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Consider a rigid body moving in a three-dimensional Navier-Stokes liquid
with a prescribed velocity ξ ∈ R3 and a non-zero angular velocity ω ∈ R3\{0}
that are constant when referred to a frame attached to the body. Linearizing
the associated equations of motion, we obtain the Oseen (ξ 6= 0) or Stokes
(ξ = 0) equations in a rotating frame of reference. We will consider the
corresponding steady-state whole-space problem. Our main result in this first
part concerns elliptic estimates of the solutions in terms of data in Lq(R3).
Such estimates have been established by R. Farwig in Tohoku Math. J., Vol.
58, 2006, for the Oseen case, and R. Farwig, T. Hishida, and D. Müller
in Pac. J. Math, Vol. 215 (2), 2004, for the Stokes case. We introduce a new
approach resulting in an elementary proof of these estimates. Moreover, our
method yields more details on how the constants in the estimates depend on
ξ and ω. In part II we will establish similar estimates in terms of data in the
negative order homogeneous Sobolev space D−1,q0 (R3).
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1 Introduction

Consider a rigid body moving in a Navier-Stokes liquid that fills the whole three-
dimensional space outside the body. We assume the body moves with a velocity ξ ∈ R3

and angular velocity ω ∈ R3 \ {0} that are constant when referred to a frame attached
to the body. In this frame, we consider the linearized steady-state equations of motion.
We assume that ξ and ω are both directed along the x3-axis. Due to a simple trans-
formation (see [8, Section 2]), this assumption can be made without loss of generality
whenever ξ · ω 6= 0 or ξ = 0. After a suitable non-dimensionalization and reduction to a
whole-space problem, the equations of motion then read{

−∆v +∇p−R∂3v − T
(

e3 ∧x · ∇v − e3 ∧v
)

= f in R3,

div v = 0 in R3,
(1.1)

where v : R3 → R3 and p : R3 → R denotes the Eulerian velocity and pressure, respec-
tively. Moreover, R ≥ 0 and T > 0 are dimensionless constants with R = 0 if and only
if ξ = 0. We refer the reader to [5] for the derivation of (1.1) and details on the physical
background.

The above system is the classical steady-state whole-space Oseen (R > 0) or Stokes
(R = 0) problem with the extra term T

(
e3 ∧x · ∇v − e3 ∧v

)
. This extra term stems

from the rotating frame of reference and represents the main challenge of the problem.
Due to the unbounded coefficient e3 ∧x, the term can not be treated as a perturbation
to the Oseen or Stokes operator.

We will prove elliptic Lq-estimates for solutions (v, p) to (1.1) in terms of the data f .
Our main result in the Stokes case (R = 0) reads:

Theorem 1.1. Let 1 < q <∞, R = 0, and T > 0. For any f ∈ Lq(R3)3 there exists a
solution (v, p) ∈ D2,q(R3)3 ×D1,q(R3) to (1.1) that satisfies

‖∇2v‖q + ‖∇p‖q + ‖T
(

e3 ∧x · ∇v − e3 ∧v
)
‖q ≤ C1‖f‖q. (1.2)

If 1 < q < 3, then

‖∇v‖ 3q
3−q
≤ C2‖f‖q. (1.3)

If 1 < q < 3
2 , then

‖v‖ 3q
3−2q
≤ C3‖f‖q. (1.4)

The constants C1, C2, C3 are independent of T . If (ṽ, p̃) ∈ D2,r(R3)3 × D1,r(R3), 1 <
r <∞, is another solution to (1.1), then

ṽ = v + α e3 +β e3 ∧x+ σ(x1, x2,−2x3), p̃ = p+ γ (1.5)

for some α, β, σ, γ ∈ R.
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Our main result in the Oseen case (R > 0) is the following theorem:

Theorem 1.2. Let 1 < q <∞, R0 > 0, 0 < R < R0, and T > 0. For any f ∈ Lq(R3)3

there exists a solution (v, p) ∈ D2,q(R3)3 ×D1,q(R3) to (1.1) that satisfies

‖∇2v‖q + ‖∇p‖q ≤ C4‖f‖q, (1.6)

with C4 independent of R0, R, and T . Moreover,

‖R∂3v‖q + ‖T
(

e3 ∧x · ∇v − e3 ∧v
)
‖q ≤ C5

(
1 + T −2

)
‖f‖q. (1.7)

If 1 < q < 4, then

‖∇v‖ 4q
4−q
≤ C6

(
R−

1
4 + T −

1
2

)
‖f‖q, (1.8)

If 1 < q < 2, then

‖v‖ 2q
2−q
≤ C7

(
R−

1
2 + T −1

)
‖f‖q. (1.9)

The constants C5, C6, C7 depend only on R0. If (ṽ, p̃) ∈ D2,r(R3)3 ×D1,r(R3), 1 < r <
∞, is another solution to (1.1), then

ṽ = v + α e3 +β e3 ∧x, p̃ = p+ γ (1.10)

for some α, β, γ ∈ R.

