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Abstract

We explore the finite model theory of the characterisation theorems for modal
and guarded fragments of first-order logic over transition systems and relational
structures of width two. A new construction of locally acyclic bisimilar covers pro-
vides a useful analogue of the well known tree-like unravellings that can be used for
the purposes of finite model theory. Together with various other finitary bisimu-
lation respecting model transformations, and Ehrenfeucht-Fraissé game arguments,
these covers allow to upgrade finite approximations for full bisimulation equivalence
towards approximations for elementary equivalence. These techniques are used to
prove several ramifications of the van Benthem-Rosen characterisation theorem of
basic modal logic for refinements of ordinary bisimulation equivalence, both in the
sense of classical and of finite model theory.
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1 Introduction

Model theoretic characterisation theorems provide direct links between semantics and
syntax. As assertions of the form

a property satisfies [a semantic condition] if and only if it is expressible in
[a syntactic class],

they express precise semantic-syntactic correspondences. Mostly they are relative to
some common syntactic-semantic backdrop, like first-order logic, where the above be-
comes

a first-order formula satisfies [a semantic condition] if and only if it is ex-
pressible in [a syntactic fragment of first-order logic].
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Classical model theory has many examples [5]; among them the correspondence be-
tween preservation under substructures and the universal fragment of first-order; preser-
vation under unions of chains and the Ils fragment of first-order; or monotonicity in a
predicate and positivity in that predicate.

Many of these correspondences do not translate into theorems of finite model the-
ory. It is known, e.g., that there are first-order sentences which over finite structures
are preserved under substructures, but are not equivalent to any universal first-order
sentence over finite structures, see [7]. For another failure, which is closer to our con-
cerns here, see also the remarks following Theorem 6 below. Note that the restriction to
finite models usually implies a weakening on both sides of the desired equivalence: the
semantic condition is only available over finite structures, but the syntactic form also
need only apply over finite structures. Also, if a classical characterisation theorem fails
as a theorem of finite model theory, it could of course still be that there is an alterna-
tive syntactic counterpart which would correspond to the semantic condition over finite
models.

A nice example of a characterisation theorem that holds both classically and as a
theorem of finite model theory is van Benthem’s characterisation of basic modal logic.
Here propositional modal logic is regarded as a fragment of first-order logic, interpreted
over Kripke structures or transition systems. Over a vocabulary consisting of binary re-
lations R (viewed as accessibility relations, transitions, or actions) and unary predicates
P (coding the basic propositions, or state properties), we regard the modal operators
[R] and (R) as relativised first-order quantifiers according to

([Rle)(z) =Vy(Rzy — ¢(y)),
((R)p) (z) =Ty (Rzy A o(y)).

The semantic condition which characterises modal logic as a fragment of first-order
logic is that of bisimulation invariance. Bisimulation equivalence is important as a
notion of behavioural equivalence between transition systems, or—more classically—as
the notion of equivalence induced by the appropriate variant of the infinite back-and-
forth Ehrenfeucht-Fraissé game whose moves capture the relativised pattern of modal
quantification.

The classical version of this characterisation theorem is the following, due to van
Benthem [18, 19]. We choose a formulation that highlights the harder direction of the
equivalence, namely the converse of the (easier) semantic preservation theorem.

Theorem 1 (van Benthem). Any first-order formula ¢(x) that is invariant under
bisimulation is equivalent to a formula of basic modal logic, and vice versa.

We let FO stand for first-order logic, ML for propositional modal logic. The above
characterisation theorem is then symbolically expressed as the equivalence FO/~ = ML,
which says that the logic ML precisely expresses those FO-properties that are invariant
under bisimulation equivalence, ~.

The finite model theory version of this characterisation result is not an immedi-
ate consequence of the classical version, since there are first-order formulae that are
bisimulation invariant over finite structures without being bisimulation invariant over
all structures. Trivial examples can be generated with the use of some infinity axiom.



Let for instance 1 be the first-order sentence that asserts that the binary relation R
is a linear ordering without maximal element. Then any formula i A ¢(z) is trivially
bisimulation invariant over finite structures, but not bisimulation invariant over infinite
structures if ¢(x) is satisfiable in any model of .

And indeed, the classical proof of van Benthem’s theorem makes use of compactness
and saturation techniques that crucially involve infinite models. The characterisation
itself, however, does go through in finite model theory, as shown by Rosen [17].

Theorem 2 (Rosen). Any first-order formula ¢(x) that is invariant under bisimulation
over finite structures is equivalent over finite structures to a formula of basic modal logic,
and vice versa.

While the elegant classical proof of Theorem 1 tells us nothing about the finite model
theory version, the rather more constructive argument given by Rosen does apply equally
to the classical version, thus providing a new proof there as well. For an alternative,
quite elementary and self-contained proof of the van Benthem-Rosen theorem see [14].
In a nutshell, this proof of the van Benthem-Rosen characterisation, which will also
point us in the right direction towards our present ramifications, goes as follows (also
compare section 2.5 and in particular Theorem 23).

Suppose ¢ = ¢(x) € FO is bisimulation invariant. Let the quantifier rank of ¢ be q.

By means of analysis of the g-round Ehrenfeucht-Fraissé game, one can show that
@(x) must be £-local around x for £ = 29—1; this means that whether or not ¢ is satisfied
in 2, a only depends on the substructure induced on the nodes whose distance from a
is at most £ (see section 2.4). In fact ¢-locality even follows from just invariance under
disjoint unions of transition systems, which itself is a trivial consequence of bisimulation
invariance (Lemma 20).

It is a simple observation about bisimulation that ¢, being invariant under bisimula-
tion and f-local, must then actually be invariant under /-bisimulation, the level £ finite
approximation to full bisimulation (cf. section 2.2 for bisimulation and ¢-bisimulation).
As a consequence of this, ¢ is finally seen to be equivalent to a modal logic formula of
nesting depth £ =29 — 1.

Contrast this with the classical proof, which essentially proceeds indirectly, deriving
a contradiction based on a compactness argument. Assuming that ¢ is bisimulation
invariant but not expressible in modal logic at any nesting depth ¢, compactness yields
models 2, a and B,b that are indistinguishable in modal logic (i.e., ¢-bisimilar for all
finite ¢) but with 2, a = ¢ whereas B,b |= —p.

Further passing to sufficiently rich elementary extensions of 2, a and B, b, respec-
tively, one arrives at a situation in which moreover modal indistinguishability implies
full bisimilarity: a contradiction, as by bisimulation invariance of ¢, bisimilar structures
must not be distinguished by .

The classical proof does not go through in the sense of finite model theory, because it
relies on classical theorems and model constructions that are not available in restriction
to just finite structures. The game based arguments in the alternative proof, however,
go through classically as well as in restriction to finite structures. That proof is also
more constructive and yields a bound on the nesting depth of the target formula, which
in this case is even optimal.



For our new characterisation results we introduce similar techniques that work clas-
sically as well as in restriction to finite models.
They deal with natural refinements of ordinary bisimulation equivalence:

~ two-way bisimulation (with backward as well as forward moves along edges).
— global bisimulation (with jumps to any fresh start state).

— global two-way bisimulation (both of the above).

— guarded bisimulation (free moves to overlapping or non-overlapping edges).

These lead to characterisations of more expressive modal and guarded fragments of
first-order logic, as indicated in the theorems below. In their naturalness they illustrate
the robustness of the close Ehrenfeucht-Fraissé correspondence between these variants
of bisimulation and modal or guarded quantification patterns. They also illustrate the
unusually smooth transition between classical and finite model theory of modal logics.

While we here state the theorems as theorems of finite model theory, with the proofs
given they apply equally well in the classical context. The two latter theorems can also
be stated for sentences rather than for formulae in one free variable. For the precise
definitions of the fragments of first-order involved, as well as for the corresponding
notions of bisimulation invariance, we refer to the main part of the paper.

Theorem 3. Any first-order formula p(z) that is invariant under two-way bisimulation
in finite structures is equivalent over finite structures to a formula of modal logic with
inverse modalities [R] ™, and vice versa.

Theorem 4. Any first-order formula ¢(x) that is invariant under global bisimulation
in finite structures is equivalent over finite structures to a formula of modal logic with
universal modality (V), and vice versa.

Theorem 5. Any first-order formula o(x) that is invariant under global two-way bisim-
ulation over finite structures is equivalent over finite structures to a formula of modal
logic with inverse and universal modalities, and vice versa.

Theorem 6. Any first-order formula ¢(zx) in a purely relational vocabulary of width
2 that is invariant under guarded bisimulation over finite structures is equivalent over
finite structures to a formula of the guarded fragment of first-order logic, and vice versa.

It should be noted that the guarded fragment, GF, over a vocabulary of width 2 can
(for formulae with no more than two free variables, that is) also be embedded into the
2-variable fragment of first-order logic, FO2. Interestingly, the classical characterisation
theorem of FO?—as the 2-pebble game invariant fragment of first-order logic—is known
to fail in the context of finite model theory. Indeed, the first-order sentence (in three
variables) that says of a binary relation R that it is a linear order of the universe, is
invariant under 2-pebble game equivalence in restriction to finite structures (but not
in general)—and it is easy to see that no first-order sentence with just two variables is
equivalent to it over all finite structures. Compare also [3], and, e.g., Example 1.12 in
[13].

Whether the characterisation in Theorem 6 extends to vocabularies of widths greater
than 2 remains open.



The proofs of the new characterisation theorems extend the alternative proof ideas
sketched for the van Benthem-Rosen theorem above. They are based on the underlying
Ehrenfeucht-Fraissé and bisimulation games, and essentially revolve about the idea of
upgrading corresponding levels of ¢-bisimulation to levels of approximate, local elemen-
tary equivalence that are sufficient to preserve the given first-order . This is achieved
in model constructions that are also applicable in restriction to finite structures, and
respect full bisimulation equivalence while giving local control over first-order properties
by making structures locally acyclic. The following serves as a technical cornerstone in
these model constructions; for a full statement and the proof compare Proposition 29 in
section 3.

Theorem 7. Every finite transition system admits, for every k > 3, a finite globally
two-way bisimilar companion that is k-acyclic (has no cycles of lengths less than k).
For fized k, the increase in size can be polynomially bounded.

This provides graded analogues, in finite structures, of the well-known but generally
infinite acyclic companions obtained as tree unravellings, which play an important role
throughout the model theory of modal logics.

