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Abstract Consider a smooth bounded domain Ω ⊆ R3 with boundary ∂Ω, a
time interval [0, T ), 0 < T ≤ ∞, and the Navier-Stokes system in [0, T )×Ω, with
initial value u0 ∈ L2

σ(Ω) and external force f = div F , F ∈ L2(0, T ; L2(Ω)). Our
aim is to extend the well-known class of Leray-Hopf weak solutions u satisfying
u|∂Ω

= 0, div u = 0 to the more general class of Leray-Hopf type weak solutions

u with general data u|∂Ω
= g, div u = k satisfying a certain energy inequality.

Our method rests on a perturbation argument writing u in the form u = v +
E with some vector field E in [0, T ) × Ω satisfying the (linear) Stokes system
with f = 0 and nonhomogeneous data. This reduces the general system to a
perturbed Navier-Stokes system with homogeneous data, containing an additional
perturbation term. Using arguments as for the usual Navier-Stokes system we
get the existence of global weak solutions for the more general system.
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1 Introduction and main results

Let Ω ⊆ R3 be a bounded domain with boundary ∂Ω of class C2,1, and let [0, T ),
0 < T ≤ ∞, be a time interval. We consider in [0, T ) × Ω, together with an
associated pressure p, the following general Navier-Stokes system

ut −∆u + u · ∇u +∇p = f, div u = k
u|∂Ω

= g, u|t=0
= u0

(1.1)

with given data f , k, g, u0.
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First we have to give a precise characterization of this general system. To
this aim, we shortly discuss our arguments to solve this system in the weak sense
(without any smallness assumption on the data). Using a perturbation argument
we write u in the form

u = v + E, (1.2)

and the initial value u0 at time t = 0 in the form

u0 = v0 + E0. (1.3)

Here E is the solution of the (linear) Stokes system

Et −∆E +∇h = 0, div E = k

E|∂Ω
= g, E|t=0

= E0
(1.4)

with some associated pressure h, and v has the properties

v ∈ L∞
loc

(
[0, T ); L2

σ(Ω)
)
∩ L2

loc

(
[0, T ); W 1,2

0 (Ω)
)
,

v : [0, T ) 7→ L2
σ(Ω) is weakly continuous, v|t=0

= v0.
(1.5)

Inserting (1.2), (1.3) into the system (1.1) we obtain the modified system

vt −∆v + (v + E) · ∇(v + E) +∇p∗ = f, div v = 0

v|∂Ω
= 0, v|t=0

= v0
(1.6)

with associated pressure p∗ = p − h and homogeneous conditions for v. Thus
(1.6) can be called a perturbed Navier-Stokes system in [0, T ) × Ω. This system
reduces the general system (1.1) to a certain homogeneous system which contains
an additional perturbation term in the form

(v + E) · ∇(v + E) = v · ∇v + v · ∇E + E · ∇(v + E).

Therefore, the perturbed system (1.6) can be treated similarly as the usual
Navier-Stokes system obtained from (1.6) with E ≡ 0.

In order to give a precise definition of the general system (1.1) we need the
following steps:

First we develop the theory for the perturbed system (1.6) for data f , v0 and
a given vector field E, as general as possible. In the second step we consider the
system (1.4) for general given data k, g, E0 to obtain a vector field E in such a
way that u = v +E with v from (1.6) yields a well-defined solution of the general
system (1.1) in the (Leray-Hopf type) weak sense.

Thus we start with the definition of a weak solution v of (1.6) under rather
weak assumptions on E needed for the existence of such solutions.
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Definition 1.1 (Perturbed system) Suppose

f = div F with F = (Fi,j)
3
i,j=1 ∈ L2

(
0, T ; L2(Ω)

)
,

v0 ∈ L2
σ(Ω), (1.7)

E ∈ Ls
(
0, T ; Lq(Ω)

)
, div E = k ∈ L4

(
0, T ; L2(Ω)

)
,

with 4 ≤ s < ∞, 4 ≤ q < ∞, 2
s

+ 3
q

= 1.

Then a vector field v is called a weak solution of the perturbed system (1.6) in
[0, T )× Ω with data f , v0 if the following conditions are satisfied:

a) For each finite T ∗, 0 < T ∗ ≤ T ,

v ∈ L∞(
0, T ∗; L2

σ(Ω)
)
∩ L2

(
0, T ∗; W 1,2

0 (Ω)
)
, (1.8)

b) for each test function w ∈ C∞
0 ([0, T ); C∞

0,σ(Ω)),

− 〈v, wt〉Ω,T + 〈∇v,∇w〉Ω,T −
〈
(v + E)(v + E),∇w

〉
Ω,T

−
〈
k(v + E), w

〉
Ω,T

=
〈
v0, w(0)

〉
Ω
− 〈F,∇w〉Ω,T ,

(1.9)

c) for 0 ≤ t < T ,

1

2
‖v(t)‖2

2 +

∫ t

0

‖∇v‖2
2 dτ ≤ 1

2
‖v0‖2

2 −
∫ t

0

〈F,∇v〉Ω dτ

+

∫ t

0

〈
(v + E)E,∇v

〉
Ω

dτ +
1

2

∫ t

0

〈
k(v + 2E), v

〉
Ω

dτ,

(1.10)

d) and

v : [0, T ) → L2
σ(Ω) is weakly continuous and v(0) = v0. (1.11)

In the classical case E ≡ 0 we obtain with (1.8)-(1.11) the usual (Leray-Hopf)
weak solution v. As in this case the condition (1.11) already follows from the
other conditions (1.8)-(1.10), after possibly a modification on a null set of [0, T ),
see, e.g., [16, V, 1.6]. Here (1.11) is included for simplicity. The relation (1.9)
and the energy inequality (1.10) are based on formal calculations as for E ≡ 0.
The existence of an associated pressure p∗ such that

vt −∆v + (v + E) · ∇(v + E) +∇p∗ = f (1.12)

in the sense of distributions in (0, T )× Ω follows in the same way as for E ≡ 0.
In the next step we consider the linear system (1.4). A very general solution

class for this system, sufficient for our purpose, has been developed by the theory
of so-called very weak solutions, see [1], [3, Sect. 4]. In particular, the boundary
values g are given in a general sense of distributions on ∂Ω.