Remark 1.3. We note that (1.3) and (1.4) follow by Sobolev embedding from (1.2).
Similarly, (1.3) and (1.4) also follow from (1.6). Thus, the solution in Theorem 1.2
(Oseen case) also satisfies (1.3) and (1.4). Comparing the estimates (1.8) and (1.9) to
(1.3) and (1.4), we observe that the former are better estimates in terms of summability
of the left-hand side. In fact, the improved summability of v and ∇v in (1.8) and (1.9)
relative to (1.3) and (1.4) is exactly the same as obtained in the case T = 0, i.e, the
classical Oseen and Stokes system without the rotation terms.

The statements of Theorem 1.2 and Theorem 1.1 have already been established in [2]
and [3], respectively, albeit with less information on how the constants in (1.8) and (1.9)
depend on R and T . Unlike the classical Oseen and Stokes problems, due to the term
T
(

e3 ∧x · ∇v − e3 ∧v
)

the estimates do not follow from a standard application of well-
known Fourier multiplier theorems. Therefore, in [2] and [3] the estimates are established
by a very technical and non-trivial application of the Littlewood-Payley decomposition.
The purpose of this paper is to give an elementary proof using a different approach.
More specifically, we employ an idea going back to [6] of transforming (1.1) into a time-
dependent Stokes problem.
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2 Preliminaries

In this section we recall basic notation and prove some simple lemmas. The experienced
reader may skip this section and proceed directly to the proof of the main theorems in
section 3.

By Lq(R3) we denote the usual Lebesgue space with norm ‖·‖q. By Dm,q(R3) we
denote the homogeneous Sobolev space with semi-norm |·|m,q, i.e,

|v|m,q :=

( ∑
|α|=m

∫
R3

|∂αv(x)|q dx

) 1
q

, Dm,q := {v ∈ L1
loc(R3) | |v|m,q <∞}.

Unless otherwise indicated, differential operators act in the spatial variable only, i.e.,
div u(x, t) := divx u(x, t), ∆u(x, t) := ∆xu(x, t) etc. We use BR := {x ∈ R3 | |x| < R}
to denote balls in R3. Finally, we note that constants in capital letters in the proofs and
theorems are global, while constants in small letters are local to the proof in which they
appear.

For notational purpose, we put

Lv := −∆v −R∂3v − T
(

e3 ∧x · ∇v − e3 ∧v
)
, (2.1)

L∗v := −∆v +R∂3v + T
(

e3 ∧x · ∇v − e3 ∧v
)
. (2.2)

Note that L∗ is (formally) the adjoint of L.
The existence of a weak solution to (1.1) can be shown by standard methods. In fact,

in the case q = 2 the following is known:

Lemma 2.1. Let R ≥ 0 and T > 0. Let f ∈ C∞0 (R3)3. There exists a solution

v ∈ D2,2(R3)3 ∩D1,2(R3)3 ∩ L6(R3)3 ∩ C∞(R3)3,

p ∈ D1,2(R3) ∩ L6(R3) ∩ C∞(R3)
(2.3)

to problem (1.1) that satisfies

‖∇2v‖2 + ‖∇p‖2 ≤ C8‖f‖2, (2.4)

with C8 independent of R and T . Moreover,

(v, p) ∈ ∩∞m=1D
m,2(R3)3 ×Dm,2(R3). (2.5)

All assertions above are also true for the adjoint problem{
L∗v +∇p = f in R3,

div v = 0 in R3.
(2.6)

Proof. See [5, Lemma 4.14] and [8, Theorem 2] for the existence of a solution in the class
(2.3) satisfying (2.4). A direct calculation shows that ∆ commutes with the operator on
the left-hand side of (1.1)1, i.e., with L. Combining this fact with the uniqueness result
[7, Lemma 4.1], we may simply apply ∆ to (1.1)1 and iterate the argument to obtain
(2.5). The adjoint problem (2.6) is dealt with in exactly the same manner.
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In section 3 we shall prove the main theorems for data f ∈ C∞0 (R3)3. By a standard
density argument, one can then extend the statements to all f ∈ Lq(R3)3, as detailed in
the following lemma:

Lemma 2.2. If the statements in Theorem 1.1 and Theorem 1.2 are true for all f ∈
C∞0 (R3)3, then they are true also for all f ∈ Lq(R3)3.