Plan of the paper Section 2 firstly reviews some basic definitions; a discussion of
the specific differences between our proofs, that work for finite model theory as well as
in the classical case, and the classical proof follows in section 2.3; a crucial concept in
this context is that of upgrading equivalences (Definition 14); in section 2.4 we review
Gaifman locality, with specific ramifications for our purposes, and derived levels of local
first-order equivalence, to which we will upgrade finite bisimulation levels; Lemma 22
provides a generic road map for all our proofs of characterisation theorems; section 2.5
discusses the variant proof of the van Benthem-Rosen characterisation in the light of
this approach.

The major contribution in terms of finite model constructions is presented in sec-
tion 3, where the locally acyclic covers are obtained (Theorem 7). This will allow us
to upgrade bisimulation equivalence to local first-order equivalence in globally bisimi-
lar companion structures; the corresponding technical upgrading results are presented
in section 4. In section 5 these are applied to prove the main modal characterisation
theorems, Theorems 4 and 5. Section 6 finally extends the entire development of the
previous sections to the level of guarded bisimulation invariance over finite transition
systems, including the proof of Theorem 6.

2 Preliminaries and basic definitions

Structures We look at purely relational structures with only unary and binary pred-
icates, often with one distinguished element. Our vocabulary 7 will always be finite,
relational and of width 2. Writing 7 = 7" U7® for a vocabulary, it is understood that
7 consists of the i-ary predicates in .

This format is suitable for rendering transition systems. In this picture, elements of
a 7-structure are the states; the unary predicates correspond to the basic propositions:
a basic property ¢ holds true of a state s if s € F; the binary relations code transitions



between states: (s,t) € R; means that there is a transition of type 4 from state s to state
t, or that an action 4 can transform state s into state ¢. Equally well, we may think of
a 7-structure as a Kripke model, with the elements now being possible worlds and the
binary relations accessibilities between worlds. Equally well, again, we may just think
of edge- and vertex-coloured directed graphs.

-structures are represented as in A = (A4, (R*) pe, @, (P®) per)), where typically A
stands for the universe of 2. The superscripts in the interpretations of predicates R as
R and P as P% are often dropped. Where we want to refer to a distinguished element
we indicate this element explicitly as in 2, a. Although we are mostly interested in finite
model theory, all our considerations equally apply to infinite structures. We therefore
adopt the convention to mention finiteness explicitly where it matters.

2.1 Some logics

We denote first-order logic as FO, elementary equivalence as =. The quantifier rank of
first-order formulae is defined as usual, and =, stands for elementary equivalence up to
quantifier rank ¢, or equivalence in the classical ¢g-round Ehrenfeucht-Fraissé game (see
for instance [8, 7, 16]).

Basic modal logic Propositional modal logic, in its basic form which we denote ML,
is based on atomic propositions ¢ (associated with P,), the usual boolean connectives,
and the modal operators [R] and (R) (associated with R). For general background we
refer to the comprehensive textbook [4]. We here present the syntax in the first-order
framework, so that the semantics is just the usual one for first-order.

Syntaz. The formulae of ML over vocabulary 7 = 7 U 7® are generated as follows:

— for every unary predicate P in 7" and first-order variable z, Pz is an atomic
formula of ML[7].

—if p(z) is a formula of ML[7] then so is —p(z).

— if o1 (z) and @y(z) are formulae of ML[7] in the same free variable z, then so are
p1(z) A p2(z) and @1 (z) V @2(z).

— for a binary relation R € 7 if ¢(y) is a formula of ML[7] in the free variable y
and if z is any first-order variable distinct from y, then the following are formulae of
ML[7] (where we regard the left-hand sides as abbreviations):

([Rle) () =Vy(Rzy — ¢(y)),
((R)p) (z) =Ty (Rzy A o(y)).

Semantics. The semantics for ML is the usual one for first-order logic.

The guarded fragment The guarded fragment GF extends the modal quantification
pattern to a more general form of relativised first-order quantification. As in modal logic,
the relativisation is effected by ground atoms. Some of the power of the generalisation
from ML to GF is seen only over vocabularies of width greater than 2, where ground
atoms can cover more than two elements. We present the syntax in the general format
of arbitrary relational vocabularies, but keep in mind that we shall only deal with GF
in the setting of width 2 vocabularies where the similarity with ML is closer. GF was



introduced by Andréka, van Benthem and Németi in [2], as a powerful yet tractable
generalisation of ML, compare in particular also [10].

Syntaz. The formulae of GF over vocabulary 7 = 7Y U 7® are generated as follows:

— all atomic 7-formulae are formulae of GF[r].

— GF[7] is closed under the boolean connectives =, A and V.

—if (z,y) is a formula of GF|[r] and if a(%z,y) is a T-atom (also allowing equality)
such that free(¢) C var(«), then the following are formulae of GF[7] (where we regard
the left-hand sides as abbreviations):

(Vi.o) o(Z,7) =Vi(a(Z,§) = ¢(Z,7)),
(Fg.0)(z,7) =Ty (a(z,7) A o(Z,7)).

The atom « in the last clause is called the guard of the (universal or existential)
quantification. It is useful to associate with a formula ¢ of GF a nesting depth of
guarded quantification, which turns out to be more indicative than its plain first-order
quantifier rank. The nesting depth behaves like quantifier rank on atomic formulae
and with respect to boolean connectives; however, it increases by just 1 with every
guarded quantification (whereas ordinary quantifier rank would go up by the length of
the quantified tuple).

Semantics. The semantics for GF is the usual one for first-order logic.

Clearly ML C GF. The inclusion is proper even in the case of width 2 vocabularies.
In particular, GF has equality, so that, e.g., the following is in GF (but clearly not in
ML):
Yy(Rry — = = y).
Equality can also be used as a guard, whence GF has global universal quantification

over any formula (y) in a single free variable:

Yyly=y — o(y)).

In modal logics this feature is associated with a global modality, whose accessibility
relation is the full binary relation over the universe.

In similar terms, GF has what in modal logics would correspond to inverse modalities,
simply because the guard atoms « have no sense of direction,

Vy(Ryz — ¢(y))

is a formula of GF just as Vy(Rzy — ¢(y)) is.

Modal logic with inverse and universal modalities Common extensions of basic
modal logic go some way towards capturing the two last features of GF mentioned above.

Universal modality. Extending the syntax of ML, we close under universal and existential
quantification, and allow all formulae without free variables as additional constituents
for the boolean operations and modal operators.



Inverse modalities. Further extending the syntax of ML, we also allow modal operators
w.r.t. to the inverses of the binary relations R:

([R] @) (z) =Vy(Ryz — ¢(y)),
((R)~¢) (z) =3y (Ryz A o(y)).

Definition 8. We denote as ML, ML, ML’, and ML Y, respectively, basic modal logic
and its extensions with inverse modalities, universal modality, and both.

The inclusion structure is as indicated in the following diagram. It is easy to see that
all inclusion are strict, even in restriction to finite structures. Separations, from top to
bottom, in terms of properties of a single binary R, and treating T as universally true
propositional constant: transitivity is known not to be expressible in GF; reflexivity,
VzRzz, is in GF but not in ML ¥; VzdyRzy = V(R)T is in MIY (and ML 7) but not
expressible in either ML or ML ; JyRyr = (R)"T is in ML. (and ML) but not
expressible in ML or MIY.

FO
\
GF
|
ML
ML MLy
N
ML

2.2 Bisimulations

Modal bisimulations Bisimulations capture notions of behavioural equivalence be-
tween transition systems. They can equivalently be presented either in terms of games
or in terms of back-and-forth systems. It is instructive to think of bisimulation as the
Ehrenfeucht-Fraissé style notion of equivalence associated to modal logics.

Many variations of the basic notion of plain bisimulation equivalence have been con-
sidered. We here only deal with plain bisimulation equivalence (in which, starting from
a distinguished state, one can make forward moves along transitions) and its variation
involving unrestricted moves to fresh start states (cf. global modality) and backward
traversal of transitions (cf. inverse modalities). The standard definitions in terms of a
back-and-forth system are based on the following. A description in terms of games will
be given below.

Let Z,Z' C A x B, A and B sets equipped with binary relations R* and RZ,
respectively. We say that 7’ satisfies the back-and-forth conditions with respect to R
for 7 if



(forth:) for any (a,b) € Z and any a' € A such that (a,a’) € R*, there is some ¥’ € B
such that (b,d') € R® and (a',b') € Z'.
(back:) for any (a,b) € Z and any b’ € B such that (b,d') € R®, there is some o’ € B
such that (a,a’) € R* and (d',b') € Z'.

7 itself satisfies the back-and-forth conditions with respect to R if the above are
satisfied for Z' = Z.

Definition 9. Let 2 and B be 7-structures, Z C A X B non-empty.

7 is a bisimulation between 2 and 9B if (a,b) € Z implies that A = Pa < B = Pb, for
all unary P € 7, and if Z satisfies the back-and-forth conditions w.r.t. all the binary
predicates R of 7. In symbols: Z: A ~ B.

Z is a two-way bisimulation if in addition Z satisfies the back-and-forth conditions w.r.t.
the inverses R~' for all binary predicates R € 7. In symbols: Z: A ~ 8.

An (ordinary or two-way) bisimulation Z between 2 and B is a global bisimulation, if in
addition m1(Z) = A and m2(Z) = B. In symbols: Z: A ~y B or Z: A =~ B, respectively.

Two structures are bisimilar in the corresponding sense, A ~ B, A ~— B, A ~, B,
or 2 = B, if there is a corresponding bisimulation. Two structures with distinguished
nodes are bisimilar in the corresponding sense, indicated as in A, a ~ B, b, if there is a
corresponding bisimulation Z such that (a,b) € Z.

It is not hard to see that the semantics of ML is invariant under bisimulation, in the
sense that for all ¢ in ML:

A,a~B,b = (MalEp & B,bE o).

Similar preservation properties obtain for ML , MIY, ML Y, with respect to ~-, ~y,
and =, respectively.

Unravellings and tree models Among the most central model theoretic conse-
quences of bisimulation invariance, is that it guarantees the existence of tree models.
The well-known tree unravelling of a transition system yields a bisimilar companion
structure that is a tree.

