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1. INTRODUCTION

Although degrees of acyclicity — of Cayley groups and of finite hypergraph covers
— form the technical backbone of this paper, it is motivated in the broader sense
by the study of structural transformations and model constructions that are com-
patible with certain forms of bisimulation equivalence (hypergraph bisimulation
and guarded bisimulation). Such constructions have their place in the combinato-
rial exploration of hypergraphs and relational structures. In particular, they play
an important role in the model theoretic analysis of modal and guarded logics,
whose semantics is preserved under these equivalences and transformations. We
therefore start this introduction with an informal discussion of these bisimulation
equivalences — as interesting and natural notions from the point of view of dis-
crete mathematics, of model theory and logic, and of certain application domains
in computer science, where the associated logics also play an important role.!

The notions of hypergraph bisimulation and of guarded bisimulation extend the
well-known concept of bisimulation equivalence from graph-like structures, transi-
tion systems and Kripke structures to the more general setting of hypergraphs and
relational structures with not just binary relations.

The concept of bisimulation itself is familiar as the quintessential notion of
back & forth equivalence that captures behavioural equivalence between states
— viz., behavioural equivalence in terms of the available transition patterns. Its
broad usefulness is witnessed by its many applications in domains ranging from the
step-by-step analysis of computation devices or of reactive systems to the strat-
egy analysis in game graphs and to the analysis of knowledge states in epistemic
systems. Bisimulation equivalence is intimately related to the model theory of the
relevant modal logics in these settings, as their semantics is preserved under bisim-
ulation. In fact, bisimulation invariance is the characteristic semantic feature of
modal logics and accounts for much of their smooth model theory and for their
algorithmic tractability.

1The rest of this introduction will then be devoted to informal encounters with more specific
technical themes in sections devoted to hypergraph acyclicity (Section 1.1) and an introduction to
the guarded fragment (Section 1.2). Section 1.3 gives a brief guide to the overall structure of the
paper, which also details parts that may be of independent interest and accessible in isolation, for
instance to readers whose interest lies more with the discrete mathematics of hypergraphs than
with guarded logics.
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Highly Acyclic Groups, Hypergraph Covers and the Guarded Fragment . 3

Hypergraphs extend the notion of graphs in allowing hyperedges that consist of
more than just two nodes instead of the edges in graphs; just as graphs describe
the accessibility and connectivity patterns of, for example, transition systems, hy-
pergraphs capture the overlap and connectivity patterns of more general relational
structures. Such patterns arise and are of interest, for instance, in the syntactic
analysis of conjunctive queries or of constraint satisfaction problems, where the
nodes are variables and hyperedges are formed by clusters of variables that oc-
cur together in a relational atom or in an atomic constraint; they also arise in the
structural analysis of database instances, where the hyperedges are the abstractions
of the individual tuples that form the entries in the tables of the database [Beeri
et al. 1983]. Similarly, one can associate with an arbitrary relational structure the
hypergraph of its guarded subsets, whose hyperedges are the subsets formed by the
components of tuples in the given relations. This hypergraph of guarded subsets
abstracts from the relational structure just the carrier sets of its tuples, in the same
sense that the Gaifman graph of a relational structure abstracts just the informa-
tion about co-existence of nodes within tuples. In fact, the Gaifman graph of a
relational structure is itself induced by the hypergraph of guarded subsets.? In
this sense, therefore, the hypergraph of guarded subsets in general contains more
complex information than the Gaifman graph about the overlap and connectivity
pattern that a relational structure induces on its set of elements.

Just as bisimulation is based on a back & forth analysis of a graph-like link struc-
ture, hypergraph bisimulation explores the hypergraph link structure. Whereas
bisimulation equivalence over graph-like structures is defined in terms of transitions
from one node to another along one of the available edges, hypergraph bisimulation
is centered on the transitions from one hyperedge to another which may fix some
nodes in the overlap of these hyperedges.

In the context of relational structures, the concept of hypergraph bisimulation
further extends in a straightforward manner to the very natural notion of guarded
bisimulation equivalence between relational structures. Guarded bisimulations are
best thought of as hypergraph bisimulations between the associated hypergraphs
of guarded subsets that respect not just the hypergraph link structure but also the
actual relational content. This is achieved by treating the guarded subsets not just
as sets but as induced substructures, and thus by working with local isomorphisms
rather than just local bijections. This notion of guarded bisimulation supports a
particularly useful level of analysis of relational structures, which allows for local
access to the actual relational content but is globally tamed by its restriction to
the hypergraph link pattern induced by the guarded subsets.

Apart from its natural motivation in terms of the combinatorics of relational
structures, guarded bisimulation is of particular interest in logic because of its
central role in the model theoretic analysis of the guarded fragment GF C FO of
first-order logic [Andréka et al. 1998]. In fact, guarded bisimulation is the charac-
teristic notion of semantic invariance for the guarded fragment of first-order logic.
In this way, guarded bisimulation between relational structures occupies the same
central position for the guarded fragment that ordinary bisimulation occupies for

2Here we refer to the usual manner in which a hypergraph induces an associated graph on the
same carrier set where every hyperedge gives rise to a clique formed by its member nodes.
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modal logic.

Maybe the most important technical contribution of this paper, from the point
of view of discrete mathematics, concerns the construction of bisimilar coverings,
in the sense of hypergraph bisimulation or guarded bisimulation, of given finite
hypergraphs or relational structures. Such coverings project homomorphically onto
the given base structure in such a manner that the projection also induces a bisim-
ulation; the basic intuition involved in such coverings is that of a discrete analogue
of topological coverings (which may have singularities) that come with a projec-
tion that locally matches layers of the covering space to their projection in the
base space. Similar, essentially discrete analogues of topological coverings and the
topological analysis of combinatorial coverings, have been studied in connection
with simplicial complexes rather than hypergraphs, under the name of branched
coverings or coverings with singularities, see e.g. [Fox 1957].

Our goal here are coverings in the hypergraph setting that, despite being finite,
guarantee certain qualified levels of hypergraph acyclicity that may not have been
present in the base structure. As one essential application of a model theoretic
nature, suitable coverings of this kind will in particular be a applied to the analysis
of the expressive power of the guarded fragment GF over finite structures. The
combinatorial and group theoretic constructions used to obtain these finite covers,
however, could well be of independent interest. They produce, for instance, highly
uniform and homogeneous finite hypergraphs of qualified acyclicity from novel con-
structions of finite Cayley groups satisfying strong acyclicity criteria, which go
considerably beyond the familiar notion of large girth.

1.1 Hypergraph acyclicity

Acyclicity of hypergraphs [Berge 1973] or relational structures has long been recog-
nised as an important structural property because of its relation with tree decom-
posability [Beeri et al. 1983]. Acyclicity criteria, often also in the more liberal
form of bounds on tree width (and generalisations), play an important role in the
delineation of well-behaved problem instances, e.g., for model checking or query
answering [Courcelle 1990; Gottlob et al. 2001; Flum et al. 2002; Frick and Grohe
2001; Grohe 2008]. But also from a purely model theoretic point of view, tree
decomposable models — and again, more liberally, models of bounded tree width —
are of interest because of their interpretability in actual trees, which makes them
amenable, for instance, to automata theoretic techniques. The generalised tree
model property for the guarded fragment GF C FO in [Gradel 1999], which is re-
sponsible for a range of decidability results and complexity bounds, is an important
case in point. The natural notion of unfolding of relational structures, which is com-
patible with guarded bisimulation equivalence, produces models that are tree-like
not just in the sense of bounded tree width, but in the stronger sense of tree decom-
posability of the hypergraph of guarded subsets of the model. Similar phenomena
are well known from graph-like structures (especially transition systems), which
can be unfolded into bisimilar tree structures.

If we want to stick with finite structures, then these tree unfoldings are not
available since, even in the graph case, any cycle in the original structure can
only be unfolded into an infinite path. For some purposes, however, it suffices to
achieve some measure of local acyclicity or acyclicity in bounded configurations
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Fig. 1. The 3-spoke cartwheel (or top of the tetrahedron) unfolded into 6 and 12 spokes.

rather than global acyclicity. In the case of graph-like structures, constructions
of bisimilar covers by finite, locally acyclic structures are available [Otto 2004] and
have been used for constructive alternative proofs of expressive completeness results
for modal logics [Otto 2004; 2006; 2011]. Unlike the classical proof methods, which
are based on compactness arguments, these techniques also work in the context of
finite model theory and other non-elementary classes of structures where first-order
compactness fails [Dawar and Otto 2009].

The situation for hypergraphs or relational structures of width greater than 2,
as opposed to graphs or graph-like structures, has proved a major challenge in this
respect. As outlined above it is quite clear what the natural notion of bisimilar
hypergraph covers or guarded covers ought to be: in the case of hypergraphs, for
instance, we are looking for hypergraphs that project onto the given hypergraph
through a hypergraph homomorphism which at the same time induces a hypergraph
bisimulation between the covering hypergraph and the base hypergraph; is is not
at all obvious, however, which measure of hypergraph acyclicity can be achieved in
covers of finite hypergraphs by finite hypergraphs (and similarly for finite guarded
covers of finite relational structures). The immediate analogue of the graph case
is ruled out: local acyclicity — in the sense that the induced hypergraph structures
on f-neighbourhoods must be acyclic — cannot be achieved, not even for width 3
hypergraphs and for £ = 1, as Example 1.1 below shows. What, then, can be hoped
for?

Classical hypergraph theory [Berge 1973; Beeri et al. 1983] characterises acyclicity
and tree-decomposability of hypergraphs in terms of two independent requirements:
conformality and chordality. The former forbids cliques in the Gaifman graph other
than those that are induced by individual hyperedges; the latter forbids chordless
cycles in the Gaifman graph.

Conformal finite covers were constructed in [Hodkinson and Otto 2003] and em-
ployed in a simplified proof of the finite model property for the clique guarded
fragment. The following example shows that, in contrast, chordal finite covers are
not generally available; it rules out local chordality even in 1-neighbourhoods.

Ezxample 1.1. Consider a cartwheel hypergraph consisting of at least three 3-hy-
peredges that all share one pivot vertex and form a cycle w.r.t. the edges formed
by the remaining two vertices in each hyperedge. It is clear that any finite cover
needs to contain a necessarily cyclic finite cover of the perimeter cycle in the 1-
neighbourhood of any vertex representing the pivot vertex. See Figure 1 for a two-
and four-fold unfolding of the cartwheel with 3 spokes/hyperedges into one with
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6 or 12 spokes/hyperedges. The configurations in this figure will be used as il-
lustrations again. Note that such a cartwheel configuration occurs in the regular
full 3-hypergraph on 4 vertices (a tetrahedron with its faces as hyperedges, the
boundary of the 3-simplex), which itself is chordal but not conformal. This tetra-
hedron hypergraph is probably the simplest example of a hypergraph for which it
is not obvious what measure of acyclicity may be achieved in finite covers, if any;
it is clear, however, that every finite cover will have to have chordless cycles in the
1-neighbourhood of every vertex.

A natural relaxation would forbid just short chordless cycles (of lengths up to N
say), which we call N-chordality; with N -conformality similarly defined in terms of
cliques up to size N, their combination, N-acyclicity, captures the condition that
all sub-configurations of size up to N are acyclic and tree-decomposable.

A construction of finite hypergraph covers in which short cycles in the cover
become chordally decomposable in projection to the base hypergraph (weak N-
chordality) was obtained in [Otto 2009]; an alternative, much more explicit con-
struction of such covers with reasonable size bounds is presented in [Barany et al.
2010]. These approaches notwithstanding, the question whether finite hypergraphs
generally admit finite N-acyclic covers remained wide open.

With methods entirely different from those in [Otto 2009] or [Barany et al. 2010]
we here now obtain conformal N-chordal finite hypergraph covers. Our main the-
orem in this respect is Theorem 3.8, which in turn is based on the combinatorial
main result, about highly acyclic Cayley groups, presented as Corollary 2.12. Both
results are technically rather involved.

These results point us to the class of N-acyclic relational structures, which seems
to be very smooth from a model theoretic point of view. For instance, it supports
a natural notion of bounded convexr hulls. The analysis of suitable models in this
class also leads to a positive resolution of one of the key open questions in the finite
model theory of the guarded fragment.

1.2 The guarded fragment

The guarded fragment GF of first-order logic can be seen as an extension of modal
logic to the richer setting of relational structures of any width, rather than the
graph-like structures of width 2 (Kripke structures, transition systems) that modal
logic deals with. Where modal logic restricts first-order quantification to relativised
quantification along edges, the guarded fragment allows quantification over guarded
tuples of elements, so that it accesses transitions between overlapping relational
patches (the guarded subsets induced by the tuples in the basic relations). GF
combines a natural level of expressiveness that fits many applications in computer
science, especially in database theory and description logics (cf. discussion and ref-
erences in [Barany et al. 2010] and [Baader et al. 2003] for background). On the
theoretical side, it retains many of the well-known good model-theoretic and algo-
rithmic properties of modal logics at a higher level of expressiveness and over richer
structures. Just as the model theory of modal logic is governed by the notion of
bisimulation equivalence, the guarded fragment is governed by a corresponding no-
tion of guarded bisimulation equivalence [Andréka et al. 1998; Gradel 1999; Gradel
et al. 2002]. As indicated above, the intuitive presentation of guarded bisimula-
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tion in terms of a back & forth game deals with challenges and responses w.r.t.
transitions between accessible patches (the guarded subsets). If we disregard the
local atomic relational content and just focus on the combinatorial pattern of avail-
able moves, guarded bisimulation stems from an underlying bisimulation between
the hypergraphs of guarded subsets — just as modal bisimulation is a bisimulation
between graphs.

Together with the introduction of GF, Andréka, van Benthem and Németi [1998]
gave a classical, compactness-based proof via suitably saturated infinite structures
that GF C FO is expressively complete for guarded bisimulation invariant proper-
ties: a first-order property of relational structures is definable in GF if, and only
if, it does not distinguish between structures that are guarded bisimilar. In sym-
bols we write GF = FO/~j; to indicate this match in expressiveness between GF
and the guarded bisimulation invariant fragment of first-order logic. This match
is the guarded analogue of van Benthem’s characterisation of basic modal logic as
the bisimulation invariant fragment of FO, ML = FO/~ [van Benthem 1983]. The
latter match has been known to be good also as a characterisation in the sense of
finite model theory since Rosen’s proof in [1997] (also compare [Otto 2004; 2006;
2011] for alternative proofs and ramifications). In contrast, the finite model theory
status of GF = FO/~y, has prominently remained open.

Characterisations of the expressive power of fragments of first-order logic in terms
of semantic invariances generally are of great systematic value, as witnessed by the
many preservation theorems of classical model theory. If the underlying invariance,
like (guarded) bisimulation invariance, is semantically well motivated in its own
right and is at the core of a structural understanding of good model theoretic
properties, then an expressive completeness result also provides effective syntax for
the otherwise ineffective class of first-order properties displaying that invariance —
and shows the logic at hand to be just right for the purpose. For many natural
applications, however, the finite model theory version, rather than the classical
version, of such a characterisation addresses these concerns. This is certainly the
case whenever, as in databases, the intended models are meant to be finite.

