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Abstra
t

We explore the �nite model theory of the 
hara
terisation theorems for modal

and guarded fragments of �rst-order logi
 over transition systems and relational

stru
tures of width two. A new 
onstru
tion of lo
ally a
y
li
 bisimilar 
overs pro-

vides a useful analogue of the well known tree-like unravellings that 
an be used for

the purposes of �nite model theory. Together with various other �nitary bisimu-

lation respe
ting model transformations, and Ehrenfeu
ht-Fra��ss�e game arguments,

these 
overs allow to upgrade �nite approximations for full bisimulation equivalen
e

towards approximations for elementary equivalen
e. These te
hniques are used to

prove several rami�
ations of the van Benthem-Rosen 
hara
terisation theorem of

basi
 modal logi
 for re�nements of ordinary bisimulation equivalen
e, both in the

sense of 
lassi
al and of �nite model theory.

keywords: �nite model theory, modal logi
, guarded fragment, bisimulation, preser-

vation and 
hara
terisation theorems

1 Introdu
tion

Model theoreti
 
hara
terisation theorems provide dire
t links between semanti
s and

syntax. As assertions of the form

a property satis�es [a semanti
 
ondition℄ if and only if it is expressible in

[a synta
ti
 
lass℄,

they express pre
ise semanti
-synta
ti
 
orresponden
es. Mostly they are relative to

some 
ommon synta
ti
-semanti
 ba
kdrop, like �rst-order logi
, where the above be-


omes

a �rst-order formula satis�es [a semanti
 
ondition℄ if and only if it is ex-

pressible in [a synta
ti
 fragment of �rst-order logi
℄.
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Classi
al model theory has many examples [5℄; among them the 
orresponden
e be-

tween preservation under substru
tures and the universal fragment of �rst-order; preser-

vation under unions of 
hains and the �

2

fragment of �rst-order; or monotoni
ity in a

predi
ate and positivity in that predi
ate.

Many of these 
orresponden
es do not translate into theorems of �nite model the-

ory. It is known, e.g., that there are �rst-order senten
es whi
h over �nite stru
tures

are preserved under substru
tures, but are not equivalent to any universal �rst-order

senten
e over �nite stru
tures, see [7℄. For another failure, whi
h is 
loser to our 
on-


erns here, see also the remarks following Theorem 6 below. Note that the restri
tion to

�nite models usually implies a weakening on both sides of the desired equivalen
e: the

semanti
 
ondition is only available over �nite stru
tures, but the synta
ti
 form also

need only apply over �nite stru
tures. Also, if a 
lassi
al 
hara
terisation theorem fails

as a theorem of �nite model theory, it 
ould of 
ourse still be that there is an alterna-

tive synta
ti
 
ounterpart whi
h would 
orrespond to the semanti
 
ondition over �nite

models.

A ni
e example of a 
hara
terisation theorem that holds both 
lassi
ally and as a

theorem of �nite model theory is van Benthem's 
hara
terisation of basi
 modal logi
.

Here propositional modal logi
 is regarded as a fragment of �rst-order logi
, interpreted

over Kripke stru
tures or transition systems. Over a vo
abulary 
onsisting of binary re-

lations R (viewed as a

essibility relations, transitions, or a
tions) and unary predi
ates

P (
oding the basi
 propositions, or state properties), we regard the modal operators

[R℄ and hRi as relativised �rst-order quanti�ers a

ording to

�

[R℄'

�

(x) �8y

�

Rxy ! '(y)

�

;

�

hRi'

�

(x)�9y

�

Rxy ^ '(y)

�

:

The semanti
 
ondition whi
h 
hara
terises modal logi
 as a fragment of �rst-order

logi
 is that of bisimulation invarian
e. Bisimulation equivalen
e is important as a

notion of behavioural equivalen
e between transition systems, or|more 
lassi
ally|as

the notion of equivalen
e indu
ed by the appropriate variant of the in�nite ba
k-and-

forth Ehrenfeu
ht-Fra��ss�e game whose moves 
apture the relativised pattern of modal

quanti�
ation.

The 
lassi
al version of this 
hara
terisation theorem is the following, due to van

Benthem [18, 19℄. We 
hoose a formulation that highlights the harder dire
tion of the

equivalen
e, namely the 
onverse of the (easier) semanti
 preservation theorem.

Theorem 1 (van Benthem). Any �rst-order formula '(x) that is invariant under

bisimulation is equivalent to a formula of basi
 modal logi
, and vi
e versa.

We let FO stand for �rst-order logi
, ML for propositional modal logi
. The above


hara
terisation theorem is then symboli
ally expressed as the equivalen
e FO=� � ML,

whi
h says that the logi
 ML pre
isely expresses those FO-properties that are invariant

under bisimulation equivalen
e, �.

The �nite model theory version of this 
hara
terisation result is not an immedi-

ate 
onsequen
e of the 
lassi
al version, sin
e there are �rst-order formulae that are

bisimulation invariant over �nite stru
tures without being bisimulation invariant over

all stru
tures. Trivial examples 
an be generated with the use of some in�nity axiom.
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Let for instan
e  be the �rst-order senten
e that asserts that the binary relation R

is a linear ordering without maximal element. Then any formula  ^ '(x) is trivially

bisimulation invariant over �nite stru
tures, but not bisimulation invariant over in�nite

stru
tures if '(x) is satis�able in any model of  .

And indeed, the 
lassi
al proof of van Benthem's theorem makes use of 
ompa
tness

and saturation te
hniques that 
ru
ially involve in�nite models. The 
hara
terisation

itself, however, does go through in �nite model theory, as shown by Rosen [17℄.

Theorem 2 (Rosen). Any �rst-order formula '(x) that is invariant under bisimulation

over �nite stru
tures is equivalent over �nite stru
tures to a formula of basi
 modal logi
,

and vi
e versa.

While the elegant 
lassi
al proof of Theorem 1 tells us nothing about the �nite model

theory version, the rather more 
onstru
tive argument given by Rosen does apply equally

to the 
lassi
al version, thus providing a new proof there as well. For an alternative,

quite elementary and self-
ontained proof of the van Benthem-Rosen theorem see [14℄.

In a nutshell, this proof of the van Benthem-Rosen 
hara
terisation, whi
h will also

point us in the right dire
tion towards our present rami�
ations, goes as follows (also


ompare se
tion 2.5 and in parti
ular Theorem 23).

Suppose ' = '(x) 2 FO is bisimulation invariant. Let the quanti�er rank of ' be q.

By means of analysis of the q-round Ehrenfeu
ht-Fra��ss�e game, one 
an show that

'(x) must be `-lo
al around x for ` = 2

q

�1; this means that whether or not ' is satis�ed

in A; a only depends on the substru
ture indu
ed on the nodes whose distan
e from a

is at most ` (see se
tion 2.4). In fa
t `-lo
ality even follows from just invarian
e under

disjoint unions of transition systems, whi
h itself is a trivial 
onsequen
e of bisimulation

invarian
e (Lemma 20).

It is a simple observation about bisimulation that ', being invariant under bisimula-

tion and `-lo
al, must then a
tually be invariant under `-bisimulation, the level ` �nite

approximation to full bisimulation (
f. se
tion 2.2 for bisimulation and `-bisimulation).

As a 
onsequen
e of this, ' is �nally seen to be equivalent to a modal logi
 formula of

nesting depth ` = 2

q

� 1.

Contrast this with the 
lassi
al proof, whi
h essentially pro
eeds indire
tly, deriving

a 
ontradi
tion based on a 
ompa
tness argument. Assuming that ' is bisimulation

invariant but not expressible in modal logi
 at any nesting depth `, 
ompa
tness yields

models A; a and B; b that are indistinguishable in modal logi
 (i.e., `-bisimilar for all

�nite `) but with A; a j= ' whereas B; b j= :'.

Further passing to suÆ
iently ri
h elementary extensions of A; a and B; b, respe
-

tively, one arrives at a situation in whi
h moreover modal indistinguishability implies

full bisimilarity: a 
ontradi
tion, as by bisimulation invarian
e of ', bisimilar stru
tures

must not be distinguished by '.

The 
lassi
al proof does not go through in the sense of �nite model theory, be
ause it

relies on 
lassi
al theorems and model 
onstru
tions that are not available in restri
tion

to just �nite stru
tures. The game based arguments in the alternative proof, however,

go through 
lassi
ally as well as in restri
tion to �nite stru
tures. That proof is also

more 
onstru
tive and yields a bound on the nesting depth of the target formula, whi
h

in this 
ase is even optimal.
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For our new 
hara
terisation results we introdu
e similar te
hniques that work 
las-

si
ally as well as in restri
tion to �nite models.

They deal with natural re�nements of ordinary bisimulation equivalen
e:

{ two-way bisimulation (with ba
kward as well as forward moves along edges).

{ global bisimulation (with jumps to any fresh start state).

{ global two-way bisimulation (both of the above).

{ guarded bisimulation (free moves to overlapping or non-overlapping edges).

These lead to 
hara
terisations of more expressive modal and guarded fragments of

�rst-order logi
, as indi
ated in the theorems below. In their naturalness they illustrate

the robustness of the 
lose Ehrenfeu
ht-Fra��ss�e 
orresponden
e between these variants

of bisimulation and modal or guarded quanti�
ation patterns. They also illustrate the

unusually smooth transition between 
lassi
al and �nite model theory of modal logi
s.

While we here state the theorems as theorems of �nite model theory, with the proofs

given they apply equally well in the 
lassi
al 
ontext. The two latter theorems 
an also

be stated for senten
es rather than for formulae in one free variable. For the pre
ise

de�nitions of the fragments of �rst-order involved, as well as for the 
orresponding

notions of bisimulation invarian
e, we refer to the main part of the paper.

Theorem 3. Any �rst-order formula '(x) that is invariant under two-way bisimulation

in �nite stru
tures is equivalent over �nite stru
tures to a formula of modal logi
 with

inverse modalities [R℄

�

, and vi
e versa.

Theorem 4. Any �rst-order formula '(x) that is invariant under global bisimulation

in �nite stru
tures is equivalent over �nite stru
tures to a formula of modal logi
 with

universal modality (8), and vi
e versa.

Theorem 5. Any �rst-order formula '(x) that is invariant under global two-way bisim-

ulation over �nite stru
tures is equivalent over �nite stru
tures to a formula of modal

logi
 with inverse and universal modalities, and vi
e versa.

Theorem 6. Any �rst-order formula '(x) in a purely relational vo
abulary of width

2 that is invariant under guarded bisimulation over �nite stru
tures is equivalent over

�nite stru
tures to a formula of the guarded fragment of �rst-order logi
, and vi
e versa.

It should be noted that the guarded fragment, GF, over a vo
abulary of width 2 
an

(for formulae with no more than two free variables, that is) also be embedded into the

2-variable fragment of �rst-order logi
, FO

2

. Interestingly, the 
lassi
al 
hara
terisation

theorem of FO

2

|as the 2-pebble game invariant fragment of �rst-order logi
|is known

to fail in the 
ontext of �nite model theory. Indeed, the �rst-order senten
e (in three

variables) that says of a binary relation R that it is a linear order of the universe, is

invariant under 2-pebble game equivalen
e in restri
tion to �nite stru
tures (but not

in general)|and it is easy to see that no �rst-order senten
e with just two variables is

equivalent to it over all �nite stru
tures. Compare also [3℄, and, e.g., Example 1.12 in

[13℄.

Whether the 
hara
terisation in Theorem 6 extends to vo
abularies of widths greater

than 2 remains open.
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The proofs of the new 
hara
terisation theorems extend the alternative proof ideas

sket
hed for the van Benthem-Rosen theorem above. They are based on the underlying

Ehrenfeu
ht-Fra��ss�e and bisimulation games, and essentially revolve about the idea of

upgrading 
orresponding levels of `-bisimulation to levels of approximate, lo
al elemen-

tary equivalen
e that are suÆ
ient to preserve the given �rst-order '. This is a
hieved

in model 
onstru
tions that are also appli
able in restri
tion to �nite stru
tures, and

respe
t full bisimulation equivalen
e while giving lo
al 
ontrol over �rst-order properties

by making stru
tures lo
ally a
y
li
. The following serves as a te
hni
al 
ornerstone in

these model 
onstru
tions; for a full statement and the proof 
ompare Proposition 29 in

se
tion 3.

Theorem 7. Every �nite transition system admits, for every k > 3, a �nite globally

two-way bisimilar 
ompanion that is k-a
y
li
 (has no 
y
les of lengths less than k).

For �xed k, the in
rease in size 
an be polynomially bounded.

This provides graded analogues, in �nite stru
tures, of the well-known but generally

in�nite a
y
li
 
ompanions obtained as tree unravellings, whi
h play an important role

throughout the model theory of modal logi
s.

