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We consider the stationary Navier-Stokes equations with nonhomogeneous
boundary condition in a domain with several boundary components. If the
boundary value satisfies only the necessary flux condition (GOC), Leray’s
inequality does not holds true in general and we cannot prove the existence
of a solution. But for a 2-D domain which is symmetric with respect to a
line and where the data is also symmetric, Amick [1] showed the existence
of solutions by reduction to absurdity; later Fujita [4] proved Leray-Fujita’s
inequality and hence the existence of symmetric solutions. In this paper we
give a new short proof of Leray-Fujita’s inequality.
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1 Introduction

Suppose Ω is a two-dimensional Lipschitz bounded domain symmetric with
respect to the x2 -axis and such that the boundary ∂Ω consists of several
connected components, Γ0, Γ1, · · · , ΓN (N ≥ 1). Consider the stationary
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Navier-Stokes equations
(u · ∇)u = ν∆u−∇p in Ω,

div u = 0 in Ω,
u = β on ∂Ω,

(NS)

where u = (u1, u2) is the fluid velocity, p the pressure, ν > 0 the kinematic
viscosity constant, and β is a given vector function on ∂Ω.

Suppose the boundary value β satisfies the stringent outflow condition∫
Γi

β · ndσ = 0 (0 ≤ i ≤ N) (SOC)

where n is the unit outward normal vector to ∂Ω. Then, for every ε > 0, we
can find a solenoidal extension bε of β which satisfies the inequality (Leray’s
inequality)

|((v · ∇)v, bε)| ≤ ε||∇v||2 for all v ∈ V (Ω), (L)

where (·, ·) is the inner product of L2(Ω), ‖ · ‖ the L2-norm and V (Ω) = {u ∈
H1

0 (Ω); div u = 0}. Using this inequality, we obtain an a priori estimate of
solutions to (NS), and the Leray-Schauder principle assures the existence of
solutions. See Leray [9], Hopf [6], Fujita [3], Ladyzhenskaya [8].

If the boundary value β satisfies only the general outflow condition∫
∂Ω

β · n dσ = 0 (GOC)

the inequality (L) does not hold: in many cases, the validity of (L) for all
ε > 0 implies (SOC), cf. Takeshita [13], Farwig-Kozono-Yanagisawa [2].

Nevertherless, if the two-dimensional domain is symmetric with respect to
a line, with all the boundary components intersecting the line of symmetry,
and if β is also symmetric, then, firstly Amick [1] proved the existence of
stationary solutions by reduction to absurdity. Later, Fujita [4] succeeded
to construct an extension of β which satisfies an estimate similar to (L) for
symmetric functions and to prove the existence of solutions by the Leray-
Schauder principle. In [10], there is a simple approach to prove Leray’s
inequality yielding a solution with a decomposition into a weak part (in H1)
and very weak part (in L2).

As for the nonsymmetric case, Morimoto-Ukai [11] and Fujita-Morimoto
[5] considered boundary values of the form µ∇h + β1. Here h is a harmonic
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function, µ ∈ R, and β1 satisfies (GOC). They obtained, using properties of
compact operators, an existence result for all µ ∈ R\M with small β1, where
M is an at most countable set. Recently, Kozono-Yanagisawa [7] proved a
more precise result in terms of a smallness condition using harmonic vector
fields.

2 Notation and Results

In order to state our results, we need for a bounded domain Ω ⊂ R2 with
Lipschitz boundary the function spaces C∞

0,σ(Ω) = {v ∈ C∞
0 (Ω); divv = 0}

and

V (Ω) = completion of C∞
0,σ(Ω) under the Dirichlet norm ‖∇ · ‖.

Assume that Ω is symmetric with respect to the x2-axis, i.e., x = (x1, x2) ∈ Ω
if and only if (−x1, x2) ∈ Ω. The vector function v = (v1, v2) is called
symmetric with respect to the x2-axis (“symmetric” in short) if and only if
v1 is an odd function of x1 and v2 an even function of x1, i.e.,

v1(−x1, x2) = −v1(x1, x2), v2(−x1, x2) = v2(x1, x2)

hold true.