The crux of a finite model theory argument for expressive completeness, as re-
quired here, lies in a proof that guarded bisimulation invariance of some ¢ €
FO already implies its invariance under one of the finitary approximations Ng.
Ehrenfeucht—Fraissé analysis links these finite approximations Né to equivalence in
GF up to nesting depth £. Clearly invariance under some level Né over the class of
structures at hand is a necessary condition for expressibility in GF over that class —
but it is also sufficient, by a straightforward consequence of the Ehrenfeucht—Fraissé

analysis.

We therefore seek an upgrading of suitable levels Né between finite relational
structures to levels =, of first-order equivalence (up to some quantifier rank q)
in finite structures that are guarded bisimilar to the given structures. Suitable
guarded bisimilar companion structures are here obtained as guarded covers. It is
clear that some level of hypergraph acyclicity needs to be achieved in these covers
in order to avoid low-level first-order distinctions: while the existence of certain
short chordless cycles is obviously first-order expressible in relational structures,
the length of such cycles is not guarded bisimulation invariant and their existence

Journal of the ACM, Vol. V, No. N, Month 20YY.



8 . Martin Otto

is not expressible in GF. The three hypergraphs in Figure 1 (taken as relational
structures with three ternary relations to distinguish the three distinct triangle
colours s;, say) are guarded bisimilar and GF equivalent.

We here show that the guarded fragment is indeed expressively complete for all
first-order properties that are invariant under guarded bisimulation in finite models,
see Theorem 4.7. The proof uses N-acyclic covers and further applications of our
main combinatorial result, together with a general analysis of N-acyclic structures
to allow for an Ehrenfeucht—Fraissé game based upgrading. It gives an essentially
constructive expressive completeness argument that is totally different from the
classical variant [Andréka et al. 1998], and it shows the guarded fragment to behave
in beautiful analogy with the modal fragment in yet another way.

1.3 Organisation of the paper

The paper is organised in three separate parts, each starting with a short review
of the relevant technical notions so that these parts may to a reasonable extent be
read independently.

The first part, Section 2, deals with the combinatorial group and graph con-
structions that are the main technical tool in the following; it culminates in Corol-
lary 2.12; the Cayley groups obtained may well be of independent interest and
useful in other contexts.

The second part, Section 3, builds on Section 2 and develops the construction
of N-acyclic hypergraph covers as stated in Theorem 3.8. Richer variants of these
covers that also boost multiplicities in a generic manner are discussed in Section 3.6.
Section 3.7 provides some structural analysis of N-acyclicity in its own right. Like
the first part, this part may be of independent interest to readers curious about the
combinatorics and discrete mathematics of finite hypergraphs.

Both these parts are presented without any essential input from logic or the
model theory of the guarded fragment.

The third part, Section 4, deals with the applications to the model theory of the
guarded fragment. As an immediate consequence we obtain a strengthened finite
model property for GF in Corollary 4.6; substantially more work is required to
prove the expressive completeness result for GF in Theorem 4.7.

For this third part, the analysis of N-acyclic structures based on Section 3.7 is
essential; the results about guarded covers from the first two parts of the paper,
though crucial, may be treated as combinatorial imports (in the form of mere
existence guarantees for suitable bisimilar companions of finite structures) for the
finite model theory of the guarded fragment.

2. HIGHLY ACYCLIC GROUPS

We aim to construct finite, regularly edge-coloured, homogeneous graphs which
do not realise short cycles, or even cycles that would be short when subjected to
certain contractions of paths running within the same group of colours.

Figure 1 gives a first idea why not just short cycles in the usual sense, but cy-
cles that are short with respect to discounted distances, need to be controlled. An
unfolding of the 3-cartwheel (as e.g. in the neighbourhood of any one vertex in the
tetrahedron hypergraph) into some 3n-cartwheel allows us to make any number of

Journal of the ACM, Vol. V, No. N, Month 20YY.



Highly Acyclic Groups, Hypergraph Covers and the Guarded Fragment . 9

consecutive transitions from hyperedges s; to s;41 without making any progress
along a cycle that is just visiting the pivot vertex in this cartwheel — a correspond-
ingly discounted distance measure will have to count just two steps, one for entering
and another for leaving this cartwheel. Compare, for instance a path segment from
a to b via the pivot vertex in the rightmost cartwheel hypergraph of Figure 1, viewed
as a local configuration in some cover of the tetrahedron say.

2.1 Cayley groups and graphs

Regular graphs of large girth. A simple example is the following construction of
k-regular graphs of girth greater than N, for arbitrary given k& and N, see [Alon
1995]. Let T be the regularly k-coloured undirected tree, in which every node has
precisely one neighbour across each one of the k edge-colours e, ..., ex; designate
one node A in this tree as its root and truncate the whole tree at depth N from the
root. Each colour e; induces a permutation m; of the vertex set of this finite tree,
if we let 7; swap each pair of vertices that are linked by an e;-edge.

This operation is a well-defined bijection since every vertex is incident with at
most one edge of colour e;. Each 7; is in fact an involution: m; o m; = id. In the
truncated trees we use here, every leaf is fixed by all but one of the 7;, and there
are no other fixed points.

Let G be the group generated by (m;)1<igk in the full symmetric group of the
vertex set.?> We obtain the desired graph as the Cayley graph of the group G: its
vertices are the group elements g € G; g and ¢’ are linked by an edge (of colour
e;) if ¢ = g om; (equivalently: g = ¢’ o m;, as m; is involutive). Call a sequence of
generators reduced if it contains no factors of the form 7;7; (repetitions of the same
generator, which cancel in G due to their involutive nature). It is clear that no
reduced sequence of generators of length up to IV can represent the neutral element
1 € G: just observe its operation on the root A to see that A is moved precisely one
step away from the root by each new generator application, whence a sequence of
up to N generators cannot operate as the identity transformation. It follows that
the Cayley graph has girth greater than N (also > 2N + 1 is easy to see).

In the following we shall modify the basic idea in this construction to yield finite
graphs displaying a much stronger form of acyclicity w.r.t. to discounted distance
measures along cycles. For the rest of this section, let E be a finite set of edge
colours. A subset o C F is regarded as a colour class. We deal with F-coloured
undirected graphs in which every node is incident with at most one edge of any
fixed colour e. We call such graphs E-graphs. The class of E-graphs is closed under
subgraphs, in the sense of weak substructures, as well as under reducts. Recall
the usual model theoretic terminology: unless specified otherwise, the substructure
relationship 2 C B says that 2 is the structure obtained by simultaneous restriction
of all the relations of B to the subset A C B so that R¥ = R®P N A" if R®? is
a relation of arity r (i.e., substructures in our sense are induced substructures).
Note that the notion of a weak substructure, as in the common graph theoretic
interpretation of the term sub-graph, is more general in allowing passage to some

3We here think of the group operation as composition in the sense of an action from the right, so
that 7; om; stands for “m; followed by 7;” and an application to a vertex v of T' would be denoted
as v (m;om;) = (v-m) mj (=m;(m(v)) in more conventional functional notation).
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subset R* C R® N A", if R® is a relation of arity r. A reduct A = B [ 79 on the
other hand has the same universe as B, A = B, and the same relations R* = R®
for all relations R € 7y but drops the interpretation of all relations R ¢ 7.

In E-graphs, connected components w.r.t. subsets « C E are defined as usual.
We here regard an a-component of an E-graph as an a-graph, in the sense of an
implicit passage to the a-reduct, with all edges of colours e € « deleted. We shall
in particular look at Cayley graphs of groups generated by a finite set of pairwise
distinct involutive generators e € E; in the following we just speak of generators
e € E and of groups with generator set E. In any such group G we associate with
the word w = e ---e, over E the group element [w]® = e; o---0e,. We think
of the letters e; also as edge labels along a path w from 1 to [w]“ in the Cayley
graph of Gj; in the natural fashion we let G operate on its Cayley graph from the
right, so that e; = [e;]¢ translates g into g o e;. We denote by w™! the word
w™! = e,---e; obtained by reversing w = e;---e,; clearly [w™1]¢ = ([w]¥)!
because of the involutive nature of the generators.

For any such group G we also denote its Cayley graph by G, which is a regular
E-graph. For a subset o C E we look at the subgroup G, := G [a C G generated
by this subset and at the a-components in the Cayley graph G. Then the Cayley
graph of the subgroup G, C G is naturally isomorphic to the a-component of 1
in the Cayley graph of G, which is an a-graph (as well as an E-graph). The a-
component of an arbitrary group element g, correspondingly, is described by the
coset gG, = {goh: h € G,}; for simplicity we also just speak of a-cosets.

If H is any E-graph, we write sym(H) for the Cayley group induced by the
natural operation of edge colours e € E as involutions, as reviewed above.* We
denote the operation of g € sym(H) on v € H by v - g as before. If G is itself a
Cayley graph of a group with generator set F, then the group G is reproduced as
sym(G). For this just note that e(g) = g-e = goe for any g € G (viewed as a
vertex of the Cayley graph) and e € E (viewed as a generator of sym(G)).

We sum up the key points as follows.

Definition 2.1. An E-graph is an undirected, irreflexive graph with edge colours
from the finite set E such that this colouring is a partition of the edge set and
every vertex is incident with at most one edge of colour e, for every e € E. For
an E-graph H, we denote by sym(H) the subgroup of the full symmetric group on
its vertex set that is generated by the involutions e € E; here e € E operates on
H by swapping the two members of every e-coloured edge. We regard sym(H) as
a Cayley group with generator set F, and the corresponding Cayley graph, also
denoted sym(H ), as a (regular) E-graph.

The following will be an important compatibility criterion when we produce richer
Cayley groups sym(H) through augmentations in the underlying graphs H.

Definition 2.2. Let G be a group with generator set E.

(i) An E-graph H is compatible with G if for all words w over E:
W] =1 = [w]¥y™) =1,

4The lower case sym(H) distinguishes this subgroup from the full symmetric group of the vertex
set H.
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(ii) G reflects intersections if, for all o, 3 C E: Gy NG = Gonp-

Example 2.3. The graph consisting of a single e-edge is compatible with G if, and
only if, every generator word w that represents 1 € G has an even number of letters
e. If G = sym(H), then every connected component of H is trivially compatible
with G. Conversely, if H' is compatible with G = sym(H), then G ~ sym(HUH’),
i.e., G is unaffected by adjoining any compatible graph as a disjoint component.

Given a sequence of generators w = e ---e, as a representation of the group
element h = [, ¢; = [w]9 € G and a subset o C E, we write w [ « for the projection
of w to generators in «, i.e., the sequence obtained by deletion of all generators
e; € a. In general different representations of the same group element [w]¢ = [w']¢
would have different projections to the subgroup G,. If G, is compatible with G,
however, then [w]¢ = [w']¢ & [w(w')~1]¢ = 1 further implies that [w(w')~1]% =
[(w(w") ™) [a]® = 1, which implies that [w]a]® = [w’[a]%. So in this situation

hla := [wa] for any representation [w]® = h

is well-defined in terms of h. In fact, G, is compatible with G if, and only if, for
all w

w=1 = [w]a]®=1.

The following lemma shows that G reflects intersections if (the Cayley graphs of)
its subgroups G, are compatible with G, for all o C F.

LEMMA 2.4. Suppose G, is compatible with G for every o C E. Then G =
sym(G) = sym(GUJ,Ga) and for any h =1], e; and o C E:

heGy = h=hla:=]]
with all e; & a deleted. It follows that G reflects intersections.

PROOF. Let h = [[;e; € Gqo, and put h[a = [];, . c,€i- We want to show
that h = h |a. We let H := GUG,. By compatibility, G = sym(G) = sym(H).
It suffices to show that [[; e; and [];, , c, € have the same effect on every node
v € H. Since h € G, the target node v - h lies in the a-component of v. Consider
a corresponding node v’ in the isomorphic copy G of this a-component. We see
that v' - h = o' - (h ] ), since all e; € « operate trivially within this component,
which does not have any edges of such colours. Since the a-components of v and v’
are isomorphic, and as both h € G, and h[a € G, operate within a-components,
we find that v-h = v - (h[a). As this holds for all v € H, h = h |« is an identity
in G.

Applying this argument to h € G, N G, we find that h =hla = (h|a)[F €
Garp- O

i e;Ex €,

2.2 Amalgamation: merging chains of components

Consider any two F-graphs K and K’ with distinguished nodes v € K,v' € K’
and a distinguished subset @ C E. Assume that the a-components of v and v’ are
isomorphic via some isomorphism p that maps v to v’. Recall that a-components
are regarded as a-graphs (reducts to colours in «). We let
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Fig. 2. Amalgamation: merging chains of components.

be the result of glueing K and K’ according to the isomorphism p. If « is the
intersection of the colour classes of K and K’, then this merged graph is again an
E-graph.

In the following we shall build chains by merging a-components of the Cayley
graph of a group G. In this case there always is, for any nodes g € G, and ¢’ € G2,
a unique isomorphism between the (o N a’)-components of g € G, and of ¢’ € Gy
(both isomorphic to Ganes) that maps g to g'.

In merging a sequence of graphs (K;)i<i<n, each with designated nodes to be
identified with corresponding nodes in the left and right neighbours, we perform
these identifications simultaneously, i.e., apply the isomorphisms between matching
components in any pair of neighbours along the sequence. A simple sufficient condi-
tion that guarantees that the resulting graph is again an E-graph, is the following;:
we require the two patches in K; that are joined with patches in Ky 1 and Ky,
respectively, to be disjoint. In this manner no identifications are carried through
any three or more consecutive members in the merged chain and no node can be
incident with more than one e-edge, for any e € E. (Compare Figure 2, also for
the following.)

Definition 2.5. Consider a sequence (Ky, v, v;)1<i<n 0f pairwise disjoint graphs
isomorphic to az-components of G, where Ky, vy, v; ~ G, , he, b} for 1 <t < n.

This sequence is called simple if, for all 1 < ¢ < n, the connected components in
K; of vy w.r.t. a1 and of vj w.r.t. ayy; are disjoint.

In terms of the isomorphic representation of Ky, vy, v; as Ga,, by, b}, simplicity
means that the a;_j-component of h; is disjoint from the c;41-component of h} in
Ga,:

htGat,lﬂat N h;Gatmat+l = @;
or that
(ht)_1 o h; ¢ Gat—lmat o Gatﬁat+1'
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Remark 2.6. Simplicity of the sequence (K, vy, v})1<t<n implies that the merged
chain obtained as

n
!
§ /‘ V=02 Up_1=Yn
Kt,’l)t,"Ut = Kl a1Nos KQ 1N K
t=1

is an E-graph. The simplicity condition also rules out inclusion relationships be-
tween the colour classes of K; and Ky, (other than at the ends, where an inclusion
results in a trivial absorption): a;+; C «y implies that K;,; is contained in the
ag-component of vy 1; this rules out a continuation beyond Ky, because any v, 11
would itself lie in the az-component of vyy;. The merging between K; and Ky
in this case is trivial in the sense that it is isomorphic to just K; (absorption;
cf. Figure 2).

