REGULARITY OF WEAK SOLUTIONS TO THE
NAVIER-STOKES EQUATIONS IN EXTERIOR DOMAINS
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ABSTRACT. Let u be a weak solution of the Navier-Stokes equations in
an exterior domain Q C R?* and a time interval [0,T[, 0 < T < oo, with
initial value uo, external force f = divF’, and satisfying the strong energy
inequality. It is well known that global regularity for u is an unsolved
problem unless we state additional conditions on the data uo and f or
on the solution u itself such as Serrin’s condition |[u||Ls(o,1;0e(0)) < 00
with 2 < s < oo,% + g = 1. In this paper, we generalize results on
local in time regularity for bounded domains, see [2], [5], [6], to exterior
domains. If e.g. u fulfills Serrin’s condition in a left-side neighborhood
of ¢ or if the norm [|ul| o, 5 ,.1.4(q) converges to 0 sufficiently fast as

6 — 0+, where % + % > 1, then u is regular at t. The same conclusion
holds when the kinetic energy 3 ||u(t)||3 is locally Holder continuous with
exponent o > %

1. INTRODUCTION AND MAIN RESULTS

In this paper, Q C R? is an exterior domain, i.e. an open, connected subset
having a nonempty, compact complement in R3, with smooth boundary 9 €
C?*! and [0,T[,0 < T < oo, denotes the time interval. In [0,T[xQ we
consider the instationary Navier-Stokes equations

ug —vAu+u-Vu+Vp=f in]0,T[xQ
divu =0 in]0,T[xQ
u=0 on|0,T[x00
u=1ug att =0

(1.1)

with constant viscosity v > 0 (fixed throughout this paper), external force
f=divF = (25’21 8z'Fz',j)?-:1 and initial value ug. First we recall the defini-
tion of weak and strong solutions. The space of test functions is defined to
be

Co°([0,T[; C5o () == { ulprxa su € C3°(] — 1, T[xQ) ;divu = 0}.

Definition 1.1. Let Q C R3 be an exterior domain and let ug € L2(Q),
f = divF with F € L] _([0,T[; L*(Q2)) where 0 < T < occ. Then a vector
field w € LHp, where LHp denotes the Leray-Hopf class

LHy = L5.([0, T[; L2()) N LE,.((0, T[; Wy 2(2)) (1.2)
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is called weak solution (in the sense of Leray-Hopf) of the instationary
Navier-Stokes system (1.1) with data f,ug, if the following identity is satis-
fied for all test functions w € C§°([0, T'[; CF%, (2)):

T
/ ( — (u,wi)q + v{(Vu, Vw)q + (u - Vu, 'LU)Q) dt
’ (1.3)

T
= {ug, w(0))q — /0 (F. Vg dt.

As a consequence of (1.2), (1.3), u : [0,T[— L2(Q) is - after a possible
redefinition on a set of Lebesgue measure 0 - weakly continuous and the
initial value ug is attained in the sense

(u(t),d) — (ug, ), t—0+ Voe LE(Q).

Moreover, there exists a distribution p, called an associated pressure, such
that the equality

us —vAu+u-Vu+Vp=f

holds in the sense of distributions on |0, T'[x €, see [14, V.1.7].

A weak solution of (1.1) is called a strong solution if there exist exponents
$,q with 2 < s < 00,3 < ¢ < o0, % + % = 1 such that additionally Serrin’s
condition

we L50,T; LI(Q)) (1.4)

is satisfied. By Hélder’s inequality, such a strong solution u satisfies u ® u €
L% ([0, T[; L*(2)). Moreover, by Serrin’s Uniqueness Theorem [14, V. The-
orems 1.5.1, 1.4.1], a weak solution with (1.4) is unique within the class of
weak solutions satisfying the energy inequality, i.e., fulfilling (1.5) below with
s = 0. Finally, u : [0,T[— L2() is strongly continuous and satisfies the
energy identity (1.15) below.

For sufficiently smooth Q, f,ug a strong solution u has the regularity
property

ue C™(0,T[xQ), peC=(]0,T[xQ),

see |14, Theorem V.1.8.2], and therefore a strong solution is also called a
reqular solution. We call a weak solution u of (1.1) regular at t, if there
exists a § = () > 0 with uw € L*(t — 0,¢t + 6; L9(S2)) where s,q satisfy
243

Now let 2 C R? be an exterior domain with smooth boundary. We know,
see [13], that there exists at least one weak solution u of (1.1) satisfying the
strong energy inequality

1 t 1 t
Sl +v [ Ivuliar < Jlu)E - [ (FVuadr  (15)

for almost all s € [0,7] and all t € [s, T[.

