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Abstract

How can we prove that some fragment of a given logic has the power
to define precisely all structural properties that satisfy some character-
istic semantic preservation condition? This issue is a fundamental one
for classical model theory and applications in non-classical settings alike.
While methods differ greatly, and while the classical methods can usually
not be matched for instance in the setting of finite model theory, this
note surveys some interesting commonality revolving around the use and
availability of tractable representatives in the relevant model classes. The
construction of models in which simple invariants like partial types based
on some weak fragment control all the relevant structural properties, may
be seen at the heart of such questions. We highlight some constructions
involving degrees of acyclicity and saturation that can be achieved in finite
model constructions, and discuss their uses towards expressive complete-
ness w.r.t. bisimulation based equivalences in hypergraphs and relational
structures. The emphasis is on the combinatorial challenges in such more
constructive approaches that work in non-classical settings and especially
in finite model theory. One new result concerns expressive completeness
w.r.t. guarded negation bisimulation, a back-and-forth equivalence involv-
ing local homomorphisms.
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1 Introduction

Model theory explores the logical definability of structural properties, i.e., the
expressiveness of logics. Structural properties are here the material against
which the semantics of logics under consideration is measured.

Classes of structural properties can be specified, for instance, in terms of
other logics, but also in terms of a priori extra-logical considerations like al-
gebraic or recursion-theoretic and algorithmic criteria. In a universal-algebraic
tradition, closure conditions are a key example; in relation to the semantics
of logical formalisms they are usually described as preservation conditions. In
connection with algorithmic criteria, levels of computational complexity carve
out natural classes of structural properties.

Logics are specified in terms of syntax and semantics. A logic may or may not
provide the expressiveness to deal with certain classes of structural properties.
The logics under consideration can be very concrete fragments of established
systems, e.g., certain syntactic fragments of first-order logic if one is looking
for the expressive means to capture just those first-order properties that satisfy
some natural closure property. In different context, e.g., if one is looking for the
expressive means to capture all structural properties of a given computational
complexity, one may want to cast the net for candidate logics as wide as possible
and restrict them by no more than the most rudimentary criteria concerning
the manner in which their syntax and semantics are presented.

In any of these situations, precise matches between some class of structural
properties and the expressiveness of some logic are particularly attractive. For
the logic involved in such a match, one obtains a model-theoretic characterisa-
tion of its expressiveness, an answer to the question:

e Which properties precisely can be expressed?

For the class of structural properties involved, one obtains a descriptive
characterisation:

e Syntax that captures these, and just these, properties.



Both aspects are of interest for the model-theoretic study of logical se-
mantics. But typically they also have applications beyond the quintessentially
model-theoretic interest. In particular, the availability of a logic that precisely
captures a given class of properties provides a language for the specification
and manipulation of just these properties, which is rich enough to express all
intended properties and safeguarded against breaching the underlying semantic
constraint. It may in addition provide a tool for surveying and for analysing this
class of properties, including for instance the possibility to determine whether
a given property is of this kind.

This paper concentrates on one technical aspect shared by various expressive
completeness results, from typical classical examples to more recent explorations
in finite model theory. The obvious differences have often been stressed: classi-
cal expressive completeness results for fragments of first-order logic are typically
compactness-based; alternative, more constructive and combinatorial arguments
are required in those cases where expressive completeness results can be estab-
lished in finite model theory. Meanwhile the growing number of qualified expres-
sive completeness results in finite model theory [19, 15, 16, 17, 20, 10, 3, 4, 18]
calls for a re-assessment of the earlier primarily negative view that focused on
“failures in the finite” in comparison to the well-known classical preservation
theorems. Also the major methodological differences may have hidden some
interesting commonality that does prevail more often than had first been appre-
ciated.

In this paper I attempt to describe one such common aspect that seems to
link techniques across the divide of classical versus finite model theory, which I
see in the use of logically tractable models. As a first approximation think of
logical tractability w.r.t. some weaker logic L, whose expressive power is to be
established, as a criterion that guarantees that, in certain well-behaved struc-
tures, L is unusually strong in the sense that L-descriptions of configurations
(L-types) determine the behaviour of these configurations w.r.t. some stronger
logic or up to some more powerful notion of equivalence than is usually associ-
ated with L.

Structures with saturation properties provide striking classical examples of
this kind. Consider w-saturated 7-structures 2 and B in some fixed finite re-
lational vocabulary 7. If tuples a € 2 and b € B satisfy exactly the same
first-order formulae ¢(x) € FO[7], then, due to w-saturation, a and b are linked
by a back-and-forth system of local isomorphisms that establishes that 2, a and
B, b are related by partial isomorphy, 2, a ~_... ‘B, b, and, by Karp’s theorem,
satisfy exactly the same formulae in the infinitary logic FOo[7].! So the class
of w-saturated structures reduces FO,-equivalence (partial isomorphy) to FO-
equivalence (elementary equivalence), and we may regard w-saturated models
as particularly tractable representatives of their elementary equivalence class,
because here the expressive power of FO reaches beyond the usual limits and
determines the nature of tuples up to partial isomorphy. Of course, over count-

Here FOoo denotes the logic which allows for conjunctions and disjunctions over arbitrary
sets of formulae; classical notation is Loow for FOoo, in line with L, for FO.



able structures, partial isomorphy coincides with actual isomorphy; but while
countable, saturated models might look even more desirable, only very special
elementary classes possess such representatives.

Outline. After some preliminaries and first examples in this section, we look
at forms of acyclicity and finitary saturation in hypergraphs in Sections 2 and 3
before analysing tractability in suitable guarded covers for relational structures
in Section 4. The expressive completeness results in Section 4 concern the
guarded fragment of first-order logic as well as certain guarded negation frag-
ments, for which the status in finite model theory was unknown. In the final
section, Section 5, we outline an expressive completeness result from [5] in the
context of descriptive complexity.

1.1 Preliminaries

For later use we fix some terminology and recall the basic notions related to
back-and-forth equivalences and types and preservation properties.

In this paper we deal with structures over finite relational vocabularies 7;
r-structures are denoted as in A = (A, (R*)ge,), where A is the domain of 2.
For n-tuples we write a = (ay,...,a,) and often indicate membership of the
components a; in A in suggestive notation like a € A or a € 2. FO denotes
first-order logic, FO[r] if we want to indicate the vocabulary; the collection of
FO-formulae of quantifier rank up to ¢ € N is denoted FO,. Those variables
that may occur free in a formula are highlighted in the notation ¢(x), which
indicates that at most those variable symbols listed in the displayed tuple x
occur free in . We write 2 = pla] or 2A,a = ¢ to state that ¢ is satisfied
by the assignment of a to x in 2. Two formulae are called logically equivalent,
o = 1, if they are satisfied by exactly the same structures and assignments. The
restricted notion of logical equivalence over some class C of structures, ¢ =¢ 9,
only admits structures 2 € C to the test whether 2 = p[a] iff 2 = ¢]a].

Degrees of indistinguishability between structures are formalised as usual:
for instance, elementary equivalence of structures, denoted 2l = 95, means that 2
and B satisfy exactly the same FO-sentences (formulae without free variables).
Degrees of indistinguishability between tuples in structures, or of structures
with parameters as assignments to free variables, can be formalised in terms of
types. A type is just a collection of formulae that can simultaneously be realised
by tuples. For instance, the complete FO-type of a tuple a € 2 is {p(x) €
FO: 2 a = ¢}, its FO,-type {p(x) € FO,: 2, a = ¢}. Then A, a = B, b means
that a in % and b in B satisfy the same complete FO-type. Approximations
to full elementary equivalence are provided by levels =¢ of agreement w.r.t. all
FO-formulae up to quantifier rank g, i.e., by equality of FO4-types. Since we
assume 7 to be finite and relational, the equivalences =? are of finite index for
every fixed quantifier rank level ¢ and fixed width of the parameter tuples in
A,a =2 B, b. All these notions have natural variants for other logics to be
considered below.



Many relevant equivalences between structures with parameter tuples can
be cast in terms of model theoretic back-and-forth games. Levels of first-order
indistinguishability are captured by the familiar Ehrenfeucht-Fraissé game or
by back-and-forth systems of local isomorphisms. Finite local isomorphisms are
here denoted as p: a +— b where tuples a € 2 and b € B enumerate the domain
and range of p and p: A [a ~ B [ b says that p is a local isomorphism, i.e.,
an isomorphisms of the induced substructures. Back-and-forth systems of local
isomorphisms are characterised by appropriate back-and-forth conditions. For
the familiar case of the g-round Ehrenfeucht—Fraissé game, we deal with a system
(Im )m<q of sets of local isomorphisms and the back-and-forth conditions require
that any p € I,,,+1 has extensions p’ € I,,, with b € image(p’) (respectively with
a € dom(p')), for any choice of b € B (respectively of a € A). If there is such a
system with (p: a+— b) € I, then 2, a and B, b are called g-isomorphic, A, a ~1
B, b. By the Ehrenfeucht—Fraissé theorem, the following are equivalent for any
two structures in a finite relational vocabulary 7 with parameter tuples:

(i) A,a~9B b (g-isomorphism);
(ii) the existence of a winning strategy for the second player, for ¢ rounds
played from position 2, a; B, b, in the familiar Ehrenfeucht—Fraissé game;
(iii) 2A,a =7 B, b (indistinguishability in FO).

The common refinement ~* of all finite levels (~9),en correspondingly cap-
tures full elementary equivalence, 2, a ~“ B, b if, and only if, A,a = B, b.
In terms of the game, this corresponds to the existence of a winning strategy
for the second player for every chosen finite number of rounds. The stronger
notion of partial isomorphy, A, a ~,... B, b, corresponds to the existence of a
winning strategy for the second player in the infinite game, or to the existence
of a single set I of local isomorphisms that is closed w.r.t. the back-and-forth
conditions, and with (p: a — b) € I. Karp’s theorem may be regarded as the
upgrading of the Ehrenfeucht—Fraissé equivalence from the finite round game to
the infinite game, from the limit ~“ of the finite levels of g-isomorphy ~¢ to
partial isomorphy, and from indistinguishability in FO to indistinguishability in
FO4. The following are equivalent:

(i) 2A,a~,,.. B,b (partial isomorphy);
(ii) the existence of a winning strategy for the second player in the infinite
game from position 2, a; B, b;
(iii) 2A,a =" B, b (indistinguishability in FO,).

The point of w-saturation in the brief remark above is precisely that, for w-
saturated 2 and 2B, the system [ of all finite local isomorphisms p: a — b with
2A,a = B, b (finite elementary maps) is closed w.r.t. back-and-forth conditions
and hence 2, a ~_,.. B, b whenever 2, a = ‘5, b.

We shall encounter typical variants for fragments and other logics below.

Preservation properties for formulae of some logic or syntactic fragment for-
mulate a semantic criterion in terms of structural equivalences or transforma-
tions. We give the definition for some arbitrary notion of structural equivalence
A, a =~ B, b between T-structures with parameters. This is the case we shall be



concerned with later, but the concept obviously extends also to non-symmetric
relationships like the homomorphism relation 2,a ~*% 9B, b which is defined
in terms of the existence of a homomorphism from 2l to B that maps a to b.
Instead of a preservation property of a formula ¢ one may always think of a
closure property of the underlying class of models of ¢. For instance, preserva-
tion of ¢ under homomorphisms is equivalent to closure of the model class of ¢

under homomorphisms.

Definition 1.1. For any relation between structures, like a notion of equivalence
2A,a ~ B, b between 7-structures with parameters, we say that a formula p(x)
is preserved under the relation = if the following implication is satisfied for all
2A,a and B, b

Aa~B,band AE=gpla] = B pbl.

If in restriction to a class of structures C we merely admit structures 2L, B
from C to the test, we say that ¢ is preserved under ~ over C.

Note that preservation under ~ over C will typically be a strictly weaker
condition than preservation under = throughout.

The following definition of expressive completeness refers to some class of
properties of structures or parameter tuples in structures — the kind of properties
that may or may not be definable with sentences or formulae in a logic. Formally,
we may identify a “property” with an isomorphism closed class of structures
(with parameters), and a class of properties with a class of such classes.

Definition 1.2. A logic (or fragment of a logic) L is said to be expressively
complete for a class P if every property in P is defined by some L-formula.

If also every model class of a formula in L belongs to P, we say that L
captures P.

Classical model-theoretic preservation theorems are instances of this: they
state that some syntactic fragment of FO satisfies some preservation property
and that this fragment is expressively complete for the class of all FO-definable
properties that satisfy this preservation condition. The real content is usually
in the expressive completeness part.

1.2 Two examples

Homomorphism preservation. It is well-known and easy to check that
all first-order formulae generated from atomic formulae by just conjunction,
disjunction and existential quantification (i.e., without negation and universal
quantification) are preserved under homomorphisms. This ezistential positive
fragment of FO is here denoted dposFO. The question is immediate whether
this is a precise match. The classical Lyndon—Tarski theorem is a typical rep-
resentative of a whole family of corresponding “preservation theorems.”

Theorem 1.3 (Lyndon-Tarski). The existential positive fragment of FO cap-
tures the class of all FO-definable properties that are closed under homomor-
phisms. Le., the following are equivalent for ¢(x) € FO[r]:



(i) ¢ is preserved under homomorphisms:
whenever A, a =23 B, b, then A = pla] implies B = ¢[b];

(ii) @ 1is logically equivalent to some existential positive formula:
there is some @' € IposFO[7] such that ¢ = ¢'.

