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1 Introduction

This investigation is motivated by a recent Lindström theorem for basic
modal logic (ML) by van Benthem [4] and related investigations in [5]. It is
shown in [4] that no logic that is compact, bisimulation invariant and has
the relativisation property can properly extend ML. This characterisation
itself may be seen as a methodological improvement on an earlier Lindström
characterisation of ML by de Rijke [13], which explicitly stipulated a finite
depth (or locality) condition as a crucial criterion. [A formula ϕ (over
pointed Kripke structures, say) is called r-local if whether or not a pointed
τ -structure (M, w) satisfies ϕ only depends on the substructure induced on
the r-neighbourhood of w (the set of elements accessible from w in at most
r steps).]

The proof of van Benthem’s characterisation in [4] does not carry over
to the interesting case of the guarded fragment GF, indeed not even to the
extension of basic modal logic by a global (or universal) modality ML[∀].
Crucially, the finite depth criterion is still instrumental in that proof, though
instead of being stipulated as a condition it is shown to be a consequence
of the combination of compactness and relativisation for any logic invariant
under ordinary bisimulation. But locality, or the finite depth criterion, fail
for GF and even for ML[∀]. Neither global nor guarded bisimulation invari-
ance implies locality. We therefore switch to an alternative characterisation
crucially based on the Tarski Union Property (TUP), which is another natu-
ral model theoretic criterion that has been studied in abstract model theory
[2]. Just as a variant characterisation of FO can be based on compactness,

1This paper summarises results from the second author’s diploma thesis [12], which
was supervised by the first author.
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TUP and invariance under partial isomorphy, we here characterise ML[∀]
and GF as maximally expressive among compact logics that are invariant
under the appropriate notion of bisimulation (global or guarded bisimula-
tion, respectively) and satisfy TUP. Some discussion of the role of TUP can
be found in the concluding section 4. An analogous characterisation of basic
modal logic ML itself is of course also available.

Part of the point of such investigations, as expounded in particular in
[5], is a new interest in the abstract model theory of logics well below first-
order logic. Many of the techniques and constructions that are available
in the more classical investigations into abstract model theory, which is
aimed at levels above first-order, [2], are no longer available or meaning-
ful for corresponding investigations at levels below FO. Much of the usual
coding machinery relies on first-order interpretations of, for instance, em-
bedded substructures or systems of partial isomorphism, etc., which are not
generally available at the level of logics of a typically modal character.

We point out that it remains open whether for instance ML[∀] is also
maximal in the class of compact logics with the relativisation property that
are invariant under global bisimulation.

In the following we presuppose some familiarity with basic model theo-
retic notions from modal logic (syntax and semantics of basic modal logic,
Kripke structures, bisimulation relations and the basic bisimulation game,
etc.) as presented in various textbooks and, for instance, in [6]. Corre-
sponding variations for ML[∀] and GF will be reviewed where they arise.

2 Characterisation of ML[∀]

We summarise some standard notions that are important throughout the
paper and for which the reader may also want to compare the classical
setting for abstract model theory in [2]. A logic L is a pair (L, |=L), where
L is a function that maps signatures σ to the sets L(σ) of L-formulae over
σ. |=L is a relation between structures and formulae of L. We tacitly
assume that structures are of an appropriate type also w.r.t. accommodating
any ‘free variables’ as appropriate for L: speaking of ‘structures’ we allow
structures with parameters, like pointed structures; this latitude is included
without explicit mention in (1) below. Any logic L is assumed to satisfy the
following:

1. If M |=L ϕ, then M is a σ-structure such that ϕ ∈ L(σ).

2. If σ ⊆ σ′, then L(σ) ⊆ L(σ′).

3. If σ ⊆ σ′, ϕ ∈ L(σ) and M a σ′-structure, then M↾σ |= ϕ iff M |= ϕ.

4. If M is isomorphic to N, then M |= ϕ iff N |= ϕ.

For the sake of simplicity we denote the set of L-formulae over σ by L(σ),
and mostly write just |= for |=L.

A logic L′ is at least as expressive as a logic L, if for every signature σ
and every formula ϕ ∈ L(σ) there is a formula ϕ′ ∈ L′(σ) such that M |= ϕ
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iff M |= ϕ′ for every σ-structure M. If L is at least as expressive as L′ and
vice versa, then L and L′ are equi-expressive or equivalent. Since syntactic
variations are immaterial for our purposes, we regard equivalent logics as
equal. For the same reason, if L′ is at least expressive as L, we may assume
that L(σ) ⊆ L′(σ) for every signature σ. We thus write just L ⊆ L′ and
L = L′ for the corresponding relations between logics.

We call a logic L compact, if it satisfies the following, for every set Ψ ⊆
L(σ): existence of models for every finite Ψ0 ⊆ Ψ implies the existence
of a model of Ψ (any finitely satisfiable set of L-formulae is satisfiable).
Note that we make no restriction on the cardinality of the sets Ψ under
consideration (full compactness).

A modal signature (for ML or ML[∀] and similar extensions) consists of
a pair of sets (τ,Φ), where the α ∈ τ label the binary accessibility rela-
tions Rα and the P ∈ Φ correspond to unary predicates interpreting ba-
sic propositions in Kripke structures of type (τ,Φ). The class of Kripke
structures of this type is denoted Mod(τ,Φ). In the sense of the general
stipulation above, the relevant signatures σ are thus of the form σ = (τ,Φ)
and we stick to notation like L(τ,Φ). Also, σ-structures are pointed (τ,Φ)-
structures, according to the natural semantics of modal logics like ML and
ML[∀]. Where appropriate, we shall make this implicit as usual, in notation
as in (M, w) |= ϕ.

