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Abstract

Evaluating a boolean conjunctive query q over a
guarded first-order theory ¢ is equivalent to checking
whether ¢ A —q is unsatisfiable. This problem is relevant
to the areas of database theory and description logic. Since
q may not be guarded, well known results about the decid-
ability, complexity, and finite-model property of the guarded
fragment do not obviously carry over to conjunctive query
answering over guarded theories, and had been left open in
general. By investigating finite guarded bisimilar covers of
hypergraphs and relational structures, and by substantially
generalising Rosati’s finite chase, we prove for guarded the-
ories  and (unions of) conjunctive queries q that (i) ¢ = q
iff © Etin q that is, iff q is true in each finite model
of @ and (ii) determining whether ¢ = q is 2EXPTIME-
complete. We further show the following results: (iii) the
existence of polynomial-size conformal covers of arbitrary
hypergraphs; (iv) a new proof of the finite model property
of the clique-guarded fragment; (v) the small model prop-
erty of the guarded fragment with optimal bounds; (vi) a
polynomial-time solution to the canonisation problem mod-
ulo guarded bisimulation, which yields (vii) a capturing re-
sult for guarded-bisimulation-invariant PTIME.

1 Introduction

The guarded fragment. The guarded fragment of first-
order logic (GF), defined through the relativisation of quan-
tifiers by atomic formulas, was originally introduced by
Andréka, van Benthem, and Németi [1], who proved that
the satisfiability problem for GF is decidable. Gridel [12]
proved that every satisfiable guarded first-order sentence
has a finite model, i.e., that GF has the finite model prop-
erty (FMP). In the same paper, Gridel also proved that sat-
isfiability of GF-sentences is complete for 2EXPTIME, and
is EXPTIME-complete for sentences involving relations of
bounded arity. GF has since been intensively studied and
extended in various ways. For example, the clique guarded
fragment (CGF) [13] properly extends GF but still enjoys
the finite model property as shown by Hodkinson [15], see
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also [16] for a simpler proof. Guardedness has emerged as a
main new paradigm for decidability and other benign prop-
erties such as the FMP, and has applications in various areas
of computer science. While GF was originally introduced
to embed and naturally extend propositional modal logics
within first-order logic [1], it has various applications and
was more recently shown to be relevant to description log-
ics [11] and to database theory [22, 7]. Fragments of GF
were recently studied for query-answering in such contexts,
seee.g.[7,9,8,22,5,6,21]. The main problems studied in
the present paper were motivated by such applications.

Main problems studied In the present paper we study
the problem of querying guarded theories using conjunctive
queries or unions of conjunctive queries. A boolean con-
junctive query (BCQ) g consists of an existentially closed
conjunction of atoms. A union of (boolean) conjunctive
queries (UCQ) is a disjunction of BCQs. If ¢ is a guarded
sentence (or, equivalently, a guarded theory), we say that a
query q evaluates to true over o, iff ¢ |= ¢. In this context,
we considered the following non-trivial main questions:

Finite controllability: Ts it true that for each GF-sentence
pandeachUCQgq, ¢ Eq <= ¢ [=nan ¢? Since the
query ¢ may not be guarded, the finite model property of
the guarded fragment is not sufficient to answer this ques-
tion positively. Rather, this question amounts to whether
for each ¢ and ¢ as above, whenever ¢ A —g is consistent, it
also has a finite model. This is equivalent to the finite model
property of the extended fragment GF™ of GF, where uni-
versally quantified boolean combinations of negative atoms
can be conjoined to guarded sentences. See [20] for another
strengthening of the finite model property of GF. The con-
cept of finite controllability was introduced by Rosati [22]'.

Size of finite models: How can we bound the sizes of fi-
nite models? In particular, in case ¢ }~ ¢, how can we
bound the size of the smallest finite models 2t of ¢ for
which 91 (£ ¢? Note that any recursive bound on the size
of such models 97 immediately yields the decidability of
query-answering. On the other hand, if ¢ is consistent and
¢ E g, then the existence of a finite model 9% such that

IRosati’s definition is slightly stronger (see Proposition 1); the defini-
tion given here is, however, better suited for the full guarded fragment.



M = g follows trivially from the FMP of GF, because ev-
ery model 90t of ¢ is also a model of q. However, little
was known about the size of the smallest finite models of a
satisfiable guarded sentence ¢. Grédel’s finite-model con-
struction in [12], in case of unbounded arities, first trans-
forms ¢ into a doubly exponentially sized structure, which
is then input to a transformation according to Herwig’s the-
orem [14], requiring a further exponential blow-up in the
worst case. This suggests a triple-exponential upper bound.
Can we do better?

Size of hypergraph covers: 1t turns out (and will be made
clear further below) that the above problems are closely re-
lated to bounds on the size of the smallest guarded bisim-
ilar conformal hypergraph 2(* that covers a given hyper-
graph 2(, a problem of independent interest. Existence of
such covers was established in [16]; their doubly exponen-
tial construction being the only known bound. Is it possible
to find a better, possibly polynomial bound?

Decidability and complexity: 1s UCQ-answering over
guarded theories decidable, and if so, what is the complex-
ity of deciding whether ¢ |= ¢ for a BCQ or a UCQ ¢ over
a guarded theory ¢?

Canonisation and capturing: As a further problem of in-
dependent interest, which is closely related to the above
questions, we study PTIME canonisation — the problem of
providing a unique representative for each guarded bisim-
ulation equivalence class of structures, to be computed in
PTIME from any given member of that class. This has im-
plications for capturing the guarded bisimulation invariant
fragment of PTIME in the sense of descriptive complexity.

We provide answers to all these questions. Before sum-
marising our results, let us briefly explain how the above
questions relate to database theory and description logic. (A
more detailed treatment will be contained in the full paper.)

