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Abstract

Inquisitive modal logic, InqML, is a generalisation of standard Kripke-
style modal logic. In its epistemic incarnation, it extends standard epis-
temic logic to capture not just the information that agents have, but also
the questions that they are interested in. Technically, InqML fits within
the family of logics based on team semantics. From a model-theoretic
perspective, it takes us a step in the direction of monadic second-order
logic, as inquisitive modal operators involve quantification over sets of
worlds. We introduce and investigate the natural notion of bisimulation
equivalence in the setting of InqML. We compare the expressiveness of
InqML and first-order logic in the context of relational structures with
two sorts, one for worlds and one for information states. We characterise
inquisitive modal logic, as well as its multi-agent epistemic (S5-like) vari-
ant, as the bisimulation invariant fragment of first-order logic over various
natural classes of two-sorted structures. These results crucially require
non-classical methods in studying bisimulation and first-order expressive-
ness over non-elementary classes of structures, irrespective of whether we
aim for characterisations in the sense of classical or of finite model theory.
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1 Introduction

The recently developed framework of inquisitive logic [9, 7, 5, 3] can be seen
as a generalisation of classical logic which encompasses not only statements,
but also questions. One reason why this generalisation is interesting is that it
provides a novel perspective on the logical notion of dependency, which plays an
important rôle in applications (e.g., in database theory) and which has recently
received attention in the field of dependence logic [27]. Indeed, dependency is
nothing but a facet of the fundamental logical relation of entailment, once this
is extended so as to apply not only to statements, but also to questions [4]. This
connection explains the deep similarities existing between systems of inquisitive
logic and systems of dependence logic (see [30, 4, 3, 31]). A different rôle for
questions in a logical system comes from the setting of modal logic: once the
notion of a modal operator is suitably generalised, questions can be embed-
ded under modal operators to produce new statements that have no “standard”
counterpart. This approach was first developed in [10] in the setting of epistemic
logic. The resulting inquisitive epistemic logic models not only the information
that agents have, but also the issues that they are interested in, i.e., the infor-
mation that they would like to obtain. Modal formulae in inquisitive epistemic
logic can express not only that an agent knows that p (by the formula �p)
but also that she knows whether p (�?p) or that she wonders whether p (by
the formula �?p) — a statement that cannot be expressed without the use of
embedded questions. As shown in [10], several key notions of epistemic logic
generalise smoothly to questions: besides common knowledge we now have com-
mon issues, the issues publicly entertained by the group; and besides publicly
announcing a statement, agents can now also publicly ask a question, which
typically results in new common issues. Thus, inquisitive epistemic logic may
be seen as one step in extending modal logic from a framework to reason about
information and information change, to a richer framework which also repre-
sents a higher stratum of cognitive phenomena, in particular issues that may be
raised in a communication scenario.

Of course, like standard modal logic, inquisitive modal logic provides a gen-
eral framework that admits various interpretations, each suggesting correspond-
ing constraints on models. E.g., an interpretation of InqML as a logic of action
is suggested in [3]. In that interpretation, a modal formula �?p expresses that
whether a certain fact p will come about is pre-determined independently of
the agent’s choices, while �?p expresses that whether p will come about is fully
determined by the agent’s choices.

From the perspective of mathematical logic, inquisitive modal logic is a
natural generalisation of standard modal logic. There, the accessibility relation
of a Kripke model associates with each possible world w ∈W a set σ(w) ⊆W of
possible worlds, namely, the worlds accessible from w; any formula ϕ of modal
logic is semantically associated with a set |ϕ|M ⊆W of worlds, namely, the set of
worlds where it is true; modalities then express relationships between these sets:
for instance, �ϕ expresses the fact that σ(w) ⊆ |ϕ|M. In the inquisitive setting,
the situation is analogous, but both the entity Σ(w) attached to a possible world

3



and the semantic extension [ϕ]M of a formula are sets of sets of worlds, rather
than simple sets of worlds. Inquisitive modalities still express relationships
between these two objects: �ϕ expresses the fact that

⋃
Σ(w) ∈ [ϕ]M, while

�ϕ expresses the fact that Σ(w) ⊆ [ϕ]M.
In this manner, inquisitive logic leads to a new framework for modal logic

that can be viewed as a generalisation of the standard framework. Clearly,
this raises the question of whether and how the classical notions and results of
modal logic carry over to this more general setting. In this paper we address
this question for the fundamental notion of bisimulation and for two classical re-
sults revolving around this notion, namely, the Ehrenfeucht-Fräıssé theorem for
modal logic, and van Benthem style characterisation theorems [15, 29, 26, 21].
A central topic of this paper is the rôle of bisimulation invariance as a unifying
semantic feature that distinguishes modal logics from classical predicate logics.
As in many other areas, from temporal logics and process logics to knowledge
representation in AI and database applications, so also in the inquisitive setting
we find that the appropriate notion of bisimulation invariance allows for pre-
cise model-theoretic characterisations of the expressive power of modal logic in
relation to first-order logic.

Our first result is that the right notion of inquisitive bisimulation equivalence
∼, with finitary approximation levels ∼n, supports a counterpart of the classical
Ehrenfeucht–Fräıssé characterisations for first-order logic or for basic modal
logic. This result establishes an exact correspondence between the expressive
power of InqML and the finite approximation levels of inquisitive bisimulation
equivalence: if two points are behaviourally different in a way that can be
detected within a finite number of steps, then the difference between them is
witnessed by an InqML formula, and vice versa. The result is non-trivial in our
setting because of some subtle issues stemming from the interleaving of first-
and second-order features in inquisitive modal logic.

Theorem 1.1 (inquisitive Ehrenfeucht–Fräıssé theorem).
Over finite vocabularies, the finite levels ∼n of inquisitive bisimulation equiva-
lence correspond to the levels of InqML-equivalence up to modal nesting depth n.

In order to compare InqML with classical first-order logic, we define a class
of two-sorted relational structures, and show how such structures encode mod-
els for InqML. With respect to such relational structures we find not only
a “standard translation” of InqML into two-sorted first-order logic, but also
a van Benthem style characterisation of InqML as the bisimulation-invariant
fragment of (two-sorted) first-order logic over several natural classes of models.
These results are technically interesting, and they are not available on the basis
of classical techniques, because the relevant classes of two-sorted models are
non-elementary (in fact, first-order logic is not compact over these classes, as
we show). Our techniques yield characterisation theorems both in the setting
of arbitrary inquisitive models, and in restriction to just finite ones — i.e. both
in the sense of classical model theory and in the sense of finite model theory.
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Theorem 1.2. Inquisitive modal logic can be characterised as the ∼-invariant
fragment of first-order logic FO over natural classes of (finite or arbitrary) re-
lational inquisitive models.

We go on to extend these results from the basic inquisitive modal setting to
the setting of inquisitive epistemic logic — the inquisitive counterpart of multi-
agent S5. This setting is technically more challenging due to the additional
S5-type constraints on models.

Theorem 1.3. Inquisitive epistemic logic (in a multi-agent setting) can be char-
acterised as the ∼-invariant fragment of FO over natural classes of (finite or
arbitrary) relational inquisitive epistemic models.

Beside the conceptual development and the core results themselves, we think
that also the methodological aspects of the present investigations have some
intrinsic value. Just as inquisitive logic models cognitive phenomena at a level
strictly above that of standard modal logic, so the model-theoretic analysis
moves up from the level of ordinary first-order logic to a level strictly between
first- and second-order logic. This level is realised by first-order logic in a
two-sorted framework that incorporates second-order objects in the second sort
in a controlled fashion. This leads us to substantially generalise a number of
notions and techniques developed in the model-theoretic analysis of modal logic
([15, 21, 11, 22], among others).

2 Inquisitive modal logic

In this section we provide an essential introduction to inquisitive modal logic,
InqML [3]. For further details and proofs, we refer to §7 of [3].

2.1 Foundations of inquisitive semantics

Usually, the semantics of a logic specifies truth-conditions for the formulae of
the logic. In modal logics these truth-conditions are relative to possible worlds
in a Kripke model. However, this approach is limited in an important way:
while suitable for statements, it is inadequate for questions. To overcome this
limitation, inquisitive logic interprets formulae not relative to states of affairs
(possible worlds), but relative to states of information. Following a tradition
that goes back to the work of Hintikka [18], information states are modelled
extensionally as sets of worlds, namely, those worlds which are compatible with
the given information.1

1An analogous step from single worlds to sets of worlds (or, depending on the setting, from
assignments to sets of assignments) is taken in recent work on independence-friendly logic
[19, 20] and dependence logic [27, 28, 1, 14, 30, 31], where sets of worlds are referred to as
teams. Although they originated independently and were developed for different purposes,
inquisitive logic and dependence logic are tightly related. For detailed discussion of this
connection, see [4, 3].
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Definition 2.1. [information states]
An information state over a set of worlds W is a subset s ⊆W .

Rather than specifying when a sentence is true at a world w, inquisitive
semantics specifies when a sentence is supported by an information state s:
intuitively, for a statement α this means that the information available in s
implies that α is true; for a question µ, it means that the information available
in s settles µ.

If t and s are information states and t ⊆ s, this means that t holds at least
as much information as s: we say that t is an extension of s. If t is an extension
of s, everything that is supported at s will also be supported at t. This is a
key feature of inquisitive semantics, and it leads naturally to the notion of an
inquisitive state (see [6, 25, 10]).

Definition 2.2. [inquisitive states]
An inquisitive state over a set of possible worlds W is a non-empty set of infor-
mation states Π ⊆ ℘(W ) that is downward closed in the sense that

• s ∈ Π implies t ∈ Π for all t ⊆ s (downward closure).

The downward closure condition requires that Π be closed under extensions
of information states, i.e. robust under any strengthening of the available infor-
mation.

2.2 Inquisitive modal models

A Kripke frame can be thought of as a set W of worlds together with a map σ
that equips each world with a set of worlds σ(w) — the set of worlds that are
accessible from w — i.e., an information state.

Similarly, an inquisitive modal frame consists of a set W of worlds to-
gether with an inquisitive assignment, a map Σ : W → ℘℘(W ) that assigns
to each world a corresponding inquisitive state Σ(w), i.e., a set of information
states closed under subsets. An inquisitive modal model is an inquisitive frame
equipped with a propositional assignment (a valuation function for propositional
atoms).

Definition 2.3. [inquisitive modal models]
An inquisitive modal frame is a pair F = (W,Σ), where W is a set, whose
elements are referred to as worlds, and Σ: W → ℘℘(W ) assigns to each world
w ∈W an inquisitive state Σ(w).

An inquisitive modal model for a set P of propositional atoms is a pair
M = (F, V ) where F is an inquisitive modal frame, and V : P → ℘(W ) is a
propositional assignment.

A world-(or state-)pointed inquisitive modal model is a pair consisting of a
model M and a distinguished world (or state) in M.
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With an inquisitive modal model M we can always associate a standard
Kripke model K(M) having the same set of worlds and modal accessibility map
σ : W → ℘(W ) induced by the inquisitive map Σ according to

σ : W −→ ℘(W )
w 7−→ σ(w) :=

⋃
Σ(w).

A natural interpretation for inquisitive modal models is the epistemic one,
developed in [10, 2]. In this interpretation, the map Σ is taken to describe not
only an agent’s knowledge, as in standard epistemic logic, but also an agent’s
issues. The agent’s knowledge state at w, σ(w) =

⋃
Σ(w), consists of all the

worlds that are compatible with what the agent knows. The agent’s inquisitive
state at w, Σ(w), consists of all those information states where the agent’s issues
are settled. This interpretation is particularly interesting in the multi-modal
setting, where a model comes with multiple state maps Σa, one for each agent
a in a set A. Moreover, this specific interpretation suggests some constraints on
the maps Σa, analogous to the usual S5 constraints on Kripke models.

Definition 2.4. [inquisitive epistemic models]
An inquisitive epistemic frame for a set A of agents is a pair F = (W, (Σa)a∈A),
where each map Σa : W → ℘℘(W ) assigns to each world w an inquisitive state
Σa(w) in accordance with the following constraints (where σa(w) =

⋃
Σa(w)):

• w ∈ σa(w) (factivity);

• v ∈ σa(w) ⇒ Σa(v) = Σa(w) (full introspection).

An inquisitive epistemic model consists of an inquisitive epistemic frame to-
gether with a propositional assignment V : P → ℘(W ).

It is easy to verify that the Kripke frame associated with an inquisitive
epistemic frame is an S5 frame, i.e., the accessibility maps σa correspond to
accessibility relations Ra := {(v, w) : v ∈ σa(w)} that are equivalence relations
on W .

Example 2.5. Consider a model with four worlds, wpq, wpq, wpq, wpq, where
the subscript indicate the propositional valuation at each world. The inquisitive
state map Σ is as follows, where S↓ indicates the closure of the set S ⊆ ℘(W )
under subsets.

Σ(wpq) = Σ(wpq) = {{wpq}, {wqq}}↓

Σ(wpq) = Σ(wpq) = {{wpq, wqq}}↓

This model is depicted in Figure 1. At a world w, the epistemic state σ(w) of
the agent consists of those worlds included in the same dashed area as w; the
solid blocks inside this area are the maximal elements of the inquisitive state
Σ(w) — i.e. the maximal states in which the issue is resolved.

At worlds wpq and wpq, the agent’s knowledge state is {wpq, wpq}: that is,
the agent knows that p is true, but not whether q is true. Moreover, in order
to settle the agent’s issues it is necessary and sufficient to reach an extension
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wpq wpq

wpq wpq

Figure 1: A single-agent inquisitive epistemic model

of the current state which settles whether q. In short, then, these are worlds
where the agent knows that p and wonders whether q.

At worlds wpq and wpq, the agent’s knowledge state is {wpq, wqq}: that is,
the agent knows that ¬p, but not whether q. However, at these worlds no further
information is needed to resolve the agent’s issues. Thus, these are worlds where
the agent knows that ¬p and does not have any remaining issues.

2.3 Inquisitive modal logic

The syntax of inquisitive modal logic InqML is given by:

ϕ ::= p | ⊥ | (ϕ ∧ ϕ) | (ϕ→ ϕ) | (ϕ

>

ϕ) |�ϕ | �ϕ

We treat negation and disjunction as defined connectives (syntactic shorthands)
according to:

• ¬ϕ := ϕ→ ⊥

• ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

In this sense, the above syntax includes standard propositional formulae in terms
of atoms and connectives ∧ and→ together with the defined ¬ and ∨. As we will
see, the semantics for such formulae will be essentially the same as in standard
propositional logic.

In addition to standard connectives, our language contains a new connective,>

, called inquisitive disjunction. We may read formulae built up by means of
this connective as propositional questions. E.g., we read the formula p

>

¬p as
the question whether or not p, and we abbreviate this formula as ?p.

Finally, our language contains two modalities, which are allowed to embed
both statements and questions. As we shall see, both these modalities coincide
with a standard Kripke box modality when applied to statements, but crucially
differ when applied to questions. In particular, under an epistemic interpretation
�?p expresses the fact that the agent knows whether p, while �?p expresses
(roughly) the fact that the agent is interested in the issue whether p.

The syntax of inquisitive epistemic logic is defined analogously, except that
modalities are indexed by agents; that is, for every agent a ∈ A we have two
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corresponding modalities �a and �a, which are interpreted based on the state
map Σa associated with the agent.2

As mentioned above, the semantics of InqML is given in terms of support
in an information state, rather than truth at a possible world.3

Definition 2.6. [semantics of InqML]
Let M = (W,Σ, V ) be an inquisitive modal model, s ⊆W :

• M, s |= p ⇐⇒ s ⊆ V (p)

• M, s |= ⊥ ⇐⇒ s = ∅

• M, s |= ϕ ∧ ψ ⇐⇒ M, s |= ϕ and M, s |= ψ

• M, s |= ϕ→ ψ ⇐⇒ ∀t ⊆ s : M, t |= ϕ⇒M, t |= ψ

• M, s |= ϕ

>

ψ ⇐⇒ M, s |= ϕ or M, s |= ψ

• M, s |= �ϕ ⇐⇒ ∀w ∈ s : M, σ(w) |= ϕ

• M, s |= �ϕ ⇐⇒ ∀w ∈ s ∀t ∈ Σ(w) : M, t |= ϕ

As an illustration, consider the support conditions for the formula ?p :=
p

>

¬p: this formula is supported by a state s in case p is true at all worlds in s
(i.e., if the information available in s implies that p is true) or in case p is false
at all worlds in s (i.e., if the information available in s implies that p is false).
Thus, ?p is supported precisely by those information states that settle whether
or not p is true.

The following two properties hold generally in InqML.

Proposition 2.7.

• persistency: if M, s |= ϕ and t ⊆ s, then M, t |= ϕ;

• semantic ex-falso: M, ∅ |= ϕ for all ϕ ∈ InqML.

The first principle says that support is preserved as information increases,
i.e., as we move from a state to an extension of it. The second principle says
that the empty set of worlds — the inconsistent information state — vacuously
supports every formula. Together, these principles imply that the support set
[ϕ]M := {s ⊆ W : M, s |= ϕ} of a formula is downward closed and non-empty,
i.e., it is an inquisitive state.

Although the primary notion of our semantics is support at an information
state, truth at a world is retrieved by defining it as support with respect to
singleton states.

2In [10, 2] the modalities �a and �a are denoted Ka and Ea, and read as “know” and
“entertain” respectively.

