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Abstract

Some prominent fragments of first-order logic are discussed from a game-oriented
and modal point of view, with an emphasis on model theoretic techniques for the
non-classical context of finite model theory or of other natural non-elementary
classes of structures. We stress the modularity and compositionality of the games
as a key ingredient in the exploration of the expressive power of logics over specific
classes of structures. The leading model theoretic theme is expressive completeness
– or the characterisation of fragments of first-order logic as expressively complete
over some class of (finite) structures for first-order properties with some prescribed
semantic preservation behaviour. In contrast with classical expressive completeness
arguments, the emphasis here is on explicit model constructions and transforma-
tions, which are guided by the game analysis of both first-order logic and of the
imposed semantic constraints.

keywords: finite model theory, model theoretic games, bisimulation, modal and
guarded logic, expressive completeness, preservation and characterisation theorems
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1 Introduction

1.1 Expressiveness over restricted classes of structures

The purpose of this survey is to highlight game-oriented methods and explicit model
constructions for the analysis of fragments of first-order logic, in particular in restriction
to non-elementary classes of structures. The following is meant to highlight and preview
some key points in terms of both the material to be covered and the perspective that
we want to adopt in its presentation. All these points will be addressed in a more self-
contained manner in the technical sections; an outline of the structure of the technical
sections concludes this preview.

Varying the class of structures The class of all finite structures is one prominent
non-elementary class of interest, but recent developments in finite model theory have
broadened the perspective. While the first tier of results in finite model theory, which
set the stage and clarified much of the specifics of finite model theory, brought pre-
dominantly negative results (‘failures’ in comparison to classical model theory, the first
and foremost being the ‘failure of compactness’ in finite model theory), a much more
positive picture has emerged with a focus on specific classes of well-behaved finite struc-
tures rather than the class of all finite structures (cf. Weinstein’s tame fragments and
tame classes [48]). What good behaviour means for classes of structures, may of course
depend on the model theoretic issue at hand. Nevertheless, there are some interesting
recurring themes, revolving around tree-likeness on the one side and locality criteria on
the other side, in delineating well-behaved classes of (finite) structures.

Expressiveness and expressive completeness Our leading model theoretic theme
in terms of results is that of expressive completeness. We regard expressive completeness
results as classical hallmarks in the study of expressiveness of fragments of first-order
logic. Think of a classical example like the  Los–Tarski existential preservation theorem
(cf. Theorem 5.2) that a first-order formula is preserved under extensions if, and only if,
it is logically equivalent to an existential formula. The preservation claim in this state-
ment – that existential formulae are preserved under extensions – is a trivial exercise in
syntactic induction, and its truth carries over to any restricted class of structures. The
expressive completeness statement – that within first-order, the existential fragment is
expressively complete for properties preserved under extensions – requires real model
theoretic proof. The classical proof in [10] uses elementary extensions, whose availabil-
ity hinges on the use of the compactness theorem for first-order logic. So that proof
does not relativise to arbitrary restricted classes, and in fact the relativisation to the
class of all finite structures is a typical example of a ‘failure in finite model theory’ (due
to Tait and Gurevich, see for instance [14]). Preservation of a first-order property under
extensions among finite structures does not imply expressibility in existential first-order
logic over finite structures. Some instances of classical preservation theorems, like  Los–
Tarski, fail in retsriction to the class of all finite structures, but are true – with totally
new proofs – in interesting restricted classes of finite structures (cf. Theorem 5.9 for
results pertaining to extension preservation, from [3]). Other instances, like van Ben-
them’s theorem concerning preservation under bisimulation (cf. Corollary 3.5), or, more
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classically, the Lyndon–Tarski theorem (cf. Theorem 5.3), which associates preservation
under homomorphisms with the existential positive fragment, do have literal analogues
in restriction to the class of all finite structures as well as to some other restricted classes
of structures of interest (cf. sections 3.2 and 5.2.3) – with new proofs that do not draw
on the classical proofs but shed interesting new light on the classical results as well. And
in some few instances we know of expressive completness results over restricted classes
of (finite) structures that require more expressive fragments than the classical analogue;
a recent example concerning bisimulation preservation is discussed in section 3.2.

Explicit model constructions and transformations Compactness, and with it
many of the typical model constructions prevalent in classical expressive completeness
results, are typically not available over the restricted classes of structures under con-
sideration. Where expressive completeness results can be obtained over non-elementary
classes, the methods are very different from the classical ones. The technical crux of
many expressive completeness results, classical or otherwise, consists in an upgrading
of transfer or equivalence relations between structures. For instance, in the case of
preservation under some equivalence relation ⇌ like bisimulation associated with ex-
pressibility in the fragment L: here preservation under ⇌ must be linked to preservation
under finitary approximations ⇌ℓ to L-equivalence, finitary in the sense of finite index
and in the sense that its classes are L-definable (think of approximations parameterised,
e.g., by quantifier rank ℓ). As these finitary approximations ⇌ℓ are rougher than full
⇌, the task of showing that every first-order property ϕ preserved under ⇌ is even
preserved under some ⇌ℓ, involves model theoretic transformations that allow us to
boost ⇌ℓ either to ⇌ or to some other equivalence under which ϕ is preserved (e.g., on
account of being first-order of a certain quantifier rank). The classical treatment of the
 Los–Tarski theorem, for instance, can similarly be viewed as an upgrading of a transfer
relationship A ⇒∃ B (existential sentences true in A are also true in B), or of its finitary
approximations, to a substructure relationship between elementarily equivalent compan-
ion structures of A and B. (In this case, B admits an elementary extension that embeds
A as a substructure, by compactness.) It follows that any first-order ϕ preserved under
extensions is preserved under ⇒∃, and – by another compactness argument – therefore
also under some finite quantifier rank approximation ⇒ℓ

∃
to ⇒∃.

As will be discussed in section 3.2, such upgrading arguments tend to proceed in or-
thogonal directions of entirely different character, depending on whether they are based
on classical compactness arguments (often involving elementary chains and saturation)
or on explicit and finitary model transformations, which may also be carried out within
some restricted, non-elementary class of structures like the class of just all finite struc-
tures. Explicit model constructions and transformations can thus sometimes replace
the sweeping classical compactness arguments that guarantee the existence of nice and
smooth (but typically infinite) representatives of the structures at hand, in which crucial
technicalities (e.g., back-and-forth arguments) can be dealt with more elegantly. But
there is also something to be gained, even from the classical point of view, from the more
explicit, more controlled and more constructive nature of the alternative model trans-
formations: in key examples of expressive completeness results to be discussed below,
for instance, bounds on the quantifier rank of the target formulae are an integral part of
the proofs based on explicit model constructions and transformations. In this sense, the
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alternative approach, which is necessitated by the loss of compactness in finite model
theory, can offer a new perspective and sometimes extra information on classical results.

Model theoretic games The equivalences and transfer relations between structures
underlying semantic preservation properties on the one hand, and logical equivalences or
transfer relations induced by fragments of first-order logic on the other hand, are closely
linked to model theoretic games or back-and-forth systems. As pointed out above,
upgrading arguments between these equivalences and suitable finitary approximations,
which are themselves naturally cast as game equivalences, play a crucial role in expressive
completeness proofs. The methodological importance of model theoretic games, both
to understand the semantics and expressive power of logics and to guide the desired
explicit model constructions or transformations (over restricted classes of structures), is
being put at the centre of this presentation. We shall here especially discuss variants
of the classical Ehrenfeucht–Fräıssé game and the first-order model checking game for
several fragments of first-order logic. A prominent place among these variants is given to
the modal Ehrenfeucht–Fräıssé game, or bisimulation game. In section 3, bisimulation
games and model transformations that respect bisimulation feature prominently in the
discussion of expressive completeness results for modal logics over various classes of
Kripke structures. Also locality of first-order logic in the sense of Gaifman’s theorem (cf.
Theorem 2.13) is presented in terms of the modularity of the first-order Ehrenfeucht–
Fräıssé game w.r.t. locality in the Gaifman graph. Locality-based approximations to
first-order equivalence also play a role in some of the expressive completeness results
for modal logics, or in the upgrading between approximate levels of bisimulation and
first-order equivalence. Structurally, the concept of locality will also be important in
connection with classes of structures defined in terms of wideness criteria in section 5.

Bisimulation as the game of games Putting games – model checking games that
define the semantics of a logic and Ehrenfeucht–Fräıssé model comparison games – at the
centre of the analysis of fragments of first-order logic, it becomes very natural to adopt a
modal perspective [8, 9] and to relate other fragments and their games to the bisimulation
game. We thus draw on bisimulation games and bisimulation equivalence not just in the
study of modal fragments but also on its role as an equivalence between game graphs
that encapsulate the semantics of other fragments. The connection is made by looking at
the natural game graphs associated with model checking games or Ehrenfeucht–Fräıssé
games as Kripke structures. The elements of these Kripke structures are formed by the
observable configurations in the underlying structures, their accessibility relations reflect
the transitions between game positions, which in turn reflect the available quantification
patterns of the fragment at hand. For the modal fragment itself, the structure (Kripke
structure, transition system) is its own game graph, in which the elements can be
navigated along the edges (of the given accessibility or transition relation). Richer
fragments have access to more complex types of configurations within structures and
possibly more complex rules for navigation between configurations. For instance, in the
k-variable fragment FOk ⊆ FO we deal with arbitrary configurations consisting of up to k
elements, while in the guarded fragment GF ⊆ FO the configurations need to be covered
by some relational ground atom. This view may not directly offer new technical insights,
but has the advantage of making explicit a unifying and, I think, intuitive framework
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whose specialisations to individual fragments are of course very well understood.

Structure of the paper The overall structure of the paper is as follows. In sec-
tion 2 we review model checking and model comparison games for FO and some of its
fragments from a modal perspective; we also discuss Gaifman locality in relation to the
FO Ehrenfeucht–Fräıssé game. Section 3 deals with expressive completeness issues for
modal logics over specific classes of transition systems. The extension of the concept
of bisimulation from graphs to hypergraphs, its relationship with the guarded fragment
and a connection with extension properties for partial automorphisms is discussed in
section 4. In section 5 we turn to locality based techniques for special classes of rela-
tional structures, and to expressive completeness for preservation under extensions and
homomorphisms.

Sections 2 and 3 are meant to be fairly expository, and may serve either as a brief
introduction to the fragments and methods discussed, or as an invitation to re-discover
some rather familiar concepts in a slightly different light. Sections 4 and 5 are more
technical and also less self-contained. To a large extent they may, on the other hand,
also be considered independently of the first part. The intention is to give at least some
high-level account of some more recent results and developments in the framework of
this survey.

1.2 Basic terminology and notational conventions

Structures and assignments Throughout we only consider relational structures.
Typically τ will be a finite relational signature, and we refer to the maximal arity of
relations in τ as its width. A τ -structure with universe A will usually be denoted as
A = (A, (RA)R∈τ ), but we often omit superscripts where the structure is clear from
context.

Within a τ -structure A, we look at (partial) assignments (to an official set of first-
order variables x1, x2, . . .), described by partial functions β : (xi) → A. Assignments to
finite tuples of variables are often regarded as momentarily fixed parameter tuples, like
a = (a1, . . . , ak) ∈ Ak as an assignment β : (xi 7→ ai)i=1,...,k. Such (finite) assignments
will also play a role in games as configurations (tuples of marked elements) within a
structure, often directly associated also with the substructure induced on the subset
[a] := {a1, . . . , ak} ⊆ A. Because we do not want to clutter terminology with a fine
distinction between tuples and assignments, we also think of assignments (which officially
are assignments to variables xi) as partial functions β : i 7→ β(i) over a domain of
positive natural numbers. Notation for modifications of assignments is as in β a

i
, for

the assignment obtained by changing (or extending) β at i (at xi) to take the value a.
For the semantics of formulae ϕ(x) with free variables among those listed in the tuple
x, notations A,a |= ϕ, A |= ϕ[a], and A, β |= ϕ are used interchangeably, if β is an
assignment to (at least) the free variables of ϕ and assigns a to x.

Among important specific types of structures we mention the following to clarify
terminology. Other more specific classes of structures will be introduced at appropriate
places.

Directed and undirected graphs are structures over relational vocabularies of width 2,
i.e., we admit several binary relations (edge-labelled directed graphs) and unary predi-
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cates (vertex colours). More traditional plain directed graphs are a special case, with just
a single binary edge relation. We also view directed edge-labelled and vertex-coloured
graphs as transition systems, with several transition relations and atomic state predi-
cates. Such transition systems are just a terminological variant of Kripke structures, as
the structures for modal logics. Undirected graphs are graphs with a single edge relation
that is symmetric and irreflexive, viewed as a special case of directed graphs.

A (directed) tree is a directed graph that has a root w.r.t. the union of its binary
relations such that every other element is reachable on a unique edge-labelled directed
path from this node. Note that this implies irreflexivity (no loops), antisymmetry (no
edges in opposite directions, not even with different labels) and that there are no multiple
edges (with different labels). More generally, a directed graph or transition system is
called simple if it has no loops and no multiple edges (not even in opposite directions).1

Hypergraphs, which are at the centre of section 4, are not regarded as relational
structures but as second-order structures of the format H = (A,S) with a universe A
and a subset of the power set S ⊆ P(A) as the set of hyperedges. We shall encounter
hypergraphs as auxiliary combinatorial structure, induced by relational structures, but
will not look at logics over hypergraphs.

Gaifman graph and distance With any structure in a finite relational vocabulary
τ we associate an undirected graph, its Gaifman graph.

Definition 1.1. The Gaifman graph of the τ -structure A is the undirected graph
G(A) = (A,EG(A)) with the same universe A and an edge (a, b) ∈ EG(A) for a 6= b
if a and b occur together in some tuple within some relation RA, R ∈ τ .

The associated notion of Gaifman distance is just ordinary graph distance (minimal
length of a connecting path, or infinity) between elements in G(A). We denote this
distance as d(· , ·). Finite distance relations like d(x, y) 6 k are clearly FO-definable in
A. In graphs (τ finite and of width 2), d(x, y) 6 1 is quantifier free definable, while in
general the required quantifier rank is the width of τ minus 2. An easy induction shows
that d(x, y) 6 2q is definable by a first-order formula ϕ(x, y) for any finite τ .

Definition 1.2. The Gaifman neighbourhood of radius ℓ, or ℓ-neighbourhood for short,
of an element a in A is the subset N ℓ(a) = {b ∈ A : d(a, b) 6 ℓ} ⊆ A. By extension, the
ℓ-neighbourhood of a tuple a = (a1, . . . , ak) in A is the union of the N ℓ(ai).

A subset (or tuple) in A is ℓ-scattered if its elements (or components) have pairwise
distance greater than 2ℓ (i.e., if their ℓ-neighbourhoods are disjoint).

By the above considerations, ℓ-neighbourhoods of tuples, or the property of a tuple
to be ℓ-scattered, are all first-order definable, for every ℓ ∈ N and for any fixed finite τ .

A relational structure is called acyclic if its Gaifman graph is acyclic; for directed
graphs as relational structures, this is different from the usual notion which only forbids
directed cycles.

A directed graph or transition system is ℓ-acyclic if its Gaifman graph is acyclic in
every ℓ-neighbourhood (this rules out undirected cycles of lengths up to 2ℓ+ 1).

1In section 3.2.3 we also discuss transitive tree structures, which are trees in the partial order sense,
not in the graph sense, but that will be highlighted there.
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Logics We write FO for first-order logic, or more specifically FO[τ ] for the set of first-
order formulae over vocabulary τ . The set of free variables of a first-order formula ϕ
is denoted free(ϕ). Notation as in ϕ = ϕ(x) indicates that free(ϕ) ⊆ [x] (the set of
variables listed as components of the tuple x).

Quantifier-rank is defined as usual for first-order formulae, and denoted qr(ϕ). Atomic
and quantifier-free types of tuples a in a τ -structure A provide full descriptions of a at
the quantifier-free level. Formally we may define the atomic type of a (in a matching
tuple of variables, so that β : x 7→ a is appropriate as an assignment) as the set of all
atomic and negated atomic formulae α(x) in variables x for which A |= α[a]. It is clear
that the correspondingly defined quantifier-free type is fully determined by the atomic
type, and that both can be summarised by a single quantifier-free formula in case τ is
finite. The atomic or quantifier-free type of a in A fully determines the isomorphism
type of A↾[a] (of configuration a in A).

FOk stands for the k-variable fragment of FO, which uses only the variable symbols
x1, . . . , xk. The finite variable fragments have played a very prominent role in the
development of finite model theory as witnessed for instance in [14, 32]; we shall not
focus on these fragments very much here, but treat the associated k-pebble games as a
typical and natural example in the exposition of section 2.

Apart from fragments of FO, we occasionally look at its infinitary extension FO∞

(classically denoted L∞ω), which extends the syntactic framework of FO by allowing
disjunctions and conjunctions over arbitrary sets of formulae. Connectedness of graphs,
for instance, becomes definable in FO∞ with the use of an infinite disjunction to express
“d(x, y) < ∞” as “

∨
{d(x, y) 6 n : n ∈ ω}”. Formulae in FO∞ have ordinal quantifier

rank, defined by the usual inductive clauses extended by taking suprema for infinite
disjunctions or conjunctions. The quantifier-rank of the formula “d(x, y) < ∞” would
thus be ω, that of the natural sentence defining connectivity ω + 2. Similar infinitary
extensions naturally arise, e.g., for the modal fragment to be discussed next.

Basic modal logic is denoted ML, or ML[τ ] for a given vocabulary of width 2 ap-
propriate for transition systems (Kripke structures). We typically use a τ with binary
transition relations Eα (regarding the indices α as edge labels) and unary predicates
Pj (associated to atomic state properties or atomic propositions pj). The formulae of
ML[τ ] are generated from the atomic propositions pj by means of boolean connectives
and modal quantifications with ✸α or ✷α. The defining clause for the semantics of
ϕ = ✸αψ, say at a state a in a τ -structure A, is

A, a |= ϕ iff A, b |= ψ for some b such that (a, b) ∈ EA
α ,

and dually for ✷αψ, which is equivalent to ¬✸α¬ψ. We also view ML[τ ] as a fragment
of FO[τ ], having only formulae in one free variable, via the standard translation that
associates pj with Pjx and ✸αψ with ∃y(Rαxy∧ψ(y)) so that, dually, ✷αψ is associated
with ∀y(Rαxy → ψ(y)). This is briefly reviewed in connection with the model checking
game for modal logic in section 2.3.3.