Our first main theorem states that if « fulfills the Serrin condition in
a left-side neighborhood of ¢ then u is regular at t. Furthermore, it gives
conditions depending on ||u|| . (0.75L9(2) with % +% > 1 to imply regularity
of w at t; note that in this case, the integrability of u is weaker than in
Serrin’s condition.
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Theorem 1.2. Let Q C R? be an exterior domain with 0 € C*', let
2 < s < o0, %—i—%:l, %—i—é:% and let 1 < s’ < s. Assume that f = divF
with F € L*(0,T; L™(Q)) N LY0,T; L*(2)), up € L2(Q), 0 < T < o0, and let
u € LHy be a weak solution of the Navier-Stokes equations (1.1) satisfying
the strong energy inequality (1.5). Then we have:

(1) Left-side L*(L%)-condition. If for t €]0, T
u€ L(t — 0,t; LL(Q))  for some 0 <6 =4(t) <t, (1.6)

then u is reqular at t.
(2) Left-side L (L9)-condition. The condition

o 1 ¢ /

lglil)(l)lj_f penr /t(S |u(T)[l; dT =0 (1.7)
s mecessary and sufficient for reqularity of u at t.

(3) Global L¥ (L%)-condition. There exists a constant e, = €,(q, s', ) >0,
independent of f,ug, T with the following property: If ug € L2(2) N
LL(Q), u € L¥(0,T; LL(Q)) and the conditions

Vs—l

T T
/ B2 dr < en® L and / lu()g dr < e (18)
0 0

[uollg™

are satisfied, then w € L*(0,T; L1(Q)).

The following theorem states that Holder continuity of the kinetic energy
with exponent « G]%, 1[ implies regularity of w at ¢. In the case a = % we
need a smallness condition for the corresponding Holder term under which

we can prove regularity of w at t.

Theorem 1.3. Let Q C R3 be an exterior domain with boundary 02 € C*1,
let 0 < T < oo and let u be a weak solution of the Navier-Stokes equa-
tions (1.1) satisfying the strong energy inequality (1.5) with initial value
ug € L2(Q) and external force f = divF which will be specified below. Fur-
thermore, we assume that the kinetic energy E(t) := 1||lu(t)||3 is a continuous

function of t € [0,T[. Then we have:

(1) Let a €]3,1[,2 < ¢/ < 4a,3 < ¢ < 6,§+§ - g,§+§ =1,
f € Lv(0,T;L*(Q)) and F € L*0,T;L*(Q)) N L*(0,T; L"(Q)),
where % + % = %, and let u satisfy at t €]0,T| the left-side condition

E(t)— E({
sup M < 00 (1.9)
tep<ti<t [t =]
with a > 0. Then u is regular at t.

(2) (The case @ = 3) Let f € L2(0,T;L3(2)), F € L*0,T;L*(2)).
Then there exists a constant v« = v«(Q) such that the left-side con-
dition

E(t) — E(
sup M < ’)/*Vg (1.10)
t-p<t'<t |t —1|2

with a p > 0 implies reqularity of u at t.



4 REINHARD FARWIG, CHRISTIAN KOMO

Remark. (1) The proof of Theorem 1.3, in particular see (4.8), will yield the
following regularity criteria using the dissipation energy: If

1 I
a€]§,1[ and l%rgégf(w/t§||Vu(T)||ng<oo, (1.11)
or
imint [ [Vu() B < 5} (112)
1minr — u\T T «V .
5—0+ §3 Ji—s 207 =1

then w is regular at t.

(2) In the case & = 3 a smallness condition as in (1.10) and (1.12) is
necessary. Indeed, if f = 0 and ]0,¢[ is a maximal regularity interval of wu,
then

<o
IVu(r)ll2 2 ———, 0<7 <4,
(t—m7)i

where ¢y = ¢(2) > 0, see [8]. Hence

1 t
liminfl/ |Vu(r)||3dr > 2¢3 > 0,
0—=0+ §2 Ji—s§

and due to the strong energy inequality (1.5) it holds for all x> 0

wp EO -~ E@)

: > 2ucd > 0.
t-p<t'<t |t —t|2

The proofs of the regularity criteria formulated in this paper are based on
a local or global identification of a weak solution with a very weak solution,
a concept described in Definition 2.3 below. The following key result, The-
orem 1.4, gives conditions under which a given very weak solution is also a
weak solution in the sense of Leray-Hopf and, therefore, yields under certain
smallness conditions on the data f and ug the existence of a unique strong
solution of (1.1) on [0, T[x€2.

Theorem 1.4. Let Q C R3 be an exterior domain with 0 € C>', let
2<s< o0, %—l—% =1 and let %—l—% = qi*. Then there exists a constant €, =
€+(q, Q) > 0 with the following property: Given 0 < T < oo and data ug €
L2(Q) N LE(Q) and f = divF with F € L*(0,T; L9*(Q)) N L*(0,T; L?())

satisfying the following two conditions:
T
[ i@ ar < e, (1.13)

T
/ e ™ aug|S dr < et (1.14)
0
In this case, there exists a unique weak solution w € LHr of (1.1) satisfy-
ing the Serrin condition uw € L*(0,T; L1(Y)). After a possible redefinition

on a set of Lebesque measure 0, we get that u : [0,T[— LZ(Q) is strongly
continuous and it holds the energy tdentity

1 t 1 t
sl +v [ IVa3dr = 3hul - [ (R Vaadr  (115)

for all t € [0,T7.
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The proof of this crucial result is the content of Section 3 and differs from
the case of bounded domains, see [4], [6], where the trivial inclusion L(€2) C
L™(9), ¢ > r, yielding also better embedding properties of fractional powers
of the Stokes operator, was used several times. The main idea of the proof is
to construct a very weak solution v € L*(0,T; LL(2)) for the given data ug, f
and to identify v and v by Serrin’s Uniqueness Theorem; for this reason, we
have to show that v lies in the Leray-Hopf class LHr.