Proof. We only prove the part concerning Theorem 1.2. The assertion concerning The-
orem 1.1 follows analogously. Assume therefore that the statements in Theorem 1.2
are true for all f ∈ C∞0 (R3)3. Let f ∈ Lq(R3)3 and choose {fn}∞n=1 ⊂ C∞0 (R3)3 with
limn→∞ fn = f in Lq(R3)3. Let (vn, pn) be the solution to (1.1) with fn as the right-hand
side. Then choose αn, βn, κn ∈ R3 and ιn ∈ R such that

0 =

∫
B1

∂1vn − αn dx =

∫
B1

∂2vn − βn dx, (2.7)

0 =

∫
B1

vn − (κn + αnx1 + βnx2) dx, (2.8)

and 0 =
∫
B1
pn − ιn dx. Put rn := κn + αnx1 + βnx2. From (1.6)–(1.7) we see, using

Poincaré’s inequality, that {(vn − rn, pn − ιn)}∞n=1 is a Cauchy sequence in the Banach-
space

Xm := {(v, p) ∈ L1
loc(R3)3 × L1

loc(R3) | ‖(v, p)‖Xm <∞},
‖(v, p)‖Xm := ‖∇2v‖q + ‖∇p‖q +R‖∂3v‖q + ‖v‖Lq(Bm) + ‖p‖Lq(Bm)

for all m ∈ N. Consequently, there is an element (v, p) ∈ ∩m∈NXm with the property
that limn→∞(vn− rn, pn− ιn) = (v, p) in Xm for all m ∈ N. Recall now (2.1). It follows
that limn→∞ L(vn − rn) +∇(pn − ιn) = Lv +∇p in D′(R3)3. By construction, we have
limn→∞ Lvn +∇pn = limn→∞ fn = f in Lq(R3)3. We thus deduce that limn→∞ Lrn =
f − (Lv +∇p) in D′(R3)3. Consequently, f − (Lv +∇p) must be equal to Lr for some
first order polynomial r. It follows that (v + r, p) ∈ D2,q(R3)3 × D1,q(R3) solves (1.1).
Moreover, since (vn, pn) satisfies (1.6) and (1.7), so does (v + r, p). This proves the
first part of the Theorem 1.2 with respect to f . If 1 < q < 4 we repeat the argument
above with the modification that we ignore (2.7) (put αn = βn = 0), and add the term
‖∇v‖ 4q

4−q
to the Xm-norm. We then obtain a solution to (1.1) that also also satisfies

(1.8). If 1 < q < 2 we ignore both (2.7) and (2.8) (put αn = βn = κn = 0), and add
the term ‖v‖ 2q

2−q
to the Xm-norm. We then obtain a solution that also also satisfies

(1.9).

We next observe that it will be enough to prove the statements of the main theorems
for either 1 < q ≤ 2 or 2 ≤ q <∞. More specifically, we have the following lemma:

Lemma 2.3. Assume for any ϕ ∈ C∞0 (R3)3 the solution (ψ, η) from Lemma 2.1 to the
adjoint problem {

L∗ψ +∇η = ϕ in R3,

divψ = 0 in R3
(2.9)
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satisfies the estimates in Theorem 1.1 and Theorem 1.2 for all 1 < q ≤ 2. Then the
solution (v, p) to (1.1) from Lemma 2.1 satisfies the estimates in Theorem 1.1 and The-
orem 1.2 for all 2 ≤ q < ∞. Conversely, if for all ϕ ∈ C∞0 (R3)3 the solution (ψ, η)
from Lemma 2.1 to (2.9) satisfies the estimates in Theorem 1.1 and Theorem 1.2 for all
2 ≤ q <∞, then the estimates are also true for (v, p) for all 1 < q ≤ 2.

