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Abstrat

We explore the �nite model theory of the haraterisation theorems for modal

and guarded fragments of �rst-order logi over transition systems and relational

strutures of width two. A new onstrution of loally ayli bisimilar overs pro-

vides a useful analogue of the well known tree-like unravellings that an be used for

the purposes of �nite model theory. Together with various other �nitary bisimu-

lation respeting model transformations, and Ehrenfeuht-Fra��ss�e game arguments,

these overs allow to upgrade �nite approximations for full bisimulation equivalene

towards approximations for elementary equivalene. These tehniques are used to

prove several rami�ations of the van Benthem-Rosen haraterisation theorem of

basi modal logi for re�nements of ordinary bisimulation equivalene, both in the

sense of lassial and of �nite model theory.

keywords: �nite model theory, modal logi, guarded fragment, bisimulation, preser-

vation and haraterisation theorems

1 Introdution

Model theoreti haraterisation theorems provide diret links between semantis and

syntax. As assertions of the form

a property satis�es [a semanti ondition℄ if and only if it is expressible in

[a syntati lass℄,

they express preise semanti-syntati orrespondenes. Mostly they are relative to

some ommon syntati-semanti bakdrop, like �rst-order logi, where the above be-

omes

a �rst-order formula satis�es [a semanti ondition℄ if and only if it is ex-

pressible in [a syntati fragment of �rst-order logi℄.
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Classial model theory has many examples [5℄; among them the orrespondene be-

tween preservation under substrutures and the universal fragment of �rst-order; preser-

vation under unions of hains and the �

2

fragment of �rst-order; or monotoniity in a

prediate and positivity in that prediate.

Many of these orrespondenes do not translate into theorems of �nite model the-

ory. It is known, e.g., that there are �rst-order sentenes whih over �nite strutures

are preserved under substrutures, but are not equivalent to any universal �rst-order

sentene over �nite strutures, see [7℄. For another failure, whih is loser to our on-

erns here, see also the remarks following Theorem 6 below. Note that the restrition to

�nite models usually implies a weakening on both sides of the desired equivalene: the

semanti ondition is only available over �nite strutures, but the syntati form also

need only apply over �nite strutures. Also, if a lassial haraterisation theorem fails

as a theorem of �nite model theory, it ould of ourse still be that there is an alterna-

tive syntati ounterpart whih would orrespond to the semanti ondition over �nite

models.

A nie example of a haraterisation theorem that holds both lassially and as a

theorem of �nite model theory is van Benthem's haraterisation of basi modal logi.

Here propositional modal logi is regarded as a fragment of �rst-order logi, interpreted

over Kripke strutures or transition systems. Over a voabulary onsisting of binary re-

lations R (viewed as aessibility relations, transitions, or ations) and unary prediates

P (oding the basi propositions, or state properties), we regard the modal operators

[R℄ and hRi as relativised �rst-order quanti�ers aording to

�

[R℄'

�

(x) �8y

�

Rxy ! '(y)

�

;

�

hRi'

�

(x)�9y

�

Rxy ^ '(y)

�

:

The semanti ondition whih haraterises modal logi as a fragment of �rst-order

logi is that of bisimulation invariane. Bisimulation equivalene is important as a

notion of behavioural equivalene between transition systems, or|more lassially|as

the notion of equivalene indued by the appropriate variant of the in�nite bak-and-

forth Ehrenfeuht-Fra��ss�e game whose moves apture the relativised pattern of modal

quanti�ation.

The lassial version of this haraterisation theorem is the following, due to van

Benthem [18, 19℄. We hoose a formulation that highlights the harder diretion of the

equivalene, namely the onverse of the (easier) semanti preservation theorem.

Theorem 1 (van Benthem). Any �rst-order formula '(x) that is invariant under

bisimulation is equivalent to a formula of basi modal logi, and vie versa.

We let FO stand for �rst-order logi, ML for propositional modal logi. The above

haraterisation theorem is then symbolially expressed as the equivalene FO=� � ML,

whih says that the logi ML preisely expresses those FO-properties that are invariant

under bisimulation equivalene, �.

The �nite model theory version of this haraterisation result is not an immedi-

ate onsequene of the lassial version, sine there are �rst-order formulae that are

bisimulation invariant over �nite strutures without being bisimulation invariant over

all strutures. Trivial examples an be generated with the use of some in�nity axiom.
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Let for instane  be the �rst-order sentene that asserts that the binary relation R

is a linear ordering without maximal element. Then any formula  ^ '(x) is trivially

bisimulation invariant over �nite strutures, but not bisimulation invariant over in�nite

strutures if '(x) is satis�able in any model of  .

And indeed, the lassial proof of van Benthem's theorem makes use of ompatness

and saturation tehniques that ruially involve in�nite models. The haraterisation

itself, however, does go through in �nite model theory, as shown by Rosen [17℄.

Theorem 2 (Rosen). Any �rst-order formula '(x) that is invariant under bisimulation

over �nite strutures is equivalent over �nite strutures to a formula of basi modal logi,

and vie versa.

While the elegant lassial proof of Theorem 1 tells us nothing about the �nite model

theory version, the rather more onstrutive argument given by Rosen does apply equally

to the lassial version, thus providing a new proof there as well. For an alternative,

quite elementary and self-ontained proof of the van Benthem-Rosen theorem see [14℄.

In a nutshell, this proof of the van Benthem-Rosen haraterisation, whih will also

point us in the right diretion towards our present rami�ations, goes as follows (also

ompare setion 2.5 and in partiular Theorem 23).

Suppose ' = '(x) 2 FO is bisimulation invariant. Let the quanti�er rank of ' be q.

By means of analysis of the q-round Ehrenfeuht-Fra��ss�e game, one an show that

'(x) must be `-loal around x for ` = 2

q

�1; this means that whether or not ' is satis�ed

in A; a only depends on the substruture indued on the nodes whose distane from a

is at most ` (see setion 2.4). In fat `-loality even follows from just invariane under

disjoint unions of transition systems, whih itself is a trivial onsequene of bisimulation

invariane (Lemma 20).

It is a simple observation about bisimulation that ', being invariant under bisimula-

tion and `-loal, must then atually be invariant under `-bisimulation, the level ` �nite

approximation to full bisimulation (f. setion 2.2 for bisimulation and `-bisimulation).

As a onsequene of this, ' is �nally seen to be equivalent to a modal logi formula of

nesting depth ` = 2

q

� 1.

Contrast this with the lassial proof, whih essentially proeeds indiretly, deriving

a ontradition based on a ompatness argument. Assuming that ' is bisimulation

invariant but not expressible in modal logi at any nesting depth `, ompatness yields

models A; a and B; b that are indistinguishable in modal logi (i.e., `-bisimilar for all

�nite `) but with A; a j= ' whereas B; b j= :'.

Further passing to suÆiently rih elementary extensions of A; a and B; b, respe-

tively, one arrives at a situation in whih moreover modal indistinguishability implies

full bisimilarity: a ontradition, as by bisimulation invariane of ', bisimilar strutures

must not be distinguished by '.

The lassial proof does not go through in the sense of �nite model theory, beause it

relies on lassial theorems and model onstrutions that are not available in restrition

to just �nite strutures. The game based arguments in the alternative proof, however,

go through lassially as well as in restrition to �nite strutures. That proof is also

more onstrutive and yields a bound on the nesting depth of the target formula, whih

in this ase is even optimal.
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For our new haraterisation results we introdue similar tehniques that work las-

sially as well as in restrition to �nite models.

They deal with natural re�nements of ordinary bisimulation equivalene:

{ two-way bisimulation (with bakward as well as forward moves along edges).

{ global bisimulation (with jumps to any fresh start state).

{ global two-way bisimulation (both of the above).

{ guarded bisimulation (free moves to overlapping or non-overlapping edges).

These lead to haraterisations of more expressive modal and guarded fragments of

�rst-order logi, as indiated in the theorems below. In their naturalness they illustrate

the robustness of the lose Ehrenfeuht-Fra��ss�e orrespondene between these variants

of bisimulation and modal or guarded quanti�ation patterns. They also illustrate the

unusually smooth transition between lassial and �nite model theory of modal logis.

While we here state the theorems as theorems of �nite model theory, with the proofs

given they apply equally well in the lassial ontext. The two latter theorems an also

be stated for sentenes rather than for formulae in one free variable. For the preise

de�nitions of the fragments of �rst-order involved, as well as for the orresponding

notions of bisimulation invariane, we refer to the main part of the paper.

Theorem 3. Any �rst-order formula '(x) that is invariant under two-way bisimulation

in �nite strutures is equivalent over �nite strutures to a formula of modal logi with

inverse modalities [R℄

�

, and vie versa.

Theorem 4. Any �rst-order formula '(x) that is invariant under global bisimulation

in �nite strutures is equivalent over �nite strutures to a formula of modal logi with

universal modality (8), and vie versa.

Theorem 5. Any �rst-order formula '(x) that is invariant under global two-way bisim-

ulation over �nite strutures is equivalent over �nite strutures to a formula of modal

logi with inverse and universal modalities, and vie versa.

Theorem 6. Any �rst-order formula '(x) in a purely relational voabulary of width

2 that is invariant under guarded bisimulation over �nite strutures is equivalent over

�nite strutures to a formula of the guarded fragment of �rst-order logi, and vie versa.

It should be noted that the guarded fragment, GF, over a voabulary of width 2 an

(for formulae with no more than two free variables, that is) also be embedded into the

2-variable fragment of �rst-order logi, FO

2

. Interestingly, the lassial haraterisation

theorem of FO

2

|as the 2-pebble game invariant fragment of �rst-order logi|is known

to fail in the ontext of �nite model theory. Indeed, the �rst-order sentene (in three

variables) that says of a binary relation R that it is a linear order of the universe, is

invariant under 2-pebble game equivalene in restrition to �nite strutures (but not

in general)|and it is easy to see that no �rst-order sentene with just two variables is

equivalent to it over all �nite strutures. Compare also [3℄, and, e.g., Example 1.12 in

[13℄.

Whether the haraterisation in Theorem 6 extends to voabularies of widths greater

than 2 remains open.
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The proofs of the new haraterisation theorems extend the alternative proof ideas

skethed for the van Benthem-Rosen theorem above. They are based on the underlying

Ehrenfeuht-Fra��ss�e and bisimulation games, and essentially revolve about the idea of

upgrading orresponding levels of `-bisimulation to levels of approximate, loal elemen-

tary equivalene that are suÆient to preserve the given �rst-order '. This is ahieved

in model onstrutions that are also appliable in restrition to �nite strutures, and

respet full bisimulation equivalene while giving loal ontrol over �rst-order properties

by making strutures loally ayli. The following serves as a tehnial ornerstone in

these model onstrutions; for a full statement and the proof ompare Proposition 29 in

setion 3.

Theorem 7. Every �nite transition system admits, for every k > 3, a �nite globally

two-way bisimilar ompanion that is k-ayli (has no yles of lengths less than k).

For �xed k, the inrease in size an be polynomially bounded.

This provides graded analogues, in �nite strutures, of the well-known but generally

in�nite ayli ompanions obtained as tree unravellings, whih play an important role

throughout the model theory of modal logis.

Plan of the paper Setion 2 �rstly reviews some basi de�nitions; a disussion of

the spei� di�erenes between our proofs, that work for �nite model theory as well as

in the lassial ase, and the lassial proof follows in setion 2.3; a ruial onept in

this ontext is that of upgrading equivalenes (De�nition 14); in setion 2.4 we review

Gaifman loality, with spei� rami�ations for our purposes, and derived levels of loal

�rst-order equivalene, to whih we will upgrade �nite bisimulation levels; Lemma 22

provides a generi road map for all our proofs of haraterisation theorems; setion 2.5

disusses the variant proof of the van Benthem-Rosen haraterisation in the light of

this approah.