3This means that InqML fits within the quickly growing family of logics based on a team
semantics. See Footnote 1 and the references therein.
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Definition 2.8. [truth]
ϕ is true at a world w in a model M, denoted M, w |= ϕ, in case M, {w} |= ϕ.

Spelling out Definition 2.6 in the special case of singleton states, we see that
standard connectives have the usual truth-conditional behaviour. For modal
formulae, we find the following truth-conditions.

Proposition 2.9 (truth conditions for modal formulae).

• M, w |= �ϕ ⇐⇒ M, σ(w) |= ϕ

• M, w |= �ϕ ⇐⇒ ∀t ∈ Σ(w) : M, t |= ϕ

Notice that truth in InqML cannot be given a direct recursive definition,
as the truth conditions for modal formulae �ϕ and �ϕ depend on the support
conditions for ϕ — not just on its truth conditions.

For many formulae, support at a state just boils down to truth at each world.
We refer to these formulae as truth-conditional.4

Definition 2.10. [truth-conditional formulae]
We say that a formula ϕ is truth-conditional if for all models M and information
states s: M, s |= ϕ ⇐⇒ M, w |= ϕ for all w ∈ s.

Following [3], we view truth-conditional formulae as statements, and non-
truth-conditional formulae as questions. The next proposition identifies a large
class of formulae which are truth-conditional.

Proposition 2.11. Atomic formulae, ⊥, and all formulae of the form �ϕ and
�ϕ are truth-conditional. Furthermore, the class of truth-conditional formulae
is closed under all connectives except for

>

.

Using this fact, it is easy to see that all formulae of standard modal logic,
i.e., formulae which do not contain

>

or �, receive exactly the same truth-
conditions as in standard modal logic.

Proposition 2.12. If ϕ is a formula not containing

>

or �, then M, w |=
ϕ ⇐⇒ K(M), w |= ϕ in standard Kripke semantics.

As long as questions are not around, the modality � also coincides with �,
and with the standard box modality. That is, if ϕ is truth-conditional, then

M,w |= �ϕ ⇐⇒ M,w |= �ϕ ⇐⇒ M, v |= ϕ for all v ∈ σ(w).

Thus, the two modalities coincide on statements. However, they come apart
when they are applied to questions. For an illustration, consider the formulae
�?p and �?p in the epistemic setting: �?p is true iff the knowledge state of the
agent, σ(w), settles the question ?p; thus, �?p expresses the fact that the agent
knows whether p. By contrast, �?p is true iff any information state t ∈ Σ(w),
i.e., any state that settles the agent’s issues, also settles ?p; thus �?p expresses
that finding out whether p is part of the agent’s goals.

4In team semantic terminology (e.g., [27, 31]), truth-conditional formulae are called flat.
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Example 2.13. Consider again the model of Example 2.5. The agent’s knowl-
edge state at world wpq is σ(wpq) = {wpq, wpq}. Since {wpq, wpq} does not
support ?q we have M, w |= ¬�?q. On the other hand, since the agent’s inquis-
itive state is Σ(wpq) = {{wpq}, {wpq}}↓, and since each element in this state
supports ?q, we do have M, wpq |= �?q. This witnesses that, at world wpq, the
agent does not know whether q (¬�?p), but she’s interested in finding out (�?q).
By contrast, one can check that at world wpq we have M, wpq |= ¬�?q ∧ ¬�?q,
witnessing that at this world, the agent is neither informed about whether q,
nor interested in finding out.

3 Inquisitive bisimulation

An inquisitive modal model can be seen as a structure with two sorts of entities,
worlds and information states, which interact with each other. On the one
hand, an information state s is completely determined by the worlds that it
contains; on the other hand, a world w is determined by the atoms it makes
true and the information states which lie in Σ(w). Taking a more behavioural
perspective, we can look at an inquisitive modal model as a model where two
kinds of transitions are possible: from an information state s, we can make a
transition to a world w ∈ s, and from a world w, we can make a transition to
an information state s ∈ Σ(w). This suggests a natural notion of bisimilarity,
together with its natural finite approximations of n-bisimilarity for n ∈ N. As
usual, these notions can equivalently be defined either in terms of back-and-forth
systems or in terms of strategies in corresponding bisimulation games. We start
from the latter due to its more immediate and intuitive appeal to the underlying
dynamics of a “probing” of behavioural equivalence.

The inquisitive bisimulation game is played by two players, I and II, who
act as challenger and defender of a similarity claim involving a pair of worlds w
and w′ or information states s and s′ over two models M = (W,Σ, V ) and M′ =
(W ′,Σ′, V ′). We denote world-positions as (w,w′) and state-positions as (s, s′),
where w ∈ W,w′ ∈ W ′ and s ∈ ℘(W ), s′ ∈ ℘(W ′), respectively. The game
proceeds in rounds that alternate between world-positions and state-positions.
Playing from a world-position (w,w′), I chooses an information state in the
inquisitive state associated to one of these worlds (s ∈ Σ(w) or s′ ∈ Σ′(w′)) and
II must respond by choosing an information state on the opposite side, which
results in a state-position (s, s′). Playing from a state-position (s, s′), I chooses
a world in either state (w ∈ s or w′ ∈ s′) and II must respond by choosing a
world from the other state, which results in a world-position (w,w′). A round
of the game consists of four moves leading from a world-position to another.

In the bounded version of the game, the number of rounds is fixed in advance.
In the unbounded version, the game is allowed to go on indefinitely. Either
player loses when stuck for a move. The game ends with a loss for II in any
world-position (w,w′) that shows a discrepancy at the atomic level, i.e., such
that w and w′ disagree on the truth of some p ∈ P. All other plays, an in
particular infinite runs of the unbounded game, are won by II.
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Definition 3.1. [bisimulation equivalence]
Two world-pointed models M, w and M′, w′ are n-bisimilar, M, w∼nM′, w′, if
II has a winning strategy in the n-round game starting from (w,w′). M, w and
M′, w′ are bisimilar, denoted M, w ∼M′, w′, if II has a winning strategy in the
unbounded game starting from (w,w′).

Two state-pointed models M, s and M′, s′ are (n-)bisimilar, denoted M, s∼
M′, s′ (or M, s∼nM′, s′), if every world in s is (n-)bisimilar to some world in s′

and vice versa.
Two models M and M′ are globally bisimilar, denoted M ∼M′, if every world

in M is bisimilar to some world in M′ and vice versa.

These notions generalise naturally to the multi-modal setting with inquisitive
assignments (Σa)a∈A for a set A of agents; at a world-position, player I also
gets the choice of which agent to probe.

Now let us turn to the static perspective on inquisitive bisimulations. One
natural way to define a bisimulation between two models M and M′ is as a
relation which pairs up both the worlds and the states of these two models in
such a way as to guarantee a winning strategy in the unbounded bisimulation
game. This leads to the following definition.

Definition 3.2. [bisimulation relations]
Let M = (W,Σ, V ) and M ′ = (W ′,Σ′, V ′) be two inquisitive modal models. A
non-empty relation Z ⊆ W ×W ′ ∪ ℘(W ) × ℘(W ′) is called a bisimulation in
case the following constraints are satisfied:

• atom equivalence: if wZw′ then for all p ∈ P, w ∈ V (p) ⇐⇒ w′ ∈ V ′(p)

• state-to-world back&forth: if sZs′ then

– for all w ∈ s there is some w ∈ s′ s.t. wZw′

– for all w′ ∈ s′ there is some w ∈ s s.t. wZw′

• world-to-state back&forth: if wZw′ then

– for all s ∈ Σ(w) there is some s′ ∈ Σ′(w′) s.t. sZs′

– for all s′ ∈ Σ′(w′) there is some s ∈ Σ(w) s.t. sZs′

It is then routine to check that bisimilarity can be characterised in terms of
the existence of a bisimulation relation.

Proposition 3.3. Let M, x and M′, x′ be two world- or state-pointed models.
M, x ∼M′, x′ ⇐⇒ there exists a bisimulation Z such that xZx′.

Alternatively, we can view an inquisitive bisimulation as a relation which is
defined exclusively on the worlds of the two models. We will call such a relation
a world-bisimulation. In order to define it, let us first fix a way to lift a binary
relation between two sets to a relation between the corresponding powersets.

Definition 3.4. The lifting of a relation Y ⊆W ×W ′ to information states is
the relation Y ⊆ ℘(W )× ℘(W ′) linking information states s and s′ iff
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• for all w ∈ s there is a w′ ∈ s′ s.t. wY w′

• for all w′ ∈ s′ there is a w ∈ s s.t. wY w′

Definition 3.5. [world-bisimulation]
Let M = (W,Σ, V ) and M ′ = (W ′,Σ′, V ′) be two inquisitive modal models.
A non-empty relation Y ⊆ W ×W ′ is called a world-bisimulation in case the
following constraints are satisfied whenever wY w′:

• atom equivalence:

– ∀p ∈ P: w ∈ V (p) ⇐⇒ w′ ∈ V ′(p)

• back&forth:

– for all s ∈ Σ(w) there is a s′ ∈ Σ′(w′) s.t. sY s′

– for all s′ ∈ Σ′(w′) there is a s ∈ Σ(w) s.t. sY s′

Bisimulations and world-bisimulations are tightly connected, as the following
proposition brings out. The straightforward proof is omitted.

Proposition 3.6. If Z is a bisimulation between two models M and M′, then its
restriction to worlds, Z• := Z ∩ (W ×W ′), is a world-bisimulation. Conversely,
if Y is a world-bisimulation, then Y ∪ Y is a bisimulation.

If Z is a bisimulation, then Z is included in Z• ∪ Z•, but not necessarily
identical to it. Thus, a bisimulation is not uniquely determined by its restriction
Z• to worlds. Rather, given a world-bisimulation Y , the bisimulation Y ∪ Y is
the largest among the bisimulations Z with Z• = Y .

Corollary 3.7. Two world-pointed models M, w and M′, w′ are bisimilar iff
there exists a world-bisimulation Y such that wY w′. Two state-pointed models
M, s and M′, s′ are bisimilar iff there exists a world-bisimulation Y such that
sY s′.

We now turn to the finite levels of bisimilarity.

Definition 3.8. Let M and M′ be two inquisitive modal models. A back-
and-forth system of height n is a family (Zi)i≤n of non-empty relations Zi ⊆
W ×W ′ ∪ ℘(W )× ℘(W ′) satisfying the following constraints for each i ≤ n:

• atom equivalence: if wZiw
′ then for all p ∈ P, w ∈ V (p) ⇐⇒ w′ ∈ V ′(p)

• state-to-world back&forth: if sZis
′ then

– for all w ∈ s there is some w ∈ s′ s.t. wZiw
′

– for all w′ ∈ s′ there is some w ∈ s s.t. wZiw
′

• world-to-state back&forth: if i > 0 and wZiw
′ then

– for all s ∈ Σ(w) there is some s′ ∈ Σ′(w′) s.t. sZi−1s
′

13



– for all s′ ∈ Σ′(w′) there is some s ∈ Σ(w) s.t. sZi−1s
′

It is straightforward to check that n-bisimilarity can be characterised in
terms of back&forth systems as follows.

Proposition 3.9. Let M, x and M′, x′ be two world- or state-pointed models.
M, x∼nM′, x′ if, and only if, there exists a back&forth system (Zi)i6n such that
xZnx

′.

Analogously to what we did for full bisimilarity, it is also possible to give a
purely world-based notion of back&forth-system of height n as a family of rela-
tions (Yi)i≤n ⊆W ×W ′. As expected, n-bisimilarity can then be characterised
in terms of the existence of such a system, in a way analogous to the one given
by Corollary 3.7. We leave the details to the reader.

4 An Ehrenfeucht–Fräıssé theorem

The crucial rôle of these notions of equivalence for the model theory of inquisitive
modal logic is brought out in a corresponding Ehrenfeucht–Fräıssé theorem.

Using the standard notion of the modal depth of a formula, we denote as
InqMLn the class of InqML-formulae of depth up to n. It is easy to see that
the semantics of any formula in InqMLn is preserved under n-bisimilarity; as
a consequence, all of inquisitive modal logic is preserved under full bisimilarity.
The following analogue of the classical Ehrenfeucht–Fräıssé theorem shows that,
for finite sets P of atomic propositions, n-bisimilarity coincides with logical
indistinguishability in InqMLn, which we denote as ≡nInqML:

M, s ≡nInqML M′, s′ :⇐⇒
{

M, s |= ϕ ⇔ M′, s′ |= ϕ
for all ϕ ∈ InqMLn.

Theorem 4.1 (Ehrenfeucht–Fráıssé theorem for InqML).
Over any finite set of atomic propositions P, for any n ∈ N and inquisitive
state-pointed modal models M, s and M′, s′:

(i) M, s ∼n M′, s′ ⇐⇒ M, s ≡nInqML M′, s′

(ii) M, w ∼n M′, w′ ⇐⇒ M, w ≡nInqML M′, w′

Notice that item (ii) of the theorem follows from item (i) by taking s and s′

to be singleton states. As usual, the crucial implication of the theorem, from
right to left, follows from the existence of characteristic formulae for ∼n-classes
of pointed models — and it is here that the finiteness of P is crucial. Notice,
however, that while we can expect a formula to uniquely characterise the ∼n
class of a world, we cannot expect a formula to uniquely define the ∼n-class
of an information state, for this would conflict with the persistency property
of the logic (Proposition 2.7): if a formula is supported at M, s, it must also
be supported at M, s′ for all s′ ⊆ s even when M, s 6∼n M, s′. However, the
next proposition shows that InqMLn-formulae characterise the ∼n-class of an
information state up to persistency.
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Proposition 4.2 (characteristic formulae for ∼n-classes).
Let M, w be a world-pointed model and M, s a state-pointed model over a finite
set of atomic propositions P. There are InqML-formulae χnM,w and χnM,s of
modal depth n such that:

(i) M′, w′ |= χnM,w ⇐⇒ M′, w′∼nM, w

(ii) M′, s′ |= χnM,s ⇐⇒ M′, s′∼nM, t for some t ⊆ s

These results can be extended straightforwardly to a multi-modal inquisitive
setting with a finite set A of agents.

Proof. By simultaneous induction on n, we define formulae χnM,w and χnM,s to-
gether with auxiliary formulae χnM,Π for all worlds w, information states s and
inquisitive states Π over M. Given two inquisitive states Π and Π′ in models
M and M′, we write M,Π ∼n M′,Π′ if every state s ∈ Π is n-bisimilar to some
state s′ ∈ Π′, and vice versa. Dropping reference to the fixed M, we let:

χ0
w =

∧
{p : w ∈ V (p)} ∧

∧
{¬p : w 6∈ V (p)}

χns =
∨
{χnw : w ∈ s}

χnΠ =

>

{χns : s ∈ Π}

χn+1
w = χnw ∧�χnΣ(w)∧

∧
{¬�χnΠ : Π ⊆ Σ(w), Π 6∼nΣ(w)}

These formulae are of the required modal depth; the conjunctions and dis-
junctions in the definition are well-defined since, for a given n, there are only
finitely many distinct formulae of the form χnw, and analogously for χns or χnΠ
(indeed, it is easy to check that, for finite P, InqMLn is finite up to logical
equivalence). We can then prove by simultaneous induction on n that these
formulae satisfy the following properties:

1. M′, w′ |= χnM,w ⇐⇒ M′, w′∼nM, w

2. M′, s′ |= χnM,s ⇐⇒ M′, s′∼nM, t for some t ⊆ s

3. M′, s′ |= χnM,Π ⇐⇒ M′, s′∼nM, s for some s ∈ Π

First let us show that, if claim (1) holds for a certain n ∈ N, then the claims
(2) and (3) hold for n as well.

For claim (2), suppose M′, s′ |= χnM,s, that is, suppose M′, s′ |=
∨
{χnM,w : w ∈

s}. This requires that for any w′ ∈ s′ we have M′, w′ |= χnM,w for some w ∈ s. By
(1), this means that any world in s′ is n-bisimilar to some world in s. Letting
t be the set of worlds in s that are n-bisimilar to some world in s′, we have
t ⊆ s and M′, s′ ∼n M, t. Conversely, suppose M′, s′ ∼n M, t for some t ⊆ s.
Then every w′ ∈ s′ is n-bisimilar to some w ∈ s. By (1), this means that
M′, w′ |= χnM,w, which implies M′, w′ |= χnM,s. Since this holds for any w′ ∈ s′,
and since χnM,s is a truth-conditional formula (by Proposition 2.11), it follows
that M′, s′ |= χnM,s.
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For claim (3), suppose M′, s′ |= χnM,Π. This implies M′, s′ |= χnM,s for some
s ∈ Π. By claim (2) we have M′, s′ ∼n M, t for some t ⊆ s. Since Π is
downward closed, t ∈ Π. Conversely, suppose M′, s′ ∼n M, t for some t ∈ Π. By
(2), M′, s′ |= χnM,t, and since t ∈ Π, also M′, s′ |= χnM,Π.

Next, we use these facts to show that claim (1) holds for all n ∈ N, by
induction on n. The claim M′, w′ |= χ0

M,w ⇔M′, w′∼0M, w follows immediately

from the definition of χ0
M,w. Now assume that claim (1), and thus also claims

(2) and (3), hold for n, and let us consider the claim for n+ 1.
For the right-to-left direction, suppose M′, w′ ∼n+1 M, w. We want to show

that M′, w′ |= χn+1
M,w. This amounts to showing that: (i) M′, w′ |= χnM,w; (ii)

M′, w′ |= �χnM,Σ(w); (iii) M′, w′ |=¬ � χnM,Π when Π ⊆ Σ(w) and Π 6∼n Σ(w).
Let us show each in turn.