Proof. We will concentrate on just one case. The other cases follow by similar arguments.
Assume for any ϕ ∈ C∞0 (R3)3 that the solution (ψ, η) from Lemma 2.1 to the adjoint
problem (2.9) satisfies (1.2), i.e.,

‖∇2ψ‖q + ‖∇η‖q ≤ c1‖ϕ‖q, (2.10)

for all q ∈ [2,∞). We will now show that the solution (v, p) from Lemma 2.1 to (1.1)
satisfies (1.2) for the Hölder conjugate q′ = q

q−1 of any q ∈ [2,∞). Exploiting that ∆
commutes with L, and the summability properties of (v, p) and (ψ, η), we compute∫

R3

∆v · ϕdx = lim
R→∞

∫
BR

∆v · L∗ψ dx = lim
R→∞

∫
BR

∆Lv · ψ dx =

∫
R3

f ·∆ψ dx,

where, when performing the partial integration, we use that∫
BR

∆v ·
(

e3 ∧x · ∇ψ
)

dx =

∫
∂ BR

(∆v · ψ)(e3 ∧x) · n dS −
∫
BR

(
e3 ∧x · ∇∆v

)
· ψ dx

= 0−
∫
BR

(
e3 ∧x · ∇∆v

)
· ψ dx,

which is due to n = x/|x| on ∂ BR. Using (2.10), we then obtain

|
∫
R3

∆v · ϕdx| ≤ ‖f‖q′‖∆ψ‖q ≤ ‖f‖q′‖ϕ‖q.

Since ϕ is arbitrary, it follows that ‖∆v‖q′ ≤ c1‖f‖q′ , and thus, by standard theory,
‖∇2v‖q′ ≤ c2‖f‖q′ . The estimate ‖∇p‖q′ ≤ c3‖f‖q′ follows simply from the fact that
−∆p = div f . Since q ∈ [2,∞) was arbitrary, we have thereby established (1.2) for all
q′ ∈ (1, 2].

3 Proof of Main Theorems

Before now proving the main theorems, we briefly sketch the main idea behind their
proofs. The main challenge is to establish (1.2), (1.6), and (1.7) for a solution (v, p). By
introducing the rotation matrix

Q(t) :=

cos(T t) − sin(T t) 0
sin(T t) cos(T t) 0

0 0 1


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and putting u(x, t) := Q(t)v
(
Q(t)>x

)
, π(x, t) := p

(
Q(t)>x

)
, we obtain a solution (u, π)

to the time-dependent Oseen (R > 0) or Stokes (R = 0) problem in the whole space.
In order to prove (1.2) and (1.6), we split this solution into a solution to a Cauchy
problem with zero initial value, and a solution to a Cauchy problem with zero forcing
term. We then prove the desired estimates by a simple analysis of these two systems.
The main idea behind our proof of (1.7) is to exploit that the transformation above in
fact yields functions u and π which are 2π

T -periodic in t. We can thus expand (u, π) in a
Fourier-series with respect to t. We will analyze the Lq-norm of v in terms of the Fourier
coefficients in this series. As we shall see, each one of these coefficients solves an Oseen
resolvent-like system. This information enables us to estimate their Lq-norms directly.

Proof of Theorem 1.1. Let f ∈ C∞0 (R3)3, q ∈ (2,∞), and (v, p) be the solution to (1.1)
from Lemma 2.1. Let T > 0. For (x, t) ∈ R3 × R put

u(x, t) := Q(t)v
(
Q(t)>x e3

)
, π(x, t) := p

(
Q(t)>x

)
, F (x, t) := Q(t)f

(
Q(t)>x

)
.

Then 
∂tu−∆u+∇π = F in R3 × (0, T ),

div u = 0 in R3 × (0, T ),

u(x, 0) = v(x) in R3.