The merged chains of simple sequences to be considered in the following will
typically be of the form that o = a N B for some sequence of subsets ; C F
and a fixed subset « C E. For simplicity we shall often write just o instead of
a N B, especially when speaking of components and subgroups w.r.t. a N 5. E.g.,
Gop stands for Gang.

Definition 2.7. Let G’ C G be any subgroup, a C E. We say that G’ respects
chains of (Gag)pcr up to length N, if every merged chain of a simple sequence of
length up to N of components of the form G, for § C E is compatible with G'.

2.3 Discounted lengths: avoiding not just short cycles

We want to measure the length of certain cycles in E-graphs in such a way as to
reflect distances that discount repeated moves within the same a« C E. We present
these notions in terms of Cayley groups but they could analogously be introduced
in terms of F-graphs. We deal with cyclic words w of group elements, i.e., words
w=go-gn-1= (9t)tez, , cyclically indexed modulo n.

Definition 2.8. Let G be a group with generator set F, with subgroups G, for
subsets @ C E as above. A non-trivial coloured cycle of length n in G is any cyclic
tuple (g¢)tez, in G together with a colouring o: Z,, — P(E) such that
(i) Iliez, 9t =900 -+ ogn-1=1,

(i) gt € Gor),
(iil) gt € Go(t—1)o(t) © Go(t)o(t+1)-

G is called N-acyclic if all subgroups G, for @« C E are compatible with G and
G has no non-trivial coloured cycles of lengths n < V.

The point of this notion is the way in which lengths of cycles in the Cayley
graph of G are measured: we effectively count factors in subgroups G, rather than
the length of generator sequences that produce these factors. Therefore, the usual
graph theoretic length of a coloured cycle of length n is a priori unbounded in terms
of the underlying cycle of generator edges.

Condition (iii) concerns a property of the factors g; in the subgroups Gy : it
says that within this subgroup g; is not equal to any product of two elements from
the two subgroups G,o+1) S Go). Intuitively, this condition says that the
effect of factor g; cannot be absorbed via variations in the immediate predecessor
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o Q1

Fig. 3. Amalgamation: overlap between cosets.

and successor factors; this closely matches the condition on simple chains in Defini-
tion 2.5. Together with (ii), (iii) also rules out inclusions between adjacent colour
classes: o(t) € o(t £ 1).

The following is just a simple reformulation but will be useful in this form later.

OBSERVATION 2.9. Given any (ht)iez, in G, put g¢ := (hy) "t o hyyq fort € Z,,.
Then clearly [1,cz, 9t = 1. If g1 € Gory for t € Ly, then (gi)iez, is non-trivially
coloured by o, i.e., also satisfies condition (iii) of Definition 2.8, if, and only if,

hiGot—1yo) N hir1Gomwyont1) = 0.
Proor. It suffices to observe that g, = kj ok for some k; € G, implies hyok; =
hiy1 0 (k2)™' € hyGo, N hy11Gy,; and that any element k of this intersection in

turn gives rise to a decomposition of g; = (hs) ™' o hyy1 as g; = k1 o (k) ™! where
the k; € G, are such that k = hyoky = hyp10ke. O

LEMMA 2.10. Let G be a group with generator set E as above, k € N. Assume

that, for every a C E with || < k, the subgroup G,

(a) respects chains of (Gag)sck up to length N, and

(b) has no non-trivial coloured cycles of length up to N.

Then there is a finite group G* with generator set E such that:

(i) for every o C E with || < k, G, ~ G,

and for all « C E with |a| < k, the subgroups G,

(ii) respect chains of (G} 5)pck up to length N, and
(iii) have no non-trivial coloured cycles of length up to N.

Compare Definition 2.2 and Lemma 2.4 for the following.

Remark 2.11. In the special case that k¥ = |E| and for a = E, (ii) implies in
particular that G* is compatible with its S-components for all 3 C E. Because
G* ~ sym(G*), it follows that G* is compatible with its subgroups G for a C F
and, by Lemma 2.4, reflects intersections.

PROOF OF THE LEMMA. We construct G* as G* := sym(H) for a graph H =
GUH? consisting of the disjoint union of the Cayley graph of G and certain merged
chains of components of G.

Consider any simple sequence (K, v, v})1<i<n Of length n < N of components
Ky, v, v; ~ Gog,, hi, by with |a| < k. For any such sequence, we put the corre-
sponding merged chain

n

I — v;l_ =Un
Y (Kpvnv) =Ky goge oo gt Ko (%)
t=1
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as a separate connected component in H 0,

By construction, G* = sym(G U H°) respects chains of (Gag)sce up to length
N. Together with (i) this implies that G* respects chains of (G},5)sce for the
following reason. If the chain in question is such that all components G5 have
lan Bl < k, (i) tells us that G},5; =~ Gap. If on the other hand some component
G has |aNB| = k, then it must be that |a| = k and 3 O o and the merged chain
is isomorphic to G%, (cf. Remark 2.6); so in this case the claim boils down to G,
respects G, which is trivially true.

Towards (i) we claim that each one of the new connected components K as
in (%) is compatible with all Gy for |o/| < k. Let K as in (x) and fix some
|o/| < k. Compatibility of K with G, depends only on the isomorphism types of
a’-components of K. Every such component is obtained as a merged chain of a
simple sequence of components of type Go/q, for ¢t from some sub-interval of [1, n].
Since |o/| < k, assumption (a) implies that this component is compatible with G, .

It follows that G* = sym(G U H?) is compatible with all G for |o/| < k, whence
G:, ~ Gy for |a'| < k (cf. comments in Example 2.3).

For (iii) it remains to argue that G?, does not have non-trivial coloured cycles of
lengths n < N whenever |a| < k. Let || < k and let ((g¢)tez, o) be a non-trivial
coloured cycle in G,. We need to show that n > N.

As a consequence of condition (iii) of Definition 2.8, o(t) 2 o(t — 1) whence
o(t) & a for all t. Tt follows that |a N o (t)] < k. Let g; = [ug]%= for a word u; over
ana(t), and put w := uy - - - u,,. We want to show that [, g: = [w]% # 1ifn < N.
It suffices to find an element of H on which w does not act as the identity. An
element in a component of H° obtained as a suitable merged chain of components
Gao(ry Will serve this purpose. We look at the sequence

Kt, V¢, ’Ug ~ GaU(t)7 ht7 h; ~ ng(t), ht, h;
with hy := 1 and h} := [u;]¢ for t € Z,,.

The sequence of these K, v, v} is simple in the sense of Definition 2.5, by con-
dition (iii) in Definition 2.8. The corresponding merged chain K := ", (K¢, v, vp)
is a component of H provided n < N. But the element corresponding to 1 € K7 is
mapped by [w]®" to the element corresponding to h/, € K,,, which is distinct from
all elements represented in the components K; for ¢ < n and in particular from
1 € K. Tt follows that, if n < N, [w]¢" # 1, so that (g)ez, cannot be a cycle in
Gr. O

By iterated application of the lemma starting with & = 1 such that conditions (a)
and (b) are trivially fulfilled (for o = @!), we obtain the following, which technically
is one of our key results.

COROLLARY 2.12. For every finite set E and every N € N there is a finite N-
acyclic group with generator set E. Le., there is a finite Cayley group G with E as
its set of involutive generators such that all the subgroups G, generated by subsets
a C E are compatible with G (and in particular G, NGz = Ganp for all o, 3 C E)
and such that G has no non-trivial coloured cycles of length up to N.
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3. HYPERGRAPH COVERS OF QUALIFIED ACYCLICITY

In this part we deal with hypergraphs and hypergraph covers. We first review some
basic terminology.

3.1 Hypergraphs and acyclicity

A hypergraph is a structure 2 = (A, S) consisting of a (finite) universe A together
with a set of hyperedges S C P(A). The width of 2 is the maximal cardinality
among its hyperedges. With the hypergraph 2 = (A, S) we associate its Gaifrman
graph, which is an undirected graph over the vertex set A with edges linking any
pair of distinct vertices that are members of the same hyperedge s € S (a clique for
every hyperedge of 2). The notion of (induced) sub-hypergraph is the natural one:
think of removing all elements not in the designated subset from both the universe
and from every hyperedge. We shall not look at weak substructure relationships
between hypergraphs because these do not preserve the acyclicity features we are
mostly interested in.

A hypergraph is conformal if every clique in its Gaifman graph is contained in
some hyperedge; in analogy with guardedness in relational structures, cf. Section 4,
we also say that every clique must be guarded by a hyperedge. More generally, a
configuration of nodes is said to be guarded if it is contained in some hyperedge.

An n-cycle in a hypergraph is a cycle of length n in its Gaifman graph (which is a
homomorphic image of the standard n-cycle with vertex set Z,, and edges between
next neighbours). A chord in an n-cycle is an edge between vertices of the cycle
that are not next neighbours in the cycle. A hypergraph and its Gaifman graph
are called chordal if every cycle of length greater than 3 has a chord, i.e., if there
are no chordless cycles of length greater than 3 in the Gaifman graph. We use
cyclic words (at)tez, to denote cycles (indexing modulo n understood); this cycle
is chordless if {a;,a;} is not guarded unless i = j,j £ 1. (Note that, since we do
not necessarily require a cycle to be injectively embedded, we also regard double
points as constituting a chord; while a; = a;41 is ruled out, since (a;, a;) is not an
edge of the Gaifman graph, a; = a; for j # ¢ £ 1 is possible, but would be a chord
in any n-cycle for n > 4.)

It is known from classical hypergraph theory, cf. [Berge 1973; Beeri et al. 1983],
that a hypergraph is tree-decomposable (also called acyclic) if, and only if, it is
both conformal and chordal. A = (A,5) is tree-decomposable if it admits a tree
decomposition T = (T,0): T is a tree and §: v — §(v) € S maps the nodes of T
to hyperedges of 2 in such a manner that im(é6) = S and, for every node a € %,
the subset {v € T: a € d(v)} is connected in T. An equivalent characterisation
requires that 2 can be reduced to the empty hypergraph by repeated application
of two kinds of reduction steps: removal of a node that is covered by at most
one hyperedge, and removal of a hyperedge that is fully contained in some other
hyperedge.

The bounded variants of acyclicity and its constituents, which are relevant to us,
are the following. The N-bounded version of each one of these properties precisely
captures the requirement that every induced sub-hypergraph of size up to N has
the unqualified property.
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Definition 3.1. Let N € N. A hypergraph 2 is called
(i) N-conformal if it does not have any unguarded cliques up to size N.
(ii) N-chordal if it does not have any chordless cycles of lengths n for 4 <n < N.
(iii) N-acyclic if it is both N-conformal and N-chordal.

OBSERVATION 3.2. For N > w, any hypergraph of width w that is N-conformal
is in fact conformal.

The following example links N-acyclicity of Cayley groups to N-acyclicity of an
associated hypergraph of cosets. We sketch the argument for N-acyclicity because
some of the underlying proof ideas will re-appear in the more technical proofs
related to the construction of N-acyclic hypergraph covers.

OBSERVATION 3.3. Let G be an N-acyclic group with generator set E. Then the
following hypergraph of cosets in G, UA[G] = (A|G], S|G]), is N-acyclic:

AlG] = {9Go: g € G,a C E}
S[G] = {lg]: g € G} where [g] := {gGn: a C E}.

Note that the hyperedge [g] consists precisely of all a-cosets (a-components in the
Cayley graph of G) that are incident with g.

PROOF. N-chordality of 2[G] is rather straightforward. Let (a; = hGa, )iz,
be a chordless cycle of length n > 3 in 2 with hyperedges ([h¢])iez, linking a;—q
and a; (w..o.g. we use these same h; as the representatives for a; = h;G,, as
a; € [ht] means that h; is an element of the coset a;). As also a; € [hiy1], we have
ht+1 S htGat and thus

gt 1= (ht)_l o ht+1 € Gat for t € Zn

Clearly [[,c; 9: = 1. We want to show that o(t) := o induces a colouring
satisfying condition (iii) of Definition 2.8, which by Observation 2.9 is equivalent
to

htGOétfloét n ht+1GOét,0tt+1 = [Z)

But clearly, a violation of this emptiness assertion would mean that there is a
hyperedge in 2 that links a;—1 to a;y1 so that (a;)iez, would not be chordless.
As (g¢)tez, therefore gives rise to a non-trivial coloured cycle of length n in G,
N-acyclicity of G implies that n > N.

We turn to N-conformality of A[G]. Suppose that {a;: t € Z,,} C A[G] forms
an unguarded clique in A[G] that is minimal in the sense that every sub-clique of
n — 1 of these vertices is guarded in 2A[G]. We aim to show that again this implies
n > N. For t € Z, let [h] € S[G] be such that {as: s € Z, \ {t}} C [he]. This
implies that, if we let a; be an ay-coset, then this coset contains all the elements
hs for s # t so that a; = hsG,, for every s # t. Since h; and h;yq1 are members of
the same ag-coset for all s # t,t + 1, it follows that

gt = (ht)_l o ht_;,_l (S ns¢t,t+1 Gas-

Clearly [],c5, g: = 1, and again we seek to show that o (t) := [, 4, @s induces
a non-trivial colouring of this cycle. Suppose that, contradicting condition (iii) of
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Definition 2.8, g; € Go(t—1)o(t) © Go(t)o(t+1), OF that (cf. Observation 2.9)

hiGot—1)or) N Pes1Go@yos1) # 0.

Note that o(t —1) No(t) =\, as and o(t) No(t +1) =g -

For any element h € hyGy(1—1)o(t) Vit 1Go(1)o(141), however, we see that a, € [h]
for all s € Z,,, so that [h] would guard the whole clique, contrary to our assumptions.

For s # t, as € [h] since h € hyGo—1)0(t) € htGa, = as (recall that as = hiGa,
for every t # s). For s #t+ 1, a, € [h] since h € hi11Go(1)o(t41) € hit1Ga, = as.

Therefore, our assumptions imply that (g¢)iez, induces a non-trivial coloured
cycle of length n in G, whence n > N follows from N-acyclicity of G. [

3.2 Hypergraph covers

The notion of hypergraph bisimulation is the natural generalisation of bisimulation
between graph-like structures. It captures the idea of a back & forth correspondence
whose individual matches are bijections between individual hyperedges and whose
back & forth requirements ensure that the overlap patterns between hyperedges in
one hypergraph can be simulated in the other. In this sense hypergraph bisimulation
is also at the combinatorial core of guarded bisimulation (as if stripped of the
relational information within relational hyperedges). Here we discuss a special
case, viz. hypergraph bisimulations induced by a hypergraph homomorphism from
one (covering) hypergraph onto another.

Definition 3.4. A map 7: A — A between hypergraphs A = (121, S) and 2 =
(A, S) is a hypergraph homomorphism if 7] § is a bijection between the hyperedge
§ and its image 7 (3) € S, for every § € S.

A homomorphism 7: A — 2 is a (bisimilar) hypergraph cover if it satisfies the
following back-property: for every s € S there is some § € S such that w(8) = s,
and, whenever 7(5) = s and s’ € S, then there is some § € S such that m(3') = s’
and m(§N§)=snsg".