The major ontribution in terms of �nite model onstrutions is presented in se-

tion 3, where the loally ayli overs are obtained (Theorem 7). This will allow us

to upgrade bisimulation equivalene to loal �rst-order equivalene in globally bisimi-

lar ompanion strutures; the orresponding tehnial upgrading results are presented

in setion 4. In setion 5 these are applied to prove the main modal haraterisation

theorems, Theorems 4 and 5. Setion 6 �nally extends the entire development of the

previous setions to the level of guarded bisimulation invariane over �nite transition

systems, inluding the proof of Theorem 6.

2 Preliminaries and basi de�nitions

Strutures We look at purely relational strutures with only unary and binary pred-

iates, often with one distinguished element. Our voabulary � will always be �nite,

relational and of width 2. Writing � = �

(1)

[ �

(2)

for a voabulary, it is understood that

�

(i)

onsists of the i-ary prediates in � .

This format is suitable for rendering transition systems. In this piture, elements of

a � -struture are the states; the unary prediates orrespond to the basi propositions:

a basi property q holds true of a state s if s 2 P

q

; the binary relations ode transitions
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between states: (s; t) 2 R

i

means that there is a transition of type i from state s to state

t, or that an ation i an transform state s into state t. Equally well, we may think of

a � -struture as a Kripke model, with the elements now being possible worlds and the

binary relations aessibilities between worlds. Equally well, again, we may just think

of edge- and vertex-oloured direted graphs.

� -strutures are represented as in A = (A; (R

A

)

R2�

(2)

; (P

A

)

P2�

(1)

), where typially A

stands for the universe of A. The supersripts in the interpretations of prediates R as

R

A

and P as P

A

are often dropped. Where we want to refer to a distinguished element

we indiate this element expliitly as in A; a. Although we are mostly interested in �nite

model theory, all our onsiderations equally apply to in�nite strutures. We therefore

adopt the onvention to mention �niteness expliitly where it matters.

2.1 Some logis

We denote �rst-order logi as FO, elementary equivalene as �. The quanti�er rank of

�rst-order formulae is de�ned as usual, and �

q

stands for elementary equivalene up to

quanti�er rank q, or equivalene in the lassial q-round Ehrenfeuht-Fra��ss�e game (see

for instane [8, 7, 16℄).

Basi modal logi Propositional modal logi, in its basi form whih we denote ML,

is based on atomi propositions q (assoiated with P

q

), the usual boolean onnetives,

and the modal operators [R℄ and hRi (assoiated with R). For general bakground we

refer to the omprehensive textbook [4℄. We here present the syntax in the �rst-order

framework, so that the semantis is just the usual one for �rst-order.

Syntax. The formulae of ML over voabulary � = �

(1)

[ �

(2)

are generated as follows:

{ for every unary prediate P in �

(1)

and �rst-order variable x, Px is an atomi

formula of ML[� ℄.

{ if '(x) is a formula of ML[� ℄ then so is :'(x).

{ if '

1

(x) and '

2

(x) are formulae of ML[� ℄ in the same free variable x, then so are

'

1

(x) ^ '

2

(x) and '

1

(x) _ '

2

(x).

{ for a binary relation R 2 �

(2)

, if '(y) is a formula of ML[� ℄ in the free variable y

and if x is any �rst-order variable distint from y, then the following are formulae of

ML[� ℄ (where we regard the left-hand sides as abbreviations):

�

[R℄'

�

(x) =8y

�

Rxy ! '(y)

�

;

�

hRi'

�

(x)=9y

�

Rxy ^ '(y)

�

:

Semantis. The semantis for ML is the usual one for �rst-order logi.

The guarded fragment The guarded fragment GF extends the modal quanti�ation

pattern to a more general form of relativised �rst-order quanti�ation. As in modal logi,

the relativisation is e�eted by ground atoms. Some of the power of the generalisation

from ML to GF is seen only over voabularies of width greater than 2, where ground

atoms an over more than two elements. We present the syntax in the general format

of arbitrary relational voabularies, but keep in mind that we shall only deal with GF

in the setting of width 2 voabularies where the similarity with ML is loser. GF was
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introdued by Andr�eka, van Benthem and N�emeti in [2℄, as a powerful yet tratable

generalisation of ML, ompare in partiular also [10℄.

Syntax. The formulae of GF over voabulary � = �

(1)

[ �

(2)

are generated as follows:

{ all atomi � -formulae are formulae of GF[� ℄.

{ GF[� ℄ is losed under the boolean onnetives :, ^ and _.

{ if '(�x; �y) is a formula of GF[� ℄ and if �(�x; �y) is a � -atom (also allowing equality)

suh that free(') � var(�), then the following are formulae of GF[� ℄ (where we regard

the left-hand sides as abbreviations):

�

8�y:�

�

'(�x; �y)=8�y

�

�(�x; �y)! '(�x; �y)

�

;

�

9�y:�

�

'(�x; �y)=9�y

�

�(�x; �y) ^ '(�x; �y)

�

:

The atom � in the last lause is alled the guard of the (universal or existential)

quanti�ation. It is useful to assoiate with a formula ' of GF a nesting depth of

guarded quanti�ation, whih turns out to be more indiative than its plain �rst-order

quanti�er rank. The nesting depth behaves like quanti�er rank on atomi formulae

and with respet to boolean onnetives; however, it inreases by just 1 with every

guarded quanti�ation (whereas ordinary quanti�er rank would go up by the length of

the quanti�ed tuple).

Semantis. The semantis for GF is the usual one for �rst-order logi.

Clearly ML � GF. The inlusion is proper even in the ase of width 2 voabularies.

In partiular, GF has equality, so that, e.g., the following is in GF (but learly not in

ML):

8y(Rxy! x = y):

Equality an also be used as a guard, whene GF has global universal quanti�ation

over any formula '(y) in a single free variable:

8y(y=y! '(y)):

In modal logis this feature is assoiated with a global modality, whose aessibility

relation is the full binary relation over the universe.

In similar terms, GF has what in modal logis would orrespond to inverse modalities,

simply beause the guard atoms � have no sense of diretion,

8y(Ryx! '(y))

is a formula of GF just as 8y(Rxy! '(y)) is.

Modal logi with inverse and universal modalities Common extensions of basi

modal logi go some way towards apturing the two last features of GF mentioned above.

Universal modality. Extending the syntax of ML, we lose under universal and existential

quanti�ation, and allow all formulae without free variables as additional onstituents

for the boolean operations and modal operators.
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Inverse modalities. Further extending the syntax of ML, we also allow modal operators

w.r.t. to the inverses of the binary relations R:

�

[R℄

�

'

�

(x) =8y

�

Ryx! '(y)

�

;

�

hRi

�

'

�

(x)= 9y

�

Ryx ^ '(y)

�

:

De�nition 8. We denote as ML, ML

�

, ML

8

, and ML

�

8

, respetively, basi modal logi

and its extensions with inverse modalities, universal modality, and both.

The inlusion struture is as indiated in the following diagram. It is easy to see that

all inlusion are strit, even in restrition to �nite strutures. Separations, from top to

bottom, in terms of properties of a single binary R, and treating > as universally true

propositional onstant: transitivity is known not to be expressible in GF; reexivity,

8xRxx, is in GF but not in ML

�

8

; 8x9yRxy � 8hRi> is in ML

8

(and ML

�

8

) but not

expressible in either ML or ML

�

; 9yRyx � hRi

�

> is in ML

�

(and ML

�

8

) but not

expressible in ML or ML

8

.

ML

ML

�

ML

8

ML

�

8

GF

FO

�

�

�

�

�

�

�

�

�

�

�

�

2.2 Bisimulations

Modal bisimulations Bisimulations apture notions of behavioural equivalene be-

tween transition systems. They an equivalently be presented either in terms of games

or in terms of bak-and-forth systems. It is instrutive to think of bisimulation as the

Ehrenfeuht-Fra��ss�e style notion of equivalene assoiated to modal logis.

Many variations of the basi notion of plain bisimulation equivalene have been on-

sidered. We here only deal with plain bisimulation equivalene (in whih, starting from

a distinguished state, one an make forward moves along transitions) and its variation

involving unrestrited moves to fresh start states (f. global modality) and bakward

traversal of transitions (f. inverse modalities). The standard de�nitions in terms of a

bak-and-forth system are based on the following. A desription in terms of games will

be given below.

Let Z;Z

0

� A � B, A and B sets equipped with binary relations R

A

and R

B

,

respetively. We say that Z

0

satis�es the bak-and-forth onditions with respet to R

for Z if

8



(forth:) for any (a; b) 2 Z and any a

0

2 A suh that (a; a

0

) 2 R

A

, there is some b

0

2 B

suh that (b; b

0

) 2 R

B

and (a

0

; b

0

) 2 Z

0

.

(bak :) for any (a; b) 2 Z and any b

0

2 B suh that (b; b

0

) 2 R

B

, there is some a

0

2 B

suh that (a; a

0

) 2 R

A

and (a

0

; b

0

) 2 Z

0

.

Z itself satis�es the bak-and-forth onditions with respet to R if the above are

satis�ed for Z

0

= Z.

De�nition 9. Let A and B be � -strutures, Z � A�B non-empty.

Z is a bisimulation between A and B if (a; b) 2 Z implies that A j= Pa , B j= Pb, for

all unary P 2 �

(1)

, and if Z satis�es the bak-and-forth onditions w.r.t. all the binary

prediates R of � . In symbols: Z : A � B.

Z is a two-way bisimulation if in addition Z satis�es the bak-and-forth onditions w.r.t.

the inverses R

�1

for all binary prediates R 2 �

(2)

. In symbols: Z : A �

�

B.

An (ordinary or two-way) bisimulation Z between A and B is a global bisimulation, if in

addition �

1

(Z) = A and �

2

(Z) = B. In symbols: Z : A �

8

B or Z : A � B, respetively.

Two strutures are bisimilar in the orresponding sense, A � B, A �

�

B, A �

8

B,

or A � B, if there is a orresponding bisimulation. Two strutures with distinguished

nodes are bisimilar in the orresponding sense, indiated as in A; a � B; b, if there is a

orresponding bisimulation Z suh that (a; b) 2 Z.

It is not hard to see that the semantis of ML is invariant under bisimulation, in the

sense that for all ' in ML:

A; a � B; b )

�

A; a j= ' , B; b j= '

�

:

Similar preservation properties obtain for ML

�

, ML

8

, ML

�

8

, with respet to �

�

, �

8

,

and �, respetively.

Unravellings and tree models Among the most entral model theoreti onse-

quenes of bisimulation invariane, is that it guarantees the existene of tree models.

The well-known tree unravelling of a transition system yields a bisimilar ompanion

struture that is a tree.

Let A; a be a transition system of type � = �

(1)

[ �

(2)

. Its tree unravelling from a,

A

�

a

, is based on the set of all �nite direted paths from a in A, inluding the empty path

of length 0 from a whih we identify with a itself. If � = a; a

1

; : : : ; a

`

is a path in A of

length ` we let �(�) = a

`

be the last vertex along this path. For P 2 �

(1)

, we put � 2 P

in A

�

a

i� �(�) 2 P

A

. R 2 �

(2)

is interpreted in A

�

a

as the set of all pairs (�; � b̂) where

(�(�); b) 2 R

A

. It is readily heked that in this way A

�

a

; � � A; �(�) for all �, i.e., �

indues a global bisimulation so that in partiular A

�

a

; a �

8

A; a.