(3.1)

By well-known results (see for example [9, Chap. 4, Sec. 5, Theorem 6]) there exists a
solution u1 ∈ Lq(R3 × (0, T ))3 to

∂tu1 −∆u1 +∇π = F in R3 × (0, T ),

div u1 = 0 in R3 × (0, T ),

lim
t→0+

‖u1(·, t)‖q = 0

satisfying

‖∇2u1‖Lq(R3×(0,T )) ≤ c1‖F‖Lq(R3×(0,T )),

with c1 independent of T . It is also well known that

u2(x, t) := (4πt)−3/2
∫
R3

e−|x−y|
2/4t v(y) dy (3.2)

satisfies u2 ∈ L6(R3 × (0, T ))3 and solves
∂tu2 −∆u2 = 0 in R3 × (0, T ),

div u2 = 0 in R3 × (0, T ),

lim
t→0+

‖u2(·, t)− v(·)‖6 = 0.
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Taking second order derivatives on both sides in (3.2), and applying Young’s inequality,
we obtain

‖∇2u2(·, t)‖Lq(R3) ≤ c2 t
− 3

2
( 1
2
− 1

q
) ‖∇2v‖2,

with c2 independent of T . We claim that u = u1 + u2 in R3 × (0, T ). This follows
from the fact that u1 + u2 satisfies (3.1) combined with a uniqueness argument (see for
example [7, Lemma 3.6]). We can now estimate

(T − 1)‖∇2v‖qq =

∫ T

1

∫
R3

|∇2u(x, t)|q dxdt

≤ c3
(
‖∇2u1‖qLq(R3×(0,T )) +

∫ T

1
‖∇2u2(·, t)‖qq dt

)
≤ c4

(
‖F‖q

Lq(R3×(0,T )) +

∫ T

1

(
t
− 3

2
( 1
2
− 1

q
)‖∇2v‖2

)q
dt

)
≤ c5

(
T‖f‖qq + (T

− 3q
2
( 1
2
− 1

q
)+1 − 1)‖∇2v‖q2

)
,

with c5 independent of T , and also of R and T . Dividing both sides by T − 1 and
subsequently letting T → ∞ (note that q > 2 by assumption), we conclude that
‖∇2v‖q ≤ c5‖f‖q. Finally, we deduce directly from (1.1), by applying div on both sides
in (1.1)1, that −∆p = div f . From this equation it follows that also ‖∇p‖q ≤ c6‖f‖q,
with c6 independent of R and T . Hence, we have established (1.2) in the case q ∈ (2,∞)
and f ∈ C∞0 (R3)3.

We obtain directly from Lemma 2.1 that (1.2) also holds when q = 2. The estimates
(1.3) and (1.4) are direct consequences of (1.2) and Sobolev’s embedding theorem [4,
Lemma II.2.2]. Consequently, we have established all the estimates in the theorem
in the case q ∈ [2,∞) and f ∈ C∞0 (R3)3. Analogously, we can show the same for
the solution from Lemma 2.1 to the adjoint problem (2.6). Thus, by Lemma 2.3, we
may then conclude (1.2)–(1.4) for all q ∈ (1,∞) and f ∈ C∞0 (R3)3. Finally, by the
density argument in Lemma 2.2, we obtain (1.2)–(1.4) in the general case q ∈ (1,∞)
and f ∈ Lq(R3)3.

Assume (ṽ, p̃) ∈ D2,r(R3)3 × D1,r(R3) is another solution to (1.1). Then (w, q) :=
(v− ṽ, p− p̃) satisfies (1.1) with a homogeneous right-hand side. Applying div to (1.1)1,
we immediately find that ∆q = 0, which, since∇q ∈ Lq(R3)3+Lr(R3)3, implies q = γ for
some γ ∈ R. Moreover, since ∆ and L commute, we observe that (∆w,∆q) also satisfies
(1.1) with a homogeneous right-hand side. Recalling that ∆w = Lq(R3)3 + Lr(R3)3, we
deduce from [7, Lemma 4.1] that ∆w = 0 and hence w = Ax+ b for some A ∈ R3×3 and
b ∈ R3. By (1.1)2, div(Ax) = TrA = 0. In addition, we find that

∂t
[
Q(t)w

(
Q(t)>x

)]
= Q(t)

(
∆w −∇q

)
= 0,

whence Q(t)
(
AQ(t)>x+ b

)
is t-independent. As a direct consequence hereof we see that

b = α e3 for some α ∈ R, and conclude that Q(t)AQ(t)>x is t-independent. We may
now exploit this t-independence by considering combinations of the values t = 0, t =
π
2T , t = π

T , t = 3π
2T and x = e1, x = e2, x = e3 in this expression. We then obtain

Ax = β e3 ∧x+ σ(x1, x2,−2x3) for some β, σ ∈ R.
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Proof of Theorem 1.2. Let f ∈ C∞0 (R3)3 and (v, p) be the solution from Lemma 2.1.
Let T > 0. For (x, t) ∈ R3 × R put

u(x, t) := Q(t)v
(
Q(t)>x−Rt e3

)
, p(x, t) := p

(
Q(t)>x−Rt e3

)
,

F (x, t) := Q(t)f
(
Q(t)>x−Rt e3

)
.