Applications to databases and description logic. In the
database area, query answering under integrity constraints
plays an important role. In this context a relational database
D, consisting of a finite set (conjunction) of ground atoms
is given, and a set X of integrity constraints is specified
on D. The database D does not necessarily satisfy X,
and may thus be “incomplete”. The problem of answering
a BCQ ¢ on D under X consists of determining whether
D UY k= g, also written as (D,X) = ¢. An impor-
tant class of integrity constraints in this context are so-
called tuple-generating dependencies (TGDs) [4]. Given
a relational schema (i.e., signature) R, a tuple-generating
dependency (TGD) o over R is a first-order formula of
the form VzVy(®(z,y) — JZV(Z,%)), where ®(Z,7)
and ¥ (Z, Z) are conjunctions of atoms over R, called the
body and the head of o, respectively. It is well-known

that database query-answering under TGDs is undecidable,
see [3], even for very restricted cases [7]. For the relevant
class of guarded TGDs [7], however, query-answering is de-
cidable and actually 2EXPTIME-complete [7]. A guarded
TGD is a TGD ¢ with an atom in its body that contains
all universally quantified variables of o. For example, the
sentence

VYM,N,D Emp(M,N,D) A Manages(M, D) —
3E, N Emp(E,N', D) A Reportsto(E, M)

is a GTGD stating that if M is a manager named N belong-
ing to and managing department D, then there must be at
least one employee F having some name N’ in department
D reporting to M. In general, GTGDs are, strictly speak-
ing, not guarded sentences, because their heads may be un-
guarded. However, by using “harmless” auxiliary predi-
cates and splitting up GTD-heads into several rules, each
set of GTGDs can be rewritten into a guarded sentence that
is (for all relevant purposes) equivalent to the original set.
The class of inclusion dependencies (IDs) is a simple
subclass of the class of GTGDs. An ID has the logical form
Vz,y (a(T,y) — Jz[(T,Z)), where « and [ are single
atoms. In [17] it was shown that query-answering under
IDs is decidable and, more precisely, PSPACE-complete
in the general case and NP-complete for bounded arities.
One very important problem was left open in [17]: the fi-
nite controllability of IDs. Given that in the database world
attention is limited to finite databases, a boolean query that
would be false in infinite models of D U ¥ only, would still
be finitely satisfied by D U X and should be answered pos-
itively. Do such queries exist? This problem was solved by
Rosati [22], who, by using a finite model generation proce-
dure called Finite Chase, showed that IDs are finitely con-
trollable. Rosati’s result is actually formulated as follows:

Proposition 1 (Rosati [22]). For every finite set of facts D
and set I of IDs and for every N there exists a finite struc-
ture € extending D and satisfying L and such that for every
boolean conjunctive query q comprised of at most N atoms
CEqif D.TEq.

Description logics are used for ontological reasoning in
the Semantic Web and in other contexts. Useful descrip-
tion logics such as DL-Lite ... and DL-Lite [6] are essen-
tially based on IDs, and are thus finitely controllable. The
class of GTDS and the yet more expressive class of weakly
guarded TGDS (WGTGDs) have been introduced and stud-
ied in [7, 9] as powerful tools for data integration, data ex-
change [10], and ontological reasoning. Their finite con-
trollability, however, was left as an open problem. Unfor-
tunately, Rosati’s Finite Chase cannot be directly applied to
GTGDs and WTGTDs. However, it is easy to see (and will
be detailed in the full paper) that the finite controllability of
GTGDs and WGTGDs follows from the finite controllabil-
ity of GF, which is the main result of the present paper.



Summary of results

Finite Controllability. That answering UCQs against
guarded theories is finitely controllable was already implicit
in the report [19], although not formulated in this termi-
nology. The finite models constructed in [19] are of non-
elementary size and do not yield meaningful complexity re-
sults. The following central result of our paper, derived by
a completely new proof, yields a much better size bound.

Theorem 2. For every GF sentence ¢ and every UCQ q,
v E q < ¢ FEan g More specifically, if o N —q is
satisfiable then it has a model of size 2|WH‘1‘O(W, when the
signature is taken to be fixed.

To obtain the above result, we first establish new results
on hypergraph covers, which are of independent interest.

Hypergraph Covers. We relate finite controllability to the
concept of hypergraph covers. A hypergraph cover for a
given hypergraph 2 consists of a hypergraph B together
with a homomorphism 7: B = 2l that induces a hyper-
graph bisimulation between B and 2. This notion naturally
extends to relational structures 2, B on the basis of homo-
morphism induced guarded bisimulations. The following
main technical result is used to derive most other results
(for definitions of notions mentioned see Section 2).

Theorem 3 (Main Technical Result). Given N > 2 and
a hypergraph (relational structure) 2 one can construct
an N-conformal hypergraph (structure) Ry constituting a
weakly N-acyclic hypergraph cover (guarded bisimilar
cover) of A. In particular, R is conformal whenever N >
w, where w is the width of A; moreover, |Ry| = |Ql|“’O(N)
and, for fixed w and N, Ry can be computed in polynomial
time. We call Ry the Rosati cover of 2.

Let us explain very informally the role of the Rosati cov-
ers in establishing Theorem 2. In Lemma 10 we observe
that deciding ¢ |= ¢ for guarded ¢ and arbitrary queries ¢
can be reduced to the equivalent question of ¢ |= x,, where
Xq 1s a disjunction of acyclic queries stemming from the
original query. It is more difficult to show that this reduction
is equally valid over finite models, i.e. that ¢ g, ¢ <~
© Efin Xgq- In particular, that given a finite 2 = ¢ A —x4 a
finite model of ¢ A —q can too be found. The “unraveling”
2" of 2 constitutes a tree-like model of ¢ A =x, and an
acyclic cover of 2. Thus, by virtue of acyclicity, A* | —q.
However, 20* is typically infinite. The challenge is to find
a finite cover of 2 retaining a “sufficient degree of acyclic-
ity” so as not to render it a model of ¢q. This is captured
by the notion of weakly N -acyclic covers ensuring “faithful
answers to queries of size at most N”. Theorem 3 shows
that such finite covers can be constructed.

Conformal covers. Hodkinson and Otto showed in [16]

that all hypergraphs admit guarded bisimilar covers by con-
formal hypergraphs (for definitions, see Section 2). While

the construction in [16] involves a doubly exponential blow-
up in size, we here obtain a polynomial construction of con-
formal covers as a corollary to Theorem 3.

Corollary 4. Every hypergraph 2l of width w admits a con-

formal hypergraph cover of size |Ql|“’o(w) For bounded
width, we thus obtain polynomial size conformal covers.