Similarly, for ayli two-way bisimilar ompanions, one an use a two-way unravel-

ling, based on the set of all undireted non-degenerate paths from a (paths that may tra-

verse edges in either diretion, exluding, however, traversals of the same edge in oppo-

site diretions in onseutive steps). The unary prediates are interpreted as above, and

R 2 �

(2)

is interpreted as the set of all pairs (�; � b̂) where (�(�); b) 2 R

A

and all pairs

(� b̂; �) where (b; �(�)) 2 R

A

. Then A

�

a

; � �

�

A; �(�) and in partiular A

�

a

; a � A; a.

9



Note that in both ases, the unravelling is in�nite if the original system does have

(direted, respetively undireted) yles; hene the interest in ertain substitutes for

full tree unravellings that provide �nite ompanions with some measure of ayliity

that will onern us in setion 3.

Guarded bisimulations Guarded bisimulations are the adequate ounterparts to

bisimulations in the ontext of GF. Quanti�ation in GF allows diret aess only to

the following tuples and subsets over a � -struture A.

De�nition 10. Let A be a � -struture, � relational. A subset s � A is guarded if s is

a singleton set s = fag for some a 2 A, or if s = fa

1

; : : : ; a

k

g where (a

1

; : : : ; a

k

) 2 R

for some relation R 2 � . A tuple �a over A is guarded if its omponents are elements of

some ommon guarded subset.

Note that in voabularies of width 2, guarded subsets have one or two elements;

two-element guarded subsets orrespond to symmetrised relational edges (or edges in

the Gaifman graph, see below).

Let Z;Z

0

� Part(A;B) be sets of partial (loal) isomorphisms between � -strutures

A and B. We say that Z

0

satis�es the guarded bak-and-forth onditions for Z if

(forth:) for any p 2 Z and any guarded subset s

0

of A, there is some p

0

2 Z

0

with

dom(p

0

) = s

0

suh that p and p

0

agree on their ommon domain.

(bak :) for any p 2 Z and any guarded subset t

0

of B, there is some p

0

2 Z

0

with

im(p

0

) = t

0

suh that the inverses of p and p

0

agree on their ommon domain.

Z itself satis�es the guarded bak-and-forth onditions if the above are satis�ed for

Z

0

= Z.

De�nition 11. Let A and B be � -strutures, Z � Part(A;B) a non-empty set of loal

isomorphisms between A and B.

Z is a guarded bisimulation between A and B, Z : A �

g

B, if for every p 2 Z, the

domain and image of p are guarded subsets of A and B, respetively, and if Z satis�es

the guarded bak-and-forth onditions.

We write Z : A; �a �

g

B;

�

b to indiate that p : �a 7!

�

b for some p 2 Z. Note that this

implies that we are dealing with parameter tuples that are guarded.

The semantis of GF is invariant under guarded bisimulations. For all ' in GF:

A; �a �

g

B;

�

b )

�

A; �a j= ' , B;

�

b j= '

�

Similar to the modal ase, there is a haraterisation theorem for GF, [2℄.

Theorem 12 (Andr�eka, van Benthem, N�emeti). Any �rst-order formula '(�x) that

is invariant under guarded bisimulation is equivalent to a formula of GF, and vie versa.

Our investigations here will ulminate in the proofs of Theorems 3, 4, 5 and 6.

These various levels of bisimulation invariane disussed so far preisely orrespond to

the naturally assoiated syntati fragments of �rst-order logi, level by level, over all

but also in restrition to just �nite transition systems.

10



FO=� � ML

FO=�

�

� ML

�

FO=�

8

� ML

8

FO=� � ML

�

8

FO=�

g

� GF

�

�

�

�

�

�

�

�

�

�

�

�

Bisimulation games The above notions of modal and guarded bisimulation an nat-

urally be aptured by Ehrenfeuht-Fra��ss�e games. We only give a brief outline.

The ordinary modal bisimulation game on A and B is played by two players, Player

I and Player II. There are two pebbles, one for eah struture, whih throughout the

game mark one element in eah struture. It is Player II's task to maintain the ondi-

tion that the orrespondene between the urrently marked elements preserves all the

unary prediates. In a play on A; a and B; b, the pebbles are initially plaed on the

distinguished nodes a and b.

In eah round of the game, Player I selets one of the two strutures and an R-edge

that goes out of the node urrently pebbled in that struture, for one of the binary

relations R, and moves the pebble along that edge. Player II has to math this move

in the opposite struture, by moving the pebble in that struture along an R-edge

(the same R) to a node suh that the new orrespondene again preserves all unary

prediates. A player who annot move, loses the game; otherwise, i.e., if the game

ontinues inde�nitely, Player II wins the in�nite game.

It is easy to see that a bisimulation Z : A; a � B; b is nothing but a formalisation of

a winning strategy for Player II in the in�nite bisimulation game on A; a and B; b.

The variations for global or two-way bisimulation are obvious. The \two-way" re-

quirement orresponds to giving Player I the option to move a pebble bakwards along

some R-edge, in whih ase Player II has to do likewise; the \global" requirement means

that Player I an also hoose to make a move in whih the pebble may be taken to any

node, not just along an edge, in whih ase Player II similarly may move anywhere in

the opposite struture. It is not hard to see, though, that without loss of generality one

may restrit this hoie of making a global move to just the �rst round of the game,

without a�eting the existene of a winning strategy.

For the guarded bisimulation game one uses two labelled sets of pebbles, one for

eah struture. In eah struture, these pebbles will always be plaed on elements inside

some guarded set, i.e., mark a guarded tuple. It is Player II's task to make sure that

the orrespondene between pebbled tuples always is a loal isomorphism.

In eah round, Player I an determine in whih struture to play and also how many

of the urrently plaed pebbles to keep �xed, and how many of the others to plae|with

11



the only onstraint that the new pebble on�guration must again be guarded. Player

II, in the opposite struture, needs to keep �xed the pebble(s) orresponding to those

that Player I kept �xed and must plae pebbles orresponding to those plaed by I so

as to ahieve a orrespondene that is a loal isomorphism. In our setting of relational

struture of width 2, the guarded game really only needs two pebbles over eah struture.

Finite approximations Beside strategies in the in�nite bisimulation games one an

also onsider strategies in orresponding games with a �xed �nite number ` of rounds.

Player II wins any play in whih ` rounds are ompleted. The ` round games indue

�nite approximations to full bisimulation equivalene, at suessively re�ned �nite levels

` 2 N.

At level `, `-bisimulation aptures the situation where the seond player has a win-

ning strategy for ` rounds of the respetive bisimulation game. We denote these approx-

imations by supersripts as in �

`

.

In eah ase, the relationship between `-bisimulation and bisimulation is analogous to

that between `-isomorphism (f. `-round lassial Ehrenfeuht-Fra��ss�e game) and partial

isomorphism (in�nite Ehrenfeuht-Fra��ss�e game).

In terms of bak-and-forth systems, an `-bisimulation between A and B onsists of

a sequene Z

0

; Z

1

; : : : ; Z

`

of non-empty sets, where eah Z

i�1

has the bak-and-forth

property for Z

i

. We all suh systems strati�ed bak-and-forth systems of depth `. The

obvious variations apture the �nite approximations of �

�

, �

8

, �, and �

g

.

�

�

�

�

8

�

�

g

�

�

�

�

�

�

�

�

�

�

�

�

with �nite

approximations

at level `

�

`

�

`

�

�

`

8

�

`

�

`

g

�

�

�

�

�

�

�

�

�

�

�

�

The orresponding Ehrenfeuht-Fra��ss�e and Karp theorems are summed up in the

following. Let � stand for any one of the full bak-and-forth Ehrenfeuht-Fra��ss�e style

equivalenes, as aptured by the existene of a strategy for the seond player in the

in�nite game or by a orresponding bak-and-forth system: �;�

�

;�

8

;�;�

g

. Let �

`

be the orresponding `-approximation, aptured by strategies in the `-round games or

a strati�ed bak-and-forth system of depth `: �

`

;�

`

�

;�

`

8

;�

`

;�

`

g

.

For the logis L = ML;ML

�

;ML

8

;ML

�

8

;GF let L

`

stand for the fragment of formulae

of nesting depth up to `. We let�

L

`

stand for the logial equivalene indued by formulae

in L

`

:

A; a �

L

`

B; b i� for all ' 2 L

`

: A j= '[a℄ , A j= '[a℄:

For the full (in�nite game) equivalenes�, we orrespondingly look at logial equiv-

alenes indued by the in�nitary variants of these logis. Let L

1

stands for the extension

12



of L that allows arbitrary (�nite or in�nite) onjuntions and disjuntions.

A; a �

L

1

B; b i� for all ' 2 L

1

: A j= '[a℄ , A j= '[a℄:

With eah of the above readings for �;�

`

;�

L

1

;�

L

`

we have the following equiva-

lenes, for all strutures A; a and B; b, and all `:

A; a � B; b , A; a �

L

1

B; b

A; a �

`

B; b , A; a �

L

`

B; b

While the seond equivalene is the orresponding variant of the Ehrenfeuht-Fra��ss�e

theorem, the �rst equivalene orresponds to the lassial theorem of Karp that asso-

iates partial isomorphism '

p

with equivalene in L

1!

.

Full (�nitary) L-equivalene, �

L

, is aptured by the ommon re�nement of the �nite

levels �

L

`

for all ` 2 N. On the side of the games, let �

!

stand for the equivalene

indued by the existene of strategies for Player II in all bounded games of �nite lengths;

�

!

=

T

`

�

`

, the least ommon re�nement of the �

`

. Note that all the equivalenes

�

L

`

and �

L

in question are oarser than elementary equivalene �, and hene aptured

by �rst-order theories and preserved in model onstrutions that respet elementary

equivalene. Classial model theory in partiular provides for elementary extensions

that are suÆiently saturated to realise all (�rst-order theories of) �nite on�gurations

that are not expliitly forbidden by the �rst-order theory of a given struture: so-alled

!-saturated models. While we do not need to go into these any further it is interesting to

observe the purpose these an serve in lassial proofs of preservation theorems like ours.

Over !-saturated strutures, �

!

oinides with �. Thus, while the in�nitary levels of

game equivalene|orresponding to equivalene in L

1

|are not in general �rst-order,

they an be harnessed by �rst-order means in !-saturated models.

Over �nite strutures, however, the fat that �

!

oinides with � follows more

onstrutively, as a onsequene of a simple ardinality argument as follows. Over any

two individual �nite strutures the sequene of re�nements �

0

��

1

��

2

� � � � must

beome stationary at some �nite level `, and it follows that in restrition to these two

�xed strutures even �

`

aptures �.

As in lassial Ehrenfeuht-Fra��ss�e analysis, one �nds that over the lass of strutures

of �xed �nite relational voabulary � , and for eah `, the respetive equivalene relation

�

`

has �nite index. Furthermore, eah �

`

equivalene lass is de�nable by a formula

of L

`

, i.e., in the orresponding fragment of �rst-order logi at nesting depth `.

2.3 Charaterisation theorems and their approximations

The lassial haraterisation theorem, Theorem 1, as well as its variants for the other

fragments and equivalenes inluding Theorem 12 for GF, have `-approximations, whih

establish level-by-level orrespondenes between invariane �

`

(`-bisimulations of the

respetive kinds) and L-formulae of nesting depth `. It should be stressed that these

approximations do by no means prove the full haraterisation theorems. Unlike the

full haraterisation theorems, their `-approximations admit simple indutive proofs,

in omplete analogy with lassial Ehrenfeuht-Fra��ss�e analysis. Also unlike the full
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haraterisation theorems, the `-approximations are trivially valid also in restrition to

just �nite strutures.