Note that, as a corollary, we get effective syntax for a class of first-order
properties of interest. The class of all first-order formulae that are preserved
under homomorphisms, on the other hand, is easily seen to be undecidable.

The interesting direction in the above equivalence is the claim of expressive
completeness of FposFO for the class of all first-order definable properties that
are preserved under homomorphisms.

Let us consider this classical expressive completeness assertion also with
a view to illustrate an essential proof technique that can be described as an
upgrading of relations between structures. For simplicity we drop parameters
and speak of FO-sentences, which is essentially no loss of generality. The task
is to show that a sentence ¢ € FO that is preserved under homomorphisms is
equivalently expressible in IposFO. A standard compactness-based preparation
(cf. Lemma 3.2.1. in [9]) reduces this claim to the assertion that such ¢ is
preserved under the relation of positive existential transfer, A == B defined by
the condition that for every ¢ € JposFO, 2 = ¢ implies B | ¢. Unlike fom |

Jpos

the relation = is defined in terms of logic. If we also invoke the Lowenheim—
Skolem property of FO, it suffices to establish preservation of ¢ under 2% in
restriction to countable structures.

By preservation of IposFO under homomorphisms, -3 implies 2% It
would be trivial to show that preservation under homomorphisms implies preser-
vation under IposFO transfer, if conversely A 22D generally implied A 2o 98.
This is clearly not the case: =3 is strictly stronger than 2% But this difference
disappears for a countable model 2 and for an w-saturated %B. If we replace the
given B in A == B by some w-saturated elementary extension B* (not neces-
sarily countable), for which in particular B* = 9B, then 2 22 B automatically
implies A 2% B*, and thus gets upgraded to A oM B*. Now 2 E ¢ implies
that B* |= ¢ since ¢ is preserved under homomorphisms; and this implies that
also B = ¢, because B = B*.

Jpos
_—
\ L

<
v
B

So the detour through B* establishes that ¢ is indeed preserved under e
and the expressive completeness claim follows. What we use is the fact that the
class of w-saturated models

A

2

*

— is rich enough to provide representatives of every elementary class
(we need a representative in the =-class of the given 95)



— is well-behaved or tractable for the intended upgrading: every JposFO-
preserving finite partial map into an w-saturated target structure can be
extended in an IposFO-preserving manner.?

The second assertion is due to the fact that an w-saturated structure re-
alises every satisfiable I3posFO-type over finitely many parameters, and reflects
the same phenomenon that was mentioned in connection with elementary equiv-
alence and partial isomorphy above.

The Lyndon—Tarski theorem is one of those classical expressive completeness
results that do hold true also in the sense of finite model theory. This long open
problem was solved by Benjamin Rossman [20], with very sophisticated finitary
saturation methods. These also fall in the category of constructive finitary
counterparts of classical saturation arguments that we are interested in.

We shall use the following notion to describe how, over certain classes of
well-behaved or tractable structures, a weaker logic suffices to determine the
behaviour of finite configurations w.r.t. a stronger logic. The same notion can
naturally be applied to induced equivalences between configurations.

Definition 1.4. For a class of structures C and two logics® Lo and L, we say
that Lo controls L over C, in shorthand notation: Ly > L over C, if Lg-types
determine L-types over C in the sense that, for 2l € C and tuples a,a’ € 2,
always 2d,a =p, A,a’ = 2A,a =, 2A;a’. We also say that Lg-equivalence
determines L-equivalence: =p,, > =j, over C.

The version for logical equivalences will be the one to apply in upgrading
steps towards expressive completeness arguments. In finite model theory argu-
ments, compactness is not available to pass to a smooth and uniform limit. We
shall use the finite index approximations of the logical equivalences, which also
lead to more concrete constructive assertions. For instance,

Lyg) > FOq over C

is used to say that, in order to determine the first-order behaviour of configura-
tions up to quantifier rank g, it suffices to control their nesting depth f(q) types
in the fragment L.

Bisimulation preservation. This example illustrates these ideas in a less
classical setting, although not one of finite model theory. It involves preser-
vation under bisimulation and logics of a modal character. It deals with a
non-elementary class of tree models, which here arise as tractable representa-
tives obtained in a natural process of tree unfolding. The example takes us
closer to the technical concerns in the main part of the paper, insofar it involves
acyclicity criteria for the relevant class of well-behaved models.

2In case of a countable source structure 2, a countable chain of extension steps based on
finite partial homomorphisms generates an actual homomorphism in the limit.

3We do not assume any closure properties for logics; otherwise we should refer to fragments
of logics here.



We look at finite relational vocabularies 7 of width 2, i.e., with monadic and
binary relations. A 7-structure is an edge- and vertex-coloured graph, or a la-
belled transition system. Bisimulation equivalence between labelled transition
systems is the natural equivalence based on the infinite version of the modal
back-and-forth game. A single pebble for each structure is moved along labelled
transitions and monadic relations need to be respected by pebble positions. A
bisimulation relation between 2 and B describes a (not necessarily determinis-
tic) winning strategy for the second player. Formally, a bisimulation relation is
formalised as a non-empty relation Z C A x B satisfying the following.

(a) local isomorphy w.r.t. all monadic P € 7:
for all (a,b) € Z, a € P* < be P%,;

(b) back-and-forth conditions for each binary F € 7:
(back) for all (a,b) € Z and for every b’ with (b,b') € E® there is some a’
with (a,a’) € E* such that (a/,b') € Z;
(forth) for all (a,b) € Z and for every a’ with (a,a’) € E® there is some
b with (b,b') € E® such that (a’,b') € Z.

We write U, a ~ B, b to assert the existence of a bisimulation relation Z as
above with (a,b) € Z, which encodes a winning strategy for the second player in
the underlying infinite bisimulation game from position 2, a; B, b. The existence
of a winning strategy in the ¢-round game, which would be formalised by a
back-and-forth system of the form (Z,,)m<q in the usual manner, is denoted as
A, a ~7B,b. Note that, by design, the finite levels ~4, their common refinement
~* and full bisimilarity ~, are in exactly the same relationship as are ~% ~%
and ~_,,. in the classical first-order setting.

‘ g-round game ‘ finite-round game ‘ infinite game

Q1 . w
calssical: ~1 o~ ™ bart

modal: ~1 ~Y ~

Conditions (a) and (b) characterise the Ehrenfeucht—Frailssé rules that match
the expressive power of basic modal logic ML. This fragment of first-order logic
has formulae with a single free variable; its quantifier-free formulae make as-
sertions just about the monadic relations, so that (a) reflects quantifier-free
equivalence; and quantifications are of the relativised form Vy(Ezy — ¢(y))
and Jy(Fzy A ¢(y)), which is captured in the back-and-forth conditions (b).
We write ML, for the fragment of modal logic of quantifier rank up to g,
and A, a =} B, b for indistinguishability in ML,. The modal variants of the
Ehrenfeucht—Fraissé and Karp theorems are immediate.

The following are equivalent:

(i) 2A,a ~? B, b (g-bisimilarity);
(ii) the existence of a winning strategy for the second player in the g-round
bisimulation game from position 2, a; B, b;
(i) A, a =4y, B, b (indistinguishability in ML,).



Considering the infinitary variant ML, of ML with conjunctions and dis-
junctions over arbitrary sets of formulae, the following are equivalent:
(i) A, a~ B,b (bisimilarity);
(ii) the existence of a winning strategy for the second player in the infinite
bisimulation game from position 2, a; ‘B, b;
(iii) 2A,a =57, B, b (indistinguishability in ML, ).

Countable tree models in which all relevant multiplicities are boosted to
be infinite, are tractable models for our purposes: in these, the bisimulation
behaviour even determines the isomorphism type. Such well-behaved models
can be obtained as representatives within every bisimulation class, through the
simple process of w-tree-unfolding.

Let A = (A, (EQl)EGT(Q), (PQl)PeT(l)) be a T-structure, where we split the
finite vocabulary 7 into 7(1) and 7(2) according to arities. For any chosen
parameter a € 2 as the distinguished root vertex, let the w-tree-unfolding of 2
from a be the following tree-like 7-structure A%*. The domain of A%* is the set
of all (7(2) x N)-edge-labelled paths from ag := a in 2:

p=ao(E1,mi)ai1(Es,ma)as ... (E,,my)ay

where n € N is the length of this path, m; € N for 1 < j < n, and the label
components E; € 7(2) are such that (a;_1,a;) € E for 1 < j < n. The binary
relations E € 7(2) are interpreted naturally as the sets of all pairs (p, p’) of such
paths where p’ extends p by one (E, m)-step according to p’ = p(E, m)a’. The
unary P € 7(1) are interpreted such that the projection to the target vertex

7w ag(E1,my)ay ... (EpyMp)a, — ay

is a homomorphism. We identify the path of length 0 from a with a itself, which
thus becomes the distinguished root vertex also of the resulting tree structure.
So m: AY* a 2% 9, a, and it is easy to check that the graph of the projection m
is a bisimulation relation. It follows that in particular 2, a ~ A“*, a.

Observation 1.5. If 2 and B are countably branching, then A, a ~ B, b implies
AY* a ~ BY* b. Generally also (AL*)W0* ~ AW*.

The model theory of tree structures is a classical example of a model theory
closely linked to algorithmic methods. Key results like Rabin’s theorem on
the decidability of monadic second-order logic MSO over the full binary tree,
and, as a consequence, decidability of the satisfiability problem for MSO over
tree structures, are driven by game arguments, (de-)composition techniques
and automata theoretic methods. (MSO is the extension of first-order logic
by second-order quantification over subsets of the domain; over tree structures,
MSO provides the expressive power to speak about subtrees, initial segments,
reachability and paths, infinite paths, well-foundedness, etc.)

An interesting fragment of MSO (over trees as well as over arbitrary tran-

sition systems) is the modal p-calculus L,,; it extends basic modal logic ML by

10



least and greatest fixed point operators that provide a natural mechanism for
monadic monotone recursion and inductive definitions. L, has the expressive
means, for instance, to make reachability assertions, well-foundedness assertions,
etc. But L, is also a logic of modal character in the sense of being preserved
under bisimulation equivalence — a property clearly not shared by MSO or even
FO (over trees), since both can count finite multiplicities and, for instance, make
assertions about finite bounds on the branching degree in a tree.

Over tree models, the expressive powers of both MSO and L, can be matched
to the computational powers of suitable kinds of tree automata. Using such
matches, Janin and Walukiewicz showed in their fundamental paper [14] that
MSO and L, are equally expressive over the class of w-tree-unfoldings of arbi-
trary transition systems. Intuitively: the one obvious difference in expressive
power is related to the ability to control finite multiplicities; this is essentially
the only advantage that MSO has over L, in tree models; and this advantage is
systematically denied in tree structures in which all multiplicities are infinite.
Because w-tree-unfoldings represent any transition system up to bisimulation
equivalence, this collapse (indeed, a tractability phenomenon) entails a cele-
brated expressive completeness result.

Theorem 1.6 (Janin-Walukiewicz). The modal u-calculus captures the class of
all MSO-definable properties (of elements in transition systems) that are closed
under bisimulation equivalence. In other words, the following are equivalent for
any formula ¢(x) € MSO(7):
(i) @(x) is preserved under bisimulation equivalence:
whenever A, a ~ B, b, then A |= pla] implies B = p[b];
(i1) (x) is logically equivalent to some Ly, [7]-formula.

We briefly discuss those generic aspects of the proof that are relevant for
our tractability considerations. It is interesting to note that compactness is
not available for the logics at hand, which means that neither can classical
saturation arguments be brought to bear, nor even the usual preparation that
would relate expressibility in L,, to some transfer property for L,-formulae (cf.
the above discussion of the Lyndon—Tarski theorem).

Let 7%[r] stand for the class of all w-tree-unfoldings of T-transition systems.
Essentially, the proof of Janin and Walukiewicz uses the automata theoretic
reformulation to show that, for some suitable function f,

(%) Lﬁ(q) > MSO? over T¥[7].

We check that this implies the desired expressive completeness of L, for
MSO-definable properties that are preserved under ~.

Let p(x) € MSO[7]? be preserved under ~. Then (x) implies that ¢ is equiva-
lent to some formula of L,’:(Q) in restriction to the class T [r]: ¢ =7w ¢’ € Li(q).
This is just because indistinguishability w.r.t. L' is an equivalence relation of
finite index over the class of all T-structures (recall that 7 is finite), whose equiv-
alence classes are therefore Lj-definable. But equivalence over 7“[r] implies

11



equivalence throughout, by ~-preservation and because — up to bisimulation
equivalence — any 7-structure is represented by its w-tree-unfolding in 7%[7]:

A = plal
& AY* = pla] since p is preserved in 2, a ~ AL* q;
& A = p'la]  since AY* € TY[r];
& A= ¢'la]  since ¢’ € L, is preserved in 2A%*, a ~ A, a.

For L,,-definability we seem to need the more fine-grained control in (x),
not just a blanket L, > MSO. This is because, in the absence of compactness,
definability in L does not follow from preservation under =. We may also
gain some more constructive information from the knowledge of the function
f, which gives an upper bound on the increase in quantifier complexity in the
passage from ¢ € MSO to its equivalent in L,,. These features are characteristic
of several finite model theory adaptations of classical expressive completeness
proofs.