Plan of the paper Se
tion 2 �rstly reviews some basi
 de�nitions; a dis
ussion of

the spe
i�
 di�eren
es between our proofs, that work for �nite model theory as well as

in the 
lassi
al 
ase, and the 
lassi
al proof follows in se
tion 2.3; a 
ru
ial 
on
ept in

this 
ontext is that of upgrading equivalen
es (De�nition 14); in se
tion 2.4 we review

Gaifman lo
ality, with spe
i�
 rami�
ations for our purposes, and derived levels of lo
al

�rst-order equivalen
e, to whi
h we will upgrade �nite bisimulation levels; Lemma 22

provides a generi
 road map for all our proofs of 
hara
terisation theorems; se
tion 2.5

dis
usses the variant proof of the van Benthem-Rosen 
hara
terisation in the light of

this approa
h.

The major 
ontribution in terms of �nite model 
onstru
tions is presented in se
-

tion 3, where the lo
ally a
y
li
 
overs are obtained (Theorem 7). This will allow us

to upgrade bisimulation equivalen
e to lo
al �rst-order equivalen
e in globally bisimi-

lar 
ompanion stru
tures; the 
orresponding te
hni
al upgrading results are presented

in se
tion 4. In se
tion 5 these are applied to prove the main modal 
hara
terisation

theorems, Theorems 4 and 5. Se
tion 6 �nally extends the entire development of the

previous se
tions to the level of guarded bisimulation invarian
e over �nite transition

systems, in
luding the proof of Theorem 6.

2 Preliminaries and basi
 de�nitions

Stru
tures We look at purely relational stru
tures with only unary and binary pred-

i
ates, often with one distinguished element. Our vo
abulary � will always be �nite,

relational and of width 2. Writing � = �

(1)

[ �

(2)

for a vo
abulary, it is understood that

�

(i)


onsists of the i-ary predi
ates in � .

This format is suitable for rendering transition systems. In this pi
ture, elements of

a � -stru
ture are the states; the unary predi
ates 
orrespond to the basi
 propositions:

a basi
 property q holds true of a state s if s 2 P

q

; the binary relations 
ode transitions
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between states: (s; t) 2 R

i

means that there is a transition of type i from state s to state

t, or that an a
tion i 
an transform state s into state t. Equally well, we may think of

a � -stru
ture as a Kripke model, with the elements now being possible worlds and the

binary relations a

essibilities between worlds. Equally well, again, we may just think

of edge- and vertex-
oloured dire
ted graphs.

� -stru
tures are represented as in A = (A; (R

A

)

R2�

(2)

; (P

A

)

P2�

(1)

), where typi
ally A

stands for the universe of A. The supers
ripts in the interpretations of predi
ates R as

R

A

and P as P

A

are often dropped. Where we want to refer to a distinguished element

we indi
ate this element expli
itly as in A; a. Although we are mostly interested in �nite

model theory, all our 
onsiderations equally apply to in�nite stru
tures. We therefore

adopt the 
onvention to mention �niteness expli
itly where it matters.

2.1 Some logi
s

We denote �rst-order logi
 as FO, elementary equivalen
e as �. The quanti�er rank of

�rst-order formulae is de�ned as usual, and �

q

stands for elementary equivalen
e up to

quanti�er rank q, or equivalen
e in the 
lassi
al q-round Ehrenfeu
ht-Fra��ss�e game (see

for instan
e [8, 7, 16℄).

Basi
 modal logi
 Propositional modal logi
, in its basi
 form whi
h we denote ML,

is based on atomi
 propositions q (asso
iated with P

q

), the usual boolean 
onne
tives,

and the modal operators [R℄ and hRi (asso
iated with R). For general ba
kground we

refer to the 
omprehensive textbook [4℄. We here present the syntax in the �rst-order

framework, so that the semanti
s is just the usual one for �rst-order.

Syntax. The formulae of ML over vo
abulary � = �

(1)

[ �

(2)

are generated as follows:

{ for every unary predi
ate P in �

(1)

and �rst-order variable x, Px is an atomi


formula of ML[� ℄.

{ if '(x) is a formula of ML[� ℄ then so is :'(x).

{ if '

1

(x) and '

2

(x) are formulae of ML[� ℄ in the same free variable x, then so are

'

1

(x) ^ '

2

(x) and '

1

(x) _ '

2

(x).

{ for a binary relation R 2 �

(2)

, if '(y) is a formula of ML[� ℄ in the free variable y

and if x is any �rst-order variable distin
t from y, then the following are formulae of

ML[� ℄ (where we regard the left-hand sides as abbreviations):

�

[R℄'

�

(x) =8y

�

Rxy ! '(y)

�

;

�

hRi'

�

(x)=9y

�

Rxy ^ '(y)

�

:

Semanti
s. The semanti
s for ML is the usual one for �rst-order logi
.

The guarded fragment The guarded fragment GF extends the modal quanti�
ation

pattern to a more general form of relativised �rst-order quanti�
ation. As in modal logi
,

the relativisation is e�e
ted by ground atoms. Some of the power of the generalisation

from ML to GF is seen only over vo
abularies of width greater than 2, where ground

atoms 
an 
over more than two elements. We present the syntax in the general format

of arbitrary relational vo
abularies, but keep in mind that we shall only deal with GF

in the setting of width 2 vo
abularies where the similarity with ML is 
loser. GF was
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introdu
ed by Andr�eka, van Benthem and N�emeti in [2℄, as a powerful yet tra
table

generalisation of ML, 
ompare in parti
ular also [10℄.

Syntax. The formulae of GF over vo
abulary � = �

(1)

[ �

(2)

are generated as follows:

{ all atomi
 � -formulae are formulae of GF[� ℄.

{ GF[� ℄ is 
losed under the boolean 
onne
tives :, ^ and _.

{ if '(�x; �y) is a formula of GF[� ℄ and if �(�x; �y) is a � -atom (also allowing equality)

su
h that free(') � var(�), then the following are formulae of GF[� ℄ (where we regard

the left-hand sides as abbreviations):

�

8�y:�

�

'(�x; �y)=8�y

�

�(�x; �y)! '(�x; �y)

�

;

�

9�y:�

�

'(�x; �y)=9�y

�

�(�x; �y) ^ '(�x; �y)

�

:

The atom � in the last 
lause is 
alled the guard of the (universal or existential)

quanti�
ation. It is useful to asso
iate with a formula ' of GF a nesting depth of

guarded quanti�
ation, whi
h turns out to be more indi
ative than its plain �rst-order

quanti�er rank. The nesting depth behaves like quanti�er rank on atomi
 formulae

and with respe
t to boolean 
onne
tives; however, it in
reases by just 1 with every

guarded quanti�
ation (whereas ordinary quanti�er rank would go up by the length of

the quanti�ed tuple).

Semanti
s. The semanti
s for GF is the usual one for �rst-order logi
.

Clearly ML � GF. The in
lusion is proper even in the 
ase of width 2 vo
abularies.

In parti
ular, GF has equality, so that, e.g., the following is in GF (but 
learly not in

ML):

8y(Rxy! x = y):

Equality 
an also be used as a guard, when
e GF has global universal quanti�
ation

over any formula '(y) in a single free variable:

8y(y=y! '(y)):

In modal logi
s this feature is asso
iated with a global modality, whose a

essibility

relation is the full binary relation over the universe.

In similar terms, GF has what in modal logi
s would 
orrespond to inverse modalities,

simply be
ause the guard atoms � have no sense of dire
tion,

8y(Ryx! '(y))

is a formula of GF just as 8y(Rxy! '(y)) is.

Modal logi
 with inverse and universal modalities Common extensions of basi


modal logi
 go some way towards 
apturing the two last features of GF mentioned above.

Universal modality. Extending the syntax of ML, we 
lose under universal and existential

quanti�
ation, and allow all formulae without free variables as additional 
onstituents

for the boolean operations and modal operators.

7



Inverse modalities. Further extending the syntax of ML, we also allow modal operators

w.r.t. to the inverses of the binary relations R:

�

[R℄

�

'

�

(x) =8y

�

Ryx! '(y)

�

;

�

hRi

�

'

�

(x)= 9y

�

Ryx ^ '(y)

�

:

De�nition 8. We denote as ML, ML

�

, ML

8

, and ML

�

8

, respe
tively, basi
 modal logi


and its extensions with inverse modalities, universal modality, and both.

The in
lusion stru
ture is as indi
ated in the following diagram. It is easy to see that

all in
lusion are stri
t, even in restri
tion to �nite stru
tures. Separations, from top to

bottom, in terms of properties of a single binary R, and treating > as universally true

propositional 
onstant: transitivity is known not to be expressible in GF; re
exivity,

8xRxx, is in GF but not in ML

�

8

; 8x9yRxy � 8hRi> is in ML

8

(and ML

�

8

) but not

expressible in either ML or ML

�

; 9yRyx � hRi

�

> is in ML

�

(and ML

�

8

) but not

expressible in ML or ML

8

.

ML

ML

�

ML

8

ML

�

8

GF

FO

�

�

�

�

�

�

�

�

�

�

�

�

2.2 Bisimulations

Modal bisimulations Bisimulations 
apture notions of behavioural equivalen
e be-

tween transition systems. They 
an equivalently be presented either in terms of games

or in terms of ba
k-and-forth systems. It is instru
tive to think of bisimulation as the

Ehrenfeu
ht-Fra��ss�e style notion of equivalen
e asso
iated to modal logi
s.

Many variations of the basi
 notion of plain bisimulation equivalen
e have been 
on-

sidered. We here only deal with plain bisimulation equivalen
e (in whi
h, starting from

a distinguished state, one 
an make forward moves along transitions) and its variation

involving unrestri
ted moves to fresh start states (
f. global modality) and ba
kward

traversal of transitions (
f. inverse modalities). The standard de�nitions in terms of a

ba
k-and-forth system are based on the following. A des
ription in terms of games will

be given below.

Let Z;Z

0

� A � B, A and B sets equipped with binary relations R

A

and R

B

,

respe
tively. We say that Z

0

satis�es the ba
k-and-forth 
onditions with respe
t to R

for Z if
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(forth:) for any (a; b) 2 Z and any a

0

2 A su
h that (a; a

0

) 2 R

A

, there is some b

0

2 B

su
h that (b; b

0

) 2 R

B

and (a

0

; b

0

) 2 Z

0

.

(ba
k :) for any (a; b) 2 Z and any b

0

2 B su
h that (b; b

0

) 2 R

B

, there is some a

0

2 B

su
h that (a; a

0

) 2 R

A

and (a

0

; b

0

) 2 Z

0

.

Z itself satis�es the ba
k-and-forth 
onditions with respe
t to R if the above are

satis�ed for Z

0

= Z.

De�nition 9. Let A and B be � -stru
tures, Z � A�B non-empty.

Z is a bisimulation between A and B if (a; b) 2 Z implies that A j= Pa , B j= Pb, for

all unary P 2 �

(1)

, and if Z satis�es the ba
k-and-forth 
onditions w.r.t. all the binary

predi
ates R of � . In symbols: Z : A � B.

Z is a two-way bisimulation if in addition Z satis�es the ba
k-and-forth 
onditions w.r.t.

the inverses R

�1

for all binary predi
ates R 2 �

(2)

. In symbols: Z : A �

�

B.

An (ordinary or two-way) bisimulation Z between A and B is a global bisimulation, if in

addition �

1

(Z) = A and �

2

(Z) = B. In symbols: Z : A �

8

B or Z : A � B, respe
tively.

Two stru
tures are bisimilar in the 
orresponding sense, A � B, A �

�

B, A �

8

B,

or A � B, if there is a 
orresponding bisimulation. Two stru
tures with distinguished

nodes are bisimilar in the 
orresponding sense, indi
ated as in A; a � B; b, if there is a


orresponding bisimulation Z su
h that (a; b) 2 Z.

It is not hard to see that the semanti
s of ML is invariant under bisimulation, in the

sense that for all ' in ML:

A; a � B; b )

�

A; a j= ' , B; b j= '

�

:

Similar preservation properties obtain for ML

�

, ML

8

, ML

�

8

, with respe
t to �

�

, �

8

,

and �, respe
tively.

Unravellings and tree models Among the most 
entral model theoreti
 
onse-

quen
es of bisimulation invarian
e, is that it guarantees the existen
e of tree models.

The well-known tree unravelling of a transition system yields a bisimilar 
ompanion

stru
ture that is a tree.