After some preliminaries to be discussed in Section 2 we prove Theorem 1.4
in Section 3. Finally, Section 4 deals with the proofs of the main results
Theorem 1.2 and 1.3.

2. PRELIMINARIES

Given 1 < ¢ < 00,k € N we need the usual Lebesgue and Sobolev spaces,
L9(Q) ,Wh(Q) with norm | - za) = || - llg and || - oy = I g
respectively. For two measurable functions f,g with the property f-g €
LY(2), where f - g means the usual scalar product of vector or matrix fields,

we set

(= [ 1)
Note that the same symbol LI(2) etc. will be used for spaces of scalar-,
vector or matrix-valued functlons. Let C™(Q2),m =0,1,...,00, denote the

usual space of functions for which all partial derivatives of order |a| < m
exist and are continuous. As usual, CJ"(Q) is the set of all functions from
C™(Q2) with compact support in €. Further we need the space of smooth
solenoidal vector fields
C5%(Q) =={v e C5°(Q)?* dive =0}
and define the spaces
“oo 7ol 1,2 Foo 7ol
LL(Q) = Cgo (), Wy, (@) := Cgo () ™.

For 1 < g < oo let ¢’ € [1,00] denote its dual exponent. It is well known that
LI(Q) = LL(Q) using the standard pairing (-,-)g. Moreover, let us write
[d,v]q for the application of a distribution d € C§°(Q2)" on a test function
v e CF((N).

Given a Banach space X and an interval [0,7], 0 < T < oo, we denote

by LP(0,7;X), 1 < p < oo, the space of all equivalence classes of strongly
measurable functions f : [0,7) — X such that

sy o dt)i <o

if p < oo, and | f|leo := esssupy [ ||/ ()] x, if p = co. Moreover, we define
the set of locally integrable LP-functions on [0,77 as

LY ([0, T[; X) := {u: [0,T[— X strongly measurable,
ue LP(0,T"; X) for all 0 < T' < T'}.
When X = L4(Q), 1 < ¢ < oo, we denote the norm in LP(0,7T; L4(2)) by
|- llg.p.0:1- For 1 < p,q < oo it holds
L2(0, T3 L)' = L7 (0, T; L7 ()
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and we define

fQQT/ /ftaf g(t,z)dx dt

for f € LP(0,T;L9(R2)),g € ¥ (0,T; Lq (Q)).

Given an exterior domain Q - ]R3 with 9Q € C?! and 1 < ¢ < oo,
there exists a bounded, linear projection P, : LY(Q)) — LZ(2) with range
R(P,) = L&(Q) and nullspace N(P,) = {Vp € L1(Q);p e LL () }. The
operator P, is called Helmholtz projection and is consistent in the sense that

P,f =P.f Vfe LY{(Q)NL(Q). (2.1)
Furthermore, we get Pé = Py for the dual operator, i.e.,
(Puf.gba = (f. Pygla VFELUQ) VoeL(Q).  (22)
For 1 < ¢ < oo we define the Stokes operator Ay on L& (Q) by
D(Ag) = L3(2) 0 Wy () N W29(9), (2.3)
Agu = —-P,Au, ueD(A,). (2.4)
The Stokes operator is consistent in the sense that for 1 < ¢,r < oo it holds
Agu = Au Yu e D(Ay) ND(A,). (2.5)
In general, D(A,) will be equipped with the graph norm [[ul|p(a,) = |lullq +

| Agllq for u € D(A,) which makes D(A,) to a Banach space since the Stokes
operator is closed. For simplicity, we use the notation A = As.

For a € [-1,1] the fractional power Ay : D(Ay) — L&(Q) with dense
domain D(Ag) C Li(f2)) is a well defined, injective, closed operator such
that

(A=A, R(AY) =D(A;%)and (AZ) = AY.
It holds D(A1/2) W, () N LL(Q) for 1 < ¢ < 3, and the estimate
IVullgo < e Ay 2ullg0 for 1 < g <3, ue DAY, (2.6)
with a constant ¢ = ¢(£2,¢) > 0. Moreover,
1 3 3
[ully,0 < cl[Ajullge  Wwhere 0 < o < 3 l1<g<32a+—-—=-, (2.7)
Y4
for all u € D(AY) with a constant ¢ = ¢(€2,¢,7) > 0. It is well known that
—A, generates a uniformly bounded analytic semigroup {e*tAq :t>0} on
LL(Q) satisfying the decay estimate
|AZe™ ||, < ct™ VE>0, (2.8)
where « > 0,1 < ¢ < 0o and ¢ = ¢(€, ¢, ) > 0.

