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NUMERICAL ANALYSIS OF THE OSEEN-TYPE PETERLIN VISCOELASTIC
MODEL BY THE STABILIZED LAGRANGE–GALERKIN METHOD

PART II: A NONLINEAR SCHEME
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Masahisa Tabata4

Abstract. A nonlinear stabilized Lagrange–Galerkin scheme for the Oseen-type Peterlin viscoelastic
model is presented. Error estimates with the optimal convergence order are proved without any relation
between the time increment and the mesh size. The result is valid for both the diffusive and the
non-diffusive conformation tensor. The theoretical convergence order is confirmed by the numerical
experiments. The scheme is a combination of the method of characteristics and Brezzi–Pitkäranta’s
stabilization method for the conforming linear elements, which yields an efficient computation with a
small number of degrees of freedom.
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1. Introduction

This is the continuation of our paper on numerical analysis of the Oseen-type Peterlin viscoelastic model by
the stabilized Lagrange–Galerkin method. In the previous paper [8], Part I, we have dealt with a linear scheme.
Here, in Part II, we present a nonlinear scheme and prove the optimal convergence order.

Many mathematical models have been proposed and analysed in order to understand the so-called non-
Newtonian fluids. One of the most famous models is the Oldroyd-B model, cf., e.g., [14,15], which is based on a
simple dumbbell model representing a polymer molecule as two beads connected by a spring. There is a broad
literature on both analytical and numerical studies of the Oldroyd-B model and its diffusive version. We refer
to the bibliography in Part I and references therein.

Here we study numerically the Peterlin viscoelastic model, the same model as is described in Part I. As for
the diffusive Peterlin model Lukáčová-Medviďová et al. have proved the global existence of a weak solution and
the uniqueness of regular solutions [9]. In this paper, we treat both the diffusive and the non-diffusive cases.
As a starting point of the numerical analysis of this problem, we deal with the Oseen-type model, where the
velocity of the convective terms is replaced by a known one. The numerical analysis of the original model will
be a future work.

Keywords and phrases: Error estimates, Peterlin viscoelastic model, Lagrange–Galerkin method, Pressure-stabilization.
1 Institute of Mathematics, University of Mainz, Mainz 55099, Germany. lukacova@uni-mainz.de

2 Institute of Mathematics, University of Mainz, Mainz 55099, Germany. mizerova@uni-mainz.de

3 Faculty of Mathematics and Physics, Kanazawa University, Kanazawa 920-1192, Japan. notsu@se.kanazawa-u.ac.jp

4 Department of Mathematics, Waseda University, Tokyo 169-8555, Japan. tabata@waseda.jp

c⃝ EDP Sciences, SMAI 1999



2 TITLE WILL BE SET BY THE PUBLISHER

The linear scheme proposed in Part I consists of the method of characteristics and Brezzi–Pitkäranta’s
stabilization method [3] for the conforming linear elements. This class of the stabilized Lagrange–Galerkin
method has been studied for the Oseen, the Navier–Stokes, and natural convection problems in our papers by
Notsu and Tabata [11–13]. The nonlinear scheme to be presented in this paper also belongs to the same class,
and has the common advantages of schemes in this class, the robustness in convection-dominated problems and
the small number of degrees of freedom. While a relation between the time and space discretization parameters
is required for the error estimates in the linear scheme, no condition is necessary in the nonlinear scheme. We
note that the error estimates remain true even in the case ε = 0, i.e., for the non-diffusive Peterlin model.
Furthermore, under the condition ∆t = O(1/(1 + | log h|)) for ε > 0 and ∆t = O(h) for ε = 0, the uniqueness
of the solution of the nonlinear scheme is ensured. Two-dimensional numerical experiments are shown in order
to confirm the theoretical convergence order.

The paper is organized as follows. In Section 2 the mathematical formulation of the Oseen-type Peterlin
viscoelastic model is described. In Section 3 a nonlinear stabilized Lagrange–Galerkin scheme is presented. The
main result on the convergence with optimal error estimates is stated in Section 4, and proved in Section 5.
In Section 6 the result on the uniqueness is presented and proved. The theoretical order of convergence is
confirmed by numerical experiments in Section 7.

2. The Oseen-type Peterlin viscoelastic model

The function spaces and the notation to be used throughout the paper are as follows. Let Ω be a bounded
domain in R2, Γ := ∂Ω the boundary of Ω, and T a positive constant. For m ∈ N ∪ {0} and p ∈ [1,∞] we use
the Sobolev spaces Wm,p(Ω), W 1,∞

0 (Ω), Hm(Ω) (=Wm,2(Ω)), H1
0 (Ω) and L2

0(Ω) := {q ∈ L2(Ω);
∫
Ω
q dx = 0}.

Furthermore, we employ function spaces Hm
sym(Ω) := {D ∈ Hm(Ω)2×2; D = DT } and Cm

sym(Ω̄) := Cm(Ω̄)2×2∩
Hm

sym(Ω), where the superscript T stands for the transposition. For any normed space S with norm ∥ · ∥S , we
define function spaces Hm(0, T ;S) and C([0, T ];S) consisting of S-valued functions in Hm(0, T ) and C([0, T ]),
respectively. We use the same notation (·, ·) to represent the L2(Ω) inner product for scalar-, vector- and
matrix-valued functions. The dual pairing between S and the dual space S′ is denoted by ⟨·, ·⟩. The norms on
Wm,p(Ω) and Hm(Ω) and their seminorms are simply denoted by ∥ · ∥m,p and ∥ · ∥m (= ∥ · ∥m,2) and by | · |m,p

and | · |m (= | · |m,2), respectively. The notations ∥ · ∥m,p, | · |m,p, ∥ · ∥m and | · |m are employed not only for
scalar-valued functions but also for vector- and matrix-valued ones. We also denote the norm on H−1(Ω)2 by
∥ · ∥−1. For t0 and t1 ∈ R we introduce the function space,

Zm(t0, t1) :=
{
ψ ∈ Hj(t0, t1;H

m−j(Ω)); j = 0, . . . ,m, ∥ψ∥Zm(t0,t1) <∞
}

with the norm

∥ψ∥Zm(t0,t1) :=

{ m∑
j=0

∥ψ∥2Hj(t0,t1;Hm−j(Ω))

}1/2

,

and set Zm := Zm(0, T ). We often omit [0, T ], Ω, and the superscripts 2 and 2×2 for the vector and the matrix
if there is no confusion, e.g., we shall write C(L∞) in place of C([0, T ];L∞(Ω)2×2). For square matrices A and
B ∈ R2×2 we use the notation A : B =

∑
i,j AijBij .

We consider the system of equations describing the unsteady motion of an incompressible viscoelastic fluid,

Du

Dt
− div

(
2νD(u)

)
+∇p = div [(trC)C] + f in Ω × (0, T ), (1a)

divu = 0 in Ω × (0, T ), (1b)
DC

Dt
− ε∆C = (∇u)C+C(∇u)T − (trC)

2
C+ (trC)I+ F in Ω × (0, T ), (1c)
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u = 0, ε
∂C

∂n
= 0, on Γ × (0, T ), (1d)

u = u0, C = C0, in Ω, at t = 0, (1e)

where (u, p,C) : Ω × (0, T ) → R2 × R × R2×2
sym are the unknown velocity, pressure and conformation tensor,

ν > 0 is a fluid viscosity, ε ∈ [0, 1] is an elastic stress viscosity, (f ,F) : Ω× (0, T ) → R2 ×R2×2 is a pair of given
external forces, D(u) := (1/2)[∇u + (∇u)T ] is the symmetric part of the velocity gradient, I is the identity
matrix, n : Γ → R2 is the outward unit normal, (u0,C0) : Ω → R2 × R2×2

sym is a pair of given initial functions,
and D/Dt is the material derivative defined by

D
Dt

:=
∂

∂t
+w · ∇,

where w : Ω × (0, T ) → R2 is a given velocity.

Remark 1. (i) In this paper we pay attention to the dependency on ε to include the degenerate case ε = 0. The
upper bound 1 of ε is not essential but replaced by any positive constant ε0, i.e., ε ∈ [0, ε0]. The upper bound is
needed in choosing the constants h0, ∆t0 and c† independent of ε in Theorem 1 below, where it is used for the
estimate (14g) in Lemma 8.
(ii) When ε > 0, the problem (1) is the same system that is described in Part I [8]. Under regularity condition
on w the global existence of a weak solution of (2) below can be proved in a similar way to the fully nonlinear
case [9].
(iii) When ε = 0, there is neither the diffusion term in (1c) nor the boundary condition on C in (1d). Because
of the loss of the ellipticity, C(t) does not belong to H1(Ω)2×2 in general. If there exists a solution satisfying
Hypothesis 2 below, then we can show the convergence of the finite element solution to the exact one in Theorem 1.

