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Controlling Cycles in Finite Hypergraphs

acyclicity (of graphs & hypergraphs): examples

uniform width 3 hypergraph on 4 vertices
= the facets of the 3-simplex

cyclic or acyclic?
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acyclicity & tree-likeness

benefits of ayclicity

e structural/combinatorial: easy enumeration & analysis, . ..
e algorithmic: decomposition, divide & conquer, automata, ...
e logical/model-theoretic: all of the above

guiding ideas:

acyclicity means: local structure determines global structure

in its absence: may still have a canonical (free) unfolding of
local patterns into infinite acyclic structure

question: finite approximations ?
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hypergraphs & graphs: basic terminology

hypergraphs

H=(V,S) \vertexset V
set of hyperedges S C P(V)

width w(H) = max{|s|: s € S}

graphs

width 2 hypergraphs

graph associated with hypergraph H = (V, S):

G(H) = (V,E) where (v,v') € Eif v # v/ and
v,V € s forsomese S
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tree unfoldings
of graphs

tree unfolding of G = (V, E) from root node v € V:
with paths/walks e; - - - e, from v in G as vertices

graph G* _
with edges from e;---ex to e1---ex- €k+1

of hypergraphs

unfolding of H = (V, S) obtained via tree unfolding
of intersection graph /(H) = (S A) A ={(s,s'): sns #0}:

& - VesT
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coverings

(cf. topology/geometry)

roughly:  homomorphic projection
(locally injective ?)

+
lifting (back-property)

(uniqueness ?)

definition

.\o/\.
°

ok. _-®

s T——e

a covering 7: H=(V,5) = H=(V,S)

— 7 is a surjective homomorphism,

— bijective in restriction to every (hyper)edge of § € S,
— with back-extensions: for s = 7(8) and s’ € S exists 8’ € S
st.m(8)=sand 7(5N&)=sns

— faithful (locally simple) in case back-extensions are unique

Martin Otto, Berlin 2011 Introduction Graphs Hypergraphs Results&Directions



Controlling Cycles in Finite Hypergraphs

(1) graphs and locally acyclic covers

e acyclic covers of cyclic graphs are necessarily infinite

e no short cycles = no cycles locally
no cycles of length up to 2N + 1 < N-local acyclicity

passage to subgraphs

o (local) acyclicity compatible with {direct products

~> uniform & canonical constructions of
faithful N-locally acyclic graph coverings via Cayley groups

thm (O_01)

for every finite graph G, for every N € N
there is a faithful covering w: 6 — G

by a finite N-locally acyclic graph G
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Cayley graphs

e NB: naive truncated tree-unfoldings with cut-off edges
re-directed to vicinity of root do not work (why not?)

e instead: products with Cayley groups of large girth

Cayley groups and graphs

group G with involutive generators e € E

gives rise to a highly symmetric graph: o oe
. € o
vertices g € G e . ,
e-coloured edges between g and go e e'l a ece
o &
1 e

girth of a Cayley group/graph:
minimal length of a cycle (at 1)
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Cayley graphs of large girth

elementary construction of Cayley group G of girth > N
with set E of involutive generators:

on regularly E-edge-coloured ®
tree T, X of depth N, 1
[ ] [ ]
let e € E operate through .f ¢ f'
swaps of nodes in e-edges: OéO .~ o o
@
[ ]

G := ()™M C Sym(T)
subgroup generated by the permutations e € E

no short cycles: ejoeo---oer#1 atleast for k < N
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faithful locally acyclic covers (prf of the thm)

consider product of graph (V, E)
with Cayley graph G generated by E

(V,E)® G :
E®G :

(VXxG,E®G) \
{((Wg),(V’,g’)): (v,v)=e€E,g :goe}

e 7: (V,E)® G — (V,E) is a faithful cover

(v,g) — v

e girth(G)>N = (V,E)®G has no cycles of length n < N
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(2) hypergraphs

recall terminology

hypergraph H = (V,S)  set of nodes V
set of hyperedges S C P(V)

associated graph: G(H) = (V,E) where (v,v') € E if v #£ V/
and v,V € s forsomes € S

hypergraph cover 7: H = (\7,3) — H=(V,S)

— 7 is a surjective homomorphism,

— bijective in restriction to every 5 € S,

— with back-extensions: for s = w(3) and s’ € S exists 8’ € §
st.m(8)=sand 7(5N&)=sns
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hypergraph acyclicity

acyclicity of H = (V, S) three equivalent characterisations:

e H admits reduction H ~~ ()
delete vif [{se€ S:ves} <1

via decomposition steps: )
2 . {deletesncsgs’ES

e H has a tree decomposition : 7 — S with bags from S

e H is conformal & chordal

conformality:

every clique in G(H) contained in hyperedge

chordality:

every cycle of length > 4 has a chord . re
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examples & limitations

the facets of the 3-simplex

uniform width 3 hypergraph on 4 vertices

e chordal but not conformal
e finite coverings cannot be 1-locally acyclic
e admits locally finite covers without short chordless cycles

e also admits finite cover, in which every induced
sub-hypergraph of up to 5 vertices is acyclic
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example ctd

a locally finite cover

covering

conformal; shortest chordless cycles have length 12
here by isometric tesselation in hyperbolic geometry

Martin Otto, Berlin 2011 Introduction Graphs Hypergraphs Results&Directions 14/28