The (conformal and) N-acyclic hypergraph covers to be constructed below are
hypergraph covers 7 : A — A by (conformal and) N-acyclic hypergraphs A.

Note that the homomorphism requirement for covers settles the forth-property in

the back & forth view. With respect to the branching between hyperedges, however,
this definition poses no constraints, as the following illustrates.

Remark 3.5. A covering hypergraph according to this definition may have a
richer local branching structure than the base hypergraph. For instance, every
single hyperedge s of 2 may be covered by a cluster of hyperedges of the form 5, =
{(a,0(a)): a € s}, i.e., graphs of functions o: s — {1,...,k}, where 7: (a,i) — a
is the natural projection to the first component. For k > 1 any subset ¢t C s occurs
as the m-image of the intersection of two covering hyperedges for s.

In fact, the conformal finite hypergraph covers of [Hodkinson and Otto 2003]
can be regarded as controlled restrictions of free coverings as in this remark. We
state the result, which will be used later. More succinct finite conformal covers are
obtained in [Barany et al. 2010], which relies on a more intricate construction.

THEOREM 3.6 [HODKINSON AND OTTO 2003]. Every finite hypergraph admits
a cover by a finite conformal hypergraph.
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Just as hypergraphs generalise (undirected) graphs, hypergraph covers generalise
graph covers or bisimilar covers of graphs. In graphs just as in hypergraphs, these
notions and constructions extend naturally to relational structures: to relational
structures of width 2 (possibly directed, edge- and vertex-coloured graphs, Kripke
structures or transition systems) in the graph case; and to relational structures
with relations of arbitrary arity in the hypergraph case; hypergraph bisimulations
turn into guarded bisimulations in this view (cf. Section 4).

As mentioned in the introduction, finite locally acyclic covers are available in
the graph case and thus for transition systems, Kripke structures or relational
structures of width 2. A graph, or hypergraph of width 2, is N-locally acyclic if
it has no cycles of length up to 2N + 1. The N-locally acyclic covers constructed
in [Otto 2004] even preserve the degree; i.e., in these covers the branching in the
cover is locally the same as in the base graph. We state this result from [Otto
2004], whose core will also be the base case for our inductive approach to N-acyclic
hypergraph covers in widths greater than two.

PROPOSITION 3.7. For every N € N, every finite graph admits a cover by a
finite graph that is N-locally acyclic. Moreover, the cover can be chosen to preserve
the degree of vertices.

The construction of these covers can be based on a straightforward product be-
tween the given graph and a Cayley group of large girth, as outlined in the following.

Let 2l = (A, E) be a finite, undirected and irreflexive graph; G a Cayley group
with involutive generators e € E of girth greater than 2N +1 (i.e., the Cayley graph
has no non-trivial cycles of length up to 2V + 1).

Let 2 :=2A® G := (A x G, E) be the graph with edge relation

E:={{(a,9),(a',goe)}: e ={a,d'} € E}.

It is clear that the natural projection 7: A — 2, which maps (a,g) to a, is a
degree-preserving graph cover: the edge e = {a,a'} lifts to any (a,g) € 7~ 1(a) as
the unique edge linking (a, g) to (a’,g o e). Moreover, 2 is N-locally acyclic in the
sense that the N-neighbourhood of any vertex is acyclic. In the second component,
any cycle in 2 projects to a cycle in G; as G does not admit non-trivial cycles of
length up to 2N + 1, 2l cannot have non- -degenerate cycles of length up to 2N + 1
and it follows that A is N- locally acyclic. For N > 1, 2l is in particular triangle-free,
hence also conformal.

The goal here is the following, which is our second main technical result.

THEOREM 3.8. For every N € N, every finite hypergraph admits a bisimilar
cover by some finite conformal and N -acyclic hypergraph.

The proof of this theorem will be completed in Section 3.5. It involves a local-to-
global construction, which uses localisations for a reduction with respect to width
(Section 3.4) and a reduced product between a hypergraph and a group (Section 3.3)
towards the global completion of covers. The reduced product construction, which
seems to be new here, serves to glue layers locally so as to turn a stack of isomorphic
hypergraphs into a ‘millefeuilles of hypergraphs’; the N-acyclic groups from Sec-
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Fig. 4. Identification between layers in A X, G.

tion 2 are used in this construction to maintain degrees of acyclicity in the passage
form the layers to the reduced product.

3.3 Millefeuilles of hypergraphs

Let 20 = (A, S) be a finite hypergraph, and let the colours e € E be associated with
guarded subsets of 2 through a map p: e — p(e) C A such that p(e) C s for some
s € §. We consider stacks of copies of the hypergraph 2l that are selectively joined
in the subsets p(e) as indicated in Figure 4.

Forae€ A, let a, :={e € E: a € p(e)}.

For a group G with generator set E, we write G, for the subgroup generated by
aq; Gaa for the subgroup generated by age = a, Nay = {e € E: a,a’ € p(e)},
etc. Note that for a € J{p(e): e € E}, oy =0 and G, = {1}.

On A x G consider the equivalence relation

(a,9) ~ (a,g') : & g 'og €G,.

We write [a, g] for the equivalence class of (a,g) w.r.t. &, and lift this notation
to tuples and sets of elements as, e.g., in [s, g] := {[a, ¢]: a € s}. We put

Ax,G:=(A,8) with A:=(Axq)/=~,
S:={[s,g]: s€S,g € G}.

The definitions of &~ and S imply that

[a,9] € [s,h] iff a€ sand g"' o h € G,
iff a € s and [a, g] = [a, h].

Note that = is trivial in restriction to A x {g}, whence (A x {g})/~ is naturally
identified with A x {g} and carries the hypergraph structure of 2. We refer to these
embedded isomorphic copies of Ab as the layers of A x, G and denote them as
A x {g}. Different layers of the millefeuille are locally joined, through identification
according to =z, whence they are not disjoint.

We say that a clique or a cycle is contained in a layer 2 x {g} if its vertices are
all represented in this layer.

Note that the natural projection m: 2 x, G — 2l is a cover.
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Fig. 5. Layers with connecting hyperedges along some path or cycle.

PROPOSITION 3.9. Let G be N-acyclic with generator set E, 2 x, G as above.
(i) Any chordless cycle of length up to N in A x, G must be contained within a
single layer of A x, G.
(1i) Any unguarded clique of size up to N in A x, G must be contained within a
single layer of A x, G.
So N -conformality and N -chordality are preserved in the passage from 2 to 2 x,
G. Moreover, if 2 is conformal and of width w < N, then 2 x, G is also conformal.

PRrROOF. For the proof of (i) assume that (d¢)iez, is a chordless cycle of length
n,3<n<N,inA=2A X, G = (A,S) We let §; = [s¢, he] € S be a sequence of
linking hyperedges such that a; € §; N $;11 and assume that the (s, h;) are chosen
such that the number of jumps between distinct layers 2 x {h;} is minimal: with
J = {t: hy # hiz1}, the (sg, hy) have been chosen so as to minimise |J|. Clearly
0 < |J| € n, and our goal is to show that this minimisation implies J = (0, so that
indeed the whole cycle is represented in a single layer and hence a cycle of 2. Put

gr = hy ol
o(t) := aq, ={e€ E:a; € ple)}.

Then a; € 3¢ N 8;11 implies that g; € Gy (). Clearly g, # 1 iff t € J, and

[l = HteJ gt =1.

That the cycle of the a; is chordless implies that, for ¢’ # ¢ & 1:

if a; and a4 are represented in the same layer of Ql, (%)
then {a;,ay } is not guarded in 2 and G,y = {1}

The last implication follows from the fact that the sets p(e) are guarded, so that
o(t)No') =0 if {at,ar } is not guarded.

We claim that, for non-empty J, (g¢):es would be a non-trivial coloured cycle in
G, coloured by the natural restriction of o. For this we verify that any violation
of condition (iii) in Definition 2.8 would allow us to eliminate one of the remaining
jumps, contradicting the minimality of |J|.

Consider next neighbours ¢’ < ¢ in J along this cycle. Since there are no jumps
between ¢’ and ¢, 4 and d; are both represented in layer 2 x {h;}, which by (x)
implies o(t) No(t') = 0 and Gyyoy = {1} unless t =" 4 1.
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Assume then that ¢ < t < t” are next neighbours in J and that — contrary to
condition (iii) in Definition 2.8 — we had g; € Gy (¢)o () © Go()o (), OF equivalently
by Observation 2.9 s that htGU(tl)g(t) n ht//Go'(t)o'(t'/) 7é (Z)

Clearly this implies that ¢ =t — 1 or ¢ = t + 1, since otherwise G,(4)o(1) =
Go(tyo(try = {1} while g, # 1.

Suppose first that ¢’ = ¢ — 1, but ¢ # ¢ + 1 so that G,(),(¢) is trivial. Then
9t € Gonyo(t) © Goyo(try = Go()o(t) © Go(iry implies that Gy is also represented
in layer 2 x {hs}: Gy is represented in layer 2 x {h;} by assumption and can also
be represented in layer 2 x {hs } if the transition from layer 2 x {h;} to 2 x {hy},
which is affected by g, preserves a;. But this contradicts minimality of |.J|.

The case of t/ #t — 1 but t” = ¢+ 1 is symmetric.

If ' =t—1and t’ =t +1, then we may use h € hiGo(t—1)0(t) N Pe41Go(t)o(t+1)
to represent all three vertices, d;—1, @ and @;11 in the common layer 2 x {h}, thus
again reducing the number of jumps by 1 and contradicting the minimality of |J|.
To see that all three vertices are contained in layer 20 x {h}, we observe that

— h € htGy(t—1)o(r) implies (hy) tohe Goy(t—1) and (he)"tohe Gy (1), 5O that

ar—1 = [ag—1,he] = [az—1,h],
a = [at;ht] = [at;h]§

— and that h € hy11Go(1)o(1+1) similarly implies (hty1)"toh € Go(t41), Whence
also

dt+1 = [at+1,ht+1] = [at+17h]~

Towards (ii), let n be minimal such that A=A X, G has a clique of size n not
contained in a single layer. Let (d¢)icz, be such a clique. Put a; := 7(d¢) and
a={a:t € Z,} (clearly a is a clique in ). By minimality of n we have that
every subset of up to n — 1 elements among the a; is represented within a single
layer of the stack. In particular, for every ¢t € Z,, there is some h; € G such that
as = [as, hy] for all s # t. Consider then the group elements

gt ‘= ht_l o ht+1 for t € Zn

Clearly HtGZn g+ = 1. By our assumptions, all a, for s # t,t 4+ 1 are represented in
layers h; and hi—1, whence

gt € Gy for oy :={e € E:a\ {as,ai41} C ple)}.

Therefore o(t) := a; is a colouring of the cycle (g¢)tez,. We claim that, since
(at)tez, is not contained in any single layer, this colouring is non-trivial in the sense
of Definition 2.8 and Observation 2.9, whence n > N follows.

According to Observation 2.9 we need to verify that

htG&t—lat N ht+1GatOlt+1 = @
Note that Go,_ 0, = Ga,_; N Gq, is generated by az—1 Nay = {e € E:a\ a; C
p(e)}; similarly Gq,q,,, is generated by {e € E: a\ a;41 C p(e)}.
Suppose to the contrary that h € hiGa,_ a0, N ht11Gasa,,,- We claim that then

the whole clique (a¢)tez, would be represented in layer 2 x {h}, contrary to our
assumptions.
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For s # t:
as = las, ht] = [as, h], because h € hGa, a, S0 that (k) ' oh € Gu, 10, C Ga,.
For s #t+ 1:

as = [as, hiy1] = |as, b], because h € hy11Ga,a,, 4, (hey1) P oh €G C G,.

Q41

For the conformality claim, finally, assume that 2 is conformal and of width less
than N. Then any clique in 2 of size up to N is contained in a single layer and
therefore guarded within that layer by conformality of 2A; but by conformality of
2, the single layer cannot have any cliques of size N > w, so that 2 cannot have
any cliques of size N or larger. [

3.4 Local covers

In this section we want to use N-acyclic covers of width less than w to obtain N-
acyclic hypergraphs that cover hypergraphs of width w at least locally (disregarding
defects near the rim, far from the centre). In Section 3.5 we shall see how such local
covers can be stacked and glued (and defects mended in the process) so as to obtain
full N-acyclic covers. Overall the construction of these covers will therefore be by
induction w.r.t. hypergraph width.

It may also be instructive to consider possibly infinite full N-acyclic covers that
are locally finite in the sense that all 1-neighbourhoods in the cover are finite. For
instance a process of local unfolding of the tetrahedron hypergraph (cf. Figure 1)
would result in some locally finite amalgam of infinitely many 3n-cartwheel hyper-
graphs. Generally, the existence of locally finite N-acyclic covers of hypergraphs of
width w + 1 implies the existence of finite N-acyclic covers of width w hypergraphs
— and thus also points to an inductive approach as outlines above.

OBSERVATION 3.10. Let U be obtained from A = (A,S) by adding one new
vertex 0 that is also adjoined to every hyperedge s € S. Let m: A — A be a

conformal N-acyclic cover and let w(0) = 0. Then the restriction of w to the 1-

neighbourhood of 0 induces a conformal N -acyclic cover of A. If A is locally finite,
then this induced cover of U is finite.

We write N*(a) for the Gaifman neighbourhood of radius ¢ of a, consisting of
nodes at distance up to ¢ in the Gaifman graph.

Definition 3.11. Let L € N. A homomorphism 7: 8 — 2 between hypergraphs
is called an L-local cover at a € 2 if for some b € 77 '(a), 7 satisfies the back-
condition for bisimilar covers as far as extensions at hyperedges in NL~1(b) are
concerned:

if $ C NL=1(b) and s = 7(8) and s’ € S are such that s s’ # 0,
then there is some & € § such that 7(§') = s’ and 7(§N &) =sNs.
In this situation we speak of an L-local cover w: B,b — U, a.

Ezample 3.12. Consider a connected graph 2 = (A, F) with a distinguished
central vertex a. Let 2% be the usual tree unfolding of 2 with root a. Then the
depth L truncation B := 2 | NL(a) provides an L-local cover 7: B,a — 2, a at a.

As discussed above, the construction of local covers at higher width will rely
on the availability of (full rather than local) conformal and N-acyclic covers of
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hypergraphs of smaller width. The basic step in the construction is reflected in the
following simple observations. For technical reasons we here assume without loss
of generality that the set of hyperedges is closed under subsets.

Consider a node a in a hypergraph 20 = (A,S5). The localisation of A at a is
the hypergraph 24 | N!(a) induced by S on the subset N!(a) := N'(a)\ {a}. Its
hyperedges are the intersections of hyperedges s € S with N}(a). Note that for
conformal 2, every s N N}(a) is contained in some hyperedge s’ with a € s’. For
conformal 2, therefore, the width of 2 [ N!(a) is strictly less than that of 2.