Let 2, a be a transition system of type 7 = 7 U 7. Tts tree unravelling from a,
20>, is based on the set of all finite directed paths from a in 2, including the empty path
of length 0 from a which we identify with a itself. If 0 = a,a1,...,ay is a path in 2 of
length ¢ we let w(0) = ay be the last vertex along this path. For P € 7V, we put o € P
in 2 iff m(0) € P*. R € 7 is interpreted in 2’ as the set of all pairs (0,0"b) where
(m(0),b) € R®. Tt is readily checked that in this way 2,0 ~ 2, 7(o) for all o, ie., T
induces a global bisimulation so that in particular 2}, a ~y 2, a.

Similarly, for acyclic two-way bisimilar companions, one can use a two-way unravel-
ling, based on the set of all undirected non-degenerate paths from a (paths that may tra-
verse edges in either direction, excluding, however, traversals of the same edge in oppo-
site directions in consecutive steps). The unary predicates are interpreted as above, and
R € 7@ is interpreted as the set of all pairs (o,0"b) where (7(0),b) € R* and all pairs
(0°b,0) where (b, 7(0)) € R®. Then A%, 0 ~ A, 7(c) and in particular 2%, a ~ 2, a.



Note that in both cases, the unravelling is infinite if the original system does have
(directed, respectively undirected) cycles; hence the interest in certain substitutes for
full tree unravellings that provide finite companions with some measure of acyclicity
that will concern us in section 3.

Guarded bisimulations Guarded bisimulations are the adequate counterparts to
bisimulations in the context of GF. Quantification in GF allows direct access only to
the following tuples and subsets over a 7-structure .

Definition 10. Let 2 be a 7-structure, 7 relational. A subset s C A is guarded if s is
a singleton set s = {a} for some a € A, or if s = {a1,...,ar} where (a1,...,a;) € R
for some relation R € 7. A tuple a over 2 is guarded if its components are elements of
some common guarded subset.

Note that in vocabularies of width 2, guarded subsets have one or two elements;
two-element guarded subsets correspond to symmetrised relational edges (or edges in
the Gaifman graph, see below).

Let Z, 7" C Part(2, B) be sets of partial (local) isomorphisms between 7-structures
2A and B. We say that Z’ satisfies the guarded back-and-forth conditions for Z if

(forth:) for any p € Z and any guarded subset s’ of 2, there is some p’ € Z' with
dom(p') = s’ such that p and p’ agree on their common domain.

(back:) for any p € Z and any guarded subset t' of 9B, there is some p’ € Z' with
im(p') = ¢’ such that the inverses of p and p' agree on their common domain.

7 itself satisfies the guarded back-and-forth conditions if the above are satisfied for
Z'=7Z.

Definition 11. Let 2 and B be 7-structures, Z C Part(2(,®8) a non-empty set of local
isomorphisms between 2l and 5.

7 is a guarded bisimulation between 2 and B, Z: A ~, B, if for every p € Z, the
domain and image of p are guarded subsets of 2 and B, respectively, and if Z satisfies
the guarded back-and-forth conditions.

We write Z: 2,a ~, B,b to indicate that p: @ — b for some p € Z. Note that this
implies that we are dealing with parameter tuples that are guarded.
The semantics of GF is invariant under guarded bisimulations. For all ¢ in GF:

A,a ~; B,b = (MafEe & B,bE= )
Similar to the modal case, there is a characterisation theorem for GF, [2].

Theorem 12 (Andréka, van Benthem, Németi). Any first-order formula ¢(Z) that
is invariant under guarded bisimulation is equivalent to a formula of GF, and vice versa.

Our investigations here will culminate in the proofs of Theorems 3, 4, 5 and 6.
These various levels of bisimulation invariance discussed so far precisely correspond to
the naturally associated syntactic fragments of first-order logic, level by level, over all
but also in restriction to just finite transition systems.
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FO/~=ML"
FO/~- =ML FO/~y, = ML’
FO/~ = ML

Bisimulation games The above notions of modal and guarded bisimulation can nat-
urally be captured by Ehrenfeucht-Fraissé games. We only give a brief outline.

The ordinary modal bisimulation game on 2 and ‘B is played by two players, Player
I and Player II. There are two pebbles, one for each structure, which throughout the
game mark one element in each structure. It is Player II’s task to maintain the condi-
tion that the correspondence between the currently marked elements preserves all the
unary predicates. In a play on 2, a and B,b, the pebbles are initially placed on the
distinguished nodes a and b.

In each round of the game, Player I selects one of the two structures and an R-edge
that goes out of the node currently pebbled in that structure, for one of the binary
relations R, and moves the pebble along that edge. Player IT has to match this move
in the opposite structure, by moving the pebble in that structure along an R-edge
(the same R) to a node such that the new correspondence again preserves all unary
predicates. A player who cannot move, loses the game; otherwise, i.e., if the game
continues indefinitely, Player II wins the infinite game.

It is easy to see that a bisimulation Z: 2, a ~ B, b is nothing but a formalisation of
a winning strategy for Player IT in the infinite bisimulation game on 2, a and B, b.

The variations for global or two-way bisimulation are obvious. The “two-way” re-
quirement corresponds to giving Player I the option to move a pebble backwards along
some R-edge, in which case Player IT has to do likewise; the “global” requirement means
that Player I can also choose to make a move in which the pebble may be taken to any
node, not just along an edge, in which case Player II similarly may move anywhere in
the opposite structure. It is not hard to see, though, that without loss of generality one
may restrict this choice of making a global move to just the first round of the game,
without affecting the existence of a winning strategy.

For the guarded bisimulation game one uses two labelled sets of pebbles, one for
each structure. In each structure, these pebbles will always be placed on elements inside
some guarded set, i.e., mark a guarded tuple. It is Player II’s task to make sure that
the correspondence between pebbled tuples always is a local isomorphism.

In each round, Player I can determine in which structure to play and also how many
of the currently placed pebbles to keep fixed, and how many of the others to place—with
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the only constraint that the new pebble configuration must again be guarded. Player
I1, in the opposite structure, needs to keep fixed the pebble(s) corresponding to those
that Player I kept fixed and must place pebbles corresponding to those placed by I so
as to achieve a correspondence that is a local isomorphism. In our setting of relational
structure of width 2, the guarded game really only needs two pebbles over each structure.

Finite approximations Beside strategies in the infinite bisimulation games one can
also consider strategies in corresponding games with a fixed finite number ¢ of rounds.
Player II wins any play in which ¢ rounds are completed. The ¢ round games induce
finite approximations to full bisimulation equivalence, at successively refined finite levels
/e N

At level ¢, £-bisimulation captures the situation where the second player has a win-
ning strategy for £ rounds of the respective bisimulation game. We denote these approx-
imations by superscripts as in ~¢.

In each case, the relationship between /-bisimulation and bisimulation is analogous to
that between ¢-isomorphism (cf. £-round classical Ehrenfeucht-Fraissé game) and partial
isomorphism (infinite Ehrenfeucht-Fraissé game).

In terms of back-and-forth systems, an £-bisimulation between 2( and 95 consists of
a sequence Zy, Z41,...,Zp of non-empty sets, where each Z; | has the back-and-forth
property for Z;. We call such systems stratified back-and-forth systems of depth £. The
obvious variations capture the finite approximations of ~-, ~y, =, and ~,.

~ Lt
& g
i with finite p
=~ approximations ~
/ \ at level / / \
N\ / X Nf\ / )
~ iy

The corresponding Ehrenfeucht-Fraissé and Karp theorems are summed up in the
following. Let = stand for any one of the full back-and-forth Ehrenfeucht-Fraissé style
equivalences, as captured by the existence of a strategy for the second player in the
infinite game or by a corresponding back-and-forth system: ~,~-, ~, ~,~,. Let =t
be the corresponding /-approximation, captured by strategies in the /-round games or
a stratified back-and-forth system of depth £: ~f, ~¢, Né, ~ Né

For the logics £ = ML, ML, MLY, ML ¥, GF let £ stand for the fragment of formulae
of nesting depth up to £. We let =, stand for the logical equivalence induced by formulae
in £

Aa=p B,b iff forallpeLl: AEgla] & AE gla).

For the full (infinite game) equivalences =, we correspondingly look at logical equiv-
alences induced by the infinitary variants of these logics. Let L4 stands for the extension
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of £ that allows arbitrary (finite or infinite) conjunctions and disjunctions.
Aa=, B,b iff forallpe Lo: AEplal & AE plal

With each of the above readings for =, =" =;_, =, we have the following equiva-
lences, for all structures 2, a and 8, b, and all £:

A,a = B,b & A,a =, B,b
Aa =t B,b & A,a =, B,b

While the second equivalence is the corresponding variant of the Ehrenfeucht-Fraissé
theorem, the first equivalence corresponds to the classical theorem of Karp that asso-
ciates partial isomorphism ~, with equivalence in Ly,.

Full (finitary) L-equivalence, =, is captured by the common refinement of the finite
levels =, for all / € N. On the side of the games, let =“ stand for the equivalence
induced by the existence of strategies for Player II in all bounded games of finite lengths;
=Y =), =" the least common refinement of the =*. Note that all the equivalences
=,¢ and =, in question are coarser than elementary equivalence =, and hence captured
by first-order theories and preserved in model constructions that respect elementary
equivalence. Classical model theory in particular provides for elementary extensions
that are sufficiently saturated to realise all (first-order theories of) finite configurations
that are not explicitly forbidden by the first-order theory of a given structure: so-called
w-saturated models. While we do not need to go into these any further it is interesting to
observe the purpose these can serve in classical proofs of preservation theorems like ours.
Over w-saturated structures, = coincides with =. Thus, while the infinitary levels of
game equivalence—corresponding to equivalence in L,—are not in general first-order,
they can be harnessed by first-order means in w-saturated models.

Over finite structures, however, the fact that =“ coincides with = follows more
constructively, as a consequence of a simple cardinality argument as follows. Over any
two individual finite structures the sequence of refinements =% D =! D =2 D ... must
become stationary at some finite level £, and it follows that in restriction to these two
fixed structures even = captures <.

As in classical Ehrenfeucht-Fraissé analysis, one finds that over the class of structures
of fixed finite relational vocabulary 7, and for each /¢, the respective equivalence relation
="' has finite index. Furthermore, each =’ equivalence class is definable by a formula
of £, i.e., in the corresponding fragment of first-order logic at nesting depth £.

