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Consider the Navier-Stokes system with initial value u0 ∈ L2
σ(Ω) and vanishing external

force in a general (bounded or unbounded, smooth or nonsmooth) domain Ω ⊆ R3 and
a time interval [0, T ), 0 < T ≤ ∞. Our aim is to characterize the largest possible space
of initial values u0 yielding a unique strong solution u in Serrin’s class L8

(
0, T ;L4(Ω)

)
.

As the main result we prove that the additional condition
∫ ∞
0 ‖e−tA u0‖8

4 dt < ∞ is
necessary and sufficient for the existence of such a local strong solution u with u(0) = u0;
here A denotes the Stokes operator on L2

σ(Ω) generating the analytic semigroup e−tA,
t ≥ 0. This assumption on u0 is strictly weaker than the well-known D(A1/4)-condition
of Fujita and Kato (1964) and holds for general open connected subsets of R3.
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1 Introduction

We consider the instationary Navier-Stokes system

ut −∆u+ u · ∇u+∇p = 0, div u = 0

u|∂Ω
= 0, u(0) = u0

(1.1)

in a general domain Ω ⊆ R3 – by definition an open connected subset – with
boundary ∂Ω on a time interval [0, T ), 0 < T ≤ ∞, and with initial value u0.
First we recall the definitions of weak and strong solutions to (1.1) and introduce
some notations before describing the main results.

Definition 1.1. Given u0 ∈ L2
σ(Ω) a vector field

u ∈ L∞(
0, T ;L2

σ(Ω)
)
∩ L2

loc

(
[0, T ); W 1,2

0,σ (Ω)
)

(1.2)

is called a weak solution in the sense of Leray-Hopf of the Navier-Stokes system
(1.1) with initial value u(0) = u0 if the relation

−〈u,wt〉Ω,T + 〈∇u,∇w〉Ω,T − 〈uu,∇w〉Ω,T = 〈u0, w(0)〉Ω (1.3)
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holds for each test function w ∈ C∞
0

(
[0, T ); C∞

0,σ(Ω)
)
, and additionally the energy

inequality
1

2
‖u(t)‖2

2 +

∫ t

0

‖∇u‖2
2 dτ ≤

1

2
‖u0‖2

2 (1.4)

is satisfied for all t ∈ [0, T ).
Such a weak solution u is called a strong solution of (1.1) if additionally

Serrin’s condition
u ∈ Ls

loc

(
[0, T ); Lq(Ω)

)
(1.5)

is satisfied with exponents 2 < s <∞, 3 < q <∞ where 2
s

+ 3
q
≤ 1.

In this definition we used the Lebesgue spaces Lq(Ω), 1 < q <∞, with norm
‖·‖Lq(Ω) = ‖·‖q and pairing 〈·, ·〉Ω on Lq(Ω)×Lq′

(Ω) where q′ = q
q−1

. By analogy,

Bochner spaces on Ω× (0, T ) are denoted by Ls
(
0, T ;Lq(Ω)

)
, 1 < s, q <∞, with

norm

‖·‖Ls(0,T ;Lq(Ω)) =
( ∫ T

0

‖·‖s
q dτ

)1/s

= ‖·‖q,s,T

and pairing 〈·, ·〉Ω,T . Further, we need the usual Sobolev spaces
(
W k,q(Ω), ‖·‖k,q

)
,

k ∈ N, 1 < q < ∞, and W 1,2
0 (Ω) = C∞

0 (Ω)
‖·‖1,2

. To deal with solenoidal vector
fields we introduce the spaces C∞

0,σ(Ω) = {u ∈ C∞
0 (Ω) : div u = 0}, L2

σ(Ω) =

C∞
0,σ(Ω)

‖·‖2
and W 1,2

0,σ (Ω) = C∞
0,σ(Ω)

‖·‖1,2
. Note that for a solenoidal vector field

u = (u1, u2, u3) on Ω

u · ∇u =
3∑

j=1

uj∂ju = div (uu), uu = (uiuj)
3
i,j=1 ;

more generally, for a matrix-valued field F = (Fij)
3
i,j=1 = (Fi)

3
i=1 we define

divF = (divF1, divF2, divF3).
For properties of weak and strong solutions to (1.1) we refer to [1], [2], [10],

[11], [12], [13], [16]; for corresponding results in general domains, see e.g. [14,
Chapters V.1, V.3 and V.4]. Given a weak solution u we may assume without
loss of generality that u : [0, T ) → L2

σ(Ω) is weakly continuous; in this sense the
initial value u(0) = u0 is attained. Moreover, there exists an associated pressure
p in Ω× (0, T ), a distribution, such that

ut −∆u+ u · ∇u+∇p = 0

in the sense of distributions. Serrin’s condition (1.5) yields the following regularity
result: If ∂Ω is of class C∞, then

u ∈ C∞(
Ω× (0, T )

)
, p ∈ C∞(

Ω× (0, T )
)
;
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therefore, a strong solution is also called a regular solution. For these results,
in particular the existence of weak solutions, we refer to [14, Theorems V.1.3.1,
V.1.8.2, V.3.1.1 and Chapter V.1.7].

