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Abstract—We propose a novel construction of finite hyper-
graphs and relational structures that is based on reduced prod-
ucts with Cayley graphs of groupoids. The universal algebraic
and combinatorial properties of groupoids are abstracted form
the composition behaviour of partial injections and support a
very natural approach to the construction of certain highly sym-
metric finite instances of hypergraphs and relational structures.
The typical task of this kind asks for regular realisations of
a locally specified overlap pattern between pieces (hyperedges,
guarded substructures). We show that reduced products with
groupoids provide a generic and versatile tool towards such con-
structions; they are explored in applications to the construction
of finite hypergraph coverings, to finite model constructions for
the guarded fragment, and to extension properties for partial
isomorphisms of relational structures (in the sense of Hrushovski,
Herwig, Lascar). To this end we construct groupoids whose
Cayley graphs have large girth not just in the usual sense, but
with respect to a discounted distance measure that contracts
edges from the same sub-groupoid (colour) and only counts
transitions between cosets (different colours), and show that
their acyclicity properties guarantee corresponding degrees of
acyclicity in reduced products.

I. KEY NOTIONS AND RESULTS

Consider a partial specification of some global structure by
descriptions of its local constituents and of the possible links
between these, in terms of allowed and required direct over-
laps between pairs of local constituents. Such specifications
typically have generic, highly regular, infinite realisations in
the form of tree-like ‘free’ objects. We here address the
issue of finite realisations, which should ideally meet similar
criteria in terms of genericity, symmetry and specified degrees
of acyclicity. We use hypergraphs as abstractions for the
decomposition of global structures into local constituents and
offer a versatile and generic solution to the finite synthesis
problem posed by partial specifications of hypergraphs in
terms of hyperedges and overlaps between these, w.r.t. natural
criteria of controlled acyclicity in finite hypergraphs.

Hypergraphs are structures consisting of vertices that form
vertex clusters called hyperedges; formally the hyperedges are
just subsets of the vertex set. A typical hypergraph is denoted
as A = (A,S) with vertex set A and set of hyperedges S ⊆
P(A). Hypergraphs are the adequate combinatorial abstraction
for various settings in which global structure is analysed in
terms of local patches and their overlap pattern. Hypergraphs
and overlap specifications between hyperedges arise, e.g., in
connection with clusters of variables in CSP problems or
conjunctive queries, as ‘topological’ abstractions of relational

atoms in databases under certain constraints, as the orbits of
sub-configurations under automorphisms of structures, and,
generally, as patterns in all kind of structural decompositions.
In the particular example of a ‘topological’ abstraction of
the relations in a relational structure A = (A, (R)), consider
the associated hypergraph H(A) = (A,S[A]), where S[A]
consists of the guarded subsets of A, i.e., those subsets that
are either singletons or a subset of a set [a] = {a1, . . . , ak} of
components of a tuple a = (a1, . . . , ak) in one of the relations
R of A. This hypergraph of guarded subsets precisely captures
the incidence pattern between the configurations in A that are
accessible to the guarded fragment GF of first-order logic, [2];
it has been extensively studied in connection with the model
theory of GF as well as for many related algorithmic issues
in database theory, see, e.g., [3] and references there.

Our main technical interest here is the analysis of local over-
lap specification versus global properties of finite hypergraphs
– up to a natural notion of hypergraph bisimulation [13], [3]
that arises, e.g., as the combinatorial abstraction of guarded
bisimulation. This approach leads to the consideration of the
local overlap specifications from a more generic point.

The structural information in a hypergraph A = (A,S),
with vertex set A and set of hyperedges S ⊆ P(A) to-
gether with a labelling of the individual hyperedges, may be
represented by a vertex- and edge-labelled graph structure
H = (V, (Vs)s∈S , (Re)e∈E). Intuitively, we pass to disjoint
copies of the hyperedges and record their non-trivial overlaps
by coloured matchings: the vertex set V of H is formed by
the disjoint union V :=

⋃
s∈S{s} × s of the hyperedges

s ∈ S, partitioned by the unary predicates Vs into the
individual hyperedges Vs = {s} × s ⊆ V ; every pair of
hyperedges (s, s′) with non-trivial intersection gives rise to
an edge label e = (s, s′) ∈ E and a corresponding edge
relation Re ⊆ Vs × Vs′ prescribing the partial matching
between Vs and Vs′ induced by the identity on s ∩ s′ ⊆ A:
Re = {((s, a), (s′, a)) : a ∈ s ∩ s′}. Viewing I = (S,E) as
the incidence pattern of the hypergraph, we slightly generalise
this format to allow for more liberal specifications of desired
overlap patterns, as follows.

Definition I.1. An incidence pattern is a finite directed loop-
free multigraph I = (S,E) with edges e ∈ E[s, s′] from
s to s′, with an involutive, fixpoint-free converse operation
e 7→ e−1 on E that bijectively maps E[s, s′] to E[s′, s].

An I-graph with incidence pattern I is a finite directed



edge- and vertex-coloured graph H = (V, (Vs)s∈S , (Re)e∈E)
s.t. the vertex set V is partitioned into subsets Vs and, for
e ∈ E[s, s′], the edge relation Re ⊆ Vs×Vs′ induces a partial
matching (Re it is the graph of a partial 1–1 map ρe from
Vs to Vs′ ). The (Re)e∈E are required to be compatible with
the converse operation: Re−1 = (Re)

−1. An I-graph H is
complete if the Re induce full rather than partial matchings.

The representation of a hypergraph as discussed above is a
special case of an incomplete I-graph, with the intersection
graph I(H) = (S,E), where E = {(s, s′) ∈ S : s 6= s′, s ∩
s′ 6= ∅}, as the underlying incidence pattern.

Among the most important criteria of structural simplicity
in hypergraphs are acyclicity constraints – arising as natural
albeit considerably more complex generalisations of graph
acyclicity. The following criterion of hypergraph acyclicity
is the natural notion for us (sometimes called α-acyclicity),
cf., e.g., [5], [4]. It is closely related to the algorithmically
crucial notion of tree-decomposability (viz., existence of a
tree-decomposition with hyperedges as bags) and to natural
combinatorial notions of triangulation. It refers to the Gaifman
graph G(A) associated with a hypergraph A = (A,S), which
has the same vertex set A and links two distinct vertices by an
undirected edge if they are elements of the same hyperedge.

Definition I.2. A finite hypergraph A = (A,S) is acyclic if
it is conformal and chordal:

(i) conformality: every clique in the Gaifman graph G(A) is
contained in some hyperedge s ∈ S;

(ii) chordality: every cycle in the Gaifman graph G(A) of
length greater than 3 has a chord.

For N > 3, A = (A,S) is N -acyclic if it is N -conformal
and N -chordal, where N -conformality/N -chordality are the
natural restrictions of the above to cliques/cycles of size 6 N .

Note that a hypergraph is N -acyclic if, and only if, every
induced sub-hypergraph of up to N vertices is acyclic.

