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Abstract Consider a smooth bounded domain 2 C R? with boundary 952, a
time interval [0,7), 0 < T' < 0o, and the Navier-Stokes system in [0, T") x 2, with
initial value uy € L2(2) and external force f = div F, F € L*(0,T; L*(2)). Our
aim is to extend the well-known class of Leray-Hopf weak solutions u satisfying
ul, = 0, divu = 0 to the more general class of Leray-Hopf type weak solutions
u with general data ul, . =9 divu = k satisfying a certain energy inequality.
Our method rests on a perturbation argument writing v in the form v = v +
E with some vector field E in [0,7) x Q satisfying the (linear) Stokes system
with f = 0 and nonhomogeneous data. This reduces the general system to a
perturbed Navier-Stokes system with homogeneous data, containing an additional
perturbation term. Using arguments as for the usual Navier-Stokes system we
get the existence of global weak solutions for the more general system.
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1 Introduction and main results

Let 2 C R? be a bounded domain with boundary 99 of class C?!, and let [0, T),
0 < T < oo, be a time interval. We consider in [0,7") x 2, together with an
associated pressure p, the following general Navier-Stokes system

ug—Au+u-Vu+Vp = f, divu=k

_ _ (1.1)
= g, u|t:0 = Up

Ulaq
with given data f, k, g, uo.
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First we have to give a precise characterization of this general system. To
this aim, we shortly discuss our arguments to solve this system in the weak sense
(without any smallness assumption on the data). Using a perturbation argument
we write u in the form

u=v+FE, (1.2)

and the initial value ug at time ¢ = 0 in the form
Uy = Vg + Eo. (13)
Here F is the solution of the (linear) Stokes system

E,~AE+Vh=0, divE =k

B B (1.4)
By =9 E|_,=Eo
with some associated pressure h, and v has the properties
v € Lig ([0, T); L7(2) N Lite ([0, T); Wy (),
(1.5)

v:[0,T)+— L2(Q) is weakly continuous, v],_, = Yo
Inserting (1.2), (1.3) into the system (1.1) we obtain the modified system

v—Av+ (vV+E)-Vu+E)+Vp'=f divi=0

=0, v|_ = (16)
t=0

Y0an

with associated pressure p* = p — h and homogeneous conditions for v. Thus
(1.6) can be called a perturbed Navier-Stokes system in [0,T) x Q. This system
reduces the general system (1.1) to a certain homogeneous system which contains
an additional perturbation term in the form

(v+E)-Vw+E)=v-Vvo+v-VE+E -V(v+ E).

Therefore, the perturbed system (1.6) can be treated similarly as the usual
Navier-Stokes system obtained from (1.6) with £ = 0.

In order to give a precise definition of the general system (1.1) we need the
following steps:

First we develop the theory for the perturbed system (1.6) for data f, vy and
a given vector field F, as general as possible. In the second step we consider the
system (1.4) for general given data k, g, Fy to obtain a vector field E in such a
way that u = v+ E with v from (1.6) yields a well-defined solution of the general
system (1.1) in the (Leray-Hopf type) weak sense.

Thus we start with the definition of a weak solution v of (1.6) under rather
weak assumptions on E needed for the existence of such solutions.



Definition 1.1 (Perturbed system) Suppose

f=divF with F=(F;)?}_, € L*0,T;L*)),
vy € L2(9), (1.7)

E € L*(0,T; L)), divE = k € L*(0,T; L*()),

with 4 < s <00, 4 <q < o0, %—i—gzl.
Then a vector field v is called a weak solution of the perturbed system (1.6) in
[0,T) x Q with data f, vy if the following conditions are satisfied:

a) For each finite T*,0 <T* < T,
v e L0, L2(Q)) N L2(0, T W, (), (1.8)
b)  for each test function w € C3°([0,T); C5%,(€2)),

— (v,w)ar + (Vo,Vw)or — <(U + E)(v+ E), vw>Q,T

(1.9)
— (k(v+ E),w>Q’T = <v0,w(0)>Q — (F,Vw)aor,
c) for0<t<T,
1 t 1 t
SO+ [ 1903 dr < Sl — [ (7 Vo dr
0 0
+ / ((v+ E)E,Vv),, dr + 5/ (k(v+2E),v),, dr,
0 0
d) and
v:[0,T) — L2(Q) is weakly continuous and v(0) = vo. (1.11)

In the classical case £ = 0 we obtain with (1.8)-(1.11) the usual (Leray-Hopf)
weak solution v. As in this case the condition (1.11) already follows from the
other conditions (1.8)-(1.10), after possibly a modification on a null set of [0, T),
see, e.g., [16, V, 1.6]. Here (1.11) is included for simplicity. The relation (1.9)
and the energy inequality (1.10) are based on formal calculations as for £ = 0.
The existence of an associated pressure p* such that

v —Av+ (v+E)-Vo+ E)+Vp' = f (1.12)

in the sense of distributions in (0,7) x Q follows in the same way as for £ = 0.