(i) M′, w′ ∼n+1 M, w implies M′, w′ ∼n M, w, so by the induction hypothesis
M′, w′ |= χnM,w.

(ii) Take s′ ∈ Σ′(w′). Since M′, w′ ∼n+1 M, w we must have M′, s′ ∼n M, s
for some s ∈ Σ(w). By the induction hypothesis, M′, s′ |= χnM,Σ(w). This

holds for all s′ ∈ Σ′(w′), and so M′, w′ |= �χnM,Σ(w).

(iii) Suppose for a contradiction that for some Π ⊆ Σ(w), Π 6∼n Σ(w) and
M′, w′ |= �χnM,Π. This means that every s′ ∈ Σ′(w′) supports χnM,Π and
thus, by our induction hypothesis, is n-bisimilar to some s ∈ Π. Since
Π ⊆ Σ(w) and Π 6∼n Σ(w), there must be a state t ∈ Σ(w) which is not
n-bisimilar to any s ∈ Π. But since any state s′ ∈ Σ′(w′) is n-bisimilar to
some s ∈ Π, this means that t is not n-bisimilar to any s′ ∈ Σ′(w′). Since
t ∈ Σ(w), this contradicts the assumption that M′, w′ ∼n+1 M, w.

This establishes the right-to-left direction of the claim. For the converse, sup-
pose M′, w′ |= χn+1

M,w. To prove M′, w′ ∼n+1 M, w, we must show that: (i) w′

and w coincide on atomic formulae; (ii) any s′ ∈ Σ′(w′) is n-bisimilar to some
s ∈ Σ(w); and (iii) any s ∈ Σ(w) is n-bisimilar to some s′ ∈ Σ′(w′).

(i) Since χnM,w is a conjunct of χn+1
M,w, by the induction hypothesis we have

M′, w′ ∼n M, w, which implies that w and w′ make true the same atomic
formulae.

(ii) Since �χnM,Σ(w) is a conjunct of χn+1
M,w, M′, w′ |= �χnM,Σ(w). This implies

that any s′ ∈ Σ′(w′) supports χnM,Σ(w). By ind. hypothesis, this means

that any s′ ∈ Σ′(w′) is n-bisimilar to some s ∈ Σ(w).

(iii) Let Π be the set of states in Σ(w) which are n-bisimilar to some s′ ∈
Σ′(w′). Now, consider any s′ ∈ Σ′(w′). We have already seen that s′ is
n-bisimilar to some state s ∈ Σ(w), which must then be in Π by definition.
By induction hypothesis, the fact that s′ is n-bisimilar to some state in
Π implies M′, s′ |= χnM,Π. And since this is true for each s′ ∈ Σ′(w′),
we have M′, w′ |= �χnM,Π. Now suppose towards a contradiction that
some s ∈ Σ(w) were not n-bisimilar to any state in Σ′(w′). Then, s
would not be n-bisimilar to any state in Π either. This would mean that
Π 6∼n Σ(w), which means that ¬� χnM,Π is a conjunct of χn+1

M,w. But then,

since M′, w′ |= χn+1
M,w, we should have M′, w′ |= ¬�χnM,Π contrary to what
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we found above.

This completes the proof of Proposition 4.2.

We can now use the properties of characteristic formulae to prove the non-
trivial direction of Theorem 4.1.

Proof of Theorem 4.1. We only prove the left-to-right direction, since the con-
verse follows from the observation that InqML-formulae of depth up to n are
invariant under n-bisimilarity. For item (i), suppose M, s 6∼n M′, s′: then either
of the states s and s′ is not n-bisimilar to any subset of the other. Without
loss of generality, suppose it is s′. By the property of the formula χnM,s we have
M, s |= χnM,s but M′, s′ 6|= χnM,s. Since the modal depth of χnM,s is n, this shows
that M, s 6≡nInqML M′, s′. The proof for item (ii) is immediate: if M, w 6∼n M′, w′
then M, w |= χnM,w but M′, w′ 6|= χnM,w; since the modal depth of χnM,w is n, it
follows that M, w 6≡nInqML M′, w′.

Let us say that a class C of world-pointed (state-pointed) models is defined
by a formula ϕ if C is the set of world-pointed models where ϕ is true (state-
pointed models in which ϕ is supported). Theorem 4.1 then yields the following
characterisation of InqML-definable classes.

Corollary 4.3. A class C of world-pointed models is definable in InqML if and
only if it is closed under ∼n for some n ∈ N. A class C of state-pointed models
is definable in InqML if and only if it is both downward closed and closed under
∼n for some n ∈ N.

Proof. If a class C of world- or state-pointed models is defined by a formula ϕ
of depth n, then since ϕ is invariant under n-bisimilarity, C is closed under ∼n.
Moreover, if C is a class of state-pointed models, it is downward closed by the
persistency of InqML (Proposition 2.7).

Conversely, suppose that C is a class of world-pointed models closed under
∼n. Using Proposition 4.2 it is easy to show that C is defined by the formula
χCn :=

∨
{χnM,w : (M, w) ∈ C}. Notice that the disjunction is well-defined, since

for a given n there are only finitely many distinct formulae of the form χnM,w.
Similarly, if C is a class of state-pointed models which is both downward closed
and closed under ∼n, it follows from Proposition 4.2 that C is defined by the
inquisitive disjunction χCn =

>

{χnM,s : (M, s) ∈ C}.

Remark 4.4. Notice that the construction of characteristic formulae does not
use the modality �. This implies that � can be eliminated from the language
of InqML without loss of expressive power. This was proved in a more direct
way in [3], where it is shown that a formula �ϕ can always be turned into an
equivalent �-free formula. However, this translation is not schematic, i.e., there
is no �-free formula ψ(p) such that for every ϕ, �ϕ ≡ ψ(ϕ).
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5 Interlude: InqML and neighbourhood seman-
tics

In neighbourhood semantics for modal logic (see [24] for a recent overview),
modal formulae are interpreted with respect to neighbourhood models, which
are defined as triples M = (W,Σ, V ) where W is a set of worlds, V : P → ℘(W )
is a propositional valuation, and Σ : W → ℘℘(W ), called a neighbourhood
map, is a function which assigns to each world a set of information states. The
standard language of modal logic is interpreted on such models by means of the
standard truth-conditional clauses for connectives, and the following clause for
modalities:

M, w |=nhd �ϕ ⇐⇒ |ϕ|M ∈ Σ(w)

where |ϕ|M is the set of worlds in M where ϕ is true. A class of neighbourhood
models which is particularly well-studied is that of monotonic neighbourhood
models [16], which are characterised by the fact that, for all worlds w, the set
Σ(w) is upward-closed, i.e., closed under supersets.

Clearly, an inquisitive modal model is a special case of neighbourhood model:
it is a neighbourhood model such that Σ(w) is non-empty and downward closed,
i.e., closed under subsets. That is, inquisitive modal models are neighbourhood
models which have exactly the opposite monotonicity property than monotonic
neighbourhood models have.

In spite of this similarity in models, however, there are profound differences
between InqML and neighbourhood semantics, in terms of the logics that arise
from these approaches, their expressive power and the induced notions of equiv-
alence.

These differences arise from the way in which the neighbourhood function is
used to interpret modal formulae. In neighbourhood semantics, to interpret �ϕ
we check whether the interpretation of ϕ is a neighbourhood. The clause for the
main modality of InqML, �, is very different: just as in Kripke semantics, we
have to check whether ϕ holds in all successors of the given world — only, these
successors are now information states rather than worlds. As a consequence of
this, whereas neighbourhood semantics gives rise to non-normal modal logics,
the logic of the � modality in InqML is normal: it validates the K axiom, as
well as distribution over conjunction and the necessitation rule.5

Besides giving rise to very different modal logics, InqML and neighbourhood
semantics are also different, and in fact incomparable, in terms of their expres-
sive power. To see that neighbourhood semantics can draw distinctions that
InqML cannot draw, consider the formula �>. In neighbourhood semantics,
this expresses the property of having the whole universe as a neighbourhood:

M, w |=nhd �> ⇐⇒ W ∈ Σ(w)

5In this discussion, we have set aside the modality � of InqML for simplicity since, as
remarked above, this modality is definable from � and the connectives. However, as shown
in [3], � is also a normal modality in InqML.
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This property is clearly not invariant under inquisitive bisimulations (indeed, it
is not preserved under disjoint unions!). Therefore, it is not expressible by an
InqML-formula.

To see that InqML can also draw distinctions that neighbourhood semantics
cannot draw, consider the formula �?p. This formula expresses the fact that at
every neighbourhood of the evaluation world, the truth-value of p is constant.

M, w |= �?p ⇐⇒ ∀s ∈ Σ(w) : s ⊆ |p|M or s ⊆ |¬p|M

We claim that this property is not expressible in neighbourhood semantics.
To see this, consider two models M1 and M2 with the same universe W =
{v, u, u′} and the same valuation V (p) = {v}. The two models differ in their
neighbourhood map, which are both constant, with values

{{v}, {u}}↓ for Σ1 in M1 versus {{v, u}}↓ for Σ2 in M2.

Given any w ∈ W , we have M1, w |= �?p but M2, w 6|= �?p. However,
it is not hard to show by induction that the set {v, u} is not the truth-set of
any formula in neighbourhood semantics. Using this fact, it follows easily that
in this semantics we have M1, w |=nhd ϕ ⇐⇒ M2, w |=nhd ϕ for all formulae
ϕ. Hence, the property expressed by �?p in InqML is not expressed by any
formula in neighbourhood semantics.

Clearly, since InqML and neighbourhood semantics are sensitive to different
features of a model, the appropriate notion of bisimilarity is also different in
these two contexts. E.g., consider again the above models M1 and M2: according
to the notion of bisimilarity ∼N appropriate for neighbourhood semantics [17],
the relation R = {(v, v), (u, u), (u, u′), (u′, u), (u′, u′)} is a bisimulation. This
implies that M1, v ∼N M2, v. By contrast, a single round of the inquisitive
bisimulation game suffices to show that M1, v 6∼M2, v in our setting.

Conversely, under our notion of bisimulation, a point w in a model M is
always fully bisimilar to its copy in the disjoint union M]M′. Clearly, the same
cannot be true in neighbourhood semantics, given that in this semantics modal
formulae are not in general preserved under disjoint unions.

A notion of bisimulation which is much closer to the one we study here is
found in the literature on monotonic neighbourhood models [16]. In terms of the
bisimulation game, the difference between the two notions can be described as
follows. Starting from a world-position (w,w′), Player I picks a state s in either
Σ(w) or Σ′(w′); Player II responds with a state s′ on the opposite side. At this
point, the two games come apart: in our version of the game, I can choose a
world from either s or s′, while in the version given in [16], I is required to pick
a world from s′. Imposing such a restriction in our setting would trivialise the
game, providing II with a universal winning strategy: always pick s′ = ∅.6

Interestingly, however, one can show that due to the downward-closure of
Σ(w), in our setting it would not make a difference (in terms of the resulting

6Notice that since Σ(w) and Σ′(w′) are non-empty and downward closed, they always
contain ∅.
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notion of bisimilarity) if Player I were required to pick a world from the state s
that he himself selected in the world-to-state phase. Thus, we could equivalently
have presented the game in a form which is the mirror image of the game used in
monotonic neighbourhood frames. Clearly, this symmetry reflects the opposite
monotonicity constraints that these two logics place on the neighbourhood map.

6 Relational inquisitive models

In the remainder of this paper, our aim will be to compare the expressive power
of inquisitive modal logic with that of first-order logic. This, however, is not
quite as straightforward as for ordinary modal logic. A standard Kripke model
can be identified naturally with a relational structure with a binary accessibil-
ity relation R and a unary predicate Pi for the interpretation of each atomic
sentence pi ∈ P. By contrast, an inquisitive modal model also needs to encode
the inquisitive state map Σ : W → ℘℘(W ). This map can be identified with a
binary relation E ⊆ W × ℘(W ). In order to view this as part of a relational
structure, however, we need to adopt a two-sorted perspective, and view W and
℘(W ) as domains of two distinct sorts. This leads to the following notion.

6.1 Relational inquisitive modal models

Definition 6.1. [relational models] For atomic propositions P = {pi : i ∈ I}, a
relational inquisitive modal model over P is a relational structure

M = (W,S,E, ε, (Pi)i∈I)

where W,S are non-empty sets related by E, ε ⊆W ×S, and, for i ∈ I, Pi ⊆W .
With s ∈ S we associate the set s := {w ∈ W : w ε s} ⊆ W and require the

following conditions, which enforce resemblance with inquisitive modal models:

• extensionality: if s = s′, then s = s′.

• local powerset: if s ∈ S and t ⊆ s, there is an s′ ∈ S such that s′ = t.

• non-emptiness: for every w, E[w] 6= ∅.

• downward closure: if s ∈ E[w] and s′ ⊆ s, then t ∈ E[w].

Multi-modal variants are analogously defined, with a relation Ea ⊆ W × S to
encode the inquisitive assignments Σa for agent a ∈ A.7

By extensionality, the second sort S of such a relational model can always be
identified with a domain of sets over the first sort, namely, {s : s ∈ S} ⊆ ℘(W ).
In the following, we will assume this identification and view a relational model
as a structure M = (W,S,E,∈, (Pi)) where S ⊆ ℘(W ) and ∈ is the actual

7See Section 9 for the additional constraints on relational inquisitive epistemic models, that
are subject to additional constraints of Definition 2.4, viz., factivity and full introspection.
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membership relation. We shall therefore also specify relational models by just
M = (W,S,E, (Pi)) when the fact that S ⊆ ℘(W ) and the natural interpretation
of ε are understood. Notice that, given this identification, the downward closure
condition can be stated more simply as: if s ∈ E[w] and t ⊆ s, then t ∈ E[w].

Notice that a relational model M induces a corresponding Kripke structure
K(M) = (W,R, (Pi)i∈I), where R ⊆W ×W is the relation defined as follows:

wRw′ ⇐⇒ for some s ∈ S : wEs and w′ ∈ s,

and correspondingly we have R[w] := {w′ : wRw′} =
⋃
E[w] as the natural

relational encoding of the map σ : w 7→
⋃

Σ(w).
In addition to the above conditions, we might impose other constraints on a

relational model M: in particular, we may require S to be the full powerset of
W , or to resemble the powerset from the local perspective of each world w ∈W .

Definition 6.2. A relational model M = (W,S,E, (Pi)) is

• full if S = ℘(W );

• locally full if for all w ∈W , ℘(R[w]) ⊆ S (i.e., ℘(
⋃
E[w]) ⊆ S).

Notice in particular that M is locally full whenever S is closed under arbi-
trary unions, but need not be full if

⋃
w∈W R[w] 6= W .

6.2 Relational encoding of inquisitive modal models

The connection between inquisitive modal models and their relational counter-
parts is not one-to-one. In one direction, a relational model M = (W,S,E, (Pi))
uniquely determines an inquisitive modal model M∗ = (W,Σ, V ) where Σ(w) =
E[w] and V (pi) = Pi. Notice that the non-emptiness and downward closure
conditions on E guarantee that M∗ is indeed an inquisitive modal model. The
passage from relational to plain inquisitive modal models immediately gives se-
mantics to InqML over relational inquisitive models, and supports all natural
notions like bisimulation equivalence over these. Since this passage obliterates
information about the second sort S, there are in general many different rela-
tional models M that determine the same inquisitive modal model M. That is,
a given inquisitive modal model may have different relational counterparts. Let
us call such counterparts the relational encodings of M.

Definition 6.3. A relational encoding of an inquisitive modal model M is a
relational model M with M∗ = M.

Clearly, two relational counterparts of M must coincide in terms of their
components W , E and Pi. They may, moreover, be partially ordered in terms
of inclusion of their second sort domains.

Definition 6.4. Let M1 and M2 be two relational encodings of M with second
sort domains S1 and S2. We say that the encoding M1 is more parsimonious
than the encoding M2 in case S1 ⊆ S2.

21



Given an inquisitive modal model M, there are three salient relational encod-
ings of it. The first yields the most parsimonious relational counterpart of M;
the second yields the most parsimonious counterpart of M that is locally full;
and the third yields the unique counterpart of M that is full.

Definition 6.5. [relational encodings] Given an inquisitive modal model M =
(W,Σ, V ), we define three relational encodings M[··· ](M) of M, each based on W ,
and with wEs⇔ s ∈ Σ(w), w ε s⇔ w ∈ s and Pi=V (pi). The encodings differ
in the second sort domain S:

• for Mrel(M),the minimal encoding of M:
S := image(Σ);

• for Mlf(M), the minimal locally full encoding of M:
S := {s ⊆ σ(w) : w ∈W};

• for Mfull(M), the unique full encoding of M:
S := ℘(W ).

To encode state-pointed models M, s we augment the corresponding S by ℘(s).
These definitions generalise in a natural way to the multi-modal case.

6.3 Relational models and first-order logic

A relational inquisitive model supports a two-sorted first-order language having
two relation symbols E and ε corresponding to the relations E and ε, respectively,
and predicate symbols Pi for i ∈ I. We use w, v as variables for the first sort,
and s, t as variables for the second sort.8 Moreover, we make use of two defined
binary predicates. The first is simply inclusion, defined in the natural way in
terms of ε:

s ⊆ t := ∀w(ε(w, s)→ ε(w, t)).