Then (u, p) satisfies (3.1). Estimate (1.6) now follows by the same argument that was
used to show (1.2) in the proof of Theorem 1.1.

Next we show that (v, p) satisfies (1.7). We consider first the case q ∈ (1, 2]. For
(x, t) ∈ R3 × R put

u(x, t) := Q(t)v
(
Q(t)>x

)
, π(x, t) := p

(
Q(t)>x

)
, F (x, t) := Q(t)f

(
Q(t)>x

)
.

Note that u, π, and F are smooth and 2π
T -periodic in the t variable. We can therefore

expand these fields in their Fourier-series. More precisely, we have

u(x, t) =
∑
k∈Z

uk(x) eiT kt, π(x, t) =
∑
k∈Z

πk(x) eiT kt, F (x, t) =
∑
k∈Z

Fk(x) eiT kt,

with

uk(x) :=
T
2π

∫ 2π/T

0
u(x, t) e−iT kt dt, πk(x) :=

T
2π

∫ 2π/T

0
π(x, t) e−iT kt dt,

Fk(x) :=
T
2π

∫ 2π/T

0
F (x, t) e−iT kt dt.

As one may easily verify,{
∂tu−∆u+∇π −R∂3u = F in R3 × R,
div u = 0 in R3 × R.

It follows that the Fourier coefficients each satisfies{
iT kuk −∆uk +∇πk −R∂3uk = Fk in R3,

div uk = 0 in R3.
(3.3)

In the case k = 0, (3.3) reduces to the classical Oseen system. By well-known theory,
see for example [4, Theorem VII.4.1], we thus have

‖∇2u0‖q +R‖∂3u0‖q ≤ c1‖F0‖q ≤ c2‖f‖q, (3.4)

with c2 independent of R and T . Consider now k 6= 0. By Minkowski’s integral inequal-
ity, and the fact that (v, p) satisfies (1.6), we find that

‖∇2uk‖q ≤
T
2π

∫ 2π/T

0

(∫
R3

|∇2u(x, t)|q dx

)1/q

dt = ‖∇2v‖q ≤ ‖f‖q,
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and similarly ‖∇πk‖q ≤ ‖f‖q. We can thus conclude from (3.3) that

|T k|‖uk‖q ≤ ‖∆uk‖q + ‖∇πk‖q +R‖∂3uk‖q + ‖Fk‖q
≤ c3‖f‖q +R‖∂3uk‖q,

(3.5)

with c3 independent of R and T . By Nirenberg’s inequality (see [10, p.125]),

‖∂3uk‖q ≤ c4(ε‖uk‖q + ε−1‖∇2uk‖q) (3.6)

for all ε > 0. Choosing ε = |T k|/(2Rc4) in (3.6) and applying the resulting estimate in
(3.5), it follows that

‖uk‖q ≤ c5
1

|T k|

(
1 +

R2

|T k|

)
‖f‖q, (3.7)

with c5 independent of R and T . At this point we make the important observation that
v(x) = u(x, 0) =

∑
k∈Z uk(x). We thus see that v can be written as u0, which solves the

classical Oseen problem and therefore satisfies the corresponding Lq-estimates, and a
sum of functions uk, each of which satisfies the even better Lq-estimate (3.7). To exploit
this observation, we put

v1 := v − u0, (3.8)

and define

U(x, t) := Q(t)v1
(
Q(t)>x

)
= u(x, t)− u0(x) =

∑
k 6=0

uk(x) eiT kt .

The first equality above follows from the fact that Q(t)u0
(
Q(t)>x

)
= u0(x) for all t ∈ R,

which one easily verifies directly from the definition of u0. Since

‖v1‖qq =

(
T
2π

∫ 2π/T

0

[ ∫
R3

|U(x, t)|q dx

] 1
q−1

dt

)q−1
,

an application of Minkowski’s inequality yields (recall that 1 < q ≤ 2)

‖v1‖qq ≤
∫
R3

(
T
2π

∫ 2π/T

0
|U(x, t)|

q
q−1 dt

)q−1
dx.