Translated into logic, Theorem 3 actually proves Rosati’s
Theorem in a more compact and more general form. It will
emerge from our technical discussion that the finite control-
lability of GF can therefore be reduced to Theorem 3.

Finite model property of the clique-guarded fragment.
As it happens, our construction used for Theorem 2 can also
be applied to obtain finite models of any satisfiable clique-
guarded formula. In fact, our construction yields more com-
pact finite models. We thus obtain a new proof of the FMP
for the clique-guarded fragment.

Small model property. Through our new method of finite-
model construction, we are able to improve the bounds im-
plicit in [12] for GF and the overhead for CGF implicit
in [15, 16] on the size of the smallest finite model of a sat-
isfiable (clique-)guarded sentence.

Theorem 5. Every satisfiable formula of CGF (and thus of
GF) has a finite model of size exponential in the length and
doubly exponential in the width of the formula. Moreover,
for every k > 2, the k-variable fragment of CGF (GF) has
finite models of exponential size in the length of the formula.

Complexity of query answering. In [12] Gridel proved
that satisfiability of GF-sentences is complete for 2EXP-
TIME, and EXPTIME-complete in case of bounded arity.
We prove that exactly the same bounds actually hold for
answering BCQs and UCQs over guarded theories, which
solves the initially posed complexity question about query-
answering over guarded theories. The first step consists in
reducing ¢ |= g to ¢ = X, as mentioned above. The
formula x, may, however, be of exponential size. Our re-
sults then follow by analysing the complexity of checking
the (un)satisfiability of the guarded theory p A—x,. We also
investigate the problem of query answering over models of
a fixed guarded sentence, and provide a number of useful
bounds. Our bounds for fixed sentences ¢ are not all tight
and leave space for future research.

Canonisation and capturing. As a further consequence
of Theorem 3, we find a polynomial solution to the canon-
isation problem for guarded bisimulation equivalence ~g.
This allows us to capture the ~-invariant fragment of
PTIME in the sense of descriptive complexity, i.e., to pro-
vide effective syntax with PTIME model checking for the
PTIME queries closed under guarded bisimulation equiva-
lence. Canonisation is achieved through inversion of the
natural game invariant 7(2{) that uniquely characterises the



guarded bisimulation class, or the complete GF-theory, of
a given structure 2. A PTIME reconstruction of a model
from the abstract specification of its equivalence class yields
PTIME canonisation.

Theorem 6. For every relational signature T there exists a
PTIME algorithm computing from a given invariant 1(2)
of an unspecified T-structure 2 a finite T-structure can(2)
such that I(can(A)) = I(2A); hence can() ~g A and
can(A') = can(A) whenever A ~g A'.

Corollary 7. The class of all those PTIME boolean queries
that are invariant under guarded bisimulation, PTIME [ ~g,
can be captured in the sense of descriptive complexity.

Organisation. Section 2 defines the main concepts and
introduces guarded bisimilar hypergraph covers as a main
tool. It also states the above-mentioned Lemma 10. Sec-
tion 3 presents the construction of the Rosati cover. From
this and Lemma 10, the finite controllability of GF is proven
in Section 4. Section 5 establishes our new complexity re-
sults. Section 6 deals with canonisation and capturing.

2 Hypergraphs and guarded fragments

We work with finite relational signatures possibly also
admitting constants. Let us fix such a signature 7 and let
width(7) denote the the maximal arity of any of the predi-
cate symbols in 7.

The guarded fragment of first order logic (GF), intro-
duced by Andréka et al. [1], is the collection of first-order
formulas with some syntactic restrictions in the quantifica-
tion pattern, which is analogous to the relativised nature of
modal logic. The set of GF(7) formulas is the smallest set

(i) containing all atomic T-formulas and equalities;
(i1) closed under boolean connectives: —, A, V, —, «;
(iii) and such that whenever ¢ (Z,7) € GF(7) with all free
variables indicated and «(Z, ) is a 7-atom, or equal-
ity z = y, involving all free variables of ¢/ then the
following are in GF(7) as well:

(VZ. )y :=VZ(a — ) and (3T. )Y := TZ(a A ).

In a 7-structure 2 a set X of elements is said to be
guarded if there is an atom R*(@) such that every mem-
ber of X occurs in @. A maximal guarded set is one not
properly included in any other guarded set. A tuple b of
elements is guarded if the set of its components is guarded.

An atomic T-type t(x1,. .., %,) is a maximal consistent
set of 7-literals (atoms or negated atoms) whose constituent
terms are among the variables 1, ..., x,, and the constants
from 7. An atomic type ¢(x1, ..., x, ) determines, for every
choice of indices 1 = (41, ..., %), its restriction to compo-
nents 1, which is an atomic type in k variables (x;,, ..., 2;, )

denoted t|;; conversely we say that ¢ is an extension of t[;.
In a 7-structure 2 the atomic type atpgy (@) of a tuple @ is
the unique atomic type ¢(Z) such that 2 |= ¢(@). One says
that ¢ is realised by @ in 2(. Over a signature of  many rela-
tional symbols of maximal arity w and k constants there are
20(r(n+k)") many atomic types in n variables. We identify
each atomic type with the conjunction of its literals.

Guarded bisimulation ~g can be defined either in
terms of the guarded bisimulation game, a variant of the
Ehrenfeucht-Fraissé game in which the set of pebbles must
at any given time be guarded, or as a back-and-forth system
of partial isomorphisms whose domain and image are both
guarded. GF is preserved under guarded bisimulation:

A~y B = forallpeGF: AE=p & BE=o.

Given a relational structure 2, its guarded-bisimulation
game graph, denoted G(2), has as its vertices the maximal
guarded tuples of 2, each labelled by its atomic type. Two
such tuples @ and b are linked by an edge labelled by a par-
tial bijection p C {1..k} x {1..k} whenever a; = b; for all
(,7) € p. Note that structures 2 and B are guarded bisim-
ilar iff G(A) and G(B) are bisimilar (in the modal sense).

The guarded bisimulation invariant I(2A) of 2 is defined
as the bisimulation quotient of G(2(). Vertices of I(2() cor-
respond to ~ classes of maximal guarded tuples of 2, la-
belled by their atomic types. A p-labelled edge links ver-
tices v and w if there are guarded tuples @ and b in 2 realis-
ing the ~,-classes represented by v and by w, respectively,
and such that a; = b; for all (¢, j) € p.