2.3 Characterisation theorems and their approximations

The classical characterisation theorem, Theorem 1, as well as its variants for the other
fragments and equivalences including Theorem 12 for GF, have £-approximations, which
establish level-by-level correspondences between invariance = (£-bisimulations of the
respective kinds) and L-formulae of nesting depth £. It should be stressed that these
approximations do by no means prove the full characterisation theorems. Unlike the
full characterisation theorems, their f-approximations admit simple inductive proofs,
in complete analogy with classical Ehrenfeucht-Fraissé analysis. Also unlike the full
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characterisation theorems, the f-approximations are trivially valid also in restriction to
just finite structures.

This suggests the following perspective on proving the classical characterisation the-
orems in a manner that is potentially valid in finite model theory. We let = stand for
one of the bisimulation notions considered above, or indeed any other back-and-forth
equivalence that has corresponding finite approximations =¢ at finite levels £ .

Observation 13. Let = have finite approzimations =, ¢ € N. Assume that each =’
has finite index for every fized finite relational vocabulary. Let L = |J, Lt be a logic,
each stratum L' closed under disjunctions. Assume that each L' is invariant under =*
and that each =‘-class is definable by a formula of L.

Then the following are equivalent, both in the sense of classical model theory and of
finite model theory:

(i) Every first-order formula that is =-invariant is invariant under = for some (.

(11) Every first-order formula that is =-invariant is equivalent to some formula in L.

Note that the f-approximations to a characterisation theorem that links £ to =-
invariance directly follow from the assumptions of the observation: a property is defin-

able by a formula, of £¢ if and only if it is invariant under <.

Proof. (ii) = (i): ¢ “-invariant implies ¢ is equivalent to some ¢ € £ by (ii); if ¢ € LY,
we find that 1, and therefore ¢, is invariant under =".

(i) = (ii): ¢ =-invariant implies that ¢ is invariant under =* for some # by (i). Then
¢ is equivalent to the disjunction over the L£/-formulae defining those =’ equivalence
classes whose members are models of ¢. This disjunction is finite, since =¢ has finite

index. O

In the light of this observation, the crux of the proof of a characterisation theorem
FO/= = L—both classically and in finite model theory—lies in establishing condition
(i) of Observation 13.

Classically, this condition is established indirectly using compactness and sufficiently
rich (w-saturated) models, over which =% (simultaneous =* equivalence for all finite ¢)
coincides with full = equivalence. l.e., classically one relies on model constructions that
allow us to upgrade =¥ to = while preserving ¢ € FO.

Here, on the other hand, we proceed orthogonally. We now look at finitary model
constructions that fully preserve = (and therefore any =-invariant ¢) and allow us to
upgrade =, for a specific level £, to some approximation = of elementary equivalence
= that is strong enough to preserve (.

Definition 14. Let =’ and = be equivalence relations between T-structures, = a
refinement of =*. We say that =’ can be upgraded to = modulo = (in finite structures)
if for any two (finite) A, a =t 9B, b there are (finite) A, a = A, a and B, b = B, b such
that A, a = B, b.
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A a = B, b
A, = B, b

With this intuition, our proofs of the crucial condition (i) in Observation 13 proceed
as follows. For a given =-invariant ¢, we determine a suitable approximation = of
full elementary equivalence such that ¢ is preserved under = for essentially syntactic
reasons, and a finite level £ such that = can be upgraded to = (in finite models) modulo
=. This implies that ¢ is =‘-invariant, straight from the diagram.

The appropriate levels of = for this argument are obtained from a Gaifman repre-
sentation of the given FO-formula ¢; the relevant ¢ will essentially be the locality rank
of ¢ in the sense of Gaifman’s locality theorem (see below).

For all ramified cases of modal characterisation theorems, i.e., all cases with the
exception of the van Benthem-Rosen theorem itself, the actual upgrading result will re-
volve around combinatorial constructions of certain ‘nice’ =-equivalent finite companion
structures, over which FO can locally be controlled. These will be provided in section 3
in the form of locally acyclic covers.

2.4 Locality

Recall that the Gaifman graph G(2() of a relational structure 2 = (4,...) is the sym-
metric graph with universe A and edges linking any two distinct elements of A that
occur together in a common ground atom of a relation in . Gaifman distance d on A
is the metric induced by ordinary graph distance in G(2l).

Definition 15. Let 2 be a relational structure.
(a) The neighbourhood of radius £ about a in A is the subset
N¥a) = {d' € A: d(a,a") < £}.
(b) A set of elements in 2 is £-scattered if the mutual distance between any two distinct
members of the set is greater than 2/.

The £-neighbourhoods of any two distinct members of an /-scattered set are disjoint.
Gaifman distance d is first-order definable, for every fixed finite relational signature,
in the sense that for every ¢ there is a first-order formula expressing that d(z,y) < 4.

Definition 16. (i) A formula ¢ (z) is £-local if it is logically equivalent to its relativi-
sation to N¥(z).

(ii) A basic £-local sentence is one that asserts the existence of an £-scattered set of m

elements z all of which satisfy the same ¢-local formula ¢ (z), for some m and .

(iii) A first-order formula ¢(z) is in Gaifman form if it is a boolean combination of
local formulae and basic local sentences.

(iv) The locality rank of a formula in Gaifman form is the minimal £ such that all
its constituent local formulae (including those occurring in basic local sentences)
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are f-local. Tts local quantifier rank is the maximal quantifier rank in any of the
constituent local formulae; its scattering rank is the maximal size of a scattered
set asserted in any of its constituent basic local sentences.

\ simple local sentence is a sentence in Gaifman form of scattering rank 1; i.e.,
A le local sent t Gaif fi f scattering rank 1
one that asserts the existence of an element z satisfying some local formula ) (z).

Note that, due to definability of Gaifman distance, ¢-local formulae p(z) are equiv-
alent to formulae whose quantifiers are explicitly relativised to the /-neighbourhood of
x; and simple £-local sentences are equivalent to existentially quantified formulae of this
kind.

Gaifman’s theorem [9] says that first-order logic is essentially local.!

Theorem 17 (Gaifman). Any first-order formula ¢(x) is equivalent to one in Gaifman
form.

We shall mostly apply Gaifman’s theorem in more specific circumstances. The crucial
specialisations for our purposes deal with formulae whose semantics is invariant under
disjoint sums (unions). We write 2 + B for the disjoint sum of two structures 2 and B
over the same purely relational vocabulary 7. We also write ¢ - 2 for the ¢-fold direct
sum of 2 with itself. We usually regard 2 itself as a substructure of 2 + B and ¢ - 2,
and use notation like 2 + B, a for parameters a from 2. Note that A + B ~ 2, and
q-A~Aas well as g - A ~, A (also with parameters from ).

Definition 18. A 7-formula ¢ is
(i) invariant under disjoint sums (meaning: with arbitrary other 7-structures) if for
all A,a and B: Aal=p & A+B,a = p.
(ii) invariant under disjoint copies (meaning: of the same 7-structure) if for all 2, a
andg>1: AalFEep & qg-Aalk e

Clearly, bisimulation invariance implies invariance under disjoint sums, while invari-
ance under global or guarded bisimulation implies invariance under disjoint copies. The
following specialisations of Gaifman’s theorem can therefore be brought into play.

In the context of classical model theory and with a view to combinatorial applica-
tions, Compton [6] has—independently of Gaifman [9]— obtained several closely related
results, which interestingly moreover also anticipate the idea of guarded quantification.

Proposition 19. Both in the sense of classical and finite model theory:
(a) If ¢ = p(x) € FO is invariant under disjoint sums, then @(x) is local about x.
(b) If ¢ = @(x) € FO is invariant under disjoint copies, then ¢ is equivalent to a
boolean combination of local formulae about © and simple local sentences.

Proof. We explicitly prove these statements in their reading for finite model theory. The
classical case follows exactly the same lines. We use 1)1 =g, 12 or 91 =g, 92 to explicitly

!We state the special case for formulae in one free variable. The theorem holds for formulae in
arbitrary free variables, but one has to admit slightly more general local formulae in the free variables.
These are required to be equivalent to their relativisation to the union of f-neighbourhoods around all
their free variables, for some /.
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indicate the restriction to just finite models, of semantic implication and bi-implication
between formulae.

(a) Assume that over finite structures, ¢(z) is invariant under disjoint sums. According
to Gaifman’s theorem, ¢ is equivalent (over all structures) to a formula of the form

p(z) = \/ (eh(x) AX),

)

where the () are £;-local about z and the x* are boolean combinations of basic local
sentences such that without loss of generality

(i) every ¢f(z) A X’ is satisfiable.
(ii) any two distinct o} (z) are mutually exclusive.

We may delete any disjuncts ¢} (z) A x* that have no finite models, and still retain a
formula that is equivalent to ¢ over all finite structures, where even

(i) every wh(x) A X' is satisfiable in a finite model.

We claim that then necessarily

0(2) =an \/ o (2).

Clearly ¢(z) Ean V; ¢ (z). Conversely we show that also \/; ¢} (z) Ean (7).

Let to this end 2, a | V; ¢} (z) be a finite model of \/, ¢} (z). From (i’) we obtain
finite models B;,b; = ¢} (z) A x*. Note that this implies B;,b; = ¢(z). Let B be the
disjoint union of the %8; and 2. From invariance under disjoint sums we get B8, b; |= ¢(z)
for each i. As B,b; = —p)(z) for all j # i by (ii), inspection of ¢(z) shows that
necessarily B,b; = ¢} (z) A x* for each i. Therefore B = A; x*. So B,a =\, p(z) A
A; X'. The latter formula clearly implies (). So B,a = ¢(z), and using invariance
under disjoint sums again, also 2, a = ¢(z).

(b) Let ¢(z) be invariant under disjoint copies over finite structures. Using Gaifman’s
theorem we obtain a presentation of ¢(z) of the following form:

o(@) =o V(¥ AV (68 (2) A X))
i J
where
(i) the formulae goéj (x) are local about z.

(ii) the sentences x*/ are boolean combinations of basic local sentences talking about
scattered sets of size greater than 1.

(iii) the sentences v’ are complete boolean combinations of all formulae of the form
Jyp(y) where p ranges over all the local formulae that occur in any of the v or

X"
(iv) Any two 9" and 9" are mutually exclusive for i # i'.
(v) For every i: <péj () and (péj , (z) are mutually exclusive whenever j # j5'.

