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SUMMARY

In this paper we propose new energy dissipative characteristic numerical methods for the approximation of

diffusive Oldroyd-B equations, that are based either on the finite element or finite difference discretization.

We prove energy stability of both schemes and illustrate their behaviour on a series of numerical

experiments. Using both the diffusive model and the logarithmic transformation of the elastic stress we

are able to obtain methods that converge as mesh parameter is refined. Copyright c© 0000 John Wiley &

Sons, Ltd.

Received . . .
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1. INTRODUCTION

In industry, laboratory and everyday life a broad class of materials, such as suspensions, solution

of polymers and liquid crystals are categorized as complex fluids. Viscoelasticity is one of the most

significant features arose in the complex fluids as they show viscous as well as elastic effects. The

mathematical model is given by a system of nonlinear partial differential equations, where two

non-dimensional parameters, the Reynolds and Weissenberg numbers, quantify viscous and elastic

effects, respectively. It is a well-known fact that numerical simulation of the viscoelastic fluids

at high Weissenberg numbers is a very challenging problem. The well-known “High Weissenberg

Number Problem” (HWNP) has haunted the mathematicians, computer scientists, and engineers

for more than 40 years [9, 22, 24–26, 33, 36, 42–46]. When the Weissenberg number exceeds some

limits, numerical solutions computed by any standard methods break down exponentially fast in

time. Frustratingly, the mechanism of the instability is still a kind of mistery. Possible reasons
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2 LUKACOVA ET AL.

include purely numerical phenomenon, inadequate physical modelling and can even be caused by

singular geometry. The motivation of this paper is to propose a possible way to construct stable and

convergent schemes for the problem.

The earlier works in the field of numerical simulation of the Oldroyd-B and related viscoelastic

models were realized mostly by using the standard finite difference (FD), finite volume (FV) or finite

element (FE) method. Let us mention, for example, contributions by Keunings, Crochet and their

cooperators [15,25,32] (FE), Wapperom, Keunings and Legat [44] (backward-tracking Lagrangian

particle method), Crochet, Davies and Walters [14] (FD-FE scheme), Wapperom and Webster [45],

Aboubacar, Matallah and Webster [1], Nadau and Sequeira [33] (hybrid FV-FE scheme), Phillips

and Williams [37] (semi-Lagrangian finite volume), Xue, Phan-Thien and Tanner [46] (FV).

Without exception, all these methods break down at a moderately high Weissenberg number.

Up to now no approach has been found to solve this problem. Nevertheless, some approaches

significantly improved the stability, especially the Logarithm Conformation Representation (LCR)

approach proposed by Fattal and Kupfermann [19, 20]. The main idea is to reformulate the

constitutive law for the elastic stress tensor by means of the logarithmic transformation of the

conformation tensor. In fact, the numerical methods based on polynomials fail to catch the

exponential profile of the conformation tensor, but are obviously able to catch its logarithm which

is polynomial. This approach has been further implemented by Fattal and Kupfermann [20, 24],

Turek et al. [16], Alves et al. [2], Pan and Hao [22, 36], Chen et al. [10]. Similar studies can be

found by Balci et al [5], who developed the square-root transformation, Alfonso et al. [3], who

applied and summarized the kernel conformation transformation. These transformation methods

naturally preserve the positivity of the conformation tensor at the discrete level. Another approach

to obtain positivity preserving method is based on the direct discretization of the objective derivative,

cf. [28,29,42].

In this paper we study the stability of the diffusive Oldroyd-B model for the characteristic based

finite element and finite difference schemes in the sense of the free energy [23]. Free energy

dissipative schemes based on the characteristic and discontinuous Galerkin method have been

studied for the Oldroyd-B system by Boyaval et al. [9]. It has been reported that those methods

fail to control the free energy in the cavity test [8]. It should be mentioned that the global existence

of weak solution is still open for the Oldroyd-B model. Nevertheless, for the diffusive Oldroyd-B

model the regularity [13] and the global existence of weak solution [6] have been presented for

two dimension. We would like to point out that the diffusive terms indeed do exist in the physical

models. Since the order of the diffusion coefficient is much smaller than the viscosity, e.g. 10−9,

they are typically neglected, cf. [7,17,39] and references therein.