While GF provides an important extension of the modal
fragment, guarded quantification is too restrictive to express
some basic temporal operators. To remedy this shortcoming
various relaxations of the notion of guardedness and cor-
responding fragments have been introduced, chief among
them the clique-guarded fragment.

The Cliqgue Guarded Fragment (CGF) relaxes the con-
straints on guards « in GF to allow existentially quantified
conjunctions of atoms as guards that guarantee that the tu-
ple of free variables is clique-guarded. A set X of elements
of a structure 2 is clique-guarded if every pair of elements
of X is guarded, equivalently, if X induces a clique in the
Gaifman graph of 2. A tuple @ is clique-guarded whenever
the set of its components is. Observe that while guarded sets
are bounded in size by the width of the signature, there can
be arbitrarily large clique-guarded sets whenever the width
is at least 2. Recall that the width of a formula ¢, width(p)
is the maximal number of free variables in any of its subfor-
mulas. In a clique-guarded formula ¢ the maximal size of a
clique-guarded set quantified over is bounded by width(yp).

Scott normal form and satisfiability criterion Gridel’s
analysis of decidability for GF [12] uses the following Scott
normal form corresponding to a relational Skolemisation.



Lemma 8. 7o every (clique-)guarded T-sentence p one can
associate a companion (clique-)guarded T U o-sentence

Y =N\;(VZ.05) 0;(x) N \;(VZ.0:) (37.%) ¥ (T, )

such that 1 = @ and every A = ¢ has a T U o-expansion
B |= 1. Here |o| < |p|, width(y) = width(p) and the
Yy, ; are quantifier-free.

A guarded bisimulation game graph G or invariant [ is
said to satisfy the formula v in normal form if

(i) its vertices are labelled by guarded atomic types in the
signature of ¢/ and that satisfy its universal conjuncts;
(ii) for each vertex v with label ¢(7Z) and each conjunct
(VZ.0;) (37.v:) ¢i(T,7) such that £(Z) = 5;(T) there
exists a vertex w labelled with some type s(T'y) =
¥;(T',7) such that s|z7 = t|z and v and w are linked

by an edge labelled with the mapping p: T — T'.

Proposition 9 (cf. [12, Lemma 3.4]). Let v be the normal
form of ¢. Then o is satisfiable iff there exists a guarded
bisimulation invariant J satisfying 1 and such that vertices
of J are labelled by distinct guarded atomic types.

Hypergraphs, acyclicity and covers

A hypergraph is a pair H = (V,S) with V its set of ele-
ments and S C P(V) a set of subsets of V, called hyper-
edges. For a set of hyperedges .9, let S| stand for the closure
of S under subsets. A set X of elements of H is guarded if
X € S5|. The Gaifman graph I'(H) of H is the undirected
graph having vertex set V' and, as edges, all guarded pairs
of H. The maximal size of any hyperedge is referred to as
the width of H. To every T-structure 2 one associates in a
natural way a hypergraph H[2] with V' the universe of
and S the collection of maximal guarded subsets of 2. The
width of H[2] is then bounded by width(7). The Gaifman
graph of 2 is T'[2] := T'(H[2A]).

A homomorphism h: H — H’ between hypergraphs
H = (V,S)and H = (V',5) is a map from V to V'
such that h(s) € 5’| for all s € S. Obviously any homo-
morphism h: 2 — 2’ between relational structures induces
a hypergraph homomorphism from H[2(] to H[2(].

G(H) and I(H) are defined similarly for hypergraphs
H, where instead of guarded bisimulation we use the natural
notion of hypergraph bisimulation — it is safe to think of hy-
pergraph bisimulation as of guarded bisimulation stripped
of all atomic relational information. Vertices in the game
graph are hyperedges and edges are labelled by partial bi-
jections compatible with the actual overlaps.

A hypergraph H is (N-)conformal if every clique in
['(H) (of size at most N) is covered by a hyperedge of H.
A structure 2 is (IN-)conformal whenever H (2] is, i.e., if
every k-clique (K < N) in its Gaifman graph is covered by
a ground atom. Over conformal structures guarded quantifi-
cation is as powerful as clique-guarded quantification.

A hypergraph H is (N-)chordal if all cycles in T'(H ) of
length greater than 3 (and at most V) have a chord in I'(H).
An analogous notion for relational structures 2 is similarly
defined in terms of the Gaifman graph I'( H (21)).

A hypergraph is (N-)acyclic if it is both (/N -)chordal and
(N-)conformal. For finite hypergraphs acyclicity is equiva-
lent to tree decomposability. A finite hypergraph is tree de-
composable if it can be reduced to the empty hypergraph by
iteratively deleting some non-maximal hyperedge or some
vertex contained in at most one hyperedge (cf. Graham’s al-
gorithm) [2]. We say that a relational structure 2 is guarded
tree decomposable if 2L allows a tree decomposition in the
sense of Robertson—Seymour with guarded bags. This is
equivalent to H[2l] being tree decomposable, i.e. acyclic.

A guarded bisimilar cover w: B = 2 is an onto ho-
momorphism 7: B — 2 inducing a guarded bisimulation
{(b,7(b)) | b guarded in B}. It is weakly N-conformal if
the image under 7 of any clique of size up to NV in the Gaif-
man graph of B is guarded in 2; similarly it is weakly N -
chordal if the image under 7 of every cycle of length at
most IV in the Gaifman graph of 5 has a chordal decom-
position (triangulation) in the Gaifman graph of 2; and it
is weakly N-acyclic if it is both weakly N-conformal and
weakly N-chordal. Analogous notions of hypergraph cov-
ers are defined mutatis mutandis. Note that the restrictions
of a cover homomorphism to hyperedges are necessarily bi-
jections onto hyperedges.

A homomorphism h: H — H’ into the hypergraph
H' = (V') 5) is called (guarded) tree decomposable if
there is some S” C S’| s.t. h: H — H" is a homomor-
phism into H” = (V’,8”) and H” is tree decomposable.
This extends to relational structures in the usual manner.
Every homomorphism into a (guarded) tree decomposable
hypergraph (structure) is trivially (guarded) tree decom-
posable. Note that a hypergraph cover (guarded bisimilar
cover) m: B = A is weakly N-acyclic iff for every homo-
morphism h: Q@ — B from a hypergraph (structure) O on
at most N elements 7 o h is (guarded) tree decomposable.