Lemma 2.1. Let d € C{°(Q)" be a distribution, well defined for all v €
D(Ag) where 1 < q¢ < 00,0 < a < 1. We assume that there exists a
constant ¢ > 0, independent of v € D(AO‘,), such that

[d;v]a| < cfAgvlly.a Vv € D(AG). (2.9)

Then there exists a unique element d e LL(Q), to be denoted by A " Pyd,
with the properties

(A7 Pyd, AGv)a = [d,vle Vv € D(AG)  and [[A7Pydlly < ¢ (2.10)
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with the constant ¢ from (2.9). In particular, if F € LY(S), and 3 < q < oo,
_1
then Aq ? PydivE € LE(Q) and

1
147} PdivFll, < e Fll,. (2.11)
Proof. We define for w € R(A)

[d,w]o = [d,v]q, wherew = Agv,v e D(AY).

By the density of R(Ag) in Lg/(ﬂ), we extend d to a functional defined on
LL(Q). We use LZ(Q) = LI(Q) to obtain a unique element A;*Pyd €
LL(Q) satisfying the identity in (2.10). For the proof of (2.11) we exploit
(2.6) with ¢ replaced by ¢’ €]1, 3]. O
Theorem 2.2. Let Q C R3 be an exterior domain with 0Q € C*', let
1<qg,s<o00and0<T < oco. Furthermore, let f € L(0,T; LE(Q)) and
ug € LE(Q) such that [° HAqe_tA‘JUOHfLQ dt < oco. Then the instationary
Stokes system

u +vAqu=f in(0,7)

u(0) = ug

has a unique strong solution u € L*(0,T; D(Ay)) with uy € L5(0,T; LE())
and u € C([0,T[; LE()). Moreover, u satisfies the maximal regularity esti-
mate

(2.12)

1
T s
gl Agtll g < ( / ||que—”tAquou;th) 1 s
0

(2.13)
with a constant ¢ = ¢(, q, s) independent of T und v. It holds the represen-
tation

t
u(t) = e g + / e VA g () dr (2.14)

0
for all t € [0, [. In the case T = oo we get a unique strong solution
uw € Li (0,00;D(Ay)) of (2.12) satisfying uy € L*(0,00; LE(Q)) and u €

C([0, o0l; Lq( )) and it holds the estimate (2.13) and the representation (2.14)
for allt € [0, 00].

Proof. See [10, Theorem 4.2]. O
A major tool for the proof of Theorem 1.4 is the theory of very weak solutions.

In this context we refer to [3] for exterior domains and to [4| for bounded
domains. In the following definition let

Co([0,T[; G50 () = {w [jg rxqr With w € Cp*(=]1, T[xR®);  (2.15)
divw = 0,w|po=0 for all t € [0,T[} (2.16)

denote the space of test functions and let
T%(Q) = {ug € C§°(Q); (2.17)
Aq_quuo € Lg(Q),/O ||Aqe_tAq(A;1Pquo)H;’Q dt <oo} (2.18)

denote the space of initial values.
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Definition 2.3. Let 2 C R3 be an exterior domain, let F' € L*(0,T; L"(52))
and vy € J2%(Q) where 2 < s < 00, %+% = 1,%—1—% = % Then u €
L5(0,T; LE(Q)) is called very weak solution of the instationary Navier-Stokes
equations (1.1) if

T T
/ (—u, weyo —vi{u, Aw)q — (U@ u, Vw)q dt = [ug, w(0)]o — / (F,Vw)gqdt
0 0

(2.19)
holds for all test functions w € Cj([0,T[; CF ,(€2)) .

In the corresponding definition of very weak solutions to the linear, insta-
tionary Stokes system where the nonlinear term u - Vu is absent, we may
omit in Definition 2.3 the restriction 2 + % = 1, and in (2.19) the term

(u®u, Vw)q,r is absent. A proof of the following Theorem can be found in
3], [12].

Theorem 2.4. Let Q C R3 be an exterior domain with 0 € C*' and let
2<s< 00, %—l—% =1, %+é = % Then there exists a constant ¢ = ¢(q,€2) > 0
with the following property: For data f = divE with F' € L*(0,T;L"(2)) and
ug € J%(Q), satisfying the condition

1

T 1
(/0 v Ao~ 0 ( 47" Pyuo) [3.dt)* + [

with a = 2% + % =1- %, there exists a unique very weak solution u €
L5(0,T; LL(Q)) of the instationary Navier-Stokes system (1.1). Moreover, u
has the representation uw = E + 1, where E € L5(0,T; LL(Q)) is the unique
very weak solution of the linear Stokes system with data f,ug and @ is the
unique solution in L*(0,T; LL(Q)) of the nonlinear fized point equation

r,8,T < CVH_Q (220)

a(t) = — /0 Agem =0 Ao pdiv((a(r) + B(r)) ® (a(r) + E(1))) dr

(2.21)
for almost all t € [0,T7.