We will combine the successful LCR approach of Fattal and Kupfermann [19, 20] with the

benefits of the diffusive model. Our aim is to show the energy stability of the diffusive model and

construct energy dissipative characteristic based schemes that are stable and convergent even for

high Weissenberg numbers. The paper is organized as follows. In Section 2 we introduce a diffusive

Oldroyd-B type viscoelastic model. Section 3 is devoted to the free energy stability of the model.

Two characteristic-based numerical methods are presented in Section 4, the finite element, and the

finite difference method. Moreover, we study the free energy stability of the schemes on the discrete

level in Section 5. Numerical tests are presented in Section 6.
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DISSIPATIVE CHARACTERISTIC SCHEMES FOR THE DIFFUSIVE OLDROYD-B 3

2. GOVERNING EQUATIONS

Mathematical model describing the motion of incompressible viscoelastic fluids consists of the mass

and momentum conservation laws

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ ·T, (1a)

∇ · u = 0, (1b)

where ρ is the fluid density, u is the velocity, p is the pressure, the stress tensor T is a function

of the rate of deformation tensor D, where D(u) = (∇u+∇u
T )/2. For the Newtonian fluids the

constitutive relationship is a linear constitutive law

T = 2µ0D,

with a constant viscosity µ0 > 0. On the other hand, for the viscoelastic Oldroyd-B fluids the

constitutive law is nonlinear

T+ λ
∇

T = 2µ0(D+ λr
∇

D), (1c)

where λ, λr > 0 are relaxation and retardation time, the upper convected derivative is defined as

∇

T =
∂T

∂t
+ u · ∇T−∇uT−T∇u

T .

Now we decompose the stress tensor T into two parts, which are the purely viscous component

2µ0αD with α = λr

λ , and the so-called extra stress τ , which contributes to elastic properties,

T = τ + 2µ0αD.

According to this decomposition, we can simplify the equation (1c) to its elastic part

λ
∇
τ + τ = 2µ0(1 − α)D, (2)

and rewrite the momentum equation (1a) as

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ0α∆u+∇ · τ . (3)

The system (1b), (2) and (3) is called the Oldroyd-B model for the incompressible viscoelastic

fluids.
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4 LUKACOVA ET AL.

Taking into account also diffusive effects in the evolution equation of the elastic stress, we get

after non-dimensionalization the following equations

Re

(
∂u

∂t
+ u · ∇u

)
= −∇p+ α∆u+

β

We
∇ · (σ − I), (4a)

∇ · u = 0, (4b)

∂σ

∂t
+ (u · ∇)σ −∇u · σ − σ · (∇u)T =

1

We
(I− σ) + η∆σ, (4c)

where β = 1− α, η ≥ 0 is a diffusive parameter. Furthermore, Re = ρUL
µ0

and We = λU
L are the

reference Reynolds and Weissenberg numbers, respectively. Here U is the reference velocity and

L is the reference length. In the non-diffusive case we have η = 0. We consider our system

in a bounded domain T with suitable boundary and initial conditions, e.g. u|∂T = 0, ∂σ
∂n |∂T =

0, u(0) = u0, σ(0) = σ0, u0 and σ0 are given data. In the paper of Constantin and Kliegl [13] the

diffusive Oldroyd-B model has been investigated theoretically and the existence of regular solutions

has been proven.

As already pointed out in the previous section the Oldroyd-B model is very challenging

particularly in the high Weissenberg limit. To overcome this problem several approaches have

been studied in the literature. We should point out that up to now no simulation technique has

been found to completely solve this problem and to yield stable and accurate numerical solutions

for any Weissenberg number. Nevertheless, some approaches significantly improved and stabilized

the numerical simulations. In what follows we describe the LCR approach proposed by Fattal and

Kupfermann [19, 20] to reduce the numerical blow up in the case of high We. The main idea of

this approach is to replace the conformation tensor by a new variable ψ(x, t) = lnσ(x, t) through

eigenvalue computations (lnA = R lnΛR
T ). In the case of η = 0 we arrive at

∂ψ

∂t
+ (u · ∇)ψ − (Ωψ −ψΩ)− 2B =

1

We
(e−ψ − I).