The extension of basic modal logic with modal quantification backward along Eα

(inverse modalities) is denoted ML
−

; the extension by a global modality, corresponding
to the introduction of modal quantification associated with the full binary relation, is
denoted ML

∀; the combined extension with both these additions is ML
−

∀. For background
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in connection with our treatment of modal logics and much more material on the model
theory of modal logics see in particular [16].

The guarded fragment GF is defined to be a syntactic fragment of FO consisting of
formulae in which all quantifications are relativised as in

ϕ(x) = ∃y(α(x′) ∧ ψ(x′)), or
ϕ(x) = ∀y(α(x′) → ψ(x′)),

where α(x′) is an atomic τ -formula (a relational atom, or an equality: the guard atom)
such that free(ψ) ⊆ var(α) (and y is a sub-tuple of x′ such that [x′] \ [y] ⊆ [x]).

The quantification pattern of guarded logic extends that of modal logic. For a
modal vocabulary τ , GF[τ ] properly contains (the standard first-order translations of)
ML[τ ] and even ML

−

∀[τ ]. One motivation for the study of the guarded fragment stems
from the analogy with modal logic, and the extension of modal quantification patterns
from Kripke structures to more general relational structures. Guarded fragments were
proposed in [2] with a view to explaining the good algorithmic and model theoretic
properties of modal logics in a richer fragment of first-order logic and other than the
2-variable fragment [23]; see [20]. In many ways the guarded fragment has been shown to
be a rather well-behaved intermediary between first-order and modal logic, in terms of
its model theoretic and algorithmic properties. For instance (like modal logic and unlike
FOk for k > 3), GF has the finite model property and is decidable: the satisfiability
problem for GF[τ ] is complete for deterministic exponential time if τ is fixed (more
precisely, for any fixed bound on the width of τ), and complete for doubly exponential
time without this constraint [20]. Similarly to the tree model property of modal logic
(which is a consequence of bisimulation invariance and the model transformation of
tree unfolding, see in particular section 3.1.1), GF has a generalised tree model property,
which similarly stems from invariance under guarded bisimulation and the availability of
guarded tree unfoldings. For these considerations we refer to the discussion in section 4.2,
where we interpret these phenomena in the light of a generalisation of bisimulations from
graphs to hypergraphs. For further results concering the model theory of GF and some
of its generalisations see [20, 30, 22, 24, 7, 31] among many others.

The semantics of the above-mentioned fragments, though assumed familiar, will be
reviewed again in section 2.3 when we discuss the associated model checking games.
There we shall proceed in the order of increasing specialisation, from FO to FOk to GF

to (variants of ) ML.

2 Model theoretic games and bisimulation

As mentioned above, we adopt a non-standard perspective of looking at first-order logic
(and some of its fragments) through modal eyes. Connections are made through games,
at two levels: at the level of model checking games, which capture the semantics, and at
the level of model comparison games, which capture degrees of logical indistinguishability
between structures.

No technical knowledge of model checking games and Ehrenfeucht-Fräıssé games is
assumed. The reader who has some familiarity with model checking games and the
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Ehrenfeucht-Fräıssé technique for various fragments and extensions of FO on the other
hand, will recognise the familiar notions in a slightly different prespective.

2.1 The semantic game: verifier vs. falsifier

We take a look at the first-order model checking game from a modal point of view.
We shall then want to present some fragments of first-order logic in terms of restricted
game boards; the same view will uniformly be applied to the Ehrenfeucht–Fräıssé model
comparison games in the next section.

A transition system of observable configurations With the relational vocabulary
τ associate the vocabulary τ∗ consisting of binary transition relations Ei for i > 1 and
unary predicates Pθ for atomic τ -types θ = θ(x) in finite tuples of variables from (xi)i>1.
With a τ -structure A associate the following τ∗ transition system O(A) of observable
configurations over A:

– the universe of O(A) is the set of partial assignments to variables (xi)i>1;

– Ei is interpreted as {(β, β a
i
) : a ∈ A} (modifications of assignments at xi);

– Pθ as the set of assignments β satisfying θ (in particular var(θ) ⊆ dom(β)).

In a straightforward manner one obtains a uniform translation from FO[τ ] over A to
ML[τ∗] over the associated O(A). This translation,

FO[τ ] −→ ML[τ∗]
ϕ(x) 7−→ ϕ∗,

is such that for all β with free(ϕ) ⊆ dom(β):

A, β |= ϕ ⇔ O(A), β |= ϕ∗.

At the quantifier-free level, ϕ = ϕ(x) translates into

ϕ∗ :=
∨{

Pθ : ϕ ∈ θ, var(θ) = var(ϕ)
}

;

the translation is compatible with boolean connectives; and existential quantification
translates into a modal diamond in a natural manner, as in

ϕ = ∃xiψ(x) 7−→ ϕ∗ = ✸iψ
∗.

Note that the modal vocabularies involved are a priori infinite; this can be avoided
if we restrict attention to the k-variable fragment FOk[τ ] for fixed k and fixed finite
relational vocabulary τ . In this case, there are only finitely many Pθ corresponding to
atomic τ -types in variables x = (x1, . . . , xk); we may restrict attention to full assign-
ments to all the variables {x1, . . . , xk}, which can be identified with An; and we just
retain k transition relations Ei for 1 6 i 6 k. Further natural restrictions to be discussed
in section 2.3 lead to modal and guarded logics.

10



The model checking game The idea to associate a two-person game with the se-
mantics of first-order logic goes back at least to Lorenz’ and Lorenzen’s dialogue games
[39, 40] between a proponent and an opponent of some assertion. The current interest
in these games stems not from foundational issues but from their algorithmic content,
or more precisely from their conceptual strengths towards the design of efficient model
checking algorithms, see, e.g., [21, 47].

With formulae ϕ and τ -structures A with partial assignments β we associate a game
played by two players, V (verifier) and F (falsifier) such that the winning positions in
the game determine whether or not A, β |= ϕ.

We present this basic and simple idea in a modular fashion that uses the transition
system of observable configurations as one constituent of the game (representing the
structure input to the model checking problem). The other constituent is essentially the
syntax tree of the formulae to be checked (representing the formula input to the model
checking problem). For a transparent account of the algorithmic content of this game,
and its complexity analysis, compare [21].

Let Φ ⊆ FO[τ ] be a set of negation normal form formulae that is closed under
subformulae (negation normal form restricts the occurrence of negations to negated
atoms). Let S(Φ) be the transition system whose universe is Φ, with transition relations
E∨, E∧, E∃xi

and E∀xi
(i > 1) interpreted as follows.

E∨ contains the pairs (ϕ,ϕ1) and (ϕ,ϕ2) for ϕ = ϕ1 ∨ ϕ2 ∈ Φ; similarly for E∧;
E∃xi

consists of all pairs (ϕ,ψ) for ϕ = ∃xiψ ∈ Φ; similarly for E∀xi
.

The game graph G := G(A,Φ) for the Φ model checking game over A may then be
interpreted in a subsystem of the product system

O(A) × S(Φ).

More specifically, the universe of G(A,Φ) is the set of all syntactically appropriate
assignment/formula pairs, {(β, ϕ) : free(ϕ) ⊆ dom(β)}. The relevant transition relations
of G(A,Φ) are

in G(A,Φ) in O(A) in S(Φ)

E∨ := id × E∨ (disjunctive moves)
E∧ := id × E∧ (conjunctive moves)
Ei,∃ := Ei × E∃xi

(existential moves)
Ei,∀ := Ei × E∀xi

(universal moves)

As atomic predicates we use PV and PF , which partition the universe of G(A,Φ)
according to:

PG
F =

{
(β, ϕ) : ϕ = ϕ1 ∧ ϕ2 or ϕ = ∀xiψ

}

∪
{

(β, ϕ) : ϕ atomic or negated atomic, A, β |= ϕ
}
,

PG
V =

{
(β, ϕ) : ϕ = ϕ1 ∨ ϕ2 or ϕ = ∃xiψ

}

∪
{

(β, ϕ) : ϕ atomic or negated atomic, A, β 6|= ϕ
}
.

The rules of the game are then simply the following, according to which the players
move a pebble in the game graph G:
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– Positions in PV require a move by V :
V moves along any E∨- or Ei,∃-edge (as available in current position);
V loses when stuck for a move.

– Positions in PF require a move by F :
F moves along any E∧- or Ei,∀-edge (as available in current position);
F loses when stuck for a move.

As formula complexity is strictly reduced in each move, all plays are finite. Positions
in which neither player can move are terminal positions for the game and the player
who ought to move has lost. This happens exactly in positions associated with atomic
or negated atomic formulae, and here the attribution of these nodes to V and F is
such that V wins (because F ought to move) if A, β |= ϕ, and vice versa. Clearly the
game is positionally determined, and the following is proved by an easy induction on
the structure of the formula (or on the length of the remaining game).

Lemma 2.1. The verifier V has a winning strategy in the model checking game on A

precisely in those positions (β, ϕ) for which A, β |= ϕ.

Let us sketch part of the game graph in one tiny example. For a binary relation R
consider the formula ϕ(x) = ∃y

(
Rxy∧∀x(Rxx∨Rxy)

)
over the R-structure A with two

elements a and b and with R-edges as indicated by arrows:

a // b dd

The model checking game to determine whether A |= ϕ[a] has positions (β, ψ) where
ψ is one of the subfurmulae of ϕ and β a (partial) assignment to variables x, y. We
may represent β by an {a, b, ·}-word of length 2 and enumerate the subformulae ψ as
ϕ0 := Rxx, ϕ1 := Rxy, ϕ2 = ϕ0 ∨ ϕ1, ϕ3 := ∀xϕ2, ϕ4 := ϕ1 ∧ ϕ3 such that ϕ = ∃yϕ4.

(a ·,∃yϕ4)

V

��

V

''OOOOOOOOOOO

(ab, ϕ1 ∧ ϕ3)

F

xxrrrrrrrrrrrr

F

��

(aa, ϕ1 ∧ ϕ3)

F

��

F

$$
(ab, ϕ1) (ab,∀xϕ2)

F

xxrrrrrrrrrrrr

F

��

(aa, ϕ1)

(ab, ϕ0 ∨ ϕ1)

V

xxrrrrrrrrrr

V

��

(bb, ϕ0 ∨ ϕ1)

V

��

V

''OOOOOOOOOOO

(ab, ϕ0) (ab, ϕ1) (bb, ϕ0) (bb, ϕ1)

In this partial sketch of the game tree, winning positions for V are underlined.

There is a natural variant of the model checking game that does not restrict formulae
to negation normal form. The transition corresponding to the elimination of a negation,
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say from ¬ϕ to ϕ, corresponds to a swap of players’ roles. Let us therefore call the
players neutrally player 1 and player 0. Positions in the game graph are extended by
an extra component ℘ ∈ {0, 1} to indicate which of the two players acts as verifier; the
opponent, ℘̄, correspondingly acts as falsifier. The two component games, G(A,Φ) ×
{0} and G(A,Φ) × {1} are each as before (but not insisting on negation normal form
formulae, and with player ℘ in the role of V ), and linked by E¬-edges from (β,¬ϕ,℘)
to (β, ϕ, ℘̄). E¬-edges prescribe forced moves (for player ℘ say, but it does not matter)
from configurations in which the leading connective of ϕ is a negation. Then the winning
positions of player 1 are those (β, ϕ, ℘) in which either ℘ = 1 and A, β |= ϕ or ℘ = 0
and A, β 6|= ϕ.

It is also straightforward to adapt the model checking game to deal with FO∞ rather
than FO. E∨ and E∧ can have infinite out-degree reflecting the syntax of infinitary
disjunctions and conjunctions; everything else remains just the same; in particular plays
are still finite, albeit not necessarily with a uniform finite bound.

2.2 The comparison game: back and forth

The familiar Ehrenfeucht–Fräıssé style model comparison games are two player games
played over two structures. A game configuration in these games may be seen as a
pairing between two observable configurations, one from each structure. The game is
such that the winning positions determine whether or not (or to which degree) these two
observable configurations are logically indistinguishable. We present the basic idea in
the slightly non-standard terminology of (pairings between) observable configurations in
order to highlight the connection between the comparison games and the model checking
games. This point of view will contribute to a rather uniform presentation of fragments
via restrictions imposed at the level of observable configurations.

The first-order Ehrenfeucht–Fräıssé game Consider two τ -structures A and A′

over the same finite relational vocabulary τ . For partial assignments β, β′ to the same
(finite) subset of variables (xi)i>1 in A and A′, respectively, we write

A, β ≡q A
′, β′

for FO-equivalence up to quantifier-rank q, i.e., A, β |= ϕ ⇔ A′, β′ |= ϕ for all ϕ ∈ FO[τ ]
such that free(ϕ) ⊆ dom(β) = dom(β′) and qr(ϕ) 6 q. If A and A′ are clear from the
context, we also write just

β ≡q β
′.

The coarsest of these equivalences, A, β ≡0 A′, β′ corresponds to a local isomorphism:
π : β(i) 7→ β′(i) for i ∈ dom(β) = dom(β′) being an isomorphism between the induced
substructures A↾image(β) and A′↾image(β′), which is the same as equality of quantifier-
free types.

Elementary equivalence, A, β ≡ A′, β′, without the restriction on quantifier-rank,
is similarly defined. Note that ≡ is the limit (coarsest common refinement) of the
approximations (≡q)q∈ω.
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Further, A, β ≡∞ A′, β′ stands for equivalence w.r.t. infinitary logic FO∞.2

The first-order Ehrenfeucht–Fräıssé game over A and A′ is played by two players,
whom we call player I and player II. We describe the game protocol in terms of rounds,
each round consisting of an exchange of moves: challenge by I/response by II.

The game board: positions. Positions between rounds are pairs (β, β′) of assignments to
the same finite subset of variables (xi)i>1. Only locally isomorphic assignments will be
admissible for player II; we speak of sound positions:

Sound positions. Position (β, β′) is sound if A, β ≡0 A′, β′, i.e., if the correspondence
β(i) 7→ β′(i) describes a local isomorphism. In terms of O(A) and O(A′): β ∈ Pθ ⇔
β′ ∈ Pθ for all atomic θ.

Single round and overall protocol. A single round consists of a challenge/response ex-
change of moves as follows. In position (β, β′),

– I chooses i > 1 and makes a move

{
either along an Ei-edge in O(A) from β,

or along an Ei-edge in O(A′) from β′.

– II must make a move along an Ei-edge in the opposite structure.

This exchange of moves results in an overall transition from position (β, β′) to some
successor position (γ, γ′), where γ = β a

i
for some a ∈ A and γ′ = β′ a

′

i
for some a′ ∈ A′.

We distinguish different levels of the game according to how many rounds are played.

The q-round game Gq(A; A′) (for fixed q ∈ ω): play continues from an initial position
through q rounds (or until a position is reached that is not sound).

The finite-round game Gω(A; A′): in the initial position, player I first selects some q ∈ ω,
then play continues in Gq(A; A′) from the initial position.

The infinite game G∞(A; A′): play continues through an infinite number of rounds (or
until a position is reached that is not sound).

In each variant, II loses as soon as the position is not sound. Maintaining soundness
of the evolving position is in fact the only commitment for II: II wins the q-round game
Gq after completion of round q if this final position is sound; similarly II wins the finite-
round game Gω if she wins Gq for the q initially selected by I; and she wins the infinite
game G∞ if play continues indefinitely without violation of soundness.3

In all of these games we typically also specify the initial position as in Gq(A, β; A′, β′).
For instance, we say that II has a winning strategy in Gq(A, β; A′, β′) if (β, β′) is a
winning position for player II in Gq(A; A′) (or in Gq(A, β; A′, β′)).

It is obvious that plays of Gq and Gω are finite and end in a position in which one
of the players has won; hence Gq and Gω are positionally determined. But also G∞ is

2Equivalence up to quantifier-rank α in FO∞ can be defined, for every ordinal α. For finite relational
vocabularies, ≡ coincides with ≡ω, equivalence up to quantifier-rank ω in FO∞. Note, however, that
finitary and infinitary first-order equivalences do not coincide even at quantifier-rank 1 for infinite
relational vocabularies.

3Clearly a variant formulation to essentially the same effect would restrict the game board to sound
positions right away, making II lose when she is stuck for a response. This formulation, however, has
the slight disadvantage of restricting us to sound initial positions, too.
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rather easily shown to be positionally determined, without recourse to deeper results
from game theory, as part of the model theoretic analysis underpinning the following
theorem. The core of this well-known analysis can be summarised as follows.

Theorem 2.2 (Ehrenfeucht–Fräıssé and Karp). For all structures of the same finite
relational vocabulary, A and A′, winning positions in games characterise levels of first-
order equivalence in the sense of the following equivalences.

(a) (β, β′) is a winning position for II in Gq(A; A′) if, and only if, A, β ≡q A′, β′.

(b) (β, β′) is a winning position for II in Gω(A; A′) if, and only if, A, β ≡ A′, β′.

(c) (β, β′) is a winning position for II in G∞(A; A′) if, and only if, A, β ≡∞ A′, β′.

We sketch the game-oriented skeleton of the underlying arguments in their most
rudimentary form to highlight this aspect (and deliberately ignoring some of the logical
niceties, like characteristic formulae, which the more thorough analysis presented in
textbooks typically yields).

(i) For the direction from left to right, one shows that logical inequivalence yields a
winning strategy for player I. This follows from the observation that I can choose his
challenge in a single round from a sound position such that, no matter what response
II chooses, the resulting position is logically inequivalent at a lower quantifier-rank.

Why is that? A glance at the model checking game helps to illustrate the point. For
instance, if β 6≡m+1 β

′ (but β ≡0 β
′), then this inequivalence manifests itself in some

formula ∃xiψ with ψ of quantifier-rank at most m. Suppose w.l.o.g. that A, β |= ∃xiψ
while A′, β′ |= ∀xi¬ψ. Then a good move for the verifier in position (β,∃xiψ) in the
model checking game over A obviously makes a good move for I in this game.4

(ii) In the opposite direction, player II always has a strategy, for her response to
I’s challenge in a single round, to maintain the required level of logical equivalence.
For instance towards (a) or (b), for a challenge γ = β a

i
in a position (β, β′) such that

β ≡m+1 β
′, II can find a′ ∈ A such that β a

i
≡m β′ a

′

i
. Otherwise, there would have to be

a distinguishing formula ψa′ of quantifier-rank m for every choice of a′ ∈ A′, such that
A, β a

i
|= ψa′ while A′, β′ a

′

i
6|= ψa′ . But then the formula ∃xi

∧

a′ ψa′ would distinguish β
and β′ at quantifier-rank m+ 1.

