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Controlling Cycles in Finite Hypergraphs

acyclicity (of graphs & hypergraphs): examples
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uniform width 3 hypergraph on 4 vertices
= the facets of the 3-simplex

cyclic or acyclic ?
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Controlling Cycles in Finite Hypergraphs

acyclicity & tree-likeness

benefits of ayclicity

• structural/combinatorial: easy enumeration & analysis, . . .

• algorithmic: decomposition, divide & conquer, automata, . . .

• logical/model-theoretic: all of the above

guiding ideas:

acyclicity means: local structure determines global structure

in its absence: may still have a canonical (free) unfolding of
local patterns into infinite acyclic structure

question: finite approximations ?
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Controlling Cycles in Finite Hypergraphs

hypergraphs & graphs: basic terminology

hypergraphs

H = (V, S) vertex set V
set of hyperedges S ⊆ P(V )

width w(H) = max{|s| : s ∈ S}

graphs

width 2 hypergraphs

graph associated with hypergraph H = (V, S):

G(H) = (V, E) where (v , v ′) ∈ E if v 6= v ′ and
v , v ′ ∈ s for some s ∈ S
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Controlling Cycles in Finite Hypergraphs

tree unfoldings
of graphs

tree unfolding of G = (V , E ) from root node v ∈ V :

graph G ∗
{

with paths/walks e1 · · · ek from v in G as vertices

with edges from e1 · · · ek to e1 · · · ek · ek+1

of hypergraphs

unfolding of H = (V ,S) obtained via tree unfolding
of intersection graph I (H) = (S , ∆), ∆ = {(s, s ′) : s ∩ s ′ 6= ∅}:

H = (V , S) Ã I (H) = (S , ∆) Ã I ∗ Ã H∗
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Controlling Cycles in Finite Hypergraphs

coverings (cf. topology/geometry)

roughly: homomorphic projection
(locally injective ?)

+

lifting (back-property)
(uniqueness ?)
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definition

a covering π : Ĥ = (V̂, Ŝ)
∼−→ H = (V, S)

– π is a surjective homomorphism,
– bijective in restriction to every (hyper)edge of ŝ ∈ Ŝ ,
– with back-extensions: for s = π(ŝ) and s ′ ∈ S exists ŝ ′ ∈ Ŝ

s.t. π(ŝ ′) = s ′ and π(ŝ ∩ ŝ ′) = s ∩ s ′

– faithful (locally simple) in case back-extensions are unique
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(1) graphs and locally acyclic covers

• acyclic covers of cyclic graphs are necessarily infinite

• no short cycles = no cycles locally
no cycles of length up to 2N + 1 ⇔ N-local acyclicity

• (local) acyclicity compatible with

{
passage to subgraphs
direct products

Ã uniform & canonical constructions of
faithful N-locally acyclic graph coverings via Cayley groups

thm (O 01)

for every finite graph G, for every N ∈ N
there is a faithful covering π : Ĝ

∼−→ G

by a finite N-locally acyclic graph Ĝ
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Cayley graphs

• NB: naive truncated tree-unfoldings with cut-off edges
re-directed to vicinity of root do not work (why not?)

• instead: products with Cayley groups of large girth

Cayley groups and graphs

group G with involutive generators e ∈ E
gives rise to a highly symmetric graph:

vertices g ∈ G
e-coloured edges between g and g ◦ e • •

•
••
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e′
e ◦ e′

e′ ◦ e

e′
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girth of a Cayley group/graph:
minimal length of a cycle (at 1)
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Cayley graphs of large girth

elementary construction of Cayley group G of girth> N
with set E of involutive generators:

on regularly E -edge-coloured

tree T, λ of depth N,

• •
•

•
•• •

•

•

•• •
•

•
•• •

let e ∈ E operate through

swaps of nodes in e-edges: • e
ff

e
88•

G := 〈E〉Sym(T) ⊆ Sym(T)
subgroup generated by the permutations e ∈ E

no short cycles: e1 ◦ e2 ◦ · · · ◦ ek 6= 1 at least for k 6 N
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faithful locally acyclic covers (prf of the thm)

consider product of graph (V ,E )
with Cayley graph G generated by E

• •
v v ′e

ê

•
•

(v , g)

(v ′, g ◦ e)oooooooo

(V , E )⊗ G := (V × G ,E ⊗ G )