Here we have used the following decomposition

∇u = B+Ω+Nσ−1, (5)

where B is symmetric and commutes with the conformation tensor σ, Ω is anti-symmetric and

Nσ−1 is an additional dummy part which is also anti-symmetric. Their values can be obtained as

follows, cf. [19].

If σ is proportional to the unit tensor,

B = D(u), Ω = 0, N = (∇u−D(u))trσ/2. (6)
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DISSIPATIVE CHARACTERISTIC SCHEMES FOR THE DIFFUSIVE OLDROYD-B 5

In general, we get the decomposition in the following way:

Step 1. diagonalizing the conformation tensor,

(
λ1 0

0 λ2

)
= R

TσR.

Step 2. calculating an intermediate matrix

(
m11 m12

m21 m22

)
= R

T (∇u)R.

Step 3.

N = R

(
0 n

−n 0

)
RT , B = R

(
m11 0

0 m22

)
R

T , Ω = R

(
0 ω

−ω 0

)
R

T , (7)

where n = (m12 +m21)/(λ
−1
2 − λ−1

1 ), and ω = (λ2m12 + λ1m21)/(λ2 − λ1).

Analogously as in (4) we propose a new diffusive logarithmic model.

Re(
∂u

∂t
+ u · ∇u) = −∇p+ α∆u+

β

We
∇ · (eψ − I), (8a)

∇ · u = 0, (8b)

∂ψ

∂t
+ (u · ∇)ψ − (Ωψ −ψΩ)− 2B =

1

We
(e−ψ − I) + ε∆ψ. (8c)

where ε ≥ 0 is a diffusive parameter.

3. FREE ENERGY OF THE DIFFUSIVE OLDROYD-B MODEL

In this section we introduce a free energy for the viscoelastic models. The free energy consists of

the kinetic and elastic energy. Actually, the elastic energy is shown to be the entropy of the polymers

in the fluid, cf. [23]. Thus the energy stability we are aiming for is in fact the stability of the free

energy with respect to time.

Consider a bounded computational domain T . Then the free energy for the Oldroyd-B model

reads

F (u,σ) =
Re

2

∫

T

|u|2 +
β

2We

∫

T

tr(σ − lnσ − I). (9a)

On the other hand for the logarithmic formulation (8), it is given as follows

F (u, eψ) =
Re

2

∫

T

|u|2 +
β

2We

∫

T

tr(eψ −ψ − I). (9b)

The kinetic term 1
2

∫
T
|u|2 is always non-negative. As we will show later, see (10b), the entropy∫

T
tr(σ − lnσ − I) is also non-negative, provided σ is symmetric positive-definite.
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6 LUKACOVA ET AL.

It has been shown by Boyaval et al. [9] that the free energy for the Oldroyd-B model decreases in

time. Models obeying this property are called dissipative models. Further, Boyaval et al. constructed

energy dissipative numerical schemes, which unfortunately did not converge in the sense of mesh

refinement.

The main aim of our paper is to extend their results to the diffusive model (8). First, it holds that

the free energy for the diffusive Oldroyd-B model (4) decreases in time exponentially fast to zero,

see [41] and Remark 1. In this paper we show that this property is inherited by the diffusive model

with the logarithmic transformation.

Before studying the stability of our diffusive viscoelastic models we first summarize some useful

preliminaries. The first two lemmas have been used and proven by Boyaval et al. [9].