Interestingly, the status of the Janin—Walukiewicz expressive completeness
result in finite model theory is still open. This is different for the counterpart
at the level of FO rather than MSO.

Theorem 1.7 (van Benthem-Rosen). Both, in the sense of ordinary and of
finite model theory, basic modal logic ML captures the class of all FO-definable
properties of transition systems that are closed under bisimulation equivalence.
In other words, the following are equivalent for any formula ¢(x) € FO(T):

(i) p(x) is preserved under bisimulation equivalence (among finite structures):
whenever A, a ~ B, b (for finite A, B ), then A |= pla] implies B = p[b];
(i1) o(x) is logically equivalent (over finite structures) to some ¢’ € ML[1].

Different accounts of proofs that offer various generalisations and also allow
us to extract sharp exponential bounds on the increase in quantifier rank in the
passage form ¢ € FO to its equivalent ¢’ € ML, can be found in [17, 16, 10].

A,a —— @

~ ~

| |
A, a = B*b €C

B,b

One salient feature of those accounts is the use of locally acyclic (tree-like)
finite unfoldings of finite transition systems, accompanied by a finite boost in
multiplicities. Over a corresponding class C of (finite) target structures we have

MLf(q) > FOq
over C,
Nf(‘]) > =4

where f(q) = 22 — 1. Similar to (), this serves to establish expressive com-
pleteness. Note that usable representatives in C must avoid distinctions both

12



w.r.t. short cycles and w.r.t. small multiplicities. Neither feature is determined
by the bisimulation type of a given structure, but corresponding distinctions
are expressible in FO. For instance, no degree of bisimulation equivalence be-
tween 2, a and B, b would rule out that a is part of a (¢ 4+ 1)-cycle in 2 or has
out-degree > ¢, while b is not part of such a cycle or has out-degree < g. But
in these situations 2, a and B,b would be distinguishable in FO,; the second
player would win the g-round Ehrenfeucht—Fraissé game from position 2, a; B, b.

See Example 2.17 below for the elimination of short cycles. Degrees of
acyclicity and of saturation w.r.t. multiplicities will also concern us in the follow-
ing sections, where we deal with preservation under a bisimulation-like equiva-
lence between more complex relational structures than transition systems. At
the superficial level, this generalisation takes us from relational structures of
width 2 (edge labels and vertex colours in graph-like structures) to structures
with finitely many relations of arbitrary arities. Non-trivial overlaps between
tuples in those relations replace the much simpler notion of incidence between
edges and vertices in graphs. It turns out that hypergraphs provide a suitable
level of abstraction for the formulation and analysis of acyclicity and saturation
criteria in these settings. The next section introduces the relevant concepts and
terminology.

2 Degrees of acyclicity in hypergraphs

2.1 Hypergraphs

With a 7-structure 2 = (A, (R*) e, ) in some fixed finite relational vocabulary 7
we associate a hypergraph H(2() on A whose hyperedges are the guarded subsets
of 2.

To facilitate the passage from a tuple to its set of components we use the
notation [a] := {a;: 1 <i<r}ifa=(a1,...,a,) is an r-tuple.
Definition 2.1. A subset s C A is guarded in A if |s| < 1 or if s C [a] for some
tuple a € R* for some R € 7.

The hypergraph of guarded subsets of 2 is the hypergraph H(2) := (A, S[2])
where S[] := {s C A: s guarded in 2} is the set of all guarded subsets of 2.

Generally, a hypergraph H = (A, S) consists of a domain A and some col-
lection S of subsets of this domain as the set of hyperedges. Its width is the
maximum of the cardinalities of the hyperedges (if it exists).

Proviso 2.2. For our treatment we always assume that |JS 2 A and that S is
closed under subsets: s' C s € S implies s’ € S.

This is clearly the case for the hypergraphs H(2() of guarded subsets of 7-
structures 2, by definition. Also by definition, the width of H(2() is bounded
by the width of 7, i.e., by the maximal arity of relations in 7.

The induced sub-hypergraph on some subset A’ of the domain A of a hyper-
graph H = (A, S) is obtained through the natural restriction:

HIA = (A4",5") where S :={snA:seS}.
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Together with any hypergraph H we consider two graphs: its Gaifman graph
&(H) and its intersection graph J(H):

Definition 2.3. For a hypergraph H = (A, S) we define
(a) the associated Gaifman graph to be the undirected graph

®(H):= (A,E) where E:={(a,d')€ A%*:a+#d and {a,d'} € S}.*
(b) the intersection graph to be the undirected graph
J(H) :=(S,A) where A :={(s,s")€ 5% s#s and sns #0}.

The reason for the terminology in (a) is that the usual Gaifman graph &(2()
of a relational structure 2 is exactly what we here obtain as & (H(2()).

Note that passage to the hypergraph of guarded subsets or to the Gaifman
graph is not generally compatible with the passage to induced substructures,
i.e., it may be that HA [ A") £ HRA) [ A" and &(A | A") # &(A) | A’; on the
other hand always &(H[A") = (&(H)) [ A"

The associated graph &(H) can be pictured as the superposition of cliques,
one for every hyperedge of H. Since not every clique in the associated graph
needs to be induced by a single hyperedge, though, H cannot in general be
retrieved from ®(H) and in this sense holds strictly more information. Inter-
estingly, this discrepancy in information content between &(H) and H exactly
corresponds to the failure of conformality — one of the two constituents of hy-
pergraph acyclicity to be reviewed next.

As an intuitive approximation, which will be made technically precise later,
hypergraph acyclicity calls for the minimisation of coincidental overlaps between
hyperedges that is compatible with the transition pattern laid down in the
intersection graph.

2.2 Hypergraph acyclicity

Of the several notions of hypergraph acyclicity in the literature we are here
interested in the strongest, called a-acyclicity or just acyclicity, see [7, 8]. This
notion has a number of equivalent characterisations, which we briefly review.

For the first of these characterisations (Graham’s decomposition algorithm)
we need to waive the proviso that the collection of hyperedges must be closed
under subsets. This proviso will be in place everywhere else, and this first
characterisation will only serve as background and context. Technically we
shall rely exclusively on the other, equivalent characterisations, especially the
third, see Definition 2.6 in combination with Lemma 2.7.

Definition 2.4. A finite hypergraph H = (A, S) is called tree-decomposable if it
can be transformed into the empty hypergraph by some sequence of applications
of the following two reduction steps:

4This simple definition is adequate because S is assumed to be closed under subsets.
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(i) deletion of a € A for a vertex a contained in at most one hyperedge.
Formally, if [{s € S: a € s}| < 1, then we may replace H = (A4, 5) by the
induced sub-hypergraph H :=H[ (4 \ {a}).

(ii) deletion of s’ € S for some s’ C s € S.

By extension, an infinite hypergraph is tree-decomposable if all its finite
induced sub-hypergraphs are tree-decomposable.

The above characterisation is easily seen to be equivalent to the existence
of a hypergraph tree-decomposition in the following sense. Its relationship with
the usual tree-decompositions of graphs and relational structures, which is an
important tractability criterion for many algorithmic issues, is close but subtly
restrictive: a hypergraph tree-decomposition may only use the existing hyper-
edges as bags.

Definition 2.5. A tree decomposition of a hypergraph H = (4, .S) is an acyclic
graph T = (V, E) together with a surjective map A: T'— S such that for every
a € A, the vertex set {v € V: a € A(v)} is connected in T.

Less obvious is the equivalence of hypergraph acyclicity with the combination
of the following two local conditions. Recall from graph theory that a cycle of
length n in a graph & is a homomorphism from the standard cycle of length n,
€ = (Zn,{(i,i £1):i € Z,})° to &. If h: €, — & is a cycle of some length
n > 3, then the pair (¢,7) is a chord of this cycle if j # i+ 1 and {h(i),h(j)}
is guarded (in our liberal formalisation this may be either because h(i) = h(j)
or because (h(i),h(j)) is an edge of &). The cycle h: €, — & is chordless if it
does not have any chords; one checks that this means that the homomorphism
h is an isomorphism between €, and the induced subgraph & [ h(Z,). A clique
of size n in & is an induced subgraph that is isomorphic to the complete graph

on Zy, 8y = (Zn, {(i,5): i # j})-

Definition 2.6. A hypergraph H = (A, S) is called
(a) conformal if every clique in its Gaifman graph &(H) is fully contained in
some hyperedge s € S.
(b) chordal if its Gaifman graph &(H) has no chordless cycles of lengths
greater than 3.

Note that chordality is entirely phrased in terms of the associated graph
®(H) while conformality addresses the potential discrepancy between H and
®(H). It is precisely for conformal hypergraphs that H can be uniquely recon-
structed from &(H). See [7] for a proof of the following.

Lemma 2.7. A hypergraph is tree-decomposable in the sense of Definition 2.4
(admits a tree decomposition in the sense of Definition 2.5) if, and only if, it is
conformal and chordal.

5All arithmetic in Z,, is to be understood modulo n.
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2.3 Hypergraph bisimulation

The idea of hypergraph bisimulation is a natural extension of the notion of bisim-
ulation to a back-and-forth equivalence between hypergraphs. Where bisimula-
tion of transition systems ensures local similarity between vertices in terms of
the pattern of available transitions to other vertices, hypergraph bisimulation
ensures local similarity between hyperedges in terms of the overlap pattern with
other hyperedges. Correspondingly, the game formulation would involve moves
between hyperedges that need to respect overlaps. The back-and-forth systems
that capture the existence of a winning strategy for the second player in the
infinite game consist of collections of local bijections between hyperedges with
back-and-forth conditions reflecting overlap respecting moves.

Where we consider local bijections between sets A and B, as in p: dom(p) —
image(p), we often indicate their domain and range and/or tuples that enumer-
ate these sets and indicate the mapping. This means that we often blur the
distinction between the view of dom(w) C A and image(w) C B as subsets, or
as tuples enumerating these subsets, or as hyperedges of hypergraphs over do-
mains A and B; notation like p: a +— b and p: s — ¢ may indicate those shifts
in perspective.

Definition 2.8. A hypergraph bisimulation between hypergraphs H = (A, S™)
and K = (B, S¥) is a non-empty back-and-forth system Z of local bijections
between A and B with the following properties

(a) every p € Z is a bijection between some s = dom(p) € S™ and
some t = image(p) € S¥.

(b) back-and-forth conditions:
(back) for all (p: s+ t) € Z and for every ¢’ € S¥ there is some
(p': 8’ = t') € Z such that p/~ L1 (tNt)=p L (tNT);
(forth) for all (p: s+ t) € Z and for every s’ € SY there is some
(p': s —t')e Zsuch that p'[(sNs)=pl(sNs).

We write H,s ~ K, ¢ and say that H, s and K, are bisimilar if there is a
hypergraph bisimulation Z between H and K with some (p: s — t) € Z.

It is important to note that the back-and-forth conditions do not even indi-
rectly require any bijectivity properties for combinations of the local bijections
p. For instance, with p: s — t and p’: s’ — t’' as in the forth property, it is
admissible that ¢ =t even though s’ # s.

The following definition of a hypergraph cover captures the special case in
which a hypergraph bisimulation is induced by a homomorphism from the first
to the second structure. A (hypergraph) homomorphism from H = (4, S%) to
K = (B, SX) is a global map p: A — B whose restriction to every hyperedge of
H is a bijection onto some hyperedge of K; the collection of its restrictions to the
hyperedges of H thus automatically satisfy condition (a) and the forth condition
in (b). What may be missing is the back condition. In the usual geometric
imagery of covers, this back condition is responsible for the availability of lifts
of paths of overlapping hyperedges to the covering hypergraph H.

16



Definition 2.9. A homomorphism 7: H — H between hypergraphs H= (1217 5')
and H = (A, S) is a hypergraph cover if Z = {m [ 5: 5 € S} is a hypergraph
bisimulation. Shorthand notation: 7: H —» H. We also say that H covers H.

An alternative view of both hypergraph bisimulation and covers can be based
on corresponding notions of bisimulations between transition systems (based
on suitable decorations of the intersection graphs). This has been expounded
elsewhere, for instance in [12].

2.4 Examples

Tree unfoldings. Just as for transition systems, there is a natural construc-
tion of tree unfoldings for hypergraphs that yields covers by acyclic hypergraphs.
As for graphs and transition systems, these covers are typically infinite even if we
start from a finite hypergraph. We here discuss w-tree-unfoldings, which simul-
taneously boost all multiplicities, because they will be useful later; to achieve
just acyclicity in a cover, a plain tree unfolding would suffice. Let H = (A, S)

be a hypergraph with intersection graph J = (S, A). Considered as a transition
system, J admits an w-tree-unfolding, from any choice of s € S as a root, into
a tree structure J¥*, which is based on the domain of all N-edge-labelled paths
from s in J (cf. Section 1.2). Let T be the disjoint union of countably many
isomorphic copies of every such J¥* for every s € S, all joined by edges to a
single new root vertex, which we symbolically label §.

We look at the natural projection 7: T\ {0} — J as a cover 7: T\ {0} — 7
in the natural manner. A hypergraph cover 7: H** — H is obtained as follows.