This suggests the following perspetive on proving the lassial haraterisation the-

orems in a manner that is potentially valid in �nite model theory. We let � stand for

one of the bisimulation notions onsidered above, or indeed any other bak-and-forth

equivalene that has orresponding �nite approximations �

`

at �nite levels ` .

Observation 13. Let � have �nite approximations �

`

, ` 2 N. Assume that eah �

`

has �nite index for every �xed �nite relational voabulary. Let L =

S

`

L

`

be a logi,

eah stratum L

`

losed under disjuntions. Assume that eah L

`

is invariant under �

`

and that eah �

`

-lass is de�nable by a formula of L

`

.

Then the following are equivalent, both in the sense of lassial model theory and of

�nite model theory:

(i) Every �rst-order formula that is �-invariant is invariant under �

`

for some `.

(ii) Every �rst-order formula that is �-invariant is equivalent to some formula in L.

Note that the `-approximations to a haraterisation theorem that links L to �-

invariane diretly follow from the assumptions of the observation: a property is de�n-

able by a formula of L

`

if and only if it is invariant under �

`

.

Proof. (ii)) (i): '�-invariant implies ' is equivalent to some  2 L by (ii); if  2 L

`

,

we �nd that  , and therefore ', is invariant under �

`

.

(i)) (ii): '�-invariant implies that ' is invariant under�

`

for some ` by (i). Then

' is equivalent to the disjuntion over the L

`

-formulae de�ning those �

`

equivalene

lasses whose members are models of '. This disjuntion is �nite, sine �

`

has �nite

index.

In the light of this observation, the rux of the proof of a haraterisation theorem

FO=� � L|both lassially and in �nite model theory|lies in establishing ondition

(i) of Observation 13.

Classially, this ondition is established indiretly using ompatness and suÆiently

rih (!-saturated) models, over whih�

!

(simultaneous�

`

equivalene for all �nite `)

oinides with full� equivalene. I.e., lassially one relies on model onstrutions that

allow us to upgrade �

!

to � while preserving ' 2 FO.

Here, on the other hand, we proeed orthogonally. We now look at �nitary model

onstrutions that fully preserve � (and therefore any �-invariant ') and allow us to

upgrade �

`

, for a spei� level `, to some approximation

_

� of elementary equivalene

� that is strong enough to preserve '.

De�nition 14. Let �

`

and

_

� be equivalene relations between � -strutures, � a

re�nement of�

`

. We say that�

`

an be upgraded to

_

� modulo� (in �nite strutures)

if for any two (�nite) A; a �

`

B; b there are (�nite)

^

A; â � A; a and

^

B;

^

b � B; b suh

that

^

A; â

_

�

^

B;

^

b.
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A; a

�

`

B; b

� �

^

A; â

_

�

^

B;

^

b

With this intuition, our proofs of the ruial ondition (i) in Observation 13 proeed

as follows. For a given �-invariant ', we determine a suitable approximation

_

� of

full elementary equivalene suh that ' is preserved under

_

� for essentially syntati

reasons, and a �nite level ` suh that�

`

an be upgraded to

_

� (in �nite models) modulo

�. This implies that ' is �

`

-invariant, straight from the diagram.

The appropriate levels of

_

� for this argument are obtained from a Gaifman repre-

sentation of the given FO-formula '; the relevant ` will essentially be the loality rank

of ' in the sense of Gaifman's loality theorem (see below).

For all rami�ed ases of modal haraterisation theorems, i.e., all ases with the

exeption of the van Benthem-Rosen theorem itself, the atual upgrading result will re-

volve around ombinatorial onstrutions of ertain `nie'�-equivalent �nite ompanion

strutures, over whih FO an loally be ontrolled. These will be provided in setion 3

in the form of loally ayli overs.

2.4 Loality

Reall that the Gaifman graph G(A) of a relational struture A = (A; : : :) is the sym-

metri graph with universe A and edges linking any two distint elements of A that

our together in a ommon ground atom of a relation in A. Gaifman distane d on A

is the metri indued by ordinary graph distane in G(A).

De�nition 15. Let A be a relational struture.

(a) The neighbourhood of radius ` about a in A is the subset

N

`

(a) =

�

a

0

2 A : d(a; a

0

) 6 `

	

.

(b) A set of elements in A is `-sattered if the mutual distane between any two distint

members of the set is greater than 2`.

The `-neighbourhoods of any two distint members of an `-sattered set are disjoint.

Gaifman distane d is �rst-order de�nable, for every �xed �nite relational signature,

in the sense that for every ` there is a �rst-order formula expressing that d(x; y) 6 `.

De�nition 16. (i) A formula  (x) is `-loal if it is logially equivalent to its relativi-

sation to N

`

(x).

(ii) A basi `-loal sentene is one that asserts the existene of an `-sattered set of m

elements x all of whih satisfy the same `-loal formula  (x), for some m and  .

(iii) A �rst-order formula '(x) is in Gaifman form if it is a boolean ombination of

loal formulae and basi loal sentenes.

(iv) The loality rank of a formula in Gaifman form is the minimal ` suh that all

its onstituent loal formulae (inluding those ourring in basi loal sentenes)
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are `-loal. Its loal quanti�er rank is the maximal quanti�er rank in any of the

onstituent loal formulae; its sattering rank is the maximal size of a sattered

set asserted in any of its onstituent basi loal sentenes.

(v) A simple loal sentene is a sentene in Gaifman form of sattering rank 1; i.e.,

one that asserts the existene of an element x satisfying some loal formula  (x).

Note that, due to de�nability of Gaifman distane, `-loal formulae '(x) are equiv-

alent to formulae whose quanti�ers are expliitly relativised to the `-neighbourhood of

x; and simple `-loal sentenes are equivalent to existentially quanti�ed formulae of this

kind.

Gaifman's theorem [9℄ says that �rst-order logi is essentially loal.

1

Theorem 17 (Gaifman). Any �rst-order formula '(x) is equivalent to one in Gaifman

form.

We shall mostly apply Gaifman's theorem in more spei� irumstanes. The ruial

speialisations for our purposes deal with formulae whose semantis is invariant under

disjoint sums (unions). We write A+B for the disjoint sum of two strutures A and B

over the same purely relational voabulary � . We also write q � A for the q-fold diret

sum of A with itself. We usually regard A itself as a substruture of A +B and q � A,

and use notation like A +B; �a for parameters �a from A. Note that A +B � A, and

q � A � A as well as q � A �

g

A (also with parameters from A).

De�nition 18. A � -formula ' is

(i) invariant under disjoint sums (meaning: with arbitrary other � -strutures) if for

all A; �a and B: A; �a j= ' , A+B; �a j= '.

(ii) invariant under disjoint opies (meaning: of the same � -struture) if for all A; �a

and q > 1: A; �a j= ' , q � A; �a j= '.

Clearly, bisimulation invariane implies invariane under disjoint sums, while invari-

ane under global or guarded bisimulation implies invariane under disjoint opies. The

following speialisations of Gaifman's theorem an therefore be brought into play.

In the ontext of lassial model theory and with a view to ombinatorial applia-

tions, Compton [6℄ has|independently of Gaifman [9℄| obtained several losely related

results, whih interestingly moreover also antiipate the idea of guarded quanti�ation.

Proposition 19. Both in the sense of lassial and �nite model theory:

(a) If ' = '(x) 2 FO is invariant under disjoint sums, then '(x) is loal about x.

(b) If ' = '(x) 2 FO is invariant under disjoint opies, then ' is equivalent to a

boolean ombination of loal formulae about x and simple loal sentenes.

Proof. We expliitly prove these statements in their reading for �nite model theory. The

lassial ase follows exatly the same lines. We use  

1

j=

�n

 

2

or  

1

�

�n

 

2

to expliitly

1

We state the speial ase for formulae in one free variable. The theorem holds for formulae in

arbitrary free variables, but one has to admit slightly more general loal formulae in the free variables.

These are required to be equivalent to their relativisation to the union of `-neighbourhoods around all

their free variables, for some `.
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indiate the restrition to just �nite models, of semanti impliation and bi-impliation

between formulae.

(a) Assume that over �nite strutures, '(x) is invariant under disjoint sums. Aording

to Gaifman's theorem, ' is equivalent (over all strutures) to a formula of the form

'(x) �

_

i

�

'

i

0

(x) ^ �

i

�

;

where the '

i

0

(x) are `

i

-loal about x and the �

i

are boolean ombinations of basi loal

sentenes suh that without loss of generality

(i) every '

i

0

(x) ^ �

i

is satis�able.

(ii) any two distint '

i

0

(x) are mutually exlusive.

We may delete any disjunts '

i

0

(x) ^ �

i

that have no �nite models, and still retain a

formula that is equivalent to ' over all �nite strutures, where even

(i') every '

i

0

(x) ^ �

i

is satis�able in a �nite model.

We laim that then neessarily

'(x) �

�n

_

i

'

i

0

(x):

Clearly '(x) j=

�n

W

i

'

i

0

(x). Conversely we show that also

W

i

'

i

0

(x) j=

�n

'(x).

Let to this end A; a j=

W

i

'

i

0

(x) be a �nite model of

W

i

'

i

0

(x). From (i') we obtain

�nite models B

i

; b

i

j= '

i

0

(x) ^ �

i

. Note that this implies B

i

; b

i

j= '(x). Let B be the

disjoint union of theB

i

and A. From invariane under disjoint sums we get B; b

i

j= '(x)

for eah i. As B; b

i

j= :'

j

0

(x) for all j 6= i by (ii), inspetion of '(x) shows that

neessarily B; b

i

j= '

i

0

(x) ^ �

i

for eah i. Therefore B j=

V

i

�

i

. So B; a j=

W

i

'

i

0

(x) ^

V

i

�

i

. The latter formula learly implies '(x). So B; a j= '(x), and using invariane

under disjoint sums again, also A; a j= '(x).

(b) Let '(x) be invariant under disjoint opies over �nite strutures. Using Gaifman's

theorem we obtain a presentation of '(x) of the following form:

'(x) �

�n

_

i

�

 

i

^

_

j

�

'

ij

0

(x) ^ �

ij

�

�

where

(i) the formulae '

ij

0

(x) are loal about x.

(ii) the sentenes �

ij

are boolean ombinations of basi loal sentenes talking about

sattered sets of size greater than 1.

(iii) the sentenes  

i

are omplete boolean ombinations of all formulae of the form

9y�(y) where � ranges over all the loal formulae that our in any of the  

i

or

�

ij

.

(iv) Any two  

i

and  

i

0

are mutually exlusive for i 6= i

0

.

(v) For every i: '

ij

0

(x) and '

ij

0

0

(x) are mutually exlusive whenever j 6= j

0

.