We set an assumption for the given velocity w.

Hypothesis 1. The function w satisfies w ∈ C([0, T ];W 1,∞
0 (Ω)2).

Let V := H1
0 (Ω)2, Q := L2

0(Ω) and W := H1
sym(Ω). We define the bilinear forms au on V × V, b on V ×Q,

A on (V ×Q)× (V ×Q) and ac on W ×W by

au (u,v) := 2
(
D(u),D(v)

)
, b(u, q) := −(divu, q), A

(
(u, p), (v, q)

)
:= νau (u,v) + b(u, q) + b(v, p),

ac (C,D) := (∇C,∇D),

respectively. We present the weak formulation of the problem (1); find (u, p,C) : (0, T ) → V × Q ×W such
that for t ∈ (0, T )(

Du

Dt
(t),v

)
+A

(
(u, p)(t), (v, q)

)
= − (trC(t)C(t),∇v) + (f(t),v) , (2a)(

DC

Dt
(t),D

)
+ εac

(
C(t),D

)
= 2

(
(∇u(t))C(t),D

)
−
(
(trC(t))2C(t),D

)
+ (trC(t)I,D) + (F(t),D) , (2b)

∀(v, q,D) ∈ V ×Q×W,

with (u(0),C(0)) = (u0,C0).

3. A nonlinear stabilized Lagrange–Galerkin scheme

The aim of this section is to present a nonlinear stabilized Lagrange–Galerkin scheme for (1).
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Let ∆t be a time increment, NT := ⌊T/∆t⌋ the total number of time steps and tn := n∆t for n = 0, . . . , NT .
Let g be a function defined in Ω × (0, T ) and gn := g(·, tn). For the approximation of the material derivative
we employ the first-order characteristics method,

Dg

Dt
(x, tn) =

gn(x)−
(
gn−1 ◦Xn

1

)
(x)

∆t
+O(∆t), (3)

where Xn
1 : Ω → R2 is a mapping defined by

Xn
1 (x) := x−wn(x)∆t,

and the symbol ◦ means the composition of functions,

(gn−1 ◦Xn
1 )(x) := gn−1(Xn

1 (x)).

For the details on deriving the approximation (3) of Dg/Dt, see, e.g., [12]. The point Xn
1 (x) is called the upwind

point of x with respect to wn. The next proposition, which is a direct consequence of [16] and [18], presents
sufficient conditions to ensure that all upwind points defined by Xn

1 are in Ω and that its Jacobian Jn :=
det(∂Xn

1 /∂x) is around 1.

Proposition 1. Suppose Hypothesis 1 holds. Then, we have the following for n ∈ {0, . . . , NT }.
(i) Under the condition ∆t|w|C(W 1,∞) < 1, Xn

1 : Ω → Ω is bijective.
(ii) Furthermore, under the condition

∆t|w|C(W 1,∞) ≤ 1/4, (4)

the estimate 1/2 ≤ Jn ≤ 3/2 holds.

For the sake of simplicity we suppose that Ω is a polygonal domain. Let Th = {K} be a triangulation of
Ω̄ (=

∪
K∈Th

K), hK the diameter of K ∈ Th and h := maxK∈Th
hK the maximum element size. We consider a

regular family of subdivisions {Th}h↓0 satisfying the inverse assumption [4], i.e., there exists a positive constant
α0 independent of h such that

h

hK
≤ α0, ∀K ∈ Th, ∀h.

We define the discrete function spaces Xh, Vh, Mh, Qh and Wh by

Xh :=
{
vh ∈ C(Ω̄)2; vh|K ∈ P1(K)2, ∀K ∈ Th

}
, Vh := Xh ∩ V,

Mh :=
{
qh ∈ C(Ω̄); qh|K ∈ P1(K), ∀K ∈ Th

}
, Qh :=Mh ∩Q,

Wh :=
{
Dh ∈ Csym(Ω̄); Dh|K ∈ P1(K)2×2, ∀K ∈ Th

}
,

respectively, where P1(K) is the polynomial space of linear functions on K ∈ Th.
Let δ0 be a small positive constant fixed arbitrarily and (·, ·)K the L2(K)2 inner product. We define the

bilinear forms Ah on (V ×H1(Ω))× (V ×H1(Ω)) and Sh on H1(Ω)×H1(Ω) by

Ah ((u, p), (v, q)) := νau (u,v) + b(u, q) + b(v, p)− Sh(p, q), Sh(p, q) := δ0
∑

K∈Th

h2K(∇p,∇q)K .

For D ∈ R2×2
sym let D# ∈ R2×2

sym be the adjugate matrix of D defined by

D# :=

(
D22 −D12

−D12 D11

)
.
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Let (fh,Fh) := ({fnh }
NT
n=1, {Fn

h}
NT
n=1) ⊂ L2(Ω)2 × L2(Ω)2×2 and (u0

h,C
0
h) ∈ Vh ×Wh be given. A nonlinear

stabilized Lagrange–Galerkin scheme for (1) is to find (uh, ph,Ch) := {(un
h, p

n
h,C

n
h)}

NT
n=1 ⊂ Vh ×Qh ×Wh such

that, for n = 1, . . . , NT ,(
un
h − un−1

h ◦Xn
1

∆t
,vh

)
+Ah

(
(un

h, p
n
h), (vh, qh)

)
= −

(
(trCn

h)C
n
h,∇vh

)
+ (fnh ,vh), (5a)(

Cn
h −Cn−1

h ◦Xn
1

∆t
,Dh

)
+ εac (C

n
h,Dh) = 2

(
(∇un

h)C
n
h,Dh

)
+
(
divun

h(C
n
h)

#,Dh

)
−
(
(trCn

h)
2Cn

h,Dh

)
+
(
(trCn

h)I,Dh

)
+ (Fn

h,Dh), (5b)
∀(vh, qh,Dh) ∈ Vh ×Qh ×Wh.

4. The main result

In this section we present the main result on error estimates with the optimal convergence order of scheme (5).
We use c to represent a generic positive constant independent of the discretization parameters h and ∆t. We

also use constants cw and cs independent of h and ∆t but dependent on w and the solution (u, p,C) of (2),
respectively, and cs often depends on w additionally. c, cw and cs may be dependent on ν but are independent
of ε. The symbol “ ′ (prime)” is sometimes used in order to distinguish two constants, e.g., cs and c′s, from each
other. We use the following notation for the norms and seminorms, ∥·∥V = ∥·∥Vh

:= ∥·∥1, ∥·∥Q = ∥·∥Qh
:= ∥·∥0,

∥(u,C)∥Z2(t0,t1)
:=

{
∥u∥2Z2(t0,t1)

+ ∥C∥2Z2(t0,t1)

}1/2

, ∥u∥ℓ∞(X) := max
n=0,...,NT

∥un∥X ,

∥u∥ℓ2(X) :=

{
∆t

NT∑
n=1

∥un∥2X

}1/2

, |u|ℓ2(X) :=

{
∆t

NT∑
n=1

|un|2X
}1/2

,

|p|h :=

{ ∑
K∈Th

h2K(∇p,∇p)K
}1/2

, |p|ℓ2(|.|h) :=
{
∆t

NT∑
n=1

|pn|2h
}1/2

,

for X = L2(Ω) or H1(Ω). D∆t is the backward difference operator defined by D∆tu
n := (un − un−1)/∆t.

The existence of the solution of scheme (5) is guaranteed by the next proposition whose proof is given in the
next section.

Proposition 2 (existence). Suppose Hypothesis 1 holds. For any h > 0 and ∆t ∈ (0, 1/2) satisfying (4), there
exists a solution (uh, ph,Ch) ⊂ Vh ×Qh ×Wh of scheme (5).

We state the main result after preparing a projection and a hypothesis.

Definition 1 (Stokes projection). For (u, p) ∈ V × Q we define the Stokes projection (ûh, p̂h) ∈ Vh × Qh of
(u, p) by

Ah ((ûh, p̂h), (vh, qh)) = A ((u, p), (vh, qh)) , ∀(vh, qh) ∈ Vh ×Qh. (6)

The Stokes projection derives an operator ΠS
h : V × Q → Vh × Qh defined by ΠS

h(u, p) := (ûh, p̂h). The
first component of ΠS

h(u, p) is denoted by [ΠS
h(u, p)]1. Let Πh : L2(Ω) → Mh be the Clément interpolation

operator [5]. The operators on L2(Ω)2 and L2(Ω)2×2 are denoted by the same symbol Πh.