ML[∀] is the extension of basic modal logic ML by a global modality
(corresponding to the full accessibility relation), which we denote as ∀.

We are interested in logics that extend ML[∀] in the following sense.

DEFINITION 1. A logic L extends ML[∀] if, for every (τ,Φ), ML[∀](τ,Φ) ⊆
L(τ,Φ) and L(τ,Φ) is closed under ∧, ¬ as well as ∃ and 〈α〉 for every α ∈ τ .

The bisimulation game of basic modal logic ML may be extended in a
natural manner to cover moves that capture the power of the global accessi-
bility relation associated with the extension of ML by ∀. For this, one allows
the first player to call ‘global rounds’ in which both players are allowed to
freely relocate pebbles within the respective structure unconstrained by the
accessibility relations Rα. For the second player to have a winning strat-
egy in this modified infinite bisimulation game starting from configurations

(M, w); (N, v), which we denote by (M, w)
∀

←→−− (N, v), is the same as to
require an ordinary bisimulation relation between M and N that is global
(covers all of M and all of N) and contains the pair (w, v). We speak of
global bisimulation equivalence. It is easy to see that global bisimulation
equivalence is exactly the right analogue of ordinary bisimulation equiva-
lence that is appropriate for ML[∀]. In particular ML[∀] is invariant under
global bisimulation equivalence in the following sense.

DEFINITION 2. A logic L is invariant under global bisimulation equiva-

lence, or
∀

←→−− invariant, if for any two globally bisimilar pointed structures

(M, w)
∀

←→−− (N, v) of type (τ,Φ) and any formula ϕ ∈ L(τ,Φ): (M, w) |= ϕ
iff (N, v) |= ϕ.
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We write Th(M, w) for the ML[∀](τ,Φ)-theory and ThL(M, w) for the
L(τ,Φ)-theory of (M, w).

DEFINITION 3. Let M,N ∈ Mod(τ,Φ). N is an L-elementary extension
of M, M 4L N, if M is an induced substructure of N and ThL(τ,Φ)(M, w) =
ThL(τ,Φ)(N, w) for all w in M.

DEFINITION 4. A logic L is said to have the Tarski Union Property (TUP)
if for every L-elementary chain, (Mi)i∈N : M0 4L M1 4L M2 4L . . ., the
union

⋃
i∈N

Mi is an L-elementary extension of each Mj .

OBSERVATION 5. ML[∀] has the Tarski Union Property.

Proof. Let M
∗ :=

⋃
i∈N

Mi. As Mj is a substructure of M
∗, atomic

formulae are preserved at all w in Mj . The claim is trivially compatible
with boolean operations. It remains to give inductive arguments for the
〈α〉- and ∃-steps in formula formation.

〈α〉. Let (Mj , w) |= 〈α〉ϕ, i.e., (Mj , w
′) |= ϕ for some (w,w′) ∈ R

Mj
α .

By the inductive hypothesis for ϕ, (M∗, w′) |= ϕ, and therefore (M∗, w) |=
〈α〉ϕ, as also (w,w′) ∈ RM

∗

α .
Conversely, if (M∗, w) |= 〈α〉ϕ through some (w,w′) ∈ RM

∗

α such that
(M∗, w′) |= ϕ, then w′ ∈ Mk and (w,w′) ∈ RMk

α for some k ∈ N. By the
inductive hypothesis for ϕ, (Mk, w

′) |= ϕ, whence (Mk, w) |= 〈α〉ϕ. By
the L-elementary nature of the chain, (Mj , w) |= 〈α〉ϕ for all j such that
w ∈Mj .
∃ is treated analogously. �

Our goal is the following characterisation of ML[∀] as maximally expres-

sive among a natural class of
∀

←→−− invariant logics.

THEOREM 6. Any compact
∀

←→−− invariant logic L with the Tarski Union
Property that extends ML[∀] is equivalent to ML[∀] itself.

We define several natural notions and provide some lemmas towards the
proof.

DEFINITION 7. A set of ML(τ,Φ)-formulae Γ is called an α-type of (M, w)
(or of Th(M, w)) if (M, w) |= 〈α〉

∧
Γ0 for all finite Γ0 ⊆ Γ.

∃-types of M (or of Th(M)) are similarly defined: M |= ∃
∧

Γ0 must apply
for all finite subsets Γ0 of Γ.

DEFINITION 8. An α-type Γ of (M, w) is realised in (M, w) if there is
some w′ in M such that (w,w′) ∈ RM

α and (M, w′) |= Γ. An ∃-type Γ of M

is realised in M if (M, w′) |= Γ for some w′ in M.
A structure is called saturated if for all w in M and all α ∈ τ every α-type

of (M, w) is realised in (M, w) and if every ∃-type of M is realised in M.

The following is the natural variant of the Hennessy–Milner theorem for
global bisimulation equivalence and ML[∀] over the class of saturated Kripke
structures. In fact it is easily seen via the game that, over saturated Kripke
structures, ML[∀]-equivalence induces a global bismulation, see, e.g., [6].
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THEOREM 9 (Hennessy–Milner). If M,N ∈ Mod(τ,Φ) are saturated, then

Th(M, w) = Th(N, v) implies (M, w)
∀

←→−− (N, v).