Let A; a be a transition system of type � = �

(1)

[ �

(2)

. Its tree unravelling from a,

A

�

a

, is based on the set of all �nite dire
ted paths from a in A, in
luding the empty path

of length 0 from a whi
h we identify with a itself. If � = a; a

1

; : : : ; a

`

is a path in A of

length ` we let �(�) = a

`

be the last vertex along this path. For P 2 �

(1)

, we put � 2 P

in A

�

a

i� �(�) 2 P

A

. R 2 �

(2)

is interpreted in A

�

a

as the set of all pairs (�; � b̂) where

(�(�); b) 2 R

A

. It is readily 
he
ked that in this way A

�

a

; � � A; �(�) for all �, i.e., �

indu
es a global bisimulation so that in parti
ular A

�

a

; a �

8

A; a.

Similarly, for a
y
li
 two-way bisimilar 
ompanions, one 
an use a two-way unravel-

ling, based on the set of all undire
ted non-degenerate paths from a (paths that may tra-

verse edges in either dire
tion, ex
luding, however, traversals of the same edge in oppo-

site dire
tions in 
onse
utive steps). The unary predi
ates are interpreted as above, and

R 2 �

(2)

is interpreted as the set of all pairs (�; � b̂) where (�(�); b) 2 R

A

and all pairs

(� b̂; �) where (b; �(�)) 2 R

A

. Then A

�

a

; � �

�

A; �(�) and in parti
ular A

�

a

; a � A; a.

9



Note that in both 
ases, the unravelling is in�nite if the original system does have

(dire
ted, respe
tively undire
ted) 
y
les; hen
e the interest in 
ertain substitutes for

full tree unravellings that provide �nite 
ompanions with some measure of a
y
li
ity

that will 
on
ern us in se
tion 3.

Guarded bisimulations Guarded bisimulations are the adequate 
ounterparts to

bisimulations in the 
ontext of GF. Quanti�
ation in GF allows dire
t a

ess only to

the following tuples and subsets over a � -stru
ture A.

De�nition 10. Let A be a � -stru
ture, � relational. A subset s � A is guarded if s is

a singleton set s = fag for some a 2 A, or if s = fa

1

; : : : ; a

k

g where (a

1

; : : : ; a

k

) 2 R

for some relation R 2 � . A tuple �a over A is guarded if its 
omponents are elements of

some 
ommon guarded subset.

Note that in vo
abularies of width 2, guarded subsets have one or two elements;

two-element guarded subsets 
orrespond to symmetrised relational edges (or edges in

the Gaifman graph, see below).

Let Z;Z

0

� Part(A;B) be sets of partial (lo
al) isomorphisms between � -stru
tures

A and B. We say that Z

0

satis�es the guarded ba
k-and-forth 
onditions for Z if

(forth:) for any p 2 Z and any guarded subset s

0

of A, there is some p

0

2 Z

0

with

dom(p

0

) = s

0

su
h that p and p

0

agree on their 
ommon domain.

(ba
k :) for any p 2 Z and any guarded subset t

0

of B, there is some p

0

2 Z

0

with

im(p

0

) = t

0

su
h that the inverses of p and p

0

agree on their 
ommon domain.

Z itself satis�es the guarded ba
k-and-forth 
onditions if the above are satis�ed for

Z

0

= Z.

De�nition 11. Let A and B be � -stru
tures, Z � Part(A;B) a non-empty set of lo
al

isomorphisms between A and B.

Z is a guarded bisimulation between A and B, Z : A �

g

B, if for every p 2 Z, the

domain and image of p are guarded subsets of A and B, respe
tively, and if Z satis�es

the guarded ba
k-and-forth 
onditions.

We write Z : A; �a �

g

B;

�

b to indi
ate that p : �a 7!

�

b for some p 2 Z. Note that this

implies that we are dealing with parameter tuples that are guarded.

The semanti
s of GF is invariant under guarded bisimulations. For all ' in GF:

A; �a �

g

B;

�

b )

�

A; �a j= ' , B;

�

b j= '

�

Similar to the modal 
ase, there is a 
hara
terisation theorem for GF, [2℄.

Theorem 12 (Andr�eka, van Benthem, N�emeti). Any �rst-order formula '(�x) that

is invariant under guarded bisimulation is equivalent to a formula of GF, and vi
e versa.

Our investigations here will 
ulminate in the proofs of Theorems 3, 4, 5 and 6.

These various levels of bisimulation invarian
e dis
ussed so far pre
isely 
orrespond to

the naturally asso
iated synta
ti
 fragments of �rst-order logi
, level by level, over all

but also in restri
tion to just �nite transition systems.

10



FO=� � ML

FO=�

�

� ML

�

FO=�

8

� ML

8

FO=� � ML

�

8

FO=�

g

� GF

�

�

�

�

�

�

�

�

�

�

�

�

Bisimulation games The above notions of modal and guarded bisimulation 
an nat-

urally be 
aptured by Ehrenfeu
ht-Fra��ss�e games. We only give a brief outline.

The ordinary modal bisimulation game on A and B is played by two players, Player

I and Player II. There are two pebbles, one for ea
h stru
ture, whi
h throughout the

game mark one element in ea
h stru
ture. It is Player II's task to maintain the 
ondi-

tion that the 
orresponden
e between the 
urrently marked elements preserves all the

unary predi
ates. In a play on A; a and B; b, the pebbles are initially pla
ed on the

distinguished nodes a and b.

In ea
h round of the game, Player I sele
ts one of the two stru
tures and an R-edge

that goes out of the node 
urrently pebbled in that stru
ture, for one of the binary

relations R, and moves the pebble along that edge. Player II has to mat
h this move

in the opposite stru
ture, by moving the pebble in that stru
ture along an R-edge

(the same R) to a node su
h that the new 
orresponden
e again preserves all unary

predi
ates. A player who 
annot move, loses the game; otherwise, i.e., if the game


ontinues inde�nitely, Player II wins the in�nite game.

It is easy to see that a bisimulation Z : A; a � B; b is nothing but a formalisation of

a winning strategy for Player II in the in�nite bisimulation game on A; a and B; b.

The variations for global or two-way bisimulation are obvious. The \two-way" re-

quirement 
orresponds to giving Player I the option to move a pebble ba
kwards along

some R-edge, in whi
h 
ase Player II has to do likewise; the \global" requirement means

that Player I 
an also 
hoose to make a move in whi
h the pebble may be taken to any

node, not just along an edge, in whi
h 
ase Player II similarly may move anywhere in

the opposite stru
ture. It is not hard to see, though, that without loss of generality one

may restri
t this 
hoi
e of making a global move to just the �rst round of the game,

without a�e
ting the existen
e of a winning strategy.

For the guarded bisimulation game one uses two labelled sets of pebbles, one for

ea
h stru
ture. In ea
h stru
ture, these pebbles will always be pla
ed on elements inside

some guarded set, i.e., mark a guarded tuple. It is Player II's task to make sure that

the 
orresponden
e between pebbled tuples always is a lo
al isomorphism.

In ea
h round, Player I 
an determine in whi
h stru
ture to play and also how many

of the 
urrently pla
ed pebbles to keep �xed, and how many of the others to pla
e|with

11



the only 
onstraint that the new pebble 
on�guration must again be guarded. Player

II, in the opposite stru
ture, needs to keep �xed the pebble(s) 
orresponding to those

that Player I kept �xed and must pla
e pebbles 
orresponding to those pla
ed by I so

as to a
hieve a 
orresponden
e that is a lo
al isomorphism. In our setting of relational

stru
ture of width 2, the guarded game really only needs two pebbles over ea
h stru
ture.

Finite approximations Beside strategies in the in�nite bisimulation games one 
an

also 
onsider strategies in 
orresponding games with a �xed �nite number ` of rounds.

Player II wins any play in whi
h ` rounds are 
ompleted. The ` round games indu
e

�nite approximations to full bisimulation equivalen
e, at su

essively re�ned �nite levels

` 2 N.

At level `, `-bisimulation 
aptures the situation where the se
ond player has a win-

ning strategy for ` rounds of the respe
tive bisimulation game. We denote these approx-

imations by supers
ripts as in �

`

.

In ea
h 
ase, the relationship between `-bisimulation and bisimulation is analogous to

that between `-isomorphism (
f. `-round 
lassi
al Ehrenfeu
ht-Fra��ss�e game) and partial

isomorphism (in�nite Ehrenfeu
ht-Fra��ss�e game).

In terms of ba
k-and-forth systems, an `-bisimulation between A and B 
onsists of

a sequen
e Z

0

; Z

1

; : : : ; Z

`

of non-empty sets, where ea
h Z

i�1

has the ba
k-and-forth

property for Z

i

. We 
all su
h systems strati�ed ba
k-and-forth systems of depth `. The

obvious variations 
apture the �nite approximations of �

�

, �

8

, �, and �

g

.

�

�

�

�

8

�

�

g

�

�

�

�

�

�

�

�

�

�

�

�

with �nite

approximations

at level `

�

`

�

`

�

�

`

8

�

`

�

`

g

�

�

�

�

�

�

�

�

�

�

�

�

The 
orresponding Ehrenfeu
ht-Fra��ss�e and Karp theorems are summed up in the

following. Let � stand for any one of the full ba
k-and-forth Ehrenfeu
ht-Fra��ss�e style

equivalen
es, as 
aptured by the existen
e of a strategy for the se
ond player in the

in�nite game or by a 
orresponding ba
k-and-forth system: �;�

�

;�

8

;�;�

g

. Let �

`

be the 
orresponding `-approximation, 
aptured by strategies in the `-round games or

a strati�ed ba
k-and-forth system of depth `: �

`

;�

`

�

;�

`

8

;�

`

;�

`

g

.

For the logi
s L = ML;ML

�

;ML

8

;ML

�

8

;GF let L

`

stand for the fragment of formulae

of nesting depth up to `. We let�

L

`

stand for the logi
al equivalen
e indu
ed by formulae

in L

`

:

A; a �

L

`

B; b i� for all ' 2 L

`

: A j= '[a℄ , A j= '[a℄:

For the full (in�nite game) equivalen
es�, we 
orrespondingly look at logi
al equiv-

alen
es indu
ed by the in�nitary variants of these logi
s. Let L

1

stands for the extension

12



of L that allows arbitrary (�nite or in�nite) 
onjun
tions and disjun
tions.

A; a �

L

1

B; b i� for all ' 2 L

1

: A j= '[a℄ , A j= '[a℄:

With ea
h of the above readings for �;�

`

;�

L

1

;�

L

`

we have the following equiva-

len
es, for all stru
tures A; a and B; b, and all `:

A; a � B; b , A; a �

L

1

B; b

A; a �

`

B; b , A; a �

L

`

B; b

While the se
ond equivalen
e is the 
orresponding variant of the Ehrenfeu
ht-Fra��ss�e

theorem, the �rst equivalen
e 
orresponds to the 
lassi
al theorem of Karp that asso-


iates partial isomorphism '

p

with equivalen
e in L

1!

.

Full (�nitary) L-equivalen
e, �

L

, is 
aptured by the 
ommon re�nement of the �nite

levels �

L

`

for all ` 2 N. On the side of the games, let �

!

stand for the equivalen
e

indu
ed by the existen
e of strategies for Player II in all bounded games of �nite lengths;

�

!

=

T

`

�

`

, the least 
ommon re�nement of the �

`

. Note that all the equivalen
es

�

L

`

and �

L

in question are 
oarser than elementary equivalen
e �, and hen
e 
aptured

by �rst-order theories and preserved in model 
onstru
tions that respe
t elementary

equivalen
e. Classi
al model theory in parti
ular provides for elementary extensions

that are suÆ
iently saturated to realise all (�rst-order theories of) �nite 
on�gurations

that are not expli
itly forbidden by the �rst-order theory of a given stru
ture: so-
alled

!-saturated models. While we do not need to go into these any further it is interesting to

observe the purpose these 
an serve in 
lassi
al proofs of preservation theorems like ours.

Over !-saturated stru
tures, �

!


oin
ides with �. Thus, while the in�nitary levels of

game equivalen
e|
orresponding to equivalen
e in L

1

|are not in general �rst-order,

they 
an be harnessed by �rst-order means in !-saturated models.

Over �nite stru
tures, however, the fa
t that �

!


oin
ides with � follows more


onstru
tively, as a 
onsequen
e of a simple 
ardinality argument as follows. Over any

two individual �nite stru
tures the sequen
e of re�nements �

0

��

1

��

2

� � � � must

be
ome stationary at some �nite level `, and it follows that in restri
tion to these two

�xed stru
tures even �

`


aptures �.

As in 
lassi
al Ehrenfeu
ht-Fra��ss�e analysis, one �nds that over the 
lass of stru
tures

of �xed �nite relational vo
abulary � , and for ea
h `, the respe
tive equivalen
e relation

�

`

has �nite index. Furthermore, ea
h �

`

equivalen
e 
lass is de�nable by a formula

of L

`

, i.e., in the 
orresponding fragment of �rst-order logi
 at nesting depth `.