Remark 2. While we introduced a Poisson projection for C in Part I [8], here we use the Clément interpolation
operator Πh, which is sufficient for the proof in the nonlinear scheme. The required regularity on C in Hypoth-
esis 2 becomes a little weaker. We note that the Clément operator can be replaced by the Lagrange interpolation
operator, when the function belongs to C(Ω̄).
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Hypothesis 2. The solution (u, p,C) of (2) satisfies u ∈ Z2(0, T )2∩H1(0, T ;V ∩H2(Ω)2)∩C([0, T ];W 1,∞(Ω)2),
p ∈ H1(0, T ;Q ∩H1(Ω)) and

C ∈

{
Z2(0, T )2×2 ∩ L2(0, T ;W ) ∩ C([0, T ];H2(Ω)2×2) (ε > 0),

Z2(0, T )2×2 ∩ L2(0, T ;W ) ∩ C([0, T ];L∞(Ω)2×2) (ε = 0).

We now impose the conditions

(u0
h,C

0
h) = ([ΠS

h(u
0, 0)]1,ΠhC

0), (fh,Fh) = (f ,F). (7)

Theorem 1 (error estimates). Suppose Hypotheses 1 and 2 hold. Then, there exist positive constants h0, ∆t0
and c† independent of ε such that, for any pair (h,∆t) satisfying

h ∈ (0, h0], ∆t ∈ (0,∆t0], (8)

and any solution (uh, ph,Ch) of scheme (5) with (7), it holds that

∥uh − u∥ℓ∞(L2),
√
ν∥uh − u∥ℓ2(H1), |ph − p|ℓ2(|.|h),

∥Ch −C∥ℓ∞(L2),
√
ε|Ch −C|ℓ2(H1),

∥∥tr (Ch −C)(Ch −C)
∥∥
ℓ2(L2)

≤ c†(h+∆t). (9)

Remark 3. (i) The estimates (9) hold even for ε = 0. Then, of course, the fifth term of the left-hand side of
(9) vanishes.
(ii) Here we do not need the uniqueness of the solution of scheme (5). The uniqueness is discussed in Proposi-
tion 3 below.

5. Proofs

In what follows we prove Proposition 2 and Theorem 1.

5.1. Preliminaries

Let us list lemmas directly employed below in the proofs. Although some of those lemmas have been already
used in Part I [8], we list them again here for the self-containment. In the lemmas, αi, i = 1, . . . , 4, are numerical
constants. They are independent of h, ∆t, ν and ε but may depend on Ω.

Lemma 1 ( [6] ). Let Ω be a bounded domain with a Lipschitz-continuous boundary. Then, the following
inequalities hold.

∥D(v)∥0 ≤ ∥v∥1 ≤ α1∥D(v)∥0, ∀v ∈ H1
0 (Ω)2.

We introduce the function

D(h) := (1 + | log h|)1/2, (10)

which is used in the sequel.

Lemma 2 ( [1, 4, 5] ). The following inequalities hold.

∥Πhg∥0,∞ ≤ ∥g∥0,∞ , ∀g ∈ L∞(Ω)s,

∥Πhg∥1,∞ ≤ α20 ∥g∥1,∞ , ∀g ∈W 1,∞(Ω)s,

∥Πhg − g∥0 ≤ α21h ∥g∥1 , ∀g ∈ H1(Ω)s ∩ L∞(Ω)s,
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∥Πhg − g∥1 ≤ α22h ∥g∥2 , ∀g ∈ H2(Ω)s,

∥gh∥0,∞ ≤ α23h
−1 ∥gh∥0 , ∀gh ∈ Sh,

∥gh∥0,∞ ≤ α24D(h) ∥gh∥1 , ∀gh ∈ Sh,

∥gh∥1,∞ ≤ α25h
−1 ∥gh∥1 , ∀gh ∈ Sh,

∥gh∥1 ≤ α26h
−1 ∥gh∥0 , ∀gh ∈ Sh,

where s = 2 or 2× 2 and Sh = Vh or Wh.

Lemma 3 ( [2] ). Assume (u, p) ∈ (V ∩H2(Ω)2)×(Q∩H1(Ω)). Let (ûh, p̂h) ∈ Vh×Qh be the Stokes projection
of (u, p) by (6). Then, the following inequalities hold,

∥ûh − u∥1 , ∥p̂h − p∥0 , |p̂h − p|h ≤ α3h ∥(u, p)∥H2×H1 .

Lemma 4 ( [8] ). Under Hypothesis 1 and the condition (4) the following inequality holds for any n ∈
{0, . . . , NT }

∥g ◦Xn
1 ∥0 ≤ (1 + α4|wn|1,∞∆t) ∥g∥0 , ∀g ∈ L2(Ω)s,

where s = 2 or 2× 2.

We present a key lemma in order to deal with the nonlinear terms.

Lemma 5. For v ∈ R2 and D ∈ R2×2
sym it holds that

(
(trD)D,∇v

)
−
(
(∇v)D,D

)
− 1

2

(
divv(D)#,D

)
= 0.

Proof. The direct calculation yields the desired result. □

Lemma 6 ( [17] ). Let ai, i = 1, 2, be non-negative number, ∆t a positive number, and {xn}n≥0, {yn}n≥1 and
{bn}n≥1 non-negative sequences. Assume ∆t ∈ (0, 1/(2a0)] for a0 ̸= 0. Suppose

D∆tx
n + yn ≤ a0x

n + a1x
n−1 + bn, ∀n ≥ 1.

Then, it holds that

xn +∆t

n∑
i=1

yi ≤ exp[(2a0 + a1)n∆t]

(
x0 +∆t

n∑
i=1

bi
)
, ∀n ≥ 1.

Lemma 7 ( [19, Chap. II, Lemma 1.4], [7, Chap. I, Lemme 4.3] ). Let X be a finite dimensional Hilbert space
with inner product (·, ·)X and norm ∥ · ∥X and let P be a continuous mapping from X into itself such that
(P(ξ), ξ)X > 0 for ∥ξ∥X = ρ0 > 0. Then, there exists ξ ∈ X, ∥ξ∥X ≤ ρ0, such that P(ξ) = 0.

5.2. Proof of Proposition 2

We apply Lemma 7 for the proof. Let n ∈ {1, . . . , NT } be a fixed number and (un−1
h ,Cn−1

h ) ∈ Vh ×Wh

a pair of given functions. We set µ0 := (1− 2∆t)/2 > 0. We define a finite dimensional inner product space
X := Vh ×Qh ×Wh equipped with the inner product,

(
(uh, ph,Ch), (vh, qh,Dh)

)
X

:=
1

∆t
(uh,vh) + 4ν

(
D(uh),D(vh)

)



8 TITLE WILL BE SET BY THE PUBLISHER

+ 2δ0
∑

K∈Th

h2K(ph, qh)K +
µ0

∆t
(Ch,Dh) + ε(∇Ch,∇Dh),

which induces the norm ∥ · ∥X for any ε ≥ 0. Let P : Vh ×Qh ×Wh → Vh ×Qh ×Wh be a mapping defined by

(
P(uh, ph,Ch), (vh, qh,Dh)

)
X

=

(
uh − un−1

h ◦Xn
1

∆t
,vh

)
+Ah

(
(uh, ph), (vh,−qh)

)
+
(
(trCh)Ch,∇vh

)
− (fnh ,vh) +

1

2

(
Ch −Cn−1

h ◦Xn
1

∆t
,Dh

)
+
ε

2
ac(Ch,Dh)−

(
(∇uh)Ch,Dh

)
− 1

2

(
(divuh)C

#
h ,Dh

)
+

1

2

(
(trCh)

2Ch,Dh

)
− 1

2

(
(trCh)I,Dh

)
− 1

2
(Fn

h,Dh), ∀(uh, ph,Ch), (vh, qh,Dh) ∈ Vh ×Qh ×Wh. (11)

Obviously P is continuous. Substituting (uh, ph,Ch) into (vh, qh,Dh) in (11) and using the inequality ∥trCh∥0 ≤√
2∥Ch∥0, we have(

P(uh, ph,Ch), (uh, ph,Ch)
)
X

=

(
uh − un−1

h ◦Xn
1

∆t
,uh

)
+ 2ν∥D(uh)∥20 + δ0|ph|2h − (fnh ,uh)

+
1

2

(
Ch −Cn−1

h ◦Xn
1

∆t
,Ch

)
+
ε

2
|Ch|21 +

1

2
∥(trCh)Ch∥20 −

1

2
∥trCh∥20 −

1

2
(Fn

h,Ch)