The idea is to insert actual hyperedges for the elements of T, with appropri-
ate overlaps according to A. The domain A“* of H“* will be a suitable quotient
of the disjoint union U, (9 (7(p) % {p}), where the vertices p of T\ {0} are
labelled paths in J from some sg to some s = 7w(p) C A and p is used as a tag to
make the union disjoint. For next neighbours p = sg...s and p' = s¢...ss’ in
some copy of J¢* in T we need to identify elements of 7(p) x {p} = s x {p} and
m(p" ) x{p'} = s’ x{p'} that come from the intersection sNs’. This identification
needs to be extended by transitivity along paths in T. For (a1, p1) € m(p1)x{p1}
and (az, p2) € m(pz) X {p2} put:

a; = az and p; and po

(a1,p1) % (az, p2) i are connected in T [{p: a1 € m(p)}.

Let
A= (U o) x {p}) / =

peT

and declare just the subsets represented by sets m(p) x {p} to be the hyper-
edges of the desired HY* = (A“*, S¥*). The projection 7 naturally induces a
projection 7 that sends the equivalence class of some (a, p) € 7(p) X {p} to a.

Then 7 induces a hypergraph bisimulation and 7: H** — H is a hypergraph
cover, which we refer to as the w-tree-unfolding of H.
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The underlying tree T naturally yields a hypergraph tree decomposition
according to Definition 2.5 whence H* is seen to be acyclic.

Definition 2.10. The w-tree-unfolding of the hypergraph H is the bisimilar
cover m: H** = H by the acyclic hypergraph H* as constructed above.

So every hypergraph admits a cover by an acyclic hypergraph. We shall
return to this simple infinitary cover construction in comparison with finite ap-
proximations to acyclicity and unbounded multiplicities in Section 3; for the
choice of w-tree-unfoldings rather than plain tree unfoldings we point to Obser-
vation 3.2 in particular.

From Observation 1.5 we find that also here bisimilarity between countable
base hypergraphs implies isomorphy of their w-tree-unfoldings.

Finite conformal covers. While we shall see below that finite hypergraphs
need not admit any cover by a finite acyclic hypergraph, covers by finite con-
formal hypergraphs can always be obtained. We meanwhile know two different
constructions, a combinatorially very simple one from [13] and a more sophis-
ticated one, with exponentially better size bounds, from [5]. The latter one is
really a corollary to the construction of weakly N-acyclic finite covers which is
at the centre of [5] (see Section 2.5 below).

Limits for chordality in finite covers. Maybe the simplest hypergraph that
is not a graph and fails to be acyclic is formed by the facets of the 3-simplex
(the faces of the tetrahedron), i.e., the full width 3 hypergraph on 4 vertices:

HY = ({1,2,3,4},{{1,2,3,4}\ {i}: i = 1,2,3,4}).

Clearly H is chordal, but fails to be conformal because its Gaifman graph
is the 4-clique and the whole domain is not a hyperedge. It is also not hard to
see that this hypergraph admits no cover by an acyclic hypergraph that would
be even just locally finite. In fact, one checks that the 1-neighbourhood of
every vertex ¢ in any acyclic cover 7: H- H3? must be infinite: it must cover
(acyclically, in the graph sense) the cycle formed by the three edges not incident
on v = 7(?) in &(H3) ~ Ky, which are the far ends of the 3 hyperedges incident
on v in Hj.

This is in marked contrast to the situation for finite graphs where a simple
product with a finite Cayley graph of large girth always produces covers by
finite N-locally acyclic graphs, see e.g. [16] and Example 2.17 below.

On the other hand, a simple hexagonal grid pattern as in Figure 1, which
doubly unfolds each of these 3-cycles, yields a natural cover by an infinite con-
formal hypergraph whose shortest chordless cycles have length 6. A geometric
identification of opposite borders in any hexagon of even radius r = 2m in this
infinite grid remains compatible with the natural projection and the back re-
quirements, hence yields a cover of Hj by a finite hypergraph Ha,,, which is
still conformal and, for m > 2 still has no chordless cycles of length less than
6. It is interesting to note that there are two kinds of chordless cycles in these
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Figure 1: hexagonal grid pattern for covers of H}

covers: ‘local cycles’ that arise as local covers of the 3-cycles in the neighbour-
hood of any vertex v € H3, and those that arise through identifications along
the boundary of the fundamental domain. (For m = 1, H, has chordless cycles
of the latter kind of length 4, since this is the diameter of its hexagonal base.)

2.5 Degrees of acyclicity in finite covers

As the example of H} suggests, finite cover constructions can at best aim for
degrees of acyclicity that render small sub-configurations acyclic.

Definition 2.11. A hypergraph H is called N-acyclic for some N € N if every
induced sub-hypergraph on up to N vertices of H is acyclic. N-chordality and
N -conformality are similarly defined.

The following theorem from [18] is based on an inductive construction, by
induction on the width of H. It proceeds through
(a) the construction of locally finite conformal and N-chordal covers of finite
conformal hypergraphs of width w using the existence of finite conformal
and N-chordal covers for hypergraph of width w — 1.

(b) the construction of finite conformal and N-chordal covers from bounded
pieces of locally finite conformal and N-chordal covers of sufficiently large
diameter; this involves identifications in a non-trivial glueing process and
mending of defects w.r.t. back requirements where these are violated along
the boundary.

Width w—1 hypergraphs arise in (a) as localisations in the 1-neighbourhoods
of vertices of H after removal of the central vertex v, similar to the triangle
graph resulting from the deletion of any one vertex from H3; in the general
situation, conformality ensures that a cover of this punctured 1-neighbourhood
can be completed in a canonical manner by re-insertion of a cover v above the
central vertex v. Step (b) uses a combinatorial group construction which we
shall present in another useful role in Section 2.6 below.
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Theorem 2.12. Every finite hypergraph H admits, for every N € N, a cover
mH-S5H by some finite, conformal and N -chordal hypergraph H.

A further relaxation of acyclicity requirements in finite covers 7: H — H is
motivated by the desire to avoid not necessarily all small cyclic configurations
in the covering hypergraph, but to achieve acyclicity of small configurations at
least ‘projectively’, under w. In other words, we are content with a state of
affairs in which small cyclic homomorphic images in the covering hypergraph
H can be decomposed in projection to the base hypergraph H. This condition
does not rule out, for instance, a chordless cycle of length 4 in QS(I:I) provided
it projects onto a chordal cycle in &(H), e.g., onto a path of length 2 through
identification of two opposite vertices along the cycle. Technically we go via
tree decompositions.

In light of Definition 2.5, N-acyclicity of the covering hypergraph in 7: 0=
H requires every subset B C A of up to N vertices in H to admit a tree decom-
position A: T — S of the following kind.

(i) every induced hyperedge § N B is contained in some bag A(v):
$N B C A(v) for some v, and

(ii) for every b € B, the vertex set {v € V: b € A(v)} is connected in T.

In other words, the bags A(v) of this tree decomposition must be hyperedges
of H. For a weakly N-acyclic cover we relax this and only require the projections
of the bags to be (subsets of) hyperedges in the base hypergraph H.

Definition 2.13. A hypergraph cover 7: H = H is called weakly N-acyclic
for some N € N if every subset B C A of up to N vertices in H admits a tree
decomposition \: T'— P(B) with bags A(v) such that 7(A(v)) € S.

The following theorem is a core result from [5]. The highly uniform and reg-
ular construction there involves a suitable quotient of a term-based hypergraph,
which is organised so as to provide the witnesses of all back-requirements. Due
to the uniformity of the construction, these covers preserve all symmetries of
the base hypergraph; they are also of feasible size and allow meaningful and
important applications of a more algorithmic nature — but they fail to come
close to full N-acyclicity in the sense of Definition 2.11.

Theorem 2.14. Every finite hypergraph H admits, for every N € N, a weakly
N-acyclic cover m: H-H by some finite, conformal hypergraph H.

For diverse applications of these weakly N-acyclic covers we refer to [5]. In
the context of this paper we encounter them in connection with Ptime canon-
isation and an abstract capturing result in the sense of descriptive complexity
in Section 5. An application from [6] towards the finite model property of the
guarded negation fragment GNF is indicated in Section 4.4, where we use it to
establish a new expressive completeness result for that logic.

2.6 Highly acyclic Cayley groups

The following construction of Cayley graphs and groups from [18] owes its basic
idea to an elegant and simple idea for the construction of Cayley groups of large
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girth, as presented in [1]. We review the basic details, and sketch the extension
of this basic idea from [18]. This construction uses amalgamated chains of
smaller Cayley graphs to form the nuclei of larger ones — similar to the manner
in which uniform trees form the nuclei of Cayley groups of large girth in the
standard construction, which we review first.

Cayley groups and graphs. In the following, a Cayley group and its Cay-
ley graph consist of an abstract group G and a specified set E of non-trivial
involutive group elements that generate G. ILe., e # 1 and e? = 1 for every
e € E, and every group element g € G is the product of some reduced sequence
of generators: g = Higk e; withk € N, e; € F fori < k and e; # e;41 (reduced)
for i < k.5 Every generator ¢ € E induces an edge relation on G consist-
ing of all the pairs of the form (g, ge). This edge relation is symmetric, since
(ge, g) = (ge, (ge)e). We refer to both, G as a group with generators e € E and
G as an F-edge-coloured graph, just as G. Each generator e € G also acts as
a permutation m, on the F-coloured graph G, where 7.: G — G maps every g
to ge. This map is a permutation, in fact an involution, since e is involutive; in
terms of the E-coloured graph G, it swaps every pair of e-related vertices (g, ge).
One checks that the abstract group G (with generators e € F) is isomorphic to
the subgroup of the permutation group of the vertex set G generated by these
permutations (with generators 7, for e € E).

In this sense, G as a group generated by E and G as an E-coloured graph
contain exactly the same structural information up to isomorphism.”

In an arbitrary E-coloured graph (V| (Re)ecr), each e € E similarly induces
an involutive permutation of the vertex set V provided that every vertex v € V
is incident with at most one e-edge. In the following we want to use the term
E-coloured graph in this restricted meaning.

Definition 2.15. An E-coloured graph is a structure (V, (R.)ecg) with disjoint,
non-empty, irreflexive and symmetric edge relations R, for e € F such that, for
each e € F, every vertex is incident with at most one edge in R..

Every E-coloured graph 2 = (V,(R.)ccr) in the sense of this definition
gives rise to a Cayley group G, with non-trivial involutive generators e € F.
This Cayley group is obtained as a subgroup of the permutation group Sym(V')
according to the above recipe. We denote this Cayley group and its Cayley
graph as sym(2l):

sym(2) 1= (me: e € E)S™Y),

Finite trees and large girth. The girth of a graph is the minimal length of
a non-trivial cycle (and undefined or infinite if the graph is acyclic). The girth of
a Cayley group is the girth of the Cayley graph; equivalently, it is the minimal

We use multiplicative notation and write 1 € G for the neutral element; precedence in
group products is to the left, i.e., gh? = (gh)¥.

7Just up to isomorphism because the passage from the graph to the group involves an
arbitrary choice of a root vertex to become the unit element of the group.
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positive length of a reduced generator sequence (e;);<r such that Higk e; = 1.
Finite Cayley graphs clearly must have finite girth. Since Cayley graphs are
such generic and highly symmetric graph objects, it is interesting to see which
degree of acyclicity can be achieved. As discussed in [1], the following is sub-
optimal in terms of the relationship between degree (number of generators),
girth (length of shortest cycles) and size that can be realised in Cayley graphs;
but it stands out as a particularly elegant and transparent construction.

Observation 2.16. For the regularly E-coloured tree of depth n, Ty, whose
vertices are the reduced sequences o = (e;)i<k of generators e; € E of lengths
k < n, with e-edges between o and oe, the Cayley group sym(TZ) has girth
greater than n (in fact, greater than dn+ 1).

In its weak form the observation is immediate if we consider just the effect
that a reduced sequence of permutations 7. has on the root vertex of 74: each
new permutation 7w, moves this vertex one step further away from the root,
increasing its depth in the tree by 1, up until it may reach depth n (if the
sequence has length n). The stronger claim can similarly be checked by focusing
on a clever choice of a leaf node instead.

As one example for the usefulness of such groups consider the following con-
struction of N-locally acyclic bisimilar covers for hypergraphs of width 2. This
simple construction can be used as the basis for several expressive complete-
ness proofs for modal logics, as discussed in [17, 16] and in Section 1.2 above,
including substantial further variations on Theorem 1.7 e.g. in [10].

Example 2.17. Let H = (A, E) be a finite undirected graph considered as a
hypergraph of width 2, and G a Cayley group with generator set £. Then the
following natural product of H and G, with the natural projection, provides a
cover:

H=(AxG,E) where E=1{{(a,9),(d,ge)}: e={a,a'}€FE}.

If the girth of G is greater than (2¢ + 1), then H has no non-trivial cy-
cles of lengths up to 2¢ + 1 , which means that this cover is acyclic in the
l-neighbourhood of any one of its vertices.