(vi) For every i,j: ¢¢ A ((pf]j (z) A x*) is satisfiable in a finite model.
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We consider ¢'(z) :=\/ j ((péj (z) A ') in restriction to models of 4", and claim that
YA Q) Zqan PP A \/ o (z).
J

Clearly this proves the claim of part (b). Moreover, the left-hand side clearly implies
the right-hand side. For the converse implication let 2, a = ¢* A/, ¢ () be a finite
model of the right-hand formula. We need to show that 2, a = ¢’. Choose ¢ € N to
be greater than the cardinality of any scattered set mentioned in the xX“. By (vi) we
find finite models B,,b; = ¢' A g (z) A xY. As B;,b; E ¢(z) and by invariance of ¢
under disjoint copies, we have ¢ -B;,b; = ¢(z). Clearly still ¢ -B;,b; |= *. Therefore,
q-Bj,bj E ¢'(z) and as clearly also still ¢ - B;,b; = goéj(:c), condition (v) implies that
q-B;,b; E x“. It follows that x¥ can only make positive existential claims about large
scattered sets whose members satisfy some local formula that is realised according to
4'; conversely, any negative statement in the x*/ can only forbid (large) scattered sets
satisfying some local formula that according to ¢* cannot be realised at all.

It follows that also ¢ -2 = x*/, and—as this is the case for all choices of j—in fact
q-AE N\, x“. But then ¢ - A, a = ' A Vi AN, x“. Therefore q -2, a = ¢ and, by
invariance of ¢, also A, a = ¢. As the 9’ are mutually exclusive, (iv), it must be that
2A,a = ¢©'(z), as desired. O

In fact one can improve on part (a) of Proposition 19 by giving a quantitative
bound on the locality rank ¢. A proof of the following lemma, based entirely on an
elementary Ehrenfeucht-Fraissé game argument without appeal to Gaifman’s theorem, is
presented in [14]. This argument relies on an analysis of the ¢g-round game on structures
q-A+q-B+A, a versus ¢-A+q-B+B, b in the situation where A[N*(a), a =, BIN*(b), b,
for £ = 29 — 1. Exhibiting a strategy for the second player is actually a nice exercise in
Ehrenfeucht-Fraissé games.

Lemma 20. Both classically and in the sense of finite model theory: a first-order
formula o(z) of quantifier rank q that is invariant under disjoint sums is £-local for
£=27—-1.

The tightness of this bound is illustrated by the following example. There are
straightforward FO formalisations of the bisimulation invariant property that “there
is a red node within distance 27 — 1 of 2”7 in quantifier rank ¢. But any modal formula
to this effect must have modal quantifier rank 29 — 1, since modal formulae of quantifier
rank ¢ are {-local.

All our proofs of characterisation theorems will establish the crucial condition in
Observation 13 with an argument about upgrading ¢-bisimulation invariance to a level
of local first-order equivalence that is strong enough to preserve the given formula ¢
in its Gaifman form. The following lemma serves to encapsulate the generic pattern
of these proofs. For the definition of the relevant levels of FO-equivalence compare
Definition 16, especially item (iv). For the notion of upgrading recall Definition 14.

Definition 21. For 7-structures with distinguished parameters 2,a and 8,5, and
l,q,n €N A ja =50 B,bif for every k < £, for every k-local formula (z) of quantifier
rank ¢, and for every m < n:
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(i) 2 = yla] & B [= ¢[b].
(ii) 2A has a k-scattered subset of size m for ¢ iff B has.

Note that ={), has finite index and that any FO-formula ¢(z) in Gaifman form is
invariant under Eff,)n if its locality rank, local quantifier rank and scattering rank are

bounded by ¢, g and n, respectively.

Lemma 22. Both classically and in the sense of finite model theory. Let ¢(x) be in
Gaifman form of locality rank £, local quantifier rank q and scattering rank n. Suppose

that @ is invariant under =. If = can be upgraded to Eff}l modulo =, then ¢ is

invariant under =*.

For this compare Observation 13 and Definition 14, and the discussion in section 2.3.
The use of Proposition 19 in this context merely is to give a natural a priori bound on
the locality and scattering ranks of bisimulation invariant formulae. 2

2.5 The case of basic modal logic revisited

A high-level sketch of an alternative proof of the van Benthem-Rosen theorem, which
also yields an exponential bound on the nesting depth of the target ML formula, was
indicated in the introduction. We are now in a position to make this argument precise,
and it may serve as an instructive, particularly simple application of the generic proof
idea in Observation 13 and of upgrading. The particular simplification derives from the
tight locality guaranteed by Lemma 20.

Theorem 23. Both classically and in the sense of finite model theory: any first-order
formula o(x) of quantifier rank q that is invariant under bisimulation is equivalent to a
formula of basic modal logic whose modal nesting depth is less than 29.

As remarked above, the bound on the nesting depth is tight; the example given right
after Lemma 20 above, illustrates the fact that FO can be exponentially more succinct
than ML for bisimulation invariant properties.

We apply a version of Lemma 22 where the target equivalence Eff,)n is replaced by
the following equivalence ~(). Define 2, a ~) B, b as AIN*(a),a ~ BIN’(b),b. Note
that this is a local version of full bisimulation equivalence, not to be confused with
¢-bisimulation. To prove Theorem 23 we show the following.

Lemma 24. Modulo ~, ~* can be upgraded to ~ (also in finite structures).
~F
Qa — B,b
. ~ ) A
A,6 ——— B,b

Tt turns out that for the ramified characterisation results, concerning global forms of bisimulation,
one does not actually have to appeal to Proposition 19 (b), if one uses simple disjoint copies in an addi-
tional step that further upgrades from Eff,)l (scattering rank 1, corresponding to simple local sentences)
to Eff}z (arbitrary scattering rank n); compare Lemma 37 in section 4.
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Proof. Let A, a ~% $B,b. Let 2 be the result of unravelling 2 from a, restricting the
resulting tree to depth ¢, and identifying leaf nodes in this truncated tree with corre-
sponding nodes in disjoint isomorphic copies of . Let Ay = ﬂ[N ¢ (a) be the truncated
unravelling of depth ¢ of A, a with no attachments to the cut-off points at the leaves.
Clearly 2 and ng are finite if 2 is finite. By construction, A, a ~ 2, a and 2y, a ~0 9 q.

Let B and ‘Bg be similarly obtained from 5,b. Then ng ~ ‘Bg, as A, a ~¢ B, b and
as both 914 and %g are trees of depth /. It follows that 91 a~0 % b, as desired. O

Proof of Theorem 23. Lemma 24 and Observation 13 now prove the theorem. If p(z) of
quantifier rank ¢ is bisimulation invariant, it is also £-local for £ = 27 — 1 by Lemma, 20,
and hence invariant under ~®. Upgrading according to Lemma 24, as indicated in the
diagram, proves that ¢ is invariant under ~, hence expressible in ML, at modal nesting
depth /4. O

In connection with Lemma 24, it should be pointed out that ~* can in fact be
upgraded (modulo ~ and also in finite models) to local isomorphism ~()  according
to Aya ~O B b iff Al Nt(a),a ~ B Nb),b. To achieve this, one enriches finite
bisimilar companions 2 and B from the above proof with sufficiently many copies of
each ‘sub-tree’ to boost both structures to have equal numbers of realisers for each
(¢ — ¢/ — 1)-bisimulation type adjacent to any node at depth ¢/ < £. This well-known
construction is also used as part of Rosen’s proof in [17], which then proceeds to upgrade
to full elementary equivalence, using Hanf’s theorem and some more intricate surgery
on finite structures.

The van Benthem-Rosen theorem can easily be adapted to cover the case of two-
way bisimulation ~- and ML . For the above arguments, this involves the following
observations and slight modifications. Clearly the locality results of Proposition 19 or
Lemma 20 go through, as ~--invariance also implies invariance under disjoint sums. For
the analogue of Lemma 24, one adapts the proof given in Lemma 24 by using (truncated)
two-way unravellings. We then obtain the following.

Corollary 25. Both classically and in the sense of finite model theory: any first-order
formula o(x) of quantifier rank q that is invariant under two-way bisimulation is equiv-
alent to a formula of ML whose modal nesting depth is less than 2.

It is apparent from the above that (ordinary as opposed to global) bisimulation in-
variance implies a very strong form of locality; namely, locality about the distinguished
parameter. The picture is quite different, however, when we consider global (and pos-
sibly two-way) bisimulation, which does take into account the local behaviour not just
around the distinguished parameters but also around any other point. Model construc-
tions that are to respect any form of global bisimulation equivalence therefore have to be
much more uniform. Partial or truncated unravellings are not good enough. The distin-
guishing feature of tree-like unravellings is their acyclicity (acyclicity of the underlying
Gaifman graphs). But clearly acyclicity cannot be had in finite bisimilar companion
structures of any structure that is not itself already acyclic. To the extent that one
is still only concerned about the local behaviour in neighbourhoods of some bounded
radius, however, it makes sense to approximate acyclicity uniformly but locally by avoid-
ing short cycles in the Gaifman graph, i.e., to at least keep small local neighbourhoods
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acyclic. This is exactly what the locally acyclic bisimilar covers to be discussed in the
following section achieve.

3 Locally acyclic bisimilar covers

Recall that 7 = 7 U7T® is a finite, purely relational vocabulary of width 2, with binary
relations R € 7. We denote by E the combined edge relation

E = URGT(Q) R.

The edge relation in the Gaifman graph G(21) is the symmetric and irreflexive version
of E.

Definition 26. Let 2 be a 7-structure, G(2) its Gaifman graph.

(i) A cycle (of length £) in A is an /-cycle in G(2) in the graph theoretic sense: a
sequence of vertices ag, ..., ap_1, where for each consecutive pair of indices (,7+1)
(cyclically understood in the sense of Z;) we have (a;,a;+1) € R or (a;11,a;) € R
for some R € 7®®. A cycle of length 1 is a loop.

(ii) A cycle is non-degenerate if always a;—1 # a;i1.

(iii) A is acyclic if it is loop-free and has non-degenerate cycles.

(iv) 2 is k-acyclic if it is loop-free and has no non-degenerate cycles of lengths < k.

Note that a k-acyclic structure is locally acyclic in the sense that the substructures
induced on /-neighbourhoods of its elements are acyclic if & > 2¢+ 2. In graph theoretic
terms, (iv) may be rephrased by saying that the girth of G(2l) is at least k.