If the underlying structures (and hence the branching degree of the transition systems
of observable configurations) are infinite, this argument crucially uses the fact that, for
a fixed tuple of free variables there are only finitely many formulae of quantifier-rank m
over a fixed finite relational vocabulary, up to logical equivalence – this is what brings
∃xi

∧

a′ ψa′ into first-order, even if A′ is infinite.5 We note that the corresponding claims
in (a) and (b) of the theorem actually fail for infinite relational vocabularies, even over
finite structures. For (c) on the other hand, to which the above argument is readily
adapted, finiteness (of the conjunction or of the vocabulary) is not essential.

The equally familiar description in terms of back-and-forth systems corresponds to
a delineation of a winnning region for II with the appropriate closure conditions (the
back-and-forth conditions) that guarantee that player II has responses to keep the game

4Entirely analogous reasoning applies towards (c) and for inequivalence in FO∞, w.r.t. its ordinal-
valued quantifier-rank.

5While this is easily proved by induction on quantifier-rank, these preparatory considerations are
clearly not even required for the argument if we deal just with finite models.
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within the prescribed region, against all challenges by I. The essential difference between
the finite and the infinite game is that, in the finite games, winning regions are stratified
according to how many rounds are still to be survived. The winning region for the
infinite game, on the other hand, is static, corresponding to an invariant that needs to
be maintained indefinitely (this is the classical notion of back-and-forth equivalence or
partial isomorphism in model theory, see for instance [29]).

Example 1: finite linear orderings The first example illustrating the usefulness of
the first-order Ehrenfeucht–Fräıssé game in almost any textbook presentation concerns
the limitations of FO in expressing properties of finite linear orderings (or discrete linear
orderings more generally). We just state the following well-known result in order to stress
its technical affinity with simple locality based arguments to be considered later.

Lemma 2.3. Consider two finite linear orderings A = (N, <)↾[0,m] and A′ = (N, <)↾
[0,m′] with assignments to tuples

β = n = (n0, . . . , nk) where 0 = n0 < n1 < · · · < nk−1 < nk = m and
β′ = n′ = (n′0, . . . , n

′
k) where 0 = n′0 < n′1 < · · · < n′k−1 < n′k = m′.

We write di := ni+1 −ni and d′i := n′i+1 −n′i for distances between consecutive points in
these assignments. Then the following are equivalent for any q > 1:

(i) A, β ≡q A′, β′

(ii) for 0 6 i < k: di = d′i or both di, d
′
i > 2q.

For the naked finite linear orderings one obtains that

A ≡q A
′ ⇐⇒ |A| = |A′| or |A|, |A′| > 2q − 1.

For (ii) ⇒ (i) in the lemma, consider the first round in a game played from a position
satisfying the distance constraints (ii) with critical distance 2q. It suffices to exhibit a
strategy for player II to respond to any challenge by player I in such a manner that the
resulting position satisfies the analogous distance constraints (ii), but now with critical
distance 2q−1 instead of 2q. W.l.o.g. we may assume that I extends the configuration
β by some new element n ∈ Ii = (ni, ni+1). The case that I plays in A′ instead is
symmetric. In case di = d′i (the pair of intervals concerned have exactly the same
length), II may select an element n′ ∈ I ′i = (n′i, n

′
i+1) at precisely the same distances

from the end points in I ′i as n has in Ii; the resulting position even satisfies the distance
constraints with critical distance 2q again.

In the more interesting case, we have di 6= d′i but di, d
′
i > 2q. We consider cases, as

to the sub-division of the interval Ii = (ni, ni+1) by n:

ni ni+1n

di>2q

︷ ︸︸ ︷

︸ ︷︷ ︸

<2q−1

one part small/one large︸ ︷︷ ︸

>2q−1

ni ni+1n

both parts large︸ ︷︷ ︸

>2q−1

︸ ︷︷ ︸

>2q−1
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As the distances of n from the end points of Ii add up to di, at most one of these
distances can be less than 2q−1; if one distance is ‘small’ in this sense, II may copy this
distance exactly to find a matching n′ ∈ I ′i (the other distance will automatically be
‘large’, i.e., > 2q−1 just as on the side of Ii); if both distances are at least 2q−1, then II

similarly finds n′ ∈ I ′i which is at least that far from both end points of I ′i.

It is a nice exercise to formalise sentences in quantifier rank q that, over finite linear
orderings, require at least 2q −1 elements, thus showing that the given bounds are tight.

It is also useful to draw on the compositionality of strategies for II w.r.t. concate-
nation of linearly ordered intervals (slightly more generally, strategies for player II are
compatible with ordered sums of linearly ordered structures in an otherwise monadic
vocabulary; or with concatenation of word structures). The implicit decomposition of
the game into subgames on intervals in the above strategy considerations reflects this.

These game arguments illustrate the well-known fact that, for instance, no FO sen-
tence can distinguish even length from odd length finite linear orderings. Any sentence
ϕ proposed for the purpose is defeated by the example of linear orderings of lengths 2q

and 2q − 1 for q := qr(ϕ).

Remark Maybe somewhat unexpectedly (and disturbing only from a didactic point of
view), this particular finite model theory assertion can also be shown by classical means.
Suppose there were a sentence ϕ ∈ FO[<] such that a finite linear ordering satisfies ϕ
if, and only if, it is of even length. Let [ϕ]6x be the relativisation of ϕ to the initial
segment formed by x. Let ψ0 ∈ FO[<] be the usual characterisation of discrete linear
orderings with first and without last element; ψ1 ∈ FO[<] the assertion that precisely
every other element x satisfies [ϕ]6x. Then ψ0 ∧ψ1 would characterise the order type of
(ω,<), which is impossible by compactness. Consider any non-standard model (A,<)
of ψ0 as in the sketch. Since the non-standard part of (A,<) consists of an ordered
sum of parts ordered like (Z, <), the successor operation induces an automorphism of
the non-standard part. Therefore [ϕ]6x cannot distinguish next neighbours within the
non-standard part, and (A,<) 6|= ψ0 ∧ ψ1.

� (ω,<) // · · · //
succ
−→oo · · ·

Example 2: a simple locality argument (also compare section 2.5) Let τ be a finite
relational vocabulary. A formula ϕ(x) ∈ FO[τ ] is called ℓ-local if, in any τ -structure A,
whether A |= ϕ[a] is fully determined by A↾N ℓ[a] (the ℓ-neighbourhood of a):

A |= ϕ[a] ⇔ A↾N ℓ[a] |= ϕ[a].

Similarly ϕ(x) is invariant under disjoint unions if for all A,a and B,

A |= ϕ[a] ⇔ A ⊕ B |= ϕ[a],

where A ⊕ B is the disjoint union of A and B.

Lemma 2.4. If ϕ ∈ FO[τ ] is invariant under disjoint unions, then ϕ is ℓ-local for
ℓ = 2qr(ϕ) − 1.
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Remark: the bound on ℓ is optimal, since there is, for every q, a quantifier-rank q
formula ϕq(x) ∈ FO[E,P ] asserting that N2q−1(x) ∩ P 6= ∅.6

Proof. Let ϕ be invariant under disjoint unions, q := qr(ϕ) and ℓ := 2q − 1. For
a ∈ A and A0 := A ↾N ℓ(a) it suffices to show that A |= ϕ[a] iff A0 |= ϕ[a]. By
invariance under disjoint unions, moreover, it suffices to establish an equivalence of the
form A,a⊕ C ≡q A0,a⊕ C for a suitable structure C. Taking C to be the disjoint union
of q further disjoint isomorphic copies each of A and of A0, we argue this equivalence:

_^]\XYZ[◦ · · · _^]\XYZ[◦

︸ ︷︷ ︸

q copies of A

a

A

_^]\XYZ[• GFED@ABC◦ · · · GFED@ABC◦

︸ ︷︷ ︸

q copies of A0

≡q
_^]\XYZ[◦ · · · _^]\XYZ[◦

︸ ︷︷ ︸

q copies of A

a

A0

GFED@ABC• GFED@ABC◦ · · · GFED@ABC◦

︸ ︷︷ ︸

q copies of A0

In the game on these structures, II wins the q-round game as follows. We use
dm := 2q−m as a critical distance to be observed in round m. II is to play such that
the configurations resulting from round m are linked by a component-wise trivial iso-
morphism between their (dm − 1)-neighbourhoods. This condition is satisfied at the
start, for m = 0; for m = q it still guarantees a local isomorphism between the final
configurations, hence a win for II.

Here is how to maintain the condition through round m of the game for m > 1:
(i) if I’s challenge goes to some element at distance greater than dm from the current

configuration, then II responds with the same element in a new isomorphic component
on the opposite side (new in the sense of not yet involved in the current configuration;
such are always left).

(ii) if I’s challenge goes to an element within distance dm of the current configuration,
then II finds a response via the trivial local isomorphism between the (dm−1 − 1)-
neighbourhoods of the current configurations. We note that d(x, y) 6 dm implies
Ndm−1(y) ⊆ Ndm−1−1(x), as d(x, z) 6 d(x, y) + d(y, z) 6 dm + dm − 1 = dm−1 − 1.

2.3 Natural restrictions/variations

Several of the most natural fragments of FO can be presented in terms of restrictions
or modifications of the system O(A) of observable configurations associated with struc-
ture A. The k-variable fragment FOk of FO, for instance, exactly corresponds to the
restriction that only up to k elements of A are “simultaneously observable” – we just
need to restrict the assignments to size k. While this is a uniform, purely quantitative
restriction, the modal and guarded fragments of first-order logic are based on structural,
qualitative restrictions. In the guarded fragment GF, access to observable configurations
is restricted by the requirement that the target configuration be guarded, i.e., covered
by some relational ground atom (which is explicitly reflected in the syntax of guarded
quantification). In the more basic modal fragment ML of FO, A itself is the system
of observable configurations – in this case the transition relations between the (trivial,
one-point) configurations are the key to the restrictions imposed in modal quantification.

6One obtains ϕq(x) inductively, based on ϕq+1(x) := ∃y(d(x, y) 6 2q ∧ ϕq(y)).
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Below we treat k-variable logic, guarded logic and modal logic in this order of increasing
specialisation, with particular emphasis on modal logic and its comparison game, the
bisimulation game.

2.3.1 The k-variable fragment and the k-pebble game

The k-variable fragment FOk ⊆ FO in a relational vocabulary τ consists of all first-order
formulae in which only the variable symbols x1, . . . , xk occur, bound or free. Assignments
over τ -structures A can thus be restricted and normalised to be full assignments to these
k variables. We therefore identify assignments with k-tuples.

Correspondingly, let Ok(A) be the restriction of O(A) to {β : |β| = k} = Ak.
It is easy to see that the restriction of both the model checking game and of the

comparison game that ensues if O(A) is consistently replaced with Ok(A) are adequate
for the semantics of FOk and for the induced notions of k-variable equivalence. The
k-variable Ehrenfeucht–Fräıssé game is just the k-pebble game: moves along Ei-edges
in Ok(A) correspond to the re-positioning of the i-th pebble on A. The correspondence
between the different levels of the game and of k-variable equivalence are the following,
for finite relational vocabularies τ :

≡k
q : FOk-equivalence up to quantifier-rank q;

captured by the q-round k-pebble game Gk
q .

≡k : FOk-equivalence;
captured by the finite-round k-pebble game Gk

ω.

≡k
∞ : FOk

∞-equivalence;
captured by the infinite k-pebble game Gk

∞.

It is important to note that Ok(A) is of finite type for each finite τ , and of polynomial
size in the size of A, for finite A. For the model checking implications see [23, 21] and
also some related remarks in section 5.1. In particular, the combined model checking
complexity for FOk is complete for Ptime, while for FO it is complete for Pspace.

2.3.2 The guarded fragment and the guarded bisimulation game

The characteristic feature of the guarded fragment GF of first-order logic [2] is the
relativisation of first-order quantification to guarded tuples – similar to the restriction
along accessibility edges in modal logic. Also compare the remarks in section 1.2 where
GF was introduced as a fragment of FO.

We start out with a discussion of a very liberal setting for the guarded fragment
that most naturally reflects the syntactic freedom allowed in the standard formalisation
of GF as given in section 1.2. Afterwards we also indicate some more succinct alter-
native formulations that correspond to certain syntactic normalisations (e.g., regarding
the number of variables used) to which GF can be subject without impairing its expres-
sive power; such less liberal formalisations can be of technical advantage in the model
theoretic analysis of GF and its relatives.

Recall that a subset s ⊆ A is guarded in the τ -structure A if it is a singleton set or,
if for one of the relations R ∈ τ , there is some tuple a = (a1, . . . , ar) ∈ RA for which
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s = [a].7 In particular, the cardinality of guarded subsets is bounded by the width of
the vocabulary τ . A tuple b in A is called guarded if [b] ⊆ s for some guarded subset s.
The same terminology applies to assignments β in A.

Call a tuple b or an assignment β in A strictly guarded if [β] is itself a guarded
subset. More specifically, for an atomic τ -formula α, we say the assignment β is strictly
guarded by α if var(α) = dom(β) and A, β |= α, which implies that [β] is indeed a
guarded subset. (In order to capture also guarded singleton sets, we allow α to be an
equality atom.)

A system of observable configurations for GF We work with the following system
of observable configurations OG(A) over the set of all finite (partial) assignments over
A with new binary transitions relations Eα,ρ (see below) and unary predicates Pθ (as
before). The universe of OG(A) is the same as in O(A) for FO (this is for the liberal,
redundant formalisation).

The transition relations of OG(A) describe passages from some assignment β to a
new assignment β′ where the target assignment β′ is required to be strictly guarded by
some atomic formula α. Each transition relation specifies both the atomic formula α
and a set of identities between components of the old and the new assignment. As both
β and β′ are finite partial functions on the positive integers, a set of identities between
components can be specified as a finite set ρ of pairs of positive integers. We write
β

ρ
= β′ if β(i) = β′(j) for all (i, j) ∈ ρ. Then for every ρ and α, let Eα,ρ be interpreted

as the following transition relation on OG(A):

Eα,ρ =
{

(β, β′) : β
ρ
= β′, β′ strictly guarded by α

}
.

Unary predicates Pθ for atomic types θ(x) are as in the basic system O(A).

Guarded model checking The game graph for the model checking of formulae in GF

is obtained from OG(A) and a suitable formalisation of the syntax of guarded quantifi-
cation in close analogy to the basic case. With the formation rule of existential guarded
quantification, for instance,

ϕ(x) = ∃y(α(x′) ∧ ψ(x′)),

where y is a subtuple of x′, associate an Eα,ρ,∃-edge in the syntax tree from ϕ(x) to
ψ(x′), where ρ = {(i, j) : xi = x′j}. In the game graph GG(A,Φ), correspondingly, there
are Eα,ρ,∃-edges from positions (β, ϕ(x)) to positions (β′, ψ(x′)) such that x ⊆ dom(β),
x′ ⊆ dom(β′), (β, β′) ∈ Eα,ρ in OG(A). Similarly, universal guarded quantifications
ϕ(x) = ∃y(α(x′) ∧ ψ(x′)) give rise to edges in Eα,ρ,∀ in the syntax tree, and induce
transition relations EG

α,ρ,∀ in GG(A,Φ).
Note that existential and universal quantification of variables in GF proceeds in

batches (so as to cover a guarded successor set fully in one step) rather than element-
wise. Correspondingly, first-order quantifier-rank is replaced by the nesting depth of
guarded quantification steps for an appropriate analysis of quantifier complexity. This
is important for the induced levels of GF equivalence, which are considered in connection
with the comparison game of guarded bisimulation below.

7Recall that we denote as [b] the set of components of a tuple b, and similarly write [β] for the image
set of an assignment β.
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Guarded bisimulation In line with the general idea, positions between rounds in the
guarded Ehrenfeucht-Fräıssé game GG(A,A′) are matching pairs of assignments (β, β′)
in A and A′. With the possible exception of the initial position of the game, which we
choose to ignore in the following, we may restrict attention to positions in which both
β and β′ are strictly guarded (this is guaranteed for successor positions after the first
round, by the rules below).

Soundness means that the induced correspondence β(i) 7→ β′(i) for i ∈ dom(β) =
dom(β′) is a local isomorphism; insofar as the assignments are strictly guarded in their
structures, the correspondence is a bijection between guarded subsets and thus a local
isomorphism between induced substructures on guarded subsets s = [β] and s′ = [β′].
Challenge/response pairs of moves responsible for taking the game through a single
round are governed by I’s selection of an Eα,ρ and an Eα,ρ successor γ of β in OG(A)
or an Eα,ρ successor γ′ of β′ in OG(A′), and thus, together with II’s response, to a
new local isomorphism between substructures induced on a new pair of guarded subsets
t = [γ] and t′ = [γ′] (insofar as the successor position is sound again, i.e., unless II has
lost).

A conceptually smoother, equivalent formulation therefore is the following, which
we take as the preferred description of the guarded bisimulation game. Positions in the
game are local bijections σ : s → s′ between guarded subsets s ⊆ A and s′ ⊆ A′. In a
single round played from position σ : s → s′, I proposes either a guarded subset t ⊆ A
or a guarded subset t′ ⊆ A′; II has to respond with a guarded subset in the opposite
structure (call this other subset t′ ⊆ A′ or t ⊆ A, as the case may be) and a bijection
ρ : t → t′ that is compatible with σ. Compatibility of ρ with σ means that ρ needs to
agree with σ on s ∩ t if I chose t; and on s′ ∩ t′ if I chose t′. II loses if there is no such
ρ or if ρ is not a local isomorphism.

Either formulation of the game supports the usual analysis, which, as expected,
establishes correspondences between winning positions for II in the different levels of
the game and equivalence in GF. For finite relational vocabularies τ these are:

≡G
q : GF-equivalence up to guarded nesting depth q;

captured by the q-round guarded bisimulation game GG
q .

≡G : GF-equivalence;
captured by the finite-round guarded bisimulation game GG

ω.

≡G
∞ : GF∞-equivalence;

captured by the infinite guarded bisimulation game GG
∞.

More succinct representations Another, much more succinct view on the observ-
able configurations can be based on the use of more restricted assignments: it essen-
tially suffices to admit strictly guarded assignments with domain {1 . . . , k} where k is
the width of τ . This second aspect corresponds to the normalisation of variables to
x1, . . . , xk as in FOk.8 Here we use strictly guarded assignments to variables x1, . . . , xk,
or surjective partial maps from {1, . . . , k} onto guarded subsets of A.