Conjunctive queries (CQ) are formulas of the form
Iz N ; i, where the «; are positive literals. A boolean con-
junctive query (BCQ) is one with no free variables. A union
of (boolean) conjunctive queries (UCQ) is a disjunction of
BCQs. The size |g| of a UCQ is the length of ¢ as a formula.
To every BCQ Q = 37 A\, «; of signature 7 one can as-
sociate the 7-structure Q having as universe the set of vari-
ables in T and atoms as prescribed by the «;’s of (). Then
A = Q iff there exists a homomorphism h : Q — 2A. We
say that @) is acyclic if the associated structure Q is acyclic.
For each BCQ @ we define x¢ as the disjunction of all
acyclic BCQs T comprised of at most three times as many
atoms as () and such that T' = Q. For ¢ = \/, Q; a UCQ
we set xq =/, X@,. It is obvious that x, = ¢ for every ¢.



Lemma 10. Consider a UCQ q = \/, Q; in signature T.

(i) A = xq forall A such that there is some guarded
tree decomposable homomorphism h : Q; — U;

(i) o= q = ¢ = xq forall ¢ € GF;
(iii) |xq = |T|O(\IJ\)(‘q|width(7_))O(|q|width(-r))

3 The Rosati cover

Rosati proved Proposition 1 using a “finite chase” [22]
procedure that safely reuses variables and results in very
compact finite models. However, his proof of correctness
of the finite chase with respect to conjunctive query answer-
ing is very intricate. We adapt the core idea of his model
construction to give a more general guarded bisimilar cover
construction for finite models, and a conceptually cleaner
and simpler proof of faithfulness with respect to conjunc-
tive queries of bounded size.

Theorem 3. Given N > 2 and a (guarded) bisimulation in-
variant 3 = I(2) of an unspecified hypergraph (structure)
A one can construct hypergraphs (finite structures) R and
R such that I(Rn) = [(R) = T, and Ry is N-conformal
and is a weakly N-acyclic (guarded) bisimilar cover of ‘R.
We have |Ry| = |§|“’O<N) where w is the width of 2 (also
apparent from J) and, for fixed w and N, Ry can be com-
puted in polynomial time.

It is not hard to see how this formulation entails the state-
ment of Theorem 3 as given in the introduction. Observe
that () = G(2) can be enforced by introducing new
predicates to distinguish each individual guarded tuple of 2I.
Then Ry is a weakly N-acyclic (guarded) bisimilar cover,
the Rosati cover of 2 itself. Then, for N > width(2),
MR is a conformal cover of 2, hence Corollary 4.

We first define the Rosati cover of a given finite hy-
pergraph (or relational structure), for fixed N. After pre-
liminary observations much resembling some of Rosati’s
key lemmas we prove its two crucial properties: weak N-
chordality and weak N-conformality of SR over 2. Our
Ry turns out to be N-conformal but only weakly N-chordal
over 2. In fact, SRy will be the top layer of a chain of cov-
ers of increasing degrees of weak chordality, similar to [19];
for weak NN-chordality we then collect chords of cycles in
7w (H) as images of hyperedges that are found in interme-
diate covering layers.

Definition of SR

Let w be the width of 2 (apparent from J = I(21)), i.e. the
maximal size of any of its hyperedges (guarded sets). We
assume throughout that w > 1, since width 1 is trivial. For
the rest of this section we also fix m > N > 2.

Let e be a vertex of J labelled by some atomic type
Te(1,...,x). We associate to e and every 1 < i < k,
and every edge p: d — e of J, and every 0 < j < w™*t!

e a constant symbol ¢ . and

e,

e a function symbol fg’i(zl, ...,21) with [ = |domyp|,
provided that x; is not in the image of p.

Elements of the Rosati cover will be well-formed terms
built with these constant and function symbols. As short-
hand we write £](%) for (f),(f))ice\mg(p)> and ¢} for
(c;i)lgigk, and for any a tuple t = (t1,...,%;) we let {¢}
stand for {t1, ..., t;}. The truncation of a term t at depth &,
denoted ¢/, is defined by the following recursive rules and
is extended to sets and tuples of terms in the obvious way.

Ci,i/ﬂ = ci,i
21@/ 0 = ) (e the target of p)
f,g,i(t)/n+1 = Z;i(t/“)

We define for each e € J a set of hyperedges Hy (e)
above e at height r, by mutual recursion:

Hy(e) = {{cl} | j<w™"}
Hy ' e) = Hi(e) U{p (hlaom(p) | h € Hi(d),
p:d—e j<wmtt}
U, Hiv(e)

Uees Hn(e)

where p? ({t}) = {£](t;n_1)} U {t} if j does not occur in
t/n—1 and is undefined otherwise.

Observe that all terms appearing in any hyperedge in H
have depth at most N and that the function symbol at the
root of any subterm does not occur anywhere else within
that subterm. By definition every h € Hy is either of the
form {ci} € HY(e) or {£1(E;n_1)} U {t} € Hy (e) for
some 7 and e the target of p. Crucially, N > 2 ensures
that the latter partitioning of h is unique and we say that h
is obtained by p-extension of some (not necessarily unique)
hyperedge in Hy(d) for d the source of p. In particular
the sets H(e) partition 7. Henceforth we often omit the
subscript N writing H, H(e), etc.

A hyperedge h is a primary guard of X if it is a guard of
X, ie. X C h, and is not the p-extension of some h’ also
guarding X.

Hy(e) =
Hy =

Lemma 11. For every guarded set X of terms there is an
ex € Jsuch that all primary guards of X belong to H(ex ).

Proof. If X is guarded by some {c’}, in which case {c/}
is the only primary guard of X, then set ex = e.

If X is guarded by some {fJ (f,y_1)} U {t} € H"*(e)
then either X C {t}, in which case X is already guarded
by some hyperedge in H"(d), with p : d — e in J so h is
not a primary guard of X, or there is some f; ;({/n-1) in
X, and we set ex = e to be the target of p.