Finally we recall the Hardy-Littlewood inequality [14, I Lemma 3.3.2|. Let
0<a<l,1<r<g<oowitha+i=1andlet f € L"(R). Then the
integral

u(t) := / it — 7|27 f(r) dr
R
converges absolutely for almost all £ € R and it holds
lull Loy < el fllLr ) (2.22)

with a constant ¢ = ¢(a, q) > 0.

3. PROOF OF THEOREM 1.4

Before proving Theorem 1.4 we discuss the nonlinear term arising in the
nonlinear fixed point problem (2.21). We denote by div(u®u) the functional
defined for suitable vector fields w by

[div(u ® u), wlq := —(u @ u, Vw)q.
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The following lemma is technical but essential for Lemma 3.2 below.

Lemma 3.1. Let Q C R3 be an exterior domain with boundary 0 € C*1,

let3<q<oo,7“6[%,q] andﬁ::%_%+§‘

(1) There exists a constant ¢ = ¢(2,q,r) > 0 such that for allu € LL(Q)
1A Py div(u @ u)|r < clulf o (3.1)

(2) For2 < s < 00,3 < q<00,0<T < oo there exists a constant
c=c(Q,q,7) > 0 such that for all u € L*(0,T; L (52))

1A 7 Py div(u @ u)|l,, 5

2
727Q;T S CHU||q7S,Q7T' (3.2)
Proof. The assumptions of the lemma imply

1 3 3 1
2(ﬁ—§)+—:— With1<7"/<3,§§ﬁ<1. (3.3)

G
Then we get for arbitrary w € D(Af,) by (2.6) using 1 < (%), < 3, (2.7)
and (2.5) (applied to A/? instead of A)
div(u ® u), w]| = | — {u©u, Vo)
< llu® ully [Vl gy

q
2
1/2
< cllully 1147wl gy
(B—3), 41/2
< clul} 14,2 (4wl
2
< cllully A% w],.
It is possible to choose the constant ¢ > 0 in the above estimate depending

only on ,¢q and r. For the second assertion we use (3.1), which holds for
almost all ¢ € [0, 7], and integrate over [0, 7. O

Lemma 3.2. Let Q C R? be an exterior domain with 0Q € C?1, let 0 <
T<o00,2<s< oo,%—f—% =1 and let w € L*(0,T; LY(2)). We define for

reld,q and §:= % - % —1—% the term A" (u) by

t
Aut) = — / ABevt=DA A=BD div(u(r) @ u(r)) dr.  (34)
0

Then the following statements are satisfied.
(1) For almost all t € [0, T we get

t
/ | ABe=v(t=T) A AP P div(u(t) @ u(T))]|, dr < 0o (3.5)
0

and

t
AP / e 4= P div(u(r) © u(r)) dr
0 (3.6)

t
_ / ABe=t=14r 4B P div(u(T) @ u(T)) dr.
0
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QW

(2) Forallri,ry € [§,q] with f1:= 2 —gh 45, fpi=3 -2 +5 i

holds
A" u(t) = A?u(t) for almost all t € [0,T]. (3.7)

Therefore, we can denote the expression in (3.4), independently of
re[2,q], by Alu).
(3) Forallqi € [§,q] with3 < g1 < 00 and s1 > 2 defined by 2+ 2 =1

we have
Au e L*(0,T; L1 () . (3.8)
(4) If q €]3,6[ then
Au e L2(0,T; L% (Q)) (3.9)
where qo > 3 satisfies % + q% = é and consequently é + q% =1.

Proof. (1) By (2.8) and (3.1) we know that for all ¢ € [0, 7]

t
/ |ABe DA 48P, div (u(r) ® u(r))|, dr
0 . (3.10)
< (@, q )0 / 1t — 7 Ju(r)2 dr.
0

Moreover, as for almost all ¢ € [0, 7] the integral in (3.10) is finite (see the
application of the Hardy-Littlewood inequality (2.22) in the proof of part (3)
below) and

t t
/ eVt A A-B P div(u @ u)||, dr < c/ | AP Pediv(u @ u)||, dr < oo,
0 0
the closedness of the operator A7 yields the identity (3.6).
(2) To prove (3.7) for t € (0,T] as in (1) let
Fr(r) := APe =14 A=B P div(u(r) @ u(r)) for almost all T €0, ¢,

where 3 = (1) = % — % + % Since for all ¢ € C§<, ()

t t
/ (7). B dr = — / (u(r) ® u(r), Ve =4 g dr
0 0
we see that
t t
[ @ sadr = [ ur@.ondr
0 0

for details of the proof we refer to [12]. A density argument finishes the proof
of (3.7).
(3) We consider (3.10) and use the Hardy-Littlewood inequality (2.22)

with (1 —0) + i = (é) to conclude with A”u = Au and (3.2) that
2

HAquml,Q;T
1

T T 51 e
< </ <cyﬁ/ |t — T|7ﬂ\|AqflﬁPq1div(u(7') @ u(T)) g d7'> dt)
0 0

< e || Ay Py div(u(r) @ u(r))llg, 5.0
< C(Q7q1> Q)V_ﬁHuHi&Q;T < o0.
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(4) From 23 + q% = é and (2.7) it follows with (3.6) and B =1, r =4,
for almost all ¢ € [0, T