The second defined predicate, e(w, t), corresponds to the relation R[w] = t
(i.e., the relational encoding of the graph of the map σ):

e(w, t) := ∀v(ε(v, t)↔ ∃s(E(w, s) ∧ ε(v, s))).

In terms of this language we can define a pair of standard translations STw(ϕ)
of STs(ϕ) of a formula, which capture its truth conditions in a world and its
support conditions in an information state, respectively. The definitions of STw

and STs are intertwined. In the definitions below we also appeal to an auxiliary
map STt: the clauses defining STt are understood to be analogous to those
defining STs, with the roles of s and t exchanged.

Definition 6.6. [standard translation of InqML to first-order logic]

8Notice that we use different fonts to distinguish object language symbols (E, w, s, . . . ), in
typewriter font, from the corresponding notation for semantic objects (E,w, s, . . . ), in regular
font.
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• STw(pi) = Pi(w)
STs(pi) = ∀w(ε(w, s)→ STw(pi))

• STw(⊥) = ⊥
STs(⊥) = ∀w(ε(w, s)→ STw(⊥))

• STw(ϕ ∧ ψ) = STw(ϕ) ∧ STw(ψ)
STs(ϕ ∧ ψ) = STs(ϕ) ∧ STs(ψ)

• STw(ϕ

>

ψ) = STw(ϕ) ∨ STw(ψ)
STs(ϕ

>

ψ) = STs(ϕ) ∨ STs(ψ)

• STw(ϕ→ ψ) = STw(ϕ)→ STw(ψ)
STs(ϕ→ ψ) = ∀t(t ⊆ s→ (STt(ϕ)→ STt(ψ)))

• STw(�ϕ) = ∀s(E(w, s)→ STs(ϕ))
STs(�ϕ) = ∀w(ε(w, s)→ STw(ϕ))

• STw(�ϕ) = ∀s(e(w, s)→ STs(ϕ))
STs(�ϕ) = ∀w(ε(w, s)→ STw(ϕ))

It is straightforward to verify that the truth-conditions and support-conditions
of ϕ in a model M correspond, respectively, to the satisfaction conditions for
STw(ϕ) and STs(ϕ) in any locally full relational encoding of M.

Proposition 6.7. Let M be an inquisitive modal model, M a locally full encod-
ing of M, and ϕ ∈ InqML. For all worlds w ∈W and all states s ∈ S:

(i) M, w |= ϕ ⇐⇒ M |= STw(ϕ)[w]

(ii) M, s |= ϕ ⇐⇒ M |= STs(ϕ)[s]

The assumption that the encoding M be locally full is crucial for this result.
This is because, if a model is not locally full, then for some w ∈ W it could
be that the state σ(w) =

⋃
Σ(w) which is involved in determining the truth

condition of �ϕ is not represented in M. If so, there will be no state s ∈ S
satisfying ε(w, s), which means that STw(�ϕ) will come out as vacuously true
at w, regardless of whether or not M, w |= �ϕ.

However, even when the encoding M is not locally full, preservation still
holds for all �-free formulae, as one can easily verify.

Proposition 6.8. Let M be an inquisitive modal model, M a relational encoding
of M, and ϕ ∈ InqML a �-free formula. Then for all worlds w ∈ W and all
states s ∈ S:

(i) M, w |= ϕ ⇐⇒ M |= STw(ϕ)[w]

(ii) M, s |= ϕ ⇐⇒ M |= STs(ϕ)[s]

Recall that, by Remark 4.4, any formula ϕ of InqML is equivalent to some
�-free formula ϕ∗. Combining this with the previous proposition, we have the
following corollary.
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Corollary 6.9. Let M be an inquisitive modal model, M a relational encoding
of M, and ϕ ∈ InqML. Then there are first-order formulae ϕ?w := STw(ϕ

∗) and
ϕ?s := STs(ϕ

∗) such that for all worlds w ∈W and all states s ∈ S:

(i) M, w |= ϕ ⇐⇒ M |= ϕ?w [w]

(ii) M, s |= ϕ ⇐⇒ M |= ϕ?s [s]

The corollary allows us to view InqML as a syntactic fragment of first-order
logic, InqML ⊆ FO, over the class of all relational inquisitive models, just as
standard modal logic ML may be regarded as a fragment ML ⊆ FO over Kripke
models.

Importantly, however, the class of relational inquisitive modal models is
not first-order definable in this framework, since the local powerset condition
involves a second-order quantification. In other words, we are dealing with
first-order logic over non-elementary classes of intended models.

We remark that all the considerations of this section admit straightforward
variations for the multi-modal inquisitive setting, where models are equipped
with a family (Σa)a∈A of inquisitive assignments, indexed by a set A of agents.

7 Bisimulation invariance

7.1 Bisimulation invariance as a semantic constraint

Regarding InqML as a fragment of first-order logic (over relational models,
in any one of the above classes), we may think of downward closure and ∼-
invariance as characteristic semantic features of this fragment. The core question
is to which extent InqML may express all ∼-invariant properties of worlds or
information states that are FO-expressible.

In other words, over which classes C of models, if any, can InqML be char-
acterised as the bisimulation invariant fragment of first-order logic? In short,
for what classes C do we have

InqML ≡ FO/∼ (†)

just as ML ≡ FO/∼ by van Benthem’s theorem?
A comprehensive answer to this question in the basic scenario of (finite

or general) relational inquisitive models and locally full relational models will
be given in Section 8, while the corresponding issues for classes of inquisitive
epistemic models are treated in Section 9. Before that, we discuss some of
the underlying model-theoretic concerns more generally, and in particular stress
the connection with the all-important classical rôle of first-order compactness, as
well as the rôle of non-classical model-theoretic techniques in our present context
where we deal with first-order logic over non-elementary classes of structures.

7.2 Bisimulation invariance and compactness

The inquisitive Ehrenfeucht–Fräıssé theorem, Theorem 4.1, implies ∼-invariance
for all of InqML. By Corollary 4.3 it further implies expressive completeness
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of InqMLn for any ∼n-invariant property of world-pointed models and any
downward-closed ∼n-invariant property of state-pointed models. In order to
prove (†) in restriction to some particular class C of relational inquisitive models,
it is thus sufficient to show that, for any formula ϕ(x) ∈ FO in a single free
variable, ∼-invariance of ϕ(x) over C implies ∼n-invariance of ϕ(x) over C for
some finite n.

This may be viewed as a compactness principle for ∼-invariance of first-
order properties, which is non-trivial in the non-elementary setting of relational
inquisitive models.

Observation 7.1. (a) For any class C of relational inquisitive models, the
following are equivalent:

(i) InqML ≡ FO/∼ for world properties over C;

(ii) for FO-properties of world-pointed models, ∼-invariance over C im-
plies ∼n-invariance over C for some n.

(b) Similarly, the following are equivalent:

(i) InqML ≡ FO/∼ for downward-closed state properties over C;

(ii) for downward closed FO-properties of state-pointed models, ∼-invari-
ance over C implies ∼n-invariance over C for some n.

Remark 7.2. The expressive completeness assertion for downward closed state
properties (as expressed in (b) above) implies the corresponding assertion for
world properties in (a).

Proof. With the ∼-invariant world property expressed by ϕ(w) ∈ FO associate
the state property defined by ϕ′(s) = ∀w(w ∈ s → ϕ(w)), which is downward
closed and also ∼-invariant. If the state property defined by ϕ′(s) is equivalent
to the support semantics of ψ ∈ InqML, then the specialisation of the semantics
of ψ to singleton states {w} is equivalent to ϕ(w).

Interestingly, first-order logic does not satisfy compactness in restriction to
the (non-elementary) class of relational inquisitive models, as the following ex-
ample illustrates.

Example 7.3. There is a first-order formula ϕ in a single free variable of the
second sort (information state) which over any relational inquisitive model says
of an element s that there are no infinite R-paths included in s. This is because
the local power set condition implies that the entire power set ℘(s) is represented
in the second sort of the relational model. So the standard monadic second-
order formalisation of our property (cf. Example 7.4 below for details) becomes
first-order expressible in this setting.

Even more importantly, over the class of full relational models, violations of
compactness can even be exhibited for ∼-invariant formulae.

Example 7.4. Over full relational inquisitive models, the absence of infinite
R-paths from the designated world w (i.e., well-foundedness of the converse of
R at w) is a first-order definable and ∼-invariant property of worlds that is not
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preserved under ∼n for any n, hence not expressible in InqML. In particular,
two-sorted first-order logic FO and even its ∼-invariant fragment FO/∼ violates
compactness over full relational models.

Proof of the claim in Example 7.4. The observation refers to the following first-
order property of worlds w in full relational models, which is ∼-invariant and
(as a well-foundedness assertion) incompatible with compactness:

P(w) := there is no infinite R-path from w.

As this property is not ∼n-invariant for any finite level n, it cannot be expressed
in InqML, by Corollary 4.3. It is first-order definable over full relational models,
because those afford the full expressive power of monadic second-order quantifi-
cation over the first sort, W , via first-order quantification over the second sort
S = ℘(W ). The following MSO-formula, which defines P(w) over the underlying
Kripke frame, can therefore be expressed in two-sorted first-order logic over full
relational models:

¬∃X
(
x ∈ X ∧ ∀y

(
y ∈ X → ∃z(z ∈ X ∧Ryz)

))
.

The violation of compactness is witnessed by the combination of the first-
order formula ϕ(w) for P together with formulae ψn(w), for n ∈ N, saying that
any path of length n from w can be extended to length n+ 1. Then every finite
subset is satisfiable in a full relational model, but the whole set is not.

A corresponding well-foundedness property can also also be captured in first-
order logic over full relational inquisitive epistemic models for two agents and
using one basic proposition. It suffices to describe analogous path properties
for paths formed by a strict alternation of Ra- and Rb-edges on a path that
alternates between worlds where p is true and where p is false, for some atomic
proposition p and two distinct agents a, b ∈ A. We therefore also get the fol-
lowing.

Remark 7.5. Compactness fails for ∼-invariant first-order formulae also over
full relational encodings in the epistemic setting.

This shows that the analogues of our Theorems 1.2 and 1.3 fail for the class of
full relational models or full relational epistemic models: over these classes, there
are properties that are FO-definable, ∼-invariant, but not definable in InqML.
Although this is in sharp contrast with our Theorems 1.2 and 1.3, their failure
over full relational models is not too surprising: over such models, FO, unlike
InqML, has access to full-fledged monadic second-order quantification.

7.3 A non-classical route to expressive completeness

In all our characterisation theorems to be treated in the following sections, we
establish a semantic correspondence

InqML ≡ FO/∼ (†)
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M, w

∼

∼n M′, w′

∼

M̂, ŵ ≡q M̂′, ŵ′

M, s

∼

∼n M′, s′

∼

M̂, ŝ ≡q M̂′, ŝ′

Figure 2: Generic upgrading patterns.

Note that (†) is an assertion about equal expressive power between two systems
presented in very different style: while InqML is based on concrete syntax with
clearly defined semantics, FO/∼ is defined in terms of the semantic constraint of
∼-invariance.9 As the semantics of InqML is obviously ∼-invariant, its seman-
tically faithful translations into FO as discussed in Section 6.3 show the semantic
inclusion from left to right in (†). The essence of the equivalence, therefore, is
the expressive completeness claim for InqML, which corresponds to the inclu-
sion from right to left in (†): that InqML can express any first-order definable
property of worlds (or downward closed property of information states) that
is invariant under inquisitive bisimulation. By Observation 7.1, this expressive
completeness assertion corresponds to a compactness phenomenon that relates
∼-invariance to ∼n-invariance for some finite level n, in the non-classical context
of non-elementary classes of relational inquisitive models. To establish (†) over
a class C we need to show that, e.g., a first-order formula ϕ(w) whose semantics
as a world property is invariant under ∼ over the class C, is in fact invariant
under ∼n as a world property over C, for some finite n = n(ϕ) depending on ϕ.
For this there is a general approach that has been successful in a number of sim-
ilar investigations, starting from an elementary and constructive proof in [21] of
van Benthem’s characterisation theorem [29] and its finite model theory version
due to Rosen [26] (for ramifications of this method, see also [22, 11] and [23]).
This approach involves an upgrading of a sufficiently high finite level ∼n of
bisimulation equivalence to a finite target level ≡q of elementary equivalence,
where q is the quantifier rank of ϕ. Concretely, and in the case of properties of
worlds, this amounts to finding, for any world-pointed relational model M, w a
fully bisimilar pointed model M̂, ŵ with the property that, if M, w ∼n M′, w′,
then M̂, ŵ ≡q M̂′, ŵ′. The diagram in Figure 2 shows how ∼-invariance of ϕ,
together with its nature as a first-order formula of quantifier rank q, entails its
∼n-invariance: one simply chases the diagram through its lower rung to check
that, for ϕ that is preserved both under ∼ and under ≡q, then M, w |= ϕ iff
M′, w′ |= ϕ.

The reasoning for properties of information states is analogous, using a cor-
responding upgrading for state-pointed models. At the technical level, we shall
mostly restrict the explicit discussion to the more familiar world-pointed sce-
nario, and only mention the necessary variations for the state-pointed case where
relevant.

9∼-invariance is easily seen to be undecidable as a property of first-order formulae, hence
not a syntactic fragment in any reasonable sense.
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Any upgrading of the kind we just discussed involves an interesting tension
between the very distinct levels of expressiveness of InqML-formulae and FO-
formulae. While the latter can, for instance, distinguish worlds w.r.t. finite
branching degrees of the accessibility relation R or w.r.t. short cycles that R
may form in the vicinity of a world, no ∼-invariant logic can. The challenge
is to overcome this discrepancy in bisimilar companion structures, using the
malleability up to ∼ of relational inquisitive models (within the respective class!)
— and, for instance, to boost all multiplicities and lengths of all cycles beyond
what can be distinguished in FOq (FO up to quantifier rank q).

In the next sections, we show how to achieve the required upgradings for
various classes C of relational models to establish our two main lines of charac-
terisation theorems:

(1) for the class of all (finite) relational models, as well as the class of (finite)
locally full models, in Section 8, leading up to Theorem 1.2;

(2) for the class of (finite) relational epistemic models, as well as the class
of (finite) locally full epistemic models, in Section 9, leading up to Theo-
rem 1.3.

For (1), we use a variation on an upgrading technique from [21] to instantiate
the above more general idea; this is based on an inquisitive analogue of partial
tree unfoldings; after this pre-processing, the models involved support locality
arguments for first-order Ehrenfeucht–Fräıssé games (in effect we shall deviate
slightly form the generic picture in Figure 2 by interleaving ∼-preserving pre-
processing steps and ≡q-preserving steps).

The classes of models in (2), on the other hand, do not allow for simple
partial unfoldings and require a more sophisticated analysis; in particular, some
features of monadic second-order logic need to be taken more seriously, features
that come into play through the presence of the second sort.

Essentially disjoint unions and localilty. Inquisitive bisimulation between
world- or state-pointed inquisitive models is robust under the augmentation of
the set of worlds by disconnected sets of new worlds. This phenomenon is well
known from ordinary bisimulation between Kripke structures. But whereas the
disjoint union of two Kripke models is again a Kripke model, any two relational
inquisitive models will necessarily share at least the empty information state
in their second sorts (they will share no other elements in either sort if the
underlying sets of worlds are disjoint).

Disregarding the universally shared empty information state, which plays
a trivial rôle in every semantic respect, we shall therefore speak of essentially
disjoint unions of models (or of subsets of their domains) if the corresponding
unions are disjoint with the exception of the necessary identification between
the empty information states in the second sort.

Towards the assessment of the expressive power of FO over relevant classes
of relational inquisitive models, which are not elementary, we cannot rely on
classical compactness arguments. Instead we invoke locality arguments based
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on the local nature of first-order logic over relational structures, in terms of
Gaifman distance (cf. Definition 9.13). In the setting of inquisitive relational
models, Gaifman distance is graph distance in the undirected bi-partite graph
on the sets W of worlds and S of states with edges between any pair linked by
E or ε; the `-neighbourhood N `(w) of a world w consists of all worlds or states
at distance up to ` from w in this sense, and N `(s) is similarly defined. It is
easy to see that if M, w is a world-pointed relational model and ` 6= 0 is even,
the restriction of this model to N `(w), denoted M �N `(w), w, is also a world-
pointed relational model. Note for this that the empty information state ∅ is
always present in E[u] for all worlds u and hence also in N `(w) for ` > 1, so that
the inquisitive state {∅} is assigned to all worlds on the cut-off of M�N `(w).

But the presence of the empty information state ∅ ∈ S might seem to spoil
any locality-based arguments because it trivialises the distance measure. In
fact, the Gaifman diameter of any relational inquisitive model is easily seen
to be bounded by 4, as ∅ ∈ S is E-related to every world, so that also every
information state has distance at most 2 from ∅. On the other hand, ∅ ∈ S
plays a trivial rôle not only w.r.t. bisimulation, where it only occurs as a dead
end, but also w.r.t. FO expressiveness: the relational model M with ∅ in its
second sort is uniformly FO-interpretable in the structure M◦ obtained from M
by dropping ∅ from the second sort. This observation will play a crucial rôle in
some of the technical arguments based on FO locality.

8 Characterisation theorem for InqML

Our aim is to show the following.

Theorem 1.2. Let C be either of the following classes of relational models:
the class of all models; of finite models; of locally full models; of finite locally
full models. Over each of these classes, InqML ≡ FO/∼, i.e., a property of
world-pointed models is definable in InqML over C if and only if it is both FO-
definable over C and ∼-invariant over C. Similarly, a property of state-pointed
models is definable in InqML over C if and only if it is FO-definable, downward
closed, and ∼-invariant over C.