(vi) For every i; j:  

i

^ ('

ij

0

(x) ^ �

ij

) is satis�able in a �nite model.
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We onsider '

i

(x) :=

W

j

�

'

ij

0

(x) ^ �

ij

�

in restrition to models of  

i

, and laim that

 

i

^ '

i

(x) �

�n

 

i

^

_

j

'

ij

0

(x):

Clearly this proves the laim of part (b). Moreover, the left-hand side learly implies

the right-hand side. For the onverse impliation let A; a j=  

i

^

W

j

'

ij

0

(x) be a �nite

model of the right-hand formula. We need to show that A; a j= '

i

. Choose q 2 N to

be greater than the ardinality of any sattered set mentioned in the �

ij

. By (vi) we

�nd �nite models B

j

; b

j

j=  

i

^ '

ij

0

(x) ^ �

ij

. As B

j

; b

j

j= '(x) and by invariane of '

under disjoint opies, we have q �B

j

; b

j

j= '(x). Clearly still q �B

j

; b

j

j=  

i

. Therefore,

q �B

j

; b

j

j= '

i

(x) and as learly also still q �B

j

; b

j

j= '

ij

0

(x), ondition (v) implies that

q �B

j

; b

j

j= �

ij

. It follows that �

ij

an only make positive existential laims about large

sattered sets whose members satisfy some loal formula that is realised aording to

 

i

; onversely, any negative statement in the �

ij

an only forbid (large) sattered sets

satisfying some loal formula that aording to  

i

annot be realised at all.

It follows that also q � A j= �

ij

, and|as this is the ase for all hoies of j|in fat

q � A j=

V

j

�

ij

. But then q � A; a j=  

i

^

W

j

'

ij

0

^

V

j

�

ij

. Therefore q � A; a j= ' and, by

invariane of ', also A; a j= '. As the  

i

are mutually exlusive, (iv), it must be that

A; a j= '

i

(x), as desired.

In fat one an improve on part (a) of Proposition 19 by giving a quantitative

bound on the loality rank `. A proof of the following lemma, based entirely on an

elementary Ehrenfeuht-Fra��ss�e game argument without appeal to Gaifman's theorem, is

presented in [14℄. This argument relies on an analysis of the q-round game on strutures

q �A+q �B+A; a versus q �A+q �B+B; b in the situation where A�N

`

(a); a �

q

B�N

`

(b); b,

for ` = 2

q

� 1. Exhibiting a strategy for the seond player is atually a nie exerise in

Ehrenfeuht-Fra��ss�e games.

Lemma 20. Both lassially and in the sense of �nite model theory: a �rst-order

formula '(x) of quanti�er rank q that is invariant under disjoint sums is `-loal for

` = 2

q

� 1.

The tightness of this bound is illustrated by the following example. There are

straightforward FO formalisations of the bisimulation invariant property that \there

is a red node within distane 2

q

� 1 of x" in quanti�er rank q. But any modal formula

to this e�et must have modal quanti�er rank 2

q

� 1, sine modal formulae of quanti�er

rank ` are `-loal.

All our proofs of haraterisation theorems will establish the ruial ondition in

Observation 13 with an argument about upgrading `-bisimulation invariane to a level

of loal �rst-order equivalene that is strong enough to preserve the given formula '

in its Gaifman form. The following lemma serves to enapsulate the generi pattern

of these proofs. For the de�nition of the relevant levels of FO-equivalene ompare

De�nition 16, espeially item (iv). For the notion of upgrading reall De�nition 14.

De�nition 21. For � -strutures with distinguished parameters A; a and B; b, and

`; q; n 2 N: A; a �

(`)

q;n

B; b if for every k 6 `, for every k-loal formula  (x) of quanti�er

rank q, and for every m 6 n:
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(i) A j=  [a℄, B j=  [b℄.

(ii) A has a k-sattered subset of size m for  i� B has.

Note that �

(`)

q;n

has �nite index and that any FO-formula '(x) in Gaifman form is

invariant under �

(`)

q;n

if its loality rank, loal quanti�er rank and sattering rank are

bounded by `, q and n, respetively.

Lemma 22. Both lassially and in the sense of �nite model theory. Let '(x) be in

Gaifman form of loality rank `, loal quanti�er rank q and sattering rank n. Suppose

that ' is invariant under �. If �

`

an be upgraded to �

(`)

q;n

modulo �, then ' is

invariant under �

`

.

For this ompare Observation 13 and De�nition 14, and the disussion in setion 2.3.

The use of Proposition 19 in this ontext merely is to give a natural a priori bound on

the loality and sattering ranks of bisimulation invariant formulae.

2

2.5 The ase of basi modal logi revisited

A high-level sketh of an alternative proof of the van Benthem-Rosen theorem, whih

also yields an exponential bound on the nesting depth of the target ML formula, was

indiated in the introdution. We are now in a position to make this argument preise,

and it may serve as an instrutive, partiularly simple appliation of the generi proof

idea in Observation 13 and of upgrading. The partiular simpli�ation derives from the

tight loality guaranteed by Lemma 20.

Theorem 23. Both lassially and in the sense of �nite model theory: any �rst-order

formula '(x) of quanti�er rank q that is invariant under bisimulation is equivalent to a

formula of basi modal logi whose modal nesting depth is less than 2

q

.

As remarked above, the bound on the nesting depth is tight; the example given right

after Lemma 20 above, illustrates the fat that FO an be exponentially more suint

than ML for bisimulation invariant properties.

We apply a version of Lemma 22 where the target equivalene �

(`)

q;n

is replaed by

the following equivalene �

(`)

. De�ne A; a �

(`)

B; b as A�N

`

(a); a � B�N

`

(b); b. Note

that this is a loal version of full bisimulation equivalene, not to be onfused with

`-bisimulation. To prove Theorem 23 we show the following.

Lemma 24. Modulo �, �

`

an be upgraded to �

(`)

(also in �nite strutures).

A; a

�

`

B; b

� �

^

A; â

�

(`)

^

B;

^

b

2

It turns out that for the rami�ed haraterisation results, onerning global forms of bisimulation,

one does not atually have to appeal to Proposition 19 (b), if one uses simple disjoint opies in an addi-

tional step that further upgrades from �

(`)

q;1

(sattering rank 1, orresponding to simple loal sentenes)

to �

(`)

q;n

(arbitrary sattering rank n); ompare Lemma 37 in setion 4.
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Proof. Let A; a �

`

B; b. Let

^

A be the result of unravelling A from a, restriting the

resulting tree to depth `, and identifying leaf nodes in this trunated tree with orre-

sponding nodes in disjoint isomorphi opies of A. Let

^

A

`

=

^

A�N

`

(a) be the trunated

unravelling of depth ` of A; a with no attahments to the ut-o� points at the leaves.

Clearly

^

A and

^

A

`

are �nite if A is �nite. By onstrution,

^

A; a � A; a and

^

A

`

; a �

(`)

^

A; a.

Let

^

B and

^

B

`

be similarly obtained from B; b. Then

^

A

`

�

^

B

`

, as A; a �

`

B; b and

as both

^

A

`

and

^

B

`

are trees of depth `. It follows that

^

A; a �

(`)

^

B; b, as desired.

Proof of Theorem 23. Lemma 24 and Observation 13 now prove the theorem. If '(x) of

quanti�er rank q is bisimulation invariant, it is also `-loal for ` = 2

q

� 1 by Lemma 20,

and hene invariant under �

(`)

. Upgrading aording to Lemma 24, as indiated in the

diagram, proves that ' is invariant under �

`

, hene expressible in ML at modal nesting

depth `.

In onnetion with Lemma 24, it should be pointed out that �

`

an in fat be

upgraded (modulo � and also in �nite models) to loal isomorphism '

(`)

, aording

to A; a '

(`)

B; b i� A �N

`

(a); a ' B �N

`

(b); b. To ahieve this, one enrihes �nite

bisimilar ompanions

^

A and

^

B from the above proof with suÆiently many opies of

eah `sub-tree' to boost both strutures to have equal numbers of realisers for eah

(` � `

0

� 1)-bisimulation type adjaent to any node at depth `

0

< `. This well-known

onstrution is also used as part of Rosen's proof in [17℄, whih then proeeds to upgrade

to full elementary equivalene, using Hanf's theorem and some more intriate surgery

on �nite strutures.

The van Benthem-Rosen theorem an easily be adapted to over the ase of two-

way bisimulation �

�

and ML

�

. For the above arguments, this involves the following

observations and slight modi�ations. Clearly the loality results of Proposition 19 or

Lemma 20 go through, as �

�

-invariane also implies invariane under disjoint sums. For

the analogue of Lemma 24, one adapts the proof given in Lemma 24 by using (trunated)

two-way unravellings. We then obtain the following.

Corollary 25. Both lassially and in the sense of �nite model theory: any �rst-order

formula '(x) of quanti�er rank q that is invariant under two-way bisimulation is equiv-

alent to a formula of ML

�

whose modal nesting depth is less than 2

q

.

It is apparent from the above that (ordinary as opposed to global) bisimulation in-

variane implies a very strong form of loality; namely, loality about the distinguished

parameter. The piture is quite di�erent, however, when we onsider global (and pos-

sibly two-way) bisimulation, whih does take into aount the loal behaviour not just

around the distinguished parameters but also around any other point. Model onstru-

tions that are to respet any form of global bisimulation equivalene therefore have to be

muh more uniform. Partial or trunated unravellings are not good enough. The distin-

guishing feature of tree-like unravellings is their ayliity (ayliity of the underlying

Gaifman graphs). But learly ayliity annot be had in �nite bisimilar ompanion

strutures of any struture that is not itself already ayli. To the extent that one

is still only onerned about the loal behaviour in neighbourhoods of some bounded

radius, however, it makes sense to approximate ayliity uniformly but loally by avoid-

ing short yles in the Gaifman graph, i.e., to at least keep small loal neighbourhoods
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ayli. This is exatly what the loally ayli bisimilar overs to be disussed in the

following setion ahieve.

3 Loally ayli bisimilar overs

Reall that � = �

(1)

[�

(2)

is a �nite, purely relational voabulary of width 2, with binary

relations R 2 �

(2)

. We denote by E the ombined edge relation

E =

S

R2�

(2)

R:

The edge relation in the Gaifman graph G(A) is the symmetri and irreexive version

of E.

De�nition 26. Let A be a � -struture, G(A) its Gaifman graph.

(i) A yle (of length `) in A is an `-yle in G(A) in the graph theoreti sense: a

sequene of verties a

0

; : : : ; a

`�1

, where for eah onseutive pair of indies (i; i+1)

(ylially understood in the sense of Z

`

) we have (a

i

; a

i+1

) 2 R or (a

i+1

; a

i

) 2 R

for some R 2 �

(2)

. A yle of length 1 is a loop.

(ii) A yle is non-degenerate if always a

i�1

6= a

i+1

.

(iii) A is ayli if it is loop-free and has non-degenerate yles.

(iv) A is k-ayli if it is loop-free and has no non-degenerate yles of lengths < k.

Note that a k-ayli struture is loally ayli in the sense that the substrutures

indued on `-neighbourhoods of its elements are ayli if k > 2`+2. In graph theoreti

terms, (iv) may be rephrased by saying that the girth of G(A) is at least k.

All strutures are 3-ayli. Degenerate yles annot be avoided at all, as every edge

gives rise to a degenerate yle of length 2. In order to apture all other degeneraies in

the presene of several direted edge relations R we introdue the following notion of a

simple transition system.

De�nition 27. A � -struture A is simple if the R

A

are mutually disjoint for R 2 �

(2)

and if their union E

A

is anti-symmetri and irreexive.

In graph theoreti terms one might onsider a simple struture as an edge-partitioned

and vertex-oloured tournament.

A speial and very natural kind of bisimulations|familiar, e.g., form the bisimilar

ompanion strutures obtained as unravellings|are those indued by homomorphisms.

De�nition 28. (a) A homomorphism � :

^

A ! A is a bisimilar over of A by

^

A if

Z

�

=

�

(â; a) : a = �(â)

	

is a global two-way bisimulation between

^

A and A.