A forest-unfolding (MF , w) of (M, w) is the disjoint union of all tree-un-
ravelings in every element of (M, w). Since any forest-unfolding (MF , w)
is globally bisimilar to its underlying model (M, w), they have the same L-
theory. Below, we shall use them as a normalised representation of models
that allow us to embed one into another.

LEMMA 10. Let (M, w) be a forest model with a uniquely assigned propo-
sitional letter Pw′ for each element w′ in (M, w). Then any (N, v) |=
Th(M, w) admits an isomorphic embedding ι : (M, w) −֒→ (N, v).

Proof. (M, w) can be embedded in (N, v) by an injection ι : (M, w) −֒→
(N, v), which is inductively defined (w.r.t. distance from the roots in the
component trees of the forest model M) such that (N, ι(w′)) |= Pw′ for
every w′ in M. �

PROPOSITION 11. Let L be a compact logic extending ML[∀]. Then every
forest model M admits an L-elementary extension M

′ that realises all α-
types of (M, w) (as α-types of (M′, w)) for all w in M and realises all
∃-types of M (as ∃-types of M

′).

Proof. We introduce new propositional letters to Φ by setting

Ψ := Φ ∪ {Pw |w ∈M}
∪ {Pα

w,Γ |w in M, Γ an α-type of (M, w)}

∪ {PΓ |Γ an ∃-type of M}

for disjoint sets of new unary predicates. Let T ′ be the following L(τ,Ψ)-
theory (towards an axiomatisation of the (τ,Ψ)-expansion of the desired
M

′). T ′ comprises, for all w in M, the following L(τ,Ψ)-formulae:

1. ∃Pw.

2. ∀(Pw −→ ¬Pw′), for all w′ 6= w in M.

3. ∀(Pw −→ 〈α〉Pw′), for all (w,w′) ∈ RM
α , α ∈ τ .

4. ∀(Pw −→ ¬〈α〉Pw′ ), for all (w,w′) /∈ RM
α , α ∈ τ .

5. ∀(Pw −→ ξ), for every ξ ∈ ThL(M, w).

6. ∀(Pw −→ 〈α〉P
α
w,Γ), for all α ∈ τ and every α-type Γ of (M, w).

7. ∃PΓ, for every ∃-type Γ of M.

8. ∀(Q −→ ξ), for all Q = Pα
w,Γ, PΓ in Ψ and every ξ ∈ Γ.
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T ′ is finitely satisfiable (in expansions of M), hence satisfiable by com-
pactness of L. Let M

′ |= T ′. As L is invariant under global bisimulation
∀

←→−− , we may assume w.l.o.g. that M
′ is a forest model. By construction,

the (τ,Φ)-reduct of M
′ is isomorphic to an L-elementary extension of the

forest model M: the isomorphism as in the proof of lemma 10 here yields
an L-elementary embedding, due to the formulae in (5). W.l.o.g., the forest
model M

′ is an L-elementary extension of M. Moreover, M
′ realises all

required types, by (6)–(8). �

COROLLARY 12. Let L be a compact logic extending ML[∀] with TUP.
Then every forest model (M, w) possesses a saturated L-elementary exten-
sion.

Proof. Starting with the given model (M, w), a repeated application of
proposition 11 yields a chain of forest models, in which the (τ,Φ)-reduct
of each model is an L-elementary extension of its predecessor (restricted to
(τ,Φ)). Since L has the Tarski Union Property, the limit of this chain is an
L-elementary extension for all members of the chain. Every type of Mi is
realised in Mi+1; so the limit is saturated. �

The following indicates how to complete an ML[∀](τ,Φ)-theory while
maintaining ML[∀]-inexpressibility of a given ϕ ∈ L(τ,Φ).

LEMMA 13. Let L be a logic extending ML[∀], ϕ ∈ L(τ,Φ), T ⊆ML[∀](τ,Φ)
and ψ ∈ ML[∀](τ,Φ). If there is no χ ∈ML[∀](τ,Φ) such that T |= ϕ←→ χ,
then the same is true of at least one of T ∪ {ψ} or T ∪ {¬ψ}.

Proof. Assume for both ψ and ¬ψ there were formulae χ and χ′ such that
T |= ψ −→ (ϕ ←→ χ) and T |= ¬ψ −→ (ϕ ←→ χ′). Then T |= ϕ ←→
((χ∧ψ)∨ (χ′ ∧¬ψ)) contradicts our assumptions, since (χ∧ψ)∨ (χ′ ∧¬ψ)
is in ML[∀](τ,Φ). �

Compactness of L guarantees that, in the situation of the lemma, the set
of ML[∀](τ,Φ)-theories under which ϕ is not equivalent to any ML[∀](τ,Φ)-
formula is closed under unions of ⊆-chains. By Zorn’s lemma, we thus
obtain a ⊆-maximal such T ⊆ ML[∀](τ,Φ). By the lemma, such T is a
complete ML[∀](τ,Φ)-theory. Moreover, both T ∪ {ϕ} and T ∪ {¬ϕ} are
satisfiable, as otherwise ϕ would be equivalent to ⊥ or ⊤ under T . We thus
get the following.