≥ 1

∆t

(
∥uh∥20 − ∥un−1

h ◦Xn
1 ∥0∥uh∥0) + 2ν∥D(uh)∥20 + δ0|ph|2h − ∥fnh ∥0∥uh∥0

+
1

2∆t

(
∥Ch∥20 − ∥Cn−1

h ◦Xn
1 ∥0∥Ch∥0

)
+
ε

2
|Ch|21 − ∥Ch∥20 −

1

2
∥Fn

h∥0∥Ch∥0

≥ 1

2∆t

{
2∥uh∥20 − β0∥uh∥20 −

1

β0
∥un−1

h ◦Xn
1 ∥20 + ∥Ch∥20 − β1∥Ch∥20 −

1

4β1
∥Cn−1

h ◦Xn
1 ∥20

}
+ 2ν∥D(uh)∥20 + δ0|ph|2h − β2

2∆t
∥uh∥20 −

∆t

2β2
∥fnh ∥20 +

ε

2
|Ch|21 − ∥Ch∥20 −

β3
2∆t

∥Ch∥20 −
∆t

8β3
∥Fn

h∥20

≥ 1

2∆t

{
(2− β0 − β2)∥uh∥20 + (1− β1 − 2∆t− β3)∥Ch∥20

}
+ 2ν∥D(uh)∥20 + δ0|ph|2h

+
ε

2
|Ch|21 −

1

2β0∆t
∥un−1

h ◦Xn
1 ∥20 −

1

8β1∆t
∥Cn−1

h ◦Xn
1 ∥20 −

∆t

2β2
∥fnh ∥20 −

∆t

8β3
∥Fn

h∥20

for any βi > 0. Choosing β0 = β2 = 1/2 and β1 = β3 = µ0/2, we get

(
P(uh, ph,Ch), (uh, ph,Ch)

)
X

≥ 1

2

[{
1

∆t
∥uh∥20 + 4ν∥D(uh)∥20 + 2δ0|ph|2h +

µ0

∆t
∥Ch∥20 + ε|Ch|21

}
−
{
2∥un−1

h ◦Xn
1 ∥20

∆t
+

∥Cn−1
h ◦Xn

1 ∥20
2µ0∆t

+ 2∆t∥fnh ∥20 +
∆t∥Fn

h∥20
2µ0

}]
=

1

2

[
∥(uh, ph,Ch)∥2X − β2

∗

]
,

where

β∗ :=

{
2∥un−1

h ◦Xn
1 ∥20

∆t
+

∥Cn−1
h ◦Xn

1 ∥20
2µ0∆t

+ 2∆t∥fnh ∥20 +
∆t∥Fn

h∥20
2µ0

}1/2

.
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The right-hand side is, therefore, positive on the sphere of radius ρ0 = β∗ + 1. From Lemma 7 there exists
an element (uh, ph,Ch) ∈ Vh × Qh × Wh such that P(uh, ph,Ch) = 0, which is nothing but a solution of
equations (5). □

5.3. A system of equations for the error and the estimate of remainder terms

In this subsection we prepare a system of equations for the error and a lemma for the estimate of remainder
terms in the system before starting the proof of Theorem 1.

Let (ûh, p̂h)(t) := ΠS
h(u, p)(t) ∈ Vh ×Qh and Čh(t) := ΠhC(t) ∈Wh for t ∈ [0, T ] and let

enh := un
h − ûn

h, ϵnh := pnh − p̂nh, En
h := Cn

h − Čn
h, η(t) := (u− ûh)(t), Ξ(t) := (C− Čh)(t).

Then, from (5), (6) and (2), we have for n ≥ 1(
enh − en−1

h ◦Xn
1

∆t
,vh

)
+Ah

(
(enh, ϵ

n
h), (vh, qh)

)
= −

(
(trEn

h)E
n
h,∇vh

)
+ ⟨rnh,vh⟩, (12a)(

En
h −En−1

h ◦Xn
1

∆t
,Dh

)
+ εac(E

n
h,Dh) = 2

(
(∇enh)E

n
h,Dh

)
+
(
(div enh)(E

n
h)

#,Dh

)
+ ⟨Rn

h,Dh⟩, (12b)

∀(vh, qh,Dh) ∈ Vh ×Qh ×Wh,

where

rnh :=

4∑
i=1

rnhi ∈ V ′
h, Rn

h :=

11∑
i=1

Rn
hi ∈W ′

h,

⟨rnh1,vh⟩ :=
(

Dun

Dt
− un − un−1 ◦Xn

1

∆t
,vh

)
,

⟨rnh2,vh⟩ :=
1

∆t

(
ηn − ηn−1 ◦Xn

1 ,vh

)
,

⟨rnh3,vh⟩ := −
(
(tr Čn)En

h + (trEn
h)Č

n,∇vh

)
,

⟨rnh4,vh⟩ :=
(
(tr Čn)Ξn + (trΞn)Cn,∇vh

)
,

⟨Rn
h1,Dh⟩ :=

(
DCn

Dt
− Cn −Cn−1 ◦Xn

1

∆t
,Dh

)
,

⟨Rn
h2,Dh⟩ :=

1

∆t

(
Ξn −Ξn−1 ◦Xn

1 ,Dh

)
,

⟨Rn
h3,Dh⟩ := εac(Ξ

n,Dh),

⟨Rn
h4,Dh⟩ := 2

(
(∇ûn

h)E
n
h + (∇enh)Č

n,Dh

)
,

⟨Rn
h5,Dh⟩ := −2

(
(∇ûn

h)Ξ
n + (∇ηn)Cn,Dh

)
,

⟨Rn
h6,Dh⟩ :=

(
(div ûn

h)(E
n
h)

# + (div enh)(Č
n)#,Dh

)
,

⟨Rn
h7,Dh⟩ := −

(
(div ûn

h)(Ξ
n)# + (divηn)(Cn)#,Dh

)
,

⟨Rn
h8,Dh⟩ := −

(
[tr (En

h + Čn)]2En
h,Dh

)
,

⟨Rn
h9,Dh⟩ := −

(
[tr (En

h + 2Čn)](trEn
h)Č

n,Dh

)
,

⟨Rn
h10,Dh⟩ :=

(
(tr Čn)Ξn + [tr (Cn + Čn)](trΞn)Cn,Dh

)
,

⟨Rn
h11,Dh⟩ := ([tr (En

h −Ξn)]I,Dh) .
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We note that

(e0h,E
0
h) = (u0

h,C
0
h)− (û0

h, Č
0
h) = ([ΠS

h(0,−p0)]1,0). (13)

The remainder terms are evaluated by the next lemma, whose proof is given in Subsection A.1.

Lemma 8. Suppose Hypotheses 1 and 2 hold. Let n ∈ {1, . . . , NT } be any fixed number. Then, under the
condition (4) it holds that

∥rnh1∥0 ≤ cw
√
∆t∥u∥Z2(tn−1,tn), (14a)

∥rnh2∥0 ≤ cwh√
∆t

∥(u, p)∥H1(tn−1,tn;H2×H1), (14b)

∥rnh3∥−1 ≤ cs∥En
h∥0, (14c)

∥rnh4∥−1 ≤ csh, (14d)

∥Rn
h1∥0 ≤ cw

√
∆t∥C∥Z2(tn−1,tn), (14e)

∥Rn
h2∥0 ≤ cwh√

∆t
∥C∥H1(tn−1,tn;H1)∩L2(tn−1,tn;H2), (14f)⟨

Rn
h3,

1

2
En

h

⟩
≤ ε

4
|En

h|21 + csh
2, (14g)

∥Rn
h4∥0 ≤ cs(∥enh∥1 + ∥En

h∥0), (14h)
∥Rn

h5∥0 ≤ csh, (14i)

∥Rn
h6∥0 ≤ cs

(
∥enh∥1 + ∥En

h∥0
)
, (14j)

∥Rn
h7∥0 ≤ csh, (14k)⟨

Rn
h8,

1

2
En

h

⟩
≤ −3

8
∥(trEn

h)E
n
h∥20 + cs∥En

h∥20, (14l)⟨
Rn

h9,
1

2
En

h

⟩
≤ 1

8
∥(trEn

h)E
n
h∥20 + cs∥En

h∥20, (14m)

∥Rn
h10∥0 ≤ csh, (14n)

∥Rn
h11∥0 ≤ cs(∥En

h∥0 + h). (14o)