|A%u()ll < 143 *Au(®)]lg
(3.11)

t
— |4 /e_y(t_T)AgA;l/QPgdiv(u(T)®u(7))d7’”g.
0

q
2 2

Since by (3.2)
AP Pydiv(u @ u) € L3(0,T; L3(Q)) | (3.12)
2

the maximal regularity estimate (2.13) yields the last statement of the lemma.
O

Proof of Theorem 1.4. Given the smallness conditions (1.13) and (1.14),
Theorem 2.4 implies the existence of a unique very weak solution u €
L#(0,T; LL(Q)) of (1.1). Moreover, we know the representation u = F + 1,
where the linear part F satisfies

t
E(t) = e VHayg 4 A, /O e V=D A (AP, div F(r)) dr (3.13)

in [0, and the nonlinear part @ € L5(0,7; LZ(f2)) solves the fixed point
equation

a(t) = — /0 Asem DA pgre podiv((a(r) + E(r)) ® (a(r) + E(7))) dr

(3.14)
with a = % + 1 for almost all ¢t € [0,T[. Since F' € L?(0,T;L?(2)) and
up € L2(R) it follows with (2.5) that

t
E(t) = Ey(t) + Ba(t) == e " ug + A/ / e VAL P AivE(7) dr
0

(3.15)

almost everywhere. We use [14, IV Theorems 2.3.1, 2.4.1] to obtain that
E lies in the Leray-Hopf class (1.2) and is a weak solution of the linear
stationary Stokes system with data f,ug. To finish the proof, we want to
show that

we L350, T; LY(Q)). (3.16)
The validity of the above property implies
u®u € L*0,T; L*(Q)). (3.17)

As a consequence of (3.14) and (3.17) we conclude that @ lies in the Leray-
Hopf class (1.2) and @ is the unique weak solution of the linear, stationary
Stokes system with the external force div(u ® u) and vanishing initial value,
see [14, IV Theorems 2.3.1, 2.4.1|. Furthermore, from these two Theorems
and (u®@u, Vu)(7) = 0 almost everywhere, it follows that u is, after a possible
redefinition on a set of Lebesgue measure 0, strongly continuous and satisfies
the energy equality (1.15).

Since in the case ¢ = 4 (and s = 8) there is nothing left to be proved, we
may assume in the proof of (3.16) that g # 4.
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Assertion 1: E = Ey + FEy € L3(0,T; L*(2)).

Proof. In the case 4 < ¢ < oo it is easily seen since L2(2) N LE () C Li(Q)
that () = e g = e VHaug € L8(0, T; L4(Q)). If 3 < g < 4 we use [11,
Theorem 1.2 (ii)] to find a constant ¢ > 0, independent of ¢, such that

A, -3¢-b

lle uplla < et 2

for all ¢ > 0. The estimate

T T !
[ e tlar < ol [ ar < oo
0 0

implies By € L¥(0,T; L*(Q)). To get the property Fy € L8(0,T; L*(2)) we
estimate for almost all ¢ € [0, T, using (2.7), (2.8) and (2.11), that

1E2()ll4 < cll A% Es(t)]]2

t
/ A8 AL pdiy F(7) dr
0

=C

, (3.18)

T
< cﬂ/B/ It — 7| "7/8|| F(7)|]2 dT .
0
Then an application of the Hardy-Littlewood inequality (2.22) yields

_T
[E2llag0r < cv™ 8 ||Fll2407 < 00

Assertion 2: Let 3 < ¢ < 4. Then @ € L8(0,T; L*(Q2)).

Proof. We use an iterative argument to improve the regularity in space
step by step. Assume that for almost all ¢ € [0, 7 with certain parameters
Sk Tk > Bk

/ Abre V=D An ACP P, div((a+ E) @ (@ + E))dr,  (3.19)

2 3 1
u, B e L0, T, L"™(Q)) with3<r, <4, —+—=1,0; € [5,1]. (3.20)
Sk Tk
For k = 1 the iteration starts with s; := s, r1 := ¢ and (1 := 2% + % = a,
1

see (3.14). We denote by ri41 > i the unique element satisfying %-l— e

rk1/2 and set sy := . Then (3.9) implies that
i e LSkH(o T L7541 (Q)). (3.21)

We define i1 = + 3= 52—+ 5 and get with (3.7)

3
Tk+1 2Tk+1 2rg41

t
at) = — /0 At =D A AP p iy (a4 B)@ (a4 B)) dr. (3.22)

From the first step of the proof we know that E € L8(0, T; L*(£2)). There can
occur two different possibilities. If 4 < rr11 < 0o we get by an interpolation
argument 4, F € L3(0,T; L*(Q)). Otherwise, if 3 < 74,1 < 4, an interpola-
tion argument yields E € L%+1(0,T; L™+1(2)). Looking at (3.21), (3.22), we
see that (3.19) and (3.20) are satisfied with the parameters sgy1, k41, Bkt1-
Therefore, we can start a new step of this iterative argument. Repeating
this step finitely many times, we get @ € L8(0,T; L*(2)) which finishes the
proof of Assertion 2.
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Assertion 3: Let 4 < ¢ < co. Then @ € L¥(0,T; L*(12)).
Proof. Assume that we have for almost all ¢ € [0, T[ with certain parameters

Sk Tk Bk
t
it) = — / Abee=v=D)An =B P, div((i+ B) ® (i + E))dr,  (3.23)
0

2 3 1
u,Ee L0, T;L"™(Q)) withd <1, <oo,—+—=1,0; € [5,1].

