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This supplemental material is organized as follows:

In Section A we give more detailed descriptions of our datasets,
a table of their key properties, all solver’s final energies, as well
as plots for all experiments (in contrast to the main paper, where
we could only show a selection for space considerations) in larger,
printable form.

Afterwards, in Section B we formally prove some of our paper’s
claims, mostly from Section 4.

The source code for our paper is available at www.gcc.tu-d
armstadt.de/home/proj/mapmap.

A. Extended Dataset Description and Experimental Results

In the main paper, we kept the presentation of our used datasets
concise in favor of brevity; the same holds for the discussion of
experimental results. In this part of the supplemental material, we
augment both sections with more details. Apart from an extended
textual description, Table A.1 lists the key properties of all datasets
that we used for evaluation.

A.1. Extended Dataset Description

In the following we give a short description of what applications
our datasets – except for those originating from Kappes’ bench-
mark [KAH∗15] – arise from.

Plane Sweep. Plane sweeping is a standard method in stereo re-
construction. Given a base image and a set of reference images with
corresponding camera parameters, the reference images are itera-
tively projected onto planes parallel to the base image at different
depths. A photometric difference metric between these projections
and the base view yields the unary costs. For regularization, one
commonly assumes a fronto-parallel, piecewise-planar prior, which
can be expressed by a truncated linear model. To improve runtime,
the unary cost matrix can be sparsified. In our dataset, we used the
“Arts” images from the Middlebury Stereo benchmark [SP07]. The
unary costs are given by the cost volume, discretized into 100 la-
bels. On average each node has 32 feasible labels. As binary costs,

a truncated linear term V{i, j}(`1, `2) = min(|`1− `2|,2) was used.
As such, these datasets are the prototypical example of pixel-based
grid topologies which were the workhorse for parallel solvers in
recent years.

3D Model Texturing. Waechter et al. [WMG14] texture 3D re-
constructions with 3D-registered input photos by letting MRFs as-
sign photos to mesh triangles. Mesh triangles are turned into MRF
nodes, mesh edges are MRF edges, input photos are labels, and the
photos are assigned to triangles subject to the following: The unary
costs aim at assigning a suitable (i.e., ideally orthogonal, close-up,
in focus) photo to a triangle and the binary costs (Potts model) pun-
ish adjacent triangles being textured from different photos. The re-
sulting MRFs are neither planar nor a grid and they exceed 107 vari-
ables and 500 labels. A small example was given in Figure 1. While
most nodes have a degree of 3, no regular structure can be assumed,
especially since the input meshes where not hand-crafted but ob-
tained with image-based modeling (multi-view stereo plus surface
reconstruction). We use the public source code and datasets [Gra16]
of Waechter et al.. To obtain smaller MRFs for testing, we simpli-
fied the meshes. The number after the dataset (e.g., Citywall-40) is
a simplification parameter: 100 means full quality, smaller means
less triangles / MRF variables.

Mesh Segmentation. Segmenting a 3D mesh into different, mean-
ingful parts is another source of irregular MRFs. According to Chen
et al. [CGF09], Shapira et al.’s shape diameter function [SSCO08]
is a state of the art technique. While Shapira et al. determine the
appropriate number of labels by repeated optimization with an in-
creasing number of labels, we minimize the label count by us-
ing label costs. Apart from that, we use the costs as determined
by the shape diameter function. As meshes, we use the Stanford
Dragon and Bunny [Sta], a scaled version of the Dolphin accompa-
nying the iVRML viewer [ivr], and CGAL’s shape diameter func-
tion code [CGA15].

Graph Coloring. In contrast to most computer vision applica-
tions, some applications may have anti-metric or arbitrary binary
costs. In graph coloring (used, e.g., in robotics [DEdW09]) the bi-
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nary costs are anti-Potts models: V{i, j}(`1, `2) = wi, j [`1 = `2]. Ad-
ditionally, we can use small label costs (e.g. M` = 0.1) to minimize
the number of labels used for the coloring. Our datasets are based
on irregular, undirected, connected random graphs where the node
degrees were sampled with a Gaussian distribution with mean 10.

We show results for all datasets in Figures A.1, A.2 and A.3. As
in the main paper, energies (y-axis) are relative to the best found
solution for the problem. In addition, we give the absolute energies
in Table A.1. For each dataset/method pair that is feasible, the table
contains the energy of the best feasible solution a method found in
the time span given until manual or automatic termination.