In the next step we consider the linear system (1.4). A very general solution
class for this system, sufficient for our purpose, has been developed by the theory
of so-called very weak solutions, see [1], [3, Sect. 4]. In particular, the boundary
values g are given in a general sense of distributions on 0f2.
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Lemma 1.2 (Linear system for E, [3]) Suppose

ke L*(0,T; L7 (), ge L*(0,T; W a109)), E, € L),
2 1 1 1 1.13
4§S<oo,4§q<oo,—+§:1,_:___7 (1.13)
s q qg ¢ 3
satisfying the compatibility condition
/ k(t)de = N -g(t)dS  for almost all t € [0,T), (1.14)
Q 19)

where N = N(z) means the exterior normal vector at x € 0Q, and [, ...dS the
surface integral (in a generalized sense of distributions on 0S).
Then there ezists a uniquely determined (very) weak solution

E e L*(0,T; L)) (1.15)
of the system (1.4) in [0,T) x Q with data k, g, Ey defined by the conditions:
a) For each w € C}([0,T); C’g’a(Q)),

—(E,w)ar — (E,Aw)qr + (9, N - Vw)qr = <E0,w(0)>9, (1.16)
b) for almost all t € [0,T),

divE =k N-E|, =N-g (1.17)

Moreover, E satisfies the estimate

||A;1Pth||q78;Q,T + ||E||q,S;Q7T < C(”EO”q + ”k ¢ sQT T ||g||—%;q,s;8Q,T) (1-18)

with constant C' = C(Q,T,q) > 0.
The trace E|aQ = g is well-defined at O for almost all t € [0,T), and the

initial value condition L) T Eq is well-defined (modulo gradients) in the sense

that P,E : [0,T) — L%(QY) is weakly continuous satisfying
P,E|_, = PEy. (1.19)
Finally, there exists an associated pressure h such that
E,—AE+Vh=0 (1.20)
holds in the sense of distributions in (0,T) x €.

To obtain a precise definition for the general system (1.1) we have to combine
Definition 1.1 and Lemma 1.2 as follows:



Definition 1.3 (General system) Let k € L*(0,T; LY (Q))NL*(0,T; L*(Q)) with
s, ¢* as in (1.13) and suppose that

E is a very weak solution of the linear system (1.4) in (1.21)
[0,T) x Q with data k, g, Ey in the sense of Lemma 1.2,

and
v 18 a weak solution of the perturbed system (1.6) in
[0,T) x Q in the sense of Definition 1.1 with data f,vg (1.22)
as in (1.7).

Then the vector field u = v+ E is called a weak solution of the general system
(1.1) in [0,T) x Q with data f, k, g and initial value ug = vo + Ey. Thus it holds

u— Au~+u-Vu+Vp=f, divu =k (1.23)

in the sense of distributions in (0,T) x Q with associated pressure p = p* + h, p*
as in (1.12), h as in (1.20). Further,

Uoa = Voq T Elon =9 (1.24)

is well-defined by E|8Q = g, and the condition
U,y = Vg T B,y = Vot Eo =g (1.25)

is well-defined in the generalized sense modulo gradients by (1.19).

Therefore the general system (1.1) has a well-defined meaning for weak solu-
tions u in a generalized sense.
However, if we suppose in Definition 1.3 additionally the regularity properties

ke L*(0,T; Wh(Q)), k. € L*(0,T; L*()),
g € L*(0,T; W2 Y91(0Q)), g, € L°(0,T; W™ +9(5Q)), (1.26)
Ey € WQ,Q(Q)’

and the compatibility conditions Uo| e, = 9],_y divug = k|t_0, then the solution
E in Lemma 1.2 satisfies the regularity properties

E e L*(0,T;W?1(2)), E, € L*(0,T; LY%Q)), E € C([0,T); L*(%)),

and F oo = 9 E - Ey are well-defined in the usual sense, see [3, Corollary

5]. Further it holds Vh € L*(0,T'; L(£2)) for the associated pressure h in (1.20).
Therefore, u = v + F satisfies in this case the boundary condition Ul = 9 and

the initial condition u| = vy + Ep in the usual (strong) sense.
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The most difficult problem is the existence of a weak solution v of the per-
turbed system (1.6). For this purpose we have to introduce, see (2.12) in Sect.2,
an approximate system of (1.6) for each m € N which yields such a weak solu-
tion when passing to the limit m — oo. Then the existence of a weak solution
u = v+ FE of the general system (1.6) is an easy consequence.