8Even more restrictively, [22] for technical convenience uses a format with only injective assignments,
there called guarded lists.
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The type of the resulting system of guarded observable configurations is finite for
finite τ . The model checking game obtained in analogy with the above, by making the
obvious changes and restrictions regarding the syntax of formulae, then really is for (a
specific syntactic variant of) GF

k := GF ∩ FOk.
A closer analysis of the Ehrenfeucht–Fräıssé games and notions of guarded equiva-

lence resulting from the two different formalisations would show that there is no loss
of expressiveness as far as properties of (strictly) guarded tuples are concerned. The
only real restriction concerns expressiveness at the quantifier-free level and in boolean
combinations, and this is inessential for many purposes. The difference arises, trivially,
because GF does not impose any restrictions on boolean combinations. Analysis of the
game shows, however, that any formula of GF (in the liberal format) is logically equiva-
lent to a boolean combination of quantifier-free formulae and strictly guarded formulae
(each of which can, up to a necesssary renaming of variables, be formalised in the above
fragment GF

k).

Corollary 2.5. Any formula in GF[τ ] with explicitly guarded free variables is equivalent
to a formula in GF ∩ FOk where k is the width of τ .

2.3.3 The modal fragment and the bisimulation game

Modal logic is naturally interpreted over transition systems (Kripke structures in tradi-
tional terminology). Having chosen a modal perspective for our analysis of fragments,
we may now choose the transition system A itself – as a relational structure in a given
vocabulary τ with binary relations Eα and unary predicates Pj – as the system of
modally observable configurations, putting OM(A) = A. To keep in line with the gen-
eral framework we may want to replace the individual Pj in A by Pθ that are complete
propositional types in the pj/Pj (in first-order terms: atomic Pj-types in single variables
x, containing for each Pj either the atomic formula Pjx or its negation ¬Pjx).

Modal model checking The modal model checking game over structure A is played
in a game graph based on A and the syntax tree of the modal formulae under consider-
ation. With the formation rule of existential modal quantification

ϕ = ✸αψ

we associate an E✸α edge in the syntax tree from ϕ to ψ. In the game graph GM(A,Φ),
this induces Eα,ρ,∃ edges from positions (a, ϕ) to positions (b, ψ) for (a, b) ∈ EA

α . Anal-
ogously for ✷α quantification: edges in E✷α from ϕ = ✷αψ to ψ in the syntax tree give
rise to transitions in GM(A,Φ) from (a, ϕ) to (b, ψ) for every (a, b) ∈ EA

α .

It is clear that the model checking game for FO2 emulates the modal model checking
game, via the standard translation of ML into FO2:

(✸αψ)x = ∃y(Eαxy ∧ ψy),
(✷αψ)x = ∀y(Eαxy → ψy),

where {x, y} = {x1, x2}. In terms of this translation, a move along an Eα edge (a, b)
in the A component of GM(A,Φ) is simulated by an E2 move from any position of the
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form (a, ∗) to (a, b) or by an E1 move from any (∗, a) to (b, a) in the O2(A) component
of G2(A,FO(Φ)). At the same time this emulation can be interpreted in GG(A,FO(Φ)),
since {a, b} is a strictly guarded assignment and (a, a) is linked to (a, b), for instance,
by an Eα,ρ edge in O2(A) for ρ = {(1, 1)}.

Bisimulation The bisimulation game is the Ehrenfeucht–Fräıssé game for modal logic.
It also has a special status because of its fundamental nature as the quintessential back-
and-forth game – game equivalence of game graphs – to be discussed in the following
section.

In line with the general approach, the positions (between rounds) in GM(A,A′) are
pairs of observable configurations in O(A) = A and O(A′) = A′, i.e., pairs (a, a′) ∈ A×A′.
The challenge/response exchange that constitutes a single round is as follows:

– I selects a transition relation Eα, and

{
either some Eα successor b of a in A,
or some Eα successor b′ of a′ in A′.

– II has to respond by selecting an Eα successor in the opposite structure.

Overall this results in a successor position (b, b′) for which (a, b) ∈ EA
α and (a′, b′) ∈

EA′

α . A position (a, a′) is sound if a and a′ satisfy exactly the same predicates Pj

(atomic propositions pj in modal terminology), which clearly corresponds to quantifier-
free indistinguishability in ML[τ ].

Because of their immediate importance we introduce the usual dedicated notation
for the levels of equivalence that are defined in terms of winning positions for player II

in the different levels of this bisimulation game. As above, the q-round, finite-round,
and infinite bisimulation game on A and A′ are denoted GM

q (A,A′), GM
ω (A,A′), and

GM
∞(A,A′). We then define

A, a ∼q A′, a′ iff (a, a′) is a winning position for II in GM
q (A,A′);

A, a ∼ω A′, a′ iff (a, a′) is a winning position for II in GM
ω (A,A′);

A, a ∼ A′, a′ iff (a, a′) is a winning position for II in GM
∞(A,A′).

Note that ∼ is the classical notion of bisimulation equivalence – equivalence w.r.t. the
infinite bisimulation game, and as such the modal counterpart of partial isomorphism.

We denote the relevant levels of equivalence in modal logic as ≡M
q (up to modal

nesting depth q), ≡M (full equivalence in finitary ML), and ≡M
∞ (equivalence in the

infinitary extension ML∞). The associated Ehrenfeucht–Fräıssé and Karp theorems
then state, for finite modal vocabularies τ , the following equivalences:

A, a ∼q A′, a′ ⇔ A, a ≡M
q A′, a′.

A, a ∼ω A′, a′ ⇔ A, a ≡M
ω A′, a′.

A, a ∼ A′, a′ ⇔ A, a ≡M
∞ A′, a′.

Modal variations The simple extensions of basic modal logic by inverse modalities
and/or global modality, ML

−

, ML
∀ and ML

−

∀, are matched by corresponding variations in
O(A) and G(A,A′). To deal with inverse modalities, O(A) is enriched with the converse
relations to the Eα, (E−

α )A = {(b, a) : (a, b) ∈ EA
α }; to deal with the global modality,

O(A) is expanded by the full binary relation UA = A × A. Everything else, including
associated Ehrenfeucht–Fräıssé and Karp theorems, is then set up by straightforward
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analogy and we leave the details as an exercise. For later use, we denote the levels
of two-way global bisimulation equivalence corresponding to the combined extension by
inverse modalities and the global modality by ≈q, ≈ω and ≈.

Bisimulations as relations and back-and-forth systems We also want to use the
notational variants corresponding to back-and-forth systems for bisimulation games.
Infinitary bisimulation equivalence (the modal counterpart of partial isomorphism) be-
tween the nodes of two structures A and A′, in particular, is captured by the relation
Z ⊆ A×A′ comprising exactly the winning positions for II in GM

∞(A,A′) (known as the
largest bisimulation relation between A and A′, cf. [8, 16]). Any other relation Z ⊆ A×A′

that delineates an appropriately closed winning region for II is also a bismulation re-
lation, and necessarily a subset of the largest such. Corresponding finite bisimulation
levels are described by stratified back-and-forth systems in the usual manner. Again,
natural and straightforward adaptations for, e.g., two-way global bisimulations are ob-
tained. The difference lies in the closure conditions (back-and-forth conditions), which
reflect the nature of the challenges that I is allowed, since II must have resposes to all
of them within the prescribed collection of positions.

A particular variant of bisimulation relationships is realised by homomorphisms
whose graphs are bisimulation relations (bounded morphisms in cassical modal termi-
nology, cf. [8, 16]). For instance, in the case of the two-way global bisimulation relation
≈, we write

π : A, a
≈
−→ A

′, a′

to indicate that π : A → A′ is a map sending a to a′ and such that its graph is a
bisimulation relation with the back-and-forth closure conditions approriate for global
two-way bisimulation game (in particular π needs to be a surjective homomorphism).

Saturation and Hennessy–Milner properties We shall later look at the relation-
ship between equivalence w.r.t. the infinite game G∞ and the finite approximations to
the finite-round game Gω induced by the q-round games (Gq)q∈ω also for games other
than bisimulation. It is therefore interesting to understand under which conditions there
is no gap between the limit of the finite approximations and full infinitary equivalence.
In the modal situation, or for the bisimulation game, this situation is particularly trans-
parent, and at the same time holds the key to the general situation for other fragments
in the game-oriented analysis.

Definition 2.6. Let A be a τ transition system with transition relations Eα.

(i) Φ ⊆ ML[τ ] is called a ✸α-type at a ∈ A if A, a |= ✸α

∧
Φ0 for every finite Φ0 ⊆ Φ;

it is realised at a ∈ A if there is some b such that (a, b) ∈ EA
α and A, b |= Φ.

(ii) A is called modally saturated if, for all α and all a ∈ A, every ✸α-type at a is
realised at a.

It is not hard to see that ω-saturated transition systems, and in particular finite
transition systems are modally saturated. But a very simple argument also shows that
even all finitely branching transition systems are modally saturated. In the case of a
structure A that is finitely branching (w.r.t. Eα) at a, consider some ✸α-type Φ at
a. Suppose Φ were not realised at a. This means that, for every Eα successor b of a
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there must be some ϕb ∈ Φ not satisfied at b. But then the finite subset Φ0 of these
ϕb would violate the defining condition for a ✸α-type at a: A, a |= ✷α

∨

b ¬ϕb, whence
A, a 6|= ✸α

∧
Φ0.

For this and also for the reasoning behind the lemma below, compare part (ii) of the
argument indicated in connection with Theorem 2.2.

Definition 2.7. A class of transition systems has the Hennessy–Milner property if over
this class, modal equivalence ≡M coincides with full bisimulation ∼.

Note that, since even for not necessarily finite vocabularies τ , ∼ω implies ≡M, the
Hennessy–Milner property implies that in particular also finite bisimulation equivalence
coincides with full bisimulation equivalence. The following lemma also implies that for
modally saturated transition systems, modal equivalence, finite and full bisimulation
equivalence all fall into one, even for infinite vocabularies.

Lemma 2.8. The class of modally saturated transition systems has the Hennessy–Milner
property.

The straightforward game argument for this is again suggested by the reasoning un-
derlying Theorem 2.2, part (ii), but finiteness of τ is not required. Playing over modally
saturated structures, II can maintain modal equivalence between configurations. Con-
sider a position (a, a′) in the game GM

∞(A,A′) for which A, a ≡M A′, a′, and think of
a challenge played by I, with a move along (a, b) ∈ EA

α say. In general (and even for
finite vocabulary) modal equivalence A, a ≡M A′, a′ (or even A, a ∼ω A′, a′) would only
provide II with responses b′ that are good for surviving q further rounds, where this
could be a separate response for each individual q. Now, however, the full modal theory
of b in A constitues a ✸α-type at a in A, and modal equivalence A, a ≡M A′, a′ is good
enough to ensure that it therefore also is a ✸α-type at a′ in A′. By modal saturation,
therefore, this ✸α-type is realised at a′ in A′, and any such realisation gives II a valid
response in the game which maintains ≡M. But maintaining ≡M equivalence throughout
the game, II cannot lose; so this gives her a strategy in GM

∞.

2.4 Bisimulation as the master game

An analysis of whole families of fragments of FO w.r.t. their notions of finite and in-
finitary equivalence can very nicely be based on the analysis of the bisimulation game
over the transition systems of observable configurations associated with the particular
fragment.

The possible advantage of this perspective lies in the conceptual separation of the
game theoretic commonality, which is here uniformly described in terms of bisimulation,
and the particular constraints of the fragment under consideration, which enters the
picture through the right formalisation of the observable configurations. The natural
criterion for the right formalisation lies in the adequacy of the induced model checking
game for the semantics of the given fragment.

The treatment of FO and fragments like FOk, GF and ML (and some of its simple
variants) can be put in a uniform format as follows. Let L ⊆ FO be a fragment associated
with systems of observable configurations OL(A) over relational structures A in a finite
relational vocabulary τ . Together with the overhead that links syntax of L with moves in
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the model checking game with structure inputs OL(A), this model checking game can be
taken as a specification of the semantics of L. The bisimulation game between OL(A) and
OL(A′) then is a representation of the Ehrenfeucht-Fräıssé or model comparison game
for L. This representation is adequate at a round-by-round level in terms of a syntactic
notion of depth in L that corresponds to the number of quantification rounds required
in model checking a formula in L. The specification of the model checking game is in
turn reflected in the format of OL(A). As an example for the latter point, consider GF

as presented above: we deliberately chose transitions in OG(A) to link any two strictly
guarded patches in one transition rather than a sequence of transitions corresponding
to one-new-element-at-a-time moves as in O(A). The latter option would have turned
FO quantifier-rank into our measure of semantic complexity in GF whereas the chosen
stipulation relates to the coarser but more intuitive notion of guarded nesting depth.
With the appropriate notion of depth that is implicit in the granularity of the model
checking game based on OL(A) come the notions of ≡L

q as finite approximations to ≡L,
and (for finite vocabulary) an Ehrenfeucht–Fräıssé theorem of the format

A, β ≡L
q A′, β′ ⇔ OL(A), β ∼q OL(A′), β′, for q ∈ ω, and

A, β ≡L A′, β′ ⇔ OL(A), β ∼ω OL(A′), β′.

At the same time, a notion of infinitary L-equivalence is induced by the full bisimu-
lation relation, O(A), β ∼ OL(A′), β′, supporting a Karp theorem of the format

A, β ≡L
∞ A′, β′ ⇔ OL(A), β ∼ OL(A′), β′,

which can now also be seen as a specification of what L∞ (in terms of its model checking
game) needs to be.

Beyond a uniform perspective on the games and equivalences themselves, the modal
perspective on fragments of FO can also indicate what the right transfer of other game-
related notions to fragments should be. As one example we state the following observa-
tion concerning ω-saturation (in the usual first-order context).

Observation 2.9. A is ω-saturated if, and only if, O(A) is modally saturated.

Similar correspondences can then be taken to define the appropriate notion of ω-
saturation in the context of fragments L ⊆ FO (e.g., for FOk or GF), in terms of modal
saturation of the corresponding OL(A). This allows us to extrapolate to a range of
in-between fragments from the Hennessy–Milner property of modal logic to other frag-
ments with the appropriate notion of ω-saturation. In particular, the right types to
be considered for this notion of saturation are derived from the modal ✸-types in the
OL(A).

On the other hand, for many natural fragments including FOk, GF
k and all the modal

fragments, classical first-order ω-saturation implies ω-saturation (and the Hennessy–
Milner property) in the sense of L. This is due to the following.

Observation 2.10. For any fragment L ⊆ FO for which the system of observable con-
figurations OL(A) is uniformly first-order interpretable in A itself, ω-saturation of A

implies ω-saturation of OL(A), which (by the previous observation) implies modal sat-
uration of OL(A), and hence the analogue of the Hennessy–Milner property for L over
the class of ω-saturated structures.
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Note that this modal view is based on imposing the modal picture and the bisim-
ulation game on richer fragments of first-order logic, uniformly via the appropriate
system of observable configurations and games. Alternatively, one may think of a spe-
cialisation of the classically well understood situation for first-order and its infinitary
counterpart, their links with classical Ehrenfeucht-Fräıssé games and Karp’s theorem
(cf. Theorem 2.2). In connection with the last observation for instance, ω-saturation
(in the classical sense, w.r.t. FO-types) implies ω-saturation in the sense of L for a
fragment L ⊆ FO, since L-types are (partial) FO-types; a Hennessy–Milner property
for ω-saturated structures then follows because player II has a strategy to maintain
L-equivalence in the infinite L-game starting from L-equivalent configurations. But this,
and how L-types are to be defined so that they can be transferred between L-equivalent
configurations as required for this argument, may be best understood systematically in
terms of the game and its observable configurations as discussed above.

2.5 Locality and modularity of the first-order game

Games and the Ehrenfeucht–Fräıssé method are well suited to the exploration of the
expressive power of FO not just classically but equally well over restricted classes of
structures, and also to understanding the nature of fragments within FO. Such explo-
rations typically depend on the availability of suitable structures over which the game
can be usefully analysed. In order to facilitate the analysis, and equally importantly
also as an indication of where to look for the right candidate structures, one can often
use the modularity of the game w.r.t. Gaifman locality. We saw a glimpse of that aspect
in Lemma 2.4 above.

For Gaifman’s theorem, we want to establish that position (a,a′) in Gq(A; A′) is a
winning position for II, i.e., that A,a ≡q A′,a′, on the basis of

– suitable global conditions on A and A′ (without reference to a and a′), and

– purely local conditions on these parameters within their structures of the form

A↾N ℓ(a),a ≡r A
′↾N ℓ(a′),a′

for values of ℓ and r that are recursively determined as functions of q.

Towards an understanding of the nature of the global requirement, and for a grada-
tion of both the local and global equivalences involved, we need the following definition.

Definition 2.11. (i) For any ϕ(x) we write ϕℓ(x) for its relativisation to the (FO-

definable) ℓ-neighbourhood of its free variables, ϕℓ(x) := [ϕ]N
ℓ(x).

If q = qr(ϕ), we refer to ϕℓ as a local formula of Gaifman rank (ℓ, q).

(ii) A basic ℓ-local sentence is a sentence of the form

∃x1 . . . ∃xm

∧

i<j

d(xi, xj) > 2ℓ ∧
∧

i

ψℓ(xi),

asserting the existing of an ℓ-scattered m-tuple whose components satisfy the ℓ-
local formula ψℓ(x). If q = qr(ψ), we regard the above basic local sentence as one
of Gaifman rank (ℓ, q,m).
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Definition 2.12. The configurations A,a and A′,a′ are (ℓ, q,m)-Gaifman-equivalent,
denoted as A,a ≡ℓ

q,m A′,a′, if:

(i) A↾N ℓ(a),a ≡q A′↾N ℓ(a′),a′, i.e., a and a′ satisfy the same ℓ-local formulae ϕℓ for
qr(ϕ) 6 q (local condition).

(ii) A and A′ satisfy the same basic local sentences of ranks (ℓ′, q′,m′) for all ℓ′ 6 ℓ,
q′ 6 q and m′ 6 m (global condition).

For fixed finite relational vocabulary and fixed arity of the tuples a, each ≡ℓ
q,m has

finite index, and respects ≡. Clearly also ≡ℓ
q,m is monotone w.r.t. the ranks (ℓ, q,m).

Gaifman’s theorem says that ≡ℓ
q,m approximates full first-order equivalence ≡ well, in

the sense that ≡ is the common refinement or limit of all levels ≡ℓ
q,m.

Theorem 2.13 (Gaifman). Any FO-formula is preserved under ≡ℓ
q,m for suitable (ℓ, q,m).

Equivalently: any formula of FO is logically equivalent to a boolean combination of local
formulae and basic local sentences.