A.2. Extended Experimental Evaluation and Discussion

Kappes’ Benchmark. The benchmark results are shown in Fig-
ures A.1a–f and in Figure A.3. In the stereo datasets our perfor-
mance is as expected: While the energy is comparable (difference
<0.1 %) to other solvers, there is no advantage in terms of time-to-
solution. This is also due to the size of the datasets: With 16 or 20
labels and <200,000 nodes they are relatively small and the GPU’s
processing groups are underutilized. We expect that an improved
load balancing or node grouping for processing groups would be
beneficial for this kind of datasets. For the even smaller brain in-
stances we achieve almost the same energy as all other methods,
albeit slower. With only 5 labels per node, these MRFs resemble
the characteristics of the stereo datasets and thus share their expla-
nation.

The Knott-3D datasets pose a different challenge: A relatively
small number of nodes and edges, but a huge number of labels
makes these datasets difficult for GPU acceleration. Due to the
high number of labels, the dynamic programming table cannot be
cached in shared memory, hence all computations are executed on
global memory, severely hurting performance. Nevertheless, the
GPU dominates the other algorithms in terms of solution quality
and speed. This is in part due to the fact that a high number of
labels results in a higher amount of readily-available parallelism,
thereby countering the quadratic complexity in the number of labels
per node. In addition, these datasets are the only datasets included
that have positive and negative costs, expressed as edge weights. In
practice, this is no limitation for our solver.

Plane Sweep. The results in Figures A.1g–i show that the solver’s
performance does not vary much between the different dataset
sizes. Since the label count per node is roughly constant among
the three versions, all statements about solution quality and speed
hold for all three datasets. As parallel solvers such as GRIDGCO
are tuned for this type of input data, we did not expect our general-
purpose solver to make any significant win here. At least for the
largest plane sweep case, there is enough work to keep all pro-
cessing elements busy; hence in terms of potential, we are already
approaching the upper bound as determined by the algorithm and
hardware. Hence, only a completely different algorithm might have
a shot at being a leap forward for these regular datasets. The en-
ergy differences after convergence between our and the best solver
(GCO) are not crucial for the application. Meltzer et al. [MYW05]
analyzed depth maps in a similar setting and concluded that instead
of the “last percent“ in energy one should rather strive to improve

the stereo model. A visual comparison in Section A.3 confirms this
observation. Besides, stereo belongs to a group of applications (for
more, see Kappes et al. [KAH∗15]) that suffer from weak LP re-
laxations, hence the advantage for primal solvers.

Mesh Segmentation. The Dragon dataset’s size is similar to
Kappes’ Venus. As Figure A.1j shows, we outperform all solvers in
speed and quality except for BP and TRW-S, who reach a slightly
better quality in comparable time. Since only 5 labels are used, the
GPU is heavily underutilized. Again, fine-grained load balancing
could result in a big speedup. Bunny and Dolphin yield even smaller
MRFs. This reflects on the results (Figures A.1k–l): Whereas for
the Dragon our solution was slightly worse than the competitors’
but in roughly the same time, we perform worse speed-wise for
Bunny and Dolphin. Profiling the GPU version with NVIDIA’s
tools showed that our solver’s overhead (e.g., GPU setup time)
dominates algorithm runtime and our approach seems unsuitable
for very small datasets.

Texturing. The sizes of the different texturing datasets vary by
more than one order of magnitude. Regarding their node count,
Reader-20 and Citywall-20 are comparable with Kappes’ bench-
mark datasets and our plane sweep data. However, their number of
labels exceeds those by at least a factor of 5 whereas their cost ma-
trix is very sparse. This combination of topology size, huge number
of labels and sparsity is challenging for most solvers. Citywall-20
and Reader-20 can still be handled by all solvers handling irregular
topologies. Here, our GPU and CPU versions deliver solutions that
compare favorably to most solvers in quality (with the exception of
GCO and FastPD) about twice as fast, see Figures A.2a and d.

FastPD and BP are unable to handle the larger datasets Reader-
40 and Citywall-40, so only GCO and TRW-S are considered. The
quality of the solutions mimic the behavior on the smaller datasets
(see Figures A.2b and e): Our solver is slightly inferior to GCO, but
delivers its comparable solution about 4 times faster. The difference
in solution quality is not visible in the final, textured mesh. TRW-S’
performance is significantly worse than our solvers’ and GCO’s.