More than large girth. In a Cayley group G with generator set F, consider
subgroups G[a] generated by subsets o« C E and their cosets gG[a] C G. In the
Cayley graph, the coset gG|a] is the connected component of g in the reduct
that just retains the edge relations R, for e € a. The lattice of subsets « C F
induces a lattice of equivalence relations ~, on the graph G, where g ~, h if
g~ 'h € G[a]. The finest of these is equality in the form of ~y, and the coarsest
is the full binary relation on G in the form of ~g. For the Cayley groups
to be considered here, we will always have compatibility with intersections in
the sense that Glay N as] = Ga1] N Gaz]. As shown in [18], this property is a
consequence of a more fundamental compatibility condition, viz. of compatibility
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of the subgraphs G[a] with G, which requires that cycles in G induce cycles in
the Cayley graphs of all its subgroups GJa]:

(1) Hei =1inG = Hﬂ'ei =1id in sym(G[a])

for every sequence of generators (e;) and every « C E. This condition can be
guaranteed in the group constructions presented in [18].

We now focus on short cycles in G w.r.t. to the induced equivalence relations
~q, rather than w.r.t. the basic edge relations R.. A ~,-edge is witnessed by a
path w.r.t. edges in J,c, Re, but the length of such a path is only bounded by
the size of G[a]. Large girth of G does not rule out short cycles w.r.t. ~4-edges
for a succession of distinct o« C E' in this far more general sense.

In a sense G will always have many short cycles, as an almost trivial example
may illustrate.

Let o; C E and e; € E for i = 0,1,2 be such that e; € (a1 N ai12) \ oy
(cyclic indexing in Z3). Then e;y; and e;;o are linked by an ~,,-edge, but not
by an edge of the other two equivalence relations ~,, for a = a1, @;t2.

The following condition of just local non-degeneracy avoids this trivialisation
of the matter.

Definition 2.18. Let G be a Cayley group with generators E as above, whose
action on the Cayley graphs of its subgroups Ga] for @ C E is compatible with
the group structure of G according to ().

(a) A cyclically indexed n-tuple (g¢)tez, in G forms a non-trivial cycle of
length n w.r.t. the colouring a: t — oy C E if

(1) HteZn gt =1,
(i) g+ € Glay], but g- Glau—1 Neaw] N g+ g - Glaw Nayq] = 0.
(b) G is N-acyclic if it has no non-trivial coloured cycles of lengths n < N.

Condition (a) (ii) may be seen a stipulation for non-trivial coset cycles, ruling
out local shortcuts that would avoid the segment g; € G[oy] altogether.
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Observation 2.19. The intersection condition on subgroups, Gla] N G[B] =
Glan g] (itself a consequence of condition (1)) says that G does not have non-
trivially coloured 2-cycles in the sense of (a).

Cayley groups of this kind are obtained in [18] in an inductive construc-
tion that eliminates short non-trivial coloured cycles within subgroups G[a] for
subsets o« C E of increasing size. To eliminate undesirable cycles in Ga], the
inductive step uses amalgamated chains of Cayley graphs G[o/] for o/ & a, as
would occur as a pattern of overlapping cosets along a non-trivially coloured
cycle in G[a]. These chains are used as components of E-coloured graphs K
from which G is obtained as G = sym(K). Some care needs to be taken to
maintain compatibility of the action of G with the Cayley graphs of the already
settled smaller G[o/].

Proposition 2.20. For every finite set E and every N € N there is an N-
acyclic Cayley group with generator set E.

Interestingly, N-acyclicity of Cayley groups as defined above is directly re-
lated to the N-acyclicity of an associated hypergraph of cosets. Let H(G) be the
hypergraph whose vertex set consists of all cosets gG[a] for g € G and o C E,
with hyperedges induced by group elements g according to

l9] :={9Gla]: a C E}.

Observation 2.21. For any Cayley group G satisfying the compatibility condi-
tion (1), the coset hypergraph H(G) is N-acyclic if, and only if, G is N-acyclic.

Proof. See Observation 3.2 in [18] for N-acyclicity of H(G), given N-acyclicity
of G. The converse implication is not discussed in [18], and may serve here to
illustrate the point of condition (a),(ii) of Definition 2.18.

In preparation consider g; € Gloy] for i =t —1,¢,t+ 1. Then, for any h € G,
hGla;] = hg;Goy), and therefore in H(G):

— g1—1G[ae—1] and g,—1G[oy] = g1—19:Gloy] are linked by hyperedge [g¢—1],

= 9t-1Glau] = g1-19:Glau] and g;—19:Gla41] are linked by hyperedge [g¢—19:)-

Then the condition g; ¢ Glaz—1Nay]-GasNay1] precisely corresponds to the
condition that no hyperedge of H(G) directly links g;—1 G[as—1] to g1—19:G[ave+1]-

Now a cycle (g¢)tez, in G that is non-trivially coloured by «a: t — a; would
give rise in H(G) to cyclic tuples (h:Glay])tcz, with hiy1 = higiy1. In these
cyclic tuples, next neighbours are linked by hyperedges, but none of the next
neighbour triples h;—1 G[ai—1], htGaw], he41Glag1] is covered by a common hy-
peredge. For n = 3 this violates 3-conformality; for 3 < n < N it either violates
N-chordality or, again, 3-conformality. O

3 Finite saturation w.r.t. multiplicities

Apart from short cycles, distinctions between small multiplicities are an obvious
obstacle to controlling finite levels =7 of elementary equivalence by finite levels
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of bisimulation equivalence ~f(@). This is true in the hypergraph setting (of
relational structures of arbitrary width) as in the graph setting. In the graph
setting, multiplicities can just be boosted to infinity in w-tree-unfoldings or, in a
finitary setting, multiplied by a factor of ¢ in a simple product with the g-clique
Kq. As with acyclicity, the corresponding task is more challenging for hyper-
graphs. It turns out to be convenient to replace the concept of high branching
degrees and multiplicities by a notion of free branching between hyperedges,
because hyperedges can overlap in more than just a single vertex. We review
the notion of freeness from [18].

Definition 3.1. (a) Two subsets of vertices By, Bo C A are called n-free in
the hypergraph H = (A, S), if the graph distance between the two vertex
sets B; \ (B N Bz) in the Gaifman graph of H[ (A \ (By N By)) is greater
than n.

(b) H = (A4,5) is (n, K)-free if, for any subset B C A of up to K vertices,
every s € S has some companion s’ € S for which
- H,s"~H,sand BNs' = BNs;
— s’ and B are n-free.
(¢) A cover m: H=(A,S9) — His (n, K)-free if, for any subset B C Aofup
to K vertices, every 5§ € S has some companion § € S for which
~7(8)=n(8) and BN§ =BN3;
— § and B are n-free.

Note that freeness of a cover according to (c) is a stronger notion than
freeness of the covering hypergraph, since the condition m(§') = 7(§) implies
H, 3 ~ H, 3§, but not vice versa.

For the following compare the construction of w-tree-unfoldings of hyper-
graphs encountered in Section 2.4, based on the w-tree-unfolding of the under-
lying intersection graph J(H), and especially Definition 2.10.

Observation 3.2. The w-tree-unfolding HY* of H is not only acyclic but also
(n, K)-free as a cover m: H** -~ H w.r.t. to the natural projection, for all
n, K € N.

Proof. Any guarded subset s of H** is represented at some node v of the under-
lying tree T, which gives rise to the hypergraph tree decomposition of H**. Due
to the connectivity condition for tree decompositions (cf. Definition 2.5), hyper-
edges that are represented in siblings subtrees rooted at distinct successors of v
are in distinct connected components of H**\ s. As every type of sibling subtree
arises with infinite multiplicity in 7T, freeness follows. NB: we assume that the
set of hyperedges is closed under passage to subsets, according to Proviso 2.2;
this is essential for the direct manner in which we achieve freeness here. O

N-acyclic Cayley groups can be used to achieve any desired finite degree of
freeness in covers obtained as reduced products of the given hypergraph with
the group.
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3.1 Reduced products with groups

As a simple example, consider a hypergraph H = (A, S) and a Cayley group
with generator set S. A natural reduced product of H and G can be obtained
as a quotient of the plain product of the hypergraph H with the set of group
elements GG. We think of the plain product as a G-indexed stack of isomorphic
copies of H. We now identify subsets corresponding to the same s C S in
different layers g and g’ whenever g and ¢’ are related by an s-edge in G (the
edges in the Cayley graph of G are labelled by hyperedges of H, which are the
generators in this case).

A slight generalisation of this construction turns out to be useful. We admit
an arbitrary set E of generators for GG, and associate the generators e € E with
subsets p(e) C A of the domain of H in which corresponding layers are to be
identified.

Definition 3.3. For a Cayley group G generated by E, a hypergraph H =
(A,S), and a map p: E — P(A), let H x, G be the hypergraph with domain

A := (A x G)/~ where
(a,9) ~ (a,g') & g log €G[E,] for E,={e€ E:acple)}

and hyperedges [s,g] := {[a,¢]: a € s,g € G}, where we write [a, g] for the
~-class of (a,9) € A x G.

By these definitions, [a, g] € [s,h] iff a € s and g1 oh € G[E,]. The natural
projection 7: [a, g] — a turns this construction into a cover 7: H x, G 5 H.

It is shown in [18] that reduced products with Cayley groups preserve N-
acyclicity of hypergraphs, provided

— p maps generators to (subsets of)® hyperedges of H, and

— (G is N-acyclic.

To enrich a hypergraph in the sense of freeness, we may pick an N-acyclic
Cayley group with generator set S x {1,...,m}, and the natural association
of generator (s,¢) to the hyperedge s. Then the subgroups G[E,] that identify
layers in the fibre above a are generated by F, = {(s,i): a € s,1 < i < m},
and every hyperedge [s, g] in the reduced product is part of at least every one
of the m many layers H x {g(s,i)} for 1 <i < m. As is also shown in [18], this
simple reduced product construction, with an N-acyclic Cayley group generated
by S x {1,...,m}, provides a cover that is (n, K)-free provided m and N are
large enough in relation to n and K, while preserving N-acyclicity. This gives
the following strengthening of Theorem 2.12.

Corollary 3.4. Every finite hypergraph H admits, for all n, K, N € N, covers
m: H "5 H by finite, conformal, (n, K)-free and N-chordal hypergraphs H.

8Recall that we here assume here that S is closed under subsets.
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4 Tractability of rich N-acyclic finite covers

We return to the tractability idea, and to the intention to control the FO,-type
in suitable relational structures 2 by (essentially) the level f(g) bisimulation
type in the associated hypergraph of guarded subsets H(2() (plus the basic local
relational information corresponding to quantifier-free types). The role of modal
logic is here played by the guarded fragment of first-order logic, GF C FO, which
has been put to great uses in algorithmic model theory since its introduction
by Andréka, van Benthem and Németi in [2]. The associated back-and-forth
equivalence of guarded bisimulation may be looked at as both,
(a) the Ehrenfeucht—Fraissé notion capturing the restricted pattern of quan-
tification in GF, which is always relativised to guarded tuples;
(b) the strengthening of hypergraph bisimulation between the hypergraphs
of guarded sets by the requirement that the local relational information
(quantifier-free type) is respected.

4.1 Guarded bisimulation and GF

Guarded bisimulation. We fix a finite relational vocabulary 7 as before and
first discuss guarded bisimulation equivalence under the preferred angle of (b)
above.

Definition 4.1. A guarded bisimulation between T-structures 2 and B is a
non-empty back-and-forth system Z that
(i) is a hypergraph bisimulation between the associated hypergraphs of guarded
subsets H(2() and H(B), and
(ii) consists of local isomorphisms p between the substructures 2([s and 9B [¢
for the guarded subsets s = dom(p) C A and ¢ = image(p) C B.

2,a and ‘B,b are guarded bisimilar, written 2,a ~, B,b, if pra — b
is a local isomorphism and there is a guarded bisimulation Z such that all
restrictions of p to guarded subsets (in 2 or B) are in Z.

The idea for the corresponding guarded bisimulation game is a combination
of the game protocol for the hypergraph bisimulation game with the prescription
that the second player loses as soon as the current position does not correspond
to an isomorphism between the induced substructures. A guarded bisimulation
then witnesses the existence of a winning strategy for the second player in the
infinite game.

The guarded fragment. The guarded fragment of first-order logic restricts
first-order quantifications to guarded tuples through explicit relativisation by
relational atoms. We call a tuple a strictly guarded in the 7-structure 2l if the
set of its components [a] is a singleton set or agrees with the set of components
[a’] of some tuple a’ € R* in one of the relations of 2. In fact, GF restricts
quantification to strictly guarded tuples.
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More specifically, GF[r] admits just guarded quantification of the form
Jy(a(x) Ap(x)) and Vy(a(x) = ¢(x))

where a(x) is an atomic 7-formula (a relational atom or an equality) in which
every free variable of ¢ must occur, and y C x is a tuple of variables among
those in x (the free variables of ¢ being among those in x by our notational
conventions). A GF[r]-formula is called strictly guarded if it explicitly guards
all its free variables in the syntactic form of a(x) A ¢(x) where, as above, « is
an atomic 7-formula in which every variable of x occurs.

The nesting depth of a formula of GF is the depth w.r.t. guarded quantifi-
cation steps, bounded by but typically smaller than the first-order quantifier
rank. We denote as GF4[7] the set of GF[r]-formulae of guarded nesting depth
up to ¢, and use =¢ to denote indistinguishability in GF,.

With a view to GF and its Ehrenfeucht—Fraissé analysis, the g-round guarded
bisimulation game is defined so as to match a single guarded quantification step
in a single round.’