Gaifman’s original proof establishes the second statement by induction on the FO
formula under consideration. The link with the modularity of the Ehrenfeucht–Fräıssé
game, however, is brought out more clearly in an argument given in [14], which we adapt
to give a brief sketch. To prove the first of the statements in the theorem, it inductively
suffices to establish the following assertion about good responses for II.

Claim 2.14. If A and A′ are (L,Q,m)-Gaifman-equivalent 9 for values of L and Q that
are sufficiently large in relation to ℓ and q, and if a and a′ of arity less than m are such
that

A ↾ NL(a),a ≡Q A
′ ↾ NL(a′),a′ local pre-condition

then for any b ∈ A there is some b′ ∈ A′ such that

A ↾ N ℓ(ab),ab ≡q A
′ ↾ N ℓ(a′b′),a′b′, local post-condition

and, symmetrically, with the roles of b and b′ exchanged.

The claim is established on the basis of a case distinction w.r.t. the distance of b from
a. Suitable conditions on the choices of L and Q are extracted along the way. Choosing
L > 3ℓ + 1 and Q > q + 1 at least, any b ∈ N2ℓ+1(a) can be dealt with according to
the local pre-condition. For b that are further away from a, A↾N ℓ(ab) is the disjoint
union of A↾N ℓ(a) and A↾N ℓ(b). Due to modularity of the game w.r.t. disjoint unions, it
suffices to find b′ ∈ A′ that is also far from a′ and such that A′↾N ℓ(b′), b′ ≡q A↾N ℓ(b), b.
In this case we rely on the global condition on A and A′ for a further case distinction.
We use the global condition for scattered tuples w.r.t. a quantifier-rank q formula ψ(x)
that characterises A↾N ℓ(b), b up to ≡q. We need to guarantee that A′ has a matching
b′, i.e., we seek some b′ 6∈ N2ℓ+1(a′) satisfying ψℓ.

Firstly, if A and hence also A′ have (2ℓ+1)-scattered m-tuples of elements satisfying
ψℓ, then one of the components of any such tuple in A′ will serve as b′.

If, on the other hand, there are no such m-tuples, then the maximal size n < m of
(2ℓ + 1)-scattered tuples for ψℓ is the same in A and A′. Now a comparison with n0,

9Due to the absence of parameters this involves only the global condition (ii) of Definition 2.12.
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the maximal size of (2ℓ + 1)-scattered tuples for ψℓ within N2ℓ+1(a) can help to locate
b′, provided L > 3ℓ+ 1 and provided Q is large enough to force the same n0 to work in
A′↾N2ℓ+1(a′) (via the local pre-condition).

If n0 < n, then there must be realisations of ψℓ outside N2ℓ+1(a′) and any such is a
good choice for b′.

The remaining subcase that n0 = n (no surplus of realisations of ψℓ beyondN2ℓ+1(a′)),
implies in particular that d(a, b) 6 6ℓ+3 and the existence of such an element satisfying
ψℓ at distance greater than 2ℓ+1 but at most 6ℓ+3 is covered by the local pre-condition,
provided L > 7ℓ+ 3 and Q is large enough to cover this (under the local pre-condition),
too.

3 Special classes of transition systems

Up to bisimulation, every transition system is equivalent to a tree via a bisimilar tree un-
folding, just as every game graph can be replaced by the associated game tree, typically
making the representation structurally simpler though less succinct. Correspondingly,
any bisimulation invariant logic (logic whose formulae are preserved under bisimula-
tion equivalence) has the tree model property. Because cycles are unfolded into infinite
paths, bisimulation equivalent tree models may necessarily be infinite even though the
original model was finite. So bisimilar unfoldings into tree models are typically not
available within classes of finite models. In the investigation of the model theoretic
relationship between bisimulation invariant fragments of FO with FO itself, however,
Gaifman locality can be used to replace acyclicity by local acyclicity in key arguments.
We briefly review the classical construction of bisimilar unfoldings into tree models and
then review a construction of locally acyclic bisimilar companion structures from [41].
These are used to establish variants of the classical model theoretic characterisations
of modal fragments of FO in terms of bisimulation preservation (van Benthem’s the-
orem, cf. Corollary 3.5 below) over natural, restricted classes of transition systems in
section 3.2.

3.1 Tree unfoldings and locally tree-like systems

3.1.1 Bisimulation invariance and the tree model property

Let A be a transition system in a finite vocabulary τ consisting of binary relations Eα

and unary predicates Pj . With a ∈ A we associate the following bisimilar unfolding of
A at a, A∗

a. The universe of A∗
a is the set of all finite, edge-labelled paths from a in A,

σ = (a0, α1, a1, . . . , αn, an), where a0 = a and (ai−1, ai) ∈ EA
αi

. The transition relation
Eα of A∗

a corresponds to path extensions by single EA
α edges; the unary predicate Pj in

A∗
a consists of those paths that end in PA

j . Then the map that associates to every path
its last element, viewed as a map π : A∗

a → A, induces a bisimulation:

π : A
∗
a

∼
−→ A A

∗
a, σ ∼ A, π(σ).

It follows that every bisimulation invariant logic has the tree model property : satis-
fiability implies satisfiability in a tree model. The tree model property has important
algorithmic consequences. Since it reduces satisfiability issues to problems over trees,
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strong classical results like Rabin’s decidability result for the MSO theory of trees [42]
and in particular automata theoretic methods can be brought to bear, see also [46]. The
example below illustrates the usefulness of this simple insight for the (classical) model
theory of modal logic, in giving an alternative proof for van Benthem’s classical charac-
terisation theorem for modal logic (a preservation theorem in classical model theoretic
terminology). We first discuss the classical argument, though, with emphasis on the
more interesting aspect of expressive completeness.

Theorem 3.1 (van Benthem). Any bisimulation invariant first-order formula ϕ(x) ∈
FO[τ ] is equivalent to a formula of ML[τ ] (and, conversely, this condition is sufficient
to guarantee bisimulation invariance).

A simple compactness argument shows that, if ϕ is not expressible in ML, then
there are A, a ≡M A′, a′ such that A |= ϕ[a] while A′ 6|= ϕ[a′]. In ω-saturated elementary
extensions Â < A and Â′ < A′, which are modally saturated, one automatically upgrades
A, a ∼ω A′, a′ and A, a ≡M A′, a′ to Â, a ∼ Â′, a′ (cf. the Hennessy–Milner property in
Lemma 2.8), whence Â |= ϕ[a] and Â′ 6|= ϕ[a′] refutes preservation under ∼.

We turn to alternative approaches that work with explicit model constructions and
transformations. We shall later see how this alternative approach relativises to many
restricted classes (in particular also of finite models) where compactness is not available.
But even in the classical context, and working over the class of all frames, such an explicit
and game-based approach yields extra benefits.

Example: van Benthem’s theorem via explicit constructions The following
auxiliary observation is straightforward from the bisimulation game: any common upper
bound on the lengths of directed paths from the elements in a bisimulation game position
is also a bound on the number of rounds that can be played by I.

Observation 3.2. For directed, rooted trees A, a and A′, a′ of depths 6 ℓ:

A, a ∼ℓ A
′, a′ ⇒ A, a ∼ A

′, a′.

Combining this with the tree model property, we find the following.

Claim 3.3. Any ℓ-local ϕ(x) ∈ FO[τ ] that is invariant under ∼ is invariant under ∼ℓ.

Proof. We need to show for A, a ∼ℓ A′, a′ that A |= ϕ[a] ⇔ A′ |= ϕ[a′]. Replacing both
structures by their bisimilar unfoldings from the distinguished nodes (and appealing to
∼ invariance of ϕ), then truncating both tree structures at depth ℓ (and appealing to
ℓ-locality of ϕ), we have transformed the given situation into

A, a ≃(ℓ)
Â, â ∼ Â

′, â′ ≃(ℓ)
A
′, a′,

where ≃(ℓ)stands for isomorphism up to depth ℓ from the distinguished node. The central
bisimulation equivalence is based on Observation 3.2. But now A |= ϕ[a] ⇔ A′ |= ϕ[a′]
follows by ∼ invariance and ℓ-locality.

Claim 3.4. If ϕ(x) ∈ FO[τ ] is preserved under ∼, then it is preserved under ∼ℓ for
ℓ = 2qr(ϕ) − 1.
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Proof. As ∼ invariance implies invariance under disjoint unions, Lemma 2.4 shows that
ϕ is ℓ-local, thus ∼ℓ invariant by Claim 3.3.

As ∼ℓ is of finite index, and each ∼ℓ class definable in ML at nesting depth ℓ, we
directly have the following version of van Benthem’s theorem, which even gives a tight
bound on the modal nesting depth which is not implicit in the classical proof.

Corollary 3.5. Any quantifier-rank q formula ϕ(x) ∈ FO[τ ] that is preserved under
bisimulation is equivalent to a formula of ML[τ ] of nesting depth 6 2q − 1.

It may be worth representing the overall strategy of upgrading a concrete level of
∼ℓ to preservation of ϕ in this approach. The transformations, from top to bottom in
the diagram, involve firstly a tree unfolding and secondly truncation at depth ℓ. The
first step preserves ∼, the second simultaneously preserves ∼ℓ and ϕ (by Lemma 2.4).
Consequently ϕ is preserved all along the vertical, but also along the bottom horizontal
(as here ∼ℓ guarantees full ∼ equivalence, by Observation 3.2). Thus ϕ is shown to be
preserved along the top horizontal, too.

A, a ∼ℓ

∼

A′, a′

∼

•

unfolding

��

A∗
a, a ∼ℓ

∼ℓ / ≃
(ℓ)

(A′)∗a′ , a′

∼ℓ / ≃
(ℓ)

•

truncation

��

A∗↾N ℓ(a), a
∼ℓ

∼
(A′)∗↾N ℓ(a′), a′ •

The construction of unfoldings shows that every τ transition system is bisimilar to a
τ -tree, and (by taking disjoint unions of unfoldings at different elements as appropriate)
globally bisimilar to a τ -forest. Obvious variations of these constructions provide acyclic
companion structures that are (globally) two-way bisimilar.

As pointed out above, not every finite transition system is bisimilar to a finite acyclic
system. Note that, for instance, the above proof of van Benthem’s theorem fails to
yield the finite model theory version (due to Rosen [43]): the argument crucially uses
bisimulation invariance of ϕ in the transition from A, a to A∗

a, where the target structure
may be infinite.

In the case of Corollary 3.5 there is in fact an easy way out: the full (and potentially
infinite) tree unfoldings of the given finite structures in the proof of Claim 3.3 can in
that context be replaced by truncations to depth ℓ with isomorphic copies of the finite
original structures attached at the cut-off points to yield fully bisimilar companions that
are both finite and tree-like up to depth ℓ. This simple modification yields a proof of
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Rosen’s finite model theory analogue of van Benthem’s theorem [43], including the tight
bound on nesting depth in our version [41].

In connection with stronger and, in particular, global notions of bisimulation equiv-
alence, however, better approximations to acyclicity in finite models are required. The
upgrading will lead from suitable levels of finitary game equivalence to appropriate levels
of local FO equivalence (Gaifman equivalence).

3.1.2 Locally acyclic bisimilar covers

Recall that a transition system is simple if it does not have loops or multiple edges
(not even in opposite directions); it is called ℓ-acyclic if every ℓ-neighbourhood in its
Gaifman graph is acyclic (this forbids undirected cycles of lengths up to 2ℓ + 1).

Definition 3.6. A bisimilar cover π : Â
≈

−→ A is a homomorphism π whose graph is
a global two-way bisimulation: Â, â ≈ A, π(â) for all â ∈ Â. We call π faithful if it
preserves in- and out-degrees w.r.t. each individual relation Eα ∈ τ .

A (faithful) simple ℓ-acyclic cover of A is a (faithful) bisimilar cover π : Â
≈

−→ A by
a simple ℓ-acyclic τ -structure Â.

Lemma 3.7. Every finite τ transition system admits, for every ℓ, a finite faithful simple
ℓ-acyclic cover.

The construction in [41] uses for Â a product of the given A with a finite group G
which has a generator ge for every edge e ∈ ˙⋃

αE
A
α and such that the Cayley graph of G

w.r.t. this set of generators has girth greater than 2ℓ+ 1 (compare [1] for such groups) –
much as the tree unfolding could be described in terms of a product with the infinite free
group of this set of generators. Over the cartesian product A×G one puts an Eα-edge
precisely from (a, h) to (b, k) if e = (a, b) ∈ EA

α and k = h ◦ ge. In this fashion, any
cycle in the product projects to a cycle in the Cayley graph of G, and hence its length
is bounded from below by the girth of that graph.

The following is a simple auxiliary observation towards an ℓ-local upgrading of ℓ-
bisimulation equivalence to ≡q. A natural strategy for II can be based on maintaining
full isomorphism of the substructures generated by the paths connecting the elements
of the current configurations to the roots [13].

Observation 3.8. Let A, a ∼ℓ A′, a′ be two directed τ -trees of depths 6 ℓ with roots a
and a′, such that every node apart from the root is one of at least q bisimilar siblings.
Then A, a ≡q A′, a′. The same holds w.r.t. two-way ℓ-bisimulation equivalence in acyclic
ℓ-neighbourhoods A↾N ℓ(a) and A′ ↾N ℓ(a′) with at least q equivalent siblings to choose
from in every node.

Structures that have at least q equivalent successors/predecessors in every node are
easily obtained by taking products with {1, . . . , q} in the natural manner. We write
A 7→ A⊗ q for this transformation, and identify a distinguished element a with (a, 1) in
the new structure were appropriate.

Faithful bisimilar covers preserve this property, and can be used to achieve local
acyclicity and therefore local ≡q-equivalence, viz. ≡ℓ

q,0, by the above observation.
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Example: van Benthem–Rosen once more Combining the passage to A ⊗ q
(boosting multiplicities) with a bisimilar unfolding, one obtains a variant proof of
Claim 3.4 (and through it Corollary 3.5 and its finite model theory analogue, too).
Let qr(ϕ) = q and ℓ := 2q − 1. Let Â be the tree unfolding from (a, 1) in A ⊗ q (or
the truncation of this unfolding glued with copies of A if we want to deal with finite
structures exclusively), similarly for A′, a′.

A, a ∼ℓ

∼

A′, a′

∼

Â, â
∼ℓ

≡ℓ
q,0

Â′, â′

Now ≡ℓ
q,0 equivalence in the bottom horizontal follows from Observation 3.8; preservation

of ϕ along the bottom horizontal additionally uses Lemma 2.4 again.

Acyclic bisimilar covers really come into their own in upgradings to some target
level ≡ℓ

q,m of Gaifman equivalence with m > 0, i.e., if the first-order property at hand
really does express non-trivial global conditions on the existence or non-existence of
certain local types – global in the sense of not only involving the ℓ-neighbourhood of the
distinguished element.10

We look, as a typical example, at the characterisation of ML
−

∀ ⊆ FO in terms of
invariance under ≈ (global two-way bisimulation) [41]. Again, we stress the expressive
completeness phenomenon, as preservation of ML

−

∀ under ≈ is obvious.

Theorem 3.9. Both classically and in the sense of finite model theory: any first-order
formula ϕ(x) ∈ FO[τ ] that is preserved under ≈ is equivalent to a formula of ML

−

∀[τ ].

This follows from the following claim, based on an upgrading of ≈ℓ to ≡ℓ
q,m in an

explicit ≈ preserving model transformation, under which in particular the class of finite
structures is closed.

Claim 3.10. If ϕ(x) ∈ FO[τ ] is preserved under ≈ (over finite structures), then it is
preserved under ≈ℓ and hence expressible in ML

−

∀[τ ] at nesting depth ℓ, for some ℓ. Any
ℓ such that ϕ is preserved under ≡ℓ

q,m for some q,m will do, i.e., the Gaifman locality
radius of ϕ gives a bound on the necessary modal nesting depth.11

Proof. We just mention the upgrading steps towards the proof of the claim, also indi-
cated in the diagram below.

10See [41] for a discussion that for any ϕ(x) ∈ FO that is invariant under disjoint sums (over finite
structures, or indeed over some other class which itself is closed under disjoint sums), only ≡ℓ

q,m for
m = 0, 1 can matter.

11For simplicity, the modal nesting depth in ML
−

∀ discounts ∀/∃ quantifiers, which w.l.o.g. can be
eliminated from within the scope of modal quantifications so that they only occur ‘on the outside.’
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The first step, passage to a product with {1, . . . , q}, serves to boost all multiplicities
to at least q: every Eα successor or predecessor of any node belongs to a group of at
least q siblings related by automorphisms of the entire structure.

The second step yields an ℓ-acyclic bisimilar cover of the resulting structures so that
the ℓ-neighbourhood of any node will be acyclic, and maintains the at-least-q-similar-
siblings property due to the preservation of in- and out-degrees in faithful covers. In
these circumstances, the ≈ℓ relationship between the two structures guarantees ≡ℓ

q,1

equivalence, by Observation 3.8.
Finally we can, if we wish, upgrade ≡ℓ

q,1 further to ≡ℓ
q,m, for any desired level m, by

just passing to m disjoint copies of the structures obtained so far. This step guarantees
that any local isomorphism type that is realised at all is a member of a scattered set of
at least m many nodes of the same local isomorphism type, so that ≡ℓ

q,1 implies ≡ℓ
q,m.

As pointed out above, however, this last upgrading can be made redundant by showing
right away that ϕ must be preserved under some ≡ℓ

q,1 (i.e., m = 1 suffices).

A ≈ℓ

≈

A′

≈

•

boosting multiplicities

��

A ⊗ q ≈ℓ

≈

A′ ⊗ q

≈

•

locally acyclic covers

��

Â
≈ℓ

≡ℓ
q,1

≈

Â′

≈

•

disjoint sums

��

m · Â
≈ℓ

≡ℓ
q,m

m · Â′ •

It is clear that arguments of the kind explored here may have entirely different
relativisations from the classical arguments. While classical model theoretic arguments
based on compactness go through in restriction to any elementary class of structures,
the above argument goes through, for instance, in restriction to any class of (finite)
transition systems that is closed under ≈. But while this upgrading argument, and hence
the expressive completeness result, does relativise to the class of all finite transition
systems, it does for instance not immediately relativise to the class of connected or
rooted (finite) transitions systems: clearly the last step does not preserve connectivity
(and there is no immediate reason why a first-order formula ϕ(x) that is invariant under
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≈ over connected structures should be preserved by some ≡ℓ
q,1), and even the first step

does not preserve rootedness.