For Reader-100 and Citywall-100 only our solvers and GCO
were applicable due to enormous memory requirements. These
datasets are ideal candidates for our algorithm: The huge node and
label count offers enough parallelism to saturate the hardware, and
both models prefer large, homogeneous regions. As Figures A.2c
and f show, our solvers excel in both cases: Our GPU solver’s solu-
tion after 1 minute is often already better than GCO’s final solution
after 1.5 hours. GCO’s larger energy here stands in contrast to the
smaller datasets. We suspect (among others) numerical issues as
a potential cause: Since floating point numbers are used as costs,
adding up all costs to form the objective value is subject to numer-
ical instabilities due to lack of precision. In our parallel implemen-
tation, this addition is done as a parallel reduction, which is nu-
merically more stable. However, in practice the energy discrepancy
between GCO and our solvers may be irrelevant for the results’ vi-
sual appearance; see the supplemental material’s Section A.3 for a
visual comparison.

Graph Coloring. Graph coloring uses anti-metric costs, which
only TRW-S and BP support. Figures A.2g–l give results. As al-
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Figure A.1: Relative difference to lowest energy over logarithmic time (in seconds) for different datasets.
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Figure A.2: Relative difference to lowest energy over logarithmic time (in seconds) for different datasets.
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Figure A.3: Relative difference to lowest energy over logarithmic time (in seconds) for different datasets.

ready mentioned, our solver detects this cost type and skips the
region graph heuristic. Instead we found our BCD scheme without
heuristics to be very effective. Our solver found the best solution in
all cases. Especially for the large datasets there is a good speedup.
If TRW-S and BP do not find the optimal solution 0, they often con-
verge after one iteration with a poor solution. Note that both solvers
continued to run for more iterations, slowly improving the lower
bound, but did not round that into a primal solution of smaller ob-
jective; for a fair comparison, we treated this case as if the solvers
had terminated after finding the first primal solution. Despite the
superiority of our solver in this case, there is still room for im-
provement: By handling multiple nodes per processing group, we
could increase the number of parallel tasks available at any time as
already suggested for Kappes’ datasets.

A.3. Visual Quality of Results in Applications

In the plane sweep datasets, our solver’s final energy was slightly
inferior to other solvers such as GCO. As Meltzer [MYW05] ar-
gues, in computer vision applications one should generally prefer
to tune the model instead of squeezing out the last bit of energy
close to the global optimum. We want to support this view by two
comparisons of solution quality. In Figure A.4, we compared the
solution of our solver with GCO’s. Despite the small energy dif-
ference, the solutions are both acceptable for application purposes.
Note that our solver generates the solution in a matter of seconds.

Additionally, we show an example of a texturing result in Fig-
ure A.5: A comparison between GCO’s result at convergence af-
ter more than 30 minutes and our result (with a lower energy than
GCO) after 1 minute using the GPU. Our energy is a bit smaller
than GCO’s, but the differences are hardly visible in the final tex-
tured object, which supports our point from above.

B. Proofs

In this section we prove some of our paper’s claims. Though it
seems intuitively clear that BCD with any nonempty coordinate set
that obeys the partitioning requirement leads to a sequence of so-
lutions with monotonous decreasing energy, a proof clearly shows
the consequence of not adhering to the partitioning requirement.

In the following, we first show that larger coordinate sets lead
to a potentially larger energy decrease (Section B.2) and deduce
the monotonicity of BCD (Section B.3) from there. Lastly, we give
a short proof of the upper bound on our treatment of label costs
(Section B.4).

During these proofs we concentrate on the case of a single set
of feasible labels L shared by all nodes to keep the representation
short and readable. The other cases can be proven as follows:

• For sparse cost tables: instead of summing over L for every node
i, we sum over Li for node i;

• For label costs: after each (part of the) objective add the label
cost term; the sets of used labels include free and fixed variables
for a given coordinate set. Note that using these proofs algorith-
mically with label costs would require an exact solver for label
costs on trees.

B.1. Notation

First, we introduce some short-hand notation that makes the formu-
lation of the optimization problems in the following proofs more
compact and easier to read.

Sum Notation. For index sets S′1 ⊆ S1, S′2 ⊆ S2, . . . , S′n ⊆ Sn and a
multi-array ν∈ {0,1}S1×S2×···×Sn , we define a short-hand notation
for an indexed sum

ν(S′1,S
′
2, . . . ,S

′
n) = ∑

i1∈S′1
∑

i2∈S′2

· · · ∑
in∈S′n

νi1,i2,...,in .

Local Polytope. The MRF labeling problem can be expressed as
an integer linear program using the sets P and N . As usual in the
literature, we use binary variables ν ∈ {0,1}P×L, where νi,` = 1
(i ∈ P , ` ∈ L) if and only if f (i) = `. Similarly, µ ∈ {0,1}N×L×L
represents edges: For {i, j} ∈ N and `1, `2 ∈ L, µ{i, j},`1,`2

= 1 if
and only if f (i) = `1 and f ( j) = `2. The equations of the so-called
local polytope P describe the set of feasible labelings by coupling
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Figure A.4: Depth map resulting from optimization of the Planesweep_1280_1022_96 dataset for (a) GCO and (c) our solver. (b) shows the
difference image (a gray value of 128 corresponds to a difference of 0).