Ezample 3.13. The localisation of the width 3 cartwheel hypergraph from Ex-
ample 1.1 (cf. Figure 1) at its pivot vertex is its perimeter cycle (width 2). An
N-acyclic cover of an n-cycle is obtained as a k-fold cover for any k > N/n. If we
extend this kn-cycle to a width 3 hypergraph again by putting a pivot vertex, we
obtain an N-acyclic (and even fully conformal) hypergraph cover of the cartwheel
hypergraph.

OBSERVATION 3.14. Let a € A = (A,S) be conformal and consider a cover
7 By — A NL(a) with By = (By, Tp). For a new elementb & By, let B := ByU{b}
and extend w by 7(b) := a. Then the hypergraph B := (B,T) with

T:={tC B:t\{b} € Ty, n(t) € S}

provides a cover of 2] N'(a) at a. Moreover,
(i) if By is (N-)conformal, then so is B.
(i) if Bo is N-chordal, then so is B.

PRrROOF. For (i) consider cliques in 9. If the clique is contained in By, (N-)con-
formality of By settles this. A clique including b € B must be of the form ¢ U {b}
for a clique t C By which therefore is a hyperedge ¢t € Tp; but then 7(t) U {a} is a
clique in 2 and thus in S | N'(a), and hence t U {b} was turned into a hyperedge of
B.

For (ii), similarly, the case of cycles with nodes just from By is settled in By;
and any cycle involving b € B of length greater than 3 is chordal as any node of 8
is linked to b by a hyperedge. [

In order to enlarge the radius of local covers based on this idea, we first discuss a
simple glueing mechanism that preserves acyclicity and conformality. In effect, the
following lemma allows us to extend a given homomorphism 7wy: By — 2 , which
provides an incomplete cover, to a full cover by means of glueing isomorphic copies
of some given full cover p: € — 2 to mend defects of the cover my. The point is
that the given incomplete cover B is retained in the resulting cover and that no
new chordless cycles or unguarded cliques are produced.

LEMMA 3.15. Let mg: By — A a homomorphism that bijectively maps hyper-
edges of Bg onto hyperedges of ™A, and let p: € — A be a cover. Then there is
a cover m: B — A extending wy in the sense that B O By and 79 = 7 | By.
Moreover:

(i) if Bo and € are (N-)conformal, then so is B.
(ii) if By and € are N-chordal, then so is B.
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PRrROOF. B is obtained by glueing one new disjoint isomorphic copy of € onto
each individual hyperedge of B.

Consider a hyperedge t of By with image s = mo(t) in ™. Let p®: € — A be a
fresh isomorphic copy of the cover p: € — 2. In €® choose a hyperedge t' C C®
above mo(t) = s. Let f®: ¢ — t be the bijection between ¢’ C C® and ¢t C By,
which is induced by p® and g, i.e., such that mgo f® = p® |t/

We let B be the hypergraph obtained by glueing 2%, and all the disjoint €,
where each € is glued via the corresponding f®* so as to identify just the chosen
# C C® and t C B.

It is clear that By C B and that 7: B — 2 is a cover of the required kind.
Moreover, (N-)conformality and N-chordality are preserved in this glueing:

(i) every clique in B is fully contained in By or in one of the €.

(ii) every chordless cycle is fully contained in By or in one of the €.

For the second claim, consider a cycle linking nodes in By \ t to nodes in C¥ \ ¢'; as
the identification of ¢ with ¢’ is the only bridge between these two parts, the cycle
would have to pass through this common patch at least twice; as this common part
is a hyperedge of 98, this induces a chord and the cycle cannot be chordless. [

LEMMA 3.16. Suppose that N-acyclic, conformal covers are available for all
width w hypergraphs. Then there is, for every conformal hypergraph A of width
w + 1, every element a € A and every L € N, an L-local cover w: B,b — A, a at a
by an N-acyclic and conformal hypergraph 8.

PRrROOF. The construction of 7: ®B,b — 2, a is by induction on the radius L,
starting from a cover of the localisation 2 | N!(a) and of A | N'(a) (as in Ob-
servation 3.14). We successively extend incomplete 1-neighbourhoods of points
b € NE=1(b) to 1-neighbourhoods that provide covers for 21 [ N1 (7 (¥')). Let By
be the current, incomplete N-acyclic cover, b’ on the boundary in the sense that
Bo [ N1(V') is not yet a full cover of A N1 (7 (V')).

The extension step is performed at the level of width w hypergraphs:

— we extend the partial cover of A [ N}(7(b')) provided by Bg | N1(¥) to a full
cover of 2| N} (7 (b)) according to Lemma 3.15,

— we fill in b’ according to the trick in Observation 3.14, to obtain a full cover B!
of A N1(m(b')) that has B¢ | N1(¥') as a substructure, and

— we glue this cover B! to By in By | N1(¥) (this part is common to both hyper-
graphs, which are taken to be otherwise disjoint).

(N-)conformality and N-chordality are preserved in this glueing as well.

This is clear for conformality: any clique in the resulting structure must be
contained in either of the two parts, as no new (hyper-)edges are introduced.

For N-chordality consider a chordless cycle in the resulting structure that is not
fully contained in either of the two parts, By or B!. Since the cycle is not contained
in B!, it must have at least two nodes at distance greater than 1 in Bq | N}(b')
that are linked by a segment of the cycle that is fully within Bg \ N(v/). If
bi,by € By | NL(V') are such, then we may close this segment to form a new cycle
by filling in ¥’ between b; and bs. This cycle would be chordless in By, because it
cannot have intermediate nodes in N'(#'), and can only be shorter than the given
one; hence the given one had length greater than N. [
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Fig. 6. Regions in local cover.

Finite conformal hypergraph covers are available for arbitrary finite hypergraphs
as shown in [Hodkinson and Otto 2003], see Theorem 3.6 here. Since covers can
naturally be composed we may w.l.o.g. assume that the hypergraph 2{ to be covered
is itself conformal (as was assumed for the last lemma).

Availability of conformal N-acyclic covers for width 2 hypergraphs follows from
[Otto 2004], see Proposition 3.7 here. Width 2 hypergraphs are graphs 2% = (A4, E)
and N-acyclic (or even N-locally acyclic) covers can be obtained as products A® G
with Cayley groups G with generator set E of sufficiently large girth, as discussed
in connection with Proposition 3.7. Cayley groups of large girth are obtained as
G = sym(H) from FE-graphs; in this case, from regularly E-coloured trees of depth
N, as indicated in Section 2.1.

This settles the base case for the inductive application of the lemma to the
construction of conformal N-acyclic covers of finite hypergraphs of any width.

Towards the induction step, we see in the following section how the local covers,
whose existence is guaranteed by the last lemma, can be stacked and glued (and
defects mended in the process) so as to obtain full N-acyclic covers.

3.5 From local to global covers
Suppose 2 = (4, 5) and a € A and Sy, S1 C S are such that

USO QA\USl QNL_l(a)

and d({J So, U S1) > N, cf. Figure 6.

Think of Sy as the core region of some L-local cover of a given hypergraph that
is such that every hyperedge of that original hypergraph is covered by some s € Sp;
the set S, on the other hand, comprises all those hyperedges in the periphery of
this local cover, which may still be lacking responses to back-requirements. Missing
hyperedge neighbours of peripheral hyperedges are to be supplied through glueing
with hyperedges in the core region of new copies of 2. For this we need a surplus
of core hyperedges compared to the demands created by the peripheral hyperedges.
It is to this end that stacking is used: to create many layers of copies of core
hyperedges without unduly increasing the number of peripheral ones.

In the given situation, the glueing of isomorphic copies of 2 is achieved with
A=9Ax, G, where E={1,...,K} x S; and p: (i,s) — s C A. As before, we let
G be a group with generator set F, reflecting intersections and without non-trivial
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coloured cycles of length up to V.

A = (A,S) is a cover of 2 w.r.t. the natural projection 7: 2 — A, such that
all the copies of s € Sy in the different layers of 2 are far from each other and
far from the copies of elements s € S;. Moreover, the multiplicity ratio between
centre and boundary is improved at least by a factor of K. On one hand, 2 has
|G| many disjoint isomorphic copies of 2 [ JSo C A [ (A\ U S1), because these
regions are far from any glueing sites. For s € S7, on the other hand, the number
of distinct covers [s,g] above s is at most |G|/|Gs|, where G is the subgroup
generated by {(4,$): 1 < i < K} and therefore has at least K elements. This is
because [s, g] = [s, ¢'] whenever g=! o g € G,.

Choosing K > |Sy], there is an injection  from hyperedges § of 2 above Sy into
layers of A: the number of such hyperedges § is bounded by |S4||G|/K < |G].

Let now mp: 2, a — g, mp(a) be an L-local cover of 2y at ag = mp(a) by some
conformal and N-acyclic ; let Sy, 57 C S be as above and such that for every
s € Sy there is some s’ € Sy such that my(s) = mp(s’) — we fix such a selection of s’
for every s € S1. Let further m: A =2 X, G — 2 be constructed for Sy, S1 C S as
above, with K > |S1| and an injection & from 7~(S}) into G. Clearly 7 : A — 2o,
7 :=mgom, is an L-local cover by a conformal and N-acyclic hypergraph. We may
then construct a full conformal and N-acyclic cover 7: A — g as follows.

The hypergraph 2 is obtained from 2 simply by identifying § € 7~ 1(Sy) with
[, k(8)] € So. As this identification is compatible with #, we can choose 7 to be
the natural projection induced by 7. It is obvious that : A — g is a full cover
since all defects in 7mg: A — 2y have been healed through the glueing of peripheral
with central hyperedges. It is also not hard to see that the identifications between
§ € m1(Sy) with [¢, 5(8)] € Sy do not violate conformality or N-chordality: any
connected configuration of up to N vertices in 2 is isomorphic to some configuration
in a hypergraph 2’ obtained by glueing disjoint isomorphic copies of 2 | NX~1(a)
in peripheral hyperedges of 2; as these constituents are conformal and N-chordal,
so is 2A (compare the arguments in the proof of Lemma 3.15).

We are ready to prove our main theorem on finite hypergraph covers, Theorem 3.8
above.

PrOOF OF THEOREM 3.8. Let 2y be the given finite hypergraph to be covered.
Without loss of generality we may assume that 2 is connected. Replacing 2y by a
finite conformal cover of 2y according to Theorem 3.6 if necessary, we may further
assume that 2 is conformal. We may also assume inductively that finite conformal
N-acyclic covers are available for every finite hypergraph of smaller width, so that
Lemma 3.16 guarantees the existence of finite, conformal and N-acyclic L-local
covers 2 for Ay, for any desired value of L. Let my: A, a — RAg,ap be such an
L-local cover at ag = mgo(a) € Ao. If L is large enough in relation to N and
to the diameter of %y, then some collection Sy of hyperedges of 2 contained in
NL-(NV +2)(a) provides at least one covering hyperedge for each hyperedge of 2.
At the same time, any hyperedge of 21 that may have some defect with respect
to the back-property must be disjoint from N*~2(a), since by definition the L-
local cover m( satisfies all back-requirements at hyperedges that are fully contained
in N¥=1(a). The collection S; of all hyperedges in 2 with defects is therefore
contained in the complement of N*~!(a) and thus has distance greater than N
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b’ b
Fig. 7. Freeness.

from Sy (cf. Figure 6). .
The construction of a suitable 7: A — 2y from 7: A — Ay as outlined above
then provides a full conformal and N-acyclic cover for g as desired. [

3.6 Richer covers: freeness

The N-acyclic covers obtained above realise in finite covers degrees of acyclicity that
in full can only be realised in infinite covers. Unqualified acyclicity is the key prop-
erty of bisimilar tree unfoldings. Another property that can easily be achieved in
infinite unfoldings is that of unbounded branching, a richness property. Just like or-
dinary bisimulations, hypergraph bisimulations (or guarded bisimulations between
relational structures) cannot control multiplicities, whence the branching degree
in covers can essentially be varied freely, cf. Remark 3.5. This section shows that
also the feature of unbounded branching admits qualified approximations in finite
hypergraph covers. In fact, the stacking of layers in millefeuilles of hypergraphs
can be used for this purpose, too.

Definition 3.17. Let 2 = (A, S) be a hypergraph.

(i) For s € S, BC A and t C sN B, let di(s, B) be the usual distance between
s\t and B\t in the induced sub-hypergraph 2([ (A \ t) (obtained by removing
all vertices in ¢ from the universe and from every hyperedge).

(ii) For s € S and B C A, we say that s and B are n-free if di(s,B) > n for
t=snNBk.

(iii) A cover 7: A — A is called (n, K)-free if, for all § € S and B C A of size
|B| < K and £ C §N B, there is some § € S such that 7(§') = 7(8), ¥ NB =1
and § and B are n-free.?

Consider the configuration of Figure 7, which could appear as a subgraph of the
Gaifman graph of a width 3 hypergraph, for instance of a 17-acyclic cover of the
tetrahedron. While the spokes pointing to a and to b’ are not 3-free, those pointing
to a and b are.

LEMMA 3.18. Let n, K € N and let A = (A, S) be a hypergraph. For sufficiently
large M and N consider E = {0,..., M} x {t C s: s € S} with the association
p: (i,t) — t C A and let G be an N-acyclic group with generator set E. Then the
hypergraph A=A X, G is an (n, K)-free cover of A w.r.t. the natural projection.

5There is also a natural intrinsic notion of freeness of a hypergraph, rather than of a hypergraph
cover; we shall consider just the analogue for relational structures, see Definition 4.4.
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PROOF. We use the terminology and notation from Section 3.3.

Let 8, B, { be given as in (iii) of Definition 3.17. We seek to find a suitable &’
that is n-free from B.

Let § = [s,h], t = [t, h].

Let o := {(i,t): 0 < i < M}. Then the natural candidates §' ~ § are of the form
§ = [s,hok] for k € G,. The key to the argument is that sufficiently large G,
(sufficiently large M) will allow us to avoid close links between § \ £ and B\  for
some choice of k € G,,.

Firstly, we avoid intersections with B\ . If B\ ¢ intersects & = [s, k], then
b= [b,g] = [a, hok] for some a € s\ ¢ implies that b= a and g~ ohok € G,. Note
that a ¢ t implies that G, N G, = {1}; therefore restriction of the last equation
to the a-component (cf. Lemma 2.4) yields k = (h™! o g) | a. To avoid direct
intersection with B \ £, therefore, k just needs to be distinct from at most K many
elements of G, (at most one for each b € B\ 7).

Secondly, we want to avoid short chordless links outside ¢ between B \ ¢ and
8"\ t. For this it will suffice to show that no two elements from distinct candidates
§ = [s,hoki] and 8’ = [s,h o kg] can be linked by a chordless path of length
up to 2n running outside ¢. For then, each beB \ # can again only rule out one
further element k € G, for which it could possibly have a short link outside ¢ to
some [a,h o k]: if one b had short paths of this kind to two distinct layers, then
the concatenation of these two paths at b would yield a short connection outside
t between two distinct layers § = [s,h o ki] and 8" = [s,h o ko] (which after
contraction along chords could be made chordless, and of length bounded by 2n).
In the following we may also assume 2n < .