PROPOSITION 14. If L is a compact logic extending ML[∀] and for some
signature (τ,Φ) there is a formula ϕ ∈ L(τ,Φ) not equivalent to any χ ∈
ML[∀](τ,Φ), then there are two (τ,Φ)-models M and N such that Th(M, w) =
Th(N, v) and (M, w) |= ϕ while (N, v) |= ¬ϕ.

Proof of theorem 6. Assume, for some (τ,Φ) there is a formula ϕ ∈ L(τ,Φ)
which is not equivalent to any formula in ML[∀](τ,Φ). According to propo-
sition 14 there are two (τ,Φ)-models M and N with Th(M, w) = Th(N, v)
and (M, w) |= ϕ and (N, v) |= ¬ϕ. Since L is invariant under global
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bisimulation
∀

←→−− , we may assume w.l.o.g. that M and N are forest models.
By compactness, corollary 12 yields saturated (τ,Φ)-models (M∗, w) and
(N∗, v) which have the same L(τ,Φ)-theories as the originals. Therefore

Th(M∗, w) = Th(N∗, v) and, by theorem 9, (M∗, w)
∀

←→−− (N∗, v). But then
(M∗, w) |= ϕ and (N∗, v) |= ¬ϕ shows that ϕ is not invariant under global
bisimulation, contradicting the assumptions on L. �

3 Characterisation of GF

First we introduce the relevant basic notions for GF, in analogy with those
used for ML[∀] above. For guarded bisimulation invariant candidate logics
L, suitable and natural notions of elementary extensions and the Tarski
Union Property are presented, before we state the main theorem. For the
following we work with arbitrary relational signatures τ .

The guarded fragment GF(τ) ⊆ FO(τ) is introduced as the restriction
of FO that only allows quantification of the following guarded format. For
a relation symbol R ∈ τ (or =), we write R(x̄ȳ) for an R-atom containing
all the displayed variables (but not necessarily in this order, and repetitions
are also allowed). A quantification ∃ȳ.R(x̄ȳ) ∧ ϕ is guarded if, and only
if, free(ϕ) ⊆ free(R(x̄ȳ)); the R-atom R(x̄ȳ) is a guard in this first-order
quantification. Since equality atoms may also serve as guards, ∃y.y = y ∧ϕ
is a formula of GF(τ) whenever y is the only free variable in ϕ ∈ GF(τ).

As a fragment of FO, GF is compact.

In a τ -structure M, a subset X ⊆M is called guarded if it is a singleton
set or for some R ∈ τ there is a tuple ā ∈ RM comprising all the elements of
X . A tuple ā is guarded in M if there is a guarded set in M that includes all
components of ā. A tuple is called strictly guarded if its set of components
is precisely the set of components of some RM-atom, or a singleton set.

We also introduce the following terminology that is suitable for our pur-
poses. A tuple ā′ is an ∃ȳ.R(x̄ȳ)-successor of ā in M if the assignment
x̄ȳ 7→ ā′ is an extension of the assignment x̄ 7→ ā such that M, ā′ |= R(x̄ȳ).
Clearly guarded quantifications correspond to modal quantifications w.r.t.
transitions to ∃ȳ.R(x̄ȳ)-successors (which are strictly guarded tuples). This
analogy is at the root of the appropriate notion of guarded bisimulation and
of guarded tree-unfoldings to be discussed below.

Let M,N be two τ -structures, possibly with tuples of distinguished pa-
rameters ā and b̄ of matching lengths. The guarded bisimulation game on
M and N is played by two players I and II. A generic configuration of
the game consists of designated strictly guarded tuples of the same length,
one in each structure, denoted (M, ā); (N, b̄).1 II will have lost unless the
componentwise mapping ā 7−→ b̄ is a partial isomorphism between M and
N.

In each new round player I chooses to play in one of the two structures,
say M, and chooses a (possibly empty) subtuple ā0 of the current tuple ā

1In the initial configuration of the game, the given, not necessarily guarded tuples of
distinguished parameters are admitted.
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that stays fixed, and a completion of ā0 to some strictly guarded tuple ā′. II

has to choose a strictly guarded tuple b̄′ extending the corresponding b̄0 such
that the componentwise mapping ā′ 7−→ b̄′ is again a partial isomorphism
between M and N. Note that, if I chose an ∃ȳ.R(x̄ȳ)-successor of ā0, then
the rules force II to do likewise.

II looses the game if she cannot provide an answer that satisfies these con-
straints. We say that II wins the game, if she has a winning strategy which
allows her to respond to all challenges of I indefinitely. Two τ -structures
with designated tuples M, ā and N, b̄ are guarded bisimilar, M, ā

g

←→−− N, b̄,
if II wins the game from (M, ā); (N, b̄).

Guarded bisimulation equivalence is the natural variant of Ehrenfeucht–
Fräıssé equivalence associated with GF ⊆ FO. In particular, the semantics
of GF is invariant under this equivalence: if M, ā

g

←→−− N, b̄, then M, ā
and N, b̄ are GF-equivalent, or have the same GF-theories (cf. the following
definition).

DEFINITION 15. The GF-theory of a tuple ā in a τ -structure M is the
set of GF-formulae satisfied by ā in M: ThGF(τ)(M, ā) := {ϕ ∈ GF(τ) |
(M, ā) |= ϕ}.