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure A.5: Citywall-100 texturing results for (a) GCO and (c) our solver and labeling visualization for (b) GCO and (d) our solver. Each
color corresponds to a specific view from which the region is textured. Both results are largely similar with only minor differences.

node and edge variables:

ν({i},L) = 1 ∀ i ∈ P
µ({i, j},L,L) = 1 ∀{i, j} ∈ N

µ({i, j},{`1},L) = νi,`1 ∀{i, j} ∈ N , ∀`1 ∈ L
µ({i, j},L,{`2}) = ν j,`2 ∀{i, j} ∈ N , ∀`2 ∈ L.

Objective Function. Objective (1) (without label costs) translates
directly into the new domain of (ν,µ) variables:

E(ν,µ) = ∑
i∈P

∑
`∈L

νi,`Di(`)+

∑
{i, j}∈N

∑
`1∈L

∑
`2∈L

µ{i, j},`1,`2
V{i, j}(`1, `2)+ ∑

`∈L
δ`M`.

B.2. Effectiveness of Larger Coordinate Sets

We start with proving the fact that

Lemma 1 In BCD, choosing a coordinate set C2 over C1, where
C1 ⊆ C2, leads to a potentially higher decrease in energy, i.e. for
their respective resulting assignments f̂1, f̂2 the relation E( f̂2) ≤
E( f̂1) holds.

Proof Let C be a non-empty coordinate set. Without loss of gener-
ality, for an edge {i, j} ∈ N∆ we can assume that i ∈ C and j ∈ F
by corresponding changes in the ordering of edges considered as
dependencies. In the space of the local polytope P(C), the sets C
and F partition the variables into free (coordinates) and fixed vari-
ables. Accordingly, the description of the local polytope given an
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assignment f changes to

ν({i},L) = 1 ∀ i ∈ C
νi, f (i) = 1 ∀ i ∈ F

µ({i, j},L,L) = 1 ∀{i, j} ∈ NC
µ({i, j},{`1},L) = νi,`1 ∀{i, j} ∈ NC , ∀`1 ∈ L
µ({i, j},L,{`2}) = ν j,`2 ∀{i, j} ∈ NC , ∀`2 ∈ L

µ({i, j},{ f (i)},L) = 1 ∀{i, j} ∈ N∆

µ({i, j},L\{ f (i)},L) = 0 ∀{i, j} ∈ N∆

µ{i, j}, f (i), f ( j) = 1 ∀{i, j} ∈ NF .

Removing constant terms yields the objective of the subproblem,
see Equation (2):

EC(g) = ∑
i∈C

Di(g(i))+ ∑
{i, j}∈NC

V{i, j}(g(i),g( j))+

∑
{i, j}∈N∆

V{i, j}(g(i), fF ( j)).

Now let C1,C2 be as introduced above; both shall respect the par-
tition requirement. The corresponding polytopes are P(C1) and
P(C2). We show that P(C1)⊆ P(C2) (note that both polytopes live
in the space of the original variables (ν,µ), only some variables are
fixed to either 0 or 1):
Let νi,` for i ∈ P, ` ∈ L be a free variable in P(C1). Since C1 ⊆ C2,
νi,` is also free in P(C2). For µ-variables µ{i, j},`1,`2

(`1, `2 ∈ L) we
use a case distinction:
• {i, j} ∈ NC1 : Since all covered links are included in the coordi-

nate sets,NC1 ⊆NC2 . Thus, µ{i, j},`1,`2
is also free in P(C2).

• {i, j} ∈ N∆1 : If j ∈ F2, then by definition {i, j} ∈ N∆2 and
µ{i, j},`1,`2

is free in P(C2). Similarly, this holds if i ∈ C2, since
then {i, j} ∈NC2 (dependency becomes a link). This shows that
N∆1 ⊆N∆2 ∪NC2 .