3



Lemma 1.2 (Linear system for E, [3]) Suppose

k ∈ Ls
(
0, T ; Lq∗(Ω)

)
, g ∈ Ls

(
0, T ; W− 1

q
,q(∂Ω)

)
, E0 ∈ Lq(Ω),

4 ≤ s < ∞, 4 ≤ q < ∞,
2

s
+

3

q
= 1,

1

q
=

1

q∗
− 1

3
,

(1.13)

satisfying the compatibility condition∫
Ω

k(t) dx =

∫
∂Ω

N · g(t) dS for almost all t ∈ [0, T ), (1.14)

where N = N(x) means the exterior normal vector at x ∈ ∂Ω, and
∫

∂Ω
. . . dS the

surface integral (in a generalized sense of distributions on ∂Ω).
Then there exists a uniquely determined (very) weak solution

E ∈ Ls
(
0, T ; Lq(Ω)

)
(1.15)

of the system (1.4) in [0, T )× Ω with data k, g, E0 defined by the conditions:

a) For each w ∈ C1
0([0, T ); C2

0,σ(Ω̄)),

−〈E, wt〉Ω,T − 〈E, ∆w〉Ω,T + 〈g,N · ∇w〉Ω,T =
〈
E0, w(0)

〉
Ω
, (1.16)

b) for almost all t ∈ [0, T ),

div E = k, N · E|∂Ω
= N · g. (1.17)

Moreover, E satisfies the estimate

‖A−1
q PqEt‖q,s;Ω,T + ‖E‖q,s;Ω,T ≤ C

(
‖E0‖q + ‖k‖q∗,s;Ω,T + ‖g‖− 1

q
;q,s;∂Ω,T

)
(1.18)

with constant C = C(Ω, T, q) > 0.
The trace E|∂Ω

= g is well-defined at ∂Ω for almost all t ∈ [0, T ), and the

initial value condition E|t=0
= E0 is well-defined (modulo gradients) in the sense

that PqE : [0, T ) → Lq
σ(Ω) is weakly continuous satisfying

PqE|t=0
= PqE0. (1.19)

Finally, there exists an associated pressure h such that

Et −∆E +∇h = 0 (1.20)

holds in the sense of distributions in (0, T )× Ω.

To obtain a precise definition for the general system (1.1) we have to combine
Definition 1.1 and Lemma 1.2 as follows:
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Definition 1.3 (General system) Let k ∈ Ls
(
0, T ; Lq∗(Ω)

)
∩L4

(
0, T ; L2(Ω)

)
with

s, q∗ as in (1.13) and suppose that

E is a very weak solution of the linear system (1.4) in (1.21)

[0, T )× Ω with data k, g, E0 in the sense of Lemma 1.2,

and

v is a weak solution of the perturbed system (1.6) in

[0, T )× Ω in the sense of Definition 1.1 with data f, v0 (1.22)

as in (1.7).

Then the vector field u = v + E is called a weak solution of the general system
(1.1) in [0, T )×Ω with data f , k, g and initial value u0 = v0 + E0. Thus it holds

ut −∆u + u · ∇u +∇p = f, div u = k (1.23)

in the sense of distributions in (0, T )×Ω with associated pressure p = p∗ + h, p∗

as in (1.12), h as in (1.20). Further,

u|∂Ω
= v|∂Ω

+ E|∂Ω
= g (1.24)

is well-defined by E|∂Ω
= g, and the condition

u|t=0
= v|t=0

+ E|t=0
= v0 + E0 = u0 (1.25)

is well-defined in the generalized sense modulo gradients by (1.19).

Therefore the general system (1.1) has a well-defined meaning for weak solu-
tions u in a generalized sense.

However, if we suppose in Definition 1.3 additionally the regularity properties

k ∈ Ls
(
0, T ; W 1,q(Ω)

)
, kt ∈ Ls

(
0, T ; L2(Ω)

)
,

g ∈ Ls
(
0, T ; W 2−1/q,q(∂Ω)

)
, gt ∈ Ls

(
0, T ; W− 1

q
,q(∂Ω)

)
, (1.26)

E0 ∈ W 2,q(Ω),

and the compatibility conditions u0|∂Ω
= g|t=0

, div u0 = k|t=0
, then the solution

E in Lemma 1.2 satisfies the regularity properties

E ∈ Ls
(
0, T ; W 2,q(Ω)

)
, Et ∈ Ls

(
0, T ; Lq(Ω)

)
, E ∈ C

(
[0, T ); Lq(Ω)

)
,

and E|∂Ω
= g, E|t=0

= E0 are well-defined in the usual sense, see [3, Corollary

5]. Further it holds ∇h ∈ Ls(0, T ; Lq(Ω)) for the associated pressure h in (1.20).
Therefore, u = v + E satisfies in this case the boundary condition u|∂Ω

= g and

the initial condition u|t=0
= v0 + E0 in the usual (strong) sense.
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The most difficult problem is the existence of a weak solution v of the per-
turbed system (1.6). For this purpose we have to introduce, see (2.12) in Sect.2,
an approximate system of (1.6) for each m ∈ N which yields such a weak solu-
tion when passing to the limit m → ∞. Then the existence of a weak solution
u = v + E of the general system (1.6) is an easy consequence.

This yields the following main result.