So assume towards a contradiction that for some a’,a” € s\t and ky # ko € G,
there were a short chordless path from &’ = [a/,h o k1] to @ = [a”,h o k3] that
does not meet # (here short means of length up to 2n). Let this path be @’ =
g, ..., am—1 = @". Let §; = [s;, h;] for 0 < i < m be the linking hyperedges along
this path such that a; € §;N§; 41, where these hyperedges and their representatives
are chosen so as to minimise the number of jumps between layers h; and h; 11 # h;.
We also put hg := hok; and h,, := ho ko, and let

gi ‘= h;l [¢) hi+1 fori e Zerl-

We claim that, after elimination of factors g; = 1, the cyclic tuple (gi)icz,,.,,
gives rise to a non-trivial coloured cycle in G based on the colouring o (i) := aq, =
{e€ E:a; € p(e)} for 0 <i < mand o(m) = . With respect to the elimination of
trivial factors and the verification of condition (iii) from Definition 2.8 for non-trivial
coloured cycles, we may reason in close analogy with the proof of Proposition 3.9.

Note that, since ag, am—1 € t, o(m) No(m % 1) = 0 so that Go(myom+1) = {1}
It is important for the argument, though, that this disjointness extends beyond a
number of factors w; flanking ¢,, = k5 Lo ky € G, that might happen to be trivial
(go=---=g;j=1or gg=" = gm_1 = 1). Here we critically use the condition
that the given path does not meet . If, e.g., a number of initial factors go, ... 2 0j
are all equal to 1, then a corresponding initial segment of the path is represented
in the same layer as o and, since it must not run into ¢, stays outside ¢ even in
projection. Hence a; ¢ ¢ implies a; ¢ t, which further implies o(j) N o(m) = 0.
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VAVANE

Fig. 8. Short chordless paths.

Hence, for sufficiently large N, such chordless paths cannot exist. And this
implies that for sufficiently large M (e.g. M > 2K certainly suffices) there must be
k € G, such that § := [s,h o k] is n-free from B as desired. [

Combining Lemma 3.18 with Proposition 3.9 we obtain the following strength-
ening of Theorem 3.8.

COROLLARY 3.19. For all N,K,n € N, every finite hypergraph admits a bisim-
tlar (n, K)-free cover by some finite conformal and N-acyclic hypergraph.

3.7 Bounded convexity in N-acyclic hypergraphs

This section is devoted to some basic structure theory of N-acyclic hypergraphs
in general. We are particularly interested in small sub-configurations, which are
acyclic by N-acyclicity. In order to understand how certain small acyclic sub-
configuration are embedded into the ambient hypergraph we study a notion of
closure, which is reminiscent of convex hulls. Instead of closure under all shortest
connecting paths, we consider only connecting paths up to a certain length n (this
is a restriction); but instead of just shortest connecting paths we admit connecting
paths that are minimal in the sense of having no chords (this is a relaxation).

A chordless path in 2 is a chordless path in the Gaifman graph of 2. Shortest
paths are chordless, but there may be (short) chordless that are not of minimal
length: see Figure 8 for examples of short but not necessarily shortest chordless
paths from a to b.

In the following we sketch a corresponding analysis in N-acyclic hypergraphs
where N can always be assumed to be greater than the width of the hypergraph.
So the N-acyclic hypergraphs under consideration will not only be N-conformal
but outright conformal, cf. Observation 3.2. In particular, we shall often refer to
sufficiently acyclic hypergraphs or structures to appeal to some not necessarily
explicitly specified bound N such that corresponding constructions go through for
all (conformal and) N-acyclic hypergraphs. Uniformity of a suitable bound N in
explicitly specified parameters is always understood.

Besides the parameter N specifying the global acyclicity requirements for all
2l under consideration, we often deal with a locality parameter n to say which
Gaifman distances and path lengths are currently considered as short. In typical
game arguments, for instance, n will be shrinking from round to round, with a
dependency like n; = 2n;,1 + 1 in round ¢ of an m-round game. With a choice for
n set, we often refer to short paths when we mean paths of length up to n.

An interesting feature of sufficiently acyclic 2 is that the number of all nodes
on shortest paths between two given nodes a and o at distance d(a,a’) < n can
be bounded in terms of the width w of /. More precisely, if N is sufficiently large
in relation to n and w, then the set D(a,a’) of nodes on shortest paths between a
and o satisfies |D(a,a’)| < nw. Similarly, even the number of nodes on any short
chordless paths between two nodes at short distance can be bounded — and this is
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strengthened even further to yield a corresponding bounded closure operator.

To simplify notation we freely switch between tuples and their sets of components;
instead of finite subsets we sometimes work with tuples enumerating them, and
apply set operations also to tuples, as in B\ a or BUa, where the meaning is clear.

Definition 3.20. (i) A subset B C 2 is n-closed if any chordless path of length
up to n between nodes a,a’ € B is fully contained in B.
(ii) For n € N, the convex n-closure of a tuple a in 2 is

cly(a) == ﬂ{B C 2A: a C B n-closed }

Consider the (induced subgraphs of) the Gaifman graph of some width 3 hyper-
graph in Figures 7 and 8. The entire subgraph in Figure 8 is part of cl,(a,b) for
n > 4; the 4-closure of {a, b} in Figure 7 consists of just the vertices on the shortest
connecting path, while the shorter of the two connecting perimeter arcs is part of
the 4-closure of {a,b'}.

Ezample 3.21. For some simple generic examples note that arbitrary cliques are
n~-closed, since elements linked by an edge cannot by connected by a chordless
path (of any length). The l-neighbourhood of a single node, N'(b) C %A, is n-
closed provided 2 is at least (n + 1)-chordal. In fact the beginning of the proof of
Lemma 3.22 below shows that the 1-neighbourhood of any connected subset of
is n-closed provided that 2 is sufficiently chordal in relation to the diameter of this
subset.

We turn to bounds on the size of n-closures. For B C 2 and a € 2, let D(a, B)
be the set of precisely those nodes that are on shortest paths between a and B. It
is not hard to see that the size of the set D(a, B) \ B is bounded by the product of
d(a, B) and the width w of 2, provided 2l is sufficiently acyclic in relation to d(a, B),
w and the diameter of B, diam(B). In fact 3n-chordality implies that the subset
Dy, of elements at distance k from B in D must be a clique for 1 < k < d(a, B) if
d(a, B),diam(B) < n; hence, by conformality, each Dy, is contained in a hyperedge
and its size bounded by w. It is considerably harder to show that also cl,(B) is
uniformly size bounded (in terms of |B|, w, n) in all sufficiently acyclic 2. For
this we establish (by induction on w) the existence of some size-bounded n-closed
superset of B. We shall directly only need the following.

LEMMA 3.22. Forn € N there is a function fn(w, k) such that, for all sufficiently
acyclic 2 of width w, every a € AF is contained in some n-closed subset B(a) of
size < fn(w, k). Hence |cl,(a)| < fn(w, k).

PRrROOF. Let B®™ D a be such that any two distinct connected components of B®
have distance greater than n + 2. Such B can always be found of size 2k(n + 1).
This bound is based on the following. Starting with the set of components of the
tuple a, we keep joining any two distinct connected components of the current set
that are at distance up to n+2 in 2 by a connecting path of that length (iteratively
and in any order); as the number of connected components decreases in the process,
it is trivially bounded by k; as components are joined by the addition of at most
n 4+ 1 new nodes, at most (k — 1)(n + 1) nodes are added to the original k overall.
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For w = 2 and in sufficiently acyclic graphs 2, all short chordless paths are
shortest paths. In this case any set B® with these properties is already n-closed
and hence contains cl,(a). The base case for the construction of the desired set
B(a) w.r.t. induction on w is thus established.

Consider now 2 of width w > 2 and a € A. We assume that 2 is sufficiently
acyclic to guarantee acyclicity of the chosen B and some of its size-bounded
extensions that arise in the construction.

We claim that the 1-neighbourhood of B is closed under short chordless paths.
The size of this set cannot a priori be bounded but it will serve as an envelope for
the desired B.

Towards the closure claim, suppose to the contrary that ¢ = c¢g,...,cp = ¢,
¢ < n, were a short chordless path in A between ¢, ¢’ € NY(B©) with ¢1,...,¢i 1 ¢
NY(B®). Let d(c,b),d(c',b') < 1 for suitable b,b' € B®. By choice of B, b and
b are linked by a chordless path within B (note that their distance is at most
n + 2). We obtain a cycle by joining the disjoint chordless paths between b and b’
and between ¢ and ¢’ by the edges (b,¢) and (V/,¢’). This cycle must be chordal.
Any triangulation must join every node ¢; by an edge to at least one node on the
connecting path in B, whence ¢; € N1(B©).

To cut down from N*(B) to the desired B(a), we focus on the sets (), N*(b)
for cliques b € B™. To ease notation, let us write N} (b) for (o, N'(b) \ b.
Consider the induced hypergraph

Ab] := (N;(b), S[b])
where Slb] ={s\b:sec S,bCs}.

/

This localisation of 2 at b has width w—|b| < w. Hence the induction hypothesis
applies. Note also that any nodes a,a’ € N}(b) C A that are linked by an edge in
2 are also linked by an edge in 2A[b]: as ba and ba’ are cliques, an edge between
a and o’ implies that baa’ is a clique which gives rise to a hyperedge of 2[b] that
links a to a’.

As parameters in 2[b] we collect all nodes in N!(b) from B®™ and all those
in any N(b) for any b € B© such that bb is not a clique (these are the b €
B@\ (bUN/(b))):

C(b) := (B N N}(b))
U U{N'(b)NNL(b): be BO\ (bUN}(b))}.

The size of this parameter set can be bounded uniformly in the size of B
and w: the contributions from N}(b) N N1(b) for the relevant b are contained in
intersections N1(b;) N N1(b) for some b; € b with d(b;,b) = 2; as  is sufficiently
acyclic and conformal, any such intersection is a clique and hence bounded by w.

We apply the induction hypothesis to the set C'(b) in 2[b] to obtain a subset
B(b) C A[b] with C(b) C B(b) that is n-closed in A[b]. We claim that

B:=B(a):= B® U [J{B(b): b a clique in B }

is n-closed in 2A. It is obvious that the size of this set can be bounded in terms of
the size of B, the size of the B(b) and w.
Let by, ...,bs (2 < £ < n) be a short chordless path in 2 between by and by € B.
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We know from above that this path stays within N1(B©); it remains to show that
it also stays within B. Suppose b; € B for some 0 < j < £. Asb; € N*(B©)\ B©,
there must be some b € B such that b; € N'(b)\ b. Let b be a clique in B that
is maximal with the property that b; € N} (b).

Clearly b; ¢ N'(b) for any b € B s.t. bb is not a clique, as otherwise b; €
C(b) € B(b) C B. As the given path is chordless and b; € N} (b), the path cannot
intersect b.

Let [b;,...,bj,...,bn] be a maximal segment of the path that stays within N} (b).

We want to find a chordless path of the form b, by, ..., b;,..., by, b with b,V €
C(b). Here the path segment [bys,...,0;,...,0n/] C [bi,...,0j,...,by] is chord-
lessly extended by suitable b, b’ € C(b); these may be found within [b;,...,b;,. .., by]
if nodes to the left or right of b; happen to be in C(b), or else will be found as new
nodes in C(b). That b,b" € C(b) then implies that the whole path, and therefore
b; is contained in B(b) C B.

If [b;,b;) contains some node in some N'(b) such that bb is not a clique, then
this node is in C(b). If not, and if b; # by, then b; must also be linked to some
b € B\ b, but such that bb is a clique, whence b € N!(b) and hence in C(b).
Now (b,b;) is not an edge because b was a maximal clique with b; € N}(b). Let
b be the last node along the path segment [b;, ..., b;) that has an edge to b. Then
b,bir, ..., by is chordless, because the first edge from b into the segment (b;, ..., by,]
would otherwise create a chordless cycle of length greater than 3.

The same reasoning on the other side of b; yields either a node in (b;, b, | N C(b)
or a segment [b;, b,,) and an element b’ € C(b) such that b;, ..., by, b is chordless.

In all these cases the choice of B(b) guarantees that some chordless segment
containing b; is contained in B(b).

It remains to deal with the cases that [bg, b;], or [b;,be], or both, are fully con-
tained in N while the corresponding segment is disjoint from every N*(b) for which
bb is not a clique. Consider by. If by € B(b), we reason as above. If by € B\ B(b),
then by € N1(b) for some b for which bb is a clique, and again we may reason as
above. [

The following two lemmas will be useful towards understanding how the addition
of new elements affects closures — a process of importance for the application to
back & forth games. The first lemma treats the addition of a clique of new elements
to an n-closed set; we shall eventually use this for the addition of a single new
element, but state the slight generalisation to be able to use it in an inductive
proof of the second lemma.

LEMMA 3.23. Let 2 be sufficiently acyclic, B C 2 n-closed, n > 1, a a clique
with 1 < d(B,a) < n. Let B := cl,(BUa) and consider the region in which this
extended closure attaches to B:

D:=BNNYB\B).

Then
(i) B\ B is connected.
(i) D separates B\ B from B\ D, whence B = BUcl,(D Ua).
ProoF. For (i) it suffices to observe that the union of B with the connected
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B

Fig. 9. Extending B to cl,(B Ua) for n = 2.

component of a in B \ B is closed under chordless paths of length up to n — hence
contains cl, (BUa). Any short chordless path visiting another connected component
and running between two nodes from outside that component would — as far as its
passage through this component is concerned — be a chordless path between nodes
of B, hence running within B.

For (i), d(B\ B, B\ D) > 1 is obvious from the definition of D: if ' € B\ B is
directly linked to some b € B, then be D. [

We want to show that the contact region D is in fact a clique, provided that B
is even (2n + 1)-closed. We first show that D is connected if B is (2n + 1)-closed.

Ezxample 3.24. The example of a line graph of length 2n 4+ 1 with B containing
just the end points and a being the central edge shows that 2n-closure of B would
not be sufficient for this claim. In the example of Figure 9, the bottom line of five
nodes forms a subset B that is 4-closed in this acyclic hypergraph of width 3. The
2-closure of B together with a comprises the whole set of nodes; the contact region
D consists of the three central nodes of B and is connected, but not a clique. The
5-closure of B, however, would itself comprise the half circle around the central
node of Bj; its contact region with the 2-closure of this set together with a then
consists of the single horizontal edge above B, which is a clique.®

For connectedness of D consider any shortest path p from B to a with footpoint
b€ D C B. We identify p with its trace p C 2 and show that
(a) BC BUN(p);

(b) be D C N(b).

For claim (a) observe that N!(p) itself is n-closed (compare the corresponding
argument in the proof of Lemma 3.22 with p C N'(p) in the role of the initial set
B©); and that any chordless path linking some ' € B\ N!(p) to an element in
N1(p)\ B of length up to n would give rise to a chordless path of length up to
2n + 1 from b’ to b, which would have to stay in B as B is (2n + 1)-closed.

Claim (b) is a consequence of (a). Any d € D is directly linked to some ¢ € B\ B,
which by (a) must be linked to b or to one of the next two elements along the path
p (p is a shortest path from B). For d # b, d and b cannot be linked by a chordless
path of length up to 4 that leaves B, since B is (2n + 1)-closed. It follows that d
must be directly linked to b, whence d € N1(b) as claimed.