2.3 Chara
terisation theorems and their approximations

The 
lassi
al 
hara
terisation theorem, Theorem 1, as well as its variants for the other

fragments and equivalen
es in
luding Theorem 12 for GF, have `-approximations, whi
h

establish level-by-level 
orresponden
es between invarian
e �

`

(`-bisimulations of the

respe
tive kinds) and L-formulae of nesting depth `. It should be stressed that these

approximations do by no means prove the full 
hara
terisation theorems. Unlike the

full 
hara
terisation theorems, their `-approximations admit simple indu
tive proofs,

in 
omplete analogy with 
lassi
al Ehrenfeu
ht-Fra��ss�e analysis. Also unlike the full

13




hara
terisation theorems, the `-approximations are trivially valid also in restri
tion to

just �nite stru
tures.

This suggests the following perspe
tive on proving the 
lassi
al 
hara
terisation the-

orems in a manner that is potentially valid in �nite model theory. We let � stand for

one of the bisimulation notions 
onsidered above, or indeed any other ba
k-and-forth

equivalen
e that has 
orresponding �nite approximations �

`

at �nite levels ` .

Observation 13. Let � have �nite approximations �

`

, ` 2 N. Assume that ea
h �

`

has �nite index for every �xed �nite relational vo
abulary. Let L =

S

`

L

`

be a logi
,

ea
h stratum L

`


losed under disjun
tions. Assume that ea
h L

`

is invariant under �

`

and that ea
h �

`

-
lass is de�nable by a formula of L

`

.

Then the following are equivalent, both in the sense of 
lassi
al model theory and of

�nite model theory:

(i) Every �rst-order formula that is �-invariant is invariant under �

`

for some `.

(ii) Every �rst-order formula that is �-invariant is equivalent to some formula in L.

Note that the `-approximations to a 
hara
terisation theorem that links L to �-

invarian
e dire
tly follow from the assumptions of the observation: a property is de�n-

able by a formula of L

`

if and only if it is invariant under �

`

.

Proof. (ii)) (i): '�-invariant implies ' is equivalent to some  2 L by (ii); if  2 L

`

,

we �nd that  , and therefore ', is invariant under �

`

.

(i)) (ii): '�-invariant implies that ' is invariant under�

`

for some ` by (i). Then

' is equivalent to the disjun
tion over the L

`

-formulae de�ning those �

`

equivalen
e


lasses whose members are models of '. This disjun
tion is �nite, sin
e �

`

has �nite

index.

In the light of this observation, the 
rux of the proof of a 
hara
terisation theorem

FO=� � L|both 
lassi
ally and in �nite model theory|lies in establishing 
ondition

(i) of Observation 13.

Classi
ally, this 
ondition is established indire
tly using 
ompa
tness and suÆ
iently

ri
h (!-saturated) models, over whi
h�

!

(simultaneous�

`

equivalen
e for all �nite `)


oin
ides with full� equivalen
e. I.e., 
lassi
ally one relies on model 
onstru
tions that

allow us to upgrade �

!

to � while preserving ' 2 FO.

Here, on the other hand, we pro
eed orthogonally. We now look at �nitary model


onstru
tions that fully preserve � (and therefore any �-invariant ') and allow us to

upgrade �

`

, for a spe
i�
 level `, to some approximation

_

� of elementary equivalen
e

� that is strong enough to preserve '.

De�nition 14. Let �

`

and

_

� be equivalen
e relations between � -stru
tures, � a

re�nement of�

`

. We say that�

`


an be upgraded to

_

� modulo� (in �nite stru
tures)

if for any two (�nite) A; a �

`

B; b there are (�nite)

^

A; â � A; a and

^

B;

^

b � B; b su
h

that

^

A; â

_

�

^

B;

^

b.
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A; a

�

`

B; b

� �

^

A; â

_

�

^

B;

^

b

With this intuition, our proofs of the 
ru
ial 
ondition (i) in Observation 13 pro
eed

as follows. For a given �-invariant ', we determine a suitable approximation

_

� of

full elementary equivalen
e su
h that ' is preserved under

_

� for essentially synta
ti


reasons, and a �nite level ` su
h that�

`


an be upgraded to

_

� (in �nite models) modulo

�. This implies that ' is �

`

-invariant, straight from the diagram.

The appropriate levels of

_

� for this argument are obtained from a Gaifman repre-

sentation of the given FO-formula '; the relevant ` will essentially be the lo
ality rank

of ' in the sense of Gaifman's lo
ality theorem (see below).

For all rami�ed 
ases of modal 
hara
terisation theorems, i.e., all 
ases with the

ex
eption of the van Benthem-Rosen theorem itself, the a
tual upgrading result will re-

volve around 
ombinatorial 
onstru
tions of 
ertain `ni
e'�-equivalent �nite 
ompanion

stru
tures, over whi
h FO 
an lo
ally be 
ontrolled. These will be provided in se
tion 3

in the form of lo
ally a
y
li
 
overs.

2.4 Lo
ality

Re
all that the Gaifman graph G(A) of a relational stru
ture A = (A; : : :) is the sym-

metri
 graph with universe A and edges linking any two distin
t elements of A that

o

ur together in a 
ommon ground atom of a relation in A. Gaifman distan
e d on A

is the metri
 indu
ed by ordinary graph distan
e in G(A).

De�nition 15. Let A be a relational stru
ture.

(a) The neighbourhood of radius ` about a in A is the subset

N

`

(a) =

�

a

0

2 A : d(a; a

0

) 6 `

	

.

(b) A set of elements in A is `-s
attered if the mutual distan
e between any two distin
t

members of the set is greater than 2`.

The `-neighbourhoods of any two distin
t members of an `-s
attered set are disjoint.

Gaifman distan
e d is �rst-order de�nable, for every �xed �nite relational signature,

in the sense that for every ` there is a �rst-order formula expressing that d(x; y) 6 `.

De�nition 16. (i) A formula  (x) is `-lo
al if it is logi
ally equivalent to its relativi-

sation to N

`

(x).

(ii) A basi
 `-lo
al senten
e is one that asserts the existen
e of an `-s
attered set of m

elements x all of whi
h satisfy the same `-lo
al formula  (x), for some m and  .

(iii) A �rst-order formula '(x) is in Gaifman form if it is a boolean 
ombination of

lo
al formulae and basi
 lo
al senten
es.

(iv) The lo
ality rank of a formula in Gaifman form is the minimal ` su
h that all

its 
onstituent lo
al formulae (in
luding those o

urring in basi
 lo
al senten
es)
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are `-lo
al. Its lo
al quanti�er rank is the maximal quanti�er rank in any of the


onstituent lo
al formulae; its s
attering rank is the maximal size of a s
attered

set asserted in any of its 
onstituent basi
 lo
al senten
es.

(v) A simple lo
al senten
e is a senten
e in Gaifman form of s
attering rank 1; i.e.,

one that asserts the existen
e of an element x satisfying some lo
al formula  (x).

Note that, due to de�nability of Gaifman distan
e, `-lo
al formulae '(x) are equiv-

alent to formulae whose quanti�ers are expli
itly relativised to the `-neighbourhood of

x; and simple `-lo
al senten
es are equivalent to existentially quanti�ed formulae of this

kind.

Gaifman's theorem [9℄ says that �rst-order logi
 is essentially lo
al.

1

Theorem 17 (Gaifman). Any �rst-order formula '(x) is equivalent to one in Gaifman

form.

We shall mostly apply Gaifman's theorem in more spe
i�
 
ir
umstan
es. The 
ru
ial

spe
ialisations for our purposes deal with formulae whose semanti
s is invariant under

disjoint sums (unions). We write A+B for the disjoint sum of two stru
tures A and B

over the same purely relational vo
abulary � . We also write q � A for the q-fold dire
t

sum of A with itself. We usually regard A itself as a substru
ture of A +B and q � A,

and use notation like A +B; �a for parameters �a from A. Note that A +B � A, and

q � A � A as well as q � A �

g

A (also with parameters from A).

De�nition 18. A � -formula ' is

(i) invariant under disjoint sums (meaning: with arbitrary other � -stru
tures) if for

all A; �a and B: A; �a j= ' , A+B; �a j= '.

(ii) invariant under disjoint 
opies (meaning: of the same � -stru
ture) if for all A; �a

and q > 1: A; �a j= ' , q � A; �a j= '.

Clearly, bisimulation invarian
e implies invarian
e under disjoint sums, while invari-

an
e under global or guarded bisimulation implies invarian
e under disjoint 
opies. The

following spe
ialisations of Gaifman's theorem 
an therefore be brought into play.

In the 
ontext of 
lassi
al model theory and with a view to 
ombinatorial appli
a-

tions, Compton [6℄ has|independently of Gaifman [9℄| obtained several 
losely related

results, whi
h interestingly moreover also anti
ipate the idea of guarded quanti�
ation.

Proposition 19. Both in the sense of 
lassi
al and �nite model theory:

(a) If ' = '(x) 2 FO is invariant under disjoint sums, then '(x) is lo
al about x.

(b) If ' = '(x) 2 FO is invariant under disjoint 
opies, then ' is equivalent to a

boolean 
ombination of lo
al formulae about x and simple lo
al senten
es.

Proof. We expli
itly prove these statements in their reading for �nite model theory. The


lassi
al 
ase follows exa
tly the same lines. We use  

1

j=

�n

 

2

or  

1

�

�n

 

2

to expli
itly

1

We state the spe
ial 
ase for formulae in one free variable. The theorem holds for formulae in

arbitrary free variables, but one has to admit slightly more general lo
al formulae in the free variables.

These are required to be equivalent to their relativisation to the union of `-neighbourhoods around all

their free variables, for some `.
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indi
ate the restri
tion to just �nite models, of semanti
 impli
ation and bi-impli
ation

between formulae.

(a) Assume that over �nite stru
tures, '(x) is invariant under disjoint sums. A

ording

to Gaifman's theorem, ' is equivalent (over all stru
tures) to a formula of the form

'(x) �

_

i

�

'

i

0

(x) ^ �

i

�

;

where the '

i

0

(x) are `

i

-lo
al about x and the �

i

are boolean 
ombinations of basi
 lo
al

senten
es su
h that without loss of generality

(i) every '

i

0

(x) ^ �

i

is satis�able.

(ii) any two distin
t '

i

0

(x) are mutually ex
lusive.

We may delete any disjun
ts '

i

0

(x) ^ �

i

that have no �nite models, and still retain a

formula that is equivalent to ' over all �nite stru
tures, where even

(i') every '

i

0

(x) ^ �

i

is satis�able in a �nite model.

We 
laim that then ne
essarily

'(x) �

�n

_

i

'

i

0

(x):

Clearly '(x) j=

�n

W

i

'

i

0

(x). Conversely we show that also

W

i

'

i

0

(x) j=

�n

'(x).

Let to this end A; a j=

W

i

'

i

0

(x) be a �nite model of

W

i

'

i

0

(x). From (i') we obtain

�nite models B

i

; b

i

j= '

i

0

(x) ^ �

i

. Note that this implies B

i

; b

i

j= '(x). Let B be the

disjoint union of theB

i

and A. From invarian
e under disjoint sums we get B; b

i

j= '(x)

for ea
h i. As B; b

i

j= :'

j

0

(x) for all j 6= i by (ii), inspe
tion of '(x) shows that

ne
essarily B; b

i

j= '

i

0

(x) ^ �

i

for ea
h i. Therefore B j=

V

i

�

i

. So B; a j=

W

i

'

i

0

(x) ^

V

i

�

i

. The latter formula 
learly implies '(x). So B; a j= '(x), and using invarian
e

under disjoint sums again, also A; a j= '(x).

(b) Let '(x) be invariant under disjoint 
opies over �nite stru
tures. Using Gaifman's

theorem we obtain a presentation of '(x) of the following form:

'(x) �

�n

_

i

�

 

i

^

_

j

�

'

ij

0

(x) ^ �

ij

�

�

where

(i) the formulae '

ij

0

(x) are lo
al about x.

(ii) the senten
es �

ij

are boolean 
ombinations of basi
 lo
al senten
es talking about

s
attered sets of size greater than 1.

(iii) the senten
es  

i

are 
omplete boolean 
ombinations of all formulae of the form

9y�(y) where � ranges over all the lo
al formulae that o

ur in any of the  

i

or

�

ij

.

(iv) Any two  

i

and  

i

0

are mutually ex
lusive for i 6= i

0

.

(v) For every i: '

ij

0

(x) and '

ij

0

0

(x) are mutually ex
lusive whenever j 6= j

0

.