Theorem 1.4 (Existence of general weak solutions)

a) Suppose

f = div F, F ∈ L2
(
0, T ; L2(Ω)

)
, v0 ∈ L2

σ(Ω),

E ∈ Ls
(
0, T ; Lq(Ω)

)
, div E = k ∈ L4

(
0, T ; L2(Ω)

)
, (1.27)

4 ≤ s < ∞, 4 ≤ q < ∞,
2

s
+

3

q
= 1 .

Then there exists at least one weak solution v of the perturbed system (1.6)
in [0, T ) × Ω with data f , v0 in the sense of Definition 1.1. The solution v
satisfies with some constant C = C(Ω) > 0 the energy estimate

‖v(t)‖2
2 +

∫ t

0

‖∇v‖2
2 dτ ≤ C

(
‖v0‖2

2 +

∫ t

0

‖F‖2
2 dτ

+

∫ t

0

‖E‖4
4 dτ

)
exp

(
C‖k‖4

2,4;t + C‖E‖s
q,s;t

) (1.28)

for each 0 ≤ t < T .

b) Suppose additionally

k ∈ Ls
(
0, T ; Lq∗(Ω)

)
, g ∈ Ls

(
0, T ; W− 1

q
,q(∂Ω)

)
, E0 ∈ Lq(Ω),∫

Ω

k dx =

∫
∂Ω

N · g dS for a.a. t ∈ [0, T ),
(1.29)

and let E be the very weak solution of the linear system (1.4) in [0, T ) × Ω
with data k, g, E0 as in Lemma 1.2. Then u = v + E is a weak solution of
the general system (1.1) with data f , k, g and initial value u0 = v0 + E0 in
the sense of Definition 1.3.

There are some partial results with nonhomogeneous smooth boundary conditions
u|∂Ω

= g 6= 0 based on an independent approach by Raymond [15]. Further there

is a result with constant in time nonzero boundary conditions g, see [4]. Further
there are several independent results for smooth boundary values u|∂Ω

= g 6= 0

in the context of strong solutions u if g or (equivalently) the time interval [0, T )
satisfy certain smallness conditions, see [1], [3], [6], [10]. Our existence result for
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weak solutions in Theorem 1.4 does not need any smallness condition, like for
usual Leray-Hopf weak solutions. But, on the other hand, there is no uniqueness
result as for local strong solutions.

A first result on global weak solutions with time-dependent boundary data
(and k = div u = 0) can be found in [5]. In that paper, the authors consider
general s > 2, q > 3 with 2

s
+ 3

q
= 1; however, in that case, E has to satisfy the

assumptions
E ∈ Ls

(
0, T ; Lq(Ω)

)
∩ L4

(
0, T ; L4(Ω)

)
,

which is automatically fulfilled in the present article, see Theorem 1.4. Moreover,
in simply connected domains or under a further assumption on the boundary data
g, the energy estimate (1.28) can be improved considerably.

2 Preliminaries

First we recall some standard notations. Let C∞
0,σ(Ω) = {w ∈ C∞

0 (Ω); div w = 0}
be the space of smooth, solenoidal and compactly supported vector fields. Then

let Lq
σ(Ω) = C∞

0,σ(Ω)
‖·‖q

, 1 < q < ∞, where in general ‖ · ‖q denotes the norm of
the Lebesgue space Lq(Ω), 1 ≤ q ≤ ∞. Sobolev spaces are denoted by Wm,q(Ω)

with norm ‖ · ‖W m,q = ‖ · ‖m,q, m ∈ N, 1 ≤ q ≤ ∞, and Wm,q
0 (Ω) = C∞

0 (Ω)
‖·‖m,q

,
1 ≤ q < ∞. The trace space to W 1,q(Ω) is W 1−1/q,q(∂Ω), 1 < q < ∞, with
norm ‖ · ‖1−1/q,q. Then the dual space to W 1−1/q′,q′(∂Ω), where 1

q′
+ 1

q
= 1, is

W−1/q,q(∂Ω); the corresponding pairing is denoted by 〈·, ·〉∂Ω.
As spaces of test functions we need in the context of very weak solutions

the space C2
0,σ(Ω) = {w ∈ C2(Ω); w|∂Ω

= 0, div w = 0}; for weak instationary

solutions let the space C∞
0 ([0, T ); C∞

0,σ(Ω)) denote vector fields w ∈ C∞
0 ([0, T )×Ω)

such that div xw = 0 for all t ∈ [0, T ) taking the divergence divx with respect to
x = (x1, x2, x3) ∈ Ω. The pairing of functions on Ω and (0, T )× Ω is denoted by
〈·, ·〉Ω and 〈·, ·〉Ω,T , respectively.

For 1 ≤ q, s ≤ ∞ the usual Bochner space Ls(0, T ; Lq(Ω)) is equipped with

the norm ‖ ·‖q,s;T = (
∫ T

0
‖ ·‖s

q dτ)1/s when s < ∞ and ‖ ·‖q,∞;T = ess sup(0,T ) ‖ ·‖q

when s = ∞.
Let Pq : Lq(Ω) → Lq

σ(Ω), 1 < q < ∞, be the Helmholtz projection, and let
Aq = −Pq∆ with domain D(Aq) = W 2,q(Ω)∩W 1,q

0 (Ω)∩Lq
σ(Ω) and range R(Aq) =

Lq
σ(Ω) denote the Stokes operator. We write P = Pq and A = Aq if there is no

misunderstanding. For −1 ≤ α ≤ 1 the fractional powers Aα
q : D(Aα

q ) → Lq
σ(Ω)

are well-defined closed operators with (Aα
q )−1 = A−α

q . For 0 ≤ α ≤ 1 we have
D(Aq) ⊆ D(Aα

q ) ⊆ Lq
σ(Ω) and R(Aα

q ) = Lq
σ(Ω). Then there holds the embedding

estimate

‖v‖q ≤ C‖Aα
q v‖γ, 0 ≤ α ≤ 1, 2α +

3

q
=

3

γ
, 1 < γ ≤ q, (2.1)
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for all v ∈ D(Aα
q ). Further, we need the Stokes semigroup e−tAq : Lq

σ(Ω) → Lq
σ(Ω),

t ≥ 0, satisfying the estimate

‖Aα
q e−tAqv‖q ≤ Ct−αe−βt‖v‖q, 0 ≤ α ≤ 1, t > 0, (2.2)

for v ∈ Lq
σ(Ω) with constants C = C(Ω, q, α) > 0, β = β(Ω, q) > 0; for details

see [2, 7, 8, 9, 11].