Lemma 1. ( [9]) Let σ, τ ∈ Rd×d be two symmetric positive-definite matrices then it holds

tr lnσ = ln detσ, (10a)

σ − lnσ − I is symmetric positive semi-definite and tr(σ − lnσ − I) ≥ 0, (10b)

σ + σ−1 − 2I is symmetric positive semi-definite and tr(σ + σ−1 − 2I) ≥ 0, (10c)

tr((ln τ − lnσ)τ ) ≥ tr(τ − σ). (10d)

Lemma 2. ( [9]) For any symmetric positive-definite matrix σ(t) ∈ (C1([0, T )))
d(d+1)

2 we have for

any t ∈ [0, T ), that

(
d

dt
σ) : σ−1 = tr(σ−1 d

dt
σ) =

d

dt
tr(lnσ), (11a)

(
d

dt
lnσ) : σ = tr(σ

d

dt
lnσ) =

d

dt
trσ. (11b)

The following lemma will be useful in the evaluation of the diffusive terms in the energy estimate.

The proof is stated in the Appendix A.1.

Lemma 3. Let σ, τ ∈ Rd×d be symmetric positive-definite matrices, f1 be an increasing function

and f2 be a decreasing function, then we have

(σ − τ ) : (f1(σ)− f1(τ )) ≥ 0, (12a)

(σ − τ ) : (f2(σ)− f2(τ )) ≤ 0, (12b)

∇σ : ∇(σ−1) ≤ 0, (12c)

∇(lnσ) : ∇σ ≥ 0. (12d)

Theorem 1. (energy estimates for the diffusive logarithmic Oldroyd-B model)

Let (u, p,ψ) be a smooth solution to system (8), supplied with the homogeneous Dirichlet boundary

condition for velocity, and with the zero Neumann boundary condition for ψ. Further, we assume

that initially eψ is a symmetric positive-definite tensor. The free energy satisfies

d

dt
F (u, eψ) + α

∫

T

|∇u|2 +
β

2We2

∫

T

tr(eψ + e−ψ − I) ≤ 0. (13)
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DISSIPATIVE CHARACTERISTIC SCHEMES FOR THE DIFFUSIVE OLDROYD-B 7

From this estimate it follows that F (u, eψ) decreases in time exponentially fast to zero.

Proof

By computing the inner product of the momentum equation and the velocity we get

Re

2

d

dt

∫

T

|u|2 + α

∫

T

|∇u|2 +
β

We

∫

T

∇u : eψ = 0. (14)

Multiplying the transport equation for the logarithmic conformation tensor with eψ − I implies

d

dt

∫

T

tr(eψ −ψ) =

∫

T

(Ωψ −ψΩ+ 2B) : (eψ − I) +
1

We
tr(2I− eψ − e−ψ) + ε

∫

T

∆ψ : (eψ − I).

(15)

Let us note that ∫

T

(Ωψ −ψΩ) : (eψ − I) =

∫

T

(Ωψ −ψΩ) : eψ = 0

and ∫

T

B : (eψ − I) =

∫

T

∇u : eψ −

∫

T

trB =

∫

T

∇u : eψ.

Using the inequality (12d) of Lemma 3 we get for the diffusive terms

∫

T

∆ψ : (eψ − I) = −

∫

T

∇ψ : ∇eψ ≤ 0.

Then equation (15) can be written as

d

dt

∫

T

tr(eψ −ψ) = 2

∫

T

∇u : eψ +
1

We
tr(2I− eψ − e−ψ)− ε

∫

T

∇ψ : ∇eψ. (16)

In order to eliminate the term
∫
T
∇u : eψ, we compute (14) + β

2We× (16) which yields (13)

d

dt

∫

T

(
Re

2
|u|2 +

β

2We
tr(eψ −ψ − I)

)
+

∫

T

(
α|∇u|2 +

β

2We2
tr(eψ + e−ψ − 2I)

)

= −
εβ

2We

∫

T

∇ψ : ∇eψ ≤ 0.