Hypergraph coverings reproduce the overlap pattern be-
tween hyperedges of a given hypergraph in a covering hy-
pergraph while smoothing out the overall behaviour, e.g., by
achieving a higher degree of acyclicity.

In graphs one would without ambiguity appeal to local
pattern versus global structure: local structure manifests itself
in the incidence degrees of edges in individual vertices,
while global structure manifests itself, e.g., in the length of
the shortest cycles, also called the girth of the graph. In
hypergraphs the situation is more complicated because the
boundary between local and global aspects is blurred by the
fact that the transition from one hyperedge to the next typically
preserves several vertices while exchanging others.

Example I.3. Consider the full 3-uniform hypergraph on a
set of 4 vertices – also familiar as the boundary of the 3-
simplex, or the faces of the tetrahedron, cf. Figures 1 and 2.
We see that every vertex is incident with a 3-cycle of those
three faces that share this vertex. The transitions between
these faces each involve the exchange of just one vertex
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Fig. 1. Overlap specification for the tetrahedron.
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Fig. 2. Local 2-fold unfolding of the tetrahedron.

while fixing a pair of vertices. Any natural process of finite
unfolding will locally produce a 3n-cycle instead of the 3-
cycle, still centred on a shared vertex, and thus finite coverings
cannot even locally avoid cycles (cf. Figure 2). Moreover,
even this local view informs us that non-trivial coverings will
affect incidence degrees (topologically we need to deal with
branched coverings).

Both obstacles we see in this simple example, viz., the
lack of a clear local–global distinction and the impossibility
to preserve incidence degrees, generally seem to stand in
the way of a straightforward construction of finite N -acyclic
hypergraph covers – but neither arises in the special case of
graphs.

As shown in [12], every finite graph admits, for each N ∈
N, a degree-preserving (topologically unbranched) covering by
a finite graph without cycles of length up to N (i.e., of girth
greater than N ). The generic construction of such N -acyclic
graph coverings in [12] is based on a natural product of the
given graph with Cayley groups of large girth. The latter can
be obtained as subgroups of the symmetric groups of the vertex
sets of suitably coloured finite acyclic graphs in an elegant
construction due to Biggs [6], cf. Alon’s survey [1].

Some of these ideas were successfully lifted and applied
to the construction of hypergraph coverings in [13]. One
part of the generalisation concerns a uniform construction of
Cayley groups that not only have large girth in the usual
sense; instead, they have large girth even w.r.t. to a reduced
distance measure that measures the length of cycles in terms
of the number of non-trivial transitions between cosets w.r.t.
subgroups generated by different collections of generators.
For an intuitive idea how this concern arises we may again
look at the above example of the faces of the tetrahedron.



There are two distinct sources of avoidable short cycles in its
coverings: (a) ‘local cycles’ around a single pivot vertex; (b)
‘non-local cycles’ that enter and leave the 1-neighbourhoods of
several distinct vertices. To account for the length of a cycle
of type (b), the number of individual single-step transitions
between faces around one of the visited pivotal vertices is
typically irrelevant; what essentially matters is how often we
move from one pivot to the next, and this corresponds to
a transition between two subgroups (think of a transition
between the stabiliser of one pivot and the next).

But nothing as simple as a (reduced) product between a hy-
pergraph and even one of these ‘highly acyclic’ Cayley graphs
will produce a covering by a finite N -acyclic hypergraph.
The construction presented in [13] uses such Cayley groups
only as one ingredient to achieve suitable coverings through
an intricate local-to-global construction that is otherwise no
longer canonical or natural, in the sense that it does not
preserve symmetries of the given hypergraph.

We now expand the amalgamation techniques that were
explored for the combinatorial construction in [13] of highly
acyclic Cayley graphs from groups to groupoids and obtain
‘Cayley groupoids’ that are highly acyclic in a similar sense.
It turns out that groupoids are a much better fit for the task of
constructing hypergraph coverings as well as for the construc-
tion of finite hypergraphs according to other specifications.
The new notion of Cayley groupoids allows for the construc-
tion of coverings by means of natural reduced products with
these groupoids. It is more canonical and supports coverings of
far greater genericity and symmetry than previously available.
It also allows for substantial adaptations and generalisations.
We address the covering problem and some variations and
prove the following main theorems.

The first main theorem involves the natural notion of
hypergraph coverings, as intuitively discussed above.

Definition I.4. A map h : Â → A between hypergraphs Â =
(Â, Ŝ) and A = (A,S) is a hypergraph homomorphism if, for
every ŝ ∈ Ŝ, h� ŝ is a bijection between the hyperedge ŝ and
some target hyperedge h(ŝ) of A.

A hypergraph covering of A = (A,S) by Â = (Â, Ŝ) is a
hypergraph homomorphism h : Â→ A that satisfies the back-
property w.r.t. hyperedges: for every h(ŝ) = s ∈ S and s′ ∈ S
there is some ŝ′ ∈ Ŝ such that h(ŝ′) = s′ and h(ŝ∩ŝ′) = s∩s′.

Theorem I.5. Every finite hypergraph admits, for every N ∈
N, a covering by a finite hypergraph that is N -acyclic. In
addition, the covering hypergraph can be chosen to preserve
all symmetries of the given hypergraph.

For details we refer to Section III and especially to Propo-
sition III.2. The second main theorem addresses the more
general issue of realising an abstract overlap specification in a
finite hypergraph. A ‘realisation’ is required to provide locally
all the overlaps as specified by the matchings in an I-graph
H , yet globally to produce no other overlaps than those that
are necessarily induced by compositions of those matchings.

To this end we extract from an incidence pattern I = (S,E)

the sets E∗[s, t] of all words that arise as label sequences
along directed paths from s to t in I . In an I-graph H =
(V, (Vs), (Re)) with partial matchings ρe specified by the Re
for e ∈ E, any w ∈ E∗[s, t] induces a composition ρw that
is a partial bijection between Vs and Vt (possibly empty). In
this context we may define a realisation of the overlap pattern
specified by H as follows.

Definition I.6. A hypergraph Â = (Â, Ŝ) is a realisation of
the overlap pattern specified by H , if there is a map π : Ŝ → S
and a matching family of bijections

πŝ : ŝ −→ Vs, for ŝ ∈ Ŝ with π(ŝ) = s,

such that for all e ∈ E[s, s′], ŝ, t̂ ∈ Ŝ with π(ŝ) = s and
π(t̂) = t:

(i) there is some ŝ′ such that π(ŝ′) = s′ and ρe = πŝ′ ◦π−1ŝ ;
(ii) if ŝ ∩ t̂ 6= ∅, then πt̂ ◦ π

−1
ŝ = ρw for some w ∈ E∗st.

Theorem I.7. Every abstract finite specification of an overlap
pattern between disjoint sets by an I-graph H admits a
finite realisation by a finite hypergraph, which may again be
required to be N -acyclic and to preserve all symmetries of the
given specification.