The proof of the claim that D is even a clique is by induction on the width w of 2.
For this induction we may restrict attention to the situation of the previous lemma

61 wrongly stated 2n-closure of B as a sufficient condition in the context of Lemma 3.25 in [Otto
2010].
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in cases where the clique a is either disjoint from or fully contained in N'(B). In
either case we analyse the connectivity of (B\ B) N N'(B) with the rest of B. The
goal is to find a suitable separator of B that is a clique in N''(b) for some b € B.

Let C := (B\ B) N N'(B) be the contact region with B in B\ B, and let ¢’ be
the connected component of a in B\ (BUC) (this set is empty if a C N'(B)). Let
Co C C consist of just a C C in the case that a C N1(B); otherwise the set

Co=CnNnN 1(C’)
of those nodes in C with direct links into C’. Then

Cy is a clique and separates the connected component of a in B \ (BUC)
(%) from the rest, whence the n-closure of B U a also decomposes according to
B =cl,(BUCy) Ucl,(CyUa).

To see that Cy is a clique, consider the non-trivial case in which C’ is non-empty.
Then any two distinct elements of Cy are linked by a path running outside B U C.
If there were no direct edge between them, these nodes would therefore be joined
by a non-trivial chordless path through B\ (BUC). As elements of C they are also
directly linked to D and hence, as D is connected, connected by a path running
in D C B. Assuming that 2 is sufficiently chordal, the resulting cycle would have
to have a chord from a node in B to some node in B\ (B U C), contradicting the
definition of C. The separation claim follows from the observation that C separates
B from B\ (B U C) and that edges from ¢’ C B\ (B U C) cannot go to B, and
also not to C'\ C’ by the definition of C".

With this preparation we are ready to prove the main claim.

LEMMA 3.25. For B C 2, a, B = cl,(BUa) as above, with a C NY(B) or
disjoint from N1(B): if B C A is even (2n + 1)-closed, then D = BN N'(B\ B)
is a clique.

PrOOF. The proof is by induction on the width w of 2. For w = 2 and a suffi-
ciently acyclic graph 2 (which also means that a can at most have two components),
the claim is easily verified. This is the base case for the induction; the induction
step uses a localisation at the footpoint of some shortest connecting path from B
to a in order to reduce the width.

We show that, for C' and Cj as defined above, there is a choice of a footpoint b of
a shortest connecting path p from B to a for which Cy € N*(b). In the non-trivial
case that a N N1(B) = () this can be inferred from the analysis of the family of
subsets (Co N NY(d))gep. Firstly, every ¢ € Cy C C is contained in at least one
of these sets by the definition of C' and D; secondly, no two of these sets can be
incomparable by inclusion, as this situation would imply the existence of a chordless
path of length 4 between the two footpoints in D (impossible since B is 4-closed) or
of a chordless 4-cycle in 2. But then any inclusion-maximal element in this family
stems from a footpoint d which is directly linked to every ¢ € Cy and therefore can
serve as a footpoint b of a shortest path as desired.

Together with (x) above, this latter condition can be used to analyse the situation
in restriction to the localisation 2 | N1(b), which is of smaller width. Since N*(b)
is itself n-closed (cf. Example 3.21), cl,,(B U Cy) = cl,,(D U Cp) = cl,((BU Cp) N
N1(b)) € N'(b). The passage to the localisation 2 [ N!(b) is compatible with
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n-closures, and it suffices to show that D \ b is a clique in the n-closure of (B U
Co) N NL(b) in 2 | N}(b), which follows from the induction hypothesis, i.e., from
the claim of the lemma for hypergraphs of width w —1. O

That the contact region D is a clique means that the extension of closures ne-
cessitated by the inclusion of an additional node can be made compatible with the
tree structure of tree-decompositions: in the situation of the lemma, any tree de-
compositions of B and of B \ B can be joined in a node representing the clique D.
Indeed, in light of Lemma 3.23 (ii), any node representing the clique D in a tree
decomposition of B can serve as a port to glue a tree decomposition of (B\ B)UD
rooted at D; the resulting merged tree represents all induced hyperedges on B since
none can bridge D.

4. TWO APPLICATIONS TO THE GUARDED FRAGMENT

We deal with the guarded fragment GF C FO as introduced in [Andréka et al. 1998].
For motivation, we assume some familiarity with its role as a versatile analogue
of modal logic in the much richer setting of arbitrary relational structures; for
background and key results in its model theory we refer in particular to [Gradel
1999]. Some basic notions are reviewed in the following.

4.1 Guardedness

Definition 4.1. Let %A = (A, (R*)ge,) be a relational structure, 7 finite and
relational. The hypergraph of guarded subsets associated with 2( is the hypergraph
(A, S[2]) whose hyperedges are precisely all singleton sets together with all subsets
of the sets {a: a € a} forae R¥ Re 7.

A subset s C A is guarded if s € S[U]; a guarded tuple in A is a tuple whose set
of components is guarded.

Clearly the width of this induced hypergraph is bounded by the width of the
signature 7 (the maximal arity in 7).

The Gaifman graph of the relational structure 2 also is the Gaifman graph as-
sociated with the hypergraph (A, S[2]) of guarded sets of 2. We note that closure
under subsets and inclusion of all singleton sets, which are built into the definition,
have no effect on the associated Gaifman graph or on acyclicity.

Via (A4, S[2]), hypergraph theoretic notions like conformality and N-acyclicity
transfer naturally to relational structures 2, and notions like n-neighbourhoods or
n-closures can be applied interchangeably to the Gaifman graph of 2 or of (A4, S[2]).

The key feature of the guarded fragment GF is its relativised quantification pat-
tern, which only allows quantification over guarded tuples. Instead of general FO
quantification, GF admits guarded quantification of the form

Jy.a(x)e(x) and, dually Vy.a(x)p(x)

where y C x is a tuple of variables among those that occur in the guard a(x),
which is an atom in which all the free variables of ¢ must occur.” Here we use the
shorthand Jy.ap for Jy(a A ¢) and Vy.ap for Vy(a — ¢).

7Semantically vacuous equality atoms x = x may serve as guards for singletons.
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The natural game-based back & forth equivalence that captures the restricted
nature of guarded quantification is guarded bisimulation equivalence. We briefly
review the underlying back & forth game, which is played over two 7-structures
2 and 2. The positions in the game are correspondences (a,a’) between locally
isomorphic guarded tuples in 2 and 2. We may think of pebbles marking the
components of a guarded tuple a in 2 and a guarded tuple a’ in 2’ in such a manner
that the correspondence between the pebbles induces an isomorphism between the
induced substructures 2 [a and 2l [a’.

The typical round in the game consists of a challenge-response exchange between
the two players. The first player picks up some of the pebbles from one of the
marked tuples and relocates them (possibly together with currently unused pebbles)
freely apart from the constraint that the resulting tuple must again be guarded; the
second player has to respond likewise in the opposite structure by relocating the
corresponding pebbles there. As usual, the second player loses if no such response
is available, and the notions of a winning strategy in the ¢-round game and in
the unbounded game are defined as usual. In these terms, guarded bisimulation
equivalence A, a ~g A, a’ is defined by the condition that the second player has a
winning strategy in the unbounded game starting from position (a, a’). A matching
notion of A, s ~g A, s’ for guarded subsets s € S[A] and s’ € S[A'] is defined in
terms of ™A, a ~g A’,a’ for suitable guarded tuples a, a’ that enumerate s and s'.
Finite approximations Né are similarly induced by /-round games, for ¢ € N.
The guarded variant of the classical Ehrenfeucht—Fraissé correspondence then
associates Né, i.e., the existence of a winning strategy for the second player in the
f-round guarded bisimulation game, with GF-equivalence up to nesting depth ¢.
See e.g. [Gradel 1999; Otto 2011] for expositions. The analysis shows in particular
that any ¢ € GF is preserved under ~g; and, more specifically, that any ¢ € GF
of nesting depth ¢ is preserved under Ng. It also shows that for finite relational
signatures 7 and any class of 7-structures C, Cy C C is definable by a GF-sentence
of nesting depth ¢ within C if, and only if, Cy is closed under Né within C.

The following characterisation of GF as the guarded bisimulation invariant frag-
ment of FO is due to Andréka, van Benthem and Németi [1998].

THEOREM 4.2. In the sense of classical model theory, GF C FO is the ~g-
invariant fragment of FO, GF = FO/~;. Le., the following are equivalent for any
sentence ¢ € FO(T):

(1) @ is preserved under guarded bisimulation equivalence (~g-invariant):
Aar~, A2 = (AR la] © A Epla]).
(i1) @ is logically equivalent to some ¢’ € GF(7).

We stress that this is a statement of classical model theory, whose classical proof
involves the use of compactness and a detour through infinite structures, so that
~g-invariance over just finite structures would not be good enough to support the
argument. For trivial examples of first-order formulae that are ~g-invariant over all
finite structures but not over all infinite structures, it suffices to look at conjunctions
of sentences that are not ~g-invariant (over some infinite structures) with suitable
sentences that have only infinite models. In Section 4.3 we shall prove the analogue
of Theorem 4.2 for finite model theory.
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We may think of guarded bisimulations between 7-structures 20 and % as hyper-
graph bisimulations between the hypergraphs (A, S[2(]) and (B, S[%B]), in which we
additionally require the local bijections between hyperedges (guarded sets) to be
local isomorphisms of the relational structures. Correspondingly, we define guarded
covers 7: A — A as follows.

Definition 4.3. A guarded cover is a homomorphism 7: A — A between 7-
structures that induces a hypergraph cover between the hypergraphs of guarded
subsets (A, S[A]) and (A, S[2(]). In other words, 7 is a surjective relational homo-
morphism such that
(i) its restrictions to guarded subsets of A are partial isomorphisms;

(ii) the back-property w.r.t. guarded subsets is satisfied:
for every guarded subset s C 2 there is some guarded subset § C 2As.t. m(§) = s,
and for every guarded § C 2 such that m(8) = s and for every guarded sCA
there is some guarded § C 2 for which (') = &' and 7(5N &) =sN s

Importantly, any hypergraph cover 7 : (/Al, 5‘) — (A, S[2]) induces a unique rela-
tional structure 2 on universe A that turns 7 into a guarded cover. For this we
observe that the hypergraph homomorphism 7: (4, 5) — (4, S S[2A]) can be used to
pull back the relational interpretation from 2 [s to every § € S with m(§) =sina
unique and well-defined manner. This process turns (A S) into the hypergraph of
guarded subsets of the relational structure 2l thus obtained.

Moreover, guarded covers that are derived from (n, K)-free hypergraph covers
satisfy the following freeness condition. Compared to the freeness condition for
covers of Definition 3.17, this new one has the advantage of applying to the struc-
tures themselves.

Definition 4.4. A relational structure 2 with associated hypergraph (A4, S[2]) of
guarded sets is called (n, K)-free if, for all guarded s C 2 and arbitrary subsets
B C A of size |B] < K and all ¢ C s N B, there is some guarded s’ in 2 with
A, s" ~g A s and s’ N B =t such that s’ and B are n-free.

We therefore obtain the following as a direct corollary to Theorem 3.8 and Corol-
lary 3.19.

COROLLARY 4.5. For every N € N, every finite relational structure admits a
guarded bisimilar cover by some finite conformal and N -acyclic structure.

Moreover, such covers can additionally be chosen (n, K)-free, for any choice of
the parameters n, K € N.

In particular the class of finite N-acyclic 7-structures is fully representative of
the class of all finite T-structures up to guarded bisimulation equivalence. The finite
model theory of GF thus reduces to the model theory of GF over finite N-acyclic
structures — just as the (classical) model theory of ML reduces to the model theory
of tree structures, or its finite model theory to the model theory of locally acyclic
transition systems.

4.2 A strong finite model property for GF

The following generalises the finite model property of GF [Gradel 1999] and its
strengthening in [Barany et al. 2010].
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We note that any satisfiable ¢ € GF has an acyclic model obtained as a guarded
bisimilar unfolding of an arbitrary model; but even if the given model is finite, its
unfolding typically is not. Indeed ¢ may have only infinite acyclic models: a simple
example is given by the sentence saying that R is irreflexive and antisymmetric and
that every vertex has an outgoing R-edge.

COROLLARY 4.6. GF has the finite model property in restriction to every class
of relational structures that is defined in terms of finitely many forbidden cyclic
configurations.

PROOF. By the finite model property for GF, see [Gradel 1999], any satisfiable
¢ € GF also has a finite model 2 = ¢. Replacing 2 by a finite bisimilar cover
2A ~g 2 that is N-acyclic, we obtain a finite model that does not have any cyclic
configurations of size up to N. In fact we may also make 2l conformal rather than
just N-conformal. [J

That this cannot be strengthened to arbitrary choices of finitely many forbidden
configurations follows for instance from the undecidability of GF with functionality
constraints [Griadel 1999]. The reduction would enforce functionality of the irreflex-
ive binary relation R (i.e., VaVyVy' ((RzyARzy') — y = '), which is not expressible
in GF) by ruling out induced substructures whose R-reduct is isomorphic to the
3-vertex R-structure Yr := ({z,y,vy'}, {(x,y), (z,9¥')}). Suppose GF had the finite
model property in restriction to the class of Yi-free relational structures. Then
GF with a functionality constraint on an irreflexive relation R would also have the
finite model property. As a fragment of FO with the finite model property it would
be decidable, contradicting the undecidability result in [Gradel 1999].

4.3 The FMT characterisation theorem

We prove the following finite model theory version of the classical characterisation
of GF as the ~g-invariant fragment of first-order logic by Andréka—van Benthem—
Németi [1998], cf. Theorem 4.2 here.

THEOREM 4.7. GF precisely captures the guarded bisimulation invariant frag-
ment of FO also in restriction to just finite relational structures: FO/~g =g, GF.
Le., the following are equivalent for any sentence ¢ € FO(T):

(i) ¢ is preserved under guarded bisimulation between finite T-structures.
(i) o is logically equivalent over finite T-structures to some ¢’ € GF(7).

The proof of the crucial expressive completeness assertion over finite structures
uses sufficiently acyclic and sufficiently free finite structures to show that any first-
order  that is ~g-invariant over finite structures is in fact Ng—invariant for a suitable
finite level £ of guarded bisimulation equivalence. By the guarded variant of the
Ehrenfeucht—Fraissé theorem this implies that ¢ is logically equivalent over all finite
structures to some GF formula of nesting depth /.

The argument for Né—invariance of ¢ involves an upgrading of 2 Né A’ for suitable
¢ to A =, A, where ¢ is the quantifier rank of ¢; cf. Figure 10. The latter equiva-
lence manifests itself as g-isomorphism, i.e., back & forth equivalence in the classical
g-round first-order Ehrenfeucht—Fraissé game. It is obvious that Né—equivalence will
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Ao Né Al from arbitrary finite

suitable covers

| i !

