems, v is continuous up to the boundary of Ω. It is therefore enough to show (1.5)
for large |x|. For this purpose, we split v into two parts. More precisely, we put

z(x) :=
∑
k 6=0

uk(x), π(x) :=
∑
k 6=0

pk(x),

and observe that for |x| > 2ρ holds

v(x) = w(x) = u(x, 0) =
∑
k∈Z

uk(x) = u0(x) + z(x). (3.14)

Thus, recalling (3.13), we see that (1.5) is established once we show that z ∈ Lq(R3)3

for all q ∈ (1,∞). Since both (u0, p0) and (w, q) belong to Xr(R3) for all r ∈ (1, 2), so
does (z, π). Moreover, (z, π) satisfies

−∆z +∇π −R∂3z− T
(

e3 ∧x · ∇z− e3 ∧z
)

=
(
g −Rw · ∇w

)
−
(
G0 − divH0

)
in R3,

div z = 0 in R3

As one may easily verify,
(
g−Rw ·∇w

)
−
(
G0−divH0

)
satisfies condition (2.11). Hence,

for any q ∈ (1,∞) Lemma 2.2 yields

‖z‖2,q ≤ c1‖
(
g −Rw · ∇w

)
−
(
G0 − divH0

)
‖q

≤ c2(‖g‖q + ‖w · ∇w‖q).
(3.15)

Due to (3.3), the right-hand side above is finite for all q ∈ (1,∞). We thus conclude
z ∈ Lq(R3)3 for all q ∈ (1,∞), and thereby (1.5).
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It remains to show (1.6). By standard regularity theory, also ∂jv is continuous up
to the boundary. Again, it is therefore enough to establish (1.6) for large |x|. It is
well-known, see again [12, Chapter VII.3], that

∂j
[
ΓRO ∗G0

]
(x) = ∂jΓ

R
O(x) ·

(∫
R3

G0(y) dy

)
+O

(
∇2ΓRO(x)

)
as |x| → ∞,

which, combined with the summability property (2.9) of ∇2ΓRO , implies

∀q ∈ (1,∞) : ∂j
[
ΓRO ∗G0

]
− ∂jΓRO ·

(∫
R3

G0(y) dy

)
∈ Lq(R3)3. (3.16)

From Lemma 2.1 we obtain

∀q ∈ (1,∞) : ∂j
[
ΓRO ∗ divH0

]
∈ Lq(R3)3. (3.17)

Combining (3.9), (3.14), (3.16), and (3.17), we conclude that

∂jv(x) = ∂jΓ
R
O(x) · (F · e3) e3 +S(x) + ∂jz(x),

with S ∈ Lq(R3)3 for all q ∈ (1,∞). By (3.15), ∂jz ∈ Lq(R3)3 for all q ∈ (1,∞). Thus,
(1.6) follows.
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