Suppose a hyperedge {fg/(E/N,l)} U {5} € H""(e)
with €/ # e was also a primary guard of X. Then some



f2.+(8/n—1) would have to be in X. This, however, would

imply that fii(f/ ~N—1) had to be among 5 and vice versa

f2/(5/n—1) among t contradicting the requirement that j
and j’ do not repeat in these terms, given that N > 2. [

It follows that we can lift all hyperedges of 2 to R,
not just the maximal ones. Let H be comprised of the
hyperedges in H together with sub-hyperedges b/ C h
for each h € H(e) precisely as specified by the type 7.
associated to e € J. By Lemma 11, we may assume that
h is a primary guard of A’ since for every p : d — e the
types Tq|domp and T¢|wmg, are identical. This definition is
therefore sound in the sense that it does not depend on the
choice of h.

Definition 1 (Rosati cover). We define R’ as having uni-
verse | JHy and hyperedges Hy, and set Ry = RY.

Using similar reasoning as in Lemma 11 one can verify
that J is indeed the guarded bisimulation invariant of Ry,
i.e., that Ry ~g 2 for (any) A (with T = I(2)).

Lemma 12. I(RY) = J. In particular, for each e € J
all hyperedges in H (e) realise the same guarded bisimu-
lation type represented by e.

Proof. Consider hy € H(eg) and go € H(dp) such that
X = hgNgo # 0. As in Lemma 11 we can find primary
guards h,., gs € H(ex) of X by tracing backward from hg
and from g, respectively, through a sequence of extension

ho << hy < hy -

o1 02
go——9g1 <—Gg2 -

L h, € H(ex) and
(U_Sgs € H(eX)

ignoring the particular j-values. Let h;, € H(e;) for all
0<i<randg € H(d) forall0 <[ < s. TheninJ we
have paths €0<p—161 s 67«_1&6)( i>ds_1 e d1 i>d().
Given the nature of edges in (guarded) bisimulation
game graphs G(2l) as representing partial isomorphisms
they are invertible and compositional in the sense that for

each v5w there is wp—lw and then for every w->u there
is also v "5y as long as o o p # (). These properties are
inherited by all (guarded) bisimulation invariants.

In this instance, this means that for any partial isomor-
phism § # 7 C o O~-~0030pr_10---0,01_1 we have
eo—dp in J and there is such a 7 for which X = hq l[dom-

It follows that all moves made from any h € Hy(e) to
any g € Hy(d) in the guarded bisimulation game on R%}
have corresponding edges from e to d in J. The converse
of this being enforced by the very definition of R’} we can
establish that the (guarded) bisimulation invariant of R’ is
no other than J. O

Lemma 13. H% (e)/nv—1 = Hly_,(e) forallm > N > 2
and r. Truncation of terms at depth k thus acts, for all

m > N >k > 2, as a homomorphic projection from R}
onto R’ inducing a guarded bisimulation. In other words,
we have the following chain of covers:

RY ZRY S RmY S RY

The size of PR can be bounded as follows. Let w be
the width of J, assume that w > 2 and let J = wmtl,
Then there are |2|°(*).J many constants ¢, ; and function
symbols fg) , altogether and each term of depth at most IV is
built up from at most w1 many such symbols. For m =
N, therefore, the total number of terms Jivn 19% N 18, as (§Vt)ated
in Theorem 3, at most (|J|€ )y N+1)w™ ™" — 5w,

Auxiliary notions

Consider a hyperedge h = {f](t,n_1)} U {t} € HG (e).
The elements of {f](Z,y_1)} will be referred to as siblings,
and denoted as fii(f/N_l) =1 (t/n—1). We will also say

e,l
that these terms are introduced in the hyperedge h and that h
is a p-extension. Furthermore, elements of {¢} are said to be

predecessors of those in {f)(Z,y_1)}, and denoted as t; —

fgyi(f /N—1), for I and 7 as appropriate. Constants covered
by a hyperedge {c!} € HQ(e) will also be regarded as
siblings introduced in that hyperedge. Compare Lemmas 6

and 7 in the long version of [22] for the following.

Lemma 14. (i) The relations =, —, and its inverse «—
form a partition of guarded pairs of R'y.
(ii) = is an equivalence relation having guarded classes.
(iii) Whenever t° — t1 = 2 then also t° — t2.

(iv) In R} there are no directed —-cycles of length < N.

Remark 15. (i) Lemma 14 implies that the predecessor
relation is transitive on any guarded set of terms.

(ii) If h is a primary guard of t then the —-maximal ele-
ment of h must be among 1.

(iii) Assume m > N > 3. If h € Ry} is a (primary)
guard of X C R} then h/n_1 is a (primary) guard
of X/n—1 CRY_,. Inparticular: ex = ex/n_, for
any guarded set X C RY.

NN -conformality of DR

Consider 3 < [ < N and an [-clique {t°,...,# '} in Ry,
i.e., such that all pairs {t’,#/} are guarded. By Lemma 14
there are no predecessor-cycles in {t°,...,#~1} but there
is a term, w.l.o.g. t%, such that every one of t',... t/~1is
either a predecessor or a sibling of ¢°.

Observe that the projection of any primary guard of t°
to R _, guards {t? N1 ,tl/jvlil}. This would already
be sufficient to establish a weaker form of Theorem 3 still
yielding Theorem 2 for GF. However, we wish to show that
the entire [-clique is guarded already in R .



Proposition 16. Assume that for some 2 < l_ < N there are
t0, ... "=V in My such that all pairs {t', 1)} are guarded.
Then the entire set {t°, ... #=1} is guarded in Ry.

Proof. The case [ = 2 being trivial we proceed by induction
on [. By the preceding observation we may assume w.l.0.g.
that each of ¢!, ..., ¢/~ is either a predecessor or a sibling
of t°. By the induction hypothesis X = {t!,... t "1} is
guarded. Let go € H(ex ) be a primary guard of X.
Consider first the case when t° = ¢! for some i # 0.
Then t* is a —-maximal element of X and as such is neces-
sarily introduced in go. Then t°, being a sibling of ', is also
introduced in gg, which therefore guards the entire clique.
Assume now that t* — t° forall 0 < 4 < [ and let A(9)
be some hyperedge in which ¢° is introduced. In this case

t9 takes the form ggm (@/N-1) for some pg : d — e and

appropriate ig and (?) = pl° (@) = {to(u/n-1)}U{u} €
H(e) where @ = hV)|qom), for some h(V) € H(d).