For details we refer to Section III-C and Proposition III.6.
As corollaries we obtain new proofs of the theorems of
Herwig [8] and Herwig and Lascar [9], which themselves
have interesting applications to the finite model theory of
the guarded fragment GF, [2], [7]. One of these applications
also yields a new approach to a strong finite model property
from [3], for GF in the presence of homomorphism con-
straints. While our new constructions do not achieve the good
size bounds of [3] (essential there for the complexity of query
answering), we achieve more symmetric models in a more
generic and uniform treatment.

Structure of the paper: This presentation of the new
techniques is meant to highlight the key notions and the more
generic constructions. A more fully expanded account of the
core material is given in [14], and much of the analysis of
further applications has to be relegated to further study. Some
of the core definitions, which have already been stated in this
section for the statement of main results, will be taken up
in the following sections. Section II introduces the notion of
Cayley groupoids and presents a combinatorial method for
their construction that is inspired by the work on Cayley
groups in [13]. Section III presents hypergraph constructions
based on natural reduced products with Cayley groupoids
and shows how the acyclicity criteria achieved for groupoids
in Section II translate into degrees of acyclicity, e.g., in
finite hypergraph coverings. Section IV, finally, discusses the
symmetries of hypergraphs constructed as reduced products
with Cayley groupoids; there we also look at Herwig–Lascar
extensions of partial isomorphism, and applications to the
guarded fragment.



II. I-GROUPOIDS AND THEIR CAYLEY GRAPHS

A. I-groupoids

Let I = (S,E) be an incidence pattern (cf. Definition I.1),
w.l.o.g. connected. An I-groupoid is generated by the labelled
edges e ∈ E of I , i.e., by the union of the sets E[s, s′] as
specified in I . We are interested in the groupoidal structure of
the composition of partial matchings in I-graphs. The main
difference between groups and groupoids for our purposes
is that the groupoidal operation is not total but only allows
certain compositions, based on the sorts of elements. Cor-
respondingly, groupoid elements carry labels that determine
sorts and composability. We use I and the sets E∗[s, t] of
labellings of paths in I as the template for the groupoidal
structure. Let E∗ stand for the union of the disjoint sets E∗st
consisting of the labellings of paths from s to t in I . For each
s ∈ S, denote the corresponding empty word by λs ∈ E∗ss.
If w = e1 . . . en ∈ E∗st we write w−1 := e−1n . . . e−11 for
the converse in E∗ts, which is obtained by reverse reading
w and simultaneously replacing each e by its converse e−1.
The set E∗ carries a partially defined associative concatenation
operation

(w,w′) ∈ E∗st × E∗tu 7−→ ww′ ∈ E∗su,

which has the empty words λs ∈ E∗ss as neutral ele-
ments. One may think of this structure as a groupoidal
analogue of the familiar word monoids. We refer to I∗ =
(E∗, (E∗st)s,t∈S , · , (λs)s∈S) as the free I-structure.

Definition II.1. An S-groupoid is a structure G =(
G, (Gst)s,t∈S , ·, (1s)s∈S

)
whose domain G is partitioned into

the sets Gst, with designated 1s ∈ Gss and a partial binary
operation ·, which is precisely defined on the union of the sets
Gst × Gtu (with values in Gsu), such that the following are
satisfied:

(i) (associativity) for all g ∈ Gst, h ∈ Gtu, k ∈ Guv:
g · (h · k) = (g · h) · k.

(ii) (neutral elements) for all g ∈ Gst: g · 1t = g = 1s · g.
(iii) (inverses) for every g ∈ Gst there is some g−1 ∈ Gts

such that g · g−1 = 1s and g−1 · g = 1t.
G is an I-groupoid if it is generated by a family (ge)e∈E

of groupoid elements associated with the edge labels e ∈ E,
in the sense that ge ∈ Gss′ for e ∈ E[s, s′], ge−1 = (ge)

−1,
and that every g ∈ Gst is represented by a product

∏n
i=1 gei ,

for some w = e1 . . . en ∈ E∗st.1

In other words, an I-groupoid is a groupoid that is a
homomorphic image of the free I-structure I∗, under the map

G : I∗ −→ G

w = e1 . . . en ∈ E∗st 7−→ wG :=
∏n
i=1 gei ∈ Gst.

For disconnected I , an I-groupoid breaks up into con-
nected components that form separate groupoids, viz., one
I ′-groupoid for each connected component I ′. For a subset

1It will make sense to identify the generator ge with e itself, and we shall
often also speak of groupoids generated by the family (e)e∈E .

α = α−1 ⊆ E that is closed under converse we denote by Gα
the sub-groupoid generated by (ge)e∈α within G:

Gα = G�{wG : w ∈
⋃
st α
∗
st} with generators (ge)e∈α,

which may break up into separate and disjoint Iα′ -groupoids
for the disjoint connected components Iα′ of Iα.

Consider an I-graph H = (V, (Vs), (Re)) (cf. Defini-
tion I.1). The partial bijections prescribed by the relations Re,
together with their compositions along paths in E∗, induce a
structure of the same type as the free I∗, in fact a natural
homomorphic image of I∗. For e ∈ E[s, s′], let ρe be the
partial bijection between Vs and Vs′ induced by Re ⊆ Vs×Vs′ .
For w ∈ E∗st, define ρw as the partial bijection from Vs to Vt
induced by the composition of the maps ρei along the path
w = e1 . . . en. For w ∈ E∗st, ρw : Vs → Vt is a partial bijec-
tion, possibly empty. In this manner we obtain a homomorphic
image of the free I-structure I∗ = (E∗, (E∗st) · , (λs)). This
homomorphism maps concatenation to (partial) composition:

ρww′ = ρw′ ◦ ρw (composition of partial maps).

The converse operation w 7→ w−1 translates into inversion
ρw 7→ ρw−1 = (ρw)−1 of partial maps, but in general this is
not a groupoidal inverse. In fact it is the crucial distinguishing
feature of complete I-graphs that we obtain a groupoidal
inverse. More specifically, for an arbitrary I-graph H , the
image of the free I-structure I∗ = (E∗, (E∗st), · , (λs)) under
the homomorphism

ρ : I∗ −→
{
ρ : ρ a partial bijection of V

}
w = e1 . . . en 7−→ ρw =

∏n
i=1 ρei

produces a structure without groupoidal inverses. For a com-
plete I-graph H , however, ρw−1 ◦ρw = idVs for any w ∈ E∗st,
and the image structure obtained in this manner is a groupoid,
which we denote as cym(H):

ρ : I∗ −→ cym(H) =
(
G, (Gst)s,t∈S , ·, (1s)s∈S

)
with Gst = {ρw : w ∈ E∗st}, groupoid operation · as imposed
by the natural composition structure between elements of
matching sorts, and for s ∈ S, the identity 1s = idVs as
the neutral element of sort Gss. It is clear from the discussion
above that ρw ∈ Gst 7→ (ρw)−1 := ρw−1 ∈ Gts serves as the
natural groupoidal inverse.

Definition II.2. For a complete I-graph H we let cym(H)
be the groupoid abstracted from H according to the above
stipulations. We consider cym(H) as an I-groupoid generated
by (ρe)e∈E .