Consider a game position 2, a; B, b where the association between tuples a
and b can be thought of as the partial map p: a — b or as a pebble place-
ment. The second player has lost the game if p fails to be a local isomorphism.
Otherwise the game may continue for a further round as follows.

The first player passes to a restriction (pg: ag — bg) C p (lifting some pebble
pairs off the board), and, in one of 2 or 9B, completes the residual tuple, ag or
by, to some strictly guarded tuple in that structure (placing pebbles in one of
the structures); the second player must extend the other tuple in the opposite
structure accordingly (placing matching pebbles in the opposite structure).

The guarded variant of the Ehrenfeucht—Fraissé theorem states the equiva-
lence of the following:
(i) 2,a~?B,b (guarded g-bisimilarity);
(ii) the existence of a winning strategy for the second player in the g-round
guarded bisimulation game from position 2, a; B, b;
(iii) A, a =L B, b (indistinguishability in GF,).

Again, the existence of a winning strategy for the second player in the infinite
game, i.e., full guarded bisimulation equivalence, corresponds to indistinguisha-
bility in the infinitary variant of GF (a guarded Karp theorem).

In particular, every formula of GF is preserved under guarded bisimulation,
and by natural variants of the classical proof ideas, using one of

w-saturated T-structures, or

=qgr > =  over the classes of )
guarded w-tree-unfoldings,

9The count of rounds inherited from the natural notion in the hypergraph bisimulation
game would be up to two times the desired count for GF; the difference goes unnoticed in
the infinite game. One could moreover admit moves to guarded rather than strictly guarded
configurations without changing the resulting equivalence.
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one shows expressive completeness of GF for the class of all FO-definable prop-
erties of relational structures that are closed under guarded bisimulation equiv-
alence. The restriction to the classical setting here comes from the passage
through infinite tractable companions (besides the use of compactness in the
first variant).

Theorem 4.2 (Andréka—van Benthem—Németi). In the sense of classical model
theory, the guarded fragment GF captures the class of all first-order defin-
able properties (of guarded tuples in relational structures) that are closed under
guarded bisimulation equivalence. In other words, the following are equivalent
for any ¢ € FO(7):

(i) ¢ is preserved under guarded bisimulation:

whenever A, a ~, B, b, then A, a = ¢ implies B, b = @;
(i) ¢ is logically equivalent to some ¢' € GF|[r].

Towards an expressive completeness argument that neither uses compactness
nor passage through infinite structures, we need to find (finite) representatives
in the ~,-classes of (finite) structures that support logical control of the form

Eé(g) > =1 over C.
Classes of sufficiently free and sufficiently acyclic guarded covers can serve

this purpose. These are derived from the corresponding cover constructions for
hypergraphs.

4.2 'Tractability in guarded covers

Guarded covers The following is just the analogue of Definition 2.9, w.r.t.
guarded bisimulation as a strengthening of hypergraph bisimulation (cf. Defini-
tion 4.1).

Definition 4.3. (a) A map m: A — 2 between 7-structures 2 and 2 is a
guarded cover, denoted 7: A —% A, if Z = {7 | §: § guarded in ﬁl} is a
guarded bisimulation.

(b) A guarded cover is called (n, K)-free if it satisfies the analogue of condi-
tion (c¢) in Definition 3.1: for any subset B C A of size up to K, every
guarded § in 2 has some guarded companion § in 2 for which 7(§') = n(3),
§ NB=35NB, and the distance between § \ B and B\ & in A\ (8 N B)
is greater than n.

Other properties of T-structures, like conformality, N-acyclicity, N-chordality
are all naturally defined in terms of the associated hypergraphs of guarded sub-
sets. Covers are called conformal, N-acyclic, N-chordal if the covering structure
(i-e., its hypergraph of guarded subsets) has this property.

Definition 4.4. A 7-structure 2 is (n, K)-free if it satisfies the analogue of
condition (b) in Definition 3.1 w.r.t. guarded bisimulation equivalence ~,: for
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any subset B C A of size up to K, every guarded s in 2 has some guarded
bisimilar companion s’ for which 2, s’ ~, 2, s, s B = sN B, and the distance
between s’ \ B and B\ s’ in A\ (s’ N B) is greater than n.

As discussed in connection with Definition 3.1 above, (n, K)-freeness of a
(guarded) cover may be strictly stronger than (n, K)-freeness of the covering
structure.

The projection 7 in a hypergraph cover m: H H(2l) is injective in re-
striction to every hyperedge of H. This allows us to expand any cover of the
hypergraph of guarded subsets associated with 2 to become a guarded cover
A5 9 In fact, there is a unique pull-back of the local relational structure
in the guarded subsets of 2 to H that turns 7 into a guarded cover and H into
the hypergraph of guarded subsets of the covering structure 2. Writing S for
the set of hyperedges of H= (A, S ), which are to become the guarded subsets of
2, the local isomorphism condition on guarded covers forces the interpretations
of the relations in A := (A, (R¥)ge,) to be

R .= {a: [a] € §,7(a) € R*};

and with these, 7: 2 % 9 is indeed a guarded cover.

Moreover, (n, K)-freeness of the hypergraph cover directly translates into
(n, K)-freeness of the guarded cover. Corollary 3.4 therefore implies that every
finite 7-structure 2 admits (n, K)-free guarded covers by finite conformal and
N-chordal structures 2, for any desired thresholds n, K, N € N.

By the same token, covers by w-tree-unfoldings of H(2l), according to Obser-
vation 3.2, induce infinite covers by w-tree-unfoldings 2A“* that are (n, K)-free
covers for all n, K € N simultaneously, besides being fully acyclic, i.e., tree-
decomposable with guarded bags. And again, w-tree-unfoldings inherit from
Observation 1.5 the nice feature that guarded bisimilarity between countable
T-structures implies isomorphy of their w-tree-unfoldings.

Observation 4.5. The following classes of T-structures are representative of
the class of all T-structures up to ~,:

(a) the class of w-tree-unfoldings {A“*: A a T-structure };

(b) Cn .k N[T], the class of conformal, N-chordal and (n, K)-free T-structures,
for any choice of parameters n, K, N € N.

Moreover, those classes in (b) remain similarly representative in restriction to
the class of just finite T-structures.

We next discuss the right choices of parameters n, K, N in relation to g and
the width of 7 to provide the crucial control

() Eé(lg) > =4 over Cp i, N[T]-

The classes Cp, i n[7] thus prove to be the right counterparts for the class
of w-tree-unfoldings for the purposes of a finite model theory analogue of the
expressive completeness claim in Theorem 4.2.
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A closure operation. One ingredient in the structural analysis towards ()
involves a closure operation, whose properties make it interesting for the study of
N-acyclic T-structures (for sufficiently large N). Similar to convex closures, the
idea here is to close some small subset D C A in 2 under short chordless paths
(in the Gaifman graph &(21)), where short refers to some locality or distance
parameter n € N. We call a subset A’ C A n-closed in 2 if every chordless path
of length up to n in &(2) that links two nodes in A’ fully runs within A’. An
n-closed substructure of 2 is an induced substructure A’ C A whose domain A’
is m-closed in .

In general a 7-structure 2 could have no n-closed subsets other than the
trivial ones, ) and A. The n-closure of D C A in 2 is defined to be the C-
minimal closed superset of D, which always exists, since any intersection of
n-closed sets is n-closed

cl, (D) := m{A’ CA: DC A" A n-closed in 2A}.

The following is established in [18] and turns n-closures and n-closed sub-
structures into useful building blocks for back-and-forth arguments in structures
that are N-acyclic for sufficiently large N. I should stress that the arguments
in [18] are far from yielding useful insights into the actual bounds.

Lemma 4.6. If N is sufficiently large in relation to m,n and the width of T,
then there is a uniform bound on the size of the n-closure of any subset of up
to m elements in any N -acyclic T-structure 2.

By choosing N large enough to bound even the uniform bound of the lemma,
we therefore get the following.

Corollary 4.7. If N is sufficiently large in relation to m,n and the width of T,
then the n-closure of up to m elements in any N -acyclic T-structure 2L induces
an n-closed substructure of bounded size that is tree-decomposable with guarded
bags (within 2A).

The isomorphism type of an induced substructure that admits a tree-de-
composition with guarded bags in 2 is determined up to multiplicities by its
guarded bisimulation type. A bound on its size moreover entails a bound on
the guarded nesting depth of the characteristic GF-formula. In this situation
even the GFy-type for sufficiently large d suffices for the complete description
up to multiplicities. Freeness conditions guarantee that for small substructures
also the multiplicities can be matched, and the availability of further exten-
sions. These ingredients, augmented by suitable composition arguments and
fast growing sequences of bounds that allow for ¢ iterations, can be put to-
gether to give the necessary back-and-forth systems. These systems consist of
local isomorphisms between closed substructures of bounded size of T-structures
in C, g n[7]. Parameters n, K, N need to be sufficiently large to guarantee the
required back-and-forth extensions. For suitable choices, these back-and-forth
systems then establish (k).
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For 7-structures 2 and B, consider finite local isomorphisms p from 2 to B
whose domain A’ C A and image B’ C B are regarded as the domains of finite
induced substructures A" C 2 and B’ C B. Let us indicate this situation as
p: A" — B’ and further as

p: A —dp B
if p is compatible with GF,[7]-types: if a € dom(p) is guarded in 2, then
2,a =L, B,p(a). Then, for suitable parameter sequences my, g and ny, the
system (Ij)r<q With

I, = {(p: A 8 B |p] < my, A C A and B’ C B ny-closed }

satisfies the usual back-and-forth conditions, provided 2A,B € C,, x n[7] for
sufficiently large n, K, N.

Corollary 4.8. For sufficiently large choices of n, K,N € N, and for some
sufficiently fast growing function f, the class Cy i N[T| of T-structures that are
conformal, N-chordal and (n, K)-free, is representative of all T-structures up
to guarded bisimulation ~, both generally and among finite structures and such
that N;‘(q) > =7 over Cp, i, N[T].

The Ehrenfeucht—Fraissé argument underlying this >-assertion over C,, x n[7]
does not rely on Gaifman locality, but provides an alternative approach to a win-
ning strategy in the g-round Ehrenfeucht—Fraissé game over a very special class
of structures, via specifically adapted hierarchical tree-like decompositions. Be-
cause we are not working in tree-like or even locally tree-like structures, however,
the configurations that are being matched by these strategies are not full neigh-
bourhoods of some bounded radius, but size-bounded small tree-decomposable
configurations that arise as induced substructures and will typically be strictly
contained in the Gaifman-local neighbourhoods in question. The relevant clo-
sures are closures under short chordless paths, rather than under short distances.
To appreciate the difference, it may be instructive to recall that the whole of
the structural complexity that arises in these game arguments, may arise in the
1-neighbourhood of single points. Towards an extreme case, let us wrap up the
given structures 2 and ‘B in structures that add a single extra pivot vertex to
each structure and replace every relation of arity r in either structure by its
conical extension to an (r+ 1)-arity relation that uniformly joins the new vertex
as a new last component to every tuple in the original relation. This process
preserves every level of guarded bisimulation as well as of first-order equiva-
lence. It is also essentially compatible with the structural criteria that govern
our technique, but trivialises Gaifman locality.

The argument for the control of =7 by Ng (@) also points to an interesting
relationship between the finite cover constructions that take us into C,, g n|[T]
and the more straightforward but infinite w-tree-unfoldings that are available
only in the classical setting.1® Note that the latter also take us to C, x y[7], by
Observation 3.2. So we obtain the following.

10T am indebted to Balder ten Cate for discussions that brought out this point. This is
important for a new application in Section 4.4.

32



Corollary 4.9. For each q € N, every finite T-structure 2 admits a finite
guarded cover m: A 5 A which is indistinguishable in FO, from its (infinite)
w-tree-unfolding A“*.

Note that, a posteriori, the w-tree-unfoldings of 2 and 2l are seen to be iso-
morphic, by the analogue of Observation 1.5 for w-tree-unfoldings of T-structures.

In a sense, the first-order theory of the very uniform and necessarily infinite
w-tree unfoldings can be approximated to any desired degree by the first-order
theories of finite covers.

infinite! finite!

4.3 Expressive completeness of GF

On the basis of the above, it is straightforward to establish the expressive com-
pleteness of GF for the class of all FO-definable properties that are closed under

guarded bisimulation equivalence, Theorem 4.10 below, which is proved in [18].

Every zé(g) is of finite index, and each Eé(g)-class GFf(g)-definable. It

therefore suffices to show that a given ¢ € FO, that is preserved under ~

(over all finite 7-structures) is in fact preserved under z{}(g) (over all finite 7-

structures), for some suitable choice of f(q).

In the case relevant for finite model theory this is immediate from Corol-
lary 4.8. If p(x) € FO, and 2,a ~/(@ B b for finite T-structures A and B
with guarded tuples a and b, we pass to finite ﬁl, ar~, A aand ‘B,f) ~. ‘B, b
in the appropriate C, x n[r], which guarantees that 2, a ~f@) B, b implies
ﬁl, a=1 ‘B, b.

g

A,a—n~f{@—B b
\ \
~ ‘ A~ ‘ ~
A4 — =1 B,b € CnknN[T]

Now 2,4 ~f(@ B.b follows from 2,4 ~, Aa ~/(@ B.b ~, B,b, and
then 2,4 =7 B, b further implies that 2,4 = ¢ iff B,b = ¢ as ¢ € FO,.
By ~,-preservation of ¢ over finite structures this translates into 2, a |= ¢ iff
B,b = ¢, since A, a ~, 2,4 and B, b ~ B, b.