Note that each ¢’ /N—1 is a subterm of 19 at depth one,
i.e., is among those in @/N_1. For each i, let u® denote
the component of u such that u’/y_1 = t'/x_; and let
Y = {u',...,u!"1}. Repeating this kind of analysis in a
backward tracing manner, we can find a chain of expansions

Jo J1 Jr
pO) Lo p) fr | fr g (r+1)
with AN = pix (RO |4, ) a guard of YV, for all A < 7,
until we reach some h("*1) € H(ey ) a primary guard of Y.

Let {7} = AU+ and consider some {w} = ¢(© €
H(ex) a primary guard of X. Given that N > 3 and
X/N-1 = Y/n_1, according to Remark 15 (iii), we have
EX = €x/y_, = €y/y_, = €y. By Lemma 12, g(o) ~g
R+ Moreover, by Remark 15 (ii), every w; € g(o)
is either a sibling or a predecessor of some ¢* and, simi-
larly, every v; € h("t1) is a sibling or a predecessor, re-
spectively, of the same u*. In other words the exact rela-
tionships within ¢(*) are mirrored in A("*") and therefore
h(’"“)/N_l = 9(9)/N—1- It follows that the extension se-
quence plr;...; pi'; i is applicable — with the very same
4 values —to g(©) producing an analogous derivation:

P (0 [aompn) = 97D ~og O = I (hD aompo)
pjll (g<r71)|donlp1) = g(T) ~g h(l) = pjll (h(2)|domp1)

Pir (9(0)|domp7) =gW ~g B = Pir(h(r+1)|dompr)
g ~g AFD

ending in some g"*t1) € H(e). Note that because each
R(r+1=2) s a guard of Y also each ¢ is a guard of X.
Moreover, a simple induction shows that p(r+1=2) /N—1=
g(’\)/N_l for all A < r + 1. Therefore, g(”l) introduces
20 100 aompo/n-1) = 2250 (WP |aompe /v —1) = t°

and thus guards the entire clique. O

Weak N -chordality of SRy over 2

Proposition 17. For every 3 < I < N < m and l-cycle
C = {{t(]’t1}7{t17t2}7"7{t27t1+1}7"{tl717t0}} ln
the Gaifman graph of R} the projection C/n_143 of C
into Ry _,; 43 admits a guarded triangulation in Ry _, i3

Proof. By Proposition 16 all 3-cycles are guarded in R},
proving the case of NV = 3. We proceed by induction on N.
Given an [-cycle in R%; as above, by Lemma 14 (i) we
know that for every i either ¢ = ¢+! or t# — "+ or
t"+1 — ¢!, According to Lemma 14 (iv) there are no prede-
cessor cycles of length < N in R7}, hence it cannot be the
case that t* — ¢! for all 4, nor that t*+! — ¢ for all 3.
Then for some ¢ one of the following cases must hold:

o ti7l = ¢ = ¢l then, by Lemma 14 (ii),
{t71, ¢ ¢} is guarded and ti~! = ¢it1;

o ti71 — ¢t = ¢t (or ! — ' = t*~1): then, by
Lemma 14 (iii), the triple {t=1,#,¢+**1} is guarded,
and t'71 — ¢ (or 't — ¢y,

o tim1 5 i i+l then both tj;ﬁl and ti/]*\,t1 are
maximal proper subterms of t*, therefore, the projec-
tion h/n_1 of any hyperedge h of R in which ¢* was
introduced guards {¢'~1 ¢!, ¢t} /1 in R .

In either case we have found some 4, such that in R%;_,
{e0, 1) v constitutes a cycle of
length [ — 1 and {t'=1,#' t"*1}/n_1 a guarded triangle.
By the induction hypothesis the claim follows. [

4 Finite controllability and small models

Next we show that answering UCQs under GF is finitely
controllable. Theorems 2 & 5 provide optimal upper bounds
on the minimal size of finite models for various guarded
fragments. Matching lower bounds are implicit in [12].

Theorem 2. For every GF-sentence ¢ and every UCQ q,
v Eq < ¢ FEan q More specifically, if o N\ —q is
satisfiable then it has a model of size 2lellal Y\ hen the
signature is taken to be fixed.

Proof. Recall the properties of x, from Lemma 10. We
establish the claim by proving the following equivalences.

o | q iff o xg iff o xg iff © Fan g

The first equivalence was proved in Lemma 10 (ii) and the
second equivalence follows from the finite model property
of the guarded fragment. Also ¢ =y Xg = ¢ F=an ¢ 18
a trivial consequence of x, |= ¢. It remains to be seen that
© ~fin Xq> OF What is the same ¢ [~ x4, implies ¢ &gy g.
So assume that ¢ A =X is satisfiable. Then, by Proposi-
tion 9, there is a certain invariant J satisfying its Scott nor-
mal form v from Lemma 8. Applying Theorem 3 on input J



and with N = |g| we obtain R and RY a guarded bisim-
ilar cover of .3 with both structures satisfying ¢ A —Xq-
Furthermore, 9‘{% is a weakly N-acyclic cover of 9‘{5\7 , and
hence from Lemma 10 (i) it follows that 9%% E oA q.
This concludes the proof of finite controllability.

According to Theorem 3, |Ry| = |f7|wo(N), where w is
the width of the signature. From Proposition 9 it follows
that |J] is bounded by the number of atomic types in the
signature of 1, which is of the order 20((r+lel+Ixahw™)
Lemma 10 (iii) gives |x,| = r€U9 (|qlw)®U4*), which
simplifies to (7|q|)®9D for w bounded.

Combining these figures yields the following bounds on
RN @) 2Ulella) el general; (ii) 20¢llaD Y when

w is bounded; (iii) 2!%!la17"""

for a fixed signature. O

Corollary 18. For a finite set F' of T-structures let Cp de-
note the class of those T-structures not allowing a homo-
morphic image of any member of F. If a guarded sentence
© has a model in Cp then it also has one of size 201,

Theorem 5. Every satisfiable formula of CGF (and thus of
GF) has a finite model of size exponential in the length and
doubly exponential in the width of the formula. Moreover,
for every k > 2, the k-variable fragment of CGF (GF) has
finite models of exponential size in the length of the formula.