AVAVAVAVAVAVA
/AVAVAVAVAVA\VAVA\
\VAVAVAVAVAVAVAV
e INONINONININ/N/N
Sc VA\V%VAVAVAVQV/AV

Introduction Graphs Hypergraphs Results&Directions



Controlling Cycles in Finite Hypergraphs

finite conformal covers

thm

(Hodkinson—O__ 03)

for every finite hypergraph H = (V/, S) there is
a covering mtH = H

by a finite conformal hypergraph H

method: suitable restriction of ‘free’ cover in V X [n]

with graphs of functions p: s — [n]
as hyperedges above s € S
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finite conformal covers: an application

extension properties for partial automorphisms (EPPA)

Hrushovski (graphs), Herwig (hypergraphs), Herwig—Lascar
for finite H and partial isomorphism p € Part(H, H),
there is a finite extension H' O H
s.t. p C p € Aut(H’)

conservative versions:

o S :=[S]A"(H) yields solution without ‘new’ hyperedges

e question: how about avoiding ‘new’ cliques?
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lifting Hrushovski—Herwig—Lascar

thm (Hodkinson—O__ 03)

e EPPA can be made conservative w.r.t. cliques
e the class of finite conformal hypergraphs has EPPA
e the class of finite K,-free graphs has EPPA

method: HHL-extension + conformal cover

lift generic extension H' = (V/,S') D H=(V,5)
to conformal cover of the induced hypergraph

H” = (V/, ") with S” = {g(V): g € Aut(H)}

crux: homogeneity of our cover construction!
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N-acyclic hypergraph covers

definition

H is N-acyclic if every induced sub-hypergraph H' C H
of up to N vertices is acyclic (tree-decomposable)

example of periodic 2-unfolding of tetrahedron above: 5-acyclic

thm (0_10)

for every finite hypergraph H = (V,S) and every N € N,
there is a covering w: H = H

by a finite N-acyclic hypergraph H

method: some ingredients in the following
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Cayley groups again, but stronger

e recall Cayley groups G with generators e € E of large girth:
epoeo---oe #1 forsmall k

e now use much stronger notion of acyclicity:
giogo---ogk#1 forsmall k

where gy € G[Ek] for Ex & E are such that
corresponding cosets locally overlap without shortcuts

motivation:

Ei 1 Eit1
N-acyclic Cayley groups: no such cycles for k < N
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N-acyclic Cayley groups and hypergraphs

thm

for very finite set £ and N € N there is
an N-acylic Cayley group with generator set E

N-acyclicity: g1ogro---ogk #1 for k < N, where gx € G[E,] ...

alternative characterisation

Cayley group G with generator set E is N-acyclic if
this (dual) coset hypergraph is N-acyclic:

H(G) = ({gG[E']: E' C E}, {[g]: g € G})
[g] = {gG[E']: E' C E}
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N-acyclic Cayley groups

inductive construction:

combinatorial group action & amalgamation of Cayley graphs
on E-coloured graphs G[E'] for smaller E' C E

to avoid short cycles in G[E'] for increasingly large E' C E

use towards hypergraph covers:

reduced product of hypergraph H = (V,S) with
Cayley group G with generator set Sp C S:

quotient (H x G) /~

HOG: ( (v,8)~(v.g)if golg) € GIET
for E' ={s € Sy: v es}

fact: reduced products with N-acyclic G preserve N-acyclicity
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from locally finite to finite

local-to-global construction

use reduced products H @ G
to glue many layers of truncated locally finite cover H
along its boundary

surplus layers of good interior region
can be used to repair defects near boundary

Martin Otto, Berlin 2011 Introduction Graphs Hypergraphs Results&Directions



Controlling Cycles in Finite Hypergraphs

related results & applications: relational structures

N-acyclic covers

for N € N, every finite relational structure A admits
a covering by an N-acyclic finite structure A

— A avoids small cyclic substructures

analysis of N-acyclic hypergraphs/structures

for N > w,?, n:

the class of all N-acyclic hypergraphs of width w
supports a notion of bounded convex hulls:

closures of sets of < n vertices
under chordless paths of lengths < /
are of uniformly bounded size (hence acyclic)
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related results & applications: finite model theory

suitably enriched N-acyclic covers
and above structural analysis yield:

FO-similarity with tree unfoldings

_ _ e infinite acyclic tree unfolding A*
for finite A find o ) A
e finite N-acyclic cover A — A

1 FO-indistinguishable
== *
el e A = A up to quantifier depth g
N-acyclic acyclic
finite infinite

application: finite model theory of guarded logics
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related results: graphs/transition systems

N-acyclic group covers

for N € N, every finite transition system A admits
a covering by a substructure of a finite N-acyclic Cayley group

without short cycles even w.r.t. certain transitions
between clusters of transition labels

potential applications:
graphs used in knowledge representation,
analysis of shared knowledge

Martin Otto, Berlin 2011 Introduction Graphs Hypergraphs Results&Directions 26/28



Controlling Cycles in Finite Hypergraphs

related results: relational structures/databases

weakly N-acyclic covers (Barany—Gottlob—O__ 10)

by way of further relaxation of acyclicity:

finite covers that are conformal and N-chordal in projection

in canonical & homogeneous construction
of feasible complexity (!)

— avoid homomorphic images of small cyclic structures

application: finite controllability of interactions
between certain DB constraints and queries
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summary and open questions

controlling cycles in graphs & hypergraphs

e graphs and graph coverings:

canonical, efficient constructions
comparatively well understood

e hypergraph coverings:

some variability even w.r.t. definitions
combinatorially interesting

e limits for canonical and efficient constructions: open
e links with established discrete mathematics: to be explored
branched coverings of simplicial complexes, expanders, ...

e further applications (!?)
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