However, the uniqueness of weak solutions and the existence of strong solu-
tions to (1.1) for at least a sufficiently small interval [0, T ), 0 < T ≤ ∞, requires
a stronger assumption on u0 as in Definition 1.1. It is not known up to now
whether a strong solution u exists for each (sufficiently smooth) u0 and each
given interval [0, T ). As long as this problem is open we try to extend the class
of local strong solutions and to lower the assumptions on the set of initial values
as far as possible.

In this paper we construct and characterize the largest possible space of initial
values for local strong solutions in Serrin’s class L8

(
[0, T ); L4(Ω)

)
. To explain our

main theorem we have to introduce the Helmholtz projection P = P2 : L2(Ω) →
L2

σ(Ω) and the Stokes operator

A = A2 = −P∆ : D(A) → L2
σ(Ω)

with domain

D(A) = {v ∈ W 1,2
0,σ (Ω) : ∃f ∈ L2

σ(Ω) : 〈∇v,∇ϕ〉Ω = 〈f, ϕ〉Ω ∀ ϕ ∈ W 1,2
0,σ (Ω)}

such that Av = −P∆v = f , v ∈ D(A). It is known that for any domain Ω ⊆ R3

the operator A is self-adjoint and generates a bounded analytic semigroup e−tA,
t ≥ 0, on L2

σ(Ω). Further, we may define the fractional powers Aα : D(Aα) →
L2

σ(Ω), −1 ≤ α ≤ 1, such that D(A) ⊂ D(Aα) ⊂ L2
σ(Ω) for α ∈ (0, 1), see e.g.

[14, Chapters III.2.2 and IV.1].
Now our main result reads as follows:

Theorem 1.2. Let Ω ⊆ R3 be a general domain and let u0 ∈ L2
σ(Ω).

(1) The condition ∫ ∞

0

‖e−tAu0‖8
4 dt <∞ (1.6)

is necessary and sufficient for the existence of a unique strong solution

u ∈ L8
(
0, T ;L4(Ω)

)
(1.7)

of the Navier-Stokes system (1.1) with u(0) = u0 in some time interval [0, T ),
0 < T ≤ ∞.

(2) There exists an absolute constant ε∗ > 0 (independent of the domain) with
the following property: If∫ T

0

‖e−tAu0‖8
4 dt ≤ ε∗ for some 0 < T ≤ ∞, (1.8)

then the Navier-Stokes system (1.1) has a unique strong solution u on [0, T )
with u(0) = u0 satisfying (1.7).
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To interpret the results of Theorem 1.2 and to compare them with known
results we summarize some facts on the Stokes operator. The fractional powers
Aα of A satisfy the interpolation inequality

‖Aαv‖2 ≤ ‖Av‖α
2 ‖v‖1−α

2 , v ∈ D(A), 0 ≤ α ≤ 1, (1.9)

and the embedding estimate

‖v‖q ≤ C‖Aαv‖2, v ∈ D(Aα), 0 ≤ α ≤ 1

2
, 2α+

3

q
=

3

2
, (1.10)

with a constant C = C(α) > 0 independent of Ω. Moreover,

‖A1/2v‖2 = ‖∇v‖2, v ∈ W 1,2
0,σ (Ω) = D(A1/2). (1.11)

Concerning the Stokes semigroup we mention that

‖Aαe−tAv‖2 ≤ t−α‖v‖2, v ∈ L2
σ(Ω), 0 ≤ α ≤ 1, (1.12)

and that
‖A1/s e−tAv‖2,s;T ≤ ‖v‖2, v ∈ L2

σ(Ω), 2 ≤ s <∞; (1.13)

see in particular [14, Chapters III.2 and IV.1].
Theorem 1.2 should be compared with similar, but more general results in [6]

where the authors analyzed the same problem in smooth bounded domains. The
condition (1.6) is replaced by the more general condition∫ ∞

0

‖e−tA2u0‖s
q <∞,

2

s
+

3

q
= 1, 2 < s <∞, 3 < q <∞,

on u0 ∈ L2
σ(Ω) using the Lq-theory of the Stokes operator in bounded domains.