DEFINITION 16. Let M be a τ -structure. A set Γ ⊆ GF(τ) is called
an ∃ȳ.R(x̄ȳ)-type of (M, ā) if for every finite subset Γ0 ⊆ Γ (M, ā) |=
∃ȳ.R(x̄ȳ) ∧

∧
Γ0.

This type is realised at (M, ā) if there is an ∃ȳ.R(x̄ȳ)-successor ā′ of ā in
M such that (M, ā′) |= Γ.

A τ -structure M is GF-saturated if, for every guarded tuple ā and every
∃ȳ.R(x̄ȳ), all ∃ȳ.R(x̄ȳ)-types of (M, ā) are realised at (M, ā).

The following analogue of the Hennessy–Milner theorem is then immedi-
ate.

PROPOSITION 17 (Hennessy–Milner). Let M, ā and N, b̄ be two GF-satu-
rated τ-structures with parameter tuples. If ThGF(τ)(M, ā) = ThGF(τ)(N, b̄),

then M, ā
g

←→−− N, b̄.

Proof. Indeed, GF-equivalence between (strictly guarded) tuples can be
maintained by II and thus provides a winning strategy. Assume w.l.o.g.
that I chooses an ∃ȳ.R(x̄ȳ)-successor ā′ of some subtuple ā0 of ā in M.
Since (M, ā) and (N, b̄) have the same theory,

(M, ā0) |= ∃ȳ.R(x̄ȳ) ∧
∧

Γ0 iff (N, b̄0) |= ∃ȳ.R(x̄ȳ) ∧
∧

Γ0

for all finite Γ0 ⊆ ThGF(τ)(M, ā′). So ThGF(τ)(M, ā′) is an ∃ȳ.R(x̄ȳ)-type of
ThGF(τ)(N, b̄0). As N is GF-saturated, there is an ∃ȳ.R(x̄ȳ)-successor b̄′ of
b̄0 such that (N, b̄′) |= ThGF(τ)(M, ā′) for II to play. �

DEFINITION 18. A logic L extends GF if, for every signature τ , GF(τ) ⊆
L(τ) and L is closed under boolean operations ∧,¬ and guarded quantifi-
cation. Closure under guarded quantification means that for any τ -atom
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R(x̄ȳ) and any ϕ ∈ L(τ) with free variables2 amongst x̄ȳ, there is an L-
formula ϕ′ with the semantics of ∃ȳ.R(x̄ȳ) ∧ ϕ.

DEFINITION 19. Let M,N be two τ -structures. N is an L-elementary
extension of M (in a guarded sense), abbreviated by M 4L N, if M is an
induced substructure of N and ThL(τ)(M, ā) = ThL(τ)(N, ā) for all guarded
tuples ā in M. M, ā 4L N, ā can be similarly defined for a not necessarily
guarded tuple of distinguished parameters.

Recall from definition 4 that L has the Tarski Union Property (TUP) if
the limit of every L-elementary chain (Mi)i∈N is an L-elementary extension
of each Mi.

OBSERVATION 20. GF has TUP.

Proof. Let M0 4GF M1 4GF M2 . . . be a chain of GF-elementary exten-
sions and M

∗ :=
⋃

i∈N
Mi. Let furthermore Mj be a member of the chain

and ā a guarded tuple in Mj . It has to be shown that ThGF(τ)(Mj , ā) =
ThGF(τ)(M

∗, ā). The only interesting step in the syntactic induction is that
of guarded quantification.

Assume (Mj , ā) |= ∃ȳ.R(x̄ȳ)∧ϕ. For some ∃ȳ.R(x̄ȳ)-successor ā′ we have
(Mj , ā

′) |= ϕ, which entails (M∗, ā′) |= ϕ by the induction hypothesis, and
hence (M∗, ā) |= ∃ȳ.R(x̄ȳ) ∧ ϕ.

Conversely, if (M∗, ā) |= ∃ȳ.R(x̄ȳ) ∧ ϕ, then there is some k ∈ N such
that the ∃ȳ.R(x̄ȳ)-successor ā′ satisfying ϕ lives in Mk. For m := max{j, k}
this ā′ is an ∃ȳ.R(x̄ȳ)-successor of ā in Mm. By the induction hypothesis
(Mm, ā

′) |= ϕ and hence (Mm, ā) |= ∃ȳ.R(x̄ȳ) ∧ ϕ. The latter entails
(Mj , ā) |= ∃ȳ.R(x̄ȳ) ∧ ϕ, since Mm is an GF-elementary extension of Mj .

�

In analogy to tree-unravellings of Kripke-structures, every τ -structure
is guarded bisimilar to a structure that is tree-like w.r.t. the accessibility
relations induced by the ∃ȳ.R(x̄ȳ)-successor relations. Technically, these
tree-like structures are tree-decomposable into substructures consisting of
(strictly) guarded tuples, or guarded tree-decomposable, cf. the generalised
tree model property of [7], and see [8] for details of the analogy with ordinary
unravellings. Intuitively, these guarded tree unfoldings are obtained by
introducing new disjoint copies of elements along every path of overlapping
guarded subsets leading to them. For a logic that is invariant under guarded
bisimulation, one may w.l.o.g. restrict attention to the tree-like models thus
obtained.