This yields the following main result.

Theorem 1.4 (Existence of general weak solutions)
a) Suppose
f=divF, F e L*0,T;L*(Q)), vo € L2(),
E € L*(0,T; L)), divE =k € L*(0,T; L*(Q)), (1.27)

2 3
4<s<o0,4<qg<o0, —+-=1.
s q

Then there exists at least one weak solution v of the perturbed system (1.6)

in [0,T) x Q with data f, vy in the sense of Definition 1.1. The solution v
satisfies with some constant C' = C(§2) > 0 the energy estimate

t t
@I+ [ Ivoldr < (i + [ 171Ear

: (1.28)
+ [ 1Bl dr) exp (ClEIL 0+ CIE];)
foreach 0 <t <T.
b)  Suppose additionally
ke L*(0,T; L (), g € L*(0,T; W™ a9(69)), Ey € L),
(1.29)

/k:dx: N -gdS for a.a. t €0,T),
Q 20

and let E be the very weak solution of the linear system (1.4) in [0,T) x Q
with data k, g, Ey as in Lemma 1.2. Then u = v+ E is a weak solution of

the general system (1.1) with data f, k, g and initial value uy = vy + Fy in
the sense of Definition 1.5.

There are some partial results with nonhomogeneous smooth boundary conditions
Ul =9 # 0 based on an independent approach by Raymond [15]. Further there
is a result with constant in time nonzero boundary conditions g, see [4]. Further
there are several independent results for smooth boundary values Uy =9 #0
in the context of strong solutions u if ¢ or (equivalently) the time interval [0,T")

satisfy certain smallness conditions, see [1], [3], [6], [10]. Our existence result for
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weak solutions in Theorem 1.4 does not need any smallness condition, like for
usual Leray-Hopf weak solutions. But, on the other hand, there is no uniqueness
result as for local strong solutions.

A first result on global weak solutions with time-dependent boundary data
(and & = divu = 0) can be found in [5]. In that paper, the authors consider
general s > 2, ¢ > 3 with % + 2 = 1; however, in that case, E has to satisfy the
assumptions

E € L*(0,T; L)) N L*(0,T; L*()),

which is automatically fulfilled in the present article, see Theorem 1.4. Moreover,
in simply connected domains or under a further assumption on the boundary data
g, the energy estimate (1.28) can be improved considerably.

2 Preliminaries

First we recall some standard notations. Let Cg%,(Q2) = {w € Cg°(Q2);divw = 0}
be the space of smooth, solenoidal and compactly supported vector fields. Then

o 7on e

let LZ(2) = C§5,(2) 7, 1 < ¢ < oo, where in general || - ||, denotes the norm of
the Lebesgue space LI(2), 1 < ¢ < co. Sobolev spaces are denoted by W™((2)
with norm || - [[yma = || - [lngs m € N, 1 < ¢ < 00, and W™(Q) = Co() ™,

1 < q < oo. The trace space to WH(Q) is W=Y29(9Q), 1 < ¢ < oo, with
norm || - [1_1/44- Then the dual space to W!=¥/7:7(9Q), where st =11s
W=1/24(9Q); the corresponding pairing is denoted by (-, -)aq.

As spaces of test functions we need in the context of very weak solutions
the space Cg,(Q) = {w € C?*(); w,, = 0, divw = 0}; for weak instationary
solutions let the space Cg°([0,T'); C5%,(€2)) denote vector fields w € Cg°([0,77) x§2)
such that div,w = 0 for all ¢ € [0,T) taking the divergence div, with respect to
x = (x1, 9, x3) € . The pairing of functions on Q2 and (0,7") x Q is denoted by
(-,)o and (-, -)or, respectively.