By the Hausdorff-Young inequality for Fourier series (see for example [1, Proposition
4.2.7]), we then obtain

‖v1‖qq ≤
∫
R3

∑
k 6=0

|uk(x)|q =
∑
k 6=0

‖uk‖qq.

Using (3.7), it follows that

‖v1‖qq ≤ c6
∑
k 6=0

1

|T k|q
(

1 +
R2

T

)q
‖f‖qq ≤ c7

1

T q

(
1 +
R2

T

)q
‖f‖qq, (3.9)
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with c7 independent of R and T . From (3.4) and (1.6), we also deduce

‖∇2v1‖q ≤ c8‖f‖q, (3.10)

with c8 independent of R and T . Combining now (3.4), (3.9), and (3.10), we finally
obtain

‖R∂3v‖q ≤ R‖∂3u0‖q +R‖∂3v1‖q

≤ c2‖f‖q +Rc9(‖v1‖q + ‖∇2v1‖q) ≤ c10
(

1 +
1

T 2

)
‖f‖q,

where c10 = c10(R0), but otherwise independent of R and T . We have thereby shown
(1.7) in the case q ∈ (1, 2] and f ∈ C∞0 (R3)3. Analogously, we can prove the same for the
solution from Lemma 2.1 to the adjoint problem (2.6). Thus, by the duality argument
in Lemma 2.3, we conclude that (v, p) satisfies (1.7) for all q ∈ (1,∞).

We now show that (v, p) satisfies (1.8)–(1.9). Consider first 1 < q < 4. By well known
theory ([4, Theorem VII.4.1]),

‖∇u0‖ 4q
4−q
≤ c11R1/4‖F0‖q ≤ c11R1/4‖f‖q. (3.11)

By the Sobolev’s embedding theorem (see for example [4, Lemma II.2.2]), (3.9), and
(3.10), it follows that

‖∇v1‖ 4q
4−q
≤ c12‖∇v1‖

1
4
q ‖∇2v1‖

3
4
q ≤ c13(‖v1‖q + ‖∇2v1‖q)

1
4 ‖∇2v1‖

3
4
q

≤ c14
[
1 +

1

|T |

(
1 +
R2

|T |

)] 1
4

‖f‖q ≤ c15
(

1 + T −
1
2

)
‖f‖q,

(3.12)

with c15 = c15(R0). Combining (3.8), (3.11), and (3.12) gives us (1.8). Consider next
1 < q < 2. It is well known ([4, Theorem VII.4.1]) that

‖u0‖ 2q
2−q
≤ c16R1/2‖F0‖q ≤ c16R1/2‖f‖q. (3.13)

Using again Sobolev’s embedding theorem, (3.9), and (3.10), we find that

‖v1‖ 2q
2−q
≤ c17‖v1‖

1
2
3q
3−q

‖∇v1‖
1
2
3q
3−q

≤ c18(‖v1‖q + ‖∇2v1‖q)
1
2 ‖∇2v1‖

1
2
q

≤ c19
[
1 +

1

|T |

(
1 +
R2

|T |

)] 1
2

‖f‖q ≤ c20
(

1 + T −1
)
‖f‖q,

(3.14)

with c20 = c20(R0). Combining (3.8), (3.13), and (3.14) yields (1.9).
We have now shown (1.6)–(1.9) in the case f ∈ C∞0 (R3)3. By the density argument

in Lemma 2.2, we extend this conclusion to the general case of f ∈ Lq(R3)3.
It remains to prove uniqueness. Assume (ṽ, p̃) ∈ D2,r(R3)3 × D1,r(R3) is another

solution to (1.1). Then (w, q) := (v − ṽ, p− p̃) satisfies (1.1) with a homogeneous right-
hand side. By the same argument as in the proof of Theorem 1.1, this implies that q = γ
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for some γ ∈ R, w = Ax+ b for some A ∈ R3×3 and b ∈ R3, and TrA = 0. In addition,
since

∂t
[
Q(t)w

(
Q(t)>x−Rt e3

)]
= Q(t)

(
∆w −∇q

)
= 0,

it follows that Q(t)
(
AQ(t)>x − RtA e3 +b

)
is t-independent. As a direct consequence

hereof we see that b = α e3 for some α ∈ R, and A e3 = 0. This then means that
Q(t)AQ(t)>x is t-independent, from which we finally conclude, by a similar argument
as in the proof of Theorem 1.1, that Ax = β e3 ∧x for some β ∈ R.
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