By (10c) we have tr(eψ + e−ψ − 2I) ≥ 0, thus F (u, eψ) decreases in time as dF
dt ≤ 0. It is easy

to check that e−ψ is also a symmetric positive-definite matrix. Substituting e−ψ to (10b) yields

tr(e−ψ + ln(eψ)− I) ≥ 0,

which implies

tr(eψ + e−ψ − 2I) = tr(eψ − ln eψ − I) + tr(e−ψ + ln(eψ)− I) ≥ tr(eψ − ln eψ − I).
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Using the Poincaré inequality, we know that there exists a constantCp > 0 depending on the domain

T such that for all u ∈ H1
0 (T ) ∫

T

|u|2 ≤ Cp

∫

T

|∇u|2.

Consequently, we obtain

d

dt
F (u, eψ) ≤ −

α

Cp

∫

T

|u|2 −
β

2We2
tr(eψ − ln eψ − I)) ≤ −min

(
2α

Re Cp
,

1

We

)
F (u, eψ).

Now we can apply the Gronwall inequality and obtain

F (u, eψ) ≤ F (u(t = 0), eψ(t = 0)) exp

(
−min

(
2α

Re Cp
,

1

We

)
t

)
,

which concludes the proof.

Remark 1. The energy inequality also holds for the diffusive Oldroyd-B (4) without LCR technique.

Taking the same assumptions as in Theorem 1 the following inequality holds, cf. [41].

F (u,σ) ≤ F (u(t = 0),σ(t = 0)) exp

(
−min

(
2α

Re Cp
,

1

We

)
t

)
.

4. NUMERICAL SCHEMES

In this section we shall present two characteristic type schemes for the diffusive Oldroyd-B model,

the characteristic finite element and the characteristic finite difference schemes.

The main idea of the characteristic method is to consider the trajectory of the fluid particle and

discretize the material derivative Du

Dt = ∂u
∂t + u · ∇u along the characteristic path defined by the

function X
n(t, ·) : x ∈ T 7→ X

n(t, x) ∈ T , t ∈ [tn, tn+1] as

{
d
dtX

n(t,x) = u
n
h(X

n(t,x)), t ∈ [tn, tn+1],

X
n(tn+1,x) = x,

(17)

where un
h is the discrete velocity field. We refer a reader to [34,35,38] for the characteristic schemes

applied to the Navier-Stokes equations and to [9] for the non-diffusive Oldroyd-B model. In our real

computation, the characteristic position is approximated as

X
n(tn,x) ≈ x− unh(x)(t

n+1 − tn).

4.1. Characteristic FEM

We start with introducing suitable functional spaces and the corresponding weak formulation. Let

T be a bounded domain in R
d, d = 2, 3, V ≡ H1

0 (T )d, Q ≡ L2
0(T ) and W ≡ H1(T )d×d be the

function spaces for the velocity, pressure and conformation tensor. Here H1(T ) and H1
0 (T ) are the

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
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DISSIPATIVE CHARACTERISTIC SCHEMES FOR THE DIFFUSIVE OLDROYD-B 9

well-known Sobolev spaces, the function space L2
0(T ) is given as

L2
0(T ) ≡ {q ∈ L2(T );

∫

T

qdx = 0}.

Further, let (·, ·) denote the L2−inner products in the vector- and matrix- function spaces. In what

follows we will use the following bilinear forms

a0(u,v) = 2α(D(u),D(v)), b(u, q) = −(∇ · u, q),

A((u, p), (v, q)) = a0(u,v) + b(u, q) + b(v, p).

Definition 1. A weak solution of problem (8) is a triple {(u, p,ψ)(t)}t∈(0,T ) ⊂ V ×Q×W , such

that for any test function (v, q,φ) ∈ V ×Q×W and almost any time t ∈ (0, T ), we have

(
Re

Du

Dt
(t),v

)
+A((u, p)(t), (v, q)) =

−β

We
(eψ(t),∇v), (18a)

(
Dψ

Dt
(t),φ

)
+ ε(∇ψ(t),∇φ) = (Ω(t)ψ(t)−ψ(t)Ω(t)+2B(t),φ)

+
1

We
(e−ψ(t) − I,φ). (18b)

Here, Ω and B arise from the decomposition (5), and can be derived using equations (6), (7).