For 1 < ¢, s < oo the usual Bochner space L*(0,T; L9(f2)) is equipped with
the norm || - ||4.e7 = (fOT |- ]I5 d7)** when s < 0o and || - [|gc0r = €558 sup(g gy || g
when s = oo.

Let P, : LY(Q) — L%(Q2), 1 < ¢ < oo, be the Helmholtz projection, and let
A, = —P,A with domain D(A,) = W29(Q)NW,*(Q)NLL(Q) and range R(A,) =
L4(Q2) denote the Stokes operator. We write P = P, and A = A, if there is no
misunderstanding. For —1 < o < 1 the fractional powers A7 : D(A]) — LZ(§2)
are well-defined closed operators with (Ag‘)_1 = A% For 0 < a <1 we have
D(Ay) € D(A) € L1(Q) and R(Ag) = LZ(2). Then there holds the embedding

estimate

3 3
lolly < ClAZell, 0<a<l, 204 -=2, 1<y<q (2.1)



for allv € D(AZ). Further, we need the Stokes semigroup e~ : L1(Q) — LZ(Q2),
t > 0, satisfying the estimate

HAZ‘e’tAquq <Ct e v, 0<a <1, t>0, (2.2)

for v € L2(Q) with constants C' = C(Q,q,a) > 0, 8 = B(Q2,q) > 0; for details
see [2, 7, 8,9, 11].

In order to solve the perturbed system (1.6) we use an approximation proce-
dure based on Yosida’s smoothing operators

_ l 1/2\ 1 _ i_ 1/2\ 1
Jm—(l+mA ) and jm_(f+m( A3 meN, (2.3)

where I denotes the identity and —A the Dirichlet Laplacian on €2. In particular,
we need the properties

1 Twvlly < Clivllg, |IAY2 Jmvlly < mCllvllg, m € N,

: (2.4)
lim J,v=v forallve L)

m—00

and analogous results for J,,v, v € L(Q); see [8, 9, 16].
To solve the instationary Stokes system in [0,7) x €, cf. [1, 13, 16, 17, 18],
let us recall some properties for the special system

Vi—AV+VH = fo+divE, divV = 0 .
V = 0ondQ, V) = V, '
with data
fo€ L'0,T; L*(Q)), Fy € L*(0,T; L*(2)), Vo € L2();
3
here Fy = (Fo4j)i;—; and div Fy = (; %Foﬂj)?:l. The linear system (2.5)

admits a unique weak solution
Ve L>(0,T; LA(Q)) N L2(0,T; Wy *(R)), (2.6)
satisfying the variational formulation
—(Viw)ar + (VV,Vw)ar = (Vo,w(0))q + (fo, w)ar — (Fo, Vw)ar  (2.7)

for all w € C5°([0,T); C5%(€2)), and the energy equality

1 t 1 t t
SV + [ I9VIE dr = 31l + [ (o Viadr = [ (R VV)adr (29
0 0 0
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for 0 <t < T. As a consequence of (2.8) we get the energy estimate
1
SIVIE ez + IVVIE2r < 8(IVolls + 1 follzar + I Follzz) (2.9)

and see that V : [0,T) — L2(Q) is continuous with V' (0) = V. Moreover, it holds
the well-defined representation formula

t t
V(t)=e "V + / e~ EDAPfy dr + / AV EDAAZ2 Pdiy By dr, (2.10)
0 0

0 <t < T;see [16, Theorems IV.2.3.1 and 2.4.1, Lemma IV.2.4.2], and, concern-
ing the operator A~'/2Pdiv, [16, Ch. 111.2.6].

Consider the perturbed system (1.6) with f = divF, vy, k and E as in
Definition 1.1, here written in the form

v —Av+divio+ E) v+ E)—k(v+ E)+Vp"' = f, divo =0 (2.11)

together with the initial-boundary conditions v = 0 on 992 and v(0) = vy.
In order to obtain the following approximate system, see [16, V, 2.2] for the
known case £ = 0, we insert the Yosida operators (2.3) into (2.11) as follows:

vy — Av+div(Jpv+ E)(v+ E) — (Tnk)(v+ E)+Vp* = f, divo =0

o =0, v = (2.12)
o9 t=0
with v = v,,,, m € N. Setting
Fn(v) = (Jmv + E)(v + E), fm(v) = (Tmk)(v + E) (2.13)
we write the approximate system (2.12) in the form
vy — Av+ Vp* = fiu(v) + div (F — F,(v)), dive =0, (2.14)

UlaQ =0, v|t:0 = g,

as a linear system, see (2.5), with right-hand side depending on v. In this form
we use the properties (2.6)-(2.10) of the linear system (2.5).
The following definition for (2.12) is obtained similarly as Definition 1.1.

