Controlling Cycles in Finite Hypergraphs

Martin Otto, Dpt of Mathematics, TU Darmstadt

acyclicity (of graphs & hypergraphs): examples

cyclic or acyclic?

acyclicity & tree-likeness

benefits of ayclicity

- structural/combinatorial: easy enumeration & analysis, ...
- algorithmic: decomposition, divide & conquer, automata, ...
- logical/model-theoretic: all of the above

guiding ideas:

acyclicity means:	local structure determines global structure
in its absence:	may still have a canonical (free) unfolding of local patterns into <i>infinite</i> acyclic structure
	question: <i>finite</i> approximations?

hypergraphs & graphs: basic terminology

hypergraphs

 $H = (V, S) \quad \text{vertex set } V$ set of hyperedges $S \subseteq \mathcal{P}(V)$ width $w(H) = \max\{|s|: s \in S\}$

graphs

width 2 hypergraphs

graph associated with hypergraph H = (V, S):

$$\mathbf{G}(\mathbf{H}) = (\mathbf{V}, \mathbf{E}) \quad \text{where } (v, v') \in E \text{ if } v \neq v' \text{ and} \\ v, v' \in s \text{ for some } s \in S$$

tree unfoldings of graphs

tree unfolding of G = (V, E) from root node $v \in V$:

graph G^* $\begin{cases}
\text{with paths/walks } e_1 \cdots e_k \text{ from } v \text{ in } G \text{ as vertices} \\
\text{with edges from } e_1 \cdots e_k \text{ to } e_1 \cdots e_k \cdot e_{k+1}
\end{cases}$

of hypergraphs

unfolding of H = (V, S) obtained via tree unfolding of intersection graph $I(H) = (S, \Delta)$, $\Delta = \{(s, s') : s \cap s' \neq \emptyset\}$:

 $H = (V, S) \rightsquigarrow I(H) = (S, \Delta) \rightsquigarrow I^* \rightsquigarrow H^*$

Martin Otto, Berlin 2011

coverings

(cf. topology/geometry)

definition

a covering $\pi: \hat{H} = (\hat{V}, \hat{S}) \xrightarrow{\sim} H = (V, S)$

- π is a surjective homomorphism,
- bijective in restriction to every (hyper)edge of $\hat{s}\in\hat{S}$,
- with *back*-extensions: for $s = \pi(\hat{s})$ and $s' \in S$ exists $\hat{s}' \in \hat{S}$ s.t. $\pi(\hat{s}') = s'$ and $\pi(\hat{s} \cap \hat{s}') = s \cap s'$
- faithful (locally simple) in case back-extensions are unique

(1) graphs and locally acyclic covers

- acyclic covers of cyclic graphs are necessarily infinite
- no short cycles = no cycles locally no cycles of length up to 2N + 1 ⇔ N-local acyclicity
- (local) acyclicity compatible with {passage to subgraphs direct products
 - → uniform & canonical constructions of
 faithful N-locally acyclic graph coverings via Cayley groups

thm

(O_ 01)

for every finite graph **G**, for every $N \in \mathbb{N}$ there is a faithful covering $\pi : \hat{\mathbf{G}} \xrightarrow{\sim} \mathbf{G}$ by a finite *N*-locally acyclic graph $\hat{\mathbf{G}}$

Martin Otto, Berlin 2011

Cayley graphs

- NB: naive truncated tree-unfoldings with cut-off edges re-directed to vicinity of root do not work (why not?)
- instead: products with Cayley groups of large girth

Cayley groups and graphs

group G with involutive generators $e \in E$ gives rise to a highly symmetric graph:

vertices $g \in G$ *e*-coloured edges between g and $g \circ e$

girth of a Cayley group/graph: minimal length of a cycle (at 1)

Cayley graphs of large girth

elementary construction of Cayley group G of girth > N with set E of involutive generators:

on regularly *E*-edge-coloured tree T, λ of depth *N*,

let $e \in E$ operate through swaps of nodes in *e*-edges:

 $G := \langle E \rangle^{Sym(T)} \subseteq Sym(T)$ subgroup generated by the permutations $e \in E$

no short cycles: $e_1 \circ e_2 \circ \cdots \circ e_k \neq 1$ at least for $k \leqslant N$

Martin Otto, Berlin 2011

faithful locally acyclic covers

consider product of graph (V, E)with Cayley graph G generated by E

$$(V, E) \otimes G := (V \times G, E \otimes G)$$

$$E \otimes G := \{((v, g), (v', g')) : (v, v') = e \in E, g' = g \circ e\}$$

•
$$\pi$$
 : $(V, E) \otimes G \xrightarrow{\sim} (V, E)$ is a faithful cover
 $(v, g) \longmapsto v$