E ⊗ G :=
{
((v , g), (v ′, g ′)) : (v , v ′) = e ∈ E , g ′ = g ◦ e

}

• π : (V ,E )⊗G ∼−→ (V ,E )
(v , g) 7−→ v

is a faithful cover

• girth(G) > N ⇒ (V ,E )⊗G has no cycles of length n 6 N
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(2) hypergraphs

recall terminology

hypergraph H = (V ,S) set of nodes V
set of hyperedges S ⊆ P(V )

associated graph: G(H) = (V , E ) where (v , v ′) ∈ E if v 6= v ′

and v , v ′ ∈ s for some s ∈ S

hypergraph cover π : Ĥ = (V̂, Ŝ)
∼−→ H = (V, S)

– π is a surjective homomorphism,
– bijective in restriction to every ŝ ∈ Ŝ ,
– with back-extensions: for s = π(ŝ) and s ′ ∈ S exists ŝ ′ ∈ Ŝ

s.t. π(ŝ ′) = s ′ and π(ŝ ∩ ŝ ′) = s ∩ s ′
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hypergraph acyclicity

acyclicity of H = (V, S) three equivalent characterisations:

• H admits reduction H Ã ∅
via decomposition steps:

{
delete v if |{s ∈ S : v ∈ s}| 6 1
delete s if s  s ′ ∈ S

• H has a tree decomposition δ : T → S with bags from S

• H is conformal & chordal

conformality:

every clique in G (H) contained in hyperedge

no • • •
•

chordality:

every cycle of length > 4 has a chord no
• •
• •
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examples & limitations

the facets of the 3-simplex

uniform width 3 hypergraph on 4 vertices
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• chordal but not conformal

• finite coverings cannot be 1-locally acyclic

• admits locally finite covers without short chordless cycles

• also admits finite cover, in which every induced
sub-hypergraph of up to 5 vertices is acyclic
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example ctd

a locally finite cover

covering
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conformal; shortest chordless cycles have length 12
here by isometric tesselation in hyperbolic geometry
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finite covers ?

5-acyclic,
locally finite

just 3-acyclic
after identifications

5-acyclic
after identifications
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Controlling Cycles in Finite Hypergraphs

finite conformal covers

thm (Hodkinson–O 03)

for every finite hypergraph H = (V , S) there is

a covering π : Ĥ
∼−→ H

by a finite conformal hypergraph Ĥ

method: suitable restriction of ‘free’ cover in V × [n]
with graphs of functions ρ : s → [n]

as hyperedges above s ∈ S

• • • • • V

V × [n]

• • • •
• • • •
• • •yyyEEE
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Controlling Cycles in Finite Hypergraphs

finite conformal covers: an application

extension properties for partial automorphisms (EPPA)

Hrushovski (graphs), Herwig (hypergraphs), Herwig–Lascar

for finite H and partial isomorphism ρ ∈ Part(H,H),
there is a finite extension H′ ⊇ H
s.t. ρ ⊆ ρ̂ ∈ Aut(H′)

conservative versions:

• S ′ := [S ]Aut(H′) yields solution without ‘new’ hyperedges

• question: how about avoiding ‘new’ cliques ?

Martin Otto, Berlin 2011 Introduction Graphs Hypergraphs Results&Directions 17/28



Controlling Cycles in Finite Hypergraphs

lifting Hrushovski–Herwig–Lascar

thm (Hodkinson–O 03)

• EPPA can be made conservative w.r.t. cliques

• the class of finite conformal hypergraphs has EPPA

• the class of finite Kn-free graphs has EPPA

method: HHL-extension + conformal cover

lift generic extension H′ = (V ′,S ′) ⊇ H = (V , S)
to conformal cover of the induced hypergraph

H′′ = (V ′,S ′′) with S ′′ = {g(V ) : g ∈ Aut(H′)}

crux: homogeneity of our cover construction!
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Controlling Cycles in Finite Hypergraphs

N-acyclic hypergraph covers

definition

H is N-acyclic if every induced sub-hypergraph H′ ⊆ H
of up to N vertices is acyclic (tree-decomposable)

example of periodic 2-unfolding of tetrahedron above: 5-acyclic

thm (O 10)

for every finite hypergraph H = (V , S) and every N ∈ N,

there is a covering π : Ĥ
∼−→ H

by a finite N-acyclic hypergraph Ĥ

method: some ingredients in the following
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Controlling Cycles in Finite Hypergraphs

Cayley groups again, but stronger

• recall Cayley groups G with generators e ∈ E of large girth:
e1 ◦ e2 ◦ · · · ◦ ek 6= 1 for small k