We turn to the groupoidal analogue of the notion of the
Cayley graph of a group.

Definition II.3. Let G = (G, (Gst), ·, (1s)) be an I-groupoid
generated by (ge)e∈E . The Cayley graph of G is the complete
I-graph G = (V, (Vs), (Re)) where V = G,

Vs = G∗s :=
⋃
tGts,

Re = {(g, g · e) : g ∈ Vs} for e ∈ E[s, s′].



One checks that the Cayley graph of an I-groupoid is
a complete I-graph, in fact a very homogeneous one: the
isomorphism type of the pointed I-graph (G, g) only depends
on the ‘sort’ s, for which g ∈ Vs = G∗s =

⋃
tGts.

It also follows that the Cayley graph consists of a disjoint
union of isomorphic complete I-graphs induced on the subsets
Gt∗ =

⋃
sGts for t ∈ S (if I is connected, then these are also

the connected components); the groupoid structure of G can
be retrieved from each one of these, via cym.

Lemma II.4. The I-groupoid induced by the Cayley graph of
G is isomorphic to G.

We shall often just identify a groupoid with its Cayley
graph. We thus find that the generic process of obtaining
I-groupoids from complete I-graphs trivially reproduces the
given I-groupoid when applied to such. We extend this pro-
cess to the setting of not necessarily complete I-graphs by
combining it with a process of completion.

B. Completion of I-graphs

If H = (V, (Vs), (Re)) is an I-graph, then the following
produces a complete I-graph H × I on the vertex set V × S
with the partition induced by the natural projection:

Vs = V × {s}, and, for e ∈ E[s, s′],

Re =
{

((v, s), (v′, s′)) : (v, v′) an e-edge
}
∪{

((v′, s), (v, s′)) : (v, v′) an e-edge
}
∪{

((v, s), (v, s′)) : v not incident with an e-edge
}
.

The natural embedding σ : v 7→ (v, s) for v ∈ Vs embeds
H isomorphically onto an induced substructure of H × I . We
often identify H with σ(H) ⊆ H×I . We use, as a completion
of H , the relevant connected components of H × I .

Definition II.5. The completion H̄ of a not necessarily
complete I-graph H = (V, (Vs), (Re)) is the union of the
connected components in H × I that are incident with σ(H).

Observation II.6. For every I-graph H , the completion H̄
is a complete I-graph. Completion is compatible with disjoint
unions: if H = H1 ∪̇H2 is a disjoint union of I-graphs Hi,
then H̄ = H̄1 ∪̇ H̄2. If H itself is complete, then H̄ ' H .

With the completion H 7→ H̄ we close the gap between I-
graphs and induced I-groupoids. Cf. Definitions II.2 and II.5.

Definition II.7. For a not necessarily complete I-graph H ,
we let the induced I-groupoid cym(H) be the I-groupoid
cym(H̄) induced by the completion of H .

The point is that the passage from H to cym(H) produces
an I-groupoid for any I-graph H , and reproduces the given
I-groupoid when applied to its Cayley graph.

Connected components w.r.t. subsets of the edge colours E
will become important below. If α = α−1 ⊆ E we write
Iα for the reduct of I to its α-edges. We regard the α-
reducts of I-graphs (literally: their reducts to just those binary
relations Re for e ∈ α) as Iα-graphs; the α-reduct of the I-
graph H is denoted H �α. An Iα-graph may alternatively be

regarded as an I-graph, with Re = ∅ for all e 6∈ α. Connected
components of I-graphs w.r.t. α-edges will arise as typical
Iα-graphs in some constructions. The following is immediate
from the definitions.

Lemma II.8. Let α = α−1 ⊆ E, and consider an I-graph
H and its α-reduct K = H �α, as well as their closures as
I-graphs, H̄ and K̄, and the closure of K as an Iα-graph,
K̄α. Then K̄α ' K̄ �α ' H̄ �α.

C. Amalgamation of I-graphs

The key to highly acyclic groupoids is the passage from
I-graphs H that contain unfoldings of short cycles formed by
overlapping Cayley graphs of small sub-groupoids of G to the
groupoid G∗ := cym(H), which can no longer have those
cycles. This technique is a non-trivial groupoidal analogue of
the method expounded for Cayley groups in [13].

We want to consider local overlaps between Cayley graphs
of sub-groupoids as follows. Let Gα and Gβ be two sub-
groupoids of an I-groupoid G with generators e ∈ E, where
α = α−1, β = β−1 ⊆ E are closed under converse. We write
Gαβ for Gα∩β and note that α ∩ β is automatically closed
under converse. For g ∈ G∗s we may think of the connected
component of g in the reduct of the Cayley graph of G to
(Re)e∈α as the Gα-coset at g:

gGα = {g · wG : w ∈
⋃
t α
∗
st} ⊆ G.

If Iα is connected, then gGα, as a weak subgraph of the
Cayley graph of G, carries the structure of a complete Iα-
graph. If Iα consists of disjoint connected components, then
gGα really produces the coset w.r.t. Gα′ where α′ is the edge
set of the connected component of s in Iα. In any case, this
Iα-graph is isomorphic to the connected component of 1s in
the Cayley graph of Gα.

Suppose the Iα-graph Hα and the Iβ-graph Hβ are disjoint
but isomorphic to the Cayley graphs of sub-groupoids Gα and
Gβ , respectively. If v1 ∈ Hα and v2 ∈ Hβ are vertices of
the same sort s ∈ S, then the connected components w.r.t.
edge colours in α ∩ β of v1 in Hα and of v2 in Hβ are
related by a unique isomorphism. We define the amalgamation
of (Hα, v1) and (Hβ , v2) to be the result of identifying the
vertices in these two connected components in accordance with
this unique isomorphism. It is convenient to speak of the sub-
groupoids Gα as the constituents of such amalgams, but we
keep in mind that we treat them as abstract I-graphs and not
as embedded into G. Let, in this sense, (Gα1 , g1)⊕s (Gα2 , g2)
stand for the amalgamation of the Cayley graphs of the two
sub-groupoids Gαi in the vertices gi ∈ Vs ⊆ Gαi . Note that
(Gα1

, g1)⊕s (Gα2
, g2) is generally not a complete I-graph but

satisfies the completeness requirement for edges e ∈ α1 ∩α2.
Let (Gαi , gi, hi, si)16i6N be a sequence of sub-groupoids

with distinguished elements and vertex colours as indicated,
and such that

(†)

 gi ∈ (Gαi)∗si ⊆ Gαi
hi ∈ (Gαi)sisi+1

⊆ Gαi
giGαi−1αi ∩ gihiGαiαi+1

= ∅ as cosets in G.
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Fig. 3. Overlaps between cosets as in (unfolded) coset cycles.

Then the pairwise amalgams (Gαi , gihi)⊕si (Gαi+1
, gi+1)

are individually well-defined and, due to the last requirement
in (†), do not interfere. Together they produce a connected
I-graph H :=

⊕N
i=1(Gαi , gi, hi, si). We call this amalgam a

chain of sub-groupoids Gαi of length N .