In order to solve the perturbed system (1.6) we use an approximation proce-
dure based on Yosida’s smoothing operators

Jm =
(
I +

1

m
A1/2

)−1
and Jm =

(
I +

1

m
(−∆)1/2

)−1
, m ∈ N, (2.3)

where I denotes the identity and −∆ the Dirichlet Laplacian on Ω. In particular,
we need the properties

‖Jmv‖q ≤ C‖v‖q, ‖A1/2Jmv‖q ≤ mC‖v‖q, m ∈ N,

lim
m→∞

Jmv = v for all v ∈ Lq
σ(Ω);

(2.4)

and analogous results for Jmv, v ∈ Lq(Ω); see [8, 9, 16].
To solve the instationary Stokes system in [0, T ) × Ω, cf. [1, 13, 16, 17, 18],

let us recall some properties for the special system

Vt −∆V +∇H = f0 + div F0, div V = 0

V = 0 on ∂Ω, V (0) = V0

(2.5)

with data

f0 ∈ L1
(
0, T ; L2(Ω)

)
, F0 ∈ L2

(
0, T ; L2(Ω)

)
, V0 ∈ L2

σ(Ω);

here F0 = (F0,ij)
3
i,j=1 and div F0 = (

3∑
i=1

∂
∂xi

F0,ij)
3
j=1. The linear system (2.5)

admits a unique weak solution

V ∈ L∞(
0, T ; L2

σ(Ω)
)
∩ L2

(
0, T ; W 1,2

0 (Ω)
)
, (2.6)

satisfying the variational formulation

−〈V, wt〉Ω,T + 〈∇V,∇w〉Ω,T = 〈V0, w(0)〉Ω + 〈f0, w〉Ω,T − 〈F0,∇w〉Ω,T (2.7)

for all w ∈ C∞
0 ([0, T ); C∞

0,σ(Ω)), and the energy equality

1

2
‖V (t)‖2

2 +

∫ t

0

‖∇V ‖2
2 dτ =

1

2
‖V0‖2

2 +

∫ t

0

〈f0, V 〉Ω dτ −
∫ t

0

〈F0,∇V 〉Ω dτ (2.8)
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for 0 ≤ t < T . As a consequence of (2.8) we get the energy estimate

1

2
‖V ‖2

2,∞;T + ‖∇V ‖2
2,2;T ≤ 8

(
‖V0‖2

2 + ‖f0‖2
2,1;T + ‖F0‖2

2,2;T

)
, (2.9)

and see that V : [0, T ) → L2
σ(Ω) is continuous with V (0) = V0. Moreover, it holds

the well-defined representation formula

V (t) = e−tAV0 +

∫ t

0

e−(t−τ)APf0 dτ +

∫ t

0

A1/2e−(t−τ)AA−1/2Pdiv F0 dτ, (2.10)

0 ≤ t < T ; see [16, Theorems IV.2.3.1 and 2.4.1, Lemma IV.2.4.2], and, concern-
ing the operator A−1/2Pdiv , [16, Ch. III.2.6].

Consider the perturbed system (1.6) with f = div F , v0, k and E as in
Definition 1.1, here written in the form

vt −∆v + div (v + E)(v + E)− k(v + E) +∇p∗ = f, div v = 0 (2.11)

together with the initial-boundary conditions v = 0 on ∂Ω and v(0) = v0.
In order to obtain the following approximate system, see [16, V, 2.2] for the

known case E ≡ 0, we insert the Yosida operators (2.3) into (2.11) as follows:

vt −∆v + div (Jmv + E)(v + E)− (Jmk)(v + E) +∇p∗ = f, div v = 0

v|∂Ω
= 0, v|t=0

= v0
(2.12)

with v = vm, m ∈ N. Setting

Fm(v) = (Jmv + E)(v + E), fm(v) = (Jmk)(v + E) (2.13)

we write the approximate system (2.12) in the form

vt −∆v +∇p∗ = fm(v) + div
(
F − Fm(v)

)
, div v = 0,

v|∂Ω
= 0, v|t=0

= v0,
(2.14)

as a linear system, see (2.5), with right-hand side depending on v. In this form
we use the properties (2.6)-(2.10) of the linear system (2.5).

The following definition for (2.12) is obtained similarly as Definition 1.1.

Definition 2.1 (Approximate system) Suppose

f = div F, F ∈ L2
(
0, T ; L2(Ω)

)
, v0 ∈ L2

σ(Ω),

E ∈ Ls
(
0, T ; Lq(Ω)

)
, div E = k ∈ L4

(
0, T ; L2(Ω)

)
, (2.15)

4 ≤ s < ∞, 4 ≤ q < ∞,
2

s
+

3

q
= 1.