REMARK 21. Let M be a tree-like (i.e., guarded tree-decomposable) τ -
structure such that for every guarded tuple ā in M there is a predicate
Pā ∈ τ with PM

ā = {ā}. Then M can be embedded in any structure N that
satisfies the following GF-formulae for all Pā, Pā′ ∈ τ :

2Instead of explicitly referring to a notion of free variable for formulae in an abstract
logic L, a semantic description can be given: for every ϕ ∈ L(τ) there is ϕ′ ∈ L(τ), s.t.
(M, ā) |= ϕ′ iff there is an ∃ȳ.R(x̄ȳ)-successor ā′ of ā with (M, ā′) |= ϕ.
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1. ∃x̄.Pāx̄.

2. ∀x̄.Pāx̄ −→
∧

1≤i≤k Pai
xi where ā = (a1, . . . , ak).

3. ∀x.Pax −→ ¬Pa′x for all a 6= a′ in M.

4. ∀x̄.Pāx̄ −→ ∃ȳ.Pā′(x̄ȳ), where ȳ represents the components of ā′ \ ā.

5. ∀x̄.Pāx̄ −→ R(x̄) for all atomic formulae R(x̄) ∈ ThGF(τ)(M, ā).

6. ∀x̄.Rx̄ −→ ¬(
∧

i≤k Pai
xi)

for all (a1, . . . , ak) /∈ RM, R ∈ τ of arity k and (a1, . . . , ak) ∈Mk.

Since M is tree-like, the embedding can be defined inductively w.r.t.
distance from the root in a guarded tree-decomposition (i.e., successively
proceeding to ∃ȳ.R(x̄ȳ)-successors).

PROPOSITION 22. Let L be a compact, guarded bisimulation invariant
logic that has TUP. Then every tree-like τ-structure M has an L-elementary
extension that is GF-saturated.

The proof is based on a chain limit (TUP) of a chain obtained through
the following process.

PROPOSITION 23. Let M be a tree-like τ-structure. Then there is a tree-
like L-elementary extension N of M such that, for every guarded tuple ā in
M and for every ∃ȳ.R(x̄ȳ) ∈ GF(τ), every ∃ȳ.R(x̄ȳ)-type of M, ā is realised
at (N, ā).

Proof. Let G(M) be the set of all guarded tuples in M. We extend τ to
σ := τ ∪̇ {Pā | ā ∈ G(M)} and σ further to

ρ := σ ∪̇
⋃

ā∈G(M)

{Pα
ā,Γ | α = ∃ȳ.R(x̄ȳ),Γ ⊆ GF(τ) an α-type of (M, ā)}.

The set of formulae defined in remark 21 can now be formulated in GF(σ).
We extend this set to T ⊆ L(ρ) by adding the following formulae for every
ā ∈ G(M).

7. ∀x̄.Pāx̄ −→ ϕ for all ϕ ∈ ThL(τ)(M, ā).

8. ∀x̄.Pāx̄ −→ ∃ȳ.R(x̄ȳ) ∧ Pα
ā,Γ(x̄ȳ)

for every α = ∃ȳ.R(x̄ȳ) and every ∃ȳ.R(x̄ȳ)-type Γ of (M, ā).

9. ∀x̄.Pα
ā,Γx̄ −→ ϕ for every ϕ ∈ Γ and Pα

ā,Γ ∈ ρ.

A simple compactness argument shows that T is satisfiable; indeed any
finite subset of T is satisfiable in an expansion of M.

Let N be a ρ-structure satisfying T . Since L is bisimulation invariant we
may assume that N is tree-like. By setting PM

ā := {ā} the τ -structure M

can be extended to a σ-structure, and is embeddable into the σ-reduct N↾σ



Lindström Characterisation of GF and ML[∀] 11

according to remark 21. Hence we may assume, that M is a substructure
of N↾τ .

For every ā ∈ G(M) the formulae in (7) guarantee (N, ā) |= ThL(τ)(M, ā)
and therefore N↾τ is an L-elementary extension of M.

It remains to show, that every ∃ȳ.R(x̄ȳ)-Type of (M, ā) is realised at
(N, ā). This is clear from (8) and (9). �

Proof of proposition 22. Let M0 := M and inductively let Mi+1 be a tree-
like L-elementary extension that realises every GF-type of Mi as obtained
through proposition 23. We thus get an L-elementary chain M0 4L M1 4L

M2 4L . . ., and since L has TUP, the limit M
∗ is an L-elementary extension

of every member Mi and in particular of M.
M

∗ is GF-saturated: let Γ be an ∃ȳ.R(x̄ȳ)-type for some guarded tuple
ā in M

∗. There is some i ∈ N such that ā is a guarded tuple of Mi. Since
M

∗ is an L-elementary extension for Mi, in particular ThGF(τ)(Mi, ā) =
ThGF(τ)(M

∗, ā). Therefore (Mi, ā) has exactly the same ∃ȳ.R(x̄ȳ)-types as
(M∗, ā). All those types are realised in Mi+1 and hence in M

∗ by the
L-elementary nature of the extension.

Hence M
∗ is a GF-saturated L-elementary extension of M. �

COROLLARY 24. For every τ-structure M with distinguished parameters
ã there is a GF-saturated L-elementary extension M

∗ for M such that also
ThL(τ)(M, ã) = ThL(τ)(M

∗, ã).