Remark 1. If v = (v1, v2) is smooth and symmetric, then v1(0, x2) = 0 for
(0, x2) ∈ Ω.

Then we need the following symmetric function spaces:

C∞,S
0,σ (Ω) = {v ∈ C∞

0 (Ω); v is symmetric, div v = 0},

V S(Ω) = completion of C∞,S
0,σ (Ω) under the Dirichlet norm.

Our main theorem is as follows.

Theorem 1. Let Ω be a 2-dimensional bounded Lipschitz domain, symmetric
with respect to the x2-axis such that every boundary component intersects the
x2-axis. Further assume that the boundary value β ∈ H

1
2 (∂Ω) is symmetric

with respect to the x2-axis satisfying (GOC). Then, for every positive ε, there
exists a symmetric solenoidal extension bε of β such that the inequality

|((v · ∇)v, bε)| ≤ ε||∇v||2 (v ∈ V S(Ω)) (LF )

holds true.
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Remark 2. An a priori estimate for symmetric solutions to (NS) follows
from the inequality (LF). Then the Leray-Schauder principle assures the ex-
istence of symmetric solutions to the stationary Navier-Stokes system, see,
e.g., Ladyzhenskaya [8]. We can also obtain the solution using the Galerkin
method, cf., e.g., Fujita [3].

3 Proof of Theorem 1

Let

Ω+ = {(x1, x2) ∈ Ω; x1 > 0}, Ω− = {(x1, x2) ∈ Ω; x1 < 0}.

Suppose that β ∈ H
1
2 (∂Ω) is symmetric with respect to the x2-axis and sat-

isfies (GOC). Then there exists a solenoidal extension b = (b1, b2) in H1(Ω),
symmetric with respect to the x2-axis, i.e.,

div b = 0 in Ω, b|∂Ω = β.

Remark 3. Note that b1(0, x2) = 0 for (0, x2) ∈ Ω, and∫
∂Ω+

b · n dσ =

∫
∂Ω−

b · n dσ = 0

where n is the unit outward normal vector to the boundary of Ω+, or Ω−.

Since Ω+ is simply connected, there exists a scalar function (stream func-
tion) ϕ ∈ H2(Ω+) such that

b = ∇⊥ϕ =
( ∂ϕ

∂x2

,− ∂ϕ

∂x1

)
in Ω+.

Let h(t) = h(t; κ, δ) be a C∞ function in t ≥ 0, depending on the parameters
δ > 0 and 1/4 > κ > 0, and satisfying

h(t) =

{
1 (0 ≤ t ≤ κδ)
0 (t ≥ (1− κ)δ)

, 0 ≤ h ≤ 1,

(1) sup
0≤t≤δ

|t h′(t)| → 0 (κ → 0) uniformly in δ > 0.
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Furthermore, let d(x) be the regularized distance from ∂Ω, i.e., d(x) is a
smooth function on Ω, equivalent to the Euclidean distance function to ∂Ω,
and its gradient ∇d(x) is bounded; see Stein [12, p.171, Theorem 2] . There-
fore, there exists a constant M such that

0 ≤ d(x) < M, |∇d(x)| < M (x ∈ Ω) .

Finally, we define

ρ(x) = x1d(x) (x ∈ Ω+).

Then, ρ(x) is smooth, ρ(x) > 0 for x ∈ Ω+, ρ(x) = 0 for x ∈ ∂Ω+ and its
first order derivatives are

(2)
∂

∂x1

ρ(x) = d(x) + x1
∂

∂x1

d(x)

(3)
∂

∂x2

ρ(x) = x1
∂

∂x2

d(x).