• girth(G) > N \Rightarrow (V, E) \otimes G has no cycles of length $n \leqslant N$

(2) hypergraphs

recall terminology

hypergraph
$$\mathbf{H} = (V, S)$$
 set of nodes V
set of hyperedges $S \subseteq \mathcal{P}(V)$

associated graph: G(H) = (V, E) where $(v, v') \in E$ if $v \neq v'$ and $v, v' \in s$ for some $s \in S$

hypergraph cover
$$\pi \colon \hat{\mathsf{H}} = (\hat{\mathsf{V}}, \hat{\mathsf{S}}) \xrightarrow{\sim} \mathsf{H} = (\mathsf{V}, \mathsf{S})$$

- $-\pi$ is a surjective homomorphism,
- bijective in restriction to every $\hat{s}\in\hat{S}$,
- with *back*-extensions: for $s = \pi(\hat{s})$ and $s' \in S$ exists $\hat{s}' \in \hat{S}$

s.t.
$$\pi(\hat{s}')=s'$$
 and $\pi(\hat{s}\cap\hat{s}')=s\cap s'$

hypergraph acyclicity

acyclicity of H = (V, S)three equivalent characterisations: • **H** admits reduction $\mathbf{H} \rightsquigarrow \emptyset$ $\begin{cases} \text{delete } v \text{ if } |\{s \in S \colon v \in s\}| \leq 1 \\ \text{delete } s \text{ if } s \subsetneq s' \in S \end{cases}$ via decomposition steps:

- **H** has a tree decomposition $\delta: \mathcal{T} \to S$ with bags from S
- H is conformal & chordal

conformality:

every clique in G(H) contained in hyperedge

chordality:

every cycle of length \geq 4 has a chord

examples & limitations

the facets of the 3-simplex

uniform width 3 hypergraph on 4 vertices

- chordal but not conformal
- finite coverings cannot be 1-locally acyclic
- admits locally finite covers without short chordless cycles
- also admits finite cover, in which every induced sub-hypergraph of up to 5 vertices is acyclic

example ctd

a locally finite cover

conformal; shortest chordless cycles have length 12 here by isometric tesselation in hyperbolic geometry

Martin Otto, Berlin 2011

finite conformal covers

thm

(Hodkinson-O_ 03)

for every finite hypergraph $\mathbf{H} = (V, S)$ there is a covering $\pi : \hat{\mathbf{H}} \xrightarrow{\sim} \mathbf{H}$ by a finite conformal hypergraph $\hat{\mathbf{H}}$

method: suitable restriction of 'free' cover in $V \times [n]$ with graphs of functions $\rho: s \to [n]$ as hyperedges above $s \in S$

finite conformal covers: an application

extension properties for partial automorphisms (EPPA)

Hrushovski (graphs), Herwig (hypergraphs), Herwig-Lascar

for finite **H** and partial isomorphism $\rho \in Part(\mathbf{H}, \mathbf{H})$, there is a finite extension $\mathbf{H}' \supseteq \mathbf{H}$ s.t. $\rho \subseteq \hat{\rho} \in Aut(\mathbf{H}')$

conservative versions:

- $S' := [S]^{Aut(H')}$ yields solution without 'new' hyperedges
- question: how about avoiding 'new' cliques?

lifting Hrushovski–Herwig–Lascar

thm

(Hodkinson-O_ 03)

- EPPA can be made conservative w.r.t. cliques
- the class of finite conformal hypergraphs has EPPA
- the class of finite K_n -free graphs has EPPA

method: HHL-extension + conformal cover

lift generic extension $\mathbf{H}' = (V', S') \supseteq \mathbf{H} = (V, S)$ to conformal cover of the induced hypergraph

 $\mathbf{H}'' = (V', S'')$ with $S'' = \{g(V) \colon g \in \operatorname{Aut}(\mathbf{H}')\}$

crux: homogeneity of our cover construction!