Proof. We expand the signature τ to τ̇ := τ ∪ {Pã} and set PM

ã := {ã}.
Using proposition 22 for the τ̇ -structure M, we obtain a GF-saturated τ̇ -
structure M

∗ such that M 4L M
∗ w.r.t. τ̇ . So ThL(τ̇)(M, ā) = ThL(τ̇)(M

∗, ā)
for every guarded tuple ā in M and especially for ã, which was guarded
by Pã ∈ τ̇ . Since L is compatible with reducts (cf. condition (3) on ab-
stract logics in section 2), we get ThL(τ)(M, ā) = ThL(τ)(M

∗, ā) for every
guarded tuple, including ã. Therefore M ↾ τ 4L M

∗ ↾ τ and ThL(τ)(M, ã) =
ThL(τ)(M

∗, ã). Since the τ -reduct of M
∗ remains GF-saturated, M

∗ ↾ τ is
the model we are looking for. �

THEOREM 25. Any compact
g

←→−− invariant logic L with the Tarski Union
Property that extends GF is equivalent to GF itself.

Proof. Assume L were more expressive than GF. Then there would be a
signature τ and a formula ϕ ∈ L(τ) that is not equivalent to any formula
in GF(τ). Since L is compact, there are two τ -structures M, ā and N, b̄
with parameters such that ThGF(τ)(M, ā) = ThGF(τ)(N, b̄) yet M, ā |= ϕ
and N, b̄ |= ¬ϕ (cf. proposition 14).

According to corollary 24 there are two GF-saturated structures M
∗ and

N
∗ such that ThL(τ)(M, ā) = ThL(τ)(M

∗, ā) and ThL(τ)(N, b̄) = ThL(τ)(N
∗, b̄).

It follows that ThGF(τ)(M
∗, ā) = ThGF(τ)(N

∗, b̄). As both structures are GF-
saturated, M

∗, ā and N
∗, b̄ are guarded bisimilar, by the Hennessy–Milner

theorem. But by the L-elementary nature of the extensions, still M
∗, ā |= ϕ

while N
∗, b̄ |= ¬ϕ, contradicting invariance under guarded bisimulation. �
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4 Concluding remarks

We have shown that ML[∀] and GF are maximally expressive logics whose
semantics is invariant under the corresponding notion of bisimulation among
compact logics with the Tarski Union Property (TUP).

The choice of TUP as a leading criterion may deserve some comment.
Any choice of model theoretic criteria in a characterisation of the proposed
kind has to be argued in the light of the question “What constitutes a
good Lindström characterisation?”. Clearly Lindström characterisations are
very sensitive to the particular conditions imposed; the setting of the stage
involves a critical choice as to which competing logics are admitted. While
this may partly be a matter of taste or of tradition, it is also clear that a
proposal is the more creditable, the wider the class of competitors is a priori,
and the more fundamental the individual constraints are in the broader
context of abstract model theory. There is no claim that the choices we made
here are optimal in any sense. The following discussion is merely meant to
indicate the setting in which this choice is being made, and thus points
to some considerations that led us to favour the Tarski Union Property
as a reasonably natural choice in a situation where compactness and basic
semantic invariance conditions alone are at least not known to suffice to pin
down the logics in question.

As pointed out in [4, 5], Lindström characterisations are closely related to
semantic characterisation theorems in the tradition of classical preservation
results. For basic modal logic, this companion/precursor is van Benthem’s
classical characterisation of ML as the bisimulation invariant fragment of
first-order logic [3]; see [10, 9, 6] for a locality based account of, for in-
stance, ML and ML[∀] as bisimulation invariant fragments of FO. The key
difference is, of course, that in a Lindström characterisation we usually do
not want to assume any a priori inclusion in some background logic, cer-
tainly not inclusion in FO. Modal logics like basic modal logic ML itself, or
its extension with a global modality ML[∀], or the guarded fragment GF,
are to be characterised not just as fragments of FO, but rather within the
family of all logics that respect the same fundamental semantic invariance
condition (bisimulation, global bisimulation, or guarded bisimulation invari-
ance), including in particular candidate logics that are incomparable with
FO. In this context, it is useful to recall Karp’s theorem. All the semantic
invariances considered concern equivalences that are

(a) bounded by partial isomorphism ≃part.
3

(b) game based in the sense that equivalence corresponds to the existence
of a winning strategy in infinite plays of some Ehrenfeucht–Fräıssé
type model theoretic game.4

By Karp’s theorem, ≃part coincides with≡∞ω, i.e., with equivalence in the

3We say that one equivalence relation is bounded by another, if the classes of the
former are unions of classes of the latter, i.e., if the former can only be coarser than the
latter.

4In the cases at hand: the ordinary bisimulation game, its variant with global moves,
or the guarded bisimulation game.
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infinitary logic L∞ω, the extension of FO that allows infinite disjunctions
and conjunctions rather than just finite ones. Therefore, (a) implies that
equivalence ≡L for the candidate logics L is bounded by ≡∞ω.

Any infinitary game based equivalence as in (b), on the other hand, has
natural finite approximations induced by existence of strategies in truncated
games with a fixed finite number of rounds. By the corresponding variant of
the classical Ehrenfeucht–Fräıssé theorem, these finitary approximate levels
correspond – for finite vocabularies at least – to equivalences in fragments
of the target logic that are finite up to logical equivalence and definable
in FO. In the examples mentioned, these are the fragments of fixed finite
nesting depths of the logics under consideration. In such a situation, a
Hennessy–Milner–Karp connection between equivalence w.r.t. the common
refinement of the finite approximation levels of the infinitary equivalence
and full infinitary equivalence comes into focus. For basic modal logic, for
instance, the classical Hennessy–Milner theorem tells us that equivalence in
basic modal logic, i.e., equivalence w.r.t. all finite levels of n-bisimulation,
guarantees full bisimulation equivalence for instance over the class of all
finitely branching Kripke structures, and more generally over modally sat-
urated Kripke structures.