A -1 A/ to sufficiently acyclic and free

Fig. 10. Upgrading in expressive completeness argument.

imply =,-equivalence only for very special structures 2 and 2. The crux of the
upgrading argument therefore is the isolation of a class of (finite) structures

(a) which is fully representative up to ~ of all (finite) 7-structures, and

(b) over which 2 ~% 2 (for suitable £) indeed implies A =, 2.

N-acyclic, conformal structures that also satisfy the richness condition of (n, K)-
freeness (for suitable parameters N, n, K) can serve this purpose.

Then any given finite pair of structures 2, Né 20, may be replaced by ~g-
equivalent companion structures A ~g Ay and A" ~g A from that class, for
which therefore A = ¢ < A E . It follows that 2y &= ¢ & Al = ¢ so that
Né—invariance of ¢ is proved. Sections 4.3.1 and 4.3.2 establish the suitability of
sufficiently acyclic and sufficiently free structures for this upgrading according to
the diagram in Figure 10.

4.3.1 Free realisations of small conver configurations. Towards the upgrading
argument indicated in Figure 10 we want to establish the class of finite conformal,
N-acyclic and (n, K)-free T-structures as a class of structures for which 2 Ng A
implies A =, A’. (Suitable values of N, K, n and ¢ need to be determined in relation
to ¢ and the width of 7.)

N-acyclicity, for sufficiently large IV, is one useful requirement, because short
chordless cycles or small unguarded cliques are FO-definable; richness in the sense
of (n, K)-freeness for sufficiently large n and K is useful, for instance, because
small branching degree for certain extensions is FO-definable, too. As none of
these features is controlled by the GF-type of a configuration — and yet GF-types
need to control FO-types in the upgrading — the right class of structures must avoid
these obstructions outright.

It may be useful again to compare the graph case. Locally acyclic covers can
there be used to guarantee that configurations in the ¢-round classical Ehrenfeucht—
Fraissé game can locally be analysed in terms of tree structures that span the
components of the pebbled configurations. Vertex colours in the vicinity of any
tree node are controlled by the bisimulation type of that node, but multiplicities
are not. The easiest remedy in that case is to boost all multiplicities by a factor of
q, so that remaining differences in multiplicities between 2 and 2" are compatible
with =,.

For GF over relational structures, we may similarly use sufficiently acyclic struc-
tures in order to ensure that some n-closures of pebbled configurations break up into
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small local components, which are acyclic and therefore tree-decomposable. In an
extension move that goes close to one of these components, the tree-decomposition
needs to be extended to encompass an extended closure that includes the new ele-
ment. The analysis of n-closures in sufficiently acyclic hypergraphs in Section 3.7
indeed supports this kind of extension argument.

The richness condition of (n, K)-freeness from Section 3.6 on the other hand
will serve to guarantee the existence of a corresponding extension of the matching
configuration in the opposite structure. To this end we need to link GF-types in
sufficiently acyclic and free structures to the existence of suitably embedded small,
and therefore tree-decomposable, configurations.

In more precise terms, Lemma 4.8 below guarantees that in such structure, the
guarded bisimulation type determines the extension properties of small acyclic con-
figurations as desired.

Let B C 2 be connected and n-closed, i.e., such that cl,,(B) = B, in a sufficiently
free and acyclic structure 2, where in particular |B] is small enough to guarantee
acyclicity of A [ B. Then 2 | B admits a tree decomposition by guarded subsets,
T = (T,6) where 6: v+ 0(v) € S[]. Let the guarded tuple b € B be represented
in the designated root A of T, 6(A) = b.

With 7 we associate a GF-formula ¢7(x) := @7, describing the existential
GF-type of (Ql I B, b). Formulae ¢ ,, are defined by induction w.r.t. the depth of
v € T. For leaves v, o7, is a quantifier-free description of the atomic type of §(v)
in 2. From formulae o7, (x®) for the children v; of v € T' we obtain ¢7 , in the
obvious manner as a formula of the form

x(x) A /\ IxD.aPpr ., (x)
i
with guards a® abstracted from v; and a description x(x) of the atomic type of
d(v) in 2. Note that the variable tuples x” for the elements of the child nodes v;
need to be chosen consistently and in agreement with the new variable tuple x for
the elements at v so as to impose the required identifications for the overlaps.

LEMMA 4.8. For 2, T, b, pr(x) as above: if A’ is sufficiently acyclic and free,
then A, b’ |= o7 (x) implies that there is an n-closed subset B' C A" such that

AIB,b~A B, b.

ProoF. We find the desired B’ in stages corresponding to an induction w.r.t. the
height in the underlying tree decomposition 7 = (T, §). Along with B’ we produce
a tree decomposition 7/ = (T, ") isomorphic to the decomposition 7 of B and make
sure that A, 8’ (v) = @7, for all v € 7. Enumerate the nodes of T' in breadth-first
fashion as (v;)i<a, starting with the root vg = A. Let B; := (J{d(v;): j < i} so
that By = b. We obtain B’ as the union of sets Bj for which %' [ B, b’ ~ A B;, b,
starting with B :=b’.

The extension from B;_; to B} corresponds to a choice of ¢'(v) in (', B;) match-
ing d(v) in (A, B;), for v = v;. Let u = v; for some j < 7 be the immediate
predecessor u of v in T let ¢ € B; and its match ¢’ € B] be the guarded tuples
represented at u so that A, c and ', ¢ satisfy ¢7,. According to @71, ¢’ over-
laps with some tuple d’, similar to the manner in which ¢ overlaps with §(v) = d,
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such that 2’,d’ = ¢7,. Note, however, that the overlap between d’ and ¢’ could
be strictly larger than that between d and ¢ — more generally, modified distances
di(-,+) > n w.r.t. subsets of overlaps in B need not be reproduced automatically.
In order to remedy this, we need to replace our ad-hoc first choice for d’ by a free
realisation d” over the image t' C B}_, of t := d(v) Nd(u) C B;—1 (just as d = d(v)
is n-free over B;_1, due to the n-closed nature of B). We set ¢§'(v) :=d".

We claim that the resulting subset B’ = | Bj is n-closed in 2" and that 2 | B/, b’
and A | B,b are isomorphic. Clearly distances in 2’ [ B’ can only be shorter than
distances in 2 | B, as overlaps in B are analogously enforced in B’ through the
formulae @7 .

That short distances cannot actually shrink and that long distances cannot be-
come short follows from the n-free nature of the choices in the assembly of B’.

It suffices to show by induction on 4 that distances between elements of B} in 2
match those in 2 [ B;, if we regard all distances > n as equivalent. This is clear for
¢ = 0. For the passage from i — 1 to 4, consider any new element in d(v;), i.e., in
d(vi) \ 6(u) where u is the immediate predecessor of v; in T. With our n-free choice
of §'(v;) we made sure that dy (b, B;—_1) > n for every b’ € ¢'(v;) \ ¢'(u), and for
t' = ¢ (v;)) N (u). As far as distances in 2’ rather than in 2’ \ ¢’ are concerned,
these can only be smaller if the shortest path necessarily passes through ¢'; but then
the corresponding distance preservation follows from the induction hypothesis.

The reasoning for any short chordless path from a new element b’ € §'(v;) to some
element in B]_, is similar: there cannot be any short chordless paths avoiding ¢/,
since dy (b', B;_;) > n. Any short chordless paths from o’ through ¢, on the other
hand, consists of a single edge from &’ into ¢ and a continuation within B] ; that
is taken care of by the induction hypothesis.

It follows that B’ is n-closed, and that the natural association between the el-
ements of B and B’ is a bijection that preserves distances up to n exactly, and
leaves distances larger than n larger than n. It follows in particular that the local
isomorphisms guaranteed by the ¢z, combine to yield A’ [B’,b’ ~A[B,b. O

Remark 4.9. The proof shows that for any subtree Ty C T such that By :=
U{0(v): v € Ty} is n-closed, any isomorphism 2 | By ~ A’ [ B}, with some n-closed
B{, C A’ extends to an isomorphism 2| B ~ 2’ | B’ with n-closed B’.

4.3.2  Back-and-forth in free and acyclic models. The crux in Theorem 4.7 is
the proof of expressive completeness of GF for ~g-invariant FO-sentences. As
discussed at the beginning of Section 4, this is achieved with an upgrading of
suitable levels Né of guarded bisimulation equivalence to levels =, of elementary
equivalence — as indicated diagrammatically in Figure 10. The target structures in
this upgrading are such that Né implies =, i.e., such that back & forth extensions
can be guaranteed in the classical g-round Ehrenfeucht—Fraissé game for first-order
logic, based on just their Né equivalence. This upgrading then shows that any ¢
as in the theorem is actually preserved under some Né. Referring to the diagram:
if Ay = ¢, then A = ¢ because A ~; Ay and because ¢ is preserved under ~g
between finite structures; then A’ = ¢ simply because 2 =, A’ and qr(¢) < g¢;
finally, again by preservation under ~g, A = ¢ follows.

The usual Ehrenfeucht—Fraissé techniques imply that ¢ is equivalent to the dis-

junction of those GF-sentences that characterise the Né-types of models of ; this
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yields the desired ¢’ € GF since there are only finitely many Né—types.

For the desired upgrading we provide an extension lemma, which will cover the
crucial back & forth requirements of a single round in the first-order Ehrenfeucht—
Fraissé game. We rely on sufficient levels of acyclicity and freeness to make sure
we can maintain the appropriate closure conditions.

For a local isomorphism p between two 7-structures 2 and 21’ with domain B C 2l
and image B’ C ' we use the notation

p:B»—>éB'

to indicate that p is compatible with GF-equivalence up to nesting depth ¢, or with
Né in the sense that 2, b Né A, b’ for all guarded tuples b C B and b’ = p(b) C B’.

LEMMA 4.10. Let L > ¢+ fo(w,w + 1), where f, is the bound on sizes of n-
closures from Lemma 3.22 and w the width of 7. Let A and A’ be sufficiently free
and acyclic,

p: B r—>§ B’
a local isomorphism between subsets B = dom(p) C A and B’ = im(p) C A’ that are
(2n+1)-closed. Then there is, for every a € A, an extension to a local isomorphism
p2p,

p: B »—>é B
with a € dom(p) and such that B = dom(p) and B’ = im(p) are n-closed.

PRrROOF. Let us work in the expansions 2, and ) of 2 and ' by predicates that
mark the Né—types of guarded tuples. In effect this means that p is compatible
with Né’e over the expansions, and we need p to be just a local isomorphism w.r.t.
these expansions.

If d(a, B) > n, pick any o’ € 2’ such that 2, a Ng 2),a" and d(a’, B") > n too.
This is possible in sufficiently free and acyclic ', since 2, Né A, and an n-free
realisation of the appropriate type can be found according to Lemma 4.8.

If d(a, B) < n, we apply Lemmas 3.23 and 3.25 to the analysis of B := cl,(BUa).
We locate the clique (guarded tuple) d € B in which B\ B is linked to B, and
find its counterpart d’ := p(d) C B’ in A'. As cl,(BUa) = cl,(B) U cl,(da),
|B\ B| < |cln(da)| < fn(w,w+1). Tt follows that there is a tree decomposition 7°
of B, in which d is represented at a node v € T such that the subtree T,, C T that
represents cl,, (da) has depth at most f,,(w,w+1) < L —¢.

Now d’ = p(d) satisfies @7, in 2, since the nesting depth of 7, is bounded
by L — .

We therefore find, according to Lemma 4.8 and Remark 4.9, an extension of B’
to an n-closed subset B’ such that 2, B ~ Ql%,B’ , which implies that the corre-
sponding extension p, as a local isomorphism over the expansions, is compatible
with ~§ over 2 and 2, as required. O

COROLLARY 4.11. For sufficiently large £ and sufficiently free and acyclic A and
A, A Né A" implies A=, A'.
PRrROOF. We consider the following collections of partial isomorphisms
_ ny. p:dom(p) =gk im(p),
D= {p € Part(2, A7) dom(p),im(p) ng-closed
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for suitable parameters ¢, and ny. Let ({x)r<q and (ng)n<q be chosen such that
ngt1 = 2ng + 1 and lgyq = O + fr, (w,w + 1) (with f,, the bound on n-closures
from Lemma 3.22, w the width of 7). Then Lemma 4.10 shows that (Ij)x<, forms a
back & forth system, provided 2 and 2’ are sufficiently acyclic and free. If 2 Néq A,
then () € I, # 0 serves to show that

(Ik)k§q5 Qlﬁq A’ = Q[Eq Ql/,
providing the desired upgrading. [J

As discussed above, the upgrading according to Figure 10 establishes the ex-
pressive completeness claim of Theorem 4.7. For sufficiently large ¢ and arbitrary
Ao wé 25, we invoke Corollary 4.5 to find 2 and 2’ that are conformal, N-acyclic
and (n, K)-free for our preferred choice of parameters N, n, k. For some such
suitable choice, Corollary 4.11 implies that A =, A, and A = ¢ & A’ = ¢ follows.

5. OUTLOOK

We have introduced a new construction of finite hypergraph covers and guarded
covers that seems to achieve the highest possible degree of acyclicity that can gen-
erally be guaranteed — viz., N-acyclicity for some N, or acyclicity in substructures
of bounded size. The rudimentary study of N-acyclic structures has revealed some
striking features, e.g., in connection with the closure operation cl,,(-). Also an in-
vestigation into potential algorithmic benefits of N-acyclicity, akin in spirit maybe
to that of local tree decomposability as in [Grohe 2008], may be interesting. N-
acyclic hypergraphs and relational structures and the underlying model construc-
tions may also prove useful in the further study of extended modal and guarded
logics.

The key combinatorial construction of highly acyclic Cayley groups and graphs
in Section 2.1 is very uniform and the result seems natural and canonical (cf. Ob-
servation 3.3). Its application to the cover construction is far less so, due to the
local-to-global construction and due to the arbitrariness of glueing sites in the final
steps towards the completion of the cover. Unlike the results in the graph case [Otto
2004], or the conformal covers in [Hodkinson and Otto 2003], or the new results
in [Barany et al. 2010], the more highly acyclic covers obtained here are neither
canonical nor homogeneous, nor naturally compatible with automorphisms of the
base structure. It remains to be seen whether this can be improved — or whether
there are systematic obstacles that prevent some good features of graph covers from
being lifted to hypergraphs. To mention but one obvious such phenomenon, the
cartwheel hypergraphs from Figure 1 show that finite N-acyclic hypergraph covers
can in general not be faithful with respect to incidence degrees between hyperedges
— unlike the canonical graph covers obtained from products with suitable Cayley
groups (Proposition 3.7), which are degree-preserving.

It is also interesting to compare the two recent breakthroughs concerning finite
hypergraph covers that display certain qualified degrees of acyclicity, viz. weak
N-acyclicity in [Barany et al. 2010], and N-acyclicity here. While the weakly
N-acyclic covers are more regular and, above all, constructible within reasonable
size and complexity bounds, the current construction of N-acyclic covers is far less
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concrete and does not seem to offer good complexity bounds, but it offers what
seems to be the maximal achievable degree of acyclicity.

Acknowledgement. 1 am grateful to the anonymous referees for valuable sugges-
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