(b) A bisimilar over � :

^

A ! A is alled faithful if, for every â and eah R 2 �

(2)

, �

restrits to a bijetion between fâ

0

2

^

A : (â; â

0

) 2 R

^

A

g and fa

0

2 A : (a; a

0

) 2 R

A

g,

as well as between fâ

0

2

^

A : (â

0

; â) 2 R

^

A

g and fa

0

2 A : (a

0

; a) 2 R

A

g.

Consider the example of faithful bisimilar overs obtained from two-way unravellings

of transition systems. Suppose without loss of generality that A is simple and onneted

(eah onneted omponent may be onsidered separately). The two-way unravelling
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of A from some element a of A, as disussed in setion 2.2, together with the natural

projetion that maps an undireted path � = a; a

1

; : : : ; a

`

to its last element �(�) = a

`

,

provides a faithful bisimilar over of A by a simple ayli transition system, albeit

generally an in�nite one. As pointed out above, no yli �nite A an have a �nite

ayli bisimilar ompanion. Our aim in this setion is the following.

Proposition 29. Every �nite transition system A admits, for every k > 3, a faithful

bisimilar over � :

^

A! A by a �nite k-ayli simple transition system

^

A. For �xed k,

the size of

^

A an be polynomially bounded in terms of the size of A (

3

).

Before we give a proof of the proposition, note that trunated tree-like unravellings

with branhes linked bak into initial segments of the tree-like unravelling do not in

general give rise to loally ayli overs beause ayliity is understood in terms of

undireted yles (yles in G(A)) rather than direted yles.

The ase of simple transition systems The assumption of simpliity simpli�es the

proof of the proposition. The general ase will then been redued to this ase.

Let A be simple, k 2 N. Suppose (G; Æ) is a �nite group into whih E an be

embedded as g : E ! G ; e 7! g

e

, suh that fg

e

: e 2 Eg \ fg

�1

e

: e 2 Eg = ;.

Reall that the Cayley graph assoiated with G; (g

e

)

e2E

is the undireted graph with

vertex set G and edges fh; h

0

g exatly between those h and h

0

for whih h

0

= h Æ g

e

or

h = h

0

Æ g

e

for some e 2 E.

With A and G;g we assoiate the following struture A


g

G with universe A�G.

Unary prediates P 2 �

(1)

are interpreted in A


g

G as �

�1

(P

A

) where � : A�G! A is

the natural projetion. For the binary prediates R 2 �

(2)

we put an R-edge from (a; h)

to (a

0

; h

0

) if and only if e = (a; a

0

) 2 R

A

and h

0

= h Æ g

e

.

A


g

G =

�

A�G; (P

A


g

G

)

P2�

(1)

; (R

A


g

G

)

R2�

(2)

�

;

P

A


g

G

= �

�1

(P

A

);

R

A


g

G

=

�

((a; h); (a

0

; h Æ g

e

)) : (a; a

0

) = e 2 R

A

	

:

This learly turns � : A


g

G! A into a faithful bisimilar over. A


g

G is also itself

simple, as A is simple and due to the distintness of the g

e

and their inverses.

Any non-degenerate yle in

^

A projets to a non-degenerate yle in the Cayley

graph of G; (g

e

)

e2E

. Therefore, A


g

G will be k-ayli if the girth of the Cayley graph

assoiated with G; (g

e

)

e2E

is at least k. Suitable Cayley graphs have expliitly been

onstruted, with asymptotially near optimal dependene of the size of the graph (or

group) on the required girth and degree. Note that for our appliation, the degree of

the required Cayley graph is d = 2jE

A

j. These bounds guarantee k-ayli bisimilar

overs of size polynomial in the size of the given A, for any �xed k. It is also lear that

an exponential growth in terms of k is unavoidable. See [1℄ for a full disussion of these

expliit onstrutions of Cayley graphs with large girth, and [14℄ for another intuitive

though exponential onstrution inspired by the idea of loal bisimilar unravellings.

3

This also answers a question left open in the proeedings version [15℄.
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Theorem 30 (Margulis, Imrih). For d and k there are d-regular Cayley graphs of

regular degree d, size O(d

k

) ( some �xed onstant) and girth no less than k.

We have proved the following lemma, whih overs Proposition 29 for simple transi-

tion systems.

Lemma 31. Any simple A admits a faithful over � : A


g

G! A by a simple k-ayli

struture of size O(jEj

k

), for a suitable hoie of G.

The general ase For strutures A = (A;

�

R;

�

P ) that are not simple it now suÆes to

�nd �rst a faithful bisimilar over � : A

0

! A by some simple A

0

, and then apply the

above onstrution to further eliminate short yles from these.

A simple way to ahieve this involves an intermediate enoding in whih edges of

A are replaed by paths of length two that pass through new verties whose olour

haraterises the kind of edge involved. In more detail, we assoiate with � = �

(1)

[ �

(2)

a new voabulary �

s

onsisting of �

(1)

together with new unary prediates Q

R

for eah

R 2 �

(2)

and a new binary prediate S.

With an arbitrary transition system A of type � assoiate a simple �

s

transition

system A

s

over the universe A

s

whih is the disjoint union of A and the disjoint union of

the R

A

for R 2 �

(2)

. (Note that eah individual edge of A gives rise to a new element in

A

s

.) The P 2 �

(1)

are interpreted as in A: P

A

s

= P

A

. The new Q

R

mark the elements

enoding the R

A

-edges: Q

A

s

R

= R

A

� A

s

. S

A

s

�nally is interpreted to ontain exatly all

those pairs (a; e) 2 A�Q

A

s

R

and (e; a

0

) 2 Q

A

s

R

�A for whih e = (a; a

0

) 2 R

A

, R 2 �

(2)

:

Q

A

s

R

=

�

e : e 2 R

A

	

;

S

A

s

=

�

(a; e); (e; a

0

) : (a; a

0

) 2 R

A

; R 2 �

(2)

	

:

Clearly A

s

is simple. We may now apply the above onstrution to obtain a faithful

bisimilar over �

s

:

^

A

s

! A

s

by a simple, 5-ayli �

s

struture

^

A

s

. Direted S-paths

of length two in A

s

of the form a; e; a

0

have unique lifts to any â 2 �

�1

s

(a) or any

â

0

2 �

�1

s

(a

0

). Conversely any length two direted S-path of the form â; ê; â

0

in

^

A

s

with

ê 2 Q

R

projets to a path a; e; a

0

in A

s

with e 2 Q

R

, and therefore orresponds to an

R-edge in A. Note also that P

^

A

s

� �

�1

s

(A) where we think of A as a subset of A

s

.

Any suh simple �

s

struture

^

A

s

indues a simple � struture

^

A, aording to the

following straightforward reverse transformation:

^

A = �

�1

s

�

A

�

where A � A

s

;

P

^

A

= P

^

A

s

;

R

^

A

=

�

(â; â

0

) : (â; ê); (ê; â

0

) 2 S

^

A

s

; for some e 2 Q

^

A

s

R

	

:

Sine

^

A

s

does not have any non-degenerate 4-yles,

^

A turns out simple. The above

onsiderations about projetions and unique lifts of paths imply that �

s

indues a ho-

momorphism � :

^

A ! A whih moreover is a faithful bisimilar over. We have found a

bisimilar over � :

^

A! A as formulated in the following orollary.

Corollary 32. Any �nite transition system A admits a faithful bisimilar over � :

^

A! A

by a �nite simple transition system

^

A of polynomially bounded size.

Together with Lemma 31 this proves Proposition 29 in the general ase.
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4 Upgrading global bisimulation equivalenes

We use the results from the previous setion to obtain bisimilar ompanions whih an

serve to upgrade `-bisimulations between �nite transition systems to stronger forms of

loal �rst-order equivalene following the idea behind Lemma 22. Compare De�nition 14

for upgrading, De�nition 21 for the relevant levels �

(`)

q;n

of loal FO-equivalene, and

reall Gaifman's theorem, Theorem 17, or its spei� rami�ations from Proposition 19.

Reall in partiular that any FO-formula '(x) is equivalent to one in Gaifman form,

and as suh is therefore invariant under �

(`)

q;n

for suitable levels of ` (its loality rank),

q (its loal quanti�er rank), and n (its sattering rank).

4.1 Upgrading global two-way bisimilarity

The main proposition about upgrading from �

`

is the following. Its proof, however,

is broken down into a sequene of lemmas that highlight some intermediate upgrading

stages in their own right. Loally ayli overs are used in the entral step, Lemma 35.

Proposition 33. Modulo �, �

`

an be upgraded to �

(`)

q;n

, for any q and n, lassially

as well as in �nite models.

For tehnial reasons we onsider a strengthening of two-way bisimulation in whih

the seond player an math multipliities up to q in responses to the �rst player's hal-

lenges in eah individual round, for some �xed q. Formally, the usual bak-and-forth

requirements are strengthened to orresponding q-bak-and-forth requirements aord-

ing to, for instane,

(q-forth along forward R:) for any (a; b) 2 Z and any distint a

0

1

; : : : ; a

0

k

2 A suh that

(a; a

0

i

) 2 R

A

for 1 6 i 6 k, where k 6 q, there are distint b

0

1

; : : : ; b

0

k

2 B suh that

(b; b

0

i

) 2 R

B

and (a

0

i

; b

0

i

) 2 Z

0

for 1 6 i 6 k.

We write �

`;q

�

for the orresponding level of two-way q-bak-and-forth `-bisimulation,

formally indued by a depth ` strati�ed bak-and-forth system with the appropriate two-

way q-bak-and-forth onditions.

The orresponding variant of �

`

, global two-way q-bak-and-forth `-bisimulation�

`;q

is analogously de�ned, with the additional requirement that the orresponding bak-and-

forth system overs all of A and B: A �

`;q

B i� for every a in A there is some b in B

suh that A; a �

`;q

�

B; b, and vie versa.

Lemma 34. Modulo �, �

`

an be upgraded to �

`;q

, for any q, lassially as well as in

�nite models.

Proof. If A; a �

`

B; b, it suÆes to blow up all multipliities in A and B q-fold to

ahieve the desired degree of bisimulation equivalene. This is done with the following

operation:

A
 q =

�

A� f1; : : : ; qg; (�

�1

(R))

R2�

(2)

; (�

�1

(P ))

P2�

(1)

�

where � : A
 q ! A is the natural projetion.

Clearly A
 q � A and A
 q; (a; 1) �

`;q

B
 q; (b; 1).

Lemma 35. Modulo �, �

`;q

an be upgraded to �

(`)

q;1

, lassially as well as in �nite

models.
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Proof. Let A; a �

`;q

B; b, and let � :

^

A! A and � :

^

B! B be faithful bisimilar overs

by (2` + 2)-ayli simple transition systems, aording to Proposition 29. Let â and

^

b be any representatives in �

�1

(a) and �

�1

(b), respetively. Note that automatially

^

A; â �

`;q

^

B;

^

b, as the over is faithful. We laim that

^

A; â �

(`)

q;1

^

B;

^

b.

^

A �

`;q

^

B implies that for every a there is a b suh that

^

A; a �

`;q

�

^

B; b, and vie versa.

The latter implies that

^

A�U

`

(a); a �

`;q

�

^

B�U

`

(b); b. Any two suh

^

A�U

`

(a) and

^

B�U

`

(b) are ayli, sine

^

A and

^

B themselves are (2`+ 2)-ayli.

To establish

^

A; â �

(`)

q;1

^

B;

^

b, it therefore suÆes to show the following.