D. Avoiding short coset cycles

Definition II.9. A coset cycle of length n in an I-groupoid
with generators e ∈ E is a sequence (gi)i∈Zn of groupoid
elements gi (cyclically indexed) together with a sequence of
colour sets αi = α−1i ⊆ E such that (as indicated in Fig. 3)

hi := g−1i · gi+1 ∈ Gαi and giGαiαi−1
∩ gi+1Gαiαi+1

= ∅.

Definition II.10. An I-groupoid with generators e ∈ E is
N -acyclic if it does not have coset cycles of length up to N .

The following definition of compatibility captures the idea
that some I-groupoid G is at least as discriminating as the I-
groupoid cym(H) induced by an I-graph H . It also means that
G = cym(G) = cym(G ∪̇H) – and in this role, compatibility
of sub-groupoids Gα with certain H will serve as a guarantee
for the preservation of these sub-groupoids in construction
steps that render the overall G more discriminating.

Definition II.11. For an I-groupoid G and an I-graph H we
say that G is compatible with H if, for every s ∈ S and
w ∈ E∗ss, wG = 1s implies ρw = idVs = 1s in cym(H), too.

The condition of compatibility is such that the natural
homomorphisms for the free I∗ onto G and onto cym(H)
induce a homomorphism from G onto cym(H), as in this
commuting diagram:

I∗

·G

��

ρH

&&MMMMMMMMMMMMM

G hom // cym(H)

Remark II.12. For any I-graphs K and H , cym(H ∪̇K) is
compatible with K, K̄ and with the Cayley graph of cym(K).

The following holds the key to avoiding short coset cycles.
Note that in effect we only consider sub-groupoids generated
by even generator sets, as we require closure under converse.

Lemma II.13. Let G be an I-groupoid with generators e ∈
E, k ∈ N, and assume that, for every α = α−1 ⊆ E with
|α| < 2k, the sub-groupoid Gα is compatible with chains of
groupoids Gαβi up to length N , for any choice of subsets
βi = β−1i ⊆ E. Then there is a finite I-groupoid G∗ s.t.

(i) for every α = α−1 ⊆ E with |α| < 2k, G∗α ' Gα, and

(ii) for all α = α−1 ⊆ E with |α| 6 2k, the sub-groupoid
G∗α is compatible with chains G∗αβi up to length N .

It will be important later that compatibility of G∗α with
chains as in (ii) makes sure that G∗α cannot have coset cycles
with colours α ∩ βi of length up to N , because every such
cycle in the Cayley groupoid G∗α would have to be a cycle
also in the Cayley groupoid induced by that chain, i.e., by
the unfolding of the coset cycle under consideration, which is
blatantly impossible.

Proof of the lemma: G∗ is obtained as G∗ := cym(H)
for an I-graph H = G ∪̇K consisting of the disjoint union of
(the Cayley graph of) G and certain chains of sub-groupoids
of G. Specifically, we let K be the disjoint union of all
amalgamation chains of length up to N of the form⊕m

i=1(Gαβi , gi, hi, si)

for α = α−1, βi = β−1i ⊆ E, 1 6 i 6 m 6 N , where |α| 6
2k. By construction and Remark II.12, G∗ = cym(G ∪K) is
compatible with chains Gαβi of the required format; together
with (i) this implies (ii), i.e., that G∗ is compatible with
corresponding chains of G∗αβi . For (i), it suffices to show
that, for |α′| < 2k, Gα′ is compatible with each connected
component of K. Compatibility with G is obvious. Consider
then a component of the form

⊕m
i=1(Gαβi , gi, hi, si). Its α′-

components are obtained as merged chains of components of
the form Gα′αβ . Since |α′| < 2k, the assumptions of the
lemma imply compatibility of Gα′ with any such component.
It follows that G∗ = cym(G∪K) is compatible with all Gα′
for |α′| < 2k, and thus G∗α′ ' Gα′ for |α′| < 2k. Compare
Remark II.12.

The proof of the following is then obtained by inductive
application of Lemma II.13 for increasing k. We also state,
without proof, an easy but crucial observation that clarifies
the relationship between embedded sub-groupoids in G.

Proposition II.14. For every incidence pattern I = (S,E)
and N ∈ N there are finite N -acyclic I-groupoids with
generators e ∈ E.

Observation II.15. For any 2-acyclic I-groupoid G and any
subsets α = α−1, β = β−1 ⊆ E, with associated sub-
groupoids Gα, Gβ and Gαβ: Gα ∩Gβ = Gαβ .

III. HYPERGRAPH COVERINGS AND UNFOLDINGS

Recall from Section I that we associate with a hypergraph
A = (A,S) its Gaifman graph G(A) = (A,G(S)), which
may be viewed as a superposition of cliques, one for each
hyperedge; and its intersection graph I(A) = (S,E) as the
induced incidence pattern. The induced sub-hypergraph A �
A0 of a hypergraph A = (A,S) is the hypergraph on A0

with hyperedge set S � A0 := {s ∩ A0 : s ∈ S}. Recall the
definition of hypergraph acyclicity and N -acyclicity in terms
of conformality and chordality conditions from Definition I.2.
If A is N -acyclic, then every induced sub-hypergraph A �A0

on subsets A0 ⊆ A of size up to N is acyclic. Also recall the



definition of hypergraph coverings in Definition I.4 as special
hypergraph homomorphisms with the back-property.

A. Coverings by reduced products with groupoids

Let A = (A,S) be a finite hypergraph with intersection
graph I := I(A) = (S,E). Let G be an I-groupoid with
generators e ∈ E. For a ∈ A we let Ga denote the sub-
groupoid of G generated by Ea := {(s, s′) ∈ E : a ∈ s ∩ s′}.

We construct a natural covering of A,

π : A⊗G −→ A,

where A ⊗ G = (Â, Ŝ) is a reduced product of A with G as
follows. The vertex set Â is the quotient of the disjoint union
of hyperedges s of A tagged by groupoid elements g ∈ G∗s,⋃

s∈S,g∈G∗s{g} × {s} × s

w.r.t. the equivalence relation induced by identifications

(g, s, a) ≈ (ge, s′, a) for e = (s, s′) ∈ Ea.

We note that (g1, s1, a) is identified with (g2, s2, a) in this
quotient if, and only if, there is a path w from s1 to s2 in I
consisting of edges e = (s, s′) ∈ Ea, for which a ∈ s ∩ s′,
and such that g2 = g1 · wG. We think of the generators e =
(s, s′) ∈ Ea as preserving the vertex a in passage from a ∈ s
to a ∈ s′: the g-tagged copy of s and the g′-tagged copy of
s′ are glued in their overlap s ∩ s′, for g′ = ge.