The initial conditions are
(
u
0, p0,σ0(ψ0 = lnσ0)

)
∈ V ×Q×W , where σ0 is a symmetric

positive-definite matrix. In what follows we formulate the characteristic FEM.

As usual, P1(K) denotes polynomial space of linear functions on a finite element K ∈ Th, Th is

the triangulation of T̄ (=
⋃

K∈Th
K), and hK is the diameter of the element K . We assume that our

triangulation is regular, cf. [12].

First, let us define some suitable discrete function spacesXh,Mh,Σh, Vh, Qh, Sh in the following

way

Xh ≡ {vh ∈ C0(T̄h)
d;vh|K ∈ P1(K)d, ∀K ∈ Th}, Vh ≡ Xh ∩ V,

Mh ≡ {qh ∈ C0(T̄h); qh|K ∈ P1(K), ∀K ∈ Th}, Qh ≡Mh ∩Q,

Σh ≡ {φh ∈ C0(T̄h)
d×d;φh|K ∈ P1(K)d×d, ∀K ∈ Th}, Wh ≡ Σh ∩W.

Further, we introduce some standard interpolation operators [12]

Π
(1)
h : C0(T̄h)

d → Xh, Π
(2)
h : C0(T̄h) → Mh, Π

(3)
h : C0(T̄h)

d×d → Σh.

Let ∆t denote the time step and NT the total number of time steps. Now we can formulate our

characteristic FEM for the diffusive model (8):
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10 LUKACOVA ET AL.

Find {(un+1
h , pn+1

h ,ψn+1
h )}NT−1

n=0 ⊂ Vh ×Qh ×Wh such that for any test function (vh, qh,φh) ∈

Vh ×Qh ×Wh and for n = 0, · · · , NT − 1, we have

(
Re

u
n+1
h − u

n
h ◦Xn(tn)

∆t
,vh

)
+A((un+1

h , pn+1
h ), (vh, qh)) + Sh(p

n+1
h , qh)

=
−β

We

(
Π

(3)
h (eψ

n+1
h ),∇vh

)
, (19a)

(
ψn+1

h −ψn
h ◦Xn(tn)

∆t
,φh

)
+ ε(∇ψn+1

h ,∇φh) = (Ωn+1
h ψn+1

h −ψn+1
h Ω

n+1
h +2Bn+1

h ,φh)

+
1

We

(
Π

(3)
h (e−ψ

n+1
h )− I,φh

)
. (19b)

Furthermore, the pressure stabilization term is defined as

Sh(p, q) = −δ
∑

K∈Th

h2K

∫

K

∇ph∇qh,

where δ > 0 is a suitable parameter.

The scheme (19) is implicit in time. In order to obtain a numerical solution for this nonlinear

scheme we apply the fixed point iterations. Let us summarize the characteristic FEM (19) in

Algorithm 1.

Algorithm 1 Characteristic FEM for the diffusive Oldroyd-B model using the

logarithmic transformation

1: Given u
n
h, p

n
h,ψ

n
h , set u

n,0
h = u

n
h,ψ

n,0
h = ψn

h , p
n,0
h = pnh.

2: for ℓ = 0, 1, · · · do

3: solve iteratively the equation (19) with the explicit RHS:

(
Re

u
n,ℓ+1
h − u

n
h ◦Xn(tn)

∆t
,vh

)
+A((un,ℓ+1

h , pn,ℓ+1
h ), (vh, qh)) + Sh(p

n,ℓ+1
h , qh)

=
−β

We

(
Π

(3)
h (eψ

n,ℓ

h ),∇vh

)
,

(
ψ

n,ℓ+1
h −ψn

h ◦Xn(tn)

∆t
,φh

)
+ ε(∇ψn,ℓ+1

h ,∇φh) = (Ωn,ℓ
h ψ

n,ℓ
h −ψn,ℓ

h Ω
n,ℓ
h +2Bn,ℓ

h ,φh)

+
1

We

(
Π

(3)
h (e−ψ

n,ℓ

h )− I,φh

)
.