Definition 2.1 (Approximate system) Suppose
f=divF, F e L*(0,T;L*()), vo € L2(),

E € L*(0,T; LY(Y)), divE = k € L*(0,T; L*(0)), (2.15)
2

4<s<o00, 4<q< o0, —+§:1.
5 q

Then a vector fieldv = v,,, m € N, is called a weak solution of the approximate
system (2.12) in [0,T) x Q with data f, vy if the following conditions are satisfied:
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v e L ([0,7); L7 () N L ([0, 7); Wy (). (2.16)
b)  for each w € Cg°([0,T); C§%,(£2)),
— (v, wiar + (Vv, Vw)or — ((Juv + E)(v + E), Vw), , (2.17)

— ((Tnk) (v + E),w) g, 1. = (w0, w(0)), = (F, Vw)ar,

c) for0<t<T,

1 ! 1 !
§\|U(t)ug+/o y|w|\§d7§§uvou§—/o (F = (Jmv + E)E, V), dr
(2.18)

—|—/0 (Tmk — %k)v,@ﬂ d7'+/0 (Tmk)E,v), dr |

d) v:[0,T) — L2(Q) is continuous satisfying v(0) = vg.

3 The approximate system

The following existence result yields a weak solution v = v, of (2.12) first of all
only in an interval [0,7") where 77 = T"(m) > 0 is sufficiently small.

Lemma 3.1 Let f, k, E, vy be as in Definition 2.1 and let m € N. Then there
exists someT' =T'(f, k, E,vg,m), 0 <T" < min(1,T), such that the approximate
system (2.12) has a unique weak solution v = v,, in [0,T") x Q with data f, vy in
the sense of Definition 2.1 with T' replaced by T".

Proof First we consider a given weak solution v = v, of (2.12) in [0,7”) x Q
with any 0 < 7" < 1. Hence it holds

v € Xgr o= L2(0,T'; L2(Q)) N L2(0, T'; W2())

with )
[Vl 57 = lvll2,007 + [[A20]|22:77 < 00. (3.1)

Using Holder’s inequality and several embedding estimates, see [16, Ch. V.1.2],
we obtain with some constant C' = C'(£2) > 0 the estimates

[(Jmv)vll2207 < CllTmolleaa [[0]lsa2
< O A2 Tl a0 (V] x, (3.2)

< Cml[v]|zar < Cm(T') 0%,
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and
[(Jm0) Ell22r < CllJmv||a sz | Ellaasr < CllTmvlloar | Ellaar (3.3)
< Cm(T') ol xy 1 Ellaa,
[Ev]l220 < CllEllgsallvll s-1)-1 1 1y-10 < ClEllgsrr|[vllxgs (3:4)

5%
of course, || EE ||z < C||E||3 4.7v. Moreover,
[(Tmk)vlloarr < CllTmkllszarllvllozr < Cll(=A)2 Tnklla vl x,, (3.5)
< Cm|El|a2a 0]l x,, < CU(T)E|[Ellzallv]x,.
1(Tnk) Ellaairr < CllTmklazar | Ellazar < Cll(—=A)2 Tpkllapr | Ellaarr (3.6)
< Cmllkla2r | Ellsazr < Cm(T')5||Ell2a0 || Bl aair.

Using (2.14) and the energy estimate (2.9) with fo, Fo replaced by f.(v),
F — F,,(v) we get from (3.2)-(3.5) the estimate

1
lvllx,, < Cllvollz + 1 llz2r + 1 ENE g + m(T) 1 [l0l%,, +
1
+m(T) 4 vl xp | Ellaaar + [0l x| Ellg.sr+ (3.7)
1
+m(T) i |kllza (1B gz + [[v]lx,,)

with C' = C(2) > 0.
Applying (2.10) to (2.14) we obtain the equation

v=Frp(v) (3.8)
where
(Fr(@)(t) = o+ / ' 0Aps () dr
0
+ /OtAée(tT)AAépdiV (F — Fu(v)) dr.
Let

a=Cm(T')3, b= C||El|guz + Cm(T)3 || Ellaaerr + Cr(T")i ||kl arr.  (3.9)
d=C(llvollz + |1EIF v + I F 2250 + m(T") i |k l|2a0 | Bl 4,577)
with C as in (3.7). Then (3.7) may be rewritten in the form

1 () x < allvll,, + bllvllx,, +d. (3.10)
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Up to now v = v, was a given solution as desired in Lemma 3.1. In the next
step we treat (3.8) as a fixed point equation in X7 and show with Banach’s fixed
point principle that (3.8) has a solution v = v,, if 7" > 0 is sufficiently small.