As discussed in connection with Observation 7.1 above, the expressive com-
pleteness claim reduces to the following.

Proposition 8.1 (compactness property for ∼/∼n-invariance). Let C be either
of the following classes of relational models: the class of all models; of finite
models; of locally full models; or of finite locally full models. Over each of these
classes, any first-order formula whose semantics is ∼-invariant is in fact ∼n-
invariant over that class for some finite level n ∈ N.

8.1 Partial unfolding and stratification

Theorem 1.2 boils down to the compactness property expressed in Proposi-
tion 8.1 for the relevant classes of relational models. To show this property
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we make use of a process of stratification, comparable to tree-like unfoldings in
standard modal logic. We first attend to the relevant constructions for world-
pointed models, which will then also support Proposition 8.1 in the case of
state-pointed models. The necessary variation will be outlined at the end of
this section.

Definition 8.2. We say that a relational inquisitive model M is stratified if
its two domains W and S consist of essentially disjoint10 strata (Wi)i∈N and
(Si)i∈N s.t.

(i) W =
⋃̇
Wi and

(ii) E[w] ⊆ Si for all w ∈Wi and Si ⊆ ℘(Wi+1).

For an even number ` 6= 0 and a world w, we say that M is stratified to depth
` from w if M �N `(w) is stratified with W0 = {w}. M is said to be stratified
to depth ` from an information state s ∈ S, if M � N `+1(s) is stratified with
W0 = ∅, S0 = ℘(s).

We note that no non-trivial stratified model can be full.

Proposition 8.3. Any world-pointed relational inquisitive model M, w is bisim-
ilar to a stratified one. For even ` 6= 0, any finite M, w is bisimilar to a finite
model that is stratified to depth ` from w. Similarly for state-pointed relational
inquisitive models M, s. If M is locally full, the (`-)stratified target model can
be chosen to be locally full, too.

Proofsketch. The underlying process of partial unfolding is similar to the well-
known tree unfolding of Kripke structures, but leaves quite some flexibility as
to the choice of the second sort. The stratified domains of the fully stratified
target model M′, w′ ∼ M, w (or M′, s′ ∼ M, s) will consist of N-tagged copies
of worlds and information states from M, so that W ′ ⊆W ×N and S′ ⊆ S×N.
In the world-pointed case, let w′ := (w, 0). We take W ′0 := {(w, 0)}. For any
n ∈ N, we then choose a downward closed set Sn ⊇

⋃
(u,n)∈W ′n

E[u] and we let:

S′n := Sn × {n},
W ′n+1 :=

⋃
s∈Sn

s× {n+ 1}.

If we define E′, ε′, and the P ′i as E′ = {((u, n), (s, n)) : (u, s) ∈ E}, ε′ =
{((u, n + 1), (s, n)) : u ∈ s}, and P ′i = {(u, n) : u ∈ Pi}, it is easy to verify that
M′, w′ ∼ M, w. In order to maintain finiteness, the unfolding process can be
truncated at any stage n if we replace the aboveW ′n+1 byW and correspondingly
put S instead of S′n+1 and augment E′ by all of E. The resulting M′, w′ still
is fully bisimilar to M, w, is finite if M is, and is stratified to depth 2n. With
the straightforward maximal choice for the S′n, viz. S′n := S × {n}, the (full or
truncated) unfolding process preserves local fullness, too.

In the state-pointed case, we start out by setting W ′0 := ∅, S′0 := ℘(s)× {0}
and we then proceed inductively as above.

10See discussion at the end of Section 7 for the notion of ‘essential disjointness’: here the
Wi are disjoint and the Si are disjoint up to ∅, which they necessarily share.
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M, w

∼

∼n M′, w′

∼

M1, w

≡q

∼n M′1, w
′

≡q

M0, w

∼

∼n M′0, w
′

∼

M�N `(w), w ∼ M′ �N `(w′), w′

Figure 3: Upgrading pattern for Theorem 1.2/Proposition 8.1.

Observation 8.4. For relational models M and M′ that are stratified to depth
` for some even ` 6= 0, and for n > `/2:

M�N `(w), w ∼n M′ �N `(w′), w′

⇒ M�N `(w), w ∼ M′ �N `(w′), w′.

Analogously for state-pointed models that are stratified to depth `, in restriction
to the (`+ 1)-neighbourhoods of their distinguished states.

This is because, due to stratification and cut-off, the n-round game exhausts
all possibilities in the unbounded game.

Proof of Theorem 1.2. We present the upgrading argument for the case of world-
pointed models, which is closer to the classical intuition. The version for state-
pointed models, which is formally the stronger, will be discussed below. Let C
be any one of the classes in the theorem and let ϕ(x) ∈ FOq be ∼-invariant as
a world property over C. We want to show that ϕ is ∼n-invariant over C for
n = 2q, where q is the quantifier rank of ϕ. The upgrading argument is sketched
in Figure 3. Towards its ingredients, consider a world-pointed relational model
M, w in C. Since ϕ is ∼-invariant, we can, by Proposition 8.3, assume w.l.o.g.
that M, w is stratified to depth ` = n. We define two world-pointed models
M0, w and M1, w as follows. Each of the Mi consists of an essentially disjoint
union of the following constituents: both models contain q distinct isomorphic
copies of M as well as of M � N `(w). In addition, M0 contains a copy of
M�N `(w) with the distinguished world w, while M1 contains a copy of M with
the distinguished world w.11

M0, w := q ⊗M ⊕ M�N `(w), w ⊕ q ⊗M�N `(w)
M1, w := q ⊗M ⊕ M, w ⊕ q ⊗M�N `(w)

11See discussion at the end of Section 7 for the notion of ‘essential disjointness’.
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◦ ◦︸ ︷︷ ︸
q copies

w
• ◦◦ ◦◦︸ ︷︷ ︸

q copies

≡q ◦ ◦︸ ︷︷ ︸
q copies

w
• ◦◦ ◦◦︸ ︷︷ ︸

q copies

Figure 4: The structures M◦1, w and M◦2, w in the game argument.

Using a locality-based Ehrenfeucht-Fräıssé game argument for FO we can
show that

(∗) M0, w ≡q M1, w.

As essentially disjoint sums the Mi are disjoint sums up to the identifications
of the empty information states ∅. It is easily checked that the q-equivalence
claim in (∗∗) is insensitive to whether the empty information state, which is
uniformly present in the second sort of any relational inquisitive model, is rep-
resented in the second sort or not. So we may as well work with actual disjoint
unions after the removal of the empty information state from the second sort of
every component structure. The correspondingly modified structures, which are
not admissible as relational inquisitive models as they violate downward closure,
are denoted as M◦i .

12 We therefore argue for

(∗∗) M◦0, w ≡q M◦1, w

in order to show (∗). The diagram in Figure 4 suggests the arrangement, with
open cones for copies of M◦ and truncated cones for M�N `(w)◦ and with filled
circles for the distinguished worlds.

At the heart of this claim is the following game argument.
We argue that the second player has a winning strategy in the classical

q-round Ehrenfeucht–Fräıssé game over the two structures in (∗∗) starting in
the position with a single pebble on the distinguished world w on either side.
Indeed, the second player can force a win by maintaining the following invariant
w.r.t. the game positions (u; u′) for u = (u0, u1, . . . , um) with u0 = w in M◦0
and u′ = (u′0, u

′
1, . . . , u

′
m) with u′0 = w in M◦1 after round m, for m = 0, . . . , q,

for `m := 2q−m:

u and u′ are partitioned into clusters of matching sub-tuples such
that the distance between separate clusters is greater than `m and

12A formal argument can be based either on the observation that M and M◦ are uniformly
FO-interpretable in one another, or that for every ϕ(x) ∈ FO there is a ϕ◦(x) ∈ FO (even of
the same quantifier rank) such that M, w |= ϕ iff M◦, w |= ϕ◦.
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corresponding clusters are in isomorphic configurations of isomorphic
component structures of M◦0 and M◦1 or in isomorphic configurations
in M◦0 �N

`(w) and M◦1 �N
`(w).

This condition is satisfied at the start of the game, for m = 0. The second player
can maintain this condition through a round, say in the step from m to m+ 1,
as follows. Suppose the first player puts a pebble in position u = um+1 in M◦0 or
u′ = u′m+1 in M◦1 at distance up to `m+1 of one of the level m clusters (it cannot
fall within distance `m+1 of two distinct clusters, since the distance between two
distinct clusters from the previous level is greater than `m = 2`m+1); then this
new position joins a sub-cluster of that cluster and its match is found in an
isomorphic position relative to the matching cluster. If the first player puts the
new pebble in a position u = um+1 in M◦0 or u′ = u′m+1 in M◦1 at distance
greater than `m+1 of each one of the level m clusters, this position will form a
new cluster and can be matched with an isomorphic position in one of the as
yet unused component structures on the opposite side.

This argument restricts naturally to the scenarios of (finite or general) lo-
cally full relational inquisitive structures, because stratification (to some depth)
according to Proposition 8.3 preserves local fullness, and so does restriction to
some even depth and the formation of essentially disjoint sums.

Given any two pointed models M, w∼nM′, w′ in any of the relevant classes
C, we see that a first-order formula ϕ of quantifier rank q that is preserved under
∼, is preserved by chasing the diagram in Figure 3 along the path through
the auxiliary models, which are all in C. The expressive completeness claim
for Theorem 1.2, i.e. expressibility of ϕ in InqML over C, now follows from
Corollary 4.3: indeed, ϕ is logically equivalent over C to the disjunction over
the characteristic formulae χnM,w for all M, w ∈ C that satisfy ϕ.

The case of state properties. For Proposition 8.1 in the case of state prop-
erties, we can similarly upgrade the situation M, s∼nM′, s′ in companion struc-
tures through passage to truncations of fully bisimilar models that are stratified
to depth ` from their distinguished states s. Assuming w.l.o.g. that M, s is itself
stratified to depth ` = 2q, we define as before the following essentially disjoint
unions

M0, s := q ⊗M ⊕ M�N `+1(s), s ⊕ q ⊗M�N `+1(s)
M1, s := q ⊗M ⊕ M, s ⊕ q ⊗M�N `+1(s)

and we find that M0, s ≡q M1, s. We do the same for M′, s′. The rest of the
argument for Proposition 8.1 is completed with the straightforward analogue of
Figure 3 for the relevant state-pointed models and with M �N `+1(s), s ∼ M′ �
N `+1(s′), s′ in the bottom rung.
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9 Characterisation theorem for epistemic InqML

9.1 Inquisitive epistemic logic and relational models

Inquisitive epistemic frames, or inquisitive S5 frames, are defined as multi-modal
inquisitive frames F = (W, (Σa)a∈A) that meet the following conditions (see
Definition 2.4 for an equivalent formulation):

1. the accessibility relations Ra = {(w,w′) ∈ W ×W : w′ ∈ σa(w)} induced
by the maps σa : w 7→ σa(w) =

⋃
Σa(w), are equivalence relations.

2. Σa is constant on each Ra-equivalence class.

In other words, the induced Kripke frame K(F) = (W, (Ra)a∈A) is required to
be an S5 frame, and for each agent a the inquisitive assignment Σa is required
to factor w.r.t. Ra-equivalence. In the following we use the term a-classes to
speak of equivalence classes w.r.t. Ra in inquisitive S5 frames as well as in their
underlying Kripke S5 frames. We denote the a-class of a world w as [w]a. Note
that the a-classes are of the form [w]a = σa(w) and that on [w]a the inquisitive
assignment Σa takes a constant value in ℘℘([w]a) ⊆ ℘℘(W ).

The expansion of an inquisitive epistemic frame by a propositional assign-
ment V : P → ℘(W ) is an inquisitive epistemic model.

Similarly, a relational inquisitive model M = (W,S, (Ea)a∈A, (Pi)i∈I) is
called an epistemic model, or an S5 model, if it satisfies the following condi-
tions for each a ∈ A:

• Ra := {(w,w′) | w′ ∈
⋃
Ea[w] } is an equivalence relation;

• Ea[w] = Ea[w′] whenever (w,w′) ∈ Ra.

As before, we say that M is full if S = ℘(W ) and locally full if, for every world
w and each agent a, ℘(σa(w)) = ℘([w]a) ⊆ S. Notice that, given the downward
closure condition, local fullness amounts to the requirement that all the a-classes
[w]a be represented in the second sort.

As in the general setting, we can consider different relational encodings of
an inquisitive S5 model, differing only in the choice of the second sort domain.
In this setting, locally full relational encodings are a particularly natural choice,
since the a-classes [w]a feature as distinguished second-order objects in inquisi-
tive epistemic S5 frames.

9.2 The characterisation theorem

In the remainder of the paper we aim to prove the following characterisation
theorem.

Theorem 1.3. Let C be either of the following classes of relational models: the
class of all inquisitive epistemic models; of all finite inquisitive epistemic models;
of all locally full, or of all finite locally full inquisitive epistemic models. Over
each of these classes, InqML ≡ FO/∼, i.e., a property of world-pointed models
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is definable in InqML over C if and only if it is both FO-definable over C and
∼-invariant over C. Similarly, a property of state-pointed models is definable
in InqML over C if and only if it is FO-definable, downward closed, and ∼-
invariant over C.

The expressive completeness claim in the theorem again reduces to the com-
pactness property for ∼/∼`-invariance expressed in the following proposition.

Proposition 9.1 (compactness property for ∼/∼n-invariance in S5 models).
Let ϕ(x) be a first-order formula in a single free variable (for worlds or states)
whose semantics is ∼-invariant over one of these classes of relational encodings
of inquisitive models: relational inquisitive S5, finite relational inquisitive S5,
relational locally full inquisitive S5, or finite relational locally full inquisitive S5.
Then ϕ(x) is in fact ∼n-invariant over that class, for some finite level n ∈ N.

The proof of Theorem 1.3 via this proposition will eventually be given at the
end of Section 9.5, based on a development of suitable techniques in the following
sections. For that development we again focus on the world-pointed scenario,
which hold the crucial technical content and may be more familiar from the usual
epistemic perspective. The state-pointed version is then obtained, essentially by
reduction to the world-pointed case, as discussed at the end of this section. The
core argument once more is an upgrading of ∼n-equivalence to ≡q-equivalence
in relational encodings of suitable bisimilar companion structures.

To deal with various uniform constructions of bisimilar companions we use
the notion of (globally bisimilar) coverings as expounded e.g. in [22, 11, 23],
whose natural adaptation to the setting of multi-modal inquisitive epistemic
models is the following.

Definition 9.2. A bisimilar covering of an inquisitive structure M = (W, (Σa), V )

by an inquisitive structure M̂ = (Ŵ , (Σ̂a), V̂ ) is a map

π : M̂ −→M,

based on a surjection π : Ŵ →W with natural induced maps π : ℘(Ŵ )→ ℘(W )
and π : ℘℘(Ŵ )→ ℘℘(W ), such that

• π is compatible with the inquisitive and propositional assignments, i.e. a
homomorphism, in the sense that the following diagrams commute

Ŵ

π

��

Σ̂a // ℘℘(Ŵ )

π

��
W

Σa // ℘℘(W )

P V̂ //

V

&&

℘(Ŵ )

π

��
℘(W )

• induces a global bisimulation π : M̂ ∼M.

This covering is finite if its fibres π−1(w) ⊆ Ŵ are finite for all w ∈W .
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We note that an inquisitive bisimulation as in the definition may be thought
of as the lifting, in the sense of Definition 3.4, of the graph of the world-based
homomorphism π.

Towards the desired upgrading argument for Proposition 9.1, a partial un-
folding of the global pattern of equivalence classes [w]a in an inquisitive S5
model will be achieved in finite bisimilar coverings in Section 9.5. That cover-
ing construction requires a pre-processing at the local level of individual equiv-
alence classes [w]a w.r.t. the locally constant inquisitive assignment Σa : [w]a →
℘℘([w]a). This preliminary local transformation concerns a modification of in-
quisitive assignments Σa within [w]a, for individual agents a ∈ A and individual
a-classes [w]a. The following section is devoted to this a-local pre-processing.

9.3 A local upgrading argument

Local a-structures: a mono-modal situation. It is instructive to con-
sider the very basic case of S5 frames and structures with a single agent a,
which means that we are dealing with a mono-modal inquisitive frame or struc-
ture and need not refer to a. As in the classical modal situation of mono-modal
S5, this case is rather degenerate also in the inquisitive setting. In particular,
up to bisimulation, we may assume that a mono-modal inquisitive S5 structure
has but one equivalence class, because, in a disjoint union of such classes, dis-
connected pieces are not mutually accessible through moves in the bisimulation
game. Since Σ is constant across the single equivalence class of the distinguished
world, moreover, bisimulation equivalence collapses to its second level ∼1. Pro-
vided there are only finitely many basic propositions (as there certainly will be
in any individual logical formula with finitary syntax), there are just finitely
many distinct bisimulation types of such pointed structures, each one charac-
terised by the propositional type of its distinguished world, the collection of
propositional types realised overall in its worlds and the collections of proposi-
tional types realised in its inquisitive assignment, which is constant across the
set of its worlds.