• now use much stronger notion of acyclicity:
g1 ◦ g2 ◦ · · · ◦ gk 6= 1 for small k

where gk ∈ G [Ek ] for Ek  E are such that
corresponding cosets locally overlap without shortcuts

Ei−1
Ei

Ei+1

•
• •

◦
gi //

gi−1
77pppppppp

gi+1

))RRRRRRR

N-acyclic Cayley groups: no such cycles for k 6 N

motivation:
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Controlling Cycles in Finite Hypergraphs

N-acyclic Cayley groups and hypergraphs

thm

for very finite set E and N ∈ N there is
an N-acylic Cayley group with generator set E

N-acyclicity: g1 ◦ g2 ◦ · · · ◦ gk 6= 1 for k 6 N, where gk ∈ G [Ek ] . . .

alternative characterisation

Cayley group G with generator set E is N-acyclic if
this (dual) coset hypergraph is N-acyclic:

H(G ) := ({gG [E ′] : E ′ ⊆ E}, {[g ] : g ∈ G})
[g ] = {gG [E ′] : E ′ ⊆ E}
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Controlling Cycles in Finite Hypergraphs

N-acyclic Cayley groups

inductive construction:

combinatorial group action
on E -coloured graphs

& amalgamation of Cayley graphs
G [E ′] for smaller E ′ ⊆ E

to avoid short cycles in G [E ′] for increasingly large E ′ ⊆ E

use towards hypergraph covers:

reduced product of hypergraph H = (V , S) with
Cayley group G with generator set S0 ⊆ S :

H⊗ G :





quotient (H× G )
/≈

(v , g) ≈ (v , g ′) if g ◦ (g ′)−1 ∈ G [E ′]
for E ′ = {s ∈ S0 : v ∈ s}

fact: reduced products with N-acyclic G preserve N-acyclicity
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Controlling Cycles in Finite Hypergraphs

from locally finite to finite

local-to-global construction

use reduced products Ĥ⊗ G
to glue many layers of truncated locally finite cover Ĥ
along its boundary

≈ ≈

MMM
MMM YYYYY

eeeee

qqqqqq

qqq
qqqeeeee

YYYYY
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surplus layers of good interior region
can be used to repair defects near boundary
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Controlling Cycles in Finite Hypergraphs

related results & applications: relational structures

N-acyclic covers

for N ∈ N, every finite relational structure A admits
a covering by an N-acyclic finite structure Â

→ Â avoids small cyclic substructures

analysis of N-acyclic hypergraphs/structures

for N >> w , `, n:

the class of all N-acyclic hypergraphs of width w
supports a notion of bounded convex hulls:

closures of sets of 6 n vertices
under chordless paths of lengths 6 `
are of uniformly bounded size (hence acyclic)
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Controlling Cycles in Finite Hypergraphs

related results & applications: finite model theory

suitably enriched N-acyclic covers
and above structural analysis yield:

FO-similarity with tree unfoldings

for finite A find

{
• infinite acyclic tree unfolding A∗
• finite N-acyclic cover Â ∼−→ A

such that Â
N-acyclic

finite

≡q A∗

acyclic
infinite

FO-indistinguishable
up to quantifier depth q

application: finite model theory of guarded logics
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related results: graphs/transition systems

N-acyclic group covers

for N ∈ N, every finite transition system A admits
a covering by a substructure of a finite N-acyclic Cayley group

without short cycles even w.r.t. certain transitions
between clusters of transition labels

potential applications:
graphs used in knowledge representation,
analysis of shared knowledge
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Controlling Cycles in Finite Hypergraphs

related results: relational structures/databases

weakly N-acyclic covers (Barany–Gottlob–O 10)

by way of further relaxation of acyclicity:

. . . finite covers that are conformal and N-chordal in projection

in canonical & homogeneous construction
of feasible complexity (!)

→ avoid homomorphic images of small cyclic structures

application: finite controllability of interactions
between certain DB constraints and queries
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Controlling Cycles in Finite Hypergraphs

summary and open questions

controlling cycles in graphs & hypergraphs

• graphs and graph coverings:

canonical, efficient constructions
comparatively well understood

• hypergraph coverings:

some variability even w.r.t. definitions
combinatorially interesting

• limits for canonical and efficient constructions: open

• links with established discrete mathematics: to be explored

branched coverings of simplicial complexes, expanders, . . .

• further applications (!?)

Martin Otto, Berlin 2011 Introduction Graphs Hypergraphs Results&Directions 28/28