3.2 Non-classical modal characterisation theorems

3.2.1 The general format

Analogues of the van Benthem theorem in classical and finite model theory for stronger
and in particular global forms of bisimulation in the style of Theorem 3.9 are pursued
in [41]. Many further natural variations of the underlying class of (finite) structures
are explored in [13], with an emphasis also on methodological distinctions. In all these
cases, concrete and explicit model transformations adapted to the classes at hand are
used, which in many cases also provide alternative routes to characterisations over some
interesting elementary classes of not necessarily finite structures.

We highlight the general format of a characterisation theorem for a fragment L of
FO of this kind. Let L ⊆ FO be a fragment of FO with

(1) equivalences ⇌q for the relation of L-equivalence up to rank q, which we assume
to have finite index; it follows that ⇌q classes are L-definable at rank q.
(⇌q is induced by the q-round game GL

q .)

(2) the common refinement of the (⇌q)q∈ω, ⇌ω, capturing ≡L.
(⇌ω is induced by GL

ω.)

(3) the full infinitary equivalence ⇌ associated with GL
∞.

The assumptions that each ⇌q has finite index and that ≡L is the limit of these finitary
game equivalences reflect the ‘finitary nature’ of L. In this context we want to show,
over a given class C of τ -structures, that the following are equivalent for ϕ(x) ∈ FO[τ ]:

(i) ϕ is preserved under ⇌ over C, i.e.,
for all A, a and A′, a′ in C: A, a ⇌ A′, a′ ⇒

(
A |= ϕ[a] ⇔ A′ |= ϕ[a′]

)
.

(ii) ϕ is equivalent over C to a formula ϕ̃ ∈ L[τ ], i.e.,
there is some ϕ̃ ∈ L[τ ] s.t. for all A, a in C: A |= ϕ[a] ⇔ A |= ϕ̃[a].

It is worth looking at the two implications separately:

Preservation, (ii) ⇒ (i), is a trivial consequence of the game analysis of L-equivalence
(our assumptions above). Moreover, the validity of this implication over the class of all
structures trivially implies its validity in restriction to any subclass C. In particular a
preservation statement trivially implies its finite model theory analogue.

Expressive completeness, (i) ⇒ (ii), is the crucial and non-trivial part of the equivalence,
which is sensitive to the class C. In particular, expressive completeness does not generally
relativise to subclasses, and a classical result cannot generally be expected to persist in
the sense of finite model theory.12

12An easy example of a known failure of the finite model theory version of a classically valid expressive
completeness result close to our concerns is provided by ≡2

∞ and FO2: the class of all finite linear
orderings is closed under ≡2

∞ within the class of finite structures, but not defnable in FO2.
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If ⇌ω coincides with ⇌∞ in ω-saturated structures, as is typically the case,13 then
expressive completeness of L for first-order properties that are preserved under ⇌ over
the class of all τ -structures follows from the assumptions (along the lines of the classical
proof outlined for van Benthem’s theorem above, for instance).

Under the assumptions made, expressibility of ϕ in L (over C) is equivalent to preser-
vation of ϕ under some level of ⇌ℓ (over C). Therefore, the expressive completeness of
L for ⇌ invariance over C is equivalent (for any C) to the implication

ϕ(x) preserved under ⇌ (over C)

⇒ ϕ(x) preserved under ⇌ℓ (over C) for some ℓ ∈ ω,

which is a particular ‘compactness property’ that may or may not be valid, depending on
the nature of ⇌ and C. The classical manner of establishing this compactness property,
as well as the alternative explicit and game-oriented constructions indicated above may
both be cast as upgradings of equivalences, albeit in orthogonal directions. The juxtapo-
sition of the generic diagrams below may serve to make this distinction apparent. While
the classical upgrading involves a transformation of structures up to full FO equivalence
(passage to ω-saturated elementary extensions say) to boost ⇌ω to ⇌, the alternative
upgrading consists of a transformation of structures up to full (infinitary) ⇌ to boost
a concrete finitary level of ⇌ℓ to an approximate level ≡̇ of first-order equivalence that
is good enough to preserve ϕ. In the examples encountered here, ≡̇ is either some level
≡q or ≡ℓ

q,m. The following two sections will review and summarise some of the results
obtained along these lines in [13].

A, a ⇌ω

≡

A′, a′

≡

A∗, a ⇌ (A′)∗, a′

A, a ⇌ℓ

⇌

A, a′

⇌

Â, a
≡̇
ϕ Â′, a′

3.2.2 Explicit upgrading through local control

By approximating FO equivalence by a concrete level of Gaifman equivalence we shift the
emphasis to local control over FO equivalence. This allows us to make use of explicit
model constructions that lead to locally acyclic structures, as in Lemma 3.7, which
means that locally ≈ℓ can be upgraded to ≡q (if multiplicities have been boosted in
preparation) via Observation 3.8. For characterisations of ∼∀ invariance rather than ≈
(global but only forward bisimulation, related to ML

∀), a correspondingly higher level of
global ℓ0-bisimulation equivalence can first be upgraded (in a transformation up to full
global forward bisimulation ∼∀) to ≈ℓ1 , which can then be further upgraded to some

13Our discussion of saturation and the Hennessy–Milner property in section 2 and especially section 2.4
indicates that this is true whenever the corresponding OL(A) is uniformly FO-interpretable over A.

36



≡ℓ
q,m as above. In this manner, for example the expressive completeness results below

are proved in [13].
A rooted structure is a τ -structure A, a with distinguished element a as a root from

which all elements of A are reachable on directed paths. For tree structures compare
section 1.2. Note that even the class of not necessarily finite rooted structures is not
elementary. Also note that for rooted structures, the full infinitary equivalences ∼∀ and
∼ coincide at the roots, while the finite levels clearly do not.

Theorem 3.11. ML
∀ is expressively complete for first-order properties that are preserved

under ∼ over the following classes C of structures:

(i) the class of rooted structures.

(ii) the class of finite rooted structures.

(iii) the class of tree structures.

(iv) the class of finite tree structures.

Another natural and classically important class of transition systems (as Kripke
structures in the context of knowledge representation) is the class of equivalence struc-
tures: τ -structures in which all transition relations Eα are interpreted as equivalence
relations. And even though transitivity requirements tend to trivialise locality analysis
(also compare the next section), equivalence structures are amenable to an analysis and
to upgrading transformations based on locally acyclic covers. Here FO interpretations
can be used to adapt both the construction of suitable covers and the analysis of bisimu-
lation invariant FO properties. As far as local acyclicity in bisimilar covers is concerned,
the following can be obtained from Lemma 3.7 via simple FO translations.

Lemma 3.12. Every finite equivalence structure admits, for every ℓ, a faithful bisimilar
cover by some finite equivalence structure in which

(i) any two equivalence classes (w.r.t. to distinct Eα) intersect in at most one element,

(ii) all cycles of lengths up to 2ℓ + 1 stay within a single Eα class for some α.

Over such essentially ℓ-acyclic structures, an analogue of Observation 3.8 is available
to show that global ℓ-bisimulation can be upgraded to ≡ℓ

q,m for any required level of
q and m. Therefore, ∼ invariance implies ∼ℓ invariance also over the class of finite
equivalence structures.

Corollary 3.13. ML
∀ is expressively complete for first-order properties that are pre-

served under global bisimulation ∼∀ over the class of finite equivalence structures.

3.2.3 Explicit upgrading through decomposition

Locality arguments cannot be used to great effect over structures that trivialise Gaifman
locality. For instance, the Gaifman graph of directed transitive trees (trees with a
partial order) has diameter 2, and ≡ℓ

q,m is essentially just ≡q, for ℓ > 1. On some
related and particularly interesting classes of transition systems with one transitive
transition relation, however, one may instead base expressive completeness proofs for
modal fragments on another classical constructive approach to the analysis of games:
composition arguments w.r.t. order. We saw a glimpse of this in the Ehrenfeucht–Fräıssé
analysis of finite linear orderings in section 2.2 (Lemma 2.3).
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We consider the example of rooted, irreflexive transitive tree structures with a single
transition relation E: A = (A,EA, (PA

i )) with distinguished root a, with a transitive and
irreflexive partial order relation EA such that the set of E-predecessors of any element
b ∈ A is well-ordered by EA with minimal element a. For succinctness we refer to such
structures as ≺-trees. The class of all ≺-trees (finite and infinite ones) is non-elementary
(due to the well-foundedness condition); and so is the class of all finite ≺-trees (due to
the finiteness condition).

We review the key decomposition idea from [13] that allows us to upgrade ℓ-bisimu-
lation equivalence between (finite) ≺-trees A, a ∼ℓ A′, a′ to quantifier-rank q first-order
equivalence ≡q through a transformation that preserves full bisimulation equivalence.

In a preparatory step, we boost multiplicities and unravel in order to achieve some
homogeneity w.r.t. paths in ≺-trees.

For a given q let the ≺-trees A
q
0 and A

q
q−1 (an expansion of A

q
0 by colours for certain

≡q−1 types) be obtained from A, a as follows.
The universe and the interpretation of the unary predicates of A

q
0 are those of the

bisimilar unfolding of A ⊗ {1, . . . , q} from one of the representatives of the root a (say
we identify a with (a, 1)); for its transition relation we pass to the transitive closure
of the transition relation in the unfolding. It is easily checked that this transformation
leads to a bisimilar ≺-tree A

q
0, which is finite if A is. Even for infinite A the ≺-tree A

q
0

has predecessor sets that are finite linear orderings rather than arbitrary well-orderings.
In addition, due to the unfolding step in its construction, A

q
0 has the following useful

representation property for its paths. Any path a0 = a, a1, . . . , an from the root in A
q
0,

can be matched with some full path â0 = a, â1, . . . , ân consisting of the full predecessor
set of the target node ân in A

q
0, such that ai and âi are not only bisimilar but even are

the roots of isomorphic subtrees.
Towards an inductive analysis of ≡q, we use A

q
q−1, which is the expansion of A

q
0 with

new unary predicates that colour every node with the ≡q−1-class of the subtree rooted
at this node in A

q
0.

In order to show how suitable levels of ℓ-bisimulation between ≺-trees A, a and A′, a′

can be upgraded to ≡q equivalence in bisimilar ≺-trees, we firstly replace A and A′ by
the ≺-trees A

q
0, a ∼ A, a and (A′)q

0, a
′ ∼ A′, a′. It then suffices to show, in the context of

an induction on q, that for some sufficiently large ℓ (depending on q):

(∗) A
q
q−1, a ∼ℓ (A′)q

q−1, a
′ ⇒ A

q
0, a ≡q (A′)q

0, a
′.

For this, a composition argument can be used towards a reduction to the analysis of
Ehrenfeucht–Fräıssé games over finite coloured linear orderings. We associate with an
element b in Aq, a the coloured finite linear ordering Ib induced on the interval [a, b] in
Aq; similarly I′

b′ with any b′ in (A′)q, a′. Then

Ib, a, b ≡q−1 I
′
b′ , a

′, b′ ⇒ A
q
q−1, a, b ≡q−1 (A′)q

q−1, a
′, b′,

due to compositionality of strategies in the games. A winning strategy for II in the
remaining (q − 1)-round game on the ≺-trees can be based on

(a) a strategy in the (q−1)-round game on the induced linear orderings: this provides
a match between subtrees rooted along the coloured paths [a, b] and [a′, b′].

(b) strategies to play within colour-matched subtrees based on their ≡q−1 equivalence.
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Therefore, it suffices to guarantee that for every b there is some b′ (and vice versa, for
every b′ a b) such that Ib, a, b ≡q−1 I′

b′ , a
′, b′, provided only that A

q
q−1, a ∼ℓ (A′)q

q−1, a
′.

A bound on such an ℓ can now be extracted from the Ehrenfeucht–Fräıssé game on
finite coloured linear orderings. The following is a consequence of the compatibility of
the game with ordered sums or concatenation (we leave it as a nice exercise; see [14]
and also [13] for details).

Observation 3.14. There is a bound N (depending on q and the number of colours)
such that any finite coloured linear ordering (with constants for the first and last ele-
ments) of length greater than N has some proper ≡q−1 equivalent substructure.

In the case of the finite coloured orderings Ib this means that, up to ≡q−1, only those
of lengths up to N need to be taken into account (any substructure of an Ib is realised
as I

b̂
for suitable b̂ by the homogeneity property of A

q
q−1). But the isomorphism types of

(substructures of) Ib of size up to N are clearly governed by the ∼N−1 type of A
q
q−1, a,

whence we get (∗) for ℓ = N − 1.
Based on this decomposition approach, the following are obtained in [13].

Theorem 3.15. ML is expressively complete for first-order properties that are preserved
under bisimulation over the following classes C of partially ordered trees:

(i) the class of irreflexive transitive trees.

(ii) the class of finite irreflexive transitive trees.

While the classes of rooted reflexive transitive structures or reflexive transitive trees
display a similar behaviour [13], the picture changes if reflexivity is not uniformly pre-
scribed. For transitive tree-like structures in which some nodes may be reflexive, a
marked difference between finite and not necessarily finite structures becomes impor-
tant. The first-order formula

ϕ(x) = ∃y(Exy ∧Eyy),

expressing accessibility of a reflexive node, is

(a) invariant under bisimulation over the class of finite transitive structures, but

(b) not invariant under bisimulation over the class of all transitive structures.

Point (b) is illustrated by the simple example of the infinite irreflexive unfolding of a
structure consisting of a single reflexive node. For (a) consider finite transitive structures
A, a ∼ A′, a′ and assume that A |= ϕ[a]. Consider a play of I from a to some reflexive b
in A followed by a sequence of stationary moves at b (b is reflexive) that is long enough
to force the sequence of responses by II to visit some node b′ twice: as b′ is on a cycle,
it is reflexive.

[13] shows that an extension of basic modal logic with a modality as suggested by ϕ
above, asserting that there is some reflexive successor satisfying ψ, is expressively com-
plete for bisimulation invariant first-order properties over finite transitive tree-like struc-
tures. For expressive completeness over the wider classes of all finite transitive structures
a stronger variant of this new modality is required, which also captures reachability of
an E-clique (rather than a single reflexive node) realising several distinct formulae. As
indicated above, such extra modalities are necessary in the finite, but not compatible
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with bisimulation in transitive structures in general. (In fact it is not finiteness, but the
absence of infinite strictly forward-directed E-paths, that matters, see [13].)

Over finite transitive structures and some related restricted classes of transitive tran-
sition systems, the decomposition based analysis in [13] also extends from first-order to
monadic second-order logic.

Among the long open questions in this area remain the finite model theory status
of

– the Janin–Walukiewicz result [33] that the modal µ-calculus is expressively com-
plete for monadic second-order properties preserved under bisimulation, and

– expressive completeness of the guarded fragment for the first-order properties pre-
served under guarded bisimulation, established in the classical setting in [2].

The second issue, concerning guarded bisimulation as a generalisation of modal
bisimulation, also leads over to the following section.

4 From graphs to hypergraphs

The guarded fragment of FO and, more fundamentally, the concept of guarded bisimu-
lations (compare section 2.3.2) point to a hypergraph structure induced by a relational
structure, over and above the graph structure embodied in the Gaifman graph. With
the relational τ -structure A we can associate the hypergraph of guarded subsets of A,
whose universe is the universe A of A and whose hyperedges are the guarded subsets
s ⊆ A of A:

H(A) =
(
A, {s ⊆ A : s a guarded subset }

)
.

Generally, with any hypergraph H = (A,S), one also associates the graph over the
same universe A whose edge relation is precisely the union of the cliques induced by the
hyperedges of H:

G(H) = (A,E) where E =
⋃

s∈S{(a, b) : a, b ∈ s, a 6= b}.

In the case of the hypergraph H(A) this just returns the Gaifman graph G(A).
The graph G(H), however, contains less information, since not every clique in G(H)

need be induced by a hyperedge. The complete graph on three elements, K3, for instance,
occurs as G(H) for H = K3 as well as for any hypergraph that has the full set of
three elements as one of its hyperedges. In the classical literature on hypergraphs [6],
a hypergraph H such that all cliques in G(H) are induced by hyperedges is called
conformal ; conformality plays a role in acyclicity criteria for hypergraphs. In the next
section we briefly look at the natural notion of hypergraph bisimulation and discuss
corresponding notions of acyclicity and unfoldings.

4.1 Hypergraph bisimulation

If we disregard the local relational content in guarded bisimulations, i.e., if we relax
the soundness condition on positions in the game from local isomorphism of relational
substructures to just local bijections, we obtain a natural notion of hypergraph bisimula-
tion. Guarded bisimulations become a special case of hypergraph bisimulations between
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the associated hypergraphs of guarded subsets. For questions of acyclicity and of tree
decomposability, the actual local relational content does not matter and it makes sense
to work with the more fundamental notion of hypergraph bisimulation.

The hypergraph bisimulation game The positions in the bisimulation game on
hypergraphs H = (A,S) and H ′ = (A′, S′) are local bijections ρ : s → s′ between
hyperedges s ∈ S and s′ ∈ S′. The challenge/response exchange between players I and
II in a single round, from position ρ : s→ s′, is played as follows:

– I selects either some hyperedge t ∈ S or some hyperedge t′ ∈ S′;

– II has to respond with a position σ : t→ t′ (involving the hyperedge proposed by
I and a match with a hyperedge in the opposite structure) such that ρ agrees with
σ on the overlap (between s and t if I chose t, or between s′ and t′ if I chose t′).

II loses if she has no such response. Otherwise, winning conditions in the q-round
game, the finite-round game and the infinite game are as usual. We correspondingly
define equivalences in terms of winning positions for II.

Definition 4.1. For hypergraphs H = (A,S) and H ′ = (A′, S′): H,a ∼q H,a′ if
the bijection ρ : a 7→ a′ is a winning position in the q-round bisimulation game on the
hypergraphs H and H ′. Equivalences H,a ∼ω H ′,a′ and H,a ∼ H ′,a′ are similarly
defined w.r.t. the finite-round and infinite games.

Definition 4.2. A bisimilar cover of the hypergraph H = (A,S) by the hypergraph
Ĥ = (Â, Ŝ) is a map π : Â→ A such that

(i) π is injective in restriction to every ŝ ∈ Ŝ.

(ii) S = {π(ŝ) : ŝ ∈ Ŝ}.

(iii) π comprises a winning strategy for II in the infinite bisimulation game in the sense
that II can maintain positions in which hyperedges are matched through π.