Thus let v € Xp and choose 0 < 77 < min(1,7) such that the smallness
condition

dad +2b < 1 (3.11)

is satisfied. Then the quadratic equation y = ay? + by + d has a minimal positive
root given by

0 <y =2d(1-b+ \/bQ+1—(4ad+2b)>l < 2d

and, since y; = ay? + by, +d > d, we conclude that Fr maps the closed ball
Br ={v € Xp : ||[v]|x,, < w1} into itself.
Further let vy, vy € Bys. Then we obtain similarly as in (3.10) the estimate

1
| Frr (1) — Fro(v2) | x, < Cm(T") 7 ||y — w2l x,0 (01l x,0 + w2l x,0)
1 1
+ Cllvr = vallxp, (1Bl s + m(T") 7 || kl|2asr + m(T") 7| Ellgar)  (3.12)
< oy — vallx, (a((|vill x,0 + llv2llx,.) +0)

where
a(flvillx,, + llvallx,, ) +b < 2ay; + b < dad 4 2b < 1. (3.13)

This means that F7 is a strict contraction on By.. Now Banach’s fixed point
principle yields a solution v = v, € By of (3.8) which is unique in Byp.

Using (2.6)-(2.10) with fo + div Fy replaced by f,(v) + div (F — F,,,(v)) we
conclude from (3.8) that v = v, is a solution of the approximate system (2.12)
in the sense of Definition 2.1.

Finally we show that v is unique not only in By, but even in the whole space
X7+. Indeed, consider any solution © € X of (2.12). Then there exists some
0 < T* < min(1,7") such that ||| x,. <y, and using (3.12), (3.13) with vy, vs
replaced by v, ¥ we conclude that v = ¢ on [0, 7*]. When T* < T" we repeat this
step finitely many times and obtain that v = ¥ on [0,7”). This completes the
proof of Lemma 3.1. [ ]

The next preliminary result yields an energy estimate for the approximate solu-
tion v = v, of (2.12). It is important that the right-hand side of this estimate
does not depend on m € N. This will enable us to treat the limit m — oo and
to get the desired solution in Theorem 1.4, a).

Lemma 3.2 Consider any weak solution v = v,,, m € N, of the approximate
system (2.12) in the sense of Definition 2.1. Then there is a constant C' =
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C(2) > 0 such that the energy estimate
t
o+ [ Ivel} dr
0

< C(llvollz + 1F 1224 + 1B Ml54) ex0 (CllEN2, + CIENG )
holds for 0 <t < T.

Proof The proof of (3.14) is based on the energy inequality (2.18). Using similar
arguments as in (3.2)-(3.6) we obtain the following estimates of the right-hand
side terms in (2.18); here € > 0 means an absolute constant, Cy = Cy(£2) > 0 and
C = C(g,9) > 0 do not depend on m, and o = 2 = 1 — g. First of all

S

(3.14)

t t
| [ (0.0 dr| < Co [ 1l B ol i
t
<Go [ ol IBLIVelear  @15)
t
<Go [ IIBNEIIVol dr

t
< e[ Vol + C / \EI2 ]2 dr,
0
and

‘ /;<EE’ Vula dT‘ < Co /Ot IEN2Volly dr < el|Voll3a, + CIEI 4
‘ /0t<F= Vu)a dT‘ < e[| Vvl3 54 + C|IF|I3 -
Moreover, since ||v|4 < C’OHVvH;MHVUH;’/A‘,
) /OtUmkv,v)Q dT( < e[ Voll3 2 + C/Ot [k ||3][0]12 dr,
| [k 0 dr] < o [ UG ELlols i

t
<Co [ IKlalEla]Vols dr
0
< <Vl + ORI+ IEN )

A similar estimate as for [) (Jkv, v)o dr also holds for [} (kv,v)q dr.
Choosing ¢ > 0 sufficiently small we apply these inequalities to (2.18) and
obtain that

W12 + 1Vl3.20 < C(lvollz + 1FIE 0 + IEN 40 + [15]12,40)

t
e / (k12 + 1B [[o]2 dr
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for 0 <t < T. Then Gronwall’s lemma implies that

t
l(®)13 +/ IVoll3 dr < C(llvolls + 1 F 11320 + 1B 4 + [1%]12,4)
0

x exp (Cllk]120 + CIENG )

q,s;t

(3.16)

for 0 <t < T. Taking C, sufficiently large we may omit in (3.16) the term ||k[|5 4,
at its first place. This yields the estimate (3.14). ]

The next result proves the existence of a unique approximate solution v = v,, for
the given interval [0, 7).