Sk Tk
(3.24)

Again, for k = 1, the iteration starts with s; := s, ry := g and (31 := 2%4—% =

a, see (3.14). We set rg4q 1= %rk and fri1 = % — 2T§+1 + % = % + % Let

Sg+1 > 2 be the unique element which satisfies the relation S]il + Tk-3+1 =

1. Then (3.7) implies that @ has the representation (3.22) with the new
parameters Sgi1,7k+1, Ok+1. From (3.22) we conclude with (3.8) that

@ € L¥+1(0,T; L+ (1)). (3.25)

From the first step of the proof we know that E € L8(0,T; L*(2)). There can
occur two different possibilities. If 3 < rgy11 < 4 we get by an interpolation
argument @,F € L%(0,T;L*(Q)). Otherwise, if 4 < rpy; < 0o, we use
an interpolation argument to get E € L%+1(0,T;L"+1(Q)). If we look
at (3.22), (3.25) we see that the equations (3.23) and (3.24) are satisfied
with the parameters sgi1,7g+1,0k+1. Therefore, we can start a new step
of this iterative argument. Repeating this step finitely many times, we get
@ € L3(0,T; L*(£2)) which finishes the proof of Assertion 3.

Now the claim (3.16) for v = @+ E follows, and the proof of this theorem
is complete. O

4. PROOF OF REGULARITY RESULTS

Before proving Theorems 1.2 and 1.3 we need a useful, but technical lemma.
In this lemma we assume that u satisfies the strong energy inequality (1.5)
to consider the term u(t) for almost all ¢ € [0,7] as initial value of a local
strong solution which can be identified locally with u. Therefore, the proof
will be based on Theorem 1.4. We will use the notation

][abf(:c)da:::bia/abf(x)dx

for the mean value of an integral.

Lemma 4.1. Let Q,q,s, f,ug,T satisfy the assumptions of Theorem 1.4,
let 1 < s <'s, and let u be a weak solution of (1.1) satisfying the strong
enerqy inequaltiy (1.5). Then there exists a constant €, = €.(q,s',Q) > 0
with the following property: If 0 <tqg <t <ty <T, and if

t1
[ @l dr < et (41)
0
t S/ ! !/ 3/
][ (b — ) () dr < e~ %, (4.2)
to

then there exists a 6 = 6(t) > 0 such that u € L*(t — 6,t1; L9(2)). In
particular, if t; > t, then t is a reqular point of u.
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Proof. We may assume that u(r) € L?(2) for all 7 € [0,T[. From (4.2)
and the fact that u satisfies the strong energy inequality we find a null set
N Clto, t[ such that for 7y €]tg, t[\N it holds u(ry) € LE(Q) and

T1

1 m 1
sl +v [ IValar < Jlumli - [ (R Vaadr  @3)

0 70
for all 71 mit 79 < 7 < T. Moreover, the condition (4.2) yields the existence
of 79 €]to, t{\/N which fulfills the inequality

/

! ’ t s’ / /s
(t1 — 70) = [[u(70)ll5 SJ[ (tr=7) s flu(r)lly dr < e s
to

It follows with a constant ¢ = ¢(£2,¢) > 0 that

t1—7o " t1—7o
[ e ttmlgar < [ )l dr

0 0

= c(t1 — 70)[lu(ro) g < ces’ vl

Hence with a new constant €, := (%*)%, where €, is the constant from The-
orem 1.4, the conditions of Theorem 1.4 are satisfied. We get the existence
of a unique weak solution v € L*([rg,t1[; LE(2)) to the Navier-Stokes sys-
tem (1.1) with initial value v(79) = u(7p). Considering u as a weak solution
to the Navier-Stokes system with initial value u(mp) on [0,¢; — 9], we use
Serrin’s Uniqueness Theorem to get that v = v € L*(7,t1; LE(2)). The
proof is complete. O

Proof of Theorem 1.2. (1) Let s := sty :=1t—0,t; :=t+ J where
d > 0 is chosen so small that, see (1.6),

t t
f @rwﬂmwmmh<2/“HMﬂde<uw4,
t—6 =6

t+46
/ B2 dr < e L.
t—5
The assertion follows with Lemma 4.1.