However, in general unbounded domains and also in bounded domains with non-
smooth boundary only an L2-theory is available leading to the exponents s = 8,
q = 4 in (1.5).

Remark 1.3. (1) The initial condition (1.6) is not only sufficient, but also nec-
essary for the existence of a strong solution u ∈ L8

(
0, T ;L4(Ω)

)
of (1.1) in some

interval [0, T ), T > 0. Therefore, the condition (1.6) yields within L2
σ(Ω) the

largest possible initial value space for the existence of such unique local strong
solutions u.

(2) The constant ε∗ > 0 in (1.8) is a so-called absolute constant. In particular,
ε∗ does not depend on the domain Ω. Therefore, if for each domain Ω ⊆ R3 an
initial value u0 = u0(Ω) ∈ L2

σ(Ω) is given and satisfies (1.8) uniformly with
respect to Ω with some fixed 0 < T ≤ ∞, then there exists a strong solution
uΩ ∈ L8

(
0, T ;L4(Ω)

)
with the same interval of existence [0, T ) for all domains Ω.

4



(3) Using (1.10) with α = 3
8
, q = 4 and (1.12) we observe that

‖e−tAu0‖4 ≤ C‖A3/8 e−tAu0‖2 ≤ Ct−3/8‖u0‖2, u0 ∈ L2
σ(Ω). (1.14)

Therefore, the condition (1.6) simply means the integrability of the (continuous)
function t 7→ ‖e−tAu0‖4 near t = 0. Moreover, the validity of (1.8) implies due to
(1.14) that (1.6) is satisfied.

(4) Using (1.10) with α = 3
8
, q = 4 and (1.13) with s = 8 we conclude for any

u0 ∈ D(A1/4) that∫ T

0

‖e−tAu0‖8
4 dt ≤ C

∫ ∞

0

‖A1/8 e−tA
(
A1/4u0

)
‖8

2 dt ≤ C‖A1/4u0‖8
2.

Hence the assumption u0 ∈ D(A1/4) implies (1.6). Note that the condition u0 ∈
D(A1/4) was used by H. Fujita and T. Kato [7] to guarantee the existence of a
local strong solution in a bounded domain; this result was extended to general
domains in [14, Theorem V.4.2.2]. Theorem 1.2 implies that the solution class
defined by (1.6) is (strictly) larger than the class defined by u0 ∈ D(A1/4).

It is not difficult to extend Theorem 1.2 to nonvanishing external forces f =
divF with F ∈ L4

(
0, T ;L2(Ω)

)
. In this case we consider instead of (1.1) the

Navier-Stokes system

ut −∆u+ u · ∇u+∇p = f, div u = 0,

u|∂Ω
= 0, u(0) = u0.

(1.15)

By definition a weak solution u of (1.15) satisfies (1.2),

−〈u,wt〉Ω,T + 〈∇u,∇w〉Ω,T − 〈uu,∇w〉Ω,T = 〈u0, w(0)〉Ω − 〈F,∇w〉Ω,T (1.16)

for all test functions w ∈ C∞
0

(
[0, T ); C∞

0,σ(Ω)
)

and the energy inequality

1

2
‖u(t)‖2

2 +

∫ t

0

‖∇u‖2
2 dτ ≤

1

2
‖u0‖2

2 −
∫ t

0

〈F, u〉Ω dτ, t ∈ (0, T ), (1.17)

instead of (1.4). Further, as in Definition 1.1, a weak solution of (1.15) is called
a strong solution if additionally Serrin’s condition (1.5) is satisfied. Then we get
a more general result the proof of which will be omitted:

Theorem 1.4. Let Ω ⊆ R3 be a general domain and let u0 ∈ L2
σ(Ω), f = divF ,

F ∈ L4
(
0, T ;L2(Ω)

)
.

(1) The condition ∫ ∞

0

‖e−tAu0‖8
4 dt <∞

is necessary and sufficient for the existence of a unique strong solution u ∈
L8

(
0, T ;L4(Ω)

)
of (1.15) in some time interval [0, T ), 0 < T ≤ ∞.
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(2) There exists an absolute constant ε∗ > 0 with the following property: If for
some 0 < T ≤ ∞ ∫ T

0

‖e−tAu0‖8
4 dt+

∫ T

0

‖F‖4
2 dt ≤ ε∗,

then the Navier-Stokes system (1.15) has a unique strong solution u ∈
L8

(
0, T ;L4(Ω)

)
in [0, T ).