Consider the special case of H = H(A), the hypergraph of guarded subsets of the
τ -structure A. It is not hard to see that any bisimilar cover π : Ĥ → H by a hypergraph
Ĥ = (Â, Ŝ) induces a guarded cover

π : Â → A,

where Â is simply obtained by pulling the relational interpretation on A back to Â in such
a way that every restriction of π to a hyperedge of Ĥ becomes a local isomorphism. One
checks that this leads to a well-defined interpretation of a τ -structure over the universe Â,
for which indeed also H(Â) = Ĥ. In particular π now comprises a winning strategy for II

in the infinite guarded bisimulation game on Â and A (compare (iii) above). These simple
considerations suggest to view hypergraph bisimulation just as ‘guarded bisimulations
without relations’ – or to view guarded bisimulation as a relational incarnation of a
possibly more fundamental notion of hypergraph bisimulation.

4.2 Tree-likeness: acyclicity criteria

Full acyclicity (in the hypergraph sense) can be achieved, up to bisimulation, through
a process of bisimilar unfolding in close analogy with the tree unfolding of transition
systems. We present this basic construction before relating it to the relevant notions of
acyclicity and tree-likeness that it exemplifies.
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Bisimilar hypergraph unfolding Consider a hypergraph H = (A,S). We want
to find a tree-like hypergraph Ĥ that provides a bisimilar cover for H; while overlaps
between hyperedges have to be reproduced in Ĥ, it should otherwise and in particular
globally be as free (free of incidental overlaps) as possible. The construction follows the
idea of a tree unfolding of a transition system, but instead of nodes, subsets need to be
joined – joined through identifications in overlaps as prescribed in H, compare [22].

With H firstly associate the tree S∗ of all finite sequences of hyperedges, with a suc-
cessor relation linking a sequence σ ∈ S∗ to its immediate extensions σ ŝ for s ∈ S. We
obtain the universe Â of the desired hypergraph Ĥ as a quotient of the following auxil-
iary set D, which may be seen as a disjoint union of path-labelled copies of hyperedges
s ∈ S:

D :=
{

(σ ŝ, a) ∈ S+ ×A : a ∈ s
}
⊆ S∗ ×A.

In this set, we want to identify same elements in nodes that are labelled with next-
neighbour paths. Let =̇ be the reflexive, symmetric, transitive closure of the relation
that links (σ, a) to (σ ŝ, a) in D. In the following we write [σ, a] for the =̇ equivalence
class of (σ, a) ∈ D. We put

Â := D
/

=̇,

Ŝ :=
{
ŝσ : s ∈ S, σ ∈ S∗

}
,

where ŝσ = {[σ ŝ, a] : a ∈ s} for σ ∈ S∗, s ∈ S.

One checks that π : Ĥ → H, [σ, a] 7→ a is well-defined and a bisimilar hypergraph
cover. In line with the above remarks, if the same construction is applied to the hy-
pergraph H = H(A) associated with the guarded subsets of a τ -structure A, then the
obvious expansion of Â to a τ -structure yields a guarded bisimilar cover of A. In both
cases, the tree structure of S∗ also provides a tree decomposition of the new hypergraph
Ĥ, or of the τ -structure Â.

Definition 4.3. A tree decomposition of H = (A,S) consists of a tree T together with
a surjective map ρ : T → S such that for every a ∈ A the subset {t ∈ T : a ∈ ρ(t)} ⊆ T
is connected in T .

It may be intuitive that the existence of a tree decomposition is an acyclicity condi-
tion. Consider a tree decomposition ρ of a finite hypergraph H with finite tree T . One
can use ρ to reduce H to the empty hypergraph by repeated application of the following
two reduction steps

– removal of an element a ∈ A that is covered by at most one hyperedge (more
precisely, a is removed from A and from the hyperedge covering it).

– removal of a hyperedge s that is contained in some other hyperedge that is retained.

For the claimed reduction, essentially just proceed from the leaves of T : a leaf of T
is mapped to a hyperedge that is either contained in the hyperedge at its predecessor
node, or it contains some elements not covered by any other hyperedge. Removal of
hyperedges or elements based on this procedure is compatible with maintaining a tree
decomposition.14

14Note that to deal with infinite hypergraphs, it is necessary to phrase the reduction condition for
finite sub-hypergraphs rather than the full graph; e.g., a two-way infinite edge chain is not decomposable
as such.
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If we transfer this notion of a hypergraph tree decomposition to relational structures
(cf. Definition 5.1 for tree decompositions in that sense), there is an important difference:
the usual notion of tree decomposition is more liberal in allowing arbitrary subsets of
A to be associated with the nodes of the representation tree, while here we would only
admit guarded sets. A cycle (viewed as a hypergraph with size 2 hyperedges) does not
admit a hypergraph tree decomposition, but it does admit tree decompositions based
on subsets of size 3. We return to ordinary tree decompositions of relational structures
in section 5.1 below.

It follows that every logic invariant under guarded bisimulation (i.e., whose formulae
are preserved under guarded bisimulations) has a bounded treewidth model property or
generalised tree model property [20]. This property is of great value in the algorithmic
model theory of GF and of its extensions that still are sublogics of GF∞ like guarded
fixpoint logic [24], because it allows a reduction of satisfiability issues to the model
theory of trees, via a coding of models in tree representations.

Proposition 4.4 (Grädel). GF has the following generalised tree model property: any
satisfiable ϕ ∈ GF[τ ] is satisfiable in a model that admits a tree decomposition w.r.t.
guarded subsets, and in particular one of treewidth less than the width of τ .15

Returning to hypergraphs, the classical criterion for hypergraph acyclicity is the
following. As shown in [5] it coincides (for finite hypergraphs) with hypergraph tree
decomposability in the sense of Definition 4.3 above, as well as with several other criteria.
For classical hypergraph theory compare [6].

Definition 4.5. A hypergraph H = (A,S) with associated graph G(H) is called acyclic
if it satisfies the following two conditions:

(i) conformality: every clique in G(H) is contained in some hyperedge of H.

(ii) chordality: every cycle of length at least 4 in G(H) has a chord: there are two
nodes that are not next neighbours along the cycle that are linked (by an edge of
G(H)/hyperedge of H).

Clearly hypergraph unfoldings are acyclic in this sense, so that every hypergraph
admits a bisimilar cover by an acyclic hypergraph. The following, however, is open.

Question 4.6. Does every finite hypergraph admit bisimilar covers by finite ℓ-acyclic
hypergraphs, for all ℓ?

Here one hopefully sensible notion of ℓ-acyclicity would be to postulate that all non-
trivial, chordless cycles must have lengths greater than 2ℓ+1. Note that this is different
form the requirement that the induced hypergraphs on ℓ-neighbourhoods in G(H) be
acyclic. For that latter, stronger notion, the answer to the question is negative.

Example Consider a cartwheel hypergraph Hn consisting of an exterior cycle of nodes
a1, . . . , an, a1 plus a central node a, and with hyperedges {a, ai, ai+1} for i ∈ Z/nZ. The
exterior cycle of length n is without chord, and any bisimilar cover of Hn will still have
cycles in the 1-neighbourhood of any node related to a, albeit possibly longer cycles.

15Treewidth is defined to be one less than the maximal size of sets needed in a tree decomposition,
here bounded by the width of τ minus 1.
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A positive resolution to Question 4.6 would possibly be a starting point for proving
the finite model theory analogue of the classical characterisation theorem for GF, due to
[2]. So far only the graph case, or the case of GF[τ ] for relational vocabularies of width
2, is settled positively in [41].

4.3 Excursion: extension properties

In contrast with the open status of Question 4.6, we know from [30] that conformality
can always be achieved in finite bisimilar hypergraph covers. The basic idea towards
the construction of such covers in [30] is quite simple – and surprisingly contrary to the
intuition of an unfolding. It essentially focuses on the footprints of forbidden cliques in
the associated graph G(Ĥ). We illustrate the key idea with a (generic) local example of
the task.

Let, for instance, H = (A,S) be a finite hypergraph with a tuple of pairwise distinct
nodes a = (a1, . . . , an) such that [a] = {a1, . . . , an} is a clique in G(H) not contained
in any hyperedge of H. We want to construct a bisimilar cover π : Ĥ → H by a finite
hypergraph Ĥ = (Â, Ŝ) such that no lift â = (â1, . . . , ân) with âi ∈ π−1(ai) forms a
clique in G(Ĥ). Let A0 := A \ [a] and put

Â := A0 ∪ ([a] × {1, . . . , n− 1}); π↾A0 = id, π(aj , i) = aj.

We now set Ŝ to be the set of all subsets ŝ ⊆ Â such that

(i) π↾ŝ is a bijection onto some s ∈ S.

(ii) for (aj, i), (aj′ , i
′) ∈ ŝ, if (aj , i) 6= (aj′ , i

′), then i 6= i′:
any two distinct nodes in ŝ above a must have distinct tags in {1, . . . , n − 1}.

On one hand, one checks that π : Ĥ → H is a bisimilar cover. Crucially, the back-
and-forth conditions do not give rise to requirements (of the back kind) to produce
a hyperedge ŝ whose projection to A would cover all of [a]: this is clear, since [a] is
not contained in any hyperedge of H. On the other hand, condition (ii) rules out the
possibility of a clique in G(Ĥ) above a: if each pair of components in â were to be linked
by a hyperedge, then they would have to have pairwise distinct tags, which is impossible
simply by the pigeon-hole principle.

A uniform application of this idea, for all forbidden cliques simultaneously, yields a
finite conformal cover which moreover has useful automorphism properties [30].

An automorphism of a hypergraph is a permutation of its universe that preserves
the set of hyperedges. We say that the cover π : Ĥ → H lifts automorphisms of H if for
every automorphism ρ of H there is an automorphism of Ĥ such that ρ ◦π = π ◦ ρ̂. The
cover is homogeneous, if for every pair of hyperedges ŝ1, ŝ2 ∈ Ŝ above the same s ∈ S,
there is some automorphism σ of Ĥ mapping ŝ1 to ŝ2.

Lemma 4.7. Every finite hypergraph H = (A,S) admits a bisimilar cover π : Ĥ → H
by some finite conformal hypergraph Ĥ = (Â, Ŝ).

Every finite relational τ -structure A admits a guarded cover by some finite τ -structure
Â whose hypergraph of guarded subsets H(Â) is conformal.

Moreover, the cover can be chosen homogeneous and such that it lifts all automor-
phisms of the base structure.
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Herwig–Lascar extension theorems, EPPA A local automorphism of a τ -structure
A is a partial bijection p of A that is an isomorphism between the substructures induced
on dom(p) and image(p). The following extension theorem for local automorphisms is
from [26], also compare [28].

Theorem 4.8 (Herwig). Let A0 be a finite τ -structure. Then there is a finite extension
A1 ⊇ A0 such that every local automorphism of A0 extends to a full automorphism of
A1. A1 can be chosen such that every guarded subset of A1 is the image under some
automorphism of A1 of a guarded subset of A0.

The last condition is in the given situation in fact equivalent to saying that, for every
relation R ∈ τ :

RA1 =
⋃

ρ∈Aut(A1) ρ(RA0).

If A′
1 at first only satisfies the automorphism extension property, and G′ = Aut(A′

1),
then replacing RA′

1 by
⋃

ρ∈G′ ρ(RA0) preserves the automorphism extension property
and yields a structure that also satisfies the additional requirement on guarded subsets.
A combination with Lemma 4.7 then gives the following strengthening of the theorem
[30].

Corollary 4.9. For every finite A0 there is a finite extension A2 ⊇ A0 such that every
local automorphism of A0 extends to a full automorphism of A2 and such that every
clique in G(A2) is the image under some automorphism of A2 of some clique in G(A0).

Proof. Let A1 ⊇ A as in Theorem 4.8. Let H1 = (A1, S) be the hypergraph with
hyperedges

S =
{
ρ(A0) : ρ ∈ Aut(A1)

}
.

We may now apply Lemma 4.7 to obtain a conformal bisimilar cover π : Ĥ → H1 with
hypergraph Ĥ = (Â, Ŝ). The desired τ -structure A2 = Â is obtained by interpreting
the relations over the universe Â such that, for every ŝ ∈ Ŝ, the local bijection π ↾

ŝ : ŝ→ s becomes a local isomorphism between Â↾ŝ and A1↾s. A0 may be isomorphically
embedded into this new structure Â by singling out any particular ŝ ∈ Ŝ above s = A0 ∈
S. The automorphism properties of the cover as stated in Lemma 4.7 guarantee that the
local automorphisms of the embedded A0 still extend to automorphisms of Â. And G(Â)
does not have any cliques other than those that are unavoidable automorphic copies of
cliques already present in the embedded A0: this is a consequence of the conformality
of Ĥ and the fact that G(Â) consists of the union of the G(Â)↾ŝ for ŝ ∈ Ŝ, each of which
is an isomorphic copy of G(A0) by construction.

Further corollaries of this are (simpler proofs of) the extension theorem for local
automorphisms within the class of finite triangle-free graphs [26], the class of finite clique-
free graphs [27], or the class of finite relational structures with conformal hypergraphs
of guarded sets.

The corollary as stated has also been employed in [30] to yield a very transparent
proof of the finite model property of the clique guarded fragment, just as Theorem 4.8
itself yields a very natural proof of the finite model property for basic GF first given by
Grädel [20].
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5 Locality and special classes of relational structures

5.1 Tree-decompositions and treewidth

Bounded treewidth has emerged as one central notion of ‘tameness’ or ‘well-behavedness’
in finite relational structures, which is useful both algorithmically and model theoreti-
cally. For instance, model checking for first-order or monadic second-order formulae be-
comes more tractable if the input is restricted to finite structures of bounded treewidth.
But also decidability issues, in particular satisfiability, can often be linked to a pri-
ori bounds on the treewidth of target models – a phenomenon best known, and in its
purest form, for logics with the tree model property, e.g., due to bisimulation invari-
ance. As pointed out above, the bounded treewidth model property of logics invariant
under guarded bisimulation extends this benefit to richer settings. Moreover, bounded
treewidth has featured in recent analogues to classical expressive completeness issues
over finite structures. While bounded treewidth certainly is not the only structural re-
striction that helps to overcome well known obstacles in finite model theory, it seems to
occupy a central place in such concerns. We here mainly want to discuss several such
results, especially results concerning expressive completeness for fragments of FO, in the
light of connections with techniques stemming form the fundamental notion of Gaifman
locality.

Bounded treewidth is also at the center of Stephan Kreutzer’s chapter [38] in this
volume, where the algorithmic impact of bounded treewidth, among other structural
criteria, is treated in depth. There the reader will also find a much more detailed account
of the connections between bounded treewidth and model checking complexities for first-
and monadic second-order logic than what is sketchily hinted at below.

Relational structures of bounded treewidth We have already come across a spe-
cial form of tree decompositions in section 4.2, cf. Definition 4.3, and now briefly review
the general notion of a tree decomposition underlying the definition of treewidth.

Definition 5.1. A tree decomposition of the finite relational structure A consists of a
tree T together with a map ρ : T → P(A) associating subsets of A with the nodes of T
in such a manner that

(i) every relational ground atom of A is contained in some ρ(t).

(ii) for all a ∈ A, {t ∈ T : a ∈ ρ(t)} ⊆ T is connected in T .

The width of the tree decomposition (T, ρ) is maxt∈T |ρ(t)| − 1.
The treewidth of A, tw(A) is the minimal width among all tree decompositions of A.
Ck[τ ] :=

{
A : tw(A) 6 k

}
denotes the class of finite τ -structures of treewidth up to k.

Note that (i) is the same as to say that the subsets used in a tree decomposition of
A must cover the guarded subsets.16 The correction by −1 in the definition of treewidth
is so that trees get treewidth 1 (rather than 2, which is the required patch size).

16That they must not themselves be guarded subsets accounts for the difference in comparison with
Definition 4.3; a tree decomposition of A is a hypergraph decomposition of some hypergraph that may
be coarser than the hypergraph H(A) of guarded subsets.
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Model checking complexity For the complexity of the model checking problem for
some logic L over the class C, one distinguishes

– combined complexity, where both ϕ ∈ L and A ∈ C vary, and the input size is the
sum of the input sizes, |ϕ| + ||A||;17

– data complexity, where the formula ϕ ∈ L is fixed, and the variation is in the
structure, with input size measure ||A||;

– expression complexity, with fixed A and varying ϕ ∈ L.

The following are some well known cornerstones for the model checking complexity
of monadic second-order logic MSO, FO and some fragments of FO considered above:

– MSO model checking over Ck (treewidth k structures) has linear combined com-
plexity due to a fundamental theorem of Courcelle [11], where “linear” refers to a
complexity in O(||A|| · |ϕ|). On the class of all finite graphs, on the other hand,
MSO clearly captures graph properties at any level of the polynomial hierarchy
(this is w.r.t. data complexity).

– FO-formulae have logarithmic data complexity (i.e., poly-logarithmic in ||A|| or
|A|, but with syntactic parameters of the formula in the exponent) [14, 32].

– The combined complexity of FO model checking is complete for Pspace (this is
even true for formula complexity over the fixed naked two-element structure, by
a simple reduction of the Pspace complete satisfiability problem for quantified
boolean formulae).

– The combined complexity for model checking FOk, on the other hand, is complete
for Ptime for every k > 2, and even linear for FO2 as well as for GF, and still
Ptime complete even for ML, [45, 23, 7, 17].

Interestingly, measures of tree-likeness improve model checking complexities – both
on the side of the structure (e.g., model checking over bounded treewidth structures)
and on the side of the formula input (e.g., model checking conjunctive queries with
templates of bounded treewidth). We just mention some key results with pointers to
the literature, and again refer to [38] for a more thorough treatment of some of these.

FO data and combined complexity and local constraints For FO data complex-
ity, Frick and Grohe [15] establish a linear bound over any class C of structures whose
treewidth is locally bounded. A class C of structures has locally bounded treewidth if
the treewidth of ℓ-neighbourhoods in structures from C is uniformly bounded by some
function in the radius ℓ. The underlying model checking algorithm is based on a pre-
sentation of the formula in Gaifman form. With this, the checking of ‘global’ struc-
tural properties reduces to local evaluation of FO formulae in ℓ-neighbourhoods and a
graph theoretic core algorithm that checks for existence of scattered tuples in the Gaif-
man graph, vertex-coloured according to the local pre-processing. For generalisations
and more recent successes of this approach to first-order model checking complexity in

17||A|| stands for the size of a succinct encoding of the relational structure A. E.g., for graphs A in
an adjacency list encoding, ||A|| ∈ O(n2), but it can be sub-quadratic in the number n = |A| of vertices
for graphs with few edges. Finer complexity accounts need to be based on a random access model
of computation, so that access to the input structure does not distort the real algorithmic content of
formula evaluation.
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classes tamed by local conditions on graph invariants see Grohe’s survey [25] as well as
Kreutzer’s chapter [38] in this valume, with a view also to the parameterised complexity
of the combined model checking problem.