(vi) For every i; j:  

i

^ ('

ij

0

(x) ^ �

ij

) is satis�able in a �nite model.
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We 
onsider '

i

(x) :=

W

j

�

'

ij

0

(x) ^ �

ij

�

in restri
tion to models of  

i

, and 
laim that

 

i

^ '

i

(x) �

�n

 

i

^

_

j

'

ij

0

(x):

Clearly this proves the 
laim of part (b). Moreover, the left-hand side 
learly implies

the right-hand side. For the 
onverse impli
ation let A; a j=  

i

^

W

j

'

ij

0

(x) be a �nite

model of the right-hand formula. We need to show that A; a j= '

i

. Choose q 2 N to

be greater than the 
ardinality of any s
attered set mentioned in the �

ij

. By (vi) we

�nd �nite models B

j

; b

j

j=  

i

^ '

ij

0

(x) ^ �

ij

. As B

j

; b

j

j= '(x) and by invarian
e of '

under disjoint 
opies, we have q �B

j

; b

j

j= '(x). Clearly still q �B

j

; b

j

j=  

i

. Therefore,

q �B

j

; b

j

j= '

i

(x) and as 
learly also still q �B

j

; b

j

j= '

ij

0

(x), 
ondition (v) implies that

q �B

j

; b

j

j= �

ij

. It follows that �

ij


an only make positive existential 
laims about large

s
attered sets whose members satisfy some lo
al formula that is realised a

ording to

 

i

; 
onversely, any negative statement in the �

ij


an only forbid (large) s
attered sets

satisfying some lo
al formula that a

ording to  

i


annot be realised at all.

It follows that also q � A j= �

ij

, and|as this is the 
ase for all 
hoi
es of j|in fa
t

q � A j=

V

j

�

ij

. But then q � A; a j=  

i

^

W

j

'

ij

0

^

V

j

�

ij

. Therefore q � A; a j= ' and, by

invarian
e of ', also A; a j= '. As the  

i

are mutually ex
lusive, (iv), it must be that

A; a j= '

i

(x), as desired.

In fa
t one 
an improve on part (a) of Proposition 19 by giving a quantitative

bound on the lo
ality rank `. A proof of the following lemma, based entirely on an

elementary Ehrenfeu
ht-Fra��ss�e game argument without appeal to Gaifman's theorem, is

presented in [14℄. This argument relies on an analysis of the q-round game on stru
tures

q �A+q �B+A; a versus q �A+q �B+B; b in the situation where A�N

`

(a); a �

q

B�N

`

(b); b,

for ` = 2

q

� 1. Exhibiting a strategy for the se
ond player is a
tually a ni
e exer
ise in

Ehrenfeu
ht-Fra��ss�e games.

Lemma 20. Both 
lassi
ally and in the sense of �nite model theory: a �rst-order

formula '(x) of quanti�er rank q that is invariant under disjoint sums is `-lo
al for

` = 2

q

� 1.

The tightness of this bound is illustrated by the following example. There are

straightforward FO formalisations of the bisimulation invariant property that \there

is a red node within distan
e 2

q

� 1 of x" in quanti�er rank q. But any modal formula

to this e�e
t must have modal quanti�er rank 2

q

� 1, sin
e modal formulae of quanti�er

rank ` are `-lo
al.

All our proofs of 
hara
terisation theorems will establish the 
ru
ial 
ondition in

Observation 13 with an argument about upgrading `-bisimulation invarian
e to a level

of lo
al �rst-order equivalen
e that is strong enough to preserve the given formula '

in its Gaifman form. The following lemma serves to en
apsulate the generi
 pattern

of these proofs. For the de�nition of the relevant levels of FO-equivalen
e 
ompare

De�nition 16, espe
ially item (iv). For the notion of upgrading re
all De�nition 14.

De�nition 21. For � -stru
tures with distinguished parameters A; a and B; b, and

`; q; n 2 N: A; a �

(`)

q;n

B; b if for every k 6 `, for every k-lo
al formula  (x) of quanti�er

rank q, and for every m 6 n:
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(i) A j=  [a℄, B j=  [b℄.

(ii) A has a k-s
attered subset of size m for  i� B has.

Note that �

(`)

q;n

has �nite index and that any FO-formula '(x) in Gaifman form is

invariant under �

(`)

q;n

if its lo
ality rank, lo
al quanti�er rank and s
attering rank are

bounded by `, q and n, respe
tively.

Lemma 22. Both 
lassi
ally and in the sense of �nite model theory. Let '(x) be in

Gaifman form of lo
ality rank `, lo
al quanti�er rank q and s
attering rank n. Suppose

that ' is invariant under �. If �

`


an be upgraded to �

(`)

q;n

modulo �, then ' is

invariant under �

`

.

For this 
ompare Observation 13 and De�nition 14, and the dis
ussion in se
tion 2.3.

The use of Proposition 19 in this 
ontext merely is to give a natural a priori bound on

the lo
ality and s
attering ranks of bisimulation invariant formulae.

2

2.5 The 
ase of basi
 modal logi
 revisited

A high-level sket
h of an alternative proof of the van Benthem-Rosen theorem, whi
h

also yields an exponential bound on the nesting depth of the target ML formula, was

indi
ated in the introdu
tion. We are now in a position to make this argument pre
ise,

and it may serve as an instru
tive, parti
ularly simple appli
ation of the generi
 proof

idea in Observation 13 and of upgrading. The parti
ular simpli�
ation derives from the

tight lo
ality guaranteed by Lemma 20.

Theorem 23. Both 
lassi
ally and in the sense of �nite model theory: any �rst-order

formula '(x) of quanti�er rank q that is invariant under bisimulation is equivalent to a

formula of basi
 modal logi
 whose modal nesting depth is less than 2

q

.

As remarked above, the bound on the nesting depth is tight; the example given right

after Lemma 20 above, illustrates the fa
t that FO 
an be exponentially more su

in
t

than ML for bisimulation invariant properties.

We apply a version of Lemma 22 where the target equivalen
e �

(`)

q;n

is repla
ed by

the following equivalen
e �

(`)

. De�ne A; a �

(`)

B; b as A�N

`

(a); a � B�N

`

(b); b. Note

that this is a lo
al version of full bisimulation equivalen
e, not to be 
onfused with

`-bisimulation. To prove Theorem 23 we show the following.

Lemma 24. Modulo �, �

`


an be upgraded to �

(`)

(also in �nite stru
tures).

A; a

�

`

B; b

� �

^

A; â

�

(`)

^

B;

^

b

2

It turns out that for the rami�ed 
hara
terisation results, 
on
erning global forms of bisimulation,

one does not a
tually have to appeal to Proposition 19 (b), if one uses simple disjoint 
opies in an addi-

tional step that further upgrades from �

(`)

q;1

(s
attering rank 1, 
orresponding to simple lo
al senten
es)

to �

(`)

q;n

(arbitrary s
attering rank n); 
ompare Lemma 37 in se
tion 4.
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Proof. Let A; a �

`

B; b. Let

^

A be the result of unravelling A from a, restri
ting the

resulting tree to depth `, and identifying leaf nodes in this trun
ated tree with 
orre-

sponding nodes in disjoint isomorphi
 
opies of A. Let

^

A

`

=

^

A�N

`

(a) be the trun
ated

unravelling of depth ` of A; a with no atta
hments to the 
ut-o� points at the leaves.

Clearly

^

A and

^

A

`

are �nite if A is �nite. By 
onstru
tion,

^

A; a � A; a and

^

A

`

; a �

(`)

^

A; a.

Let

^

B and

^

B

`

be similarly obtained from B; b. Then

^

A

`

�

^

B

`

, as A; a �

`

B; b and

as both

^

A

`

and

^

B

`

are trees of depth `. It follows that

^

A; a �

(`)

^

B; b, as desired.

Proof of Theorem 23. Lemma 24 and Observation 13 now prove the theorem. If '(x) of

quanti�er rank q is bisimulation invariant, it is also `-lo
al for ` = 2

q

� 1 by Lemma 20,

and hen
e invariant under �

(`)

. Upgrading a

ording to Lemma 24, as indi
ated in the

diagram, proves that ' is invariant under �

`

, hen
e expressible in ML at modal nesting

depth `.

In 
onne
tion with Lemma 24, it should be pointed out that �

`


an in fa
t be

upgraded (modulo � and also in �nite models) to lo
al isomorphism '

(`)

, a

ording

to A; a '

(`)

B; b i� A �N

`

(a); a ' B �N

`

(b); b. To a
hieve this, one enri
hes �nite

bisimilar 
ompanions

^

A and

^

B from the above proof with suÆ
iently many 
opies of

ea
h `sub-tree' to boost both stru
tures to have equal numbers of realisers for ea
h

(` � `

0

� 1)-bisimulation type adja
ent to any node at depth `

0

< `. This well-known


onstru
tion is also used as part of Rosen's proof in [17℄, whi
h then pro
eeds to upgrade

to full elementary equivalen
e, using Hanf's theorem and some more intri
ate surgery

on �nite stru
tures.

The van Benthem-Rosen theorem 
an easily be adapted to 
over the 
ase of two-

way bisimulation �

�

and ML

�

. For the above arguments, this involves the following

observations and slight modi�
ations. Clearly the lo
ality results of Proposition 19 or

Lemma 20 go through, as �

�

-invarian
e also implies invarian
e under disjoint sums. For

the analogue of Lemma 24, one adapts the proof given in Lemma 24 by using (trun
ated)

two-way unravellings. We then obtain the following.

Corollary 25. Both 
lassi
ally and in the sense of �nite model theory: any �rst-order

formula '(x) of quanti�er rank q that is invariant under two-way bisimulation is equiv-

alent to a formula of ML

�

whose modal nesting depth is less than 2

q

.

It is apparent from the above that (ordinary as opposed to global) bisimulation in-

varian
e implies a very strong form of lo
ality; namely, lo
ality about the distinguished

parameter. The pi
ture is quite di�erent, however, when we 
onsider global (and pos-

sibly two-way) bisimulation, whi
h does take into a

ount the lo
al behaviour not just

around the distinguished parameters but also around any other point. Model 
onstru
-

tions that are to respe
t any form of global bisimulation equivalen
e therefore have to be

mu
h more uniform. Partial or trun
ated unravellings are not good enough. The distin-

guishing feature of tree-like unravellings is their a
y
li
ity (a
y
li
ity of the underlying

Gaifman graphs). But 
learly a
y
li
ity 
annot be had in �nite bisimilar 
ompanion

stru
tures of any stru
ture that is not itself already a
y
li
. To the extent that one

is still only 
on
erned about the lo
al behaviour in neighbourhoods of some bounded

radius, however, it makes sense to approximate a
y
li
ity uniformly but lo
ally by avoid-

ing short 
y
les in the Gaifman graph, i.e., to at least keep small lo
al neighbourhoods
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a
y
li
. This is exa
tly what the lo
ally a
y
li
 bisimilar 
overs to be dis
ussed in the

following se
tion a
hieve.

3 Lo
ally a
y
li
 bisimilar 
overs

Re
all that � = �

(1)

[�

(2)

is a �nite, purely relational vo
abulary of width 2, with binary

relations R 2 �

(2)

. We denote by E the 
ombined edge relation

E =

S

R2�

(2)

R:

The edge relation in the Gaifman graph G(A) is the symmetri
 and irre
exive version

of E.

De�nition 26. Let A be a � -stru
ture, G(A) its Gaifman graph.

(i) A 
y
le (of length `) in A is an `-
y
le in G(A) in the graph theoreti
 sense: a

sequen
e of verti
es a

0

; : : : ; a

`�1

, where for ea
h 
onse
utive pair of indi
es (i; i+1)

(
y
li
ally understood in the sense of Z

`

) we have (a

i

; a

i+1

) 2 R or (a

i+1

; a

i

) 2 R

for some R 2 �

(2)

. A 
y
le of length 1 is a loop.

(ii) A 
y
le is non-degenerate if always a

i�1

6= a

i+1

.

(iii) A is a
y
li
 if it is loop-free and has non-degenerate 
y
les.

(iv) A is k-a
y
li
 if it is loop-free and has no non-degenerate 
y
les of lengths < k.

Note that a k-a
y
li
 stru
ture is lo
ally a
y
li
 in the sense that the substru
tures

indu
ed on `-neighbourhoods of its elements are a
y
li
 if k > 2`+2. In graph theoreti


terms, (iv) may be rephrased by saying that the girth of G(A) is at least k.

All stru
tures are 3-a
y
li
. Degenerate 
y
les 
annot be avoided at all, as every edge

gives rise to a degenerate 
y
le of length 2. In order to 
apture all other degenera
ies in

the presen
e of several dire
ted edge relations R we introdu
e the following notion of a

simple transition system.

De�nition 27. A � -stru
ture A is simple if the R

A

are mutually disjoint for R 2 �

(2)

and if their union E

A

is anti-symmetri
 and irre
exive.