2 Proof of Theorem 1.2

To carry out the proof of Theorem 1.2 we need some preliminaries on linear
problems.

Let F = (Fij)
3
i,j=1 ∈ L2(Ω). Then there exists a unique vector field ψ ∈ L2

σ(Ω),

also denoted by A−1/2 P divF , such that

〈ψ, ϕ〉 = −〈F,∇A−1/2 ϕ〉 for all ϕ ∈ L2
σ(Ω).

In this sense, the operator A−1/2 P div : L2(Ω) → L2
σ(Ω) is well-defined by the

relation
〈A−1/2PdivF, ϕ〉 = −〈F,∇A−1/2ϕ〉, ϕ ∈ L2

σ(Ω) ,

and satisfies the estimate

‖A−1/2 P divF‖2 ≤ ‖F‖2 , F ∈ L2(Ω), (2.1)

see also [14, Lemma III.2.6.1].

Lemma 2.1. On a general domain Ω ⊆ R3 we consider the instationary Stokes
system

ut −∆u+∇p = f, div u = 0 in Ω× (0, T ),

u|∂Ω
= 0, u(0) = u0.

(2.2)

(1) Assume f = divF , F ∈ L2
(
0, T ;L2(Ω)

)
, and u0 ∈ L2

σ(Ω). Then (2.2) has
a unique weak solution u satisfying (1.2) (and (1.16) without the nonlinear
term 〈uu,∇w〉Ω,T ) and the energy inequality (1.17). Moreover, u has the
representation

u(t) = e−tA u0 +

∫ t

0

A1/2e−(t−τ)AA−1/2P divF dτ, 0 ≤ t < T. (2.3)

(2) Assume f ∈ Ls
(
0, T ;L2(Ω)

)
, 1 < s < ∞, and u0 = 0. Then (2.2) has

a unique weak solution u which also may be interpreted as solution of the
abstract evolution problem

ut + Au = Pf, u(0) = 0. (2.4)
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This solution u has the representation

u(t) =

∫ t

0

e−(t−τ)A Pf dτ, (2.5)

admits the maximal regularity estimate

‖ut‖2,s;T + ‖Au‖2,s;T ≤ C‖f‖2,s;T (2.6)

with some constant C = C(s) > 0; in particular, ut, Au ∈ Ls
(
0, T ;L2(Ω)

)
.

Moreover, for every s ≤ r <∞ and α = 1 + 1
r
− 1

s
,

‖Aαu‖2,r;T ≤ C‖Pf‖2,s;T (2.7)

with some constant C = C(r, s) > 0.

Proof. For the proof of (1) cf. [14, Lemma IV.2.4.2], for the proof of (2) [14,
Theorem IV.2.5.2]. Actually, (2.7) is a consequence of (1.12) and of the Hardy-
Littlewood inequality: By (2.5)

‖Aαu(t)‖2 ≤
∫ t

0

(t− τ)−α ‖Pf‖2 dτ

and consequently ‖Aαu‖2,r;T ≤ C‖Pf‖2,s;T .

Proof of Theorem 1.2(2). First we assume that the inequality∫ T

0

‖e−tAu0‖8
4 dt ≤ C

holds with 0 < T ≤ ∞ and any given constant C > 0. Later on we will choose
C = ε∗ > 0 sufficiently small. Moreover, let us assume at the beginning of the
proof that u ∈ L8

(
0, T ;L4(Ω)

)
is a given strong solution of (1.1) with u(0) = u0.

Then we set F = −uu and write (1.1) as a linear system in the form

ut −∆u+∇p = divF, div u = 0,

u|∂Ω
= 0, u(0) = u0.

Since by Hölder’s inequality

‖F‖2,4,T = ‖uu‖2,4,T ≤ c‖u‖2
4,8;T <∞

with some absolute constant c > 0, we obtain that

F = −uu ∈ L4
(
0, T ;L2(Ω)

)
.
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Lemma 2.1(1) yields the representation

u(t) = e−tA u0 −
∫ t

0

A1/2e−(t−τ)AA−1/2P div (uu)dτ (2.8)

and the energy inequality (1.17) for all t ∈ [0, T ); in particular, u is also a weak
solution. First this holds if T is finite since F ∈ L2

(
0, T ;L2(Ω)

)
is needed in this

lemma. However, if T = ∞, we obtain the same result by applying this lemma
to all finite intervals.