Then a vector field v = vm, m ∈ N, is called a weak solution of the approximate
system (2.12) in [0, T )×Ω with data f , v0 if the following conditions are satisfied:
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a)
v ∈ L∞

loc

(
[0, T ); L2

σ(Ω)
)
∩ L2

loc

(
[0, T ); W 1,2

0 (Ω)
)
, (2.16)

b) for each w ∈ C∞
0 ([0, T ); C∞

0,σ(Ω)),

− 〈v, wt〉Ω,T + 〈∇v,∇w〉Ω,T −
〈
(Jmv + E)(v + E),∇w

〉
Ω,T

(2.17)

−
〈
(Jmk)(v + E), w

〉
Ω,T

=
〈
v0, w(0)

〉
Ω
− 〈F,∇w〉Ω,T ,

c) for 0 ≤ t < T,

1

2
‖v(t)‖2

2 +

∫ t

0

‖∇v‖2
2 dτ ≤ 1

2
‖v0‖2

2 −
∫ t

0

〈
F − (Jmv + E)E,∇v

〉
Ω

dτ

(2.18)

+

∫ t

0

〈
(Jmk − 1

2
k)v, v

〉
Ω

dτ +

∫ t

0

〈
(Jmk)E, v

〉
Ω

dτ ,

d) v : [0, T ) → L2
σ(Ω) is continuous satisfying v(0) = v0.

3 The approximate system

The following existence result yields a weak solution v = vm of (2.12) first of all
only in an interval [0, T ′) where T ′ = T ′(m) > 0 is sufficiently small.

Lemma 3.1 Let f , k, E, v0 be as in Definition 2.1 and let m ∈ N. Then there
exists some T ′ = T ′(f, k, E, v0, m), 0 < T ′ ≤ min(1, T ), such that the approximate
system (2.12) has a unique weak solution v = vm in [0, T ′)×Ω with data f , v0 in
the sense of Definition 2.1 with T replaced by T ′.

Proof First we consider a given weak solution v = vm of (2.12) in [0, T ′) × Ω
with any 0 < T ′ ≤ 1. Hence it holds

v ∈ XT ′ := L∞(
0, T ′; L2

σ(Ω)
)
∩ L2

(
0, T ′; W 1,2

0 (Ω)
)

with
‖v‖XT ′

:= ‖v‖2,∞;T ′ + ‖A
1
2 v‖2,2;T ′ < ∞. (3.1)

Using Hölder’s inequality and several embedding estimates, see [16, Ch. V.1.2],
we obtain with some constant C = C(Ω) > 0 the estimates

‖(Jmv)v‖2,2;T ′ ≤ C‖Jmv‖6,4;T ′ ‖v‖3,4;T ′

≤ C‖A1/2Jmv‖2,4;T ′ ‖v‖XT ′
(3.2)

≤ Cm‖v‖2,4;T ′ ≤ Cm(T ′)1/4‖v‖2
XT ′

,
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and

‖(Jmv)E‖2,2;T ′ ≤ C‖Jmv‖4,4;T ′‖E‖4,4;T ′ ≤ C‖Jmv‖6,4;T ′‖E‖4,4;T ′ (3.3)

≤ Cm(T ′)1/4‖v‖XT ′
‖E‖4,4;T ′ ,

‖Ev‖2,2;T ′ ≤ C‖E‖q,s;T ′‖v‖( 1
2
− 1

q
)−1,( 1

2
− 1

s
)−1,T ′ ≤ C‖E‖q,s;T ′‖v‖XT ′

; (3.4)

of course, ‖EE‖2,2;T ′ ≤ C‖E‖2
4,4;T ′ . Moreover,

‖(Jmk)v‖2,1;T ′ ≤ C‖Jmk‖3,2;T ′‖v‖6,2;T ′ ≤ C‖(−∆)
1
2Jmk‖2,2;T ′‖v‖XT ′

(3.5)

≤ Cm‖k‖2,2;T ′‖v‖XT ′
≤ Cm(T ′)

1
4‖k‖2,4;T ′‖v‖XT ′

,

‖(Jmk)E‖2,1;T ′ ≤ C‖Jmk‖4,2;T ′‖E‖4,2;T ′ ≤ C‖(−∆)
1
2Jmk‖2,2;T ′‖E‖4,4;T ′ (3.6)

≤ Cm‖k‖2,2;T ′‖E‖4,4;T ′ ≤ Cm(T ′)
1
4‖k‖2,4;T ′‖E‖4,4;T ′ .

Using (2.14) and the energy estimate (2.9) with f0, F0 replaced by fm(v),
F − Fm(v) we get from (3.2)-(3.5) the estimate

‖v‖XT ′
≤ C

(
‖v0‖2 + ‖F‖2,2;T ′ + ‖E‖2

4,4;T ′ + m(T ′)
1
4‖v‖2

XT ′
+

+ m(T ′)
1
4‖v‖XT ′

‖E‖4,4;T ′ + ‖v‖XT ′
‖E‖q,s;T ′+ (3.7)

+ m(T ′)
1
4‖k‖2,4;T ′(‖E‖4,4;T ′ + ‖v‖XT ′

)
)

with C = C(Ω) > 0.
Applying (2.10) to (2.14) we obtain the equation

v = FT ′(v) (3.8)

where (
FT ′(v)

)
(t) = e−tAv0 +

∫ t

0

e−(t−τ)APfm(v) dτ

+

∫ t

0

A
1
2 e−(t−τ)AA− 1

2 Pdiv
(
F − Fm(v)

)
dτ.

Let

a = Cm(T ′)
1
4 , b = C‖E‖q,s;T ′ + Cm(T ′)

1
4‖E‖4,4;T ′ + Cm(T ′)

1
4‖k‖2,4;T ′ , (3.9)

d = C(‖v0‖2 + ‖E‖2
4,4;T ′ + ‖F‖2,2;T ′ + m(T ′)

1
4‖k‖2,4;T ′‖E‖4,4;T ′)

with C as in (3.7). Then (3.7) may be rewritten in the form

‖FT ′(v)‖XT ′
≤ a‖v‖2

XT ′
+ b‖v‖XT ′

+ d. (3.10)
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Up to now v = vm was a given solution as desired in Lemma 3.1. In the next
step we treat (3.8) as a fixed point equation in XT ′ and show with Banach’s fixed
point principle that (3.8) has a solution v = vm if T ′ > 0 is sufficiently small.