Lemma 3.3 Let f, k, E, vy be given as in Definition 2.1 and let m € N. Then
there ezists a unique weak solution v = v, of the approximate system (2.12) in

[0,T) x Q with data f, vo.

Proof Lemma 3.1 yields such a solution if 0 < 7" < 1 is sufficiently small. Let
[0,7*) C [0,T), T* > 0, be the largest interval of existence of such a solution
v = v, in [0,7*) x ©, and assume that 7% < T'. Further we choose some finite
T > T* with T** < T, and some Tj satisfying 0 < Ty < T*. Then we apply
Lemma 3.1 with [0,7") replaced by [Ty, Ty + 0) where 6 > 0, To + 6 < T**, and
find a unique weak solution v* = v’ of the system (2.12) in [Ty, Tp + §) x Q
with initial value v*|t:T0 = v(Tp). The length 0 of the existence interval [Ty, Ty +

J), see the proof of Lemma 3.1, only depends on |[v(Tp)|l2 < ||[v]|2.00m < 00
and on || F |24+, ||E|lg.s+ , ||kll2.47++, and can be chosen independently of Tj.
Therefore, we can choose Tj close to T™ in such a way that T < Ty 4+ 6 < T™*.
Then v* yields a unique extension of v from [0,7*) to [0,7y + 0) which is a
contradiction. This proves the lemma. [ ]

In the next step, see §4 below, we are able to let m — oo similarly as in the
classical case 2 = 0. This will yield a solution of the perturbed system (1.6).

4 Proof of Theorem 1.4

It is sufficient to prove Theorem 1.4, a). For this purpose we start with the se-
quence (v,,) of solutions of the approximate system (2.12) constructed in Lemma
3.3. Then, using Lemma 3.2, we find for each finite 7%, 0 < T* < T, some
constant Cp« > 0 not depending on m such that

[Vm13 coir+ + [V O[3 2.0 < Cr (4.1)
Hence there exists a vector field
ve L0, Ly (Q)) N L*(0, T Wy (), (4.2)

14



and a subsequence of (v,,), for simplicity again denoted by (v,,), with the follow-
ing properties, see, e.g. [16, Ch. V.3.3]:

U, — v in L?(0, T W012(Q)) (weakly)
U — v in L*(0,T%; L*(Q))  (strongly) (4.3)
U (t) — v(t) in L*(Q) for a.a. t € [0,T).

Moreover, for all t € [0, 7*) we obtain that

||VU||§,2¢ < hminfm—wOHVUmH%,Q;m
(4.4)
lo@)[3 < liminf, o [Jom(#)]3-

Further, using Hoélder’s inequality and (4.2) - (4.4) we get with some further
subsequence, again denoted by (v,,), that

2 3 3
U — U imLSl(O,T"‘;L‘“(Q)),——l——:—7 2 < s, qp < 00,
s1 @ 2
2 3
U U, — VU in L°? (O,T*; LqQ(Q)), — 4+ — =3, 1 <359, g2 <00, (4.5)
S2. Q2
2 3
Um + VU, = v-Vuv in LS3(O,T*;Lq3(Q)), —+— =4, 1<s3, g3 <00,
83 (g3
and that with some constant C' = Cp« > 0:
1(mvm)Vm gz o < CllvmllG, opir- (4.6)

[(mom) Ell 14 1)1 14 1y < Cllomllgysyr= [ Ellg s (4.7)

q ' q1 s ' 81

||Evm||(%+ﬁ)*1,(l+ﬁ)*1;T* < Cllvmllgrsizr | Ell g5 (4.8)

s

|<(vam)Ea vvm>Q7T*| < Cllvmllgr sz | Ell g5+ [[ VU 2,2, (4.9)

as well as

Um Hgl,sl;T*

Um”gl,sl;T* (410)

EHq,S;T*

< Ollk|l2a:7

}<kvm7 Um>Q,T*
(T vms v ) g -
‘<<‘7mk)E7vm>Q,T*

< Cllk|l2,47-

< Ollk||2,457

Um”ql,suT* .