5.4. Proof of Theorem 1

The constant h0 can be chosen arbitrarily, say, h0 = 1. We fix ∆t0 by

∆t0 = min

{
1

4|w|C(W 1,∞)
,
1

2cs

}
, (15)

where cs is the constant appearing in (18) below. We consider any pair (h,∆t) satisfying (8) and any solu-
tion (uh, ph,Ch) of scheme (5) with (7). We return to the argument in the previous subsection. Substitut-
ing (enh,−ϵnh, 12E

n
h) into (vh, qh,Dh) in (12) and noting that(

enh − en−1
h ◦Xn

1

∆t
, enh

)
≥ 1

2∆t

[
∥enh∥20 − (1 + α4|wn|1,∞∆t)2∥en−1

h ∥20
]
≥ D∆t

(1
2
∥enh∥20

)
− cw∥en−1

h ∥20,

Ah

(
(enh, ϵ

n
h), (e

n
h,−ϵnh)

)
≥ 2ν

α2
1

∥enh∥21 + δ0|pnh|2h,

⟨rnh, enh⟩ ≤ ∥rnh∥−1∥enh∥1 ≤ α2
1

4ν
∥rnh∥2−1 +

ν

α2
1

∥enh∥21,
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En

h −En−1
h ◦Xn

1

∆t
,
1

2
En

h

)
≥ D∆t

(1
4
∥En

h∥20
)
− cw∥En−1

h ∥20,

εac

(
En

h,
1

2
En

h

)
=
ε

2
|En

h|21,

and Lemma 5, we have

D∆t

(1
2
∥enh∥20 +

1

4
∥En

h∥20
)
+

ν

α2
1

∥enh∥21 + δ0|ϵnh|2h +
ε

2
|En

h|21 ≤ cw(∥en−1
h ∥20 + ∥En−1

h ∥20) +
α2
1

4ν
∥rnh∥2−1 +

⟨
Rn

h,
1

2
En

h

⟩
.

(16)

Since the condition (4) is satisfied, Lemma 8 implies that

∥rnh∥2−1 ≤ cs∥En
h∥20 + c′s

[
∆t∥u∥2Z2(tn−1,tn) + h2

( 1

∆t
∥(u, p)∥2H1(tn−1,tn;H2×H1) + 1

)]
, (17a)⟨

Rn
h,

1

2
En

h

⟩
≤ cs∥En

h∥20 +
ν

2α2
1

∥enh∥21 +
ε

4
|En

h|21 −
1

4
∥(trEn

h)E
n
h∥20

+ c′s

[
∆t∥C∥2Z2(tn−1,tn) + h2

( 1

∆t
∥C∥2Z2(tn−1,tn) + 1

)]
. (17b)

Combining (17) with (16), we obtain

D∆t

(1
2
∥enh∥20 +

1

4
∥En

h∥20
)
+

ν

2α2
1

∥enh∥21 + δ0|ϵnh|2h +
ε

4
|En

h|21 +
1

4
∥(trEn

h)E
n
h∥20

≤ cs

(1
2
∥en−1

h ∥20 +
1

4
∥En−1

h ∥20 +
1

4
∥En

h∥20
)

+ c′s

[
∆t∥(u,C)∥2Z2(tn−1,tn) + h2

{ 1

∆t

(
∥(u, p)∥2H1(tn−1,tn;H2×H1) + ∥C∥2Z2(tn−1,tn)

)
+ 1

}]
. (18)

From (8) and (15) it holds that ∆t ∈ (0, 1/(2cs)]. By applying Lemma 6 to (18) and noting that

∥e0h∥0 ≤ α3h∥(0,−p0)∥H2×H1 = α3h∥p∥C(H1), ∥E0
h∥0 = 0,

from (13), there exists a positive constant

c̃† = c exp(3csT/2)
[
∥p∥C(H1) +

√
c′s
(
∥(u,C)∥Z2 + ∥(u, p)∥H1(H2×H1) +

√
T
)]

independent of ε such that

∥eh∥ℓ∞(L2),
√
ν∥eh∥ℓ2(H1), |ϵh|ℓ2(|.|h), ∥Eh∥ℓ∞(L2) ,

√
ε|Eh|ℓ2(H1),

∥∥(trEh)Eh

∥∥
ℓ2(L2)

≤ c̃†(h+∆t). (19)

Hence, we obtain (9) from (19) and the estimates,

∥un
h − un∥s ≤ ∥enh∥s + ∥ηn∥1 ≤ ∥enh∥s + α3h∥(u, p)∥C(H2×H1),

|pnh − pn|h ≤ |ϵnh|h + |p̂nh − pn|h ≤ |ϵnh|h + α3h∥(u, p)∥C(H2×H1),

∥Cn
h −Cn∥s ≤ ∥En

h∥s + ∥Ξn∥s ≤ ∥En
h∥s + α2(s+1)h∥C∥C(Hs+1),

∥tr (Cn
h −Cn)(Cn

h −Cn)∥0 = ∥tr (En
h −Ξn)(En

h −Ξn)∥0 ≤ ∥(trEn
h)E

n
h∥0 + csh(∥En

h∥0 + 1),

for s = 0 or 1.
When ε = 0, (9) is still valid, since Rn

h3 vanishes and c† is independent of ε. □
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6. Uniqueness of the solution

In this section we present and prove the result on the uniqueness of the solution of scheme (5). Let us remind
that the function D(h) has been defined in (10).

Proposition 3 (uniqueness). Suppose Hypotheses 1 and 2 hold. Then, for any pair (h,∆t) satisfying the
following condition (20) or (21), the solution of scheme (5) with (7) is unique.
(i) When ε > 0,

h ∈ (0, h⋆], ∆t ≤ D(h)−2, (20)

where the constant h⋆ is defined by (33) below.
(ii) When ε = 0,

h ∈ (0, h̄⋆], ∆t ≤ c̄⋆h, (21)

where the constants h̄⋆ and c̄⋆ are defined by (34) and (37) below.

The proof is given after preparing the next lemma.

Lemma 9. Suppose Hypotheses 1 and 2 hold. Then, for any pair (h,∆t) satisfying the following condition (23)
or (24), any solution (uh, ph,Ch) of scheme (5) with (7) satisfies

∥Ch∥ℓ∞(L∞) ≤ cc, ∥uh∥ℓ∞(L∞) ≤ cu, (22)

where cc and cu are positive constants independent of h and ∆t defined just below.
(i) When ε > 0,

h ∈ (0, h†], ∆t ≤ D(h)−2, (23)

where h† is defined by (25d) below. Furthermore, cc = c†c and cu = c†u, which are defined by (25e) and (25f).
(ii) When ε = 0,

h ∈ (0, h̄†], ∆t ≤ h, (24)

where h̄† is defined by (25a) below. Furthermore, cc = c̄†c and cu = c̄†u, which are defined by (25b) and (25c).

Proof. Let n ∈ {0, . . . , NT } be fixed arbitrarily, and let h0, ∆t0 and c̃† be the positive constants in the statement
of Theorem 1 and in (19). We fix a positive constant h1 ∈ (0, 1] such that

h1 ≤ D(h1)
−2 ≤ ∆t0.

We prepare the following constants to be used in the proof:

h̄† := min
{
h0,∆t0

}
, (25a)

c̄†c := 2α23c̃† + ∥C∥C(L∞), (25b)

c̄†u := α23

[
2c̃† + (α21 + α3)∥(u, p)∥C(H2×H1)

]
+ ∥u∥C(L∞), (25c)

c1 := c̃† max
{
1, (T + ε−1)1/2, ν−1/2

}
,

h† := min{h̄†, h1}, (25d)

c†c := max
{
2α24c1 + ∥C∥C(L∞), c̄†c

}
, (25e)

c†u := max
{
α24

[
2c1 + (α22 + α3)∥(u, p)∥C(H2×H1)

]
+ ∥u∥C(L∞), c̄†u

}
. (25f)
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Firstly, we prove (22) in case (ii). Since condition (24) implies (8), Theorem 1 ensures (19). Then, the
boundedness of ∥Cn

h∥0,∞ is obtained as follows:

∥Cn
h∥0,∞ ≤ ∥En

h∥0,∞ + ∥Čn
h∥0,∞ ≤ α23h

−1∥En
h∥0 + ∥C∥C(L∞)

≤ α23h
−1c̃†(∆t+ h) + ∥C∥C(L∞) ≤ 2α23c̃† + ∥C∥C(L∞)

= c̄†c.