Thus let v ∈ XT ′ and choose 0 < T ′ ≤ min(1, T ) such that the smallness
condition

4ad + 2b < 1 (3.11)

is satisfied. Then the quadratic equation y = ay2 + by + d has a minimal positive
root given by

0 < y1 = 2d
(
1− b +

√
b2 + 1− (4ad + 2b)

)−1

< 2d

and, since y1 = ay2
1 + by1 + d > d, we conclude that FT ′ maps the closed ball

BT ′ = {v ∈ XT ′ : ‖v‖XT ′
≤ y1} into itself.

Further let v1, v2 ∈ BT ′ . Then we obtain similarly as in (3.10) the estimate

‖FT ′(v1)−FT ′(v2)‖XT ′
≤ Cm(T ′)

1
4‖v1 − v2‖XT ′

(
‖v1‖XT ′

+ ‖v2‖XT ′

)
+ C‖v1 − v2‖XT ′

(
‖E‖q,s;T ′ + m(T ′)

1
4‖k‖2,4;T ′ + m(T ′)

1
4‖E‖4,4;T ′

)
(3.12)

≤ ‖v1 − v2‖XT ′

(
a(‖v1‖XT ′

+ ‖v2‖XT ′
) + b

)
where

a
(
‖v1‖XT ′

+ ‖v2‖XT ′

)
+ b ≤ 2ay1 + b < 4ad + 2b < 1. (3.13)

This means that FT ′ is a strict contraction on BT ′ . Now Banach’s fixed point
principle yields a solution v = vm ∈ BT ′ of (3.8) which is unique in BT ′ .

Using (2.6)-(2.10) with f0 + div F0 replaced by fm(v) + div (F − Fm(v)) we
conclude from (3.8) that v = vm is a solution of the approximate system (2.12)
in the sense of Definition 2.1.

Finally we show that v is unique not only in BT ′ , but even in the whole space
XT ′ . Indeed, consider any solution ṽ ∈ XT ′ of (2.12). Then there exists some
0 < T ∗ ≤ min(1, T ′) such that ‖ṽ‖XT∗ ≤ y1, and using (3.12), (3.13) with v1, v2

replaced by v, ṽ we conclude that v = ṽ on [0, T ∗]. When T ∗ < T ′ we repeat this
step finitely many times and obtain that v = ṽ on [0, T ′). This completes the
proof of Lemma 3.1.

The next preliminary result yields an energy estimate for the approximate solu-
tion v = vm of (2.12). It is important that the right-hand side of this estimate
does not depend on m ∈ N. This will enable us to treat the limit m → ∞ and
to get the desired solution in Theorem 1.4, a).

Lemma 3.2 Consider any weak solution v = vm, m ∈ N, of the approximate
system (2.12) in the sense of Definition 2.1. Then there is a constant C =

12



C(Ω) > 0 such that the energy estimate

‖v(t)‖2
2 +

∫ t

0

‖∇v‖2
2 dτ

≤ C
(
‖v0‖2

2 + ‖F‖2
2,2;t + ‖E‖4

4,4;t

)
exp

(
C‖k‖4

2,4;t + C‖E‖s
q,s;t

) (3.14)

holds for 0 ≤ t < T .

Proof The proof of (3.14) is based on the energy inequality (2.18). Using similar
arguments as in (3.2)-(3.6) we obtain the following estimates of the right-hand
side terms in (2.18); here ε > 0 means an absolute constant, C0 = C0(Ω) > 0 and
C = C(ε, Ω) > 0 do not depend on m, and α = 2

s
= 1− 3

q
. First of all∣∣∣ ∫ t

0

〈(Jmv)E,∇v〉Ω dτ
∣∣∣ ≤ C0

∫ t

0

‖Jmv‖( 1
2
− 1

q
)−1‖E‖q‖∇v‖2 dτ

≤ C0

∫ t

0

‖v‖( 1
2
− 1

q
)−1‖E‖q‖∇v‖2 dτ (3.15)

≤ C0

∫ t

0

‖v‖α
2‖E‖q‖∇v‖2−α

2 dτ

≤ ε‖∇v‖2
2,2;t + C

∫ t

0

‖E‖s
q‖v‖2

2 dτ,

and ∣∣∣ ∫ t

0

〈EE,∇v〉Ω dτ
∣∣∣ ≤ C0

∫ t

0

‖E‖2
4‖∇v‖2 dτ ≤ ε‖∇v‖2

2,2;t + C‖E‖4
4,4;t,∣∣∣ ∫ t

0

〈F,∇v〉Ω dτ
∣∣∣ ≤ ε‖∇v‖2

2,2;t + C‖F‖2
2,2;t.

Moreover, since ‖v‖4 ≤ C0‖∇v‖1/4
2 ‖∇v‖3/4

2 ,∣∣∣ ∫ t

0

〈Jmkv, v〉Ω dτ
∣∣∣ ≤ ε‖∇v‖2

2,2;t + C

∫ t

0

‖k‖4
2‖v‖2

2 dτ,∣∣∣ ∫ t

0

〈(Jmk)E, v〉Ω dτ
∣∣∣ ≤ C0

∫ t

0

‖(Jmk)E‖ 6
5
‖v‖6 dτ

≤ C0

∫ t

0

‖k‖2‖E‖3‖∇v‖2 dτ

≤ ε‖∇v‖2
2,2;t + C

(
‖k‖4

2,4;t + ‖E‖4
4,4;t

)
.

A similar estimate as for
∫ t

0
〈Jmkv, v〉Ω dτ also holds for

∫ t

0
〈kv, v〉Ω dτ .