Claim 36. Let A; a and B; b be simple and ayli and suh that A � U

`

(a) and

B � U

`

(b). Then A; a �

`;q

�

B; b implies A; a �

q

B; b.

For the proof of the laim, we exhibit a strategy in the the q-round Ehrenfeuht-

Fra��ss�e game on A; a and B; b. Fix A; a and B; b as in the laim. For a tuple a =

(a

1

; : : : ; a

k

) in A we let span(a;a) denote the set of those elements of A that lie on one

of the shortest paths onneting a to a

i

in the Gaifman graph G(A) of A, for 1 6 i 6 k.

For a

0

in A we let d(a; a

0

) denote the Gaifman distane (length of the shortest path) from

a to a

0

. Similar notions apply in B; b. The strategy for Player II onsists in maintaining

the following ondition, in terms of elements a = (a

1

; : : : ; a

k

) and b = (b

1

; : : : ; b

k

)

marked so far in A and B, respetively.

(�) there is an isomorphism f : A�span(a;a) ' B�span(b;b) suh that

for all a

0

; b

0

= f(a

0

) : A; a

0

�

`

0

;q

�

B; b

0

where `

0

= `� d(a; a

0

) = `� d(b; b

0

):

Condition (�) is obviously met initially, with empty a and b and for f : a 7! b.

Assume (�) is true after round k < `, let f : A � span(a;a) ' B � span(b;b) a-

ordingly, and suppose without loss of generality that Player I selets a

0

in A in the

next round and that a

0

62 span(a;a). Let d(a; a

0

) = t and onsider the shortest path

a = a

0

0

; a

0

1

; : : : ; a

0

s

; : : : ; a

0

t

= a

0

from a to a

0

in G(A). Let a

0

s

be the last element on this

path that is ontained in span(a;a), so that span(a;aa

0

) = span(a;a)

_

[fa

0

s+1

; : : : ; a

0

t

g.

Let b

0

i

= f(a

0

i

) for i 6 s. By the above ondition, A; a

0

s

�

`�s;q

�

B; b

0

s

. Suessively ex-

erising the two-way q-forth property we �nd a mathing path b

0

s

; b

0

s+1

; : : : ; b

0

t

in G(B)

always using fresh elements b

i

for i > s, suh that also for s < i 6 t:

{ (b

0

i�1

; b

0

i

) 2 R

B

i� (a

0

i�1

; a

0

i

) 2 R

A

, and similarly w.r.t. R

�1

, for all R 2 �

(2)

,

{ d(b; b

0

i

) = i,

{ A; a

0

i

�

`�i;q

�

B; b

0

i

.

Let b

0

= b

0

t

and f

0

: A�span(a;aa

0

) ! B�span(b;bb

0

) the extension of f that sends

a

0

i

to b

0

i

for s < i 6 t. Simpliity and ayliity of A and B guarantee that f

0

is an

isomorphism; moreover f

0

satis�es the required bisimulation onditions by onstrution.

Our hoie of b

0

for a

0

exempli�es the way in whih (�) is maintained in response to

a next move of Player I in A. A hallenge played in B an be answered in a symmetri

fashion.

Lemma 37. Modulo �, �

(`)

q;1

an be upgraded to �

(`)

q;n

for any n, lassially as well as

in �nite models.
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Proof. Clearly, if A; a �

(`)

q;1

B; b, then n � A; a �

(`)

q;n

n � B; b, where n � A is the n-fold

disjoint sum of opies of A.

4.2 Upgrading global forward bisimilarity

Lemma 38. Modulo �

8

, �

2`

8

an be upgraded to �

`

, lassially as well as in �nite

models.

It is easy to see that one annot ahieve a similar upgrade without dereasing the

approximation level `. For instane, a two-edge hain is 1-bisimilar (in the sense of �

1

8

)

to a one-edge hain. But any globally bisimilar ompanion strutures of these would still

be of depths 2 and 1, respetively. These therefore annot be 1-bisimilar in the two-way

sense: the former must have nodes with non-zero in- and out-degree; the latter annot

have suh.

Let for the following tp

`

A

(a) denote the `-bisimulation type (�

`

-type) of a in A.

Semantially, tp

`

A

(a) preisely determines the �

`

equivalene lass of A; a. Syntatially

tp

`

A

(a) is de�ned by the orresponding depth ` modal Hintikka formula. We note that

�

`

has �nite index, for any �xed �nite � .

The full bisimulation type (�-type) of a in A is in the following denoted tp

A

(a).

With a direted path a

0

; : : : ; a

k

in A we assoiate the string onsisting of the `-

bisimulation types tp

`

A

(a

i

) and the edge types linking a

i

to a

i+1

along this path,

tp

`

A

(a

0

); R

0

; tp

`

A

(a

1

); R

1

; : : : ; R

k�1

; tp

`

A

(a

k

);

where (a

i

; a

i+1

) 2 R

A

i

.

De�nition 39. A string tp

`

A

(a

0

); R

0

; : : : ; R

k�1

; tp

`

A

(a

k

) assoiated with a direted path

(a

i

; a

i+1

) 2 R

A

i

is an `-history of a = a

k

in A if either k = ` (we refer to a proper

`-history), or k < ` and the path is not bakward extendible, i.e., a

0

has in-degree zero

(we refer to a short `-history).

We say that a in A has a unique `-history if all `-histories of a in A are idential

(in partiular they are all short of the same length k < `, or all proper); in this ase

hist

`

A

(a) stands for this unique `-history.

We say that A has unique `-histories if every node in A has a unique `-history.

Note that tree strutures in partiular do have unique histories. Also note that the

`-history (or `-histories) of a node determines its `

0

-histories for any `

0

6 `.

Let us say that a bisimulation A �

`

8

B respets zero in-degree, if for every node a in

A of in-degree zero there is a node b in B of in-degree zero suh that A; a �

`

B; b and

vie versa. Note that if A �

`

8

B do not satisfy this ondition, we an still always pass to

ompanions A

0

�

8

A and B

0

�

8

B where A

0

�

`

8

B

0

does respet zero in-degree. Simply

let A

0

be the disjoint union of all strutures A

a

obtained by adding a new opy of a with

outgoing edges into A just as from a but without any inoming edges, for eah a in A.

If B

0

is similarly obtained from B, then A

0

and B

0

realise exatly the same bisimulation

types as A and B, respetively, and in eah of them any bisimulation type realised at

all is also realised by a node of zero in-degree. This rude onstrution does however

not preserve uniqueness of histories.
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Lemma 40. Let A and B have unique `-histories. If A �

2`

8

B respets zero in-degree,

then A �

`

B.

Proof. Let A and B be as in the lemma. We show for instane that for any a in A there

is some b in B suh that A; a �

`

B; b.

Assume �rst that the `-history of a is proper. Let a

0

be a node in A from whih a is

reahable on a path a

0

; a

1

; : : : ; a

`

= a of length `. Choose b

0

suh that A; a

0

�

2`

8

B; b

0

.

Exerising the forth property ` times, following the path from a

0

to a in A, we �nd a

path b

0

; b

1

; : : : ; b

`

for whih A; a

i

�

2`�i

B; b

i

, for 0 6 i 6 `. Choosing b := b

`

we have

found an element in B whose `-history is idential with that of a.

In ase that the `-history of a is short, we work with this short history and, sine

the given 2`-bisimulation respets zero in-degree, similarly �nd a mathing b that has

the same short `-history as a.

It now suÆes to argue that hist

`

A

(a) = hist

`

B

(b) implies A; a �

`

B; b. To this end

onsider the strati�ed system (Z

m

)

06m6`

where

Z

m

:=

�

(a; b) 2 A�B : hist

m

A

(a) = hist

m

B

(b)

	

:

By the above, �

1

(Z

`

) = A, and by symmetry also �

2

(Z

`

) = B. In order to show

that (Z

m

)

06m6`

: A �

`

B it remains to establish that this strati�ed system satis�es the

two-way bak-and-forth properties. For this observe that for 1 6 k 6 `, if hist

k

A

(a) =

hist

k

B

(b), then

(i) A; a �

k

B; b.

(ii) if a

0

and b

0

are obtained as orresponding bak-and-forth extensions of (a; b) along

edges (a; a

0

) and (b; b

0

) in the sense of A; a �

k

B; b, then hist

k�1

A

(a

0

) = hist

k�1

B

(b

0

).

(iii) a has zero in-degree i� b has; otherwise, if a

0

and b

0

are predeessors along orre-

sponding edges (a

0

; a) and (b

0

; b), then also hist

k�1

A

(a

0

) = hist

k�1

B

(b

0

).

Of these, (i) is trivial by agreement of �

k

-types in a and b in partiular. (ii) follows

from the fat that a

0

and b

0

have unique `-histories, whene they in partiular also have

unique (k � 1)-histories; the latter are exempli�ed by the length (k � 2) suÆxes of the

(k � 1)-histories of a and b (whih are idential) expanded by the edge type of (a; a

0

)

and (b; b

0

) and tp

k�1

A

(a

0

) = tp

k�1

B

(b

0

) (idential aording to the bak-and-forth hoie of

a

0

and b

0

).

For (iii): as a and b have idential unique k-histories, one of them an be short of

length zero only if the other is. If they are not of length zero, these idential k-histories

are, as unique histories, exempli�ed by k-histories involving a

0

and b

0

as immediate

predeessors, respetively. The idential (k � 1)-pre�xes of these k-histories imply the

desired identity of (k � 1)-histories.

Proof of Lemma 38. We provide partner strutures

~

A �

8

A and

~

B �

8

B that have

unique `-histories and realise in nodes of zero in-degree all �

`

-types that are realised at

all. The latter ondition implies in partiular that any maximal global `-bisimulation

between

~

A and

~

B will respet zero in-degree. It then follows from Lemma 40 that

~

A �

`

~

B, whene we have upgraded �

2`

8

to �

`

in �

8

equivalent ompanion strutures as

required. The onstrution is expliitly arried out for A.

Let H be the �nite set of all proper `-histories realisable in any � -struture, jHj = n.

For a in A let A

a

be the result of unravelling A to depth `+ 1 from a. In other words,
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we restrit the usual tree unravelling A

�

a

of A from a to A

�

a

�N

`+1

(a). We let

~

A

0

onsist

of the disjoint sum of n+1 opies eah of all these A

a

for a 2 A. Label the n+1 opies

of A

a

as A

a;h

for h 2 H and A

a;;

for the one extra.

Some surgery is neessary to produe

~

A from

~

A

0

. Note that leaf nodes (nodes at

distane `+ 1 from the root a) in opies of A

a

do not realise the appropriate �

`

-types

(unless they happen to be derived from nodes of zero out-degree in A).

This is set right if we now identify any suh leaf node  with the root  in any opy

of A



in

~

A

0

. In order to preserve uniqueness of `-histories through this proess, though,

the target opies are determined aording to the `-history that  has in the unrestrited

unravelling of A. In more detail, let for a leaf node  in A

a

= A

�

a

�N

`+1

(a)

h() := hist

`

A

�

a

()

be the `-history of  in A

�

a

. Note that this history is proper and also that it attributes to

 itself the �

`

-type that it should have. Now

~

A is obtained from

~

A

0

through identi�ation

of any leaf node  in any opy of any A

a

with the root in A

;h()

.

It is lear that

~

A �

8

A; that

~

A has unique `-histories; and that any `-bisimulation

type realised in

~

A is realised by some a in A and therefore realised by the root a in A

a;;

,

a node of zero in-degree in

~

A.

5 Charaterisation theorems

To �nish the arguments for Theorem 4 and 5 we follow the pattern outlined in Obser-

vation 13 and Lemma 22 and �nally prove the following. It may also be instrutive

to ompare this with the simpler ase of the van Benthem-Rosen theorem as proved in

setion 2.5.