Let ǔh(t) := (Πhu)(t) for t ∈ [0, T ]. The boundedness of ∥un
h∥0,∞ is obtained as follows:

∥un
h∥0,∞ ≤ ∥enh∥0,∞ + ∥ûn

h − ǔn
h∥0,∞ + ∥ǔn

h∥0,∞ ≤ α23h
−1

[
∥enh∥0 + ∥ûn

h − ǔn
h∥0

]
+ ∥u∥C(L∞)

≤ α23h
−1

[
∥enh∥0 + ∥ûn

h − un∥0 + ∥un − ǔn
h∥0

]
+ ∥u∥C(L∞)

≤ α23h
−1

[
c̃†(∆t+ h) + α3h∥(u, p)∥C(H2×H1) + α21h∥u∥C(H1)

]
+ ∥u∥C(L∞)

≤ α23

[
2c̃† + (α21 + α3)∥(u, p)∥C(H2×H1)

]
+ ∥u∥C(L∞)

= c̄†u.

Secondly, we prove (22) in case (i). Since condition (23) implies (8), the estimates (19) and the definition
of c1 lead to

∥eh∥ℓ∞(L2), ∥eh∥ℓ2(H1), ∥Eh∥ℓ∞(L2), ∥Eh∥ℓ2(H1) ≤ c1(∆t+ h).

When ∆t ≤ h, we have ∥Cn
h∥0,∞ ≤ c̄†c ≤ c†c and ∥un

h∥0,∞ ≤ c̄†u ≤ c†u from the proof in case (ii) above. When
(D(h)2h2 ≤) h ≤ ∆t ≤ D(h)−2, we have

∥Cn
h∥0,∞ ≤ ∥En

h∥0,∞ + ∥C∥C(L∞) ≤ α24D(h)∥En
h∥1 + ∥C∥C(L∞) ≤ α24D(h)∆t−1/2∥Eh∥ℓ2(H1) + ∥C∥C(L∞)

≤ α24c1D(h)(∆t1/2 +∆t−1/2h) + ∥C∥C(L∞) ≤ 2α24c1 + ∥C∥C(L∞)

≤ c†c,

∥un
h∥0,∞ ≤ ∥enh∥0,∞ + ∥ûn

h − ǔn
h∥0,∞ + ∥ǔn

h∥0,∞ ≤ α24D(h)
[
∥enh∥1 + ∥ûn

h − ǔn
h∥1

]
+ ∥u∥C(L∞)

≤ α24D(h)
[
∆t−1/2∥eh∥ℓ2(H1) + ∥ûn

h − un∥1 + ∥un − ǔn
h∥1

]
+ ∥u∥C(L∞)

≤ α24D(h)
[
c1(∆t

1/2 +∆t−1/2h) + (α22 + α3)h∥(u, p)∥C(H2×H1)

]
+ ∥u∥C(L∞)

≤ α24

[
2c1 + (α22 + α3)∥(u, p)∥C(H2×H1)

]
+ ∥u∥C(L∞)

≤ c†u.

Thus, we obtain (22). □
Proof of Proposition 3. The definitions (33), (34) and (37) below of the constants h⋆, h̄⋆ and c⋆ imply h⋆ ≤ h†,
h̄⋆ ≤ h̄† and c̄⋆ ≤ 1. Hence any pair of (h,∆t) in Proposition 3 satisfies the assumptions of Lemma 9 for ε ≥ 0.

Suppose (ũh, p̃h, C̃h) and (uh, ph,Ch) are any two solutions of scheme (5) with (7). Let (ẽh, ϵ̃h, Ẽh) :=

(ũh, p̃h, C̃h)− (uh, ph,Ch) be the difference. Since both of (ũh, p̃h, C̃h) and (uh, ph,Ch) satisfy scheme (5) with
(7), we have(

ẽnh − ẽn−1
h ◦Xn

1

∆t
,vh

)
+Ah

(
(ẽnh, ϵ̃

n
h), (vh, qh)

)
= −

(
(tr Ẽn

h)Ẽ
n
h,∇vh

)
+ ⟨r̃nh,vh⟩, (26a)(

Ẽn
h − Ẽn−1

h ◦Xn
1

∆t
,Dh

)
+ εac(Ẽ

n
h,Dh) = 2

(
(∇ẽnh)Ẽ

n
h,Dh

)
+
(
(div ẽnh)(Ẽ

n
h)

#,Dh

)
+ ⟨R̃n

h,Dh⟩, (26b)

∀(vh, qh,Dh) ∈ Vh ×Qh ×Wh,
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where

r̃nh ∈ V ′
h, R̃n

h :=
5∑

i=1

R̃n
hi ∈W ′

h,

⟨r̃nh,vh⟩ := −
(
(trCn

h)Ẽ
n
h + (tr Ẽn

h)C
n
h,∇vh

)
,

⟨R̃n
h1,Dh⟩ := 2

(
(∇un

h)Ẽ
n
h + (∇ẽnh)C

n
h,Dh

)
,

⟨R̃n
h2,Dh⟩ :=

(
(divun

h)(Ẽ
n
h)

# + (div ẽnh)(C
n
h)

#,Dh

)
,

⟨R̃n
h3,Dh⟩ := −

(
[tr (Ẽn

h +Cn
h)]

2Ẽn
h,Dh

)
,

⟨R̃n
h4,Dh⟩ := −

(
[tr (Ẽn

h + 2Cn
h)](tr Ẽ

n
h)C

n
h,Dh

)
,

⟨R̃n
h5,Dh⟩ :=

(
(tr Ẽn

h)I,Dh

)
,

and (ẽ0h, Ẽ
0
h) = (0,0). Substituting (ẽnh,−ϵ̃nh, 12 Ẽ

n
h) into (vh, qh,Dh) in (26) and using Lemma 5 and similar

estimates in the derivation of (16), we have

D∆t

(1
2
∥ẽnh∥20 +

1

4
∥Ẽn

h∥20
)
+

ν

α2
1

∥ẽnh∥21 + δ0|ϵ̃nh|2h +
ε

2
|Ẽn

h|21 ≤ cw(∥ẽn−1
h ∥20 + ∥Ẽn−1

h ∥20) +
α2
1

4ν
∥r̃nh∥2−1 +

⟨
R̃n

h,
1

2
Ẽn

h

⟩
.

(27)

The functionals r̃nh and R̃n
h are estimated as follows:

∥r̃nh∥−1 ≤ c∥Cn
h∥0,∞∥Ẽn

h∥0, (28)⟨
R̃n

h1,
1

2
Ẽn

h

⟩
,
⟨
R̃n

h2,
1

2
Ẽn

h

⟩
≤ c∥Ẽn

h∥0
(
∥un

h∥0,∞|Ẽn
h|1 + ∥Cn

h∥0,∞|ẽnh|1
)
, (29a)⟨

R̃n
h3,

1

2
Ẽn

h

⟩
≤ −3

8
∥(tr Ẽn

h)Ẽ
n
h∥20 + c∥Cn

h∥20,∞∥Ẽn
h∥20, (29b)⟨

R̃n
h4,

1

2
Ẽn

h

⟩
≤ 1

8
∥(tr Ẽn

h)Ẽ
n
h∥20 + c∥Cn

h∥20,∞∥Ẽn
h∥20, (29c)

∥R̃n
h5∥0 ≤ c∥Ẽn

h∥0, (29d)

where the estimates (29a) are proved in Subsection A.2, and the other estimates (28), (29b), (29c) and (29d)
are obtained similarly to (14c), (14l), (14m) and (14o), respectively. Applying Lemma 9 to (28), we have

∥r̃nh∥−1 ≤ ccc∥Ẽn
h∥0. (30)

We consider case (i). The estimates (29) and Lemma 9 lead to⟨
R̃n

h,
1

2
Ẽn

h

⟩
≤ c

ε
(c2c + c2u + 1)∥Ẽn

h∥20 +
ν

2α2
1

∥ẽnh∥21 +
ε

4
|Ẽn

h|21 −
1

4
∥(tr Ẽn

h)Ẽ
n
h∥20. (31)

Combining (30) and (31) with (27), we have

D∆t

(1
2
∥ẽnh∥20 +

1

4
∥Ẽn

h∥20
)
+

ν

2α2
1

∥ẽnh∥21 + δ0|ϵ̃nh|2h +
ε

4
|Ẽn

h|21 +
1

4
∥(tr Ẽn

h)Ẽ
n
h∥20

≤ c

ε
(c2c + c2u + 1)

(1
4
∥Ẽn

h∥20
)
+ cw

(1
2
∥ẽn−1

h ∥20 +
1

4
∥Ẽn−1

h ∥20
)
. (32)
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Let ∆t⋆ := ε/[2c(c2c + c
2
u+1)], and we fix a positive constant h2 ∈ (0, 1] such that D(h2)

−2 ≤ ∆t⋆. We define h⋆
by

h⋆ := min{h†, h2}. (33)

Condition (20) implies ∆t ≤ D(h2)
−2 ≤ ε/[2c(c2c + c2u + 1)] (= ∆t⋆). Applying Lemma 6 to (32) and using the

fact (ẽ0h, Ẽ
0
h) = (0,0), we get (ẽh, ϵ̃h, Ẽh) = (0, 0,0).