Now (2.8) will be considered as a fixed point problem for the strong solution
we are looking for. Let X be the Banach space of vector fields,

X = {u : (0, T ) → L2
σ(Ω) : (A−1/2u)t, A

1/2u ∈ L4
(
0, T ;L2(Ω)

)
, (A−1/2u)(0) = 0},

equipped with the norm

‖u‖X = ‖(A−1/2u)t‖2,4;T + ‖A1/2u‖2,4;T <∞.

Note that, since (A−1/2u)t ∈ L4
(
0, T ;L2(Ω)

)
, the map t 7→ A−1/2u(t) is Hölder-

continuous from [0, T ) to L2
σ(Ω); in particular the initial condition A−1/2u(0) = 0

is well-defined. Moreover, the interpolation estimate

‖u(t)‖2 = ‖A1/2A−1/2u(t)‖2 ≤ ‖A1/2u(t)‖1/2
2 ‖A−1/2u(t)‖1/2

2 ,

see (1.9), implies that

u ∈ L4
loc

(
[0, T );L2

σ(Ω)
)

for every u ∈ X. (2.9)

We claim that X is continuously embedded into L8
(
0, T ;L4(Ω)

)
; more pre-

cisely,
‖u‖4,8;T ≤ c‖u‖X for all u ∈ X (2.10)

with an absolute constant c > 0. For its proof consider u ∈ X and set ũ = A−1/2u
and f̃ = A−1/2ut + A1/2u ∈ L4

(
0, T ;L2

σ(Ω)
)
. Obviously ũ is a solution of the

abstract evolution problem

ũt + Aũ = f̃ , ũ(0) = 0,

cf. (2.4). Then Lemma 2.1(2) yields the representation formulae

A−1/2u(t) =

∫ t

0

e−(t−τ)Af̃ dτ,

u(t) =

∫ t

0

A1/2e−(t−τ)Af̃ dτ, 0 ≤ t < T,

as well as the a priori estimate

‖u‖4,8;T ≤ c‖A3/8u‖2,8;T = ‖A7/8ũ‖2,8;T

≤ c‖f̃‖2,4;T ≤ c‖u‖X ;
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with absolute generic constants c > 0; for the proof of this estimate we used
(1.10) with α = 3

8
, q = 4 and (2.7) with α = 7

8
, r = 8, s = 4. Now (2.10) is

proved.
Returning to (2.8) set v(t) = e−tAu0, U = v − u and h = A−1/2 P div (uu) ∈

L4
(
0, T ;L2(Ω)

)
so that

U(t) =

∫ t

0

A1/2e−(t−τ)Ah dτ, A−1/2U(t) =

∫ t

0

e−(t−τ)Ah dτ.

Then the maximal regularity estimate (2.6) with s = 4 and (2.1) yield the in-
equality

‖U‖X ≤ c1‖h‖2,4;T ≤ c1‖uu‖2,4;T ≤ c2‖u‖2
4,8;T <∞ (2.11)

with absolute constants c1, c2 > 0. Summarizing the previous estimates we see
that

U = v − u ∈ X ⊂ L8
(
0, T ;L4(Ω)

)
. (2.12)

To solve the fixed point problem (2.8) in X we define the nonlinear operator
F by

F(U)(t) =

∫ t

0

A1/2e−(t−τ)AA−1/2 P div (uu)dτ

=

∫ t

0

A1/2e−(t−τ)AA−1/2 P div
(
(v − U)(v − U)

)
dτ. (2.13)

From (2.11) we conclude that F : X → X and that

‖F(U)‖X ≤ c2‖v − U‖2
4,8;T ≤ c2

(
‖U‖4,8;T + ‖v‖4,8;T

)2
. (2.14)

Obviously, a solution u ∈ L8
(
0, T ;L4(Ω)

)
of (2.8) is a fixed point U ∈ X of F

and vice versa when defining U = v − u. To find a fixed point U ∈ X of F let
b = ‖v‖4,8;T , use (2.10), write (2.14) in the form

‖F(U)‖X + b ≤ c
(
‖U‖X + b

)2
+ b

with an absolute constant c > 0, and consider the quadratic equation

y2 − 1

c
y +

b

c
= 0 on (0,∞).