All structures are 3-acyclic. Degenerate cycles cannot be avoided at all, as every edge
gives rise to a degenerate cycle of length 2. In order to capture all other degeneracies in
the presence of several directed edge relations R we introduce the following notion of a
simple transition system.

Definition 27. A 7-structure 2 is simple if the R® are mutually disjoint for R € 7
and if their union E? is anti-symmetric and irreflexive.

In graph theoretic terms one might consider a simple structure as an edge-partitioned
and vertex-coloured tournament.

A special and very natural kind of bisimulations—familiar, e.g., form the bisimilar
companion structures obtained as unravellings—are those induced by homomorphisms.

Definition 28. (a) A homomorphism 7: A — 2 is a bisimilar cover of 2 by A if
Zr = {(a,a): a=m(a)} is a global two-way bisimulation between 2 and 2.
(b) A bisimilar cover 7: A — 2 is called faithful if, for every é and each R € 7@,
restricts to a bijection between {a’ € A: (a,d’) € Rél} and {a' € A: (a,a’) € R},
as well as between {a' € A: (a/,a) € Rél} and {a’ € A: (d’,a) € R*}.

Consider the example of faithful bisimilar covers obtained from two-way unravellings
of transition systems. Suppose without loss of generality that 2 is simple and connected
(each connected component may be considered separately). The two-way unravelling

21



of 2 from some element a of 2, as discussed in section 2.2, together with the natural
projection that maps an undirected path o = a,aq,...,a, to its last element 7(o) = ay,
provides a faithful bisimilar cover of 2 by a simple acyclic transition system, albeit
generally an infinite one. As pointed out above, no cyclic finite 2 can have a finite
acyclic bisimilar companion. Our aim in this section is the following.

Proposition 29. FEvery finite transition system A admits, for every k > 3, a faithful
bisimilar cover m: A — A by a finite k-acyclic simple transition system 2A. For fized k,
the size of 2 can be polynomially bounded in terms of the size of A (3).

Before we give a proof of the proposition, note that truncated tree-like unravellings
with branches linked back into initial segments of the tree-like unravelling do not in
general give rise to locally acyclic covers because acyclicity is understood in terms of
undirected cycles (cycles in G(2)) rather than directed cycles.

The case of simple transition systems The assumption of simplicity simplifies the
proof of the proposition. The general case will then been reduced to this case.

Let 2 be simple, & € N. Suppose (G,o) is a finite group into which E can be
embedded as g: F — G ; e — g, such that {g.: e € E}N{g.': e € E} = 0.

Recall that the Cayley graph associated with G, (ge)ecp is the undirected graph with
vertex set G and edges {h,h'} exactly between those h and h’ for which b’ = h o g, or
h =h'og, for some e € E.

With 2 and G, g we associate the following structure 2 ®¢ G' with universe A x G.
Unary predicates P € 7 are interpreted in A ®g G as 7~ (P*) where 7: Ax G — A is
the natural projection. For the binary predicates R € 7® we put an R-edge from (a, h)
to (a/, ') if and only if e = (a,a’) € R* and h' = h o g,.

A ®g G = (A X G7 (Pm@gG)PET(l)a (Rm@gG)RET(Q))a
PQl®gG — ﬂ.—l(PQ[),

R¥®C¢ = {((a,h),(d',hog.)): (a,a') = e € R*}.

This clearly turns 7: 2A®g G' — A into a faithful bisimilar cover. A®g G is also itself
simple, as 2 is simple and due to the distinctness of the g, and their inverses.

Any non-degenerate cycle in 2A projects to a non-degenerate cycle in the Cayley
graph of G, (ge)ecr- Therefore, A ®g G will be k-acyclic if the girth of the Cayley graph
associated with G, (ge)ecp is at least k. Suitable Cayley graphs have explicitly been
constructed, with asymptotically near optimal dependence of the size of the graph (or
group) on the required girth and degree. Note that for our application, the degree of
the required Cayley graph is d = 2|E*|. These bounds guarantee k-acyclic bisimilar
covers of size polynomial in the size of the given 2, for any fixed k. It is also clear that
an exponential growth in terms of & is unavoidable. See [1] for a full discussion of these
explicit constructions of Cayley graphs with large girth, and [14] for another intuitive
though exponential construction inspired by the idea of local bisimilar unravellings.

3This also answers a question left open in the proceedings version [15].
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Theorem 30 (Margulis, Imrich). For d and k there are d-reqular Cayley graphs of
reqular degree d, size O(d*) (c some fized constant) and girth no less than k.

We have proved the following lemma, which covers Proposition 29 for simple transi-
tion systems.

Lemma 31. Any simple A admits a faithful cover m: A®g G — A by a simple k-acyclic
structure of size O(|E|*), for a suitable choice of G.

The general case For structures 2 = (A, R, P) that are not simple it now suffices to
find first a faithful bisimilar cover 7: A" — 2 by some simple ', and then apply the
above construction to further eliminate short cycles from these.

A simple way to achieve this involves an intermediate encoding in which edges of
2 are replaced by paths of length two that pass through new vertices whose colour
characterises the kind of edge involved. In more detail, we associate with 7 = 7Y U 7®
a new vocabulary 7, consisting of 7" together with new unary predicates Qg for each
R € 7™ and a new binary predicate S.

With an arbitrary transition system 2l of type 7 associate a simple 74 transition
system 2, over the universe A; which is the disjoint union of A and the disjoint union of
the R¥ for R € 7®. (Note that each individual edge of 2 gives rise to a new element in
2;.) The P € 7 are interpreted as in 2: P%* = P%. The new Qg mark the elements
encoding the R¥-edges: Q%S = R% C A,. §% finally is interpreted to contain exactly all
those pairs (a,e) € A x Qle and (e,a’) € Q%S x A for which e = (a,a’) € R¥*, R € 7:

le _{6 BERQL}
(). ) o) € )

Clearly 2, is s1mple We may now apply the above construction to obtain a faithful
bisimilar cover m: 91 — s by a 81mple 5-acyclic 75 structure 91 Directed S-paths
of length two in 2 of the form a,e,a’ have unique lifts to any @ € w7 !(a) or any
@' € m;  (a'). Conversely any length two directed S-path of the form a,é,a’ in A, with
¢ € Qg projects to a path a,e,a’ in s with e € Qg, and therefore corresponds to an
R-edge in 2. Note also that PQLS C ;1 (A) where we think of A as a subset of As,.

Any such simple 7, structure A 1nduces a simple 7 structure 2, according to the

following straightforward reverse transformation:
A ;! (A) where A C A,
P = p%,
R* ={(a,a): (a,é), (é,a') € S, for some e € Q%S}.

>

Since 2, does not have any non-degenerate 4-cycles, 2 turns out simple. The above
considerations about projections and unique lifts of paths imply that 7, induces a ho-
momorphism 7: 2l — 2 which moreover is a faithful bisimilar cover. We have found a
bisimilar cover 7: A — A as formulated in the following corollary.

Corollary 32. Any finite transition system 2 admits a faithful bisimilar cover m: A — A
by a finite simple transition system A of polynomially bounded size.

Together with Lemma 31 this proves Proposition 29 in the general case.
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4 Upgrading global bisimulation equivalences

We use the results from the previous section to obtain bisimilar companions which can
serve to upgrade /-bisimulations between finite transition systems to stronger forms of
local first-order equivalence following the idea behind Lemma 22. Compare Definition 14
for upgrading, Definition 21 for the relevant levels =), of local FO-equivalence, and
recall Gaifman’s theorem, Theorem 17, or its specific ramifications from Proposition 19.

Recall in particular that any FO-formula ¢(z) is equivalent to one in Gaifman form,
and as such is therefore invariant under ={), for suitable levels of £ (its locality rank),

q (its local quantifier rank), and n (its scattering rank).

4.1 Upgrading global two-way bisimilarity

The main proposition about upgrading from ~¢ is the following. Its proof, however,
is broken down into a sequence of lemmas that highlight some intermediate upgrading
stages in their own right. Locally acyclic covers are used in the central step, Lemma 35.

Proposition 33. Modulo ~, ~* can be upgraded to EEffn, for any q and n, classically

as well as in finite models.

For technical reasons we consider a strengthening of two-way bisimulation in which
the second player can match multiplicities up to ¢ in responses to the first player’s chal-
lenges in each individual round, for some fixed ¢q. Formally, the usual back-and-forth
requirements are strengthened to corresponding g-back-and-forth requirements accord-
ing to, for instance,

(g-forth along forward R:) for any (a,b) € Z and any distinct a},...,a)} € A such that
(a,a}) € R* for 1 < i < k, where k < ¢, there are distinct ,...,b, € B such that
(b,0}) € R® and (a},b}) € Z' for 1 <i < k.

1) 7

We write ~57 for the corresponding level of two-way g-back-and-forth ¢-bisimulation,
formally induced by a depth / stratified back-and-forth system with the appropriate two-
way ¢-back-and-forth conditions.

The corresponding variant of ~¢, global two-way g-back-and-forth /-bisimulation ~¢
is analogously defined, with the additional requirement that the corresponding back-and-
forth system covers all of A and 9B: A ~%¢ B iff for every a in 2 there is some b in B
such that 2, a ~ba B, b, and vice versa.

4

Lemma 34. Modulo ~, ~% can be upgraded to =57, for any q, classically as well as in

finite models.

Proof. If A,a ~* B,b, it suffices to blow up all multiplicities in A and B g¢-fold to
achieve the desired degree of bisimulation equivalence. This is done with the following
operation:

A® q= (A X {17 s 7Q}7 (pil(R))RET(Z)? (pil(P))PEq-(l))

where p: A ® ¢ — 2 is the natural projection.
Clearly A ® ¢ ~ A and A® q, (a,1) =57 B @ q, (b, 1). O

—©

=1, Classically as well as in finite

Lemma 35. Modulo ~, =% can be upgraded to
models.
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Proof. Let A, a =57 B.b, and let w: A — A and 7: B — B be faithful bisimilar covers
by (2¢ + 2)-acyclic simple transition systems according to Proposition 29. Let & and
b be any representatives in 7 1(a) and 7 1(b), respectively. Note that automatically
91, a ~ba ‘B, l;, as the cover is faithful. We claim that ﬁ[, a Eff’)l S%, b.

A ~69 B implies that for every a there is a b such that 2, a ~57 B, b, and vice versa.