We prove (ii). In place of (29a) we use the estimates,

⟨
R̃n

h1,
1

2
Ẽn

h

⟩
,
⟨
R̃n

h2,
1

2
Ẽn

h

⟩
≤ c∥Ẽn

h∥0
(
α26h

−1∥un
h∥0,∞∥Ẽn

h∥0 + ∥Cn
h∥0,∞|ẽnh|1

)
. (29a′ )

We define h̄⋆ by

h̄⋆ := min
{
h̄†, 1/cu, cu/c

2
c

}
. (34)

For any h ∈ (0, h̄⋆] the estimates (29), Lemma 9 and (34) lead to

⟨
R̃n

h,
1

2
Ẽn

h

⟩
≤ c

(cu
h

+ c2c + 1
)
∥Ẽn

h∥20 +
ν

2α2
1

∥ẽnh∥21 −
1

4
∥(tr Ẽn

h)Ẽ
n
h∥20

≤ c′cu
h

∥Ẽn
h∥20 +

ν

2α2
1

∥ẽnh∥21 −
1

4
∥(tr Ẽn

h)Ẽ
n
h∥20. (35)

Combining (30) and (35) with (27), we have

D∆t

(1
2
∥ẽnh∥20 +

1

4
∥Ẽn

h∥20
)
+

ν

2α2
1

∥ẽnh∥21 + δ0|ϵ̃nh|2h +
1

4
∥(tr Ẽn

h)Ẽ
n
h∥20 ≤ ccu

h

(1
4
∥Ẽn

h∥20
)
+ cw

(1
2
∥ẽn−1

h ∥20 +
1

4
∥Ẽn−1

h ∥20
)
.

(36)

We define c̄⋆ by

c̄⋆ := min
{
1, 1/(2ccu)

}
. (37)

Since condition (21) implies ∆t ≤ h/(2ccu), applying Lemma 6 to (36) and using the fact (ẽ0h, Ẽ
0
h) = (0,0), we

obtain (ẽh, ϵ̃h, Ẽh) = (0, 0,0), which completes the proof of (ii). □

7. Numerical experiments

In this section we present numerical results by scheme (5) in order to confirm the theoretical convergence
order. For the detailed description of the algorithm we refer to [10]. The following example is the same that is
employed in Part I [8, Example].

Example. In problem (1) we set Ω = (0, 1)2 and T = 0.5, and we consider three cases for the pair of ν and ε,

(ν, ε) = (10−1, 10−1), (10−1, 10−3), (1, 0).
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The functions f , F, u0 and C0 are given such that the exact solution to (1) is as follows:

u(x, t) =

(
∂ψ

∂x2
(x, t),− ∂ψ

∂x1
(x, t)

)
, p(x, t) = sin{π(x1 + 2x2 + t)},

C11(x, t) =
1

2
sin2(πx1) sin

2(πx2) sin{π(x1 + t)}+ 1,

C22(x, t) =
1

2
sin2(πx1) sin

2(πx2) sin{π(x2 + t)}+ 1,

C12(x, t) =
1

2
sin2(πx1) sin

2(πx2) sin{π(x1 + x2 + t)} (= C21(x, t)),

ψ(x, t) :=

√
3

2π
sin2(πx1) sin

2(πx2) sin{π(x1 + x2 + t)}.

(38)

Since Theorem 1 holds for any fixed positive constant δ0, we simply fix δ0 = 1. Let N be the division number
of each side of the square domain. We set N = 32, 64, 128 and 256, and (re)define h := 1/N . The time increment
is set as ∆t = h/2.

We solve Example by scheme (5) with (7). For the solution (uh, ph,Ch) of scheme (5) and the exact solu-
tion (u, p,C) given by (38) we define the relative errors Er i, i = 1, . . . , 6, by

Er 1 =
∥uh −Πhu∥ℓ∞(L2)

∥Πhu∥ℓ∞(L2)
, Er 2 =

∥uh −Πhu∥ℓ2(H1)

∥Πhu∥ℓ2(H1)
,

Er 3 =
∥ph −Πhp∥ℓ2(L2)

∥Πhp∥ℓ2(L2)
, Er 4 =

|ph −Πhp|ℓ2(|·|h)
∥Πhp∥ℓ2(L2)

,

Er 5 =
∥Ch −ΠhC∥ℓ∞(L2)

∥ΠhC∥ℓ∞(L2)
, Er 6 =

∥Ch −ΠhC∥ℓ2(H1)

∥ΠhC∥ℓ2(H1)
.

In the following we show three pairs of table and figure. Table 1 summarizes the symbols used in the figures.
Tables & Figures 1, 2 and 3 present the results for the cases (ν, ε) = (10−1, 10−1), (10−1, 10−3) and (1, 0),
respectively. In the tables the values of the errors and the slopes are presented, and in the figures the graphs of
the errors versus h in logarithmic scale are shown. In each figure the slope of the triangle is equal to 1, which
shows the convergence order O(h).

We can see that all the errors except Er 6 for (ν, ε) = (1, 0) are almost of the first order in h for all the cases.
These results support Theorem 1. In the case of (ν, ε) = (1, 0) there is no diffusion for C in equation (1c) and
the error estimate of the conformation tensor in ℓ2(H1)-seminorm disappear from (9). It is, therefore, natural
that the slope of Er 6 does not attain 1. Although we do not have any theoretical result for Er 3, scheme (5)
has produced convergence results also in this norm.

Table 1. Symbols used in the figures.

uh ph Ch

◦ • △ ▲ □ ■
Er 1 Er 2 Er 3 Er 4 Er 5 Er 6
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h Er 1 slope Er 2 slope

1/32 2.07× 10−2 – 2.91× 10−2 –
1/64 8.29× 10−3 1.32 1.21× 10−2 1.27
1/128 3.72× 10−3 1.16 5.85× 10−3 1.05
1/256 1.77× 10−3 1.07 2.60× 10−3 1.17

h Er 3 slope Er 4 slope

1/32 6.73× 10−2 – 5.08× 10−2 –
1/64 2.06× 10−2 1.71 1.86× 10−2 1.45
1/128 6.80× 10−3 1.60 8.38× 10−3 1.15
1/256 2.59× 10−3 1.39 3.68× 10−3 1.19

h Er 5 slope Er 6 slope

1/32 1.12× 10−2 – 4.80× 10−1 –
1/64 4.33× 10−3 1.37 1.66× 10−2 1.54
1/128 1.92× 10−3 1.18 6.56× 10−3 1.34
1/256 9.09× 10−4 1.08 2.90× 10−3 1.18

10
-4

10
-3

10
-2

10
-1

10
0

1/256 1/128 1/64 1/32

1

1

R
e
la

ti
v

e
 e

rr
o

rs

h

Table & Figure 1. Errors and slopes for (ν, ε) = (10−1, 10−1).

h Er 1 slope Er 2 slope

1/32 1.75× 10−2 – 2.71× 10−2 –
1/64 6.74× 10−3 1.37 1.12× 10−2 1.28
1/128 2.91× 10−3 1.21 5.49× 10−3 1.03
1/256 1.37× 10−3 1.09 2.44× 10−3 1.17

h Er 3 slope Er 4 slope

1/32 9.77× 10−2 – 6.56× 10−2 –
1/64 3.17× 10−2 1.62 2.22× 10−2 1.56
1/128 1.02× 10−2 1.63 9.01× 10−3 1.30
1/256 3.62× 10−3 1.50 3.78× 10−3 1.25

h Er 5 slope Er 6 slope

1/32 2.06× 10−2 – 2.76× 10−1 –
1/64 7.36× 10−3 1.49 1.16× 10−1 1.25
1/128 2.93× 10−3 1.33 4.40× 10−2 1.40
1/256 1.31× 10−3 1.17 1.51× 10−2 1.54

10
-4

10
-3

10
-2

10
-1

10
0

1/256 1/128 1/64 1/32

1

1

R
e
la

ti
v

e
 e

rr
o

rs

h

Table & Figure 2. Errors and slopes for (ν, ε) = (10−1, 10−3).
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h Er 1 slope Er 2 slope

1/32 1.36× 10−2 – 2.30× 10−2 –
1/64 4.26× 10−3 1.67 9.68× 10−3 1.25
1/128 1.40× 10−3 1.60 4.84× 10−3 1.00
1/256 5.15× 10−4 1.44 2.08× 10−3 1.22

h Er 3 slope Er 4 slope

1/32 2.03× 10−1 – 9.39× 10−2 –
1/64 6.98× 10−2 1.54 3.00× 10−2 1.65
1/128 2.16× 10−2 1.69 1.19× 10−2 1.34
1/256 6.86× 10−3 1.66 5.05× 10−3 1.23

h Er 5 slope Er 6 slope

1/32 2.13× 10−2 – 6.71× 10−1 –
1/64 7.64× 10−3 1.48 5.89× 10−1 0.19
1/128 2.81× 10−3 1.44 4.51× 10−1 0.38
1/256 1.11× 10−3 1.37 3.08× 10−1 0.55

10
-4

10
-3

10
-2

10
-1

10
0

1/256 1/128 1/64 1/32

1

1

R
e
la

ti
v

e
 e

rr
o

rs

h

Table & Figure 3. Errors and slopes for (ν, ε) = (1, 0).