Let 0 < δ be small and r0 = sup{x1; (x1, x2) ∈ Ω+}. Put

Ω+,2 =
{

x ∈ Ω+; d(x) <

√
δ

r0

}
Ω+,1 = {x ∈ Ω+ \ Ω+,2; x1 < r0

√
δ}.

Then, we have

(4)

√
δ

r0

x1 ≤ ρ(x) = x1d(x) < x1M (x ∈ Ω+,1),

(5) ρ(x) = x1d(x) ≥ r0

√
δ ·
√

δ

r0

= δ (x ∈ Ω+ \ Ω+,1 ∪ Ω+,2).

Therefore, ρ(x) ∼ x1 in Ω+,1 and h(ρ(x)) = 0 in Ω+ \ Ω+,1 ∪ Ω+,2.
Using (2) and (3), we see,∣∣∣∣ ∂

∂x1

ρ(x)

∣∣∣∣ ≤ d(x) + x1

∣∣∣∣ ∂

∂x1

d(x)

∣∣∣∣ ≤ M(1 + r0

√
δ) (x ∈ Ω+,1)∣∣∣∣ ∂

∂x2

ρ(x)

∣∣∣∣ ≤ x1M ≤ r0

√
δM (x ∈ Ω+,1)
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Put

(6) b̃(x) = ∇⊥{h(ρ(x))ϕ(x)} (x ∈ Ω+)

where the derivative is taken in the sense of distribution. Then div b̃ = 0,

(7) b̃(x) = h(ρ(x))∇⊥ϕ(x) + h′(ρ){∇⊥ρ(x)}ϕ(x),

and we see b̃ ∈ H1(Ω+). Furthermore, we have

b̃|∂Ω+ = b|∂Ω+

because h′(t) ≡ 0 in a neighbourhood of t = 0.
Let ε be an arbitrary positive number. Our aim is to show that if we

choose δ > 0 and κ > 0 sufficiently small, then the estimate

(8) |(v · ∇v, b̃)Ω+| ≤ ε||∇v||2Ω+
(∀v ∈ V S(Ω))

holds. Since C∞,S
0,σ (Ω) is dense in V S(Ω), we need prove (8) only for C∞,S

0,σ (Ω).

Suppose v ∈ C∞,S
0,σ (Ω). Using the formula (v · ∇)v = 1

2
∇|v|2 − ωv⊥ where

v = (v1, v2), ω =
∂v2

∂x1

− ∂v1

∂x2

, v⊥ = (v2,−v1), |v|2 = v2
1 + v2

2,

we have

(9) ((v · ∇)v, b̃)Ω+ =

∫
Ω+

1

2
∇|v|2 · b̃ dx−

∫
Ω+

ωv⊥ · b̃ dx .

Since b̃ belongs to L2(Ω+) and div b̃ = 0, it holds that

|v|2b̃ ∈ L2(Ω+), div(|v|2b̃) = ∇|v|2 · b̃ ∈ L2(Ω+).

Furthermore, |v|2b̃·n = 0 on the boundary ∂Ω+. Therefore Gauss’ divergence
theorem proves that the first term of the right-hand side of (9) vanishes. As
for the second term of the right-hand side of (9), using the expression (7) for
b̃, we have

(10)

∫
Ω+

ωv⊥ · b̃ dx =

∫
Ω+

ωv⊥h(ρ)∇⊥ϕ dx +

∫
Ω+

ωv⊥h′(ρ)ϕ∇⊥ρ dx.
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By virtue of (5) and the properties of h, it is sufficient to calculate the
integration only on the domain Ω+,1 ∪ Ω+,2. Therefore,∫

Ω+

ωv⊥h(ρ)∇⊥ϕ dx =

∫
Ω+,1∪Ω+,2

ωv⊥h(ρ)∇⊥ϕ dx =: I.

Using Poincaré’s inequality for v ∈ V S(Ω), we see that we may choose δ > 0
sufficiently small so that |I| is less than ε‖∇v‖2. We fix this δ.