N-acyclic hypergraph covers

definition

H is *N*-acyclic if every induced sub-hypergraph $\mathbf{H}' \subseteq \mathbf{H}$ of up to *N* vertices is acyclic (tree-decomposable)

example of periodic 2-unfolding of tetrahedron above: 5-acyclic

thm

(O_ 10)

for every finite hypergraph $\mathbf{H} = (V, S)$ and every $N \in \mathbb{N}$, there is a covering $\pi : \hat{\mathbf{H}} \xrightarrow{\sim} \mathbf{H}$ by a finite *N*-acyclic hypergraph $\hat{\mathbf{H}}$

method: some ingredients in the following

Cayley groups again, but stronger

- recall Cayley groups G with generators $e \in E$ of large girth: $e_1 \circ e_2 \circ \cdots \circ e_k \neq 1$ for small k
- now use much stronger notion of acyclicity: $g_1 \circ g_2 \circ \cdots \circ g_k \neq 1$ for small k

where $g_k \in G[E_k]$ for $E_k \subsetneq E$ are such that corresponding cosets *locally* overlap *without shortcuts*

N-acyclic Cayley groups: no such cycles for $k \leq N$

N-acyclic Cayley groups and hypergraphs

thm

for very finite set E and $N \in \mathbb{N}$ there is an N-acylic Cayley group with generator set E

N-acyclicity: $g_1 \circ g_2 \circ \cdots \circ g_k \neq 1$ for $k \leq N$, where $g_k \in G[E_k]$...

alternative characterisation

Cayley group G with generator set E is N-acyclic if this (dual) coset hypergraph is N-acyclic:

$$H(G) := (\{gG[E']: E' \subseteq E\}, \{[g]: g \in G\})$$
$$[g] = \{gG[E']: E' \subseteq E\}$$

N-acyclic Cayley groups

inductive construction:

to avoid short cycles in G[E'] for increasingly large $E' \subseteq E$

use towards hypergraph covers:

reduced product of hypergraph $\mathbf{H} = (V, S)$ with Cayley group G with generator set $S_0 \subseteq S$:

$$\mathbf{H} \otimes G : \begin{cases} \text{quotient } (\mathbf{H} \times G) / \approx \\ (v,g) \approx (v,g') \text{ if } g \circ (g')^{-1} \in G[E'] \\ \text{for } E' = \{s \in S_0 \colon v \in s\} \end{cases}$$

fact: reduced products with N-acyclic G preserve N-acyclicity

from locally finite to finite

local-to-global construction

use reduced products $\hat{H}\otimes G$ to glue many layers of truncated locally finite cover \hat{H} along its boundary

surplus layers of good interior region can be used to repair defects near boundary

related results & applications: relational structures

N-acyclic covers

for $N \in \mathbb{N}$, every finite relational structure \mathcal{A} admits a covering by an N-acyclic finite structure $\hat{\mathcal{A}}$

ightarrow $\hat{\mathcal{A}}$ avoids small cyclic substructures

analysis of N-acyclic hypergraphs/structures

for $N \gg w, \ell, n$:

the class of all N-acyclic hypergraphs of width w supports a notion of bounded convex hulls:

closures of sets of $\leq n$ vertices under chordless paths of lengths $\leq \ell$ are of uniformly bounded size (hence acyclic)

related results & applications: finite model theory

suitably enriched *N*-acyclic covers and above structural analysis yield:

FO-similarity with tree unfoldings

for finite A	A find $\left\{ \right.$	infifini	 infinite acyclic tree unfolding A* finite N-acyclic cover ~ → A 	
such that	$\hat{\mathcal{A}}$	\equiv_{q}	\mathcal{A}^*	FO-indistinguishable up to quantifier depth <i>q</i>
	N-acyclic finite		acyclic infinite	

application: finite model theory of guarded logics

related results: graphs/transition systems

N-acyclic group covers

for $N \in \mathbb{N}$, every finite transition system \mathcal{A} admits a covering by a substructure of a finite N-acyclic Cayley group

without short cycles even w.r.t. certain transitions between clusters of transition labels

potential applications:

graphs used in knowledge representation, analysis of shared knowledge

related results: relational structures/databases

weakly N-acyclic covers	$({\sf Barany-Gottlob-O_10})$
by way of further relaxation of acyclicity:	
\ldots finite covers that are conformal and	N-chordal in projection
in canonical & homogeneous constru of feasible complexity (!)	uction

 $\rightarrow~$ avoid homomorphic images of small cyclic structures

application: *finite controllability* of interactions between certain DB constraints and queries

summary and open questions

controlling cycles in graphs & hypergraphs

• graphs and graph coverings:

canonical, efficient constructions comparatively well understood

• hypergraph coverings:

some variability even w.r.t. definitions combinatorially interesting

- limits for canonical and efficient constructions: open
- links with established discrete mathematics: *to be explored* branched coverings of simplicial complexes, expanders, ...
- further applications (!?)