In graph theoreti
 terms one might 
onsider a simple stru
ture as an edge-partitioned

and vertex-
oloured tournament.

A spe
ial and very natural kind of bisimulations|familiar, e.g., form the bisimilar


ompanion stru
tures obtained as unravellings|are those indu
ed by homomorphisms.

De�nition 28. (a) A homomorphism � :

^

A ! A is a bisimilar 
over of A by

^

A if

Z

�

=

�

(â; a) : a = �(â)

	

is a global two-way bisimulation between

^

A and A.

(b) A bisimilar 
over � :

^

A ! A is 
alled faithful if, for every â and ea
h R 2 �

(2)

, �

restri
ts to a bije
tion between fâ

0

2

^

A : (â; â

0

) 2 R

^

A

g and fa

0

2 A : (a; a

0

) 2 R

A

g,

as well as between fâ

0

2

^

A : (â

0

; â) 2 R

^

A

g and fa

0

2 A : (a

0

; a) 2 R

A

g.

Consider the example of faithful bisimilar 
overs obtained from two-way unravellings

of transition systems. Suppose without loss of generality that A is simple and 
onne
ted

(ea
h 
onne
ted 
omponent may be 
onsidered separately). The two-way unravelling
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of A from some element a of A, as dis
ussed in se
tion 2.2, together with the natural

proje
tion that maps an undire
ted path � = a; a

1

; : : : ; a

`

to its last element �(�) = a

`

,

provides a faithful bisimilar 
over of A by a simple a
y
li
 transition system, albeit

generally an in�nite one. As pointed out above, no 
y
li
 �nite A 
an have a �nite

a
y
li
 bisimilar 
ompanion. Our aim in this se
tion is the following.

Proposition 29. Every �nite transition system A admits, for every k > 3, a faithful

bisimilar 
over � :

^

A! A by a �nite k-a
y
li
 simple transition system

^

A. For �xed k,

the size of

^

A 
an be polynomially bounded in terms of the size of A (

3

).

Before we give a proof of the proposition, note that trun
ated tree-like unravellings

with bran
hes linked ba
k into initial segments of the tree-like unravelling do not in

general give rise to lo
ally a
y
li
 
overs be
ause a
y
li
ity is understood in terms of

undire
ted 
y
les (
y
les in G(A)) rather than dire
ted 
y
les.

The 
ase of simple transition systems The assumption of simpli
ity simpli�es the

proof of the proposition. The general 
ase will then been redu
ed to this 
ase.

Let A be simple, k 2 N. Suppose (G; Æ) is a �nite group into whi
h E 
an be

embedded as g : E ! G ; e 7! g

e

, su
h that fg

e

: e 2 Eg \ fg

�1

e

: e 2 Eg = ;.

Re
all that the Cayley graph asso
iated with G; (g

e

)

e2E

is the undire
ted graph with

vertex set G and edges fh; h

0

g exa
tly between those h and h

0

for whi
h h

0

= h Æ g

e

or

h = h

0

Æ g

e

for some e 2 E.

With A and G;g we asso
iate the following stru
ture A


g

G with universe A�G.

Unary predi
ates P 2 �

(1)

are interpreted in A


g

G as �

�1

(P

A

) where � : A�G! A is

the natural proje
tion. For the binary predi
ates R 2 �

(2)

we put an R-edge from (a; h)

to (a

0

; h

0

) if and only if e = (a; a

0

) 2 R

A

and h

0

= h Æ g

e

.

A


g

G =

�

A�G; (P

A


g

G

)

P2�

(1)

; (R

A


g

G

)

R2�

(2)

�

;

P

A


g

G

= �

�1

(P

A

);

R

A


g

G

=

�

((a; h); (a

0

; h Æ g

e

)) : (a; a

0

) = e 2 R

A

	

:

This 
learly turns � : A


g

G! A into a faithful bisimilar 
over. A


g

G is also itself

simple, as A is simple and due to the distin
tness of the g

e

and their inverses.

Any non-degenerate 
y
le in

^

A proje
ts to a non-degenerate 
y
le in the Cayley

graph of G; (g

e

)

e2E

. Therefore, A


g

G will be k-a
y
li
 if the girth of the Cayley graph

asso
iated with G; (g

e

)

e2E

is at least k. Suitable Cayley graphs have expli
itly been


onstru
ted, with asymptoti
ally near optimal dependen
e of the size of the graph (or

group) on the required girth and degree. Note that for our appli
ation, the degree of

the required Cayley graph is d = 2jE

A

j. These bounds guarantee k-a
y
li
 bisimilar


overs of size polynomial in the size of the given A, for any �xed k. It is also 
lear that

an exponential growth in terms of k is unavoidable. See [1℄ for a full dis
ussion of these

expli
it 
onstru
tions of Cayley graphs with large girth, and [14℄ for another intuitive

though exponential 
onstru
tion inspired by the idea of lo
al bisimilar unravellings.

3

This also answers a question left open in the pro
eedings version [15℄.
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Theorem 30 (Margulis, Imri
h). For d and k there are d-regular Cayley graphs of

regular degree d, size O(d


k

) (
 some �xed 
onstant) and girth no less than k.

We have proved the following lemma, whi
h 
overs Proposition 29 for simple transi-

tion systems.

Lemma 31. Any simple A admits a faithful 
over � : A


g

G! A by a simple k-a
y
li


stru
ture of size O(jEj


k

), for a suitable 
hoi
e of G.

The general 
ase For stru
tures A = (A;

�

R;

�

P ) that are not simple it now suÆ
es to

�nd �rst a faithful bisimilar 
over � : A

0

! A by some simple A

0

, and then apply the

above 
onstru
tion to further eliminate short 
y
les from these.

A simple way to a
hieve this involves an intermediate en
oding in whi
h edges of

A are repla
ed by paths of length two that pass through new verti
es whose 
olour


hara
terises the kind of edge involved. In more detail, we asso
iate with � = �

(1)

[ �

(2)

a new vo
abulary �

s


onsisting of �

(1)

together with new unary predi
ates Q

R

for ea
h

R 2 �

(2)

and a new binary predi
ate S.

With an arbitrary transition system A of type � asso
iate a simple �

s

transition

system A

s

over the universe A

s

whi
h is the disjoint union of A and the disjoint union of

the R

A

for R 2 �

(2)

. (Note that ea
h individual edge of A gives rise to a new element in

A

s

.) The P 2 �

(1)

are interpreted as in A: P

A

s

= P

A

. The new Q

R

mark the elements

en
oding the R

A

-edges: Q

A

s

R

= R

A

� A

s

. S

A

s

�nally is interpreted to 
ontain exa
tly all

those pairs (a; e) 2 A�Q

A

s

R

and (e; a

0

) 2 Q

A

s

R

�A for whi
h e = (a; a

0

) 2 R

A

, R 2 �

(2)

:

Q

A

s

R

=

�

e : e 2 R

A

	

;

S

A

s

=

�

(a; e); (e; a

0

) : (a; a

0

) 2 R

A

; R 2 �

(2)

	

:

Clearly A

s

is simple. We may now apply the above 
onstru
tion to obtain a faithful

bisimilar 
over �

s

:

^

A

s

! A

s

by a simple, 5-a
y
li
 �

s

stru
ture

^

A

s

. Dire
ted S-paths

of length two in A

s

of the form a; e; a

0

have unique lifts to any â 2 �

�1

s

(a) or any

â

0

2 �

�1

s

(a

0

). Conversely any length two dire
ted S-path of the form â; ê; â

0

in

^

A

s

with

ê 2 Q

R

proje
ts to a path a; e; a

0

in A

s

with e 2 Q

R

, and therefore 
orresponds to an

R-edge in A. Note also that P

^

A

s

� �

�1

s

(A) where we think of A as a subset of A

s

.

Any su
h simple �

s

stru
ture

^

A

s

indu
es a simple � stru
ture

^

A, a

ording to the

following straightforward reverse transformation:

^

A = �

�1

s

�

A

�

where A � A

s

;

P

^

A

= P

^

A

s

;

R

^

A

=

�

(â; â

0

) : (â; ê); (ê; â

0

) 2 S

^

A

s

; for some e 2 Q

^

A

s

R

	

:

Sin
e

^

A

s

does not have any non-degenerate 4-
y
les,

^

A turns out simple. The above


onsiderations about proje
tions and unique lifts of paths imply that �

s

indu
es a ho-

momorphism � :

^

A ! A whi
h moreover is a faithful bisimilar 
over. We have found a

bisimilar 
over � :

^

A! A as formulated in the following 
orollary.

Corollary 32. Any �nite transition system A admits a faithful bisimilar 
over � :

^

A! A

by a �nite simple transition system

^

A of polynomially bounded size.

Together with Lemma 31 this proves Proposition 29 in the general 
ase.
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4 Upgrading global bisimulation equivalen
es

We use the results from the previous se
tion to obtain bisimilar 
ompanions whi
h 
an

serve to upgrade `-bisimulations between �nite transition systems to stronger forms of

lo
al �rst-order equivalen
e following the idea behind Lemma 22. Compare De�nition 14

for upgrading, De�nition 21 for the relevant levels �

(`)

q;n

of lo
al FO-equivalen
e, and

re
all Gaifman's theorem, Theorem 17, or its spe
i�
 rami�
ations from Proposition 19.

Re
all in parti
ular that any FO-formula '(x) is equivalent to one in Gaifman form,

and as su
h is therefore invariant under �

(`)

q;n

for suitable levels of ` (its lo
ality rank),

q (its lo
al quanti�er rank), and n (its s
attering rank).

4.1 Upgrading global two-way bisimilarity

The main proposition about upgrading from �

`

is the following. Its proof, however,

is broken down into a sequen
e of lemmas that highlight some intermediate upgrading

stages in their own right. Lo
ally a
y
li
 
overs are used in the 
entral step, Lemma 35.

Proposition 33. Modulo �, �

`


an be upgraded to �

(`)

q;n

, for any q and n, 
lassi
ally

as well as in �nite models.

For te
hni
al reasons we 
onsider a strengthening of two-way bisimulation in whi
h

the se
ond player 
an mat
h multipli
ities up to q in responses to the �rst player's 
hal-

lenges in ea
h individual round, for some �xed q. Formally, the usual ba
k-and-forth

requirements are strengthened to 
orresponding q-ba
k-and-forth requirements a

ord-

ing to, for instan
e,

(q-forth along forward R:) for any (a; b) 2 Z and any distin
t a

0

1

; : : : ; a

0

k

2 A su
h that

(a; a

0

i

) 2 R

A

for 1 6 i 6 k, where k 6 q, there are distin
t b

0

1

; : : : ; b

0

k

2 B su
h that

(b; b

0

i

) 2 R

B

and (a

0

i

; b

0

i

) 2 Z

0

for 1 6 i 6 k.

We write �

`;q

�

for the 
orresponding level of two-way q-ba
k-and-forth `-bisimulation,

formally indu
ed by a depth ` strati�ed ba
k-and-forth system with the appropriate two-

way q-ba
k-and-forth 
onditions.

The 
orresponding variant of �

`

, global two-way q-ba
k-and-forth `-bisimulation�

`;q

is analogously de�ned, with the additional requirement that the 
orresponding ba
k-and-

forth system 
overs all of A and B: A �

`;q

B i� for every a in A there is some b in B

su
h that A; a �

`;q

�

B; b, and vi
e versa.

Lemma 34. Modulo �, �

`


an be upgraded to �

`;q

, for any q, 
lassi
ally as well as in

�nite models.

Proof. If A; a �

`

B; b, it suÆ
es to blow up all multipli
ities in A and B q-fold to

a
hieve the desired degree of bisimulation equivalen
e. This is done with the following

operation:

A
 q =

�

A� f1; : : : ; qg; (�

�1

(R))

R2�

(2)

; (�

�1

(P ))

P2�

(1)

�

where � : A
 q ! A is the natural proje
tion.

Clearly A
 q � A and A
 q; (a; 1) �

`;q

B
 q; (b; 1).

Lemma 35. Modulo �, �

`;q


an be upgraded to �

(`)

q;1

, 
lassi
ally as well as in �nite

models.
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Proof. Let A; a �

`;q

B; b, and let � :

^

A! A and � :

^

B! B be faithful bisimilar 
overs

by (2` + 2)-a
y
li
 simple transition systems, a

ording to Proposition 29. Let â and

^

b be any representatives in �

�1

(a) and �

�1

(b), respe
tively. Note that automati
ally

^

A; â �

`;q

^

B;

^

b, as the 
over is faithful. We 
laim that

^

A; â �

(`)

q;1

^

B;

^

b.

^

A �

`;q

^

B implies that for every a there is a b su
h that

^

A; a �

`;q

�

^

B; b, and vi
e versa.