Theorem 4.10. Also in the sense of finite model theory, the guarded fragment
GF captures the class of all first-order definable properties (of guarded tuples
in relational structures) that are closed under guarded bisimulation equivalence.
The following are equivalent for any ¢ € FO(T):
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(i) ¢ is preserved under guarded bisimulation among finite T-structures;
(i1) ¢ is logically equivalent over all finite T-structures to some ¢’ € GF|[r].

4.4 Expressive completeness of kGNF

In this section we carry the above analysis further to achieve a similar expressive
completeness result, also in finite model theory, for a newly prominent exten-
sion of the guarded fragment. This guarded negation fragment of [6] stems from
the ongoing search for ever more expressive fragments of first-order logic that
share some of the important model theoretic and algorithmic benefits of modal
logic. The guarded fragment itself belongs in this tradition, with its very nat-
ural generalisation of modal quantification, and with properties like the finite
model property and decidability, good bounds on small models, good model
checking and decidability complexities, preservation and expressive complete-
ness, etc. The recent proposal of the unary negation fragment in [21], which
similarly shares good properties with ML, has shifted the focus from restricted
quantification patterns to restricted negation. This fragment is built on (unre-
stricted) existential quantification (and no universal quantification as a basic),
and just formulae with at most one free variable can be negated. It may thus
be viewed as the extension of the positive existential fragment IposFO by a
negation operation that only applies to ‘unary’ formulae. The guarded negation
fragment of [6] goes further in allowing a negation operation on formulae whose
tuple of free variables is explicitly guarded. Both fragments therefore extend
JposFO by restricted forms of negation, which may be nested. Neither preser-
vation under homomorphisms nor under guarded bisimulation applies; instead,
the characteristic structural equivalences turn out to be interesting convolutions
of (local) homomorphisms with bisimulation-like (back-and-forth) equivalences.

In the context of this paper, an expressive completeness argument for a
variant of GNF w.r.t. to its characteristic preservation property (preservation
under guarded negation bisimulation), which works in finite model theory, may
serve as a good further test for the methods developed.

Guarded negation bisimulation. We present a bisimulation game that,
besides local isomorphisms between strictly guarded tuples also involves local
homomorphisms that respect strictly guarded tuples.

hom

Definition 4.11. Call a homomorphism h: 2 — B between 7-structures
guarded if it is injective in restriction to every strictly guarded tuple of its
domain; in shorthand notation, h: A 2% 98,

Note that a guarded homomorphism is a local isomorphism in restriction
to the induced substructures on strictly guarded tuples of its domain. The
homomorphic projections 7 in guarded covers m: 2A =5 9 are special examples
of guarded homomorphism.

Valid positions in the guarded negation bisimulation game over T-structures
2 and B are local isomorphisms between strictly guarded tuples, p: a — b,
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just as in the guarded bisimulation game. But a single round involves a more
intricate protocol based on finite guarded homomorphisms.

In position 2, a;B, b, where p: a — b is a local isomorphism between the
strictly guarded substructures 2 [ [a] and 9B | [b], the first player chooses some
finite subset A9 C A or some finite By C B. The second player needs to choose
a guarded homomorphism h from the induced substructure on this subset to
the opposite structure that respects p in the overlaps [a] N Ag or [b] N By, as the
case may be. (These overlaps may be empty.) Finally the first player chooses
any strictly guarded tuple in the domain of h, which is paired with its h-image
in the opposite structure to give the new position.

Consider, for example, a round in which the first player chooses a subset
Ap C A on the 2-side; in response, the second player must come up with some
he AT Ay =28 9B that maps a | Ag to p(a | Ag); then the first player chooses
some strictly guarded tuple a’ in Ay, and the new position is determined as
A a’; B, h(a').

Again, the natural liberalisation that allows for guarded rather than strictly
guarded configurations in game positions results in essentially the same notion
of equivalence.

We are interested in the restriction of this game protocol that imposes a
bound k on the size of the subsets Ay or By that the first player is allowed to
choose. The existence of a strategy for the second player in the infinite or in
the g-round version of the game with size bound k, in position 2, a;B, b, is
denoted as A, a ~gu B, b or A a~I . B, b, respectively. A definition of these
equivalences in terms of appropriate back-and-forth systems would be straight-
forward; the outer format would be the same as for the guarded bisimulation
equivalences, only with the more complex back-and-forth requirements to reflect
the above rules for a single round.

Note that, as seen from the first player, this game is a strengthening of the
guarded bisimulation game, provided k is at least the width of 7: the first player
may choose subsets Ag/By of the form [a’]/[b’], to which the second player is
forced to respond with a local isomorphism that determines a strictly guarded
tuple in the opposite structure, which must also respect the overlap.

The guarded negation fragments kGNF. We define the k-bounded guarded
negation fragment kGNF[r] C FO[r] as follows. The formulae we are really
interested in are the strictly guarded ones. As with GF it does not hurt, however,
to include outer boolean combinations. These fragments are slight variants
of the k-bounded guarded negation fragments of [6]; they are mere syntactic
variants as far as their strictly guarded formulae are concerned, but differ in
their expressiveness for formulae with unguarded tuples of free variables.

Let kGNF[r]| stand for the syntactic fragment of FO[r] generated from
atomic 7-formulae «(x) by closure under

— the boolean connectives A, V,—, and

— existential quantifications over conjunctions of strictly guarded formulae,
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of the form
a(x) A dz \(ei(z') A pi(2)),
7
where the z’ are tuples of variables among x and z, the tuples z’ together consist
of up to k distinct variables, o and the «; are atomic 7-formulae in which all
the displayed variables occur (and, by general convention, the free variables of
; are among those displayed).

This definition of kGNF|[r] is designed to match the rules of k-bounded
guarded negation bisimulation, with the expected Ehrenfeucht—Fraissé and Karp
theorems. For 7-structures 2, a and B, b with strictly guarded tuples a and b,
the following are equivalent:

(i) A,a~7, B,b;
(i) A, a =] xr B,b.

Letting =g denote equivalence in the infinitary variant of kGNF, the

following are also equivalent:
(i) 2A,a ~gpy B, b;
(i) A, a=pN\p B,b.

A corresponding capturing result for the classical context is given in [6]. This
classical variant of expressive completeness of KGNF for FO-definable properties
(of strictly guarded tuples in relational structures) that are closed under ~,y
can be proved using suitable tree unfoldings and/or w-saturated models and
compactness. We shall return to the issue below.

Observation 4.12. Every guarded cover m: A x,G & A by a reduced product
as in Definition 3.3 is also a guarded negation cover in the sense that the set
of all restrictions of ™ to strictly guarded tuples of A x, G is a back-and-forth
system for ~gu (for all k, and even without any size bound,).

It seems that essential model-theoretic arguments for kGNF can be reduced
to related issues for GF. The basic idea, which we shall also encounter in our
study below, is the following.

Existential quantifications of the kind allowed in kGNF[r] assert the exis-
tence, at some strictly guarded tuple a, of guarded homomorphic images of
certain T-structures of size up to k + width(7), whose strictly guarded image
tuples individually need to satisfy certain further kGNF|[7] properties. If each of
these required homomorphic images is guarded, as a whole, by means of a new
relation R of arity k in an expanded vocabulary 7 := {R}, then the existence
of these homomorphic images becomes expressible in GF[rz].

The non-existence of a guarded homomorphic image of some 7-structure at
a strictly guarded tuple a, on the other hand, is only very partially expressible
in GF[rg] — after all, it is not preserved under guarded bisimulation even of the
expanded structures. Just acyclic, guarded tree-decomposable images can be
forbidden in GF. But then all other — viz., cyclically embedded — configurations
of bounded size can be ruled out by passage to suitable N-acyclic guarded covers.
In fact, in this context the weakly N-acyclic covers of [5] come into their own
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(cf. Theorem 2.14 here). These covers were primarily designed to show that
formulae of GF that have infinite models without homomorphic images of some
finite collection of finite configurations also have finite models that avoid these
homomorphisms. In other words, GF is shown to have the finite model property
in restriction to every class of 7T-structures that is defined in terms of a finite
number of forbidden finite homomorphic images.

In particular, this reduction idea has been used in [6] to establish the finite
model property for KGNF.

Theorem 4.13. [Barany—ten Cate—Segoufin] The logics kGNF have the finite
model property.

Here we want to explore expressive completeness of kGNF for FO properties
that are closed under ~,,,; with methods that work for finite model theory. More
specifically, we seek a construction of finite representatives in the ~,,;-classes
of finite 7-structures over which kGNF controls FO in the sense of

(TT) Ngn([g]) > =7

In the following we always assume that k > w where w is the width of the
vocabulary 7. This is simply to ensure that guarded back-and-forth extensions
can be captured in the framework of kGNF.

Tree unfoldings that are k-rich. Recall that an induced substructure rela-
tionship Ry C 2A does not imply an induced substructure relationship between
the Gaifman graphs or the hypergraphs of guarded subsets, because a non-trivial
intersection [a] N Ao for strictly guarded tuples a of 2 need not be guarded in
. This problem, and that of just weak rather than induced substructure rela-
tionships between a guarded homomorphic image and its surrounding structure,
need to be overcome in reductions that seek to capture levels of ~,,,;-equivalence
of 7-structures in terms of levels of ~,-equivalence of expansions, which are in-
troduced to render the relevant homomorphic images guarded.

Definition 4.14. We say that 2y C 2 is a strict substructure relationship,
denoted Ao Co A, if H(RAp) = H(A) [ Ag. For a strictly guarded parameter tuple
a in 2, we say that Ry is a strict substructure over a, denoted 2y Cg 2/a,
if the extension of H(p) by all subsets of Ay N [a] is equal to the induced
sub-hypergraph H(2L) [ Ap.

If Ay Cs XA, then the intersection of any guarded subset of 2 with 2y is
contained in a subset [ag] for some strictly guarded tuple ag of . For 2y Cq
2 /a this condition is relaxed to allow containment in some such [ag] or in [a].

In preparation for a reduction from kGNF to GF we look at another notion
of richness, that captures a form of (finitary) saturation w.r.t. homomorphic
images of bounded size. For convenience we introduce the ad-hoc short notation

h: € c ™8 9A/a
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to say that h is a guarded homomorphism from € to 2l which maps the tuple c
injectively into [a]. We use this in connection with strictly guarded a, but c is
not required to be guarded in €.

Definition 4.15. A 7-structure 2 is called k-rich if, for every strictly guarded
tuple a in 2 and every guarded homomorphism h: €, c ghony A/a from a 7-
structure € of size up to k, there exists a strict substructure 2y Cs A/a over a
and an isomorphism p: € ~ 2, such that p(c) = h(c), [h(c)] = [a] N Ag, and
h:=ho p~ ! is compatible with ~,,, in the sense that for every strictly guarded
tuple a’ of Ap: A, a’ ~ . A, h(a').

Note that, being an isomorphic copy of the guarded homomorphism h, the
map h =hop~!: Ay — A also is a guarded homomorphism.

It may be worth pointing out that k-richness typically postulates small cyclic
configurations. For instance an undirected graph 2 that has paths of length 2
must also have chordless 4-cycles if it is to be 4-rich.

It would be nice to have a direct finitary construction that yields k-rich
~gnps-covers, for instance via reduced products. This remains open for now, and
instead we here make a detour through infinite tree unfoldings that are k-rich,
together with an appeal to a finite model property.

Proposition 4.16. Every finite 7-structure A admits an infinite tree-like ~ -

~en[k .
cover m: A* =8 9 by some k-rich structure 2A*.

Proof. Fix a finite 7-structure 2l. We describe the construction of a k-rich
unfolding of 2 from some strictly guarded root tuple ag, as a ~;-cover
ot g

Instead of the 7-structure 2A* itself we construct an expansion that interprets
one new k-ary relation R. For 7p = 7U{R} we describe a tree-like Tg-structure
T(2A) whose 7-reduct will be the desired 2*.

T is obtained as the limit of a regular process of stepwise extensions of finite
initial segments of ¥ in their leaf tuples. These leaf tuples of intermediate stages
are strictly guarded tuples of ¥, whose m-images are strictly guarded tuples of
2. We identify the root tuple a* for the construction in ¥ with the designated
tuple ag in 2.

As further structural building blocks for ¥ we use a finite family of guarded
homomorphisms h: €, ¢ 225 9, /a from 7-structures € of size up to k, where
c is mapped injectively into some strictly guarded [a] in 2. Let this family,
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enumerated as (h;, €;, ¢;)i<r, represent every such object up to isomorphism.
By ¢; we denote the expansion of €; to a Tp-structure that interprets R as the
full k-ary relation over €;.

An isomorphic copy of 2 [agy forms the root configuration and initial stage
in the construction of ¥; this is also the leaf tuple at this stage. Inductively,
we extend in each new stage every leaf tuple a* above a = 7w(a*) as follows.
For every i € I such that h; maps c; injectively into [a], we introduce a fresh
isomorphic copy of ¢; and identify the components of ¢; in this new copy of ¢
with components of a* according to h;. The projection 7 is extended accord-
ingly, and all strictly guarded tuples in the attached copy of €; that are not
fully contained in [a*] become leaf tuples for the next stage. In this manner it
is guaranteed that the copy of €; becomes a strict substructure over a* in the
T-reduct of ¥.