The theorem is proved when we show that (2.16)-(2.18) imply letting m — oo
the properties (1.8)-(1.10) and the estimate (1.28). This proof rests on the above
arguments (4.1)-(4.10).
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Obviously, (1.8) follows from (4.1), letting m — oo. Further, the relation
(1.9) follows from (2.17) and (2.4) using that

(v, wy) o1+

(Vu, Vw)q 1+

<v+E )(v+ E) Vw>QT*
(k(v+ E),w

<Um7 wt)Q,T* -

<va, V'LU>Q,T* —

((Jmvm + E)(vn + E), Vw>Q’T* —
<(jmk)(vm + E), w>Q’T* —

(4.11)

>Q,T*

To prove the energy inequality (1.10) we need in (2.18), letting m — oo, the
following arguments.

The left-hand side of (1.10) follows obviously from (4.4). To prove the right-
hand side limit m — oo in (2.18) we first show that

{(Jm) B, VUn) e, 7 — (VE, VU)g 1. (4.12)

QT

It is sufficient to prove (4.12) with F replaced by some smooth vector field
E such that |E — E|,sr- is sufficiently small. This follows using (4.9) with E
replaced by E — E. Thus we may assume in the following that F in (4.12) is
a smooth function £ € C§°([0,7%); C5°(2)). Using (4.1) - (4.4) and (2.4), we
conclude that

|((Jmvm)E — vE, va>Q7T*|

< N (mom) E = vE|l22:0+

VUl|2,2:7

< C(E)||Jmvm — v||2.2:7

< C(B)(1m(vm = 0) |22+ + [|(Jm = Dvll2.207+)
< C(E)(vm — vz + |(Jm — Dvll227-) — 0

as m — oo where C(E) > 0 is a constant. This yields (4.12).
Similarly, approximating k by a smooth function k£ € C§°([0,7%); C5°(£2)), we
obtain the convergence properties

<kvm7vm>Q,T* - <kU>U>Q,T*7
<(jmk)vmvvm>Q,T* - <kvav>Q,T*a
<(t.7mk)E7 Um>Q’T* - <kE7 U>Q,T*'

Since E € L*(0,T*; L*(Q)), the convergence (EE, Vv, )or- — (EE, Vu)qr: is
obvious.

This proves that v is a weak solution in the sense of Definition 1.1.

To prove the energy estimate (1.28) we apply (4.4) to (3.14). This completes
the proof. [ ]
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5 More general weak solutions

The existence of a weak solution v for the perturbed system (1.6) under the
general assumption on F in Theorem 1.4 a) enables us to extend the solution class
of the Navier-Stokes system (1.1) using certain generalized data. For simplicity
we only consider the case k = 0.

Theorem 5.1 (More general weak solutions) Consider

f=divF, FeL*(0,T;L*)), v € LL(), (5.1)

EELS(O,T;LQ(Q)),4§s<oo,4§q<oo,z—{—g:l, (5.2)
satisfying

E,—AE+Vh=0, divE =0 (5.3)

in (0,T) x Q in the sense of distributions with an associated pressure h.

Let v be a weak solution of the perturbed system (1.6) in [0,T) x Q in the
sense of Definition 1.1 with E, f,vy from (5.1) - (5.3).

Then the vector field uw = v + E is a solution of the Navier-Stokes system

u —Au+u-Vu+Vp=f divu=0 (5.4)

=9, u|t = Up (55)

u|8§2 =0

in [0,T) x Q with external force f and (formally) given data

g:=F up =g+ E|_ (5.6)

|aQ ’

in the generalized (well-defined) sense that

(u—F) 0, (u—EFE)

=7,

’69 - ‘t:O

and (5.4) is satisfied in the sense of distributions with an associated pressure p.

Remark 5.2 (Regularity properties)

a) Let E in (5.2) be regular in the sense that g and Ey = E‘t:o in (5.6) have

the properties in Lemma 1.2. Then the solution uw = v+ E has the properties
in Theorem 1.4, b).

b) Let E in (5.2) be reqular in the sense that g and FEy = E)_, (5.6) have the

properties in (1.26). Then the solution w = v + E is correspondingly reqular
and (5.5) is well-defined in the usual strong sense.
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