The latter implies that

^

A�U

`

(a); a �

`;q

�

^

B�U

`

(b); b. Any two su
h

^

A�U

`

(a) and

^

B�U

`

(b) are a
y
li
, sin
e

^

A and

^

B themselves are (2`+ 2)-a
y
li
.

To establish

^

A; â �

(`)

q;1

^

B;

^

b, it therefore suÆ
es to show the following.

Claim 36. Let A; a and B; b be simple and a
y
li
 and su
h that A � U

`

(a) and

B � U

`

(b). Then A; a �

`;q

�

B; b implies A; a �

q

B; b.

For the proof of the 
laim, we exhibit a strategy in the the q-round Ehrenfeu
ht-

Fra��ss�e game on A; a and B; b. Fix A; a and B; b as in the 
laim. For a tuple a =

(a

1

; : : : ; a

k

) in A we let span(a;a) denote the set of those elements of A that lie on one

of the shortest paths 
onne
ting a to a

i

in the Gaifman graph G(A) of A, for 1 6 i 6 k.

For a

0

in A we let d(a; a

0

) denote the Gaifman distan
e (length of the shortest path) from

a to a

0

. Similar notions apply in B; b. The strategy for Player II 
onsists in maintaining

the following 
ondition, in terms of elements a = (a

1

; : : : ; a

k

) and b = (b

1

; : : : ; b

k

)

marked so far in A and B, respe
tively.

(�) there is an isomorphism f : A�span(a;a) ' B�span(b;b) su
h that

for all a

0

; b

0

= f(a

0

) : A; a

0

�

`

0

;q

�

B; b

0

where `

0

= `� d(a; a

0

) = `� d(b; b

0

):

Condition (�) is obviously met initially, with empty a and b and for f : a 7! b.

Assume (�) is true after round k < `, let f : A � span(a;a) ' B � span(b;b) a
-


ordingly, and suppose without loss of generality that Player I sele
ts a

0

in A in the

next round and that a

0

62 span(a;a). Let d(a; a

0

) = t and 
onsider the shortest path

a = a

0

0

; a

0

1

; : : : ; a

0

s

; : : : ; a

0

t

= a

0

from a to a

0

in G(A). Let a

0

s

be the last element on this

path that is 
ontained in span(a;a), so that span(a;aa

0

) = span(a;a)

_

[fa

0

s+1

; : : : ; a

0

t

g.

Let b

0

i

= f(a

0

i

) for i 6 s. By the above 
ondition, A; a

0

s

�

`�s;q

�

B; b

0

s

. Su

essively ex-

er
ising the two-way q-forth property we �nd a mat
hing path b

0

s

; b

0

s+1

; : : : ; b

0

t

in G(B)

always using fresh elements b

i

for i > s, su
h that also for s < i 6 t:

{ (b

0

i�1

; b

0

i

) 2 R

B

i� (a

0

i�1

; a

0

i

) 2 R

A

, and similarly w.r.t. R

�1

, for all R 2 �

(2)

,

{ d(b; b

0

i

) = i,

{ A; a

0

i

�

`�i;q

�

B; b

0

i

.

Let b

0

= b

0

t

and f

0

: A�span(a;aa

0

) ! B�span(b;bb

0

) the extension of f that sends

a

0

i

to b

0

i

for s < i 6 t. Simpli
ity and a
y
li
ity of A and B guarantee that f

0

is an

isomorphism; moreover f

0

satis�es the required bisimulation 
onditions by 
onstru
tion.

Our 
hoi
e of b

0

for a

0

exempli�es the way in whi
h (�) is maintained in response to

a next move of Player I in A. A 
hallenge played in B 
an be answered in a symmetri


fashion.

Lemma 37. Modulo �, �

(`)

q;1


an be upgraded to �

(`)

q;n

for any n, 
lassi
ally as well as

in �nite models.
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Proof. Clearly, if A; a �

(`)

q;1

B; b, then n � A; a �

(`)

q;n

n � B; b, where n � A is the n-fold

disjoint sum of 
opies of A.

4.2 Upgrading global forward bisimilarity

Lemma 38. Modulo �

8

, �

2`

8


an be upgraded to �

`

, 
lassi
ally as well as in �nite

models.

It is easy to see that one 
annot a
hieve a similar upgrade without de
reasing the

approximation level `. For instan
e, a two-edge 
hain is 1-bisimilar (in the sense of �

1

8

)

to a one-edge 
hain. But any globally bisimilar 
ompanion stru
tures of these would still

be of depths 2 and 1, respe
tively. These therefore 
annot be 1-bisimilar in the two-way

sense: the former must have nodes with non-zero in- and out-degree; the latter 
annot

have su
h.

Let for the following tp

`

A

(a) denote the `-bisimulation type (�

`

-type) of a in A.

Semanti
ally, tp

`

A

(a) pre
isely determines the �

`

equivalen
e 
lass of A; a. Synta
ti
ally

tp

`

A

(a) is de�ned by the 
orresponding depth ` modal Hintikka formula. We note that

�

`

has �nite index, for any �xed �nite � .

The full bisimulation type (�-type) of a in A is in the following denoted tp

A

(a).

With a dire
ted path a

0

; : : : ; a

k

in A we asso
iate the string 
onsisting of the `-

bisimulation types tp

`

A

(a

i

) and the edge types linking a

i

to a

i+1

along this path,

tp

`

A

(a

0

); R

0

; tp

`

A

(a

1

); R

1

; : : : ; R

k�1

; tp

`

A

(a

k

);

where (a

i

; a

i+1

) 2 R

A

i

.

De�nition 39. A string tp

`

A

(a

0

); R

0

; : : : ; R

k�1

; tp

`

A

(a

k

) asso
iated with a dire
ted path

(a

i

; a

i+1

) 2 R

A

i

is an `-history of a = a

k

in A if either k = ` (we refer to a proper

`-history), or k < ` and the path is not ba
kward extendible, i.e., a

0

has in-degree zero

(we refer to a short `-history).

We say that a in A has a unique `-history if all `-histories of a in A are identi
al

(in parti
ular they are all short of the same length k < `, or all proper); in this 
ase

hist

`

A

(a) stands for this unique `-history.

We say that A has unique `-histories if every node in A has a unique `-history.

Note that tree stru
tures in parti
ular do have unique histories. Also note that the

`-history (or `-histories) of a node determines its `

0

-histories for any `

0

6 `.

Let us say that a bisimulation A �

`

8

B respe
ts zero in-degree, if for every node a in

A of in-degree zero there is a node b in B of in-degree zero su
h that A; a �

`

B; b and

vi
e versa. Note that if A �

`

8

B do not satisfy this 
ondition, we 
an still always pass to


ompanions A

0

�

8

A and B

0

�

8

B where A

0

�

`

8

B

0

does respe
t zero in-degree. Simply

let A

0

be the disjoint union of all stru
tures A

a

obtained by adding a new 
opy of a with

outgoing edges into A just as from a but without any in
oming edges, for ea
h a in A.

If B

0

is similarly obtained from B, then A

0

and B

0

realise exa
tly the same bisimulation

types as A and B, respe
tively, and in ea
h of them any bisimulation type realised at

all is also realised by a node of zero in-degree. This 
rude 
onstru
tion does however

not preserve uniqueness of histories.
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Lemma 40. Let A and B have unique `-histories. If A �

2`

8

B respe
ts zero in-degree,

then A �

`

B.

Proof. Let A and B be as in the lemma. We show for instan
e that for any a in A there

is some b in B su
h that A; a �

`

B; b.

Assume �rst that the `-history of a is proper. Let a

0

be a node in A from whi
h a is

rea
hable on a path a

0

; a

1

; : : : ; a

`

= a of length `. Choose b

0

su
h that A; a

0

�

2`

8

B; b

0

.

Exer
ising the forth property ` times, following the path from a

0

to a in A, we �nd a

path b

0

; b

1

; : : : ; b

`

for whi
h A; a

i

�

2`�i

B; b

i

, for 0 6 i 6 `. Choosing b := b

`

we have

found an element in B whose `-history is identi
al with that of a.

In 
ase that the `-history of a is short, we work with this short history and, sin
e

the given 2`-bisimulation respe
ts zero in-degree, similarly �nd a mat
hing b that has

the same short `-history as a.

It now suÆ
es to argue that hist

`

A

(a) = hist

`

B

(b) implies A; a �

`

B; b. To this end


onsider the strati�ed system (Z

m

)

06m6`

where

Z

m

:=

�

(a; b) 2 A�B : hist

m

A

(a) = hist

m

B

(b)

	

:

By the above, �

1

(Z

`

) = A, and by symmetry also �

2

(Z

`

) = B. In order to show

that (Z

m

)

06m6`

: A �

`

B it remains to establish that this strati�ed system satis�es the

two-way ba
k-and-forth properties. For this observe that for 1 6 k 6 `, if hist

k

A

(a) =

hist

k

B

(b), then

(i) A; a �

k

B; b.

(ii) if a

0

and b

0

are obtained as 
orresponding ba
k-and-forth extensions of (a; b) along

edges (a; a

0

) and (b; b

0

) in the sense of A; a �

k

B; b, then hist

k�1

A

(a

0

) = hist

k�1

B

(b

0

).

(iii) a has zero in-degree i� b has; otherwise, if a

0

and b

0

are prede
essors along 
orre-

sponding edges (a

0

; a) and (b

0

; b), then also hist

k�1

A

(a

0

) = hist

k�1

B

(b

0

).

Of these, (i) is trivial by agreement of �

k

-types in a and b in parti
ular. (ii) follows

from the fa
t that a

0

and b

0

have unique `-histories, when
e they in parti
ular also have

unique (k � 1)-histories; the latter are exempli�ed by the length (k � 2) suÆxes of the

(k � 1)-histories of a and b (whi
h are identi
al) expanded by the edge type of (a; a

0

)

and (b; b

0

) and tp

k�1

A

(a

0

) = tp

k�1

B

(b

0

) (identi
al a

ording to the ba
k-and-forth 
hoi
e of

a

0

and b

0

).

For (iii): as a and b have identi
al unique k-histories, one of them 
an be short of

length zero only if the other is. If they are not of length zero, these identi
al k-histories

are, as unique histories, exempli�ed by k-histories involving a

0

and b

0

as immediate

prede
essors, respe
tively. The identi
al (k � 1)-pre�xes of these k-histories imply the

desired identity of (k � 1)-histories.

Proof of Lemma 38. We provide partner stru
tures

~

A �

8

A and

~

B �

8

B that have

unique `-histories and realise in nodes of zero in-degree all �

`

-types that are realised at

all. The latter 
ondition implies in parti
ular that any maximal global `-bisimulation

between

~

A and

~

B will respe
t zero in-degree. It then follows from Lemma 40 that

~

A �

`

~

B, when
e we have upgraded �

2`

8

to �

`

in �

8

equivalent 
ompanion stru
tures as

required. The 
onstru
tion is expli
itly 
arried out for A.

Let H be the �nite set of all proper `-histories realisable in any � -stru
ture, jHj = n.

For a in A let A

a

be the result of unravelling A to depth `+ 1 from a. In other words,
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we restri
t the usual tree unravelling A

�

a

of A from a to A

�

a

�N

`+1

(a). We let

~

A

0


onsist

of the disjoint sum of n+1 
opies ea
h of all these A

a

for a 2 A. Label the n+1 
opies

of A

a

as A

a;h

for h 2 H and A

a;;

for the one extra.

Some surgery is ne
essary to produ
e

~

A from

~

A

0

. Note that leaf nodes (nodes at

distan
e `+ 1 from the root a) in 
opies of A

a

do not realise the appropriate �

`

-types

(unless they happen to be derived from nodes of zero out-degree in A).

This is set right if we now identify any su
h leaf node 
 with the root 
 in any 
opy

of A




in

~

A

0

. In order to preserve uniqueness of `-histories through this pro
ess, though,

the target 
opies are determined a

ording to the `-history that 
 has in the unrestri
ted

unravelling of A. In more detail, let for a leaf node 
 in A

a

= A

�

a

�N

`+1

(a)

h(
) := hist

`

A

�

a

(
)

be the `-history of 
 in A

�

a

. Note that this history is proper and also that it attributes to


 itself the �

`

-type that it should have. Now

~

A is obtained from

~

A

0

through identi�
ation

of any leaf node 
 in any 
opy of any A

a

with the root in A


;h(
)

.

It is 
lear that

~

A �

8

A; that

~

A has unique `-histories; and that any `-bisimulation

type realised in

~

A is realised by some a in A and therefore realised by the root a in A

a;;

,

a node of zero in-degree in

~

A.