The latter implies that 2% [U*(a),a ~5U B UL (b),b. Any two such A U%(a) and
BIUL(b) are acyclic, since 2 and B themselves are (2¢ + 2)-acyclic.

To establish 2, a = =([) B, b, it therefore suffices to show the following.

Claim 36. Let A, a and B,b be simple and acyclic and such that A C U‘(a) and
B C U(b). Then A,a ~59 B, b implies A, a =, B, b.

For the proof of the claim, we exhibit a strategy in the the g-round Ehrenfeucht-
Fraissé game on 2, a and B,b. Fix A, a and B,b as in the claim. For a tuple a =
(ay,...,ar) in A we let span(a,a) denote the set of those elements of A that lie on one
of the shortest paths connecting a to a; in the Gaifman graph G(2() of 2, for 1 < i < k.
For o' in 2 we let d(a,a’) denote the Gaifman distance (length of the shortest path) from
a to a’. Similar notions apply in 9B, b. The strategy for Player IT consists in maintaining
the following condition, in terms of elements a = (a1,...,a;) and b = (by,...,b)
marked so far in 2 and 9B, respectively.

(¥*)  there is an isomorphism f: [span(a,a) =~ Blspan(b,b) such that
for all ', 0 = f(a) : A, d ~BUB Y where 0 = 0 — d(a,a’) = £ —d(b V).

Condition (*) is obviously met initially, with empty a and b and for f: a — b.

Assume (k) is true after round k < /, let f: 2 [span(a,a) ~ 9B [span(b,b) ac-
cordingly, and suppose without loss of generality that Player I selects a’ in 2 in the
next round and that o' ¢ span(a,a). Let d(a,a’) = t and consider the shortest path
a=apy,ay,...,al,...,a; =a from a to a’ in G(A). Let o) be the last element on this
path that is contained in span(a,a), so that span(a,aa’) = span(a,a)U{a,,...,a}}.
Let b, = f(a}) for i < s. By the above condition, 2, a/, D b,. Successively ex-
ercising the two-way g-forth property we find a matching path b},0,,...,b; in G(B)
always using fresh elements b; for ¢+ > s, such that also for s < i < t:

— (bi_,,bl) € R® iff (al_,,a}) € R*, and similarly w.r.t. R™!, for all R € 7,

i—12 Y%

— d(bb) =

— Wb B

Let b/ = b, and f': Alspan(a,aa’) — B|span(b,bb’) the extension of f that sends
a; to b, for s < i < t. Simplicity and acyclicity of 2 and 9B guarantee that f’ is an
isomorphism; moreover f’ satisfies the required bisimulation conditions by construction.

Our choice of b for a’ exemplifies the way in which (x) is maintained in response to
a next move of Player T in 2. A challenge played in 98 can be answered in a symmetric

fashion. O
Lemma 37. Modulo =, Eff’)l can be upgraded to E((f’)n for any n, classically as well as
in finite models.
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Proof. Clearly, if 2, a Ef][’)l B,b, then n - A, a E((f,)n n - B,b, where n - 2 is the n-fold

disjoint sum of copies of 2. U

4.2 Upgrading global forward bisimilarity

Lemma 38. Modulo ~, ~3’-’ can be upgraded to =, classically as well as in finite

models.

It is easy to see that one cannot achieve a similar upgrade without decreasing the
approximation level £. For instance, a two-edge chain is 1-bisimilar (in the sense of ~{)
to a one-edge chain. But any globally bisimilar companion structures of these would still
be of depths 2 and 1, respectively. These therefore cannot be 1-bisimilar in the two-way
sense: the former must have nodes with non-zero in- and out-degree; the latter cannot
have such.

Let for the following tp4(a) denote the (-bisimulation type (~‘-type) of a in 2.
Semantically, tpg[(a) precisely determines the ~* equivalence class of 2, a. Syntactically
tpgl(a) is defined by the corresponding depth ¢ modal Hintikka formula. We note that
~! has finite index, for any fixed finite 7.

The full bisimulation type (~-type) of a in 2 is in the following denoted tpgy(a).

With a directed path ag,...,ar in 2 we associate the string consisting of the /-
bisimulation types tpél(ai) and the edge types linking a; to a;11 along this path,

tpg{(GO)a R07 tpg{(al)a Rla R kala tpg{(ak)a
where (a;,a;41) € R

Definition 39. A string tpg[(ao), Ro,...,Rp_1, tpél(ak) associated with a directed path
(aiyait1) € RY is an f-history of a = aj in A if either k& = £ (we refer to a proper
£-history), or k < £ and the path is not backward extendible, i.e., ap has in-degree zero
(we refer to a short £-history).

We say that a in 2 has a wunique £-history if all £-histories of a in 2 are identical
(in particular they are all short of the same length k < /¢, or all proper); in this case
hist4 (a) stands for this unique /-history.

We say that 21 has unique £-histories if every node in 2 has a unique /-history.

Note that tree structures in particular do have unique histories. Also note that the
¢-history (or ¢-histories) of a node determines its ¢'-histories for any ¢’ < /.

Let us say that a bisimulation 2 ~¢ 9B respects zero in-degree, if for every node a in
2 of in-degree zero there is a node b in B of in-degree zero such that A, a ~* B, b and
vice versa. Note that if Né B do not satisfy this condition, we can still always pass to
companions A’ ~, A and B’ ~, B where A’ ~L B’ does respect zero in-degree. Simply
let 2’ be the disjoint union of all structures 2, obtained by adding a new copy of a with
outgoing edges into 2 just as from a but without any incoming edges, for each a in 2.
If 9B’ is similarly obtained from 9B, then 2’ and 9B’ realise exactly the same bisimulation
types as 2 and B, respectively, and in each of them any bisimulation type realised at
all is also realised by a node of zero in-degree. This crude construction does however
not preserve uniqueness of histories.
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Lemma 40. Let A and B have unique £-histories. If A ~3’-’ B respects zero in-degree,
then A = B.

Proof. Let 2 and %8 be as in the lemma. We show for instance that for any a in 2 there
is some b in B such that 2, a ~¢ B, b.

Assume first that the Z-history of a is proper. Let ag be a node in  from which a is
reachable on a path ag,a1,...,a; = a of length ¢. Choose by such that 2, ag N\%E B, by.
Exercising the forth property £ times, following the path from ag to a in 2, we find a
path by, by, ..., by for which A, a; ~2~" B, b;, for 0 < i < £. Choosing b := b, we have
found an element in 28 whose £-history is identical with that of a.

In case that the Z-history of a is short, we work with this short history and, since
the given 2/-bisimulation respects zero in-degree, similarly find a matching b that has
the same short /-history as a.

Tt now suffices to argue that histy(a) = histé(b) implies 2, a ~ B,b. To this end
consider the stratified system (Z,,)o<m<s where

Zm = {(a,b) € A x B histy(a) = hist (b) }.

By the above, m1(Z;) = A, and by symmetry also m3(Z;) = B. In order to show
that (Zm)ocmee: A ~!' 9B it remains to establish that this stratified system satisfies the
two-way back-and-forth properties. For this observe that for 1 < k < 4, if histlgl(a) =
histh (b), then

(i) A a ~* B,b.
(ii) if o’ and b are obtained as corresponding back-and-forth extensions of (a,b) along
edges (a,a’) and (b,¥) in the sense of A, a ~* B, b, then hists '(a’) = histgl(b’).
(iii) a has zero in-degree iff b has; otherwise, if o’ and b’ are predecessors along corre-
sponding edges (a’,a) and (b',b), then also histh~'(a') = hist’%_l(b’).

Of these, (i) is trivial by agreement of ~*-types in a and b in particular. (ii) follows
from the fact that @’ and b’ have unique /-histories, whence they in particular also have
unique (k — 1)-histories; the latter are exemplified by the length (k — 2) suffixes of the
(k — 1)-histories of @ and b (which are identical) expanded by the edge type of (a,a’)
and (b, ') and tpy ' (a’) = tphy '(¥) (identical according to the back-and-forth choice of
a’ and b).

For (iii): as a and b have identical unique k-histories, one of them can be short of
length zero only if the other is. If they are not of length zero, these identical k-histories
are, as unique histories, exemplified by k-histories involving ¢’ and b’ as immediate
predecessors, respectively. The identical (k — 1)-prefixes of these k-histories imply the
desired identity of (k — 1)-histories. O

Proof of Lemma 38. We provide partner structures A ~, A and B ~, B that have
unique /-histories and realise in nodes of zero in-degree all ~~types that are realised at
all. The latter condition implies in particular that any maximal global ¢-bisimulation
between 2 and B will respect zero in-degree. It then follows from Lemma 40 that
A ot %, whence we have upgraded ~34 to ¢ in ~, equivalent companion structures as
required. The construction is explicitly carried out for 2.

Let H be the finite set of all proper ¢-histories realisable in any 7-structure, |H| = n.
For a in 2 let %A, be the result of unravelling 2 to depth ¢ + 1 from a. In other words,
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we restrict the usual tree unravelling 2* of 2 from a to 2A*[N*+!(a). We let 2 consist
of the disjoint sum of n + 1 copies each of all these 2, for a € A. Label the n+ 1 copies
of A, as ™A, for h € H and 2,  for the one extra.

Some surgery is necessary to produce 2 from 2. Note that leaf nodes (nodes at
distance ¢ + 1 from the root @) in copies of 2, do not realise the appropriate ~‘-types
(unless they happen to be derived from nodes of zero out-degree in 21).

This is set right if we now identify any such leaf node ¢ with the root ¢ in any copy
of 2, in 2. In order to preserve uniqueness of ¢-histories through this process, though,
the target copies are determined according to the /-history that ¢ has in the unrestricted
unravelling of 2. In more detail, let for a leaf node ¢ in 2, = A*[N*+1(a)

h(c) == histglz (c)

be the {-history of ¢ in 2(7. Note that this history is proper and also that it attributes to
c itself the ~‘-type that it should have. Now 2 is obtained from 2’ through identification
of any leaf node c in any copy of any 2, with the root in 2, ).

It is clear that A~y 2A; that 2 has unique ¢-histories; and that any /-bisimulation
type realised in 2l is realised by some a in 2 and therefore realised by the root a in 2, p,
a node of zero in-degree in 2. O

5 Characterisation theorems

To finish the arguments for Theorem 4 and 5 we follow the pattern outlined in Obser-
vation 13 and Lemma 22 and finally prove the following. It may also be instructive
to compare this with the simpler case of the van Benthem-Rosen theorem as proved in
section 2.5.