Proposition 41. Both lassially and in the sense of �nite model theory, for '(x) 2 FO

of loality rank `:

(i) if ' is invariant under global two-way bisimulation � then ' is in fat invariant

under �

`

.

(ii) if ' is invariant under global bisimulation �

8

then ' is invariant under �

2`

8

.

Proof. By upgrading as in Lemma 22, using Proposition 33 for (i) and additionally

Lemma 38 for (ii).

For (i): as a FO-formula of loality rank `, ' is preserved under �

(`)

q;n

for suitable

q and n. (In fat, Proposition 19 even tells us that ' is preserved under �

(`)

q;1

.) By

Proposition 33 �

`

an be upgraded modulo � to any suh level, lassially and in �nite

models. Therefore ' is invariant under �

`

.

For (ii), the required upgrading is modulo �

8

and needs to take us from �

2`

8

to �

(`)

q;n

(or just to �

(`)

q;1

if Proposition 19 is invoked). This is ahieved by �rst upgrading to �

`

aording to Lemma 38, and then proeeding as in ase (i).
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A; a

�

`

B; b

� �

^

A; â

�

(`)

q;n

^

B;

^

b

A; a

�

2`

8

B; b

�

8

�

8

~

A; ~a

�

`

~

B;

~

b

� �

^

A; â

�

(`)

q;n

^

B;

^

b

Corollary 42. Both lassially and in the sense of �nite model theory. Let '(x) 2 FO

be invariant under �. If ' is of loality rank `, then it an equivalently be expressed in

ML

�

8

at modal nesting depth `.

For ' invariant under �

8

our proof only yields expressibility in ML

8

at nesting depth

2` where ` is the loality rank of '. This seems to be sub-optimal, and may be an

artifat of the partiular upgrading strategy employed.

6 The guarded piture

An investigation of guarded bisimulation invariane over (�nite) transition systems an

be arried out analogously to what has been done for global two-way bisimulation in-

variane above. In partiular, we provide faithful (�nite) loally ayli guarded overs

for (�nite) transition systems in setion 6.1; we show how these an be used to up-

grade guarded `-bisimulation to appropriate levels �

(`)

q;n

of loal �rst-order equivalene

in setion 6.2; and �nally put these results together to prove Theorem 6 in setion 6.3.

The main tool to bridge the gap between global two-way bisimulation� and guarded

bisimulation �

g

over relational strutures of width two involves an enoding of guarded

quanti�er free types as transition relations. We �x some terminology for this purpose.

A non-degenerate 2-type over � is a full desription of the isomorphism type of a two

element � -struture in variables x; y, whih may be formalised as a onjuntion over a

maximally onsistent set of atomi and negated atomi � -formulae in variables x and y

inluding the onjunt x 6= y. We write p(x; y) for 2-types, and tp

A

(a; a

0

) for the unique

2-type satis�ed by (a; a

0

) in A, for a 6= a

0

.

A 1-type over � similarly is a full desription of a one element � -struture (whih

apart from monadi information ontains the information about loops w.r.t. the binary

prediates). Obvious notation like tp

A

(a) = q applies.

For a 2-type p = p(x; y) we let p

x

and p

y

be the unique 1-types obtained as the

restritions of p to its x-part or y-part, respetively. Let p

�1

stand for the result of

swapping x and y in p. A 2-type p is symmetri if p = p

�1

, asymmetri otherwise.

De�nition 43. A 2-type p(x; y) over � is guarded if it inludes a onjunt Rxy or Ryx

for some R 2 �

(2)

. In other words, guarded 2-types are those 2-types that are realised

by non-degenerate guarded pairs.

29



6.1 Loally ayli guarded overs

De�nition 44. A homomorphism � :

^

A! A is a guarded over of A by

^

A if Z

�

=

�

� �

ŝ : ŝ �

^

A guarded in

^

A

	

is a guarded bisimulation between

^

A and A.

The guarded over � is faithful if, for every â and every guarded 2-type p = p(x; y),

� restrits to a bijetion between fâ

0

2

^

A : tp

^

A

(â; â

0

) = pg and fa

0

2 A : tp

A

(a; a

0

) = pg.

The above onstrution of faithful, loally ayli bisimilar overs of transition sys-

tems naturally lends itself to the extension to guarded overs in relational voabularies

of width two. One merely has to enode all non-degenerate quanti�er-free 2-types by

new binary relations whih an be interpreted so as to form a simple transition system

whih faithfully enodes the underlying relational struture. Similar onsiderations and

translations for guarded logis on graphs are presented in [11℄.

Let �

2

be a �xed maximal set of guarded 2-types over � ontaining all symmetri

guarded 2-types, and preisely one of p or p

�1

for every asymmetri guarded 2-type.

Let �

1

be the set of all 1-types over � .

We assoiate with � a new voabulary �

g

onsisting of new unary prediates P

q

for

every q 2 �

1

and new binary R

p

for every p 2 �

2

.

In order to deal with the enoding of symmetri 2-types in a simple transition sys-

tem, whih annot have undireted edges, we break the symmetry by means of an

arbitrary auxiliary ordering on the universe. Let A be a � -struture, < an arbitrary

linear ordering < on A. With (A; <) assoiate the following simple �

g

transition system

A

g

= (A; (P ); (Q)) on universe A:

P

A

g

q

=

�

a : q = tp

A

(a)

	

(for eah q 2 �

1

),

R

A

g

p

=

�

(a; a

0

) : a < a

0

and tp

A

(a; a

0

) = p

	

(for eah symmetri p 2 �

2

),

R

A

g

p

=

�

(a; a

0

) : tp

A

(a; a

0

) = p

	

(for eah asymmetri p 2 �

2

).

Clearly A

g

is simple and satis�es the following ompatibility onditions:

(a) the P

q

partition the universe.

(b) if (a; a

0

) 2 R

p

then a 2 P

q

for q = p

x

and a

0

2 P

q

for q = p

y

.

() for any non-degenerate pair (a; a

0

), at most one binary relation R

p

an link a with

a

0

(simpliity).

Note that (a) and (b) are preserved under global bisimulation.

Conversely, for any simple �

g

transition system B

g

satisfying (a) and (b) there is

a unique assoiated � -struture B. The universe of B is that of B

g

. Monadi and

binary prediates from � are interpreted so as to be onsistent with the 1- and 2-types

presribed by the P

q

and the R

p

, and suh that a non-degenerate pair (b; b

0

) will be

guarded in B if and only if b and b

0

are linked by some R

p

in B

g

.

A small subtlety arises with respet to loops. A loop (a; a) 2 R

A

in a transition

system is eliminated in ayli bisimilar overs, but learly annot and must not be

eliminated in a guarded over. Correspondingly, the information about loops has been

shifted into monadi prediates assoiated with the 1-types. But in order to get our

riteria for ayliity right in this ontext, we expliitly have to allow loops in k-ayli

overs. Deviating from De�nition 26 we now do not insist on loop-freeness.

With this it is not hard to hek the following.
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Lemma 45. Let B

g

and B

0

g

be simple �

g

transition systems. Let B

g

� B

0

g

and let B

g

satisfy onditions (a) and (b) above. Then B

0

g

also satis�es (a) and (b), and B �

g

B

0

for the assoiated � -strutures.

Let A be a � -struture with an assoiated �

g

transition system A

g

. Let � :

^

A

g

! A

g

be a bisimilar over of A

g

by a simple �

g

transition system

^

A

g

. Then

^

A

g

satis�es (a)

and (b) and for the indued � -struture

^

A:

(i) � :

^

A! A is a guarded over,

(ii) if

^

A

g

is k-ayli then

^

A is k-ayli (apart from neessary loops);

(iii) if � :

^

A

g

! A

g

is faithful then so is � :

^

A! A.

Putting this together with the overing results for (simple) transition systems ob-

tained above we get the following.

Corollary 46. Let � be any �nite relational voabulary of width two, A a �nite � -

struture and k > 3. Then there is a faithful guarded over � :

^

A ! A by a �nite

struture

^

A that is k-ayli apart from neessary loops. For �xed k, the size of

^

A an

be polynomially bounded in terms of the size of A.

An open issue related to this result onerns potential extensions to the setting of

arbitrary relational voabularies. We do not know whether one an similarly ahieve

�nite guarded overs of �nite relational strutures that avoid short hordless yles. See

[12℄ for a disussion. In that paper another aspet of ayliity (in hypergraphs)|to

do with the avoidane of bad liques (rather than yles) in the Gaifman graph|is

shown to be realisable in �nite guarded overs, with appliations to the lique guarded

fragment and extension theorems for partial isomorphisms.

6.2 Upgrading guarded bisimilarity

Lemma 47. Modulo �

g

, �

`

g

an be upgraded to �

(`)

q;n

, for any levels q and n, lassially

as well as in restrition to �nite transition systems.

Proof. The proof is analogous to the sequene of upgradings in Lemmas 34, 35 and 37.

Let A; a �

`

g

B; b. Combining the onstrution from Lemma 34 with the onstrution of

faithful (2`+2)-ayli guarded overs we �nd

^

A �

g

A and

^

B �

g

B suh that

^

A �

(`)

q;1

^

B.

This an further be boosted to �

(`)

q;n

for any given n, if we pass to n-fold sums of

disjoint opies: n �

^

A �

(`)

q;n

n �

^

B.

6.3 The guarded haraterisation theorem

To �nish the argument for Theorem 6 we follow the pattern of Observation 13 and

Lemma 22 and �nally prove the following.

Proposition 48. Both lassially and in the sense of �nite model theory: if '(x) 2 FO

is invariant under guarded bisimulation �

g

then ' is invariant under �

`

g

, where ` is the

loality rank of '.

Proof. By upgrading: either we upgrade �

`

g

diretly to �

(`)

q;n

where q and n are the loal

quanti�er rank and sattering rank of ' in Gaifman form with loality rank `, or we
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appeal to Proposition 19 and use the fat that ' an be expressed with sattering rank

1 so that an upgrading of �

`

g

to �

(`)

q;1

is in fat suÆient. Either way, for n = 1 or any

desired value of n, the following diagram shows that ' is indeed invariant under �

`

g

(overall or in restrition to �nite models).

A; a

�

`

g

B; b

�

g

�

g

^

A; â

�

(`)

q;n

^

B;

^

b

Note that the status in �nite model theory of the full haraterisation result of

Andr�eka, van Benthem, and N�emeti|Theorem 12 above|remains open, as the present

tehniques only deal with voabularies of width two.

Further remarks

Among other related open issues ranks prominently the question whether the harater-

isation theorem of Janin and Walukiewiz|that the modal �-alulus preisely aptures

the bisimulation invariant fragment of monadi seond-order logi|is valid also in the

sense of �nite model theory. The tehniques employed here seem to shed no immediate

light on this matter.

Other rami�ations in the modal domain do seem to be amenable to the tehniques

developed here. In partiular, we mention haraterisation theorems in the presene

of other natural restritions, apart from �niteness. Classial and other natural frame

onditions an be onsidered. For the lass of onneted frames, for instane, prelimi-

nary results have been obtained in unpublished ommuniation with A. Dawar. Graded

bisimulation and modal logis with graded modalities, inorporating number restri-

tions similar in spirit to those enountered with our q-bak-and-forth requirements in

setion 4.1, would seem to provide another interesting test ase for the present teh-

niques.

Aknowledgement I am grateful for omments from the anonymous referees, whih

helped to improve the presentation.
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