(2) Because of (1.7) it is possible to choose a ¢ > 0 such that with ¢y :=
t—90,t1 ;=14 0 the estimate

t s s 1 ¢ s’ s/
F -y dr< 3 [ @9 )l ar
t—48 t—4&

2% [t / s

= 5 / HU(T)”Z dr < e v® s
S5 Ji—s

holds. This shows (4.2). Furthermore, condition (4.1) on F' can be fulfilled

as well. Then Lemma 4.1 proves the sufficiency of (1.7) to imply regularity

of u at ¢. Since by Holder’s inequaltiy

s

1 t , t iy
- u(T)|| dr < u(T)||s dr
= [ g ar < (oo

we get that the condition (1.7) is also necessary for regularity of u at ¢.
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(3) The constant €, = €,(q,2) > 0 will be determined in the proof; there-
fore, we begin with considering €, as an arbitrary, fixed positive number. Let
e1 = €1(q,2) > 0 denote the constant from Theorem 1.4 which in (1.13),
(1.14) is called €, and let e = ea(s’,2) be the constant in Lemma 1.5 called
€x in (4.1), (4.2). We assume €, < g1 and ug # 0. It holds

01
[ e lyar < el = e@.0) >0
0

We define

s—1

§1 := min (611/ . ,T). (4.4)
clluollj

If 59 = T, we already know that v € L*(0,7;L%(Q)). So let us assume
that 61 = %. With this choice of ¢, Theorem 1.4 yields the existence
of a unique weak solution v € L*(0,d1; L1(€2)) of (1.1), which coincides by
Serrin’s Uniqueness with « on [0,d1[. For an arbitrary t € [%,T — %1], we

get with to ==t — %, t1 ==t + %

t s’ / 2 T /
=05l ar < = [ ol ar

to 51 s
/

<2<ew#4>1—1 ps-l (4.5)
> Cx

clluoll “uoll5™

!

=2y e

C

From this estimate it follows that we may define

(€2 E1\1-%
§ = —(— s €1, . 4.6
€ m1n<2(c) 6162) (4.6)

/

We see that e, depends only on €, q, s’
d(t) > 0 such that

Using Lemma 4.1 we find a § =

o,

we Lt = ()t + 5

LY(Q)). (4.7)
With (4.7) and u € L*(0, d1; LY(2)) we obtain due to the compactness of the
interval [0, 7] that u € L*(0,T"; L9(2)).

Now the theorem is completely proved. O

Proof of Theorem 1.3. By interpolation, in both cases the weak solution
u satisfies u € L* (0, T; L9(Q)). The idea of the proof is to use Lemma 4.1. To
control the term in (4.2) we use the interpolation inequality, see [1, Theorem
43.1],

1-5 Z
ollg < elloll, IVolls, v e Hy(),
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where ¢ = ¢(2,q) > 0. For § €]0,0p[ with a small d9 > 0 we get with
to:=t—9,t :=t+ 9 the estimate

t , ,
10):=4 (=¥ u)ly dar
A 1-2 2\
<1 [ (Jumly 7 Ivan)ls) " ar (48)
t—0

EA TIPS &
<t Ul [ Ivutlar

with a constant ¢ = ¢(€2,¢) > 0. Since u is supposed to satisfy the strong
energy inequality (1.5), we may proceed for almost all § €]0, dy[ as follows:

/t t6< fou) dr ) (4.9)

where the constant ¢ depends on [|u|2,00;7 in the case o > 1 and ¢ = ¢(Q) if
o= % By Hoélder’s inequality we get that

1) < So%1 (\E(t —5) — E()| +

(&
v

4—s'

t 4 7
< Jullsooir ( [ s d¢> (40
tf

As 5 = 4:15' and consequently f € L%S’(O,T; L?(9)), the left-hand side in

S
the previous inequality converges to 0 as § — 0+.

First consider the case o > % and choose € > 0 with ' = 4a — €. Due to

/

’ 1

= [ @)

the assumption (1.9) we get with 1 — % =T =a—7
s/ < |E(t—9)— E(t
lim 6% |B(t—08) - B(t) = lim ot EEZOZBOL_ oy
S0+ U 60+ v o«

Consequently the right hand side of (4.9) converges to 0 as § — 0+. Hence
we can fulfill (4.2) and, due to the assumption F' € L*(0,T; L"(Q2)), it is also
possible to satisfy (4.1). Altogether, Lemma 4.1 yields regularity of u at ¢.
Secondly, consider the case a = % in which s’ = 2, s = 4. We will choose
the constant 7, = 74(2) > 0 below. Let €, = €.(q) > 0 denote the constant
from Lemma 4.1. The assumption (1.10) implies that for all 0 < 6 < p
L|E({—0) - E(t)]

- 1 S YV
v 02

Nlw

(4.12)

Then by (4.9), (4.10) and (4.12) we get with a constant ¢ = ¢(2) > 0 for

almost all 6 €]0, §o[ that
t 2
socir ([ I£1307)
t—§&

Now with 7, := § we find 0 < § < p such that 1(0) < e*y%, cf. (4.2), and
that (4.1) is satisfied. Hence Lemma 4.1 implies regularity of u at ¢. O

1(6) < eyar? + S |u
14
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