Thus, every variable that is free in P(C1) is also free in P(C2). For
optimal solutions g∗1 , g∗2 of the subproblems with respect to Equa-
tion (2), this clearly implies

EC1(g
∗
1 )≥ EC2(g

∗
2 ). (B.1)

For the claim, we now turn to the newly constructed solutions. To
this end, we define f̂C1 and f̂C2 to be the assignments obtained by
replacing the labels in C1 and C2, by their counterparts of the op-
timal solutions g∗1 and g∗2 , respectively. With little partitioning, we
notice that Objective (1) can be written as

E( f̂1) = EC1(g
∗
1 )+ ∑

i∈F1

Di( f̂1(i))︸ ︷︷ ︸
a1

+ ∑
{i, j}∈NF1

V{i, j}( f̂1(i), f̂1( j))

︸ ︷︷ ︸
a2

and

E( f̂2) = EC2(g
∗
2 )+ ∑

i∈F2

Di( f̂2(i))︸ ︷︷ ︸
b1

+ ∑
{i, j}∈NF2

V{i, j}( f̂2(i), f̂2( j))

︸ ︷︷ ︸
b2

.

With C1 ⊆ C2, NC1 ⊆ NC2 and f̂1(i) = f̂2(i) ∀i ∈ C2, we clearly
have b1 ≤ a1 and b2 ≤ a2. Together with Inequality (B.1), this
yields the claim.

B.3. Monotonicity of BCD

Following the proof above, we now give a short proof sketch for
BCD’s monotonicity, i.e.

Lemma 2 For any coordinate set C2 and assignment f , BCD results
in an assignment f̂ such that E( f̂ )≤ E( f ).

Proof Use a coordinate set C1 =P and thus EC1(g
∗
1 ) = E( f ) in the

proof above.

We assumed the partitioning requirement to be satisfied above.
The next section deals with the consequences of not obeying it.

B.3.1. Relaxing the Partitioning Requirement

Whenever the partitioning requirement is not satisfied, monotonic-
ity cannot be guaranteed. Considering EC in the proof above, we
notice that the difference to E arises from edges included in if N ,
but not in NF , NC , and N∆. Thus, there is a complicating set N

∆̄

missing to fulfill the partitioning requirement. In terms of two co-
ordinate sets as above, betweenN

∆̄1
andN

∆̄2
, there is no clear rela-

tion and thus no guarantee for monotonicity concerning the original
objective function.

If we relax the requirement such that not all links are actually
included inNC are used, i.e.,

NC ⊆N [C],

our notation also covers Veksler’s spanning trees [Vek05] and even
loopy belief propagation. (Loopy belief propagation can be ex-
pressed by optimizing on a set of coordinates whose free variables
cover the original MRF’s variables. In each step, we fix all vari-
ables but one free variable, which then receives messages from all
neighboring nodes. Before the labeling can be updated, all such fix-
ings must be used to update the marginals – the BCD steps are thus
executed simultaneously before updating the current assignment.)

With this definition NF , N∆, and NC are not a partition of N .
Therefore Objective (2) is not directly comparable to Objective (1)
anymore, i.e., EC1(g1)≤ EC2(g2) does not imply E( f̂1)≤ E( f̂2). In
this case, the only possible statement applies to a changed energy
function

ẼC( f̂ ) = EC(g)+ ∑
i∈F

Di( f̂ (i))+ ∑
{i, j}∈NF

V{i, j}( f̂ (i), f̂ ( j)),

where g equals f̂ on C and using arguments analogous to the proof
above.

The difference between ẼC and E basically results from the
edges dropped by removing the partition constraint:

E( f̂ ) = ẼC( f̂ )+ ∑
{i, j}∈N∆̄

V{i, j}( f̂ (i), f̂ ( j)), (B.2)

whereN
∆̄

partitionsN withNC ,NF , andN∆.

Inserting augmented solutions f̂1 (from g∗1 ) and f̂2 (from g∗2 ) into
Equation (B.2) yields

E( f̂1) = ẼC1( f̂1)+ ∑
{i, j}∈N∆̄1

V{i, j}( f̂1(i), f̂1( j))

︸ ︷︷ ︸
t1
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as well as

E( f̂2) = ẼC2( f̂2)+ ∑
{i, j}∈N∆̄2

V{i, j}( f̂2(i), f̂2( j))

︸ ︷︷ ︸
t2

.

While ẼC2( f̂2) ≤ ẼC1( f̂1) is easy to see, t2 ≤ t1 cannot be proved
since it was not included in the optimization process. Hence, no
guarantees on the original objective can be given. This is why loopy
belief propagation or Veksler’s trees do not offer a monotonicity
guarantee.

B.4. Label Cost Approximation Bounds

Lastly, we prove Proposition 1:

Proof The function Ẽ drops nonnegative terms from E. Thus, we
have Ẽ( f ) ≤ E( f ). Since f̃ is optimal for Equation (5), Ẽ( f̃ ) ≤
Ẽ( f ). Moreover, f is optimal for Equation (1) and therefore E( f )≤
E( f̃ ). Thus, the first two inequalities follow. By setting all δ` in f̃
to 1, the last inequality holds.
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