Choosing ε > 0 sufficiently small we apply these inequalities to (2.18) and
obtain that

‖v(t)‖2
2 + ‖∇v‖2

2,2;t ≤ C
(
‖v0‖2

2 + ‖F‖2
2,2;t + ‖E‖4

4,4;t + ‖k‖4
2,4;t

)
+ C

∫ t

0

(
‖k‖4

2 + ‖E‖s
q

)
‖v‖2

2 dτ
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for 0 ≤ t < T . Then Gronwall’s lemma implies that

‖v(t)‖2
2 +

∫ t

0

‖∇v‖2
2 dτ ≤ C

(
‖v0‖2

2 + ‖F‖2
2,2;t + ‖E‖4

4,4;t + ‖k‖4
2,4;t

)
× exp

(
C‖k‖4

2,4;t + C‖E‖s
q,s;t

) (3.16)

for 0 ≤ t < T . Taking C2 sufficiently large we may omit in (3.16) the term ‖k‖4
2,4;t

at its first place. This yields the estimate (3.14).

The next result proves the existence of a unique approximate solution v = vm for
the given interval [0, T ).

Lemma 3.3 Let f , k, E, v0 be given as in Definition 2.1 and let m ∈ N. Then
there exists a unique weak solution v = vm of the approximate system (2.12) in
[0, T )× Ω with data f , v0.

Proof Lemma 3.1 yields such a solution if 0 < T ≤ 1 is sufficiently small. Let
[0, T ∗) ⊆ [0, T ), T ∗ > 0, be the largest interval of existence of such a solution
v = vm in [0, T ∗) × Ω, and assume that T ∗ < T . Further we choose some finite
T ∗∗ > T ∗ with T ∗∗ ≤ T , and some T0 satisfying 0 < T0 < T ∗. Then we apply
Lemma 3.1 with [0, T ′) replaced by [T0, T0 + δ) where δ > 0, T0 + δ ≤ T ∗∗, and
find a unique weak solution v∗ = v∗m of the system (2.12) in [T0, T0 + δ) × Ω
with initial value v∗|t=T0

= v(T0). The length δ of the existence interval [T0, T0 +

δ), see the proof of Lemma 3.1, only depends on ‖v(T0)‖2 ≤ ‖v‖2,∞;T ∗ < ∞
and on ‖F‖2,2;T ∗∗ , ‖E‖q,s;T ∗∗ , ‖k‖2,4;T ∗∗ , and can be chosen independently of T0.
Therefore, we can choose T0 close to T ∗ in such a way that T ∗ < T0 + δ ≤ T ∗∗.
Then v∗ yields a unique extension of v from [0, T ∗) to [0, T0 + δ) which is a
contradiction. This proves the lemma.

In the next step, see §4 below, we are able to let m → ∞ similarly as in the
classical case E ≡ 0. This will yield a solution of the perturbed system (1.6).

4 Proof of Theorem 1.4

It is sufficient to prove Theorem 1.4, a). For this purpose we start with the se-
quence (vm) of solutions of the approximate system (2.12) constructed in Lemma
3.3. Then, using Lemma 3.2, we find for each finite T ∗, 0 < T ∗ ≤ T , some
constant CT ∗ > 0 not depending on m such that

‖vm‖2
2,∞;T ∗ + ‖∇vm‖2

2,2;T ∗ ≤ CT ∗ . (4.1)

Hence there exists a vector field

v ∈ L∞(
0, T ∗; L2

σ(Ω)
)
∩ L2

(
0, T ∗; W 1,2

0 (Ω)
)
, (4.2)
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and a subsequence of (vm), for simplicity again denoted by (vm), with the follow-
ing properties, see, e.g. [16, Ch. V.3.3]:

vm ⇀ v in L2
(
0, T ∗; W 1,2

0 (Ω)
)

(weakly)

vm → v in L2
(
0, T ∗; L2(Ω)

)
(strongly) (4.3)

vm(t) → v(t) in L2(Ω) for a.a. t ∈ [0, T ∗).

Moreover, for all t ∈ [0, T ∗) we obtain that

‖∇v‖2
2,2;t ≤ lim infm→∞ ‖∇vm‖2

2,2;t ,

‖v(t)‖2
2 ≤ lim infm→∞ ‖vm(t)‖2

2 .
(4.4)

Further, using Hölder’s inequality and (4.2) - (4.4) we get with some further
subsequence, again denoted by (vm), that

vm ⇀ v in Ls1
(
0, T ∗; Lq1(Ω)

)
,

2

s1

+
3

q1

=
3

2
, 2 ≤ s1, q1 < ∞,

vmvm ⇀ vv in Ls2
(
0, T ∗; Lq2(Ω)

)
,

2

s2

+
3

q2

= 3, 1 ≤ s2, q2 < ∞, (4.5)

vm · ∇vm ⇀ v · ∇v in Ls3
(
0, T ∗; Lq3(Ω)

)
,

2

s3

+
3

q3

= 4, 1 ≤ s3, q3 < ∞ ,

and that with some constant C = CT ∗ > 0:

‖(Jmvm)vm‖q2,s2;T ∗ ≤ C‖vm‖2
q1,s1;T ∗ (4.6)

‖(Jmvm)E‖( 1
q
+ 1

q1
)−1,( 1

s
+ 1

s1
)−1;T ∗ ≤ C‖vm‖q1,s1;T ∗‖E‖q,s;T ∗ (4.7)

‖Evm‖( 1
q
+ 1

q1
)−1,( 1

s
+ 1

s1
)−1;T ∗ ≤ C‖vm‖q1,s1;T ∗‖E‖q,s;T ∗ (4.8)∣∣〈(Jmvm)E,∇vm

〉
Ω,T ∗

∣∣ ≤ C‖vm‖q1,s1;T ∗‖E‖q,s;T ∗‖∇vm‖2,2;T ∗ (4.9)

as well as ∣∣〈kvm, vm〉Ω,T ∗
∣∣ ≤ C‖k‖2,4;T ∗‖vm‖2

q1,s1;T ∗∣∣〈(Jmk)vm, vm

〉
Ω,T ∗

∣∣ ≤ C‖k‖2,4;T ∗‖vm‖2
q1,s1;T ∗ (4.10)∣∣〈(Jmk)E, vm

〉
Ω,T ∗

∣∣ ≤ C‖k‖2,4;T ∗‖E‖q,s;T ∗‖vm‖q1,s1;T ∗ .