Let us denote the equivalence class of a triple (g, s, a) as
[g, s, a]. Then the hyperedges of A ⊗ G = (Â, Ŝ) are the
subsets represented by the natural copies of hyperedges s ∈ S:

Ŝ = {[g, s] : s ∈ S, g ∈ G∗s}

where [g, s] = {[g, s, a] : a ∈ s} ⊆ Â. The cover homomor-
phism π is the natural projection π : [g, s, a] 7→ a, which
turns π : Â → A into a hypergraph covering according to
Definition I.4. Crucially, N -acyclicity of G transfers to N -
acyclicity of the coverings thus obtained. The proof of the
key lemma is omitted here, but can be found in [14].

Lemma III.1. Let A be a hypergraph with intersection graph
I(A) =: I , G an N -acyclic I-groupoid. Then A ⊗ G is N -
chordal and N -conformal.

Together with Proposition II.14 we obtain the following.

Proposition III.2. For every N ∈ N, every finite hypergraph
admits a covering by a finite hypergraph that is N -acyclic.

B. Hypergraph unfoldings

We explore a weaker analogue of coverings for situations
where hyperedge overlaps are limited to specified subsets of
the overlaps realised in the given hypergraph. This variation
is of interest as an intermediary between coverings and reali-
sations in the sense of Definition I.6. Technically we therefore
look at modifications of the back-property in coverings from
Definition I.4; and at specifications of overlaps in terms of a
richer incidence pattern I than the actual intersection graph.
Intuitively, the set d[e] ⊆ s∩s′ for e ∈ E[s, s′] in the following

definition is the domain in which copies of s and s′ are meant
to overlap according to e.

Definition III.3. A link structure for a hypergraph A = (A,S)
is an incidence pattern I = (S,E) together with a map d
associating with every edge e ∈ E[s, s′] and its converse
e−1 ∈ E[s′, s] the same subset d[e] = d[e−1] ⊆ s ∩ s′.

A hypergraph homomorphism h : Â → A is an I-covering
if it satisfies the back-property w.r.t. links specified in I: for
every h(ŝ) = s ∈ S, s′ ∈ S and e ∈ E[s, s′] in I , there is
some ŝ′ ∈ Ŝ such that h(ŝ′) = s′ and h(ŝ∩ ŝ′) = d[e] ⊆ s∩s′.

We produce I-coverings as reduced products with I-
groupoids. For a hypergraph A, link structure I and an I-
groupoid G, we define a hypergraph

A⊗E G = (Â, Ŝ)

as a reduced product in analogy with the above definition of
A ⊗ G. Now (g1, s1, a) is identified with (g2, s2, a) if, and
only if, g2 = g1 · wG for some path w from s1 to s2 in I
consisting of edges e for which a ∈ d[e].

It is not hard to see, by arguments strictly analogous to those
given for coverings in Section III-A, that A⊗EG is N -acyclic
for N -acyclic G.

Proposition III.4. Any finite hypergraph A with specified link
structure I admits, for any N ∈ N, an I-covering by a finite
N -acyclic hypergraph Â.

C. Unfoldings of I-graphs and realisations

We may also define a hypergraph Ã := H⊗G as a reduced
product of an I-graph H and I-groupoid G. Its vertex set is
the quotient of the disjoint union of the sets Vs in H , tagged
by groupoid elements g ∈ G∗s and (redundantly) by s itself,⋃
s∈S,g∈G∗s{g} × {s} × Vs w.r.t. the equivalence relation ≈

obtained by identifying (g, s, u) with (ge, s′, v) whenever g ∈
G∗s, e ∈ E[s, s′] and (u, v) ∈ Re. Note that, for gi ∈ G∗si
and vi ∈ Vsi , (g1, s1, v1) is identified with (g2, s2, v2) in the
quotient if, and only if, there is a path w ∈ E∗s1s2 such that
ρw(v1) = v2 in H and g2 = g1 ·wG in G. The hyperedges of
Ã are subsets represented by the natural copies of the patches
Vs of H . We then find the following.

Lemma III.5. If G is compatible with the I-graph H =
(V, (Vs), (Re)), then the natural projection π[g,s] : [g, v] 7→ v
is well-defined in restriction to each hyperedge [g, s] of H⊗G,
and relates the hyperedge [g, s] = {[g, s, v] : v ∈ Vs} bijec-
tively to Vs.

Consider an I-graph H = (V, (Vs), (Re)) as a specifica-
tion of overlaps to be realised between isomorphic copies
of the sets Vs according to identifications induced by the
partial matchings Re or ρe of H . Compare Definition I.6
for the formal definition of a realisation. Reduced products
Ã := H ⊗ G with I-groupoids G that are compatible with
H are a first approximation: according to Lemma III.5, the
hyperedges of H ⊗G individually project bijectively onto the
respective sets Vs. It is not clear, however, that hyperedges



[g1, s] and [g2, t], related to Vs and Vt, do not overlap to a
greater extent than specified in H . To obtain a realisation, we
apply an unfolding of the form Â = Ã⊗Ẽ G̃ w.r.t. a suitable
link structure Ĩ = (S̃, Ẽ) and a 2-acyclic Ĩ-groupoid G̃.

With e ∈ E[s, s′] (from the original multi-graph I = (S,E))
we associate edges ẽ ∈ Ẽ[s̃, s̃′] from s̃ = [g, s] ∈ S̃ to
s̃′ = [g · e, s′] ∈ S̃. These hyperedges s̃ and s̃′ have bijective
projections πs̃ : [g, s] → Vs and πs̃′ : [g · e, s′] → Vs′ . We
specify ẽ ∈ Ẽ[s̃, s̃′] through d[ẽ] := {[g, s, v] : v ∈ dom(ρe)}.
A hyperedge of Â is of the form ŝ = [g̃, s̃] where g̃ ∈ G̃∗s̃.
From Â = Ã⊗Ẽ G̃, this hyperedge ŝ bijectively projects onto
the hyperedge s̃ of Ã = H ⊗ G, and from there bijectively
onto the appropriate Vs. As shown in [14], this method yields
a realisation.

Proposition III.6. For every incidence pattern I and I-graph
H , there is a finite hypergraph Â that realises the overlap
pattern specified by H . For a given threshold N ∈ N, such
realisations Â can be chosen to be N -acyclic.

IV. SYMMETRIES

Hypergraph coverings Â = A ⊗ G, and similarly unfold-
ings and I-coverings, obtained as reduced products with I-
groupoids G, have characteristic ‘vertical’ symmetries that
are compatible with the relevant projections. These sym-
metries are groupoidal in the sense that they are inherited
from the structural homogeneity of the groupoid G. Another
kind of symmetries may arise from structural symmetries of
the underlying hypergraph, link-structure, or I-graph. Both
kinds of symmetries are described in terms of hypergraph
automorphisms in the natural manner: bijections η : A → A
that preserve S. We state without proof first the existence
of vertical, groupoidal symmetries. Compare the remark after
Definition II.3 regarding the symmetries of the Cayley graphs
of groupoids.

Lemma IV.1. In a hypergraph covering π : A⊗G→ A by a
reduced product with any I-groupoid G, where I = I(A), any
two pre-images of the same hyperedge s ∈ S are related by an
automorphism of A⊗G that commutes with π. Similarly, the
reduced products A⊗E G and H ⊗G (for G compatible with
H), admit automorphisms that relate any given two hyperedges
above the same hyperedge s of A, or above the same Vs of
H , and are compatible with the projection π : A⊗E G→ A,
or with the local projections πŝ : ŝ→ Vs, respectively.