The natural restriction-cum-reduct of any multi-modal inquisitive S5 struc-
ture to any one of its a-classes, M � [w]a = ([w]a,Σa � [w]a, V � [w]a), which
ignores the inquisitive structure induced by agents b 6= a, falls into one of these
∼1 equivalence classes. The constant function Σa � [w]a may moreover be iden-
tified with its constant value Σa(w) ∈ ℘℘([w]a). All the remaining complexity
of multi-agent inquisitive S5 structures arises from the overlapping of a-classes
for different a ∈ A, i.e. from the manner in which various M � [u]a overlap.
In order to fix and analyse this manner in which the substructures on individ-
ual a-classes are stitched together, we extract local structures M � [w]a with a
colouring of their worlds induced by their bisimulation types in relation to the
global structure M. For different purposes, we use different levels of granularity
for this colouring. The finest one of interest is the colouring based on the full
bisimulation-type in M, with colour set C = W/∼, the set of ∼-equivalence
classes of worlds in M. Coarser colourings are induced by the ∼n-type, for a
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fixed finite level n, with colour set Cn = W/∼n. These may also be obtained
via the natural projection η : C → Cn that identifies all ∼-types that fall into
the same ∼n-class.

Formally, a colouring of worlds by any colour set C can be encoded as a
propositional assignment, for new atomic propositions c ∈ C. Unlike propo-
sitional assignments in general, these propositions will be mutually exclusive,
so as to partition the set of worlds. To avoid conceptual overhead, we encode
colourings as functions

ρ : W → C
w 7→ ρ(w)

instead of V : C → ℘(W )
c 7→ V (c) = {w : ρ(w) = c}

and correspondingly write, e.g., (W, (Σa)a∈A, ρ∼) for the inquisitive epistemic
model with the colouring ρ∼ : W → C that assigns to each world its ∼-class:

ρ∼ : W −→ C := W/∼
w 7−→ [w]∼ = {u ∈W : M, u ∼M, w}

The coarser colouring based on ∼n-types is correspondingly formalised in the
inquisitive epistemic model (M, (Σa)a∈A, ρ∼n), with the colouring ρ∼n : W →
Cn = W/∼n. Clearly ρ∼ refines ρ∼n , and ρ∼m refines ρ∼n for m > n. In partic-
ular, all levels refine ρ∼0 , which determines each world’s original propositional
type as induced by V in M.

Definition 9.3. For an a-class [w]a in an inquisitive S5 structure M, let the
associated local a-structure be the mono-modal inquisitive S5 structure M� [w]a
with the propositional assignment induced by ρ∼ in M, which colours each world
in [w]a according to its ∼-type in M.

For n ∈ N, the local a-structure of granularity n, Mn � [w]a, is the mono-
modal inquisitive S5 structure with propositional assignment induced by ρ∼n

in M, which colours each world in [w]a according to its ∼n-type in M.

Interestingly, a local a-structure can be modified considerably without chang-
ing its bisimulation type. We now want to achieve local a-structures

• whose inquisitive assignment Σa is as simple as possible within its bisim-
ulation class; this leads to the notion of simplicity in Definition 9.6;

• which realise every bisimulation type of worlds with high multiplicity; this
leads to the notion of richness in Definition 9.4.

The idea for richness is a quantitative one, viz., that all bisimulation types
that are realised in any information state in Σa(w) will be realised with high
multiplicity in some superset that is also in Σa(w). It turns out that any finite
level of richness can be achieved in finite bisimilar coverings (Lemma 9.5), which
essentially just put a fixed number of copies of every world.

The idea of simplicity, on the other hand, imposes qualitative constraints
on the structure of the family of information states and requires a modification
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of the local inquisitive assignment, which is not described as a covering. It is
meant to normalise the downward closed family of information states in Σa(w)
within the boolean algebra ℘([w]a) of subsets of [w]a as much as possible while
preserving the bisimulation type. It may also be thought of as a local saturation
condition imposed on the representation, rather than the epistemic content, of
inquisitive assignments.

Definition 9.4. A local a-structure M� [w]a in M is K-rich for some K ∈ N if,
for every information state s ∈ Σa(w) there is some s′ such that s ⊆ s′ ∈ Σa(w)
in which every bisimulation type13 c ∈ W/∼ that occurs at all in [w]a occurs
with multiplicity at least K: |c ∩ s′| > K or |c ∩ s′| = 0.

An inquisitive S5 structure M = (W, (Σa), V ) is called K-rich if each one of
its local a-structures is K-rich, for all a ∈ A.

Lemma 9.5. For any K ∈ N, any inquisitive S5 structure M = (W, (Σa), V )
admits a finite bisimilar covering that is K-rich.

Proof. It suffices to take the natural product M×[K] of M with the standard K-
element set [K] = {1, . . . ,K}. This results in a model whose set of worlds is W×
[K], whose propositional assignment is induced by the projection π : W × [K]→
W , and whose inquisitive assignments is Σa(w,m) := {s ⊆ W × [K] : π(s) ∈
Σa(w)}. It is easily checked that π induces a bisimulation and constitutes a
bisimilar covering in the sense of Definition 9.2 by M× [K], which is K-rich.

Towards the desired notion of simplicity observe that bisimilarity is rather
robust under changes in the actual composition of the inquisitive assignments
Σa(w) in an inquisitive S5 structure M. Let S := Σa(w) ⊆ ℘([w]a). By the
S5 nature of M, Σa has constant value S on [w]a and S is a downward closed
collection of subsets of [w]a such that w ∈

⋃
S = [w]a; the only additional

invariant imposed on S by ∼ is the associated colour set for the colouring ρ = ρ∼
of worlds by their ∼-types in C = W/∼:

ρ(S) := {ρ(s) : s ∈ S} ⊆ ℘(C) where

ρ(s) := {ρ(v) : v ∈ s} = {c ∈W/∼ : c ∩ s 6= ∅}.

Note that ρ(S) is downward closed in ℘(C). Moreover, the collection of
bisimulation types in the set of worlds [w]a is fully determined by ρ(S). Up to
bisimulation, we may therefore replace S by any inquisitive epistemic assign-
ment Ŝ ⊇ S for which ρ∼(Ŝ) = ρ∼(S). The assignment Ŝ we choose is the
maximal one that is compatible with the ∼-type of the worlds in [w]a. This Ŝ
is generated, by downward closure, from maximal subsets of [w]a that realise
colour combinations in ρ∼(S). More specifically, for every s ∈ S, there is a
unique such maximal information state

ŝ :=
⋃
{c ∩ [w]a : c ∩ s 6= ∅} = {v ∈ [w]a : ρ∼(v) ∈ ρ∼(s)}

13Recall that these bisimulation types are bisimulation types in M, which are imported into
the local a-structure through ρ∼.
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that realises the same colours: ρ∼(ŝ) = ρ∼(s). Putting Σ̂a(v) := Ŝ for all v ∈
[w]a, we obtain a variant of the local a-structure that is not only locally bisimilar
but compatible with the (colour-coded) relationship of worlds in the local a-
structure with the surrounding inquisitive S5 structure M, since it preserves the
local bisimulation type of each individual world. In other words, the S5 structure
M̂ obtained from M by modifying the local a-structure M � [w]a by replacing
Σa(w) with Σ̂a(w) preserves global bisimulation equivalence, and indeed the
bisimulation type of each individual world, i.e. is consistent with ρ∼.

In a local a-structure based on a colouring ρ : [w]a → C (e.g. ρ∼ in M� [w]a or
ρ∼n in Mn � [w]a), we call an information state s ρ-saturated or colour-saturated
if it is a union of full colour classes, i.e. if

s = ρ−1(ρ(s)).

Definition 9.6. A local a-structure M� [w]a is simple if the inquisitive assign-
ment Σa(w) for w ∈ [w]a is generated by downward closure by a collection of
ρ∼-saturated subsets of [w]a. An inquisitive S5 structure M = (W, (Σa), V ) is
called simple if each one of its local a-structures is simple.

Observation 9.7. For a simple local a-structure M � [w]a, the inquisitive as-
signment Σa � [w]a is fully determined by the colouring ρ∼ � [w]a and the local
∼1-type, in the sense that the following are equivalent for any s ⊆ [w]a:

(i) s ∈ Σa(w);

(ii) ρ(s) ∈ ρ(Σa(w)).

We have established the following.

Observation 9.8. Every inquisitive S5 structure M = (W, (Σa), V ) is globally
bisimilar to a simple inquisitive S5 structure M̂ = (W, (Σ̂a), V ) with the same
underlying basic modal S5 structure (i.e., the same set W of worlds, the same
equivalence relations Ra induced by σa or σ̂a, and the same propositional assign-
ment V ) such that for every w ∈ W , a ∈ A and information state s ∈ Σa(w)
and its ρ∼-saturated companion ŝ =

⋃
{c ∩ [w]a : c ∩ s 6= ∅} ∈ Σ̂a(w):

(i) M, w ∼ M̂, w;

(ii) Σa(w) ⊆ Σ̂a(w) and M, s ∼ M̂, s ∼ M̂, ŝ.

Lemma 9.9. Let M be an inquisitive S5 structure, ρ = ρ∼ the colouring by ∼-
types in C = M/∼, with the associated lifts ρ(s) := {ρ(w) : w ∈ s} to the level of
information states and ρ(Π) := {ρ(s) : s ∈ Π} to the level of inquisitive states.
Then the bisimulation type of a world w ∈W uniquely determines ρ(Σa(w)) for
all a ∈ A, in the sense that

M,w ∼M,w′ ⇒ ρ∼(Σa(w)) = ρ∼(Σa(w′)).

If M is simple, and M, w ∼M, w′, then the Boolean algebras of all ρ∼-saturated
subsets of [w]a and [w′]a are linked be a unique isomorphism that preserves the
colouring, which moreover preserves membership in the inquisitive assignments
Σa(w) and Σ′a(w′).
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M, w

∼

∼n M′, w′

∼

M̂, ŵ ≡q M̂′, ŵ′

Figure 5: Upgrading idea in the epistemic setting, for word-pointed models.

Proof. Clearly every colour-saturated information state is uniquely determined
by the colour classes that contribute to it, and in a simple structure every ρ(s)
for s ∈ Σa(w) is represented by a unique colour-saturated member in Σa(w).
The isomorphism that arises from M, w ∼ M, w′ is uniquely determined by
the condition that it must relate colour-saturated subsets s and s′ precisely if
ρ∼(s) = ρ∼(s′).

Concerning the structure of the Boolean algebra of ρ∼-saturated subsets it
is also useful to remark, for later use, that any two distinct members must differ
in at least a full colour class (and this means by a large set of worlds if the
underlying local a-structures are rich). Also note that the Boolean algebras in
question are finite if the set C of colours is finite, which is in particular the case
for finite M.

For the combination of simplicity and richness it is instructive to note that
richness is preserved under the transformation that achieves simplicity, and that
conversely, an application of the covering by a direct product with theK-element
set [K], as we used above to achieve K-richness in Lemma 9.5, does preserve
simplicity. In other words, either order of application of the two transformations
will do to obtain globally bisimilar companions that are both rich and simple,
and finite if starting from a finite inquisitive S5 structure.

Observation 9.10. Every inquisitive S5 structure M admits, for K ∈ N, finite
bisimilar coverings that are K-rich. As a consequence, any inquisitive S5 struc-
ture M is globally bisimilar to an inquisitive S5 structure that is both K-rich
and simple, and finite if M is.

In order to deal with the upgrading issue for inquisitive S5 structures towards
Proposition 9.1, we need to boost a sufficient level of inquisitive bisimulation
equivalence ∼n to a target level of first-order equivalence ≡q as in the diagram
in Figure 5. If bisimilar companions as in the diagram are available for any pair
of n-bisimilar pointed inquisitive structures, whenever n = n(q) is sufficiently
large in terms of q, then any first-order formula of quantifier rank q that is
preserved under inquisitive bisimulation must be preserved under inquisitive n-
bisimulation: the detour via the lower extensions in the diagram demonstrates
this, as ϕ is preserved both under ∼ and under ≡q.

The above preparation sets the stage to view a relational inquisitive epis-
temic model as a network of interconnected local a-structures, which are linked
by shared worlds and whose internal local structure appears manageable despite
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the higher-order nature of the inquisitive assignment. The desired upgrading
argument for Proposition 9.1 according to Figure 5, calls for a strategy in the q-
round first-order Ehrenfeucht–Fräıssé game over the two-sorted relational mod-
els that encode two suitable pre-processed n-bisimilar models. Their nature as
conglomerates of interconnected local a-structures, allows us to largely divide
concerns strategically as follows:

Strictly local concerns. moves that involve inquisitive assignments and, more
generally, information states in the second sort, can be dealt with locally: since
the relevant information states are local to individual local a-structures and of a
monadic second-order nature over the corresponding sets of worlds [w]a, we shall
look to locally maintain levels of monadic second-order (MSO) equivalence. This
is facilitated by the above pre-processing that can guarantee sufficient levels of
similarity between the boolean algebras of ρ∼n -saturated information states.

Local concerns regarding global connectivity. moves in the first sort that touch
on new worlds, and may challenge their connectivity in the surrounding model,
can be dealt with at the level of the underlying S5 Kripke structures, where the
availability of suitable responses is governed by Gaifman locality properties of
first-order logic, provided the global connectivity pattern of these structures has
been suitably pre-processed to locally unclutter the link structure between local
a-structures. The relevant pre-processing for this can be based on corresponding
covering techniques from [22, 11] as discussed in Section 9.5 below.

The following section provides some technical background on game-based
arguments in the relevant MSO and FO-contexts for these two aspects.

9.4 From the Ehrenfeucht–Fräıssé toolbox

MSO-equivalence in the local game. We first turn to the simple and
rich local a-structures and their relational encodings. Consider a mono-modal
inquisitive S5 structure M = (W,Σ, V ) with constant inquisitive assignment
Σ: w 7→ S ⊆ ℘(W ) and a propositional assignment V induced by a disjoint
C-colouring ρ : W → C relationally encoded by its colour classes

Pc = {w ∈W : ρ(w) = c}.

By the S5 nature of the frame, W =
⋃
S and, by the properties of a colour-

ing, W =
⋃̇
c∈CPc. In light of Observation 9.10 we may also assume that M is

simple and K-rich w.r.t. the given colouring, at some granularity ∼n and for a
suitable level K to be determined. In locally full relational encodings, which in
restriction to any local a-structure encode the full powerset, first-order logic has
access to every subset of the first sort via quantification over the second sort.
In other words, locally in each individual a-structure, we are really dealing with
full monadic second-order logic MSO over the first sort, which then also fully
covers first-order expressiveness across both sorts.

To prepare for an analysis of the two-sorted relational encodings of local
a-structures up to certain levels of first-order equivalence, we therefore consider
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levels of MSO equivalence in terms of its Ehrenfeucht–Fräıssé game. To compare
the sizes of sets up to a critical value d (think of d as a threshold beyond
which precise distinctions cease to matter), we write |P | =d |P ′| if |P | = |P ′|
or |P |, |P ′| > d. For tuples P = (P1, . . . , Pk) of subsets Pi ⊆ W and P′ =
(P ′1, . . . , P

′
k) of subsets P ′i ⊆W ′, the equivalence

[[P]] =d [[P′]]

means that |ζ(P)| =d |ζ(P′)| for every boolean term ζ. Here boolean terms refer
to terms in the functional language of Boolean algebras, with binary operations
for union and intersection and a unary operation for complementation. The
following is then folklore but we indicate the straightforward proof.

Lemma 9.11. For sets W,W ′ with tuples P = (P1, . . . , Pk) of subsets Pi ⊆W
and P′ = (P ′1, . . . , P

′
k), P ′i ⊆W ′, and for d = 2q:

[[P]] =d [[P′]] ⇒ (W,P) ≡MSO
q (W ′,P′).

Proofsketch. The proof is by induction on q. For the induction step assume
that [[P]] =2d [[P′]] and suppose w.l.o.g. that the first player proposes a subset
P ⊆ W so that the second player needs to find a response P ′ ⊆ W ′ such that
[[PP ]] =d [[P′P ′]]. Decompose P and its complement P̄ into their intersections
with the atoms of the boolean algebra generated by P in ℘(W ). Then each part
of these partitions of P and P̄ can be matched with a subset of the corresponding
atom of the boolean algebra generated by P′ in ℘(W ′) in such a manner that the
parts ζ(P)∩P and ζ(P) \P match their counterparts ζ(P′)∩P ′ and ζ(P′) \P ′
in the sense of =d. This just uses the assumption that |ζ(P)| =2d |ζ(P′)|.

It is well known (and easy to show by natural composition arguments for
strategies) that ≡MSO

q is compatible with (arbitrary, not just binary) disjoint

unions. For a representation of W =
⋃̇
c∈CPc and W ′ =

⋃̇
c∈CP

′
c as disjoint

unions and for tuples P = (P1, . . . , Pk) of subsets of W and P′ = (P ′1, . . . , P
′
k)

of W ′ with corresponding restrictions Pc := (P1∩Pc, . . . , Pk∩Pc) to the subsets
of Pc ⊆W and P′c := (P ′1∩P ′c, . . . , P ′k∩P ′c) to the subsets of P ′c ⊆W ′, it follows
that for d = 2q:

[[Pc]] =d [[P′c]] for each c ∈ C ⇒ (W,P) ≡MSO
q (W ′,P′).

We can use this decomposition argument to deal with possibly infinite colour
sets C in the treatment of the local a-structures of infinite S5 structures.