8. Conclusions

We have presented a nonlinear stabilized Lagrange–Galerkin scheme (5) for the Oseen-type Peterlin viscoelas-
tic model. The scheme employs the conforming linear finite elements for all unknowns, velocity, pressure and
conformation tensor, together with Brezzi–Pitkäranta’s stabilization method. In Theorem 1 we have established
error estimates with the optimal convergence order, which remain true even for ε = 0. We have also presented
the result on the uniqueness of the solution of the scheme in Proposition 3. It is noted that any solution of
the scheme converges to the exact solution without any relation between h and ∆t, while the condition (20)
or (21) is needed for the uniqueness of the solution. The theoretical convergence order has been confirmed by
the two-dimensional numerical experiments.

In Part I [8] we have presented a linear scheme for the same model. There are no remarkable differences
between the numerical results obtained by the linear scheme and the nonlinear scheme. While the argument
discussed in the linear scheme can be extended to the three-dimensional problem, it is not so in the nonlinear
scheme since Lemma 5 does not hold as it is in the three-dimensional space. On the other hand, while the
convergence is proved in the nonlinear scheme including the non-diffusive case ε = 0, it is not straightforward
to prove it in the non-diffusive case in the linear scheme since H1-estimates of the conformation tensor are fully
used in the proof in the diffusive case.

Although we have dealt with the stabilized scheme to reduce the number of degrees of freedom, the extension
of the results to the combination of stable pairs for the velocity and the pressure, and conventional elements for
the conformation tensor is straightforward, e.g., P2/P1/P2 element. We will extend the numerical analysis to
the Peterlin viscoelastic model with the nonlinear convective terms in future.
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Appendix

A.1. Proof of Lemma 8
We prove only (14c), (14d), (14f), (14g), (14h), (14l) and (14m), since (14a) and (14b) are proved in [8, Appendix]

and the other estimates are similarly obtained.
From Lemmas 2 and 3, (14c) and (14d) are obtained as follows:

∥rnh3∥−1 ≤ ∥(tr Čn)En
h + (trEn

h)Č
n∥0 ≤ c∥Čn∥0,∞∥En

h∥0 ≤ c∥C∥C(L∞)∥En
h∥0,

∥rnh4∥−1 ≤ ∥(tr Čn)Ξn + (trΞn)Cn∥0 ≤ c∥Čn∥0,∞∥Ξn
h∥0 ≤ c∥C∥C(L∞)α21h∥C∥C(H1).

We prove (14f). Let y(x, s) := x− (1− s)wn(x)∆t and t(s) := tn−1 + s∆t (s ∈ [0, 1]). From the identity

Rn
h2 =

1

∆t

[
Ξ
(
y(·, s), t(s)

)]1
s=0

=

∫ 1

0

{( ∂

∂t
+wn(·) · ∇

)
Ξ
}(

y(·, s), t(s)
)
ds

and Proposition 1 we have

∥Rn
h2∥0 ≤

∫ 1

0

(∥∥∥∂Ξ
∂t

(
y(·, s), t(s)

)∥∥∥
0
+ cw

∥∥∇Ξ
(
y(·, s), t(s)

)∥∥
0

)
ds ≤

√
2

∫ 1

0

(∥∥∥∂Ξ
∂t

(
·, t(s)

)∥∥∥
0
+ cw

∥∥∇Ξ
(
·, t(s)

)∥∥
0

)
ds

≤
√

2

∆t
h
(
α21∥C∥H1(tn−1,tn;H1) + cwα22∥C∥L2(tn−1,tn;H2)

)
,

which implies (14f).
The estimates (14g), (14l) and (14m) are obtained as follows:⟨
Rn

h3,
1

2
En

h

⟩
≤ ε

2
|Ξn|1|En

h|1 ≤ ε

4
(|En

h|21 + α2
3h

2∥C∥2C(H2)),⟨
Rn

h8,
1

2
En

h

⟩
= −1

2

(
[(trEn

h)
2 + 2(trEn

h)(tr Č
n) + (tr Čn)2]En

h,E
n
h

)
≤ −1

2
∥(trEn

h)E
n
h∥20 −

(
(trEn

h)E
n
h, (tr Č

n)En
h

)
≤ −1

2
∥(trEn

h)E
n
h∥20 +

1

8
∥(trEn

h)E
n
h∥20 + 2∥(tr Čn)En

h∥20 ≤ −3

8
∥(trEn

h)E
n
h∥20 + c∥C∥2C(L∞)∥En

h∥20,⟨
Rn

h9,
1

2
En

h

⟩
= −1

2

(
(trEn

h)Č
n, (trEn

h)E
n
h

)
−

(
(tr Čn)(trEn

h)Č
n,En

h

)
≤ 1

8
∥(trEn

h)E
n
h∥20 + c∥C∥2C(L∞)∥En

h∥20.

Let ǔh(t) := (Πhu)(t) for t ∈ [0, T ]. The remaining estimate (14h) is proved as

∥Rn
h4∥0 ≤ 2(∥(∇ûn

h)E
n
h∥0 + ∥(∇en

h)Č
n∥0) ≤ c(cs∥En

h∥0 + ∥C∥C(L∞)∥∇en
h∥0),

where we have used the boundedness of ∥∇ûn
h∥0,∞ obtained by the estimate,

∥∇ûn
h∥0,∞ ≤ ∥ûn

h∥1,∞ ≤ ∥ûn
h − ǔn

h∥1,∞ + ∥ǔn
h∥1,∞ ≤ α25h

−1∥ûn
h − ǔn

h∥1 + α20∥un∥1,∞
≤ α25h

−1(∥ûn
h − un∥1 + ∥un − ǔn

h∥1
)
+ α20∥un∥1,∞

≤ α25h
−1(α3h∥(u, p)n∥H2×H1 + α22h∥un∥2

)
+ α20∥un∥1,∞

≤ α25(α22 + α3)∥(u, p)∥C(H2×H1) + α20∥u∥C(W1,∞) ≤ cs. □
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A.2. Proofs of estimates (29a)
We prove (29a) by the integration by parts as follows:⟨

R̃n
h1,

1

2
Ẽn

h

⟩
=

(
(∇un

h)Ẽ
n
h, Ẽ

n
h

)
+

(
(∇ẽn

h)C
n
h, Ẽ

n
h

)
= −

(
un
h,∇(Ẽn

hẼ
n
h)
)
+

(
(∇ẽn

h)C
n
h, Ẽ

n
h

)
≤ c

(
∥un

h∥0,∞∥Ẽn
h∥0|Ẽn

h|1 + ∥Cn
h∥0,∞|ẽn

h|1∥Ẽn
h∥0

)
,⟨

R̃n
h2,

1

2
Ẽn

h

⟩
=

1

2

(
(divun

h)(Ẽ
n
h)

#, Ẽn
h

)
+

1

2

(
(div ẽn

h)(C
n
h)

#, Ẽn
h

)
= −1

2

(
un
h∇(Ẽn

h)
#, Ẽn

h

)
− 1

2

(
(Ẽn

h)
#,un

h∇Ẽn
h

)
+

1

2

(
(div ẽn

h)(C
n
h)

#, Ẽn
h

)
≤ c

(
∥un

h∥0,∞|Ẽn
h|1∥Ẽn

h∥0 + ∥Cn
h∥0,∞|ẽn

h|1∥Ẽn
h∥0

)
. □
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