We let T be the countably infinite 7z-structure that is reached in the limit,
2A* its 7-reduct.

Clearly 7: A* gl by construction. Moreover, every strictly guarded tuple
a* in A* above a = m(a*) has undergone the extension step described above. It
is therefore associated with the required isomorphic embeddings of structures
¢, c as strict substructures of 2* over a*. For every h: €, c ghow T /a* of size
up to k the isomorphism type of wo h: €, ¢ 223 2A/7(a*) agrees with one of the
hi, (’:Z‘, C;.

Finally, 7 is a ~g,y-covering: its restrictions to the strictly guarded tuples
of A* satisfy the back-and-forth conditions for ~,,; by construction. O

We note that T = T(2) in the proof can be replaced by its w-tree unfolding
T* without affecting the claims. Crucially, the k-richness of these unfoldings
serves to lift ~,,,-equivalence to ~,-equivalence, level by level.

Observation 4.17. If2,a ~7, B, b, then the above construction yields tree-
decomposable Tr-structures T(2A) and T(B) such that T(A),a ~" T(B),b.

Proof. Consider strictly guarded tuples a and b such that 2,a ~, 9B,b for
m > 1. In view of the construction of T(A) and T(B) it is essential to show that
the k-bounded guarded homomorphisms h: €, c ghoy 2A/a and those at B /b are
the same, up to isomorphism.

This follows from the fact that the first player may, for instance, propose
the image set Ag := h(C) as a challenge in the ~,;-game: the second player

has to respond with a guarded homomorphism A': h(€) 2% 9B that maps ¢
injectively into [b], because h' respects the bijection p: a — b. Then A/ o h is
the desired match for h at B/b. The remainder of this round in the ~,,;-game
also guarantees that every extension step in the ~,-game on T(2) and T(B)
involving some strictly guarded tuple a’ (not necessarily corresponding to the
whole of the isomorphic copy of ¢ in T(20), but maybe just one of the strictly
guarded tuples in the T-structure) can be matched by translation via h'.

It is important for this argument that the building blocks € used in the
generation of T(A) and T(B) at leaves above a and b arise in isomorphic pairs
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whenever 2,a ~! . B b and that they are embedded into T(A) and T(B) as
strict substructures over these parameter tuples. O

If there is any finite Tr-structure Ay such that Ay ~, T = T(A) then its w-
tree-unfolding must be isomorphic to T“* (cf. the remarks after Corollary 4.9).
Existence of a finite 7r-structure of this kind follows from the finite model
property of GF, because, due to its regularity, ¥ realises only finitely many
GF-types. If instead we apply the finite model property for kGNF[rg] from [6],
see Theorem 4.13, then by the same token we even find a finite T7g-structure QNIO
for which simultaneously

Q~[0|T enlk] T(er ~en[k] (T(m))w*\r enlk] A,
(#) 2o ~q T(A), and
(Ap)* =~ (T(A))“ .

We may moreover replace any such 2 by a finite (n, K)-free, N-acyclic cover
7 Ay — Ao, for any choice of n, K, N, without changing its ~,-type or any
of the above three conditions. With these preparations, the desired expressive
completeness proof is straightforward.

Theorem 4.18. Both classically and in the sense of finite model theory, kGNF
captures the class of all first-order definable properties (of strictly guarded tu-
ples in relational structures) that are closed under ~g, -equivalence. ILe., the
following are equivalent for any ¢ € FO(7):

(i) @ is preserved under ~g, (among finite T-structures);

(i1) ¢ is logically equivalent (over all finite T-structures) to some ¢’ € kGNF[r].

Proof. We focus on the finite model theory version. The classical version can
be proved with the usual methods, or along the same lines as in this proof.

It suffices to show that any ¢ € FO,[7] that is preserved under ~,,, among
finite 7-structures is preserved under ~', for some sufficiently large m.

)
| w
T(A) | ~m | T(B)
N | . o s
= s
AN I = ! ,
~ enlk]/™ enlk]/T v
a | [ —a
fmt N [ [ e fmt
N ' | s
N (e
=T Beb—
g

Towards this end, we may pass from any two 7-structures with strictly
guarded parameter tuples, 2, a and B, b to finite companions 2y and By and
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coverings 2o and By according to (#) that are (n, K)-free and N-acyclic for
any desired values of n, K, N, and such that

§l0|7,a ~ gnlk] 2~l0|7,a ~epn) A, @ and ﬁlo, anr, 2~l0, an~, T(A),a;
Bolr, b ~gi) Bolrs b~y B,b and  Bg, b ~, By, b ~, T(B), b.

For &,a ~", B, b, these also imply, by Observation 4.17 , that

T(A),a~" T(B),b and therefore also  T(A)“*,a ~" T(B)“*, b.
From (#), also T(A)“*,a ~ (Ao)**,a ~ (A)**,a and similarly for B. For
suitably large m, this implies

T(A)~*,a =1 T(B)“*, b

because these w-tree-unfoldings are (n, K)-free and fully acyclic (cf. Observa-
tion 3.2). For suitably large choices of n, K, N and m, we are moreover in the
situation of Corollary 4.9 and find that

T(A)“*, a~ (Ag)“*,a=Ag,a and T(A)**, a~ (Bg)“*, b =7 By, b.
It follows that ﬁlo, a=1 ‘%0, b, so that in particular, for the 7-reducts,
Aol-,a =7 Byl,,b.
Overall, we have thus found finite companions for finite 2 and 28 such that
A, gy Aolr,a =7 Bolr, b~y B, b,

provided just 2, a ~, B, b.

This shows that ¢ is preserved under ~™

wix among finite 7-structures. 0

5 The guarded fragment of Ptime

As remarked above, the weakly N-acyclic covers of Theorem 2.14 can be used
to prove the finite model property for GF under constraints involving forbidden
homomorphic images [5], and, through that, to prove the finite model property
also for GNF in [6]. Several other applications are presented in [5]. One of
these is Ptime canonisation w.r.t. guarded bisimulation equivalence. This is
particularly interesting in the present context, because it entails a capturing
result in descriptive complexity. We briefly present the main ingredients and
discuss this application from [5] in this final section. This treatment, too, is
a generalisation of a much simpler result from [15] in the world of graph-like
structures, to the world of relational structures of any width.
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The modal analogue. For a finite transition system 2 = (A, (E*%), (P%)) in
a fixed finite vocabulary 7 (with some binary relations £ and some unary pred-
icates P) one may consider bisimulation equivalence as an equivalence relation
on A, which we denote as ~*. Then there is a natural quotient of 2 w.r.t. ~%,

Q[/N = (A/~Q‘7 (EQ[/N)v (PQ[/N))’
where E%/~ = {(la],[@]): (a,d') € B*},
P¥~ = P%/ a.

One checks that 2/, [a] ~ 2, a. Moreover, the bisimulation quotients /..
carry a uniformly definable and therefore isomorphism-invariant linear ordering.
Enumerating the elements of 2/, w.r.t. to this order, we obtain an ordered rep-
resentation of the isomorphism type of 2/ over a set {1,...,n} of the right
size. This representation is uniquely determined by the ~-type of 2 (uniquely
determined as a structure, not just up to isomorphism (!)). Denote the image
structure resulting in this manner as I.(2); and as I.(2, a) if we include a
distinguished element, which is mapped to the element representing its equiv-
alence class [a] in 2/.. Then the map 2 — I_(2() provides canonisation (for
finite transition systems with a distinguished element) w.r.t. bisimulation equiv-
alence:

— for all finite A, a: I.(A,a) ~ A, a;

— for all finite T-structures 2, a and 2, a':

War~A o iff I.(Aa)=I(A,a).

Moreover, this map is polynomial time computable, and hence provides
Ptime canonisation.

Now a property (of elements in finite 7-transition systems) is closed un-
der bisimulation equivalence if, for all 2, a, it is true of %A, a iff it is true of
A/, [a] iff it is true of I (A, a). Therefore any polynomial time computable
property of elements in finite 7-transition systems that is closed under bisimu-
lation equivalence may alternatively be evaluated after passage to the canonical
representative I (2, a). Pre-processing with I, acts like a filter that enforces
closure under bisimulation equivalence: the composition of an arbitrary Ptime
decision algorithm with the Ptime algorithm for I, will always result in a Ptime
decision procedure for some Ptime property that is closed under bisimulation
equivalence. The class of Ptime computable properties that are closed under
bisimulation, bisimulation invariant Ptime, Ptime/~, therefore admits an ef-
fective syntactic representation. It is fully and precisely represented by the
compositions of arbitrary polynomially clocked algorithms with a fixed Ptime
algorithm for the computation of I... Though the argument is simple, the result
is remarkable in that it provides effective syntax for the class of Ptime prop-
erties that are ~-invariant. The class of all Ptime algorithms that decide such
properties is undecidable as a subclass of all Ptime decision algorithms. We note
the similarity of this phenomenon with expressive completeness of an effective
syntactic fragment (like IposFO) for a class of FO-properties defined in terms of
an undecidable semantic constraint (like preservation under homomorphisms).
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In fact we can do even better here as well, and provide an actual logic that
is expressively complete for Ptime/~, viz. a generalised variant of the modal
p-calculus Ly,. See [11] and the original reference [15].

Weakly N-acyclic covers and canonisation. An extension of the above
idea from graph-like structures to arbitrary relational structures and guarded
bisimulation has to deal with an interesting problem: there is no natural quotient
T-structure A/, for finite 7-structures 2 w.r.t. guarded bisimulation equiva-
lence. A natural concise quotient representation of the ~,-class of 20 can be
derived from the game graph of the ~,-game over 2. Up to bisimulation,
this game graph can be represented as a transition system whose states are
the ~,-classes of guarded tuples over 2. This abstraction does provide Ptime
computable complete invariants I (2) or I, (A, a) w.r.t. guarded bisimulation
equivalence:

— for all finite T-structures A, a and 2',a’:
Aa~Aa" iff I (Aa)=1. (A, a").

But the images under I, are not T-structures, and therefore cannot provide
canonisation. One can try to read I, () as a transition system that speci-
fies the local overlap structure between guarded tuples and their quantifier-free
types, similar to the use made of the intersection graph of H(2l) towards the con-
struction of guarded tree unfoldings. The infinite tree unfolding of 7. (%) can
be used in this manner, and its w-tree-unfolding would lead to 2“*. However,
I, () itself cannot serve as the building plan for a finite canonical representa-
tive of 2 modulo ~, in this naive manner. The following trivial example may
illustrate this point.

Example 5.1. Let 2 be a directed 3-cycle w.r.t. the binary relation E. Then
2A realises exactly two quantifier-free types of guarded tuples, the type of a
directed E-edge, and the type of a singleton vertex (without reflexive E-loop).
Disregarding the 1-type, the overlap pattern w.r.t. non-degenerate guarded pairs
specified in I () would just tell us that every pair (a,a’) of this type must
have an overlap in a with some pair (a”, a) of the same type and in a’ with some
pair (a’,a’) of the same type. In I (), we would just find correspondingly
labelled edges and loops at the nodes representing the two mirror-symmetric
types of non-degenerate guarded pairs in 2. But 2 is the minimal realisation,
because a structure with fewer than three realisations of these types cannot
consistently realise the required types and overlaps.

This trivial example may wrongly suggest that some locally acyclic graph
cover of I, () could avoid the difficulty. However, the situation is more compli-
cated for relational structures in vocabularies of width greater than 2, however,
because sub-configurations of the tuples represented in individual elements of
I.,(2) may be carried through sequences of overlaps of any length. Again,
dangerous cycles cannot a priori be bounded in length. The N-acyclic covers
of Theorem 2.12 deal with this difficulty but are not polynomial. Instead, the
construction of weakly N-acyclic covers of [5], cf. Theorem 2.14, can be used
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to transform I. (%) into a finite I(A) ~ I () that is a valid building plan
for a finite 7-structure that is guarded bisimilar to 2|, and can be computed in
polynomial time from 7. (2) and hence from 2f. The resulting representative
of the ~,-class of 2 is canonical since it is constructed from just /. (2l). So we
obtain the following in [5].

Theorem 5.2. There is a polynomial time computable canonisation for finite
T-structures (with guarded tuples of parameters) w.r.t. guarded bisimulation.

Following the reasoning that was reviewed for bisimulation of graph-like
structures above, this directly leads to an abstract capturing result.

Corollary 5.3. The class of Ptime computable properties (of guarded tuples in
T-structures) that are closed under guarded bisimulation, Ptime/~,[7], admits
an effective syntactic representation.

In other words, the guarded fragment of Ptime, Ptime/~,, can be captured
in the sense of descriptive complexity, just like the modal fragment of Ptime
Ptime/~. Concrete logical syntax that is expressively complete for this class
Ptime/~,[7] could also be given. These results are of some systematic interest,
because the question whether Ptime itself (which really is Ptime/~) can be
captured remains one of the great open problems of descriptive complexity.

Acknowledgement. 1 am grateful for discussions with Vince Bardny and
Balder ten Cate concerning the guarded negation fragment.
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