Using (2) and (3), we have

(11) ωv⊥h′(ρ)ϕ∇⊥ρ = ωϕh′(ρ)

(
v1

∂ρ

∂x1

+ v2
∂ρ

∂x2

)

= ωϕ

{
v1(x)

d(x)

ρ(x)
+

x1

ρ

(
v1

∂d

∂x1

+ v2
∂d

∂x2

)}
ρh′(ρ)

= ωϕ

{
v1(x)

1

x1

+
1

d(x)

(
v1

∂d

∂x1

+ v2
∂d

∂x2

)}
ρh′(ρ).

Therefore,

(12)

∣∣∣ ∫
Ω+

ωv⊥h′(ρ)ϕ∇⊥ρ dx
∣∣∣

≤ sup
ρ
|ρh′(ρ)| ‖ϕ‖∞‖ω‖

(∥∥∥v1

x1

∥∥∥
L2(Ω+,1∪Ω+,2)

+ M
∥∥∥v

d

∥∥∥
L2(Ω+,1∪Ω+,2)

)
.

As for the last term in (12) note that 1/d(x) ≤ r0/
√

δ for x ∈ Ω+,1 so that∥∥∥v

d

∥∥∥
L2(Ω+,1)

≤ C‖v‖ .

Moreover, since v1 = v2 = 0 on ∂Ω, we can apply Hardy’s inequality to v in
Ω+,2 and obtain∥∥∥v

d

∥∥∥
L2(Ω+,2)

≤ C‖∇v‖L2(Ω+).

Hence∥∥∥v

d

∥∥∥
L2(Ω+,1∪Ω+,2)

≤ C‖∇v‖L2(Ω+).
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Concerning the norm
∥∥v1/x1

∥∥
L2(Ω+,1∪Ω+,2)

in (12) we use a slightly different

decomposition of the set Ω+,1 ∪ Ω+,2 and define

Ω+,12 = {x ∈ Ω+,2; x1 < r0

√
δ}.

Note that Ω+,1∪Ω+,12 is a set of rectangular type with boundary components
of class C0,1 and that v1 vanishes on the component {x1 = 0} of ∂(Ω+,1 ∪
Ω+,12). It is easy to see that using a change of variables in the x2-variable

for every 0 < x1 < r0

√
δ, we may apply Hardy’s inequality to v1 on several

subsets of Ω+,1 ∪ Ω+,12. Hence we obtain the estimate∥∥∥∥v1

x1

∥∥∥∥
L2(Ω+,1∪Ω+,12)

≤ C‖∇v1‖.

On Ω+,2 \ Ω+,12 we have x1 > r0

√
δ and it holds the estimate∥∥∥∥v1

x1

∥∥∥∥
L2(Ω+,2\Ω+,12)

≤ 1

r0

√
δ
‖v1‖ .

Summing up the previous inequalities we see that (12) leads to the esti-
mate

(13)
∣∣∣ ∫

Ω+

ωv⊥h′(ρ)ϕ∇⊥ρ dx
∣∣∣ ≤ C sup

ρ
|ρh′(ρ)|‖ϕ‖∞‖ω‖‖∇v‖ .

If we choose κ sufficiently small, we have

(14)
∣∣∣ ∫

Ω+

ωv⊥h′(ρ)ϕ∇⊥ρ dx
∣∣∣ ≤ ε‖∇v‖2 ,

and the estimate (8) holds true.
Put

bε(x1, x2) =

{
(b̃1(x1, x2), b̃2(x1, x2)) (x1, x2) ∈ Ω+

(−b̃1(−x1, x2), b̃2(−x1, x2)) (x1, x2) ∈ Ω−
.

Then bε ∈ H1(Ω) is solenoidal in Ω, symmetric with respect to the x2-axis,
extends the boundary values β and satisfies (LF).
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