Other than these vertical symmetries within fibres, the com-
patibility of reduced products with automorphisms of the given
structure relies on special symmetry properties of the groupoid
G, and ultimately of the incidence pattern I . Looking at
symmetries of I (not just plain automorphisms of the structure
I as we also want to permute edge labels), we can show
that for suitably symmetric groupoids all our constructions are
sufficiently canonical to lift all symmetries of a hypergraph A
to its coverings by A ⊗ G, of a hypergraph A with specified
link structure to its unfoldings A⊗EG, of an I-graph H to its
unfolding H⊗G, and to its realisations. The precise technical

definitions and arguments are presented in [14] and have to be
omitted here. The definitions are just the natural ones. To give
some indicative examples, a symmetry of an incidence pattern
I is an automorphism of the associated two-sorted incidence
structure, i.e., a pair ηI = (ηS , ηE) of bijections ηS : S → S
and ηE : E → E, such that ηE(e) ∈ E[ηS(s), ηS(t)] iff
e ∈ E[s, t]; and a symmetry of the link structure I = (S,E)
for a hypergraph A = (A,S) is induced by a hypergraph
automorphism ηA : A → A through the natural stipulations
for ηS : S → S and ηE : E → E (mapping e ∈ E[s, s′]
to η(e) ∈ E[η(s), η(s′)] where d[η(e)] = η(d[e]) through
operation of η on subsets d ⊆ A). Similarly, a symmetry of an
I-groupoid G with generators e ∈ E is a bijection ηG : G→ G
with an induced symmetry ηI = (ηS , ηE) of I , such that for all
e ∈ E[s, s′], ηG maps the generator e ∈ Gss′ to the generator
η(e) ∈ Gη(s)η(s′) and, correspondingly, for all s ∈ S and
g1 ∈ Gst, g2 ∈ Gtu:

(i) ηG(1s) = 1η(s);
(ii) ηG(g1 · g2) = ηG(g1) · ηG(g2).

An automorphism ηA of a hypergraph A induces a sym-
metry ηI = (ηS , ηE) of I = I(A). If the I-groupoid G
has a symmetry η = (ηG, ηI) with the same underlying
symmetry ηI , then the cover π : A ⊗ G → A carries a
corresponding symmetry that is both an automorphism of the
covering hypergraph Â = A⊗G and compatible with the given
automorphism of A in the sense of a commuting diagram

A⊗G

π

��

ηÂ // A⊗G

π

��
A

ηA // A

Upon re-inspection, the construction steps in the generation
of N -acyclic I-groupoids towards Proposition II.14 are natu-
rally compatible with any symmetry of the given I .

Corollary IV.2. If I = (S,E) is an incidence pattern, then
there is, for every N ∈ N, some finite N -acyclic I-groupoid
G whose symmetries induce all the symmetries of I .

From Proposition III.2 we thus further obtain the following.

Corollary IV.3. Any finite hypergraph A admits, for N ∈ N,
finite N -acyclic coverings by reduced products with finite N -
acyclic I-groupoids, π : Â = A⊗G→ A, that are compatible
with the automorphism group of A in the sense that every
automorphism ηA of A lifts to an automorphism ηÂ such that
π ◦ ηÂ = ηA ◦ π.

Similarly, and most importantly for further applications,
reduced products A ⊗E G with hypergraphs or H ⊗ G with
I-graphs support the same kinds of symmetries as A⊗G.

Corollary IV.4. Every symmetry η of (A, I,G) gives rise to
an automorphism of A⊗E G. Every symmetry η of (H, I,G)
gives rise to an automorphism of H ⊗G.
For any I-graph H = (V, (Vs), (Re)), realisations Â as ob-
tained in Proposition III.6 can be chosen so that all symmetries



A× {2}

A× {1}

A× {0}

ρp,1

ρp,0

ρp,2

p **

p **

p **

FFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFF





























































Fig. 4. Basic structure for Herwig extensions w.r.t. a single p.

of H lift to automorphisms of Â. Moreover, for any two
hyperedges ŝ1 and ŝ2 of Â that bijectively project to the same
Vs, there is a ‘vertical’ automorphism of Â that is compatible
with these projections.

A. An application to Herwig’s theorem and GF
In its basic form, Herwig’s theorem [8], [9] provides,

for some given partial isomorphism p of a finite relational
structure A, an extension B ⊇ A of A such that the given
partial isomorphism p of A extends to a full automorphism of
B. It generalises a corresponding theorem about finite graphs
by Hrushovski [11]. A substantial generalisation (cf. Corol-
lary IV.9) is proved in the paper by Herwig and Lascar [9].
W.l.o.g. we restrict attention to relational structures with a
single relation R of arity r.

We here reproduce both Herwig’s theorem and the Herwig–
Lascar theorem in an argument based on groupoidal construc-
tions, which may offer a starting point for further generalisa-
tions. For a specified collection P of partial isomorphisms of
A = (A,RA), let S := (Z3)P be the set of P -indexed tuples
over {0, 1, 2}. For p ∈ P we denote as s 7→ s+p 1 the cyclic
successor map of Z3 in application to the p-th component,
which fixes all other components. Consider the vertex set
V := A×S = A×(Z3)P , partitioned according to the natural
projections into subsets V =

⋃
s Vs, where Vs = A × {s}.

We expand V to an R-structure H = (V,RH) in the natural
manner, so that we may think of H as a collection of disjoint
copies of A. With p ∈ P we associate partial bijections ρp,s
from Vs to Vs+p1

ρp,s : dom(p)× {s} −→ image(p)× {s+p1}

(a, s) 7−→ (p(a), s+p1).

Putting E = {(s, s+p 1), (s+p 1, s) : s ∈ S, p ∈ P}, this
structure also gives rise to an I-graph H = (V, (Vs), (Re)) for
I = (S,E), where R(s,s+p1) is the graph of ρp,s, R(s+p1,s)

its converse. Then the following are symmetries of H and its
expansion to the R-structure H:

ηp : V −→ V

(a, s) 7−→ (a, s−p1),

whose induced symmetry of I maps s ∈ S = (Z3)k to s+p1.
Let Â be a realisation of the overlap pattern specified by H

that has all the symmetries as described in Corollary IV.4: in
particular it lifts the automorphisms ηp of H to automorphisms
of Â and has vertical automorphisms that relate any two
hyperedges that project to the same Vs.

Since any two partition subsets Vs of H are related by an
automorphism of H , any two hyperedges of Â are related by
an automorphism of Â.