Following an approach outlined in [11], one could sum up the key param-
eters in this setting as follows:

We consider a target logic L =
⋃

ℓ∈ω Lℓ ⊆ FO, stratified into syntactic
levels Lℓ such that equivalence w.r.t. Lℓ has finite index and is captured
by the ℓ-round game equivalence ⇌ℓ, which is in FO for every fixed finite
vocabulary. It follows that equivalence w.r.t. L, ≡L, is captured by the com-
mon refinement of all its finite approximations, ⇌ω:=

⋂
ℓ ⇌ℓ. Moreover,

⇌ω coincides with ⇌ at least over ω-saturated structures, since here ‘good
responses in every finite game’ constitute (partial) types, whose realisations
yield ‘good responses for the infinite game’. (This reasoning is pursued in
[11] in terms of first-order interpretations translating between the games
for ⇌ and the ordinary bisimulation game, also at the level of their finite
approximations.)

We want to characterise L as maximal among certain well-behaved logics
L whose semantics is invariant under ⇌, the full infinitary game equiv-
alence. Setting aside the issue of finite vocabularies (a finite occurrence
property may be stipulated explicitly, or may be derivable from compact-
ness assumptions), there are the following two essential hurdles in showing
that L is maximally expressive among all ⇌ invariant logics L ⊇ L satisfying
some additional model theoretic criteria:

(i) the gap between ⇌ω (which is the same as≡L) and ⇌ (which we know
to be a refinement of ≡L, by the fundamental assumption of ⇌ invari-
ance of L). Here Hennessy–Milner–Karp is useful: ≡L (⇌ω) coincides
with ⇌ and hence with ≡L at least for ω-saturated structures.

(ii) the gap between showing that ≡L is bounded by ≡L and showing that
L ⊆ L: this gap can typically be bridged by a compactness argument.
Clearly compactness is a most natural criterion in the context of a
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Lindström characterisation of a compact logic.

It follows that, in the light of (i), any additional assumption on L that
guarantees the existence of L-equivalent companions that are ω-saturated
allows us to upgrade ≡L to ≡L. If F is some model transformation that
preserves L and hence in particular ≡L and produces ω-saturated compan-
ions, then M ≡L N implies F (M) ≡L F (N), and hence F (M) ≡L F (N),
since ⇌ω coincides with ⇌ in ω-saturated structures. So M ≡L F (M) ≡L

F (N) ≡L N shows that M ≡L N for any M ≡L N.

M
⇌ω

≡L

≡L

��

N

≡L

��

F (M)
⇌ω

⇌

≡L

F (N)

Clearly, ω-saturation can, in typical concrete instances, be replaced by
weaker, specifically adapted notions of saturation (for instance, modal sat-
uration suffices in the case of basic modal logic and bisimulation). Indeed,
we here used the Tarski Union Property and compactness to establish the
availability of not necessarily ω-saturated companions, but companions that
are ‘sufficiently saturated in the sense of ⇌’, as limits of suitable elementary
chains. Here ‘sufficiently saturated in the sense of ⇌’ really was sufficiency
for the purpose of a Hennessy–Milner argument for the passage from ⇌ω

to ⇌.

Of course, other model theoretic criteria can serve the same purpose. In
particular, in the spirit of de Rijke [14], preservation of L under (count-
able) ultrapowers produces ω-saturated (even ω1-saturated) companions
and hence immediately clinches the argument. If moreover, preservation
under ultraproducts is assumed, then even compactness follows and needs
not be stipulated separately. But even just preservation under countable
ultrapowers immediately shows that ≡L is bounded by elementary equiva-
lence. Since passage to ultrapowers in this case preserves both L and FO,
it also gives us an upgrading of ≡ to ≃part and hence to ≡L. In a sense,
therefore, preservation assumptions of this calibre go some way in reducing
Lindström characterisations to the semantic characterisations of fragments
of FO in the style of a classical preservation theorem.

Our Lindström characterisations are meant to be different in this re-
spect: we did not want to assume any a priori guarantees for the logics L
under consideration to be fragments of FO or even for ≡L to be bounded
by elementary equivalence. (As pointed out above, though, all equivalences
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considered are bounded by ≃part and hence by ≡∞ω.) Nevertheless, our ar-
guments are also based on an upgrading of ≡L (⇌ω) to ≡L (⇌) in suitably
saturated companion structures F (M) ≡L M, but since our model transfor-
mations, unlike ultrapower constructions, do not guarantee F (M) ≡M, the
same argument does not upgrade elementary equivalence ≡ to ≡L. In other
words, L-equivalence is only seen to be coarser than elementary equivalence
a posteriori, because the target logic L happens to be a fragment of FO.

As already mentioned, it remains open whether a characterisation in the
style of van Benthem’s [4] is also available for ML[∀] or GF. We do not even
know whether compactness, the appropriate notion of bisimulation invari-
ance and possibly the relativisation property (and/or some other innocuous
condition) might imply TUP.
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