The theorem is proved when we show that (2.16)-(2.18) imply letting m →∞
the properties (1.8)-(1.10) and the estimate (1.28). This proof rests on the above
arguments (4.1)-(4.10).
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Obviously, (1.8) follows from (4.1), letting m → ∞. Further, the relation
(1.9) follows from (2.17) and (2.4) using that

〈vm, wt〉Ω,T ∗ → 〈v, wt〉Ω,T ∗

〈∇vm,∇w〉Ω,T ∗ → 〈∇v,∇w〉Ω,T ∗〈
(Jmvm + E)(vm + E),∇w

〉
Ω,T ∗ →

〈
(v + E)(v + E),∇w

〉
Ω,T ∗〈

(Jmk)(vm + E), w
〉

Ω,T ∗ →
〈
k(v + E), w

〉
Ω,T ∗ .

(4.11)

To prove the energy inequality (1.10) we need in (2.18), letting m →∞, the
following arguments.

The left-hand side of (1.10) follows obviously from (4.4). To prove the right-
hand side limit m →∞ in (2.18) we first show that〈

(Jmvm)E,∇vm

〉
Ω,T ∗ → 〈vE,∇v〉Ω,T ∗ . (4.12)

It is sufficient to prove (4.12) with E replaced by some smooth vector field
Ẽ such that ‖E − Ẽ‖q,s;T ∗ is sufficiently small. This follows using (4.9) with E
replaced by E − Ẽ. Thus we may assume in the following that E in (4.12) is
a smooth function E ∈ C∞

0 ([0, T ∗); C∞
0 (Ω)). Using (4.1) - (4.4) and (2.4), we

conclude that ∣∣〈(Jmvm)E − vE,∇vm

〉
Ω,T ∗

∣∣
≤ ‖(Jmvm)E − vE‖2,2;T ∗ ‖∇vm‖2,2;T ∗

≤ C(E)‖Jmvm − v‖2,2;T ∗

≤ C(E)
(
‖Jm(vm − v)‖2,2;T ∗ + ‖(Jm − I)v‖2,2;T ∗

)
≤ C(E)

(
‖vm − v‖2,2;T ∗ + ‖(Jm − I)v‖2,2;T ∗

)
→ 0

as m →∞ where C(E) > 0 is a constant. This yields (4.12).
Similarly, approximating k by a smooth function k ∈ C∞

0 ([0, T ∗); C∞
0 (Ω)), we

obtain the convergence properties

〈kvm, vm〉Ω,T ∗ → 〈kv, v〉Ω,T ∗ ,〈
(Jmk)vm, vm

〉
Ω,T ∗ → 〈kv, v〉Ω,T ∗ ,〈

(Jmk)E, vm

〉
Ω,T ∗ → 〈kE, v〉Ω,T ∗ .

Since E ∈ L4(0, T ∗; L4(Ω)), the convergence 〈EE,∇vm〉Ω,T ∗ → 〈EE,∇v〉Ω,T ∗ is
obvious.

This proves that v is a weak solution in the sense of Definition 1.1.
To prove the energy estimate (1.28) we apply (4.4) to (3.14). This completes

the proof.
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5 More general weak solutions

The existence of a weak solution v for the perturbed system (1.6) under the
general assumption on E in Theorem 1.4 a) enables us to extend the solution class
of the Navier-Stokes system (1.1) using certain generalized data. For simplicity
we only consider the case k = 0.

Theorem 5.1 (More general weak solutions) Consider

f = div F, F ∈ L2
(
0, T ; L2(Ω)

)
, v0 ∈ L2

σ(Ω), (5.1)

E ∈ Ls
(
0, T ; Lq(Ω)

)
, 4 ≤ s < ∞, 4 ≤ q < ∞,

2

s
+

3

q
= 1, (5.2)

satisfying

Et −∆E +∇h = 0, div E = 0 (5.3)

in (0, T )× Ω in the sense of distributions with an associated pressure h.
Let v be a weak solution of the perturbed system (1.6) in [0, T ) × Ω in the

sense of Definition 1.1 with E, f, v0 from (5.1) - (5.3).
Then the vector field u = v + E is a solution of the Navier-Stokes system

ut −∆u + u · ∇u +∇p = f, div u = 0 (5.4)

u|∂Ω
= g, u|t=0

= u0 (5.5)

in [0, T )× Ω with external force f and (formally) given data

g := E|∂Ω
, u0 := v0 + E|t=0

, (5.6)

in the generalized (well-defined) sense that

(u− E)|∂Ω
= 0, (u− E)|t=0

= v0 ,

and (5.4) is satisfied in the sense of distributions with an associated pressure p.

Remark 5.2 (Regularity properties)

a) Let E in (5.2) be regular in the sense that g and E0 = E|t=0
in (5.6) have

the properties in Lemma 1.2. Then the solution u = v +E has the properties
in Theorem 1.4, b).

b) Let E in (5.2) be regular in the sense that g and E0 = E|t=0
in (5.6) have the

properties in (1.26). Then the solution u = v + E is correspondingly regular
and (5.5) is well-defined in the usual strong sense.
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