We expand Â to an R-structure B := (Â, RB) by lifting
RA from every Vs to every hyperedge ŝ of Â that projects to
Vs through πŝ : ŝ→ Vs. Then

(i) B� ŝ ' A for every hyperedge ŝ of Â;
(ii) the lift of the ηp to automorphisms of Â are automor-

phisms also of the R-structure B; so are the ‘vertical’
automorphisms of Â that relate hyperedges that project
to the same Vs;

(iii) up to suitable ‘vertical’ automorphisms ζp,ŝ, ηp expands
the realisation of p in πŝ : B� ŝ ' A:

ŝ

πŝ

��

ζp,ŝ◦ηp
// ŝ

πŝ

��
A× {s} = Vs

p×{s} // Vs = A× {s}

This reproves Herwig’s theorem in a form that highlights
the role of the hypergraph generated by automorphic images
of A within the extension B ⊇ A.

Corollary IV.5 (Herwig’s Theorem). For every finite rela-
tional structure A = (A,RA) there is a finite relational
structure B = (B,RB) and a hypergraph (B,S) such that

(i) A ' B�s for all s ∈ S;
(ii) every partial isomorphism of B whose domain and image

sets are contained in hyperedges of (B,S) is induced by
an automorphism of B.

This statement can also be obtained as a corollary of the
basic form of Herwig’s theorem. Its new proof, however,
allows for further variations w.r.t. the nature of the hypergraph
(B,S), which may for instance be required to be N -acyclic.
Among other potential generalisations this reproduces the
extension of Herwig’s theorem to the class of conformal
structures and, e.g., of k-clique free graphs, obtained on the
basis of Herwig’s theorem in [10].

As a further consequence of the uniform construction in
the new solution to the extension task, we obtain a simpler
proof of the Herwig–Lascar theorem. Consider A and P as
above, together with the I-graph H on vertex set V × S for
S = (Z3)P and I = (S,E) as above, based on the ρp,s for
p ∈ P, s ∈ S. Let B be obtained, as above, by the natural
pull-back of RA to a hypergraph Â = (Â, Ŝ) that realises the
overlap pattern specified by the I-graph H and is sufficiently
symmetric. In particular, for any ŝ ∈ Ŝ, B � ŝ ' A, and for
every p ∈ P there is an fŝ,p ∈ Aut(B) that extends pŝ, the
copy of p in B� ŝ ' A. The following is proved in [14].

Lemma IV.6. Let B′ be any (finite or infinite) solution to
the extension task for A and P , A ⊆ B′. Let ŝ, ŝ′ ∈ Ŝ and



π : B � ŝ ' A. Then the embedding of B � ŝ into A ⊆ B′ via
π extends to a homomorphism h : B�(ŝ ∪ ŝ′)→ B′:

B�(ŝ ∪ ŝ′)
h

((QQQQQQQQQQQQQQ

B� ŝ

⊆

OO

π
// A ⊆

// B′

If moreover the hypergraph template Â = (Â, Ŝ) in the
construction of B is chosen to be N -acyclic, then this local
extension process can be iterated to cover any substructure of
B of size up to N , which gives the following.

Corollary IV.7. For any collection P of partial isomorphisms
of a finite R-structure A and for any N ∈ N, there is a finite
extension B ⊇ A that satisfies the extension task for A and P
and has the property that any substructure B0 ⊆ B of size up
to N can be homomorphically mapped into any other (finite
or infinite) solution B′ to the extension task for A and P .

From our new construction we therefore also obtain the
strengthening of Herwig’s theorem due to [9], which can be
phrased as a finite-model property for the extension task.

Definition IV.8. A class C of R-structures has the finite model
property for the extension of partial isomorphisms (EPPA) if,
for every finite A ∈ C and collection P of partial isomorphisms
of A such that A has some (possibly infinite) extension A ⊆
B ∈ C in which each p ∈ P extends to an automorphism,
there is also a finite extension A ⊆ B0 ∈ C in which each
p ∈ P extends to an automorphism.

We say that C is defined in terms of finitely many forbidden
homomorphisms if, for some finite list of finite R-structures Ci,
it consists of all R-structures A that admit no homomorphisms
of the form h : Ci

hom−→ A. The following is now immediate
from Corollary IV.7.

Corollary IV.9 (Herwig–Lascar Theorem). Every class C that
is defined in terms of finitely many forbidden homomorphisms
has the finite model property for the extension of partial
isomorphisms (EPPA).

The guarded fragment GF ⊆ FO restricts first-order quan-
tification to variable assignments within guarded subsets; it
reflects many of the phenomena known form modal logic
at a much higher level of expressiveness and in the richer
setting of arbitrary relational structures [2], [7]. Among the
most salient features in this direction are its invariance under
guarded bisimulation ∼g, which semantically characterises GF
as a fragment of FO, see [2], [13]; its finite model property
and decidability; and its generalised tree model property [7].
The elegant proof of the finite model property due to [7] uses
Herwig’s theorem to extend a sufficiently rich finite substruc-
ture of an infinite model to a finite model. It turns out that
the Herwig–Lascar theorem similarly implies a strengthening
of the finite model property for GF first obtained by very
different means in [3], in restriction to any class C defined in

terms of finitely many forbidden homomorphisms. We sketch
this apparently new and independent argument.

We say that structure B is ∼`g-homogeneous if any guarded
tuples b,b′ in B such that B,b ∼`g B,b′ are related by an
automorphism of B.

Lemma IV.10. Let C be a class of relational structures defined
in terms of finitely many forbidden homomorphisms. Let B ∈
C be ∼`g-homogeneous. Let B′ be the expansion of B by a new
relation for each one of the finitely many ∼`g-types realised in
B. Let A′ = B′ � A be large enough to contain, for every
guarded tuple b of B, at least one realisation of that ∼`g-
type. Then A′ has a Herwig extension Ā′ ⊇ A′ in C that is
∼g-equivalent to B′ in the sense that Ā′ ∼g B

′ and Ā′,a ∼g

B′,a for every guarded tuple a ∈ A.

Let C be defined by the condition that there are no ho-
momorphic images of the finite structures C1, . . . ,Cm. The
class C0 ⊇ C of structures that admit no acyclically embedded
homomorphic images of the Ci is definable in GF by some
γ ∈ GF. To find finite models of ϕ ∈ GF in C, choose `
greater or equal to the nesting depth of ϕ ∧ γ. If ϕ has an
infinite model in C, then a ∼`g-homogeneous infinite model
B of ϕ in C can be obtained as a suitable regular tree-like
model of ϕ ∧ γ (which in turn could be obtained from any
finite model of ϕ ∧ γ). The lemma guarantees a finite model
in C. So we obtain the following result from [3].

Corollary IV.11. GF has the finite model property over any
class defined in terms of finitely many forbidden homomor-
phisms.
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[3] V. Bárány, G. Gottlob, M. Otto. Querying the guarded fragment.
Accepted for Logical Methods in Computer Science, 2012.

[4] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability
of acyclic database schemes. Journal of the ACM, 30:497–513, 1983.

[5] C. Berge. Graphs and Hypergraphs. North-Holland, 1973.
[6] N. Biggs. Cubic graphs with large girth. In G. Blum et al., eds, Annals

of the New York Academy of Sciences, volume 555, pages 56–62. 1989.
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