5 Chara
terisation theorems

To �nish the arguments for Theorem 4 and 5 we follow the pattern outlined in Obser-

vation 13 and Lemma 22 and �nally prove the following. It may also be instru
tive

to 
ompare this with the simpler 
ase of the van Benthem-Rosen theorem as proved in

se
tion 2.5.

Proposition 41. Both 
lassi
ally and in the sense of �nite model theory, for '(x) 2 FO

of lo
ality rank `:

(i) if ' is invariant under global two-way bisimulation � then ' is in fa
t invariant

under �

`

.

(ii) if ' is invariant under global bisimulation �

8

then ' is invariant under �

2`

8

.

Proof. By upgrading as in Lemma 22, using Proposition 33 for (i) and additionally

Lemma 38 for (ii).

For (i): as a FO-formula of lo
ality rank `, ' is preserved under �

(`)

q;n

for suitable

q and n. (In fa
t, Proposition 19 even tells us that ' is preserved under �

(`)

q;1

.) By

Proposition 33 �

`


an be upgraded modulo � to any su
h level, 
lassi
ally and in �nite

models. Therefore ' is invariant under �

`

.

For (ii), the required upgrading is modulo �

8

and needs to take us from �

2`

8

to �

(`)

q;n

(or just to �

(`)

q;1

if Proposition 19 is invoked). This is a
hieved by �rst upgrading to �

`

a

ording to Lemma 38, and then pro
eeding as in 
ase (i).
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A; a

�

`

B; b

� �

^

A; â

�

(`)

q;n

^

B;

^

b

A; a

�

2`

8

B; b

�

8

�

8

~

A; ~a

�

`

~

B;

~

b

� �

^

A; â

�

(`)

q;n

^

B;

^

b

Corollary 42. Both 
lassi
ally and in the sense of �nite model theory. Let '(x) 2 FO

be invariant under �. If ' is of lo
ality rank `, then it 
an equivalently be expressed in

ML

�

8

at modal nesting depth `.

For ' invariant under �

8

our proof only yields expressibility in ML

8

at nesting depth

2` where ` is the lo
ality rank of '. This seems to be sub-optimal, and may be an

artifa
t of the parti
ular upgrading strategy employed.

6 The guarded pi
ture

An investigation of guarded bisimulation invarian
e over (�nite) transition systems 
an

be 
arried out analogously to what has been done for global two-way bisimulation in-

varian
e above. In parti
ular, we provide faithful (�nite) lo
ally a
y
li
 guarded 
overs

for (�nite) transition systems in se
tion 6.1; we show how these 
an be used to up-

grade guarded `-bisimulation to appropriate levels �

(`)

q;n

of lo
al �rst-order equivalen
e

in se
tion 6.2; and �nally put these results together to prove Theorem 6 in se
tion 6.3.

The main tool to bridge the gap between global two-way bisimulation� and guarded

bisimulation �

g

over relational stru
tures of width two involves an en
oding of guarded

quanti�er free types as transition relations. We �x some terminology for this purpose.

A non-degenerate 2-type over � is a full des
ription of the isomorphism type of a two

element � -stru
ture in variables x; y, whi
h may be formalised as a 
onjun
tion over a

maximally 
onsistent set of atomi
 and negated atomi
 � -formulae in variables x and y

in
luding the 
onjun
t x 6= y. We write p(x; y) for 2-types, and tp

A

(a; a

0

) for the unique

2-type satis�ed by (a; a

0

) in A, for a 6= a

0

.

A 1-type over � similarly is a full des
ription of a one element � -stru
ture (whi
h

apart from monadi
 information 
ontains the information about loops w.r.t. the binary

predi
ates). Obvious notation like tp

A

(a) = q applies.

For a 2-type p = p(x; y) we let p

x

and p

y

be the unique 1-types obtained as the

restri
tions of p to its x-part or y-part, respe
tively. Let p

�1

stand for the result of

swapping x and y in p. A 2-type p is symmetri
 if p = p

�1

, asymmetri
 otherwise.

De�nition 43. A 2-type p(x; y) over � is guarded if it in
ludes a 
onjun
t Rxy or Ryx

for some R 2 �

(2)

. In other words, guarded 2-types are those 2-types that are realised

by non-degenerate guarded pairs.
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6.1 Lo
ally a
y
li
 guarded 
overs

De�nition 44. A homomorphism � :

^

A! A is a guarded 
over of A by

^

A if Z

�

=

�

� �

ŝ : ŝ �

^

A guarded in

^

A

	

is a guarded bisimulation between

^

A and A.

The guarded 
over � is faithful if, for every â and every guarded 2-type p = p(x; y),

� restri
ts to a bije
tion between fâ

0

2

^

A : tp

^

A

(â; â

0

) = pg and fa

0

2 A : tp

A

(a; a

0

) = pg.

The above 
onstru
tion of faithful, lo
ally a
y
li
 bisimilar 
overs of transition sys-

tems naturally lends itself to the extension to guarded 
overs in relational vo
abularies

of width two. One merely has to en
ode all non-degenerate quanti�er-free 2-types by

new binary relations whi
h 
an be interpreted so as to form a simple transition system

whi
h faithfully en
odes the underlying relational stru
ture. Similar 
onsiderations and

translations for guarded logi
s on graphs are presented in [11℄.

Let �

2

be a �xed maximal set of guarded 2-types over � 
ontaining all symmetri


guarded 2-types, and pre
isely one of p or p

�1

for every asymmetri
 guarded 2-type.

Let �

1

be the set of all 1-types over � .

We asso
iate with � a new vo
abulary �

g


onsisting of new unary predi
ates P

q

for

every q 2 �

1

and new binary R

p

for every p 2 �

2

.

In order to deal with the en
oding of symmetri
 2-types in a simple transition sys-

tem, whi
h 
annot have undire
ted edges, we break the symmetry by means of an

arbitrary auxiliary ordering on the universe. Let A be a � -stru
ture, < an arbitrary

linear ordering < on A. With (A; <) asso
iate the following simple �

g

transition system

A

g

= (A; (P ); (Q)) on universe A:

P

A

g

q

=

�

a : q = tp

A

(a)

	

(for ea
h q 2 �

1

),

R

A

g

p

=

�

(a; a

0

) : a < a

0

and tp

A

(a; a

0

) = p

	

(for ea
h symmetri
 p 2 �

2

),

R

A

g

p

=

�

(a; a

0

) : tp

A

(a; a

0

) = p

	

(for ea
h asymmetri
 p 2 �

2

).

Clearly A

g

is simple and satis�es the following 
ompatibility 
onditions:

(a) the P

q

partition the universe.

(b) if (a; a

0

) 2 R

p

then a 2 P

q

for q = p

x

and a

0

2 P

q

for q = p

y

.

(
) for any non-degenerate pair (a; a

0

), at most one binary relation R

p


an link a with

a

0

(simpli
ity).

Note that (a) and (b) are preserved under global bisimulation.

Conversely, for any simple �

g

transition system B

g

satisfying (a) and (b) there is

a unique asso
iated � -stru
ture B. The universe of B is that of B

g

. Monadi
 and

binary predi
ates from � are interpreted so as to be 
onsistent with the 1- and 2-types

pres
ribed by the P

q

and the R

p

, and su
h that a non-degenerate pair (b; b

0

) will be

guarded in B if and only if b and b

0

are linked by some R

p

in B

g

.

A small subtlety arises with respe
t to loops. A loop (a; a) 2 R

A

in a transition

system is eliminated in a
y
li
 bisimilar 
overs, but 
learly 
annot and must not be

eliminated in a guarded 
over. Correspondingly, the information about loops has been

shifted into monadi
 predi
ates asso
iated with the 1-types. But in order to get our


riteria for a
y
li
ity right in this 
ontext, we expli
itly have to allow loops in k-a
y
li



overs. Deviating from De�nition 26 we now do not insist on loop-freeness.

With this it is not hard to 
he
k the following.
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Lemma 45. Let B

g

and B

0

g

be simple �

g

transition systems. Let B

g

� B

0

g

and let B

g

satisfy 
onditions (a) and (b) above. Then B

0

g

also satis�es (a) and (b), and B �

g

B

0

for the asso
iated � -stru
tures.

Let A be a � -stru
ture with an asso
iated �

g

transition system A

g

. Let � :

^

A

g

! A

g

be a bisimilar 
over of A

g

by a simple �

g

transition system

^

A

g

. Then

^

A

g

satis�es (a)

and (b) and for the indu
ed � -stru
ture

^

A:

(i) � :

^

A! A is a guarded 
over,

(ii) if

^

A

g

is k-a
y
li
 then

^

A is k-a
y
li
 (apart from ne
essary loops);

(iii) if � :

^

A

g

! A

g

is faithful then so is � :

^

A! A.

Putting this together with the 
overing results for (simple) transition systems ob-

tained above we get the following.

Corollary 46. Let � be any �nite relational vo
abulary of width two, A a �nite � -

stru
ture and k > 3. Then there is a faithful guarded 
over � :

^

A ! A by a �nite

stru
ture

^

A that is k-a
y
li
 apart from ne
essary loops. For �xed k, the size of

^

A 
an

be polynomially bounded in terms of the size of A.

An open issue related to this result 
on
erns potential extensions to the setting of

arbitrary relational vo
abularies. We do not know whether one 
an similarly a
hieve

�nite guarded 
overs of �nite relational stru
tures that avoid short 
hordless 
y
les. See

[12℄ for a dis
ussion. In that paper another aspe
t of a
y
li
ity (in hypergraphs)|to

do with the avoidan
e of bad 
liques (rather than 
y
les) in the Gaifman graph|is

shown to be realisable in �nite guarded 
overs, with appli
ations to the 
lique guarded

fragment and extension theorems for partial isomorphisms.

6.2 Upgrading guarded bisimilarity

Lemma 47. Modulo �

g

, �

`

g


an be upgraded to �

(`)

q;n

, for any levels q and n, 
lassi
ally

as well as in restri
tion to �nite transition systems.

Proof. The proof is analogous to the sequen
e of upgradings in Lemmas 34, 35 and 37.

Let A; a �

`

g

B; b. Combining the 
onstru
tion from Lemma 34 with the 
onstru
tion of

faithful (2`+2)-a
y
li
 guarded 
overs we �nd

^

A �

g

A and

^

B �

g

B su
h that

^

A �

(`)

q;1

^

B.

This 
an further be boosted to �

(`)

q;n

for any given n, if we pass to n-fold sums of

disjoint 
opies: n �

^

A �

(`)

q;n

n �

^

B.

6.3 The guarded 
hara
terisation theorem

To �nish the argument for Theorem 6 we follow the pattern of Observation 13 and

Lemma 22 and �nally prove the following.

Proposition 48. Both 
lassi
ally and in the sense of �nite model theory: if '(x) 2 FO

is invariant under guarded bisimulation �

g

then ' is invariant under �

`

g

, where ` is the

lo
ality rank of '.

Proof. By upgrading: either we upgrade �

`

g

dire
tly to �

(`)

q;n

where q and n are the lo
al

quanti�er rank and s
attering rank of ' in Gaifman form with lo
ality rank `, or we
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appeal to Proposition 19 and use the fa
t that ' 
an be expressed with s
attering rank

1 so that an upgrading of �

`

g

to �

(`)

q;1

is in fa
t suÆ
ient. Either way, for n = 1 or any

desired value of n, the following diagram shows that ' is indeed invariant under �

`

g

(overall or in restri
tion to �nite models).

A; a

�

`

g

B; b

�

g

�

g

^

A; â

�

(`)

q;n

^

B;

^

b

Note that the status in �nite model theory of the full 
hara
terisation result of

Andr�eka, van Benthem, and N�emeti|Theorem 12 above|remains open, as the present

te
hniques only deal with vo
abularies of width two.

Further remarks

Among other related open issues ranks prominently the question whether the 
hara
ter-

isation theorem of Janin and Walukiewi
z|that the modal �-
al
ulus pre
isely 
aptures

the bisimulation invariant fragment of monadi
 se
ond-order logi
|is valid also in the

sense of �nite model theory. The te
hniques employed here seem to shed no immediate

light on this matter.

Other rami�
ations in the modal domain do seem to be amenable to the te
hniques

developed here. In parti
ular, we mention 
hara
terisation theorems in the presen
e

of other natural restri
tions, apart from �niteness. Classi
al and other natural frame


onditions 
an be 
onsidered. For the 
lass of 
onne
ted frames, for instan
e, prelimi-

nary results have been obtained in unpublished 
ommuni
ation with A. Dawar. Graded

bisimulation and modal logi
s with graded modalities, in
orporating number restri
-

tions similar in spirit to those en
ountered with our q-ba
k-and-forth requirements in

se
tion 4.1, would seem to provide another interesting test 
ase for the present te
h-

niques.

A
knowledgement I am grateful for 
omments from the anonymous referees, whi
h

helped to improve the presentation.
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