Proposition 41. Both classically and in the sense of finite model theory, for p(z) € FO
of locality rank £:

(i) if ¢ is invariant under global two-way bisimulation =~ then ¢ is in fact invariant

under ~-.

(1) if @ is invariant under global bisimulation ~y then @ is invariant under ~3’-’.
Proof. By upgrading as in Lemma 22, using Proposition 33 for (i) and additionally
Lemma 38 for (ii).

For (i): as a FO-formula of locality rank ¢, ¢ is preserved under =, for suitable
g and n. (In fact, Proposition 19 even tells us that ¢ is preserved under E;{)l) By
Proposition 33 &~/ can be upgraded modulo = to any such level, classically and in finite
models. Therefore ¢ is invariant under ~¢.

For (ii), the required upgrading is modulo ~, and needs to take us from Nge to E((f,)n
(or just to Eff’)l if Proposition 19 is invoked). This is achieved by first upgrading to ~*

according to Lemma 38, and then proceeding as in case (i). O
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Corollary 42. Both classically and in the sense of finite model theory. Let p(z) € FO
be invariant under =. If © is of locality rank £, then it can equivalently be expressed in
ML Y at modal nesting depth £.

For ¢ invariant under ~, our proof only yields expressibility in MIY at nesting depth
2¢ where £ is the locality rank of ¢. This seems to be sub-optimal, and may be an
artifact of the particular upgrading strategy employed.

6 The guarded picture

An investigation of guarded bisimulation invariance over (finite) transition systems can
be carried out analogously to what has been done for global two-way bisimulation in-
variance above. In particular, we provide faithful (finite) locally acyclic guarded covers
for (finite) transition systems in section 6.1; we show how these can be used to up-
grade guarded /-bisimulation to appropriate levels E((I% of local first-order equivalence

in section 6.2; and finally put these results together to prove Theorem 6 in section 6.3.

The main tool to bridge the gap between global two-way bisimulation ~ and guarded
bisimulation ~, over relational structures of width two involves an encoding of guarded
quantifier free types as transition relations. We fix some terminology for this purpose.

A non-degenerate 2-type over 7 is a full description of the isomorphism type of a two
element 7-structure in variables z,y, which may be formalised as a conjunction over a
maximally consistent set of atomic and negated atomic 7-formulae in variables z and y
including the conjunct z # y. We write p(z,y) for 2-types, and tpy(a,a’) for the unique
2-type satisfied by (a,a’) in 2, for a # d'.

A 1-type over 7 similarly is a full description of a one element 7-structure (which
apart from monadic information contains the information about loops w.r.t. the binary
predicates). Obvious notation like tpg(a) = ¢ applies.

For a 2-type p = p(z,y) we let p, and p, be the unique 1-types obtained as the
restrictions of p to its z-part or y-part, respectively. Let p~! stand for the result of
swapping = and y in p. A 2-type p is symmetric if p = p~!, asymmetric otherwise.

Definition 43. A 2-type p(z,y) over 7 is guarded if it includes a conjunct Rzy or Ryz
for some R € 7®. In other words, guarded 2-types are those 2-types that are realised
by non-degenerate guarded pairs.
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6.1 Locally acyclic guarded covers

Definition 44. A homomorphism 7: A — 2 is a guarded cover of 2 by A if Z, = {71' i
§:5CA guarded in ﬁl} is a guarded bisimulation between 2 and 2.

The guarded cover 7 is faithful if, for every a and every guarded 2-type p = p(z,y),
7 restricts to a bijection between {a’ € A: tpg(a,a’) = p} and {a’ € A: tpy(a,a’) = p}.

The above construction of faithful, locally acyclic bisimilar covers of transition sys-
tems naturally lends itself to the extension to guarded covers in relational vocabularies
of width two. One merely has to encode all non-degenerate quantifier-free 2-types by
new binary relations which can be interpreted so as to form a simple transition system
which faithfully encodes the underlying relational structure. Similar considerations and
translations for guarded logics on graphs are presented in [11].

Let Ay be a fixed maximal set of guarded 2-types over T containing all symmetric
guarded 2-types, and precisely one of p or p~' for every asymmetric guarded 2-type.
Let A1 be the set of all 1-types over 7.

We associate with 7 a new vocabulary 7, consisting of new unary predicates P, for
every ¢ € Ay and new binary R, for every p € As.

In order to deal with the encoding of symmetric 2-types in a simple transition sys-
tem, which cannot have undirected edges, we break the symmetry by means of an
arbitrary auxiliary ordering on the universe. Let 2l be a 7-structure, < an arbitrary
linear ordering < on A. With (2, <) associate the following simple 7, transition system
A, = (A, (P),(Q)) on universe A:

qug = {a; q= tpm(a)} (fOI‘ each g € Al),
Rf,‘g = {(a,d'): a < a’ and tpy(a,a’) = p} (for each symmetric p € As),
Rf,lg = {(a,d'): tpy(a,a’) = p} (for each asymmetric p € As).

Clearly 2, is simple and satisfies the following compatibility conditions:
(a) the P, partition the universe.
(b) if (a,a’) € Ry then a € P, for ¢ = p, and o' € P, for ¢ = p,.
(c) for any non-degenerate pair (a,a’), at most one binary relation R, can link a with
a' (simplicity).
Note that (a) and (b) are preserved under global bisimulation.

Conversely, for any simple 7, transition system B, satisfying (a) and (b) there is
a unique associated 7-structure 8. The universe of B is that of B,. Monadic and
binary predicates from 7 are interpreted so as to be consistent with the 1- and 2-types
prescribed by the P, and the R,, and such that a non-degenerate pair (b,b') will be
guarded in B if and only if b and ¥’ are linked by some R, in B,.

A small subtlety arises with respect to loops. A loop (a,a) € R¥ in a transition
system is eliminated in acyclic bisimilar covers, but clearly cannot and must not be
eliminated in a guarded cover. Correspondingly, the information about loops has been
shifted into monadic predicates associated with the 1-types. But in order to get our
criteria for acyclicity right in this context, we explicitly have to allow loops in k-acyclic
covers. Deviating from Definition 26 we now do not insist on loop-freeness.

With this it is not hard to check the following.
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Lemma 45. Let B, and %; be simple 1, transition systems. Let B, ~ %fq and let B,
satisfy conditions (a) and (b) above. Then By also satisfies (a) and (b), and B ~, B’
for the associated T-structures.
Let A be a T-structure with an associated 1, transition system Ag. Let m: 91 — Ay,

be a bisimilar cover of U, by a simple Ty transition system 91 Then Ql satisfies (a)
and (b) and for the induced T-structure A:

(i) ©: A — A is a guarded cover,

(1) if 919 is k-acyclic then U is k-acyclic (apart from necessary loops);

(1) if 7 919 — Ay is faithful then so is m: A — A

Putting this together with the covering results for (simple) transition systems ob-
tained above we get the following.

Corollary 46. Let T be any finite relational vocabulary of width two, A a finite 7-
structure and k > 3. Then there is a faithful guarded cover m: A — A by a finite
structure A that is k-acyclic apart from necessary loops. For fized k, the size onAl can
be polynomially bounded in terms of the size of .

An open issue related to this result concerns potential extensions to the setting of
arbitrary relational vocabularies. We do not know whether one can similarly achieve
finite guarded covers of finite relational structures that avoid short chordless cycles. See
[12] for a discussion. In that paper another aspect of acyclicity (in hypergraphs)—to
do with the avoidance of bad cliques (rather than cycles) in the Gaifman graph—is
shown to be realisable in finite guarded covers, with applications to the clique guarded
fragment and extension theorems for partial isomorphisms.

6.2 Upgrading guarded bisimilarity

Lemma 47. Modulo ~,, Nﬁ can be upgraded to Eff}l, for any levels q and n, classically

as well as in restriction to finite transition systems.

Proof. The proof is analogous to the sequence of upgradings in Lemmas 34, 35 and 37.
Let 2, a Nf B,b. Combining the construction from Lemma 34 with the construction of

faithful (204 2)-acyclic guarded covers we find A ~; 2 and B ~, B such that %A =_) B.

This can further be boosted to E((I% for any given n, if we pass to n-fold sums of
e . 5 — (0 <
disjoint copies: n - A =45 n - B. O

6.3 The guarded characterisation theorem

To finish the argument for Theorem 6 we follow the pattern of Observation 13 and
Lemma 22 and finally prove the following.

Proposition 48. Both classically and in the sense of finite model theory: if p(z) € FO
is invariant under guarded bisimulation ~, then ¢ is invariant under Nﬁ, where £ is the

locality rank of .
Proof. By upgrading: either we upgrade Nﬁ directly to EE]{)n where ¢ and n are the local

quantifier rank and scattering rank of ¢ in Gaifman form with locality rank ¢, or we
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appeal to Proposition 19 and use the fact that ¢ can be expressed with scattering rank
1 so that an upgrading of Ng to = is in fact sufficient. Either way, for n = 1 or any

gl
desired value of n, the following diagram shows that ¢ is indeed invariant under Nﬁ
(overall or in restriction to finite models). O

~Y
A,a ——— B,b
~g ~g
N =0 N
A,a —— B,b

Note that the status in finite model theory of the full characterisation result of
Andréka, van Benthem, and Németi—Theorem 12 above—remains open, as the present
techniques only deal with vocabularies of width two.

Further remarks

Among other related open issues ranks prominently the question whether the character-
isation theorem of Janin and Walukiewicz—that the modal u-calculus precisely captures
the bisimulation invariant fragment of monadic second-order logic—is valid also in the
sense of finite model theory. The techniques employed here seem to shed no immediate
light on this matter.

Other ramifications in the modal domain do seem to be amenable to the techniques
developed here. In particular, we mention characterisation theorems in the presence
of other natural restrictions, apart from finiteness. Classical and other natural frame
conditions can be considered. For the class of connected frames, for instance, prelimi-
nary results have been obtained in unpublished communication with A. Dawar. Graded
bisimulation and modal logics with graded modalities, incorporating number restric-
tions similar in spirit to those encountered with our ¢-back-and-forth requirements in
section 4.1, would seem to provide another interesting test case for the present tech-
niques.

Acknowledgement 1 am grateful for comments from the anonymous referees, which
helped to improve the presentation.
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