Proof. If ¢ € GF with Scott normal form 1 is satisfiable
then, by Proposition 9, there is an invariant J satisfying 1.
The size of J can be bounded by the number of atomic types
in the signature of 1), which is 2°("+1#D%™ ' Applying The-
orem 3 with input J and parameter N = 2 yields a model
of ¢ of size |3\“’o<1) = 2l

For CGF we appeal to [16, Section 3.3] for a simple
polynomial reduction from (finite) satisfiability of CGF to
(finite) satisfiability of GF. This reduction maps a sentence
¢ € CGF[r] to ¢* € GF[r U{R¢}], Rc anew relation of
arity w := width(ip), such that (i) every model of ¢ can
be expanded to a model of ¢* and (ii) ¢* implies ¢ over
conformal structures. Hence, given a finite model 2 = ¢*,
its Rosati cover Ry with parameter N = w + 1, being con-

i O(w)
formal, is a model of . We have |Ry| = |A[“ . By
w1, O(w) o(1),, 0(w)
the above we can assume |2| = 9le™ [w — 90el®Pw
(1), O(w)
therefore also [Ry| = 2l°17 ", 0

5 Complexity of query answering

Query answering is the problem of deciding ¢ = ¢
for a given ¢ € GF and ¢ a UCQ. By Lemma 10 (ii)
this amounts to testing unsatisfiability of the guarded sen-
tence ¢ A =), known to be 2EXPTIME-complete and in
DTIME(2C((rtlel+IxaDw™)y where r is the size and w the
width of 7 [12]. Query answering is thus 2EXPTIME-
complete and in DTIME(QWWU+(‘q‘””)o(‘q‘m). Note that
2EXPTIME-completeness holds even for a fixed query q.

Also note that for ¢ an ACQ (union of acyclic BCQs) the
exponential blow-up in passing from g to x, can be avoided.
Regarding query answering against a fixed ¢ € GF we thus
find that for ACQs the complexity reduces to EXPTIME. In
fact, it can also be show to be EXPTIME-complete.

For a fixed ¢ € GF[r U o] target query answering is the
problem of deciding D A ¢ |= ¢ on input ¢ a UCQ and D
a T-structure (given as a conjunction of ground atoms with
elements of D as individual constants). The next theorem
summarises our observations on query answering and some
results on subproblems of target query answering.

Theorem 19.

1. Deciding ¢ = q, on input ¢ € GF and q a UCQ, is
2EXPTIME-complete (even if the query is fixed).

2. Foreach ¢ € GF, deciding ¢ |= q on input g an ACQ,
is in EXPTIME,; and EXPTIME-complete for certain .
(Hence for certain signatures T satisfiability for GF[r]
is EXPTIME-complete, strengthening a result of [12].)

3. There is a GF-sentence 1 such that deciding D N\ |=
Q, on input Q a BCQ and D a conjunction of atoms of
bounded width, is PSPACE-hard.

4. For all universal v € GF, deciding D N |= q, on
input ¢ a UCQ and D a conjunction of atoms, is in
10L; for certain universal v it is 11E -complete already
for conjunctive queries q.

5. Forally € GF and q a UCQ, deciding D N |= q on
input D, is in co-NP and co-NP-complete already for
q = L and certain universal .
Hence, satisfiability of D A 1) on input D is in NP and
NP-complete for certain universal i) € GF.

6 Canonisation and capturing

As explained above, the guarded bisimulation invari-
ant I(2) of 2, defined as the bisimulation quotient of the
guarded bisimulation game graph G(21), is an abstraction
of the complete GF-theory of 2 or, equivalently, of its ~-
equivalence class. I(2l) can, in polynomial time, be com-
puted via an inductive refinement procedure, which succes-
sively classifies maximal guarded tuples up to Né for in-
creasing levels of ¢ until a fixed point (~.=~I""=~ in re-
striction to ) is reached. Furthermore, fixing an arbitrary
linear ordering on the finite set of atomic 7-types, i.e. the
equivalence classes w.r.t. Ng, and extending this inductively
to higher Ng—classes by lexicographic refinement, one can
even generate, along with I(2(), a linear ordering of I(21).

The problem of inverting the invariant concerns the re-
construction of an actual model 2 from a given invariant.
The construction of the Rosati cover $Ry on the basis of
a given invariant 7(2() as an input solves this problem in
PTIME for every fixed signature 7.



Theorem 6. For every relational signature T there exists a
PTIME algorithm computing from a given invariant I(2l)
of an unspecified T-structure 2 a finite T-structure can(2)
such that I(can(A)) = I(2A); hence can(A) ~g A and
can(A') = can(A) whenever A ~g A'.

Proof. Starting with the ~g-invariant J = I(2), the Rosati
cover with parameter N = 2 yields a canonical structure
M2 (J) such that, by Lemma 12, I(R2(J)) = J. In other
words Ro(J) ~, A’ for any A’ with I(2') = 7, i.e., for any
A" ~g A. It follows from the bounds given there that, for
fixed 7, |R2(3)| = |3|°M). Set can(A) := R (I(A)). Note
that the concrete polynomial complexity and size bounds
will depend on 7. O

As pointed out above, the invariant I(2() can, even as
a linearly ordered structure, be obtained in an inductive fix-
point process of lexicographic refinement. A closer analysis
shows that this translates into uniform interpretability in in-
ductive fixpoint logic IFP of T(2() over 2 itself (as a linearly
ordered set of equivalence classes of tuples over ). Since
I(20) is linearly ordered and IFP-interpretable over 2, the
Immerman—Vardi theorem tells us that can () is itself uni-
formly IFP-interpretable over 2.

The class of all PTIME (or IFP) queries against these
IFP-interpreted canonical representatives thus captures pre-
cisely the class of all PTIME queries that are invariant un-
der guarded bisimulation equivalence. Intuitively, we may
think of the evaluation of the canonisation, 2l — can(2),
as a pre-processing step that acts as a filter to enforce invari-
ance under ~,. This entails Corollary 7 on capturing.
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