Next we choose the constant ε∗ > 0 in (1.8) in such a way that ε∗ <
(

1
4c

)8
; this

condition implies that the assumption b = ‖v‖4,8;T < ε
1/8
∗ in (1.8) leads to 4cb < 1

and that the above quadratic equation has a minimal positive root y1 satisfying
y1 < 2b. Defining the closed ball B = {U ∈ X : ‖U‖X ≤ y1 − b} we get that for
U ∈ B

‖F(U)‖X + b ≤ c
(
‖U‖X + b)

)2
+ b ≤ cy2

1 + b = y1
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and consequently F(B) ⊂ B.
To show that F is a strict contraction on B consider U,U ′ ∈ B. Then we

obtain(
F(U)−F(U ′)

)
(t) =

∫ t

0

A1/2e−(t−τ)AA−1/2P div
(
(v−U)(U ′−U)+(U ′−U)(v−U)

)
dτ

and the arguments which led to (2.14) now yield the inequality

‖F(U)−F(U ′)‖X ≤ c
(
‖U‖X + b+ ‖U ′‖X + b

)
‖U − U ′‖X

≤ 2cy1‖U − U ′‖X ≤ 4cb‖U − U ′‖X .

This proves that F : B → B is a strict contraction, and Banach’s fixed point
theorem yields the existence of U ∈ X satisfying F(U) = U . Then we set
u = v−U and have to show that u is the strong solution in [0, T ) we are looking
for. For this purpose we need the following properties.

By the assumption (1.8) we know that v ∈ L8
(
0, T ;L4(Ω)

)
, and, since u0 ∈

L2
σ(Ω), (1.13) with s = 2 implies that A1/2v, ∇v ∈ L2

(
0, T ;L2(Ω)

)
whereas the

integrability v ∈ L∞(
0, T ;L2(Ω)

)
is obvious. Hence

v ∈ L∞(
0, T ;L2(Ω)

)
∩ L2

loc

(
[0, T );W

1/2
0,σ (Ω)

)
.

Concerning U ∈ X we conclude from (2.10) that U ∈ L8
(
0, T ;L4(Ω)

)
so that

also u = v − U ∈ L8
(
0, T ;L4(Ω)

)
and

uu ∈ L4(0, T ;L2(Ω)
)
.

Moreover, due to (2.9), U ∈ L4
loc

(
[0, T );L2

σ(Ω)
)

so that even U ∈ L2
loc

(
[0, T );

W 1,2
0,σ (Ω)

)
. Hence also

u ∈ L2
loc

(
[0, T );W 1,2

0,σ (Ω)
)
.

Since U = F(U), (2.13) yields for u = v − U the representation

u(t) = e−tAu0 −
∫ t

0

A1/2e−(t−τ)AA−1/2 P div (uu)dτ, 0 ≤ t < T.

Here F := −uu ∈ L2
loc

(
[0, T ;L2(Ω)

)
, and Lemma 2.1(1) implies that u is the

well-defined weak solution of the Stokes system with right-hand side f = divF .
Therefore, u satisfies the energy inequality (1.17) on [0, T ), but (1.2) only with
T replaced by any finite T ′ ∈ (0, T ]. However, a direct calculation shows that

〈F,∇u〉Ω = −〈uu,∇u〉Ω = 〈u, 1
2
∇|u|2〉Ω = −1

2
〈div u, |u|2〉Ω = 0

and that the energy inequality (1.17) is satisfied in the form

1

2
‖u(t)‖2

2 +

∫ t

0

‖∇u‖2
2 dτ ≤

1

2
‖u0‖2

2, 0 ≤ t < T,
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which implies (1.2), see [14, Theorem V.1.4.1]. Now we conclude that u is the
strong and weak solution of (1.1) we are looking for.

The proof of Theorem 1.2(2) is complete. �

Proof of Theorem 1.2(1). Suppose (1.6) is satisfied. Then we find T > 0 such
that (1.8) holds, and Theorem 1.2(2) shows the existence of a unique strong
solution u ∈ L8

(
0, T ;L4(Ω)

)
of (1.1) with u(0) = u0. Hence (1.6) is sufficient.

Conversely, assume that u ∈ L8
(
0, T ;L4(Ω)

)
is a strong solution of (1.1) on

[0, T ), 0 < T ≤ ∞. Then (2.8), (2.12) imply that v − u ∈ L8
(
0, T ;L4(Ω)

)
where

v(t) = e−tAu0. Hence ∫ T

0

‖e−tAu0‖8
4 dt <∞.

Finally, due to (1.14),
∫ ∞

T
‖e−tAu0‖8

4 dt < ∞, and u0 satisfies (1.6). This com-
pletes the proof of Theorem 1.2. �
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