The following corollary transfers levels of MSO-equivalence in single-sorted
structures with monadic predicates to levels of FO-equivalence in their two-
sorted relational encodings. It also introduces the treatment of a coarsening of
levels of bisimulation equivalence as occurs in the necessary passage from ρ∼ to
some ρ∼n during the intended upgrading. We shall there need to replace the
relational encodings of the local a-structures M� [w]a, which are obtained along
the vertical axes in Figure 5 that reflect full bisimulation equivalence, by the
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relational encodings of the M` � [w]a based on ∼n, which are available across the
horizontal axes that link M and M′. We may w.l.o.g. assume that the relational
structures M and M′ at hand are the locally full encodings of models M and
M′ respectively (replacing M by Mlf(M∗), the locally full relational encoding
of the underlying inquisitive model encoded by M, if necessary).

The coarsening in question can be formalised through a projection map on
the colour set C, which serves to identify colours that become equivalent under
the coarser view. More specifically, consider the natural projection η associated
with an equivalence relation ≈ on the colour set C,

η : C −→ C/≈
c 7−→ η(c) = [c]≈ = {c′ ∈ C : c′ ≈ c}.

For M = (W,Σ, ρ) with a colouring ρ : W → C we let Mη be the structure
with the coarser colouring

ρη = η ◦ ρ : W −→ C/≈
w 7−→ η(ρ(w)).

The application we have in mind is for ρ = ρ∼ as in M � [w]a and ρη = ρ∼n

as in Mn � [w]a, and their respective locally full relational encodings.

Corollary 9.12. Consider any two local a-structures M � [w]a and M′ � [w′]a
and their locally full two-sorted relational encodings Mlf(M� [w]a) and Mlf(M′ �
[w′]a). If M and M′ are both simple and sufficiently rich (in relation to r ∈ N),
then the following holds for any two worlds v ∈ [w]a and v′ ∈ [w′]a:

M� [w]a, v ∼1 M′ � [w′]a, v′ ⇒ Mlf(M� [w]a), v ≡r Mlf(M′ � [w′]a), v′.

Moreover, if again M and M′ are both simple and sufficiently rich, then
the following holds for any two worlds w ∈W and w′ ∈W ′ and any coarsening
η : C → C/≈ with induced Mη and M′η and their locally full two-sorted relational

encodings Mlf(Mη � [w]a) and Mlf(M′η � [w′]a) and v ∈ [w]a and v′ ∈ [w′]a:

Mη � [w]a, v ∼1 M′η � [w′]a, v′ ⇒ Mlf(Mη � [w]a) ≡r Mlf(M′η � [w′]a).

By Observation 9.10, therefore, any two inquisitive S5 structures M =
(W, (Σa)a∈A, V ) and M′ = (W ′, (Σ′a)a∈A, V

′) admit, for and any r ∈ N, globally

bisimilar companions M̂ ∼M and M̂′ ∼M′, finite if M and M′ are finite, whose
locally full relational encodings satisfy the above transfer within every one of
their local a-structures (of prescribed granularity).

Proof of the corollary. Since the claims are entirely local to local a-structures
involved, we may w.l.o.g. assume that the structures M and M′ themselves
are mono-modal inquisitive epistemic models — albeit with (propositional or
relational encodings of) the colourings ρ and ρη that in our intended applications
are imported as ρ∼ and ρ∼n from larger surrounding models. So let M =
(W,Σa, V ) and M′ = (W ′,Σ′a, V

′) be two local a-structures with propositional
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assignments corresponding to disjoint C-colourings such that W =
⋃̇
c∈CPc and

W ′ =
⋃̇
c∈CP

′
c. Assume also that M and M′ are simple w.r.t. these colourings

and K-rich for K := 2r+2.
We first look at the case of finite structures M and M′, and consequently

finite colour set C across both structures combined. The existence of any pair
of worlds w and w′ such that M, w ∼1 M′, w′ implies not only that M and M′
instantiate the same colours c ∈ C, but also that the sets of information states in
Σa(w) and Σ′a(w′) are generated by matching finite families of colour-saturated
sets.

As pointed out in connection with Lemma 9.9 above, these families generate
boolean sub-algebras of the full power set algebras whose atoms are precisely
the non-empty colour sets. It follows that for any fixed enumeration of these
matching families (sj)j∈J and (s′j)j∈J of colour-saturated information states and
the families of unary predicates (Pc)c∈C and (P ′c)c∈C that encode the colourings
by the richness assumption:

[[(Pc)c∈C , (sj)j∈J ]] =d [[(P ′c)c∈C , (s
′
j)j∈J ]] for d = 2r+2,

so that the lemma implies

(W, (Pc)c∈C , (sj)j∈J) ≡MSO
r+2 (W ′, (P ′c)c∈C , (s

′
j)j∈J).

Since by assumption w and w′ are such that they belong to matching colour
classes and hence also matching colour-saturated information states, it further
follows that

(W, (Pc)c∈C , (sj)j∈J , {w}) ≡MSO
r+1 (W ′, (P ′c)c∈C , (s

′
j)j∈J , {w′}),

which also guarantees that the two-sorted relational encodings are first-order
equivalent up to quantifier rank r: the second player has a winning strategy for
r rounds in the ordinary first-order game played on these two-sorted relational
encodings, since the latter can be simulated in the MSO-game on the first sort.
A move involving the second sort (a pebble on an information state) naturally
corresponds to a set move in the MSO-game, while a move in the first sort (a
pebble on a world) is mimicked by a singleton set move. W.r.t. membership of
information states in the image of Σa or Σ′a (i.e., the local restrictions of the
relation E in the relational encodings) we observe that, due to simplicity, this
issue is reduced to emptiness questions about intersections of these information
states with the lists of colour-saturated information states (sj)j∈J and (s′j)j∈J ,

cf. Observation 9.7.14

For the transition to a coarser assignment on the basis of an identification of
colours from C according to a projection η : C → C/≈, it is clear that richness

14The one round to spare in the MSO levels of equivalence serves to ensure that responses re-
spect set inclusion relationships: this concerns set inclusions between singleton sets introduced
to mimic pebbles on worlds, i.e., ∈-relationships, but also set inclusions between pebbled in-
formation states and their respective parent sets s or s′ and checking for empty or non-empty
intersections with the colour sets, which is necessary also to check membership in Σa(w) and
Σ′a(w′).
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and =d-equivalence as well as simplicity are preserved under the merging of
colour classes according to η.

The corresponding arguments for the setting of infinite structures has to
deal with infinite sets C of colours, and correspondingly with infinite families
(Pc)c∈C and (P ′c)c∈C as well with infinite matching families of colour-saturated
information states (sj)j∈J and (s′j)j∈J . But these families of sets can be decom-
posed into their disjoint restrictions to the individual colour sets Pc and P ′c that
partition W and W ′, respectively. K-richness for K = 2r+1 implies component-
wise equivalence in the sense of =d for each pair of restrictions. In fact the
restrictions of each colour-saturated s and matching s′ to any individual Pc and
P ′c are either both full or both empty, so both of size 0 or both of size > K. So
≡MSO
r+2 follows as before, based on its compatibility with disjoint unions, and the

argument for ≡r for the pointed variants of the relational encodings remains the
same. The transition to a coarsening via η again preserves richness, simplicity
and =d-equivalence.

FO-equivalence and Gaifman locality. We now turn to the global pat-
tern of overlapping local a-classes and structures, again with a view to a partial
bisimilar unfolding in a covering that simplifies the overall structure while re-
moving obstacles to levels of first-order equivalence that are not governed by
any level of bisimulation equivalence. While details towards this aspect of the
upgrading argument will be given in Section 9.5, we here review the relevant
technical background on Gaifman locality and its use towards establishing lev-
els ≡q of first-order equivalence between relational structures M̂ and M̂′ in the
situation of Figure 5.

In our case of relational structures with just unary and binary relations,
Gaifman distance is just ordinary graph distance w.r.t. the symmetrisations
of all the binary relations in the vocabulary. It establishes a natural distance
measure between elements (in our case across both sorts, worlds and information
states).15 For an element b of the relational structure B and ` ∈ N, the set of
elements at distance up to ` from b is the `-neighbourhood of b, denoted as

N `(b) = {b′ ∈ B : d(b, b′) 6 `}.

A first-order formula ϕ(x) in a single free variable x is `-local if its se-
mantics at b ∈ B depends just on the induced substructure B �N `(b) on the
`-neighbourhood N `(b). In other words, ϕ(x) is `-local if, and only if, it is
logically equivalent to its `-local relativisation to the `-neighbourhood of x, for
which we write ϕ`(x) (which is itself expressible in FO). We refer to ϕ`(x) ∈ FO
as the `-localisation of ϕ(x). A finite set of elements of the relational structure
B is said to be `-scattered if the `-neighbourhoods of any two distinct members

15In general, ‘infinite distances’ occur between elements that are not linked by finite chains
of binary relational edges, i.e. that are in distinct connected components. Due to downward
closure and the rôle of the empty information state, all relational inquisitive epistemic mod-
els are actually connected; we shall technically deal with this artefact below, similar to the
treatment in Section 8.1.
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are disjoint. A basic local sentence is a sentence that asserts, for some formula
ϕ(x) and some m > 1, the existence of an `-scattered set of m elements that
each satisfy the `-localisation ϕ`(x). Gaifman’s theorem, in the case that we are
interested in, asserts that any first-order formula in a single free variable x is
logically equivalent to a boolean combination of `-local formulae ϕ`(x) for some
` and some basic local sentences. We shall focus on the following definition of
levels of Gaifman equivalence.

Definition 9.13. Two pointed relational structures B, b and B′, b′ are (`, r,m)
Gaifman equivalent, denoted B, b ≡(`)

r,m B′, b′ if b and b′ satisfy exactly the same
`-localisations of formulae ϕ(x) of quantifier rank r in B and B′ and if the
structures B and B′ satisfy exactly the same basic local sentences concerning
`′-localisations for formulae ϕ(x) of quantifier rank r and `′-scattered sets of
size m′, for any `′ 6 `, m′ 6 m.

B, b and B′, b′ are `-locally r-equivalent, denoted B, b ≡(`)
r B′, b′ if b and b′

satisfy exactly the same `-localisations of formulae ϕ(x) of quantifier rank r.

The following is an immediate corollary of Gaifman’s classical theorem [13,
12].

Proposition 9.14. The semantics of any first-order formula ψ(x) in a purely
relational vocabulary is preserved under Gaifman equivalence ≡(`)

r,m for suffi-
ciently large values of the parameters `, r,m ∈ N.

We can therefore replace the target level ≡q of FO-equivalence in the upgrad-
ing task of Proposition 9.1 as in Figure 5 by a suitable level ≡(`)

r,m of Gaifman
equivalence that is sufficient to preserve the semantics of the given bisimulation-
invariant FO formula ϕ.

For formulae ψ(x) ∈ FO whose semantics is also preserved under disjoint
unions of relational structures, preservation under ≡(`)

r,m implies preservation

under ≡`r in the following sense.

Observation 9.15. Let ψ(x) ∈ FO be invariant under disjoint unions in the
sense that for pointed B, b and disjoint unions B⊕ C always

B, b⊕ C |= ψ ⇔ B, b |= ψ.

Then preservation of ψ under ≡(`)
r,m implies preservation under ≡(`)

r .

Proof. The following simple argument from [22] encapsulates elements of the ad-
hoc proof given for Theorem 1.2 in Section 8.1. We show that B, b ≡(`)

r B′, b′

implies that B, b |= ψ iff B′, b′ |= ψ. Since ψ is assumed to be invariant under
≡(`)
r,m, it suffices to observe that B, b ≡(`)

r B′, b′ implies

m⊗B ⊕ B, b ⊕ m⊗B′ ≡(`)

r,m m⊗B ⊕ B′, b′ ⊕ m⊗B′,

where, e.g., m⊗B stands for the m-fold disjoint union of isomorphic copies of
B, and to use robustness of ψ w.r.t. disjoint unions.
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M, w

∼

∼n M′, w′

∼

M̂, ŵ ∼n M̂′, ŵ′

M̂◦, ŵ ≡(`)
r M̂′◦, ŵ′

Figure 6: The upgrading in the epistemic setting, refined.

It follows that we may even replace the target level ≡q for the upgrading for
Proposition 9.1 according to Figure 5 by a suitable level of equivalence ≡(`)

r —
which, remarkably, is a level of local FO-equivalence, viz. of ≡r in restriction to
the `-neighbourhoods of the distinguished worlds. But as the relevant classes
C of inquisitive epistemic relational models do not allow for disjoint unions,
we need to adapt the more generic argument from Observation 9.15 as follows.
Recall the discussion of essentially disjoint unions and the operation M 7→M◦

that removes the empty information state from the second sort, as discussed in
Section 8.1. For the following compare Figure 6.

Remark 9.16. In order to show that ϕ(x) ∈ FO is preserved under ∼n for some
suitable finite level of n in restriction to any one of the classes C of relational
models from Theorem 1.3, according to Proposition 9.1, it suffices to upgrade
M, w ∼n M′, w′ to a suitable level ≡(`)

r of `-local r-equivalence between the

variants M̂◦, ŵ and M̂′◦, ŵ′ of bisimilar companions M̂, ŵ ∼M, w and M̂′, ŵ′ ∼
M′, w′ within C. The analogous claim holds true for state-pointed models and
ϕ(x) preserved under ∼n as a state-property over C.

Proof. Let C◦ := {M◦ : M ∈ C} and let ϕ◦(x) ∈ FO be such that, e.g. for the
world-pointed case, for all M ∈ C:

M, w |= ϕ iff M◦, w |= ϕ◦.

Let `, r,m be such that (`, r,m)-Gaifman equivalence preserves the semantics
of ϕ◦. We note that, due to ∼-invariance over the class C, its variant ϕ◦ is
invariant under actual disjoint unions of models in C◦. An application of the
argument from Observation 9.15 to ψ := ϕ◦ over C◦ yields the desired result.

9.5 Partial unfoldings in finite coverings

It remains to provide bisimilar companions for inquisitive epistemic relational
models, for which a suitable finite level of ∼n can be upgraded to given a target
level ≡(`)

r of local FO-equivalence according to Remark 9.16. The required pre-
processing needs to unclutter and smooth out the local pattern of overlapping
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local a-structures in such a manner that the `-bisimulation type determines the
first-order behaviour of `-neighbourhoods up to quantifier rank r. This requires
a local unfolding of the connectivity in the underlying Kripke structures and
uses ideas developed in [22] to eliminate incidental cycles and overlaps in finite
bisimilar coverings — ideas which have also been applied in the context of plain
S5 Kripke structures in [11].

Consider the single-sorted, relational multi-modal S5 structure K = K(M) =
(W, (Ra)a∈A, V ) with equivalence relations Ra derived from the inquisitive S5
frame M, with equivalence classes [w]a. Generic constructions from [22], which
are based on products with suitable Cayley groups, yield finite bisimilar cov-
erings π : K̂ → K by another S5 structure K̂ that is N -acyclic for some desired
threshold N ∈ N in the following sense:

– ai-classes and aj-classes for agents ai 6= aj can overlap in at most a sin-
gle world and there is no non-trivial cyclic pattern of length up to N of
overlapping ai-classes.

– every a-class in the finite bisimilar covering is bijectively related to an a-
class in the original structure by the projection map of the covering which
furthermore induces the bisimulation.

Let π : K̂ → K be an N -acyclic finite bisimilar covering in this sense, which
in particular means that the graph of the covering projection π is a bisim-
ulation relation. Since a-classes in K̂ are π-related isomorphic pre-images of
corresponding a-classes in K, we may consistently endow them with an inquis-
itive Σa-assignment as pulled back from M, to obtain a natural derived finite
inquisitive bisimilar covering

π : M̂ −→M = (W, (Σa), V )

in the sense of Definition 9.2, where M̂ = (Ŵ , (Σ̂a), V̂ ) is based on Ŵ and com-

patible with the underlying S5 Kripke structure K̂ = K(M̂). More specifically,
for ŵ ∈ Ŵ consider its R̂a equivalence class [ŵ]a ⊆ Ŵ , which is bijectively
related by π to the Ra equivalence class of w = π(ŵ) in K, [w]a ⊆ W . In
restriction to [ŵ]a we put

Σ̂a � [ŵ]a : [ŵ]a −→ ℘℘([ŵ]a)

û 7−→ {π−1(s) : s ∈ Σa(w) ⊆ ℘([w]a)},

where π−1 refers to the inverse of the local bijection between [ŵ]a and [w]a
induced by π. In other words, we make the following diagram commute and note
that the relevant restriction of π in the right-hand part of the diagram is bijective
and part of a bisimulation at the level of the underlying S5 Kripke structures,
which means in particular that it is compatible with the given propositional
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assignments:

M̂, ŵ

π

��

[ŵ]a
Σ̂a //

π

��

℘℘([ŵ]a)

π

��
M, w [w]a

Σa

// ℘℘([w]a)

We merely need to check that the resulting model M̂ is again an inquisitive
epistemic model, and that π induces an inquisitive bisimulation, not just a bisim-
ulation at the level of the underlying single-sorted, multi-modal S5-structures
K̂ = K(M̂) and K = K(M). That M̂ is an inquisitive S5 model is straightforward
from its construction: Σ̂a-values are constant on the a-classes induced by R̂a
just as Σa-values are constant across a-classes induced by Ra; and ŵ ∈ σ̂a(ŵ)
follows from the fact that w ∈ σa(w) = [w]a. The back&forth conditions for an
inquisitive bisimulation relation can be verified for

Z = {(û, π(û)) ∈ Ŵ ×W : û ∈ Ŵ}
∪ {(ŝ, π(ŝ)) ∈ ℘(Ŵ )× ℘(W ) : a ∈ A, ŵ ∈ Ŵ , ŝ ∈ Σ̂a(ŵ)},

which is the natural lifting of π to information states.
We summarise these findings as follows.