Combined complexity for fragments of FO The combined complexity of conjunc-
tive query evaluation has been studied intensively, with a natural motivation central to
database theory and with interesting connections to constraint satisfaction problems.
Also in these investigations tree-likeness (in this case of syntactic features of very spe-
cial FO formulae) plays a major role. Conjunctive query evaluation is the model checking
of existential positive prenex FO formulae whose quantifier-free core is just a conjunc-
tion of relational atoms, ϕ = ∃x

∧

i αi(xi) with atomic αi (in subtuples of variables xi

of x). The link with homomorphism problems and hence with constraint satisfaction
(see for instance [35, 37]) is natural and straightforward. The desired assignment to
variables x over the τ -structure A is a homomorphism from a τ -structure Xϕ induced
by the conjuncts αi on the set of variables [x] into A,

β : Xϕ
hom
−→ A.

Note that while the data complexity is poly-logarithmic for each individual (first-order)
ϕ or X, in general one expects an exponential dependency on the number of variables
in ϕ or on the size of X.

It turns out that the hypergraph H(Xϕ) holds one key to better bounds on the
complexity of the associated homomorphism/query evaluation problems. In fact ϕ is
(equivalent to a formula) in GF if H(Xϕ) is acyclic, in which case model checking becomes
linear in |ϕ|. Indeed, a tree decomposition of H(Xϕ) yields a translation into GF and
hence a reduction to the linear model checking of GF. This generalises to ϕ with a fixed
bound on the treewidth of Xϕ, where the model checking can be based on the auxiliary
acyclic hypergraph of bounded width extracted from the tree decomposition (instead of
H(Xϕ) itself). In these cases, which admit considerable further extensions in terms of
weaker notions of bounded widths (e.g., bounded hypertreewidth rather than treewidth
[19]), combined model checking remains in Ptime [18, 19].

But also reductions to FOk can be seen as essential for tractability. For any finite
τ -structures X and A, the following are equivalent [12, 37]:

(i) existence of a homomorphism from X to A, X
hom
−→ A;

(ii) A |= ∃xηX, where ηX is the positive diagram of X;

(iii) the transfer property X ⇒pos∃∗ A, meaning that every positive existential sen-
tence true in X is also true in A.

For X = Xϕ, where ϕ is a conjunctive query, ϕ is equivalent to ∃xηX (cf. (ii)). For
X ∈ Ck, this sentence is expressible in positive existential FOk+1 [36, 37], so that (iii)
above can be replaced by a transfer condition for all positive existential FOk+1 rather
than FO. In this context, therefore, the Ptime analysis of winning positions in the
(positively restricted, one-sided) (k + 1)-pebble game [34] on X versus A decides the
homomorphism problem.
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5.2 Non-classical proofs for (variants of) classical characterisations

With this section we return to expressive completeness issues, related to the existential
and the existential positive fragments of FO over classes of finite structures. A first-order
sentence ϕ ∈ FO[τ ] is preserved under extensions if in every substructure relationship
A ⊆ B between τ -structures, A |= ϕ implies B |= ϕ. Similarly, ϕ is preserved under

homomorphisms if for every homomorphism A
hom
−→ B between τ -structures, A |= ϕ

implies B |= ϕ. As an embedding of a substructure is a special case of homomorphism,
preservation under homomorphisms implies preservation under extensions. Clearly, ex-
istential sentences are preserved under extensions, while existential positive sentences
are even preserved under homomorphisms.

The classical results are the following. We explicitly state the more interesting
expressive completeness statements.

Theorem 5.2 ( Los–Tarski). The existential fragment of first-order logic is expressively
complete for first-order properties that are preserved under extensions.

Theorem 5.3 (Lyndon–Tarski). The existential positive fragment of first-order logic is
expressively complete for first-order properties that are preserved under homomorphisms.

These are proved classically, e.g. in [10], by means of a compactness argument for
the construction of suitable elementary extensions, respectively elementary chain con-
structions.

Classically, as well as towards possible restrictions of the expressive completeness
claim to some class C other than the class of all τ -structures, both essentially amount
to finiteness claims for classes of minimal models (within C).

We refer to substructure minimal models as generators w.r.t. extensions, and, as gen-
erators w.r.t. homomorphisms, also to so-called cores. In a class closed under homomor-
phisms, the natural generators are simultaneously minimal w.r.t. the weak substructure
relationship and w.r.t. inverse homomorphisms. We review some standard terminology
in this connection.

A weak substructure relationship between τ -structures, denoted A ⊆w B, requires
that A ⊆ B and RA ⊆ RB for every relation R in τ (rather than RA = RB↾A as in
the substructure relationship A ⊆ B). A retraction is a homomorphism h from some
structure A onto a weak substructure A0 ⊆w A such that h↾A0 = id. It is worth noting
that a retraction h : A

ret
−→ A0 is accompanied by a trivial inclusion homomorphism back

from A0 into A, since A0 ⊆w A. A structure whose only retraction is the identity is
called a core. Every finite relational structure A possesses a retract onto some core
and this core is unique up to isomorphism. It is then straightforward to see that a
homomorphism closed class of finite structures is generated by its members that are
cores; viz., generated as the class of all weak extensions of these. But the subclass of
⊆w-minimal members generates the same class.

Definition 5.4. (a) A is a substructure minimal (⊆-minimal) model of ϕ if A |= ϕ
and A′ 6|= ϕ for all A′  A.

(b) A is a weak-substructure minimal (⊆w-minimal) model of ϕ if A |= ϕ and A′ 6|= ϕ
for all A′  w A.

(c) A is a core model of ϕ if A |= ϕ and A is a core.
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Observation 5.5. Let C0 be a class of finite τ -structures that is closed under extensions.
Then the following are equivalent:

(i) C0 is definable (within the class of finite τ -structures) by an existential first-order
sentence.

(ii) C0 has, up to isomorphism, finitely many substructure minimal members.

For the crucial direction, (ii) ⇒ (i): if A1, . . . ,AN are the isomorphism types of
substructure minimal members in C0, then C0 is definable by the disjunction over the
existentially quantified algebraic diagrams of the Ai. For (i) ⇒ (ii) it suffices to observe
that the size of substructure minimal models of an existential prenex sentence ϕ is
bounded by the number of variables.

The above equivalence persists in restriction to any class C of τ -structures that is
itself closed under substructures (some such extra condition on the surrounding class C
is necessary for (i) ⇒ (ii), not for (ii) ⇒ (i)).

Similarly one obtains the following, where a disjunction over the existentially quan-
tified positive diagrams of ⊆w-minimal models, which are cores, provides a canonical
definition in existential positive FO. We state the equivalence relative to the class of all
(finite) τ -structures, but it similarly holds in restriction to any class C of τ -structures
that is closed, e.g., under substructures.

Observation 5.6. For any class C0 of (finite) τ -structures that is closed under homo-
morphisms, the following are equivalent:

(i) C0 is definable (within the class of finite τ -structures) by a sentence in existential
positive FO.

(ii) C0 has, up to isomorphism, finitely many ⊆w-minimal members.

(iii) C0 has, up to isomorphism, finitely many ⊆-minimal members.

(iv) C0 has, up to isomorphism, finitely many homomorphism minimal core members.

As we are dealing with finite relational vocabularies τ , a finite bound on the number
of isomorphism types of minimal models is equivalent to a bound on the size of minimal
models.

It has been known for a long time that the  Los–Tarski theorem (Theorem 5.2) fails
in the sense of finite model theory (with counterexamples due to Tait and Gurevich, see
e.g. [14]).

The status of the Lyndon–Tarski theorem (Theorem 5.3) in finite model theory, on
the other hand, had been an important open problem for quite some time when it was
resolved, positively, by Rossman [44].

Beside the overall finite model theory version, however, one may of course investigate
the status of these expressive completeness issues in restriction to various classes of
(finite) structures of interest. In the following sections we outline a particular criterion
of well-behavedness motivated by considerations of Gaifman locality, which has led to
interesting results along these lines.

5.2.1 Wideness criteria

The wideness criteria proposed in [4, 3] couple the existence of large scattered subsets to
the size of structures. In the context of the minimal model criteria as in Observations 5.5
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and 5.6 above they can be used to derive upper bounds on the size of minimal models.
Models exceeding a certain size cannot be minimal if their richness in scattered sets
allows one to extract smaller models on the basis of a Gaifman representation of the
first-order property at hand.

Definition 5.7. A structure is (ℓ,m)-wide if its Gaifman graph contains an ℓ-scattered
subset of size m.

A class C of τ -structures is called wide if there is a function N : N × N → N, such
that, for all ℓ and m and A ∈ C, if |A| > N(ℓ,m), then A is (ℓ,m)-wide.

C is called almost wide if, for some fixed k, the analogous condition applies after the
removal of a suitable subset of at most k elements from the structures A at hand.

A typical example of a wide class is the class of graphs of fixed bounded degree.
The class of trees, on the other hand, is not wide (there are arbitrarily large trees of
diameter 2), but almost wide: a large tree either has long branches or a node of high
degree; removal of a single node of high degree also produces a large scattered set.
Similarly, in a tree decomposition of fixed bounded width of a sufficiently large graph or
relational structure, a large scattered set becomes available at least after the removal of
the elements associated with some high degree node in the decomposition tree. A much
more profound analysis is necessary to show almost wideness for every class of graphs
that excludes a minor [4].

Proposition 5.8 (Atserias–Dawar–Kolaitis). The class of treewidth k graphs is almost
wide. By extension, Ck[τ ], the class of τ -structures of treewidth up to k, is almost wide.

More generally, any class of graphs with excluded minor is almost wide, and by
extension any class of τ -structures whose Gaifman graphs avoid some minor.

5.2.2 Expressive completeness for extension preservation

The following summarises key results from [3].

Theorem 5.9 (Atserias–Dawar–Grohe). The size of ⊆-minimal models of a first-order
sentence ϕ that is preserved under extensions can be bounded over the following classes
of finite structures:

(i) acyclic relational structures (i.e., directed coloured graphs with acyclic Gaifman
graphs);

(ii) wide classes C, like any class of graphs of bounded degree.

(iii) Ck, the class of all finite structures of treewidth up to k.

As a consequence, existential FO is expressively complete for first-order properties pre-
served under extensions over these classes.

Interestingly, there are almost wide classes over which existential FO is not expres-
sively complete for first-order properties preserved under extensions. A counterexample
over the class of planar graphs is given in [3].

The underlying idea in the proof of the theorem is to choose parameters ℓ, q,m from
a Gaifman representation of ϕ, such that ϕ is preserved under ≡ℓ

q,m, and then to isolate a

proper substructure A0  A that at the same time is ≡ℓ
q,m equivalent to some extension

Â ⊇ A, in any large enough model A. The actual argument in [3] involves a sophisticated
finite chain construction.
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5.2.3 Expressive completeness for homomorphism preservation

The connection between wideness criteria and bounds on the number (or size) of ⊆w-
minimal models, which is crucial according to Observation 5.6, is provided by the fol-
lowing theorem. It stems from the analysis of the boundedness problem for Datalog
programs (least fixpoint recursion over positive existential FO) over finite structures.

Theorem 5.10 (Ajtai–Gurevich). Let C be a class of finite τ -structures that is closed
under substructures and disjoint unions. If ϕ ∈ FO is preserved under homomorphisms
within C, then there are ℓ,m ∈ N such that no (ℓ,m)-wide model of ϕ can be ⊆-minimal.

The same applies w.r.t. wideness after removal of up to k elements, for fixed k.

Corollary 5.11 (Atserias–Dawar–Kolaitis). Over any class of finite structures that is
almost wide and closed under substructures and disjoint unions, existential positive FO
is expressively complete for first-order properties preserved under homomorphisms.

That minimal models cannot be too wide in the sense of Theorem 5.10, comes from a
Gaifman representation of ϕ. We sketch the argument that, for a first-order sentence ϕ
that is preserved under ≡ℓ

q,m and under homomorphisms (within C), there are L,M ∈ N
such that no (L,M)-wide model of ϕ can be ⊆w-minimal. More precisely, there are

• M , large enough w.r.t. L,Q, such that within any L-scattered subset of size M in
A |= ϕ we find some pair of elements a 6= b for which A, a ≡L

Q,0 A, b;

• L and Q, large enough w.r.t. ℓ, q, such that A, a ≡L
Q,0 A, b implies the following

transfer property for Gaifman rank (ℓ, q, 1)-assertions:

A ⇒ℓ
q,1 B := A↾(A \ {b}),

meaning that every sentence of the form ∃xχℓ(x) where qr(χ) 6 q that is true in
A remains true in B (A with b removed).18

M simply needs to be chosen large w.r.t. the number of quantifier-rank Q types of
single elements (in their L-neighbourhood) in order to guarantee the existence of distinct
but ≡L

Q,0 equivalent nodes by the pigeon-hole principle.

For such a and b, the desired transfer of ∃xχℓ(x)-assertions follows from ≡L
Q,0 equiv-

alence provided L > 2ℓ and Q large enough so that for all qr(χ) 6 q, the assertion

∃x′
(
d(x, x′) 6 ℓ ∧ χℓ(x′)

)
(∗)

is L-local and of quantifier rank 6 Q. Compare the diagram below for this proof sketch.
In the non-trivial case A |= χℓ[a′] for some a′ ∈ N ℓ(b), so that after the removal of b,
there is no guarantee that still B |= χℓ[a′]. Using ≡L

Q,0 equivalence between a and b,

though, (∗) is true of a if it is true at b. Hence there is a corresponding b′ ∈ N ℓ(a) such

18Note that this is a one-directional transfer rather than an equivalence. E.g., in a graph consisting
just of a large cycle, the removal of any single element results in a structure that is inequivalent in the
sense of ≡1

1,1.
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that A |= χℓ[b′]. So B |= χℓ[b′] follows, since the L-neighbourhood of a is unaffected by
the removal of b.

•
a

A

•b //
L

;
;
;
;

]]
ℓ
•a′ ⇒ℓ

q,1 •
ab′

B

◦b•

It follows that A ⊕m · B ≡ℓ
q,m m · B (with disjoint sums of m isomorphic copies of

B plus one copy of A on the left-hand side). Therefore, B |= ϕ is a smaller model of ϕ:

A
hom
−→ A ⊕m · B ≡ℓ

q,m m · B
hom
−→ B.

Expressive completeness of the existential positive fragment of FO for homomor-
phism preservation over the class of all finite relational structures – the finite model
theory version of the Lyndon–Tarski Theorem – has been shown by Rossman in [44].
His approach is based on a combinatorial analysis of existential positive types and satu-
ration arguments for these, which can be brought to a sufficient level of closure in a finite
chain construction. Leaving aside much of the actual sophistication of the combinatorial
analysis, there is one aspect of Rossman’s approach that may deserve to be highlighted
in connection with the leading themes of this survey. That is the manner in which the
new argument is based on explicit model construction (as opposed to an abstract model
existence argument), and can be viewed as an upgrading (not of an equivalence, but of
a unidirectional transfer relationship) to approximate first-order equivalence, which is
orthogonal to the classical argument. This is an interesting parallel with the observa-
tions in section 3.2.1. While a traditional proof of the Lyndon-Tarski Theorem can be
based on the upgrading indicated in the left-hand diagram, Rossman’s proof amounts to
the upgrading indicated in the right-hand diagram. In the traditional picture, transfer
w.r.t. the full existential positive fragment of FO is upgraded, in a classical saturation
argument based on compactness, to yield a homomorphism between structures that are
elementarily equivalent to the original ones. In the ‘explicit’ construction of Rossman’s,
on the other hand, a specific finite level of transfer (existential positive formulae of quan-
tifier rank up to r) is upgraded to a specific finite level of first-order equivalence that
preserves the given sentence ϕ.

A ⇒pos∃ //

≡

B

≡

A∗ hom // B∗

A ⇒r
pos∃

OO

retract

��

B
OO

retract

��

Â
≡q

ϕ B̂
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Moreover, Rossman’s proof has a classical variant, in which the chain construction is
extended to an infinite limit, that yields a completely new, alternative proof of the clas-
sical Lyndon–Tarski result with added value. In fact, Rossman shows that existential
positive FO is expressively complete for first-order sentences preserved under homomor-
phisms, level-by-level w.r.t. quantifier-rank. In the classical model theory version of his
proof, Rossman realises the above upgrading for r = q, while in the finite model theory
version there is no elementary bound on r in terms of q.

6 Concluding remarks

The focus on a model theory of well-behaved classes of (finite) structures – adapted to
specific application areas, or to the study of specific logics, or to other specific model
theoretic themes – offers promising perspectives for the development and ramification
of finite model theory. Finiteness as the only constraint, which often entails ‘negative’
results, may not be the best choice for many reasons.

It can be that the class of all finite structure is still not a good match for the
natural domain of reasoning for certain application areas; some model theoretic answers
– ‘positive’ or ‘negative’ – may still be ‘too easy’ over the class of all finite structures.
In modal reasoning, for instance, rootedness or connectivity constraints are arguably
essential in the intuitive modelling. More generally, the ‘generic finite structure that
we mean’ may well have more specific structural properties than an ‘arbitrary finite
structure.’

It can also be that the class of all finite structures is too liberal a setting for struc-
tural insights into certain issues. Definability and expressive completeness results, for
instance, that fail over the class of all finite structures may not just be recovered but
also clarified overall through a better understanding of the structural conditions that
support them. In this sense there is not just finite model theory, but there may be many
adequate domains of structures for individual issues.

I think both aspects are important from the modelling point of view (i.e., in relation
to applications), also clearly from an algorithmic point of view, but also from the point of
view of classical issues in model theory. Sophisticated adaptations of classical techniques,
like the analysis of types and the use of chain constructions in Rossman’s result, enrich
finite model theory but also cast fresh light on long-standing classical results. In this
context the constructive aspect of explicit model constructions or model transformations
– in contrast with smooth abstract existence proofs in classical model theory – is an
important methodological contribution.

It seems that the modularity in game-oriented arguments and model constructions,
as illustrated by the power of an analysis in terms of Gaifman locality, has had compara-
tively little impact on traditional classical model theory. The great potential of another
aspect of modularity, viz. decomposition techniques, has apparently been realised more
fully. The combination of such aspects may lead to a better model theoretic view of more
complex hierarchical decompositions in particular for finite structures; and there may
be more flavours of structural regularity, smoothness or tameness in finite structures to
be discovered.
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