Lemma 9.17. Any inquisitive S5 structure M = (W, (Σa), V ) admits, for every
N ∈ N, a finite bisimilar covering of the form

π : M̂ −→M

by an inquisitive S5 structure M̂ = (Ŵ , (Σ̂a), V̂ ) such that

(i) the global bisimulation induced by π is an isomorphism in restriction to

each local a-structure M̂� [ŵ]a of M̂, which is isomorphically mapped by π
onto the local a-structure M� [π(ŵ)]a of M,

and M̂ is N -acyclic in the sense that

(ii) no two distinct a-classes overlap in more than a single world, and

(iii) there are no non-trivial cyclic patterns of length up to N formed by over-
lapping a-classes.

It is noteworthy that condition (i) guarantees that simplicity and K-richness
are preserved in the covering, simply because they are properties of the local
a-structures, which up to isomorphism are the same in M and in M̂. This
implies that the conditions imposed on structures M and M′ in the following
lemma can always be achieved simultaneously in finite bisimilar companions
of arbitrary inquisitive epistemic models, by using finite N -acyclic coverings
according to Lemma 9.17 after pre-processing according to Observation 9.10 for
simplicity and richness.
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Lemma 9.18. Let M and M′ be N -acyclic for N > 2`, simple and sufficiently
rich to support the claim of Corollary 9.12. Then their locally full relational
encodings M = Mlf(M) and M′ = Mlf(M′) satisfy the following for any pair of
worlds such that M, w ∼n M′, w′ for n > `+ 1:

M◦ �N `(w), w ≡r M′◦ �N `(w′), w′.

Proof. In the given situation, a strategy for the second second player in the
r-round game on the pointed `-neighbourhoods of w and w′ in M◦ and M′◦ can
be based on a combination of strategies in

(a) the r-round first-order game on the tree-like underlying S5 Kripke struc-
tures on the first sort (worlds) with a-classes for accessibility and a colour-
ing of worlds that reflect sufficient finite approximations to their bisimula-
tion types in M that which in particular suffice to guarantee 1-bisimulation
equivalence and hence also ≡r of local a-structures of appropriate granu-
larities,16 and

(b) local strategies in the r-round games on the relational encodings of the
local a-structures (with colourings at the appropriate level of granularity)
induced by pebbled pairs of worlds. These strategies are ultimately based
on local MSO-games over the first sort, as discussed in connection with
Corollary 9.12.

Consider any position u; u′ in the r-round first-order game on M◦ �N `(w)
and M′◦ �N `(w′), starting with pebbles on w and w′ which are equivalent w.r.t.
∼`+1 in M and M′. It will be of the form u = (u0, . . . , uk) and u′ = (u′0, . . . , u

′
k)

for some k 6 r with u0 = w, u′o = w′, and, for 1 6 i 6 k, either

(i) ui = wi and u′i = w′i are elements of the first sort (worlds) that are linked
to w and w′, respectively, by unique paths of overlapping a-classes, or

(ii) ui = si and u′i = s′i are of the second sort (information states) in some
Σa(wi), respectively Σ′a(w′i), for a pair of uniquely determined worlds wi
and w′i as in (i).

We describe such positions after k rounds, for k 6 r, in terms of the asso-
ciated w = (w0, . . . , wk) and w′ = (w′0, . . . , w

′
k) and (for some i) si ∈ Σai(wi)

and s′i ∈ Σa′i(w
′
i), which we further augment as follows.

With the tuple w of worlds in M we associate a tree-like hypergraph struc-
ture whose hyperedges represent overlapping a-classes in the underlying basic
modal S5-frames over the first sort, and which corresponds to a minimal span-
ning sub-tree containing the worlds in w. We write tree(w) for this tree struc-
ture which has as its vertices for every wi in w the unique sequence of worlds
in which the a-classes that make up the shortest connecting path from the root
w to wi intersect, as well as its end points, w = w0 and wi; its hyperedges are
the non-trivial subsets of vertices that fall within the same a-class, labelled by
the corresponding a, i.e., essentially abstract representations of the overlapping

16It is important here that just certain finite levels of bisimilarity, not the full ∼-type, can
be controlled.
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a-classes along these shortest connecting paths to the root. We label each ver-
tex u of this tree structure, which is a world in M, by its ∼`−d+1-type in M for
d = d(w, u) (distance from the root w = w0, or depth in the tree structure), and
label its hyperedges by the appropriate a ∈ A. The tree tree(w′) on the side
of M′ is similarly defined. After k rounds, each of these trees can have at most
1 + k` vertices and each individual hyperedge can have at most k + 1 vertices.
Also, the a-labelling uniquely distinguishes all hyperedges that are incident with
any individual world u that is a vertex in the tree. For worlds u of M, agent
a ∈ A and n ∈ N, we now denote as Mn � [w]a the locally full (i.e. full) relational
encoding of the local a-structure Mn � [w]a at granularity n, which has colours
for ∼n-classes, i.e. ∼n-types in M (cf. Definition 9.3); and analogously for M′.

We argue that the second player can maintain the following conditions in
terms of these tree structures through r rounds, thus forcing a win:

(1) the tree structures tree(w) and tree(w′) spanned by w and w′ are isomor-
phic (as hyperedge- and vertex-labelled hypergraphs) via an isomorphism
ζ that maps w to w′:

ζ : tree(w),w ' tree(w′),w′

(2) for each local a-structure on [u]a for any pair of vertices u ∈ tree(w) and
u′ ∈ tree(w′) at depth d = d(w, u) = d(w′, u′) that are related by the
isomorphism ζ from (1):

M`−d � [u]a, s ≡r−z+1 M′`−d � [u
′]a, s

′

where s and s′ are tuples of size z that coherently list any singleton infor-
mation states corresponding to the tree vertices incident with that a-edge
and any information states si ∈ Σa(u) and s′i ∈ Σa(u′) that may have
been chosen in the second sort during the first k rounds of the game.

Clearly these conditions are satisfied at the start of the game: (2) in this
case does not add anything beyond (1), which in turn is a consequence of the
assumption that M, w0 ∼`+1 M′, w′0.

We show how to maintain conditions (1) and (2) through round k, in which
the first player may either choose an information state (sk or s′k) or a world (wk
or w′k). We refer to the position before this round as described by parameters
w,w′, tree(w), . . . as above but at level k−1, and assume conditions (1) and (2)
for those. The following shows how the second player can find responses so as
to maintain conditions (1) and (2).

Case 1. Suppose the first player chooses a non-empty, non-singleton infor-
mation state, say sk (a choice on the side of M′ can be is treated symmetrically),
so that sk ∈ Σa(wk) for some uniquely determined wk and a.

Case 1.1: if wk = u for some vertex u in tree(w), u at depth d say, then we
look at one round in the game for

M`−d � [u]a, s ≡r−z+1 M′`−d � [u
′]a, s

′
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with a move by the first player on sk, which extends s to ssk; this has an ade-
quate response s′k for the second player, which extends s′ to ss′k and guarantees
≡r−z (this is the appropriate level since the tuples s and s′ have been extended
by one component).

Case 1.2: wk is “new” and the appropriate w′k that satisfies conditions (1)
and (2) has to be located in a first step that simulates a move on wk (treated
as Case 2), after which we may proceed as in Case 1.1.

Case 2. Suppose the first player chooses a world in the k-th round, say wk.
The choice of an appropriate match w′k is treated by induction on the distance
that the newly chosen world wk has from tree(w). In the base case, distance 0
from tree(w), wk is a vertex of tree(w) and nothing needs to be updated: the
response is dictated by the existing isomorphism ζ according to (1).

In all other cases, tree(w) and ζ need to be extended to encompass the new
wk. The new world wk can be joined to tree(w) by a unique shortest path
of overlapping a-classes of length greater than 0 that connects it to tree(w).
The new branch in tree(w) will be joined to tree(w) either through a new a-
hyperedge emanating from an existing vertex u of tree(w) (treated in Case 2.1)
or through a new vertex u in a local a-structure corresponding to an existing
hyperedge (treated in Case 2.2).

Case 2.1: it is instructive to look at the special case of distance 1 from tree(w)
and then argue how to iterate for larger distance. So let wk be at distance 1
from tree(w) in the sense that wk ∈ [u]a for some u in tree(w) at depth d that
is not incident with an a-hyperedge in tree(w). Since M, u ∼`−d+1 M′, u′ for
u′ = ζ(u) and

M`−d � [u]a, u ≡r M′`−d � [u′]au′,

a suitable response to the move that pebbles the world wk (or the singleton
information state {wk}) in that game yields a world w′k ∈ [u′]a such that
M, wk ∼`−d M′, w′k and

M`−d � [u]a, {u}, {wk} ≡r−1 M′`−d � [u
′]a, {u′}, {w′k}.

These levels of equivalence and granularity are appropriate since the depth of
wk and w′k is d + 1, and since one new vertex contributes to the new hyper-
edge. So we may extend the isomorphism ζ to map wk to w′k in keeping with
conditions (1) and (2). If wk is at greater distance from its nearest neighbour u
in tree(w) we can iterate this process of introducing new hyperedges with one
new element at a time, degrading the level of inquisitive bisimulation equiva-
lence by 1 in every step that takes us one step further away from the root, but
maintaining equivalences ≡r−1 between the newly added local a-structures.

Case 2.2: it remains to argue for the case of wk ∈ [u]a for some u in tree(w)
that is already incident with an a-edge of tree(w). By (2) we have

M`−d � [u]a, s ≡r−z M′`−d � [u′]a, s′,

where z is the size of the tuples s and s′ already incident with these local a-
structures and d is the depth of u and u′. So we can find a response to a move
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on {wk} in this game that yields w′k ∈ [u′]a such that M, wk ∼`−d M′, w′k and

M`−d � [u]a, s{wk} ≡r−z−1 M′`−d � [u
′]a, s

′{w′k}.

The levels of bisimulation equivalence and granularity are appropriate as the
depth of wk and w′k is one greater than that of u and u′, and as the length of
the tuples s and s′ has been increased by 1. So we may extend ζ by matching
wk with w′k and extending tree(w) and tree(w)′ by these new vertices and stay
consistent with conditions (1) and (2).

We are now in a position to prove Theorem 1.3, which, as stated in Sec-
tion 9.2, is a consequence of Proposition 9.1.

Proof of Proposition 9.1. Given a formula ϕ(x) ∈ FO whose semantics is invari-
ant under ∼ over one of the relevant classes C of world-pointed inquisitive epis-
temic relational models, we look at two world-pointed models M, w ∼n M′, w′

from C that are n-bisimulation equivalent for some n > ` + 1, where ` is the
locality parameter in a level (`, r,m) of Gaifman equivalence that preserves the
semantics of the first-order formula ϕ◦ over arbitrary relational structures, as
given in Proposition 9.14. Here ϕ◦(x) is the FO-formula that transcribes ϕ for
the variant structures M◦ without explicit representation of the trivial informa-
tion state ∅ in their second sort. By Remark 9.16 (as illustrated in Figure 6),

it suffices to exhibit bisimilar companions M̂, ŵ ∼ M, w and M̂′, ŵ′ ∼ M′, w′

within the same class C such that

M̂◦, ŵ ≡(`)

r M̂′◦, ŵ′.

To this end we may pass from M and M′ to the associated inquisitive epis-
temic models M, w := M∗, w and M′, w′ := M∗, w, and replace those by (finite)

bisimilar companions M̂, ŵ ∼ M, w and M̂′, ŵ′ ∼ M′, w′ that are N -acyclic for
N > 2`, simple and K-rich for a sufficiently high value of K as in Lemma 9.18.
We observe that the locally full relational encodings of M̂ := Mlf(M̂) and

M̂′ := Mlf(M̂′) are again in the relevant class C and, by Lemma 9.18, satisfy

M̂◦, ŵ ≡(`)
r M̂′◦, ŵ′, as required in Remark 9.16.

The variation of this upgrading argument for state-pointed M, s∼nM′, s′
proceeds as follows. Remark 9.16 is available also in this case to reduce the
claim to an upgrading that achieves a suitable target level ≡(`)

r of local FO
equivalence in the `-neighbourhoods of the distinguished states. To this end
we may apply structural transformations as above, individually to each one of
the world-pointed models (M, w)w∈s and (M′, w′)w′∈s′ to obtain correspond-

ing families (M̂w, ŵ)w∈s and (M̂′w′ , ŵ
′)w′∈s′ where always M̂w, ŵ ∼ M, w and

M̂′w′ , ŵ
′ ∼M′, w′.

We now use 2r copies of the members in each of these families to obtain
models

M̂ :=
⊕
w∈s

M̂w × [2r]

M̂′ :=
⊕
w′∈s′

M̂′w′ × [2r]
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over which the associated inquisitive S5 models M := M∗, M′ := M′∗, M̂ := M∗

and M̂′ := M̂′∗ with distinguished information states ŝ := {ŵ : w ∈ s} × [2r]
and ŝ′ := {ŵ′ : w′ ∈ s′} × [2r] satisfy

M, s ∼ M̂, ŝ ∼n M̂′, ŝ′ ∼M′, s′.

Note that the new distinguished states ŝ and ŝ′ are totally scattered as sets of
worlds in the underlying Kripke structures. In order to make these distinguished
states available in the relational encodings of these models, we can adjoin ℘(ŝ)

and ℘(ŝ′) to the second sorts of M̂ and M̂′ to obtain relational models

M̂ + ℘(ŝ) and M̂′ + ℘(ŝ′),

in which ŝ and ŝ′ together with all their subsets are represented as elements in
the second sort.

Here, e.g. the shorthand “+℘(ŝ)” denotes the effect of taking the union of

the second sort of the relational model M̂ with the power set of ŝ and adding
corresponding ε-links of these information states to their elements in the first
sort. Crucially, ℘(ŝ) and the second sort of M̂ itself share just the empty
information state and the singleton information states for worlds in ŝ, and the
associated Kripke structure of M̂ + ℘(ŝ) is the same as for M̂.

We can now extend the game argument of Lemma 9.18 to these models to
show the local equivalence

(∗) (M̂ + ℘(ŝ))◦, ŝ ≡(`)

r (M̂′ + ℘(ŝ′))◦, ŝ′,

which by Remark 9.16 provides the desired upgrading to clinch the argument
for Proposition 9.1 in the state-pointed case.

Due to the richness level of 2r implemented in ŝ and ŝ′ we can use a game
argument based on Lemma 9.11 to reduce (∗) to the equivalences

M̂◦w, ŵ ≡(`)

r M̂′◦w′ , ŵ
′

for all the constituent pairs arising from matching M, w∼nM′, w′ over s and
s′, as guaranteed by Lemma 9.18.

10 Conclusion

In this paper we have seen the beginnings of a model theory for inquisitive
modal logic. Our contribution started in Section 3, where we described the
natural notion of bisimulation for inquisitive modal structures. From a game-
theoretic perspective, bisimilarity and its approximations can be characterised
in terms of a game which interleaves two kinds of moves: world-to-state moves
(from w to some s ∈ Σ(w)) and state-to-world moves (from s to some w ∈ s).

In Section 4 we saw that bisimilarity relates to modal equivalence in the fa-
miliar way: two pointed models are distinguishable in the n-round bisimulation
game if and only if they are distinguished by a formula of modal depth n.
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In Section 5 we compared inquisitive modal logic to neighbourhood semantics
for modal logic, showing that, although these two logics are interpreted over
similar structures, they are very different in terms of their expressive power,
and are invariant under different notions of bisimulation equivalence.

In Section 6 we discussed how inquisitive modal models can be encoded as
two-sorted relational structures on which we can interpret first-order formulae of
a suitable relational signature. This enabled us to define a standard translation
from InqML to first-order logic, and to view InqML as a syntactic fragment
of first-order logic. We then asked whether (and if so, over what classes of
structures) this syntactic fragment coincides, up to logical equivalence, with the
fragment determined by the semantic property of bisimulation invariance.

Using an inquisitive analogue of partial tree unfoldings in Section 8, we estab-
lished a positive answer to this question for the class of all relational inquisitive
models, both in the general case and in restriction to finite models.

Finally, in Section 9 we turned to the case of inquisitive epistemic models—
the inquisitive version of multi-modal S5 models. Technically, this case is much
more challenging, since the partial unfolding procedure used in the previous
section is incompatible with the S5 frame conditions. Nevertheless, we saw that
the characterisation result still holds in this setting—again, both in general and
in restriction to finite models.

The results obtained in this paper provide us with a better understanding of
inquisitive modal logic in at least two ways. From a more concrete perspective,
we have given a characterisation of the expressive power of InqML which is
very helpful in order to tell what properties of pointed models can and cannot
be expressed in the language: for instance, it is easy to see that properties like
P(w) := “W ∈ Σ(w)” or P(w) := “{w} ∈ Σ(w)” are not bisimulation invari-
ant, and thus not expressible in InqML. From a more abstract perspective, we
have looked at a natural notion of behavioural equivalence for inquisitive modal
structures, whose main constituent is a map Σ : W → ℘℘(W ), rather than
σ : W → ℘(W ) as in Kripke structures. We saw that, in terms of expressive
power, InqML is a natural choice for a language designed to talk about prop-
erties which are invariant under this notion of equivalence: among first-order
properties (and over various natural classes of models) InqML expresses all and
only those properties that are invariant in this sense.
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