4: if (‖wn,ℓ+1 −w
n,ℓ‖ ≤ ξ‖wn,ℓ‖ for w ∈ {uh, ph, e

ψh} and ξ is small enough) then

5: break

6: end if

7: end for

8: Update solution: un+1
h = u

n,ℓ+1
h , pn+1

h = pn,ℓ+1
h ,ψn+1

h = ψn,ℓ+1
h .
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DISSIPATIVE CHARACTERISTIC SCHEMES FOR THE DIFFUSIVE OLDROYD-B 11

4.2. Characteristic finite difference method

The aim of this section is to present the characteristic finite difference scheme for the diffusive

Oldroyd-B model (8) with LCR transformation. In the following, we describe in more details the

space and time discretization.

We first discretize the domain Th by dividing it into M ×N regular rectangular mesh cells.

Let Ki,j , i = 1, · · · ,M, j = 1, · · · , N , denote an arbitrary cell, hx be the mesh size in x-direction,

and analogously hy be the mesh size in y-direction. Then the so-called staggered approximation is

applied for the fluid flow field. It means that the discretization nodes for velocity components U

and V are the midpoints of edges in x- or y-direction, respectively, where U, V denote the x and

y components of the velocity, cf. Figure 1. Furthermore, nodes for pressure p and logarithm of the

conformation tensor ψ are at the cell centers.

Figure 1. Discretization of the staggered mesh.

In the following, we will split the numerical discretization of the system (8) in two parts.

In the first part we apply the characteristic FDM for the transport equation of the logarithmic

transformation of the conformation tensor (8c). Specifically, we have

(
ψn+1 − ψn ◦Xn(tn)

)
i,j

∆t
=(Ωn+1ψn+1 −ψn+1

Ω
n+1 + 2Bn+1)i,j

+
1

We
(e−ψ

n+1
i,j − I) + ε∆hψ

n+1
i,j ,

(20)

where ∆t is the time step, Ωi,j and Bi,j are calculated due to the decomposition (5) of velocity

gradient ∇hui,j , see formulas (6), (7). The discrete gradient operator for velocity is defined as

∇hui,j =

(
δxUi,j δyUi,j

δxVi,j δyVi,j

)
, (21a)
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12 LUKACOVA ET AL.

where

(δxU)i,j :=
Ui+1/2,j − Ui−1/2,j

hx
, (δyV )i,j :=

Vi,j+1/2 − Vi,j−1/2

hy
,

(δyU)i,j :=
Ui+1/2,j+1 + Ui−1/2,j+1 − Ui+1/2,j−1 − Ui−1/2,j−1

4hy
,

(δxV )i,j :=
Vi+1,j−1/2 + Vi+1,j+1/2 − Vi−1,j−1/2 − Vi−1,j+1/2

4hx
.

(21b)

The discrete Laplace operator for ψ is defined as

∆hψi,j :=
1

h2x
(ψi+1,j − 2ψi,j +ψi−1,j) +

1

h2y
(ψi,j+1 − 2ψi,j +ψi,j−1). (22)

In the second part, we apply a suitable FD approximation for the flow equations (8a) and (8b).

The idea of this part follows the Chorin projection method, cf. [11,40]. For divergence free functions

the convective term u · ∇u is equivalent to ∇ · (u⊗ u), which is used for the finite difference

approximation. The pressure term is treated implicitly in a projection step. More precisely, the FD

approximation reads

Re
(Un+1 − Un)i+1/2,j

∆t
=−Reδx(U

n+1)2i+1/2,j −Reδy(U
n+1V n+1)i+1/2,j − (δxp

n+1)i+1/2,j

+ α∆hU
n+1
i+1/2,j +

β

We
(δxσ

n+1
11 )i+1/2,j +

β

We
(δyσ

n+1
12 )i+1/2,j , (23a)

Re
(V n+1 − V n)i,j+1/2

∆t
=−Reδx(U

n+1V n+1)i+1/2,j −Reδy(V
n+1)2i+1/2,j − (δyp

n+1)i,j+1/2

+ α∆hV
n+1
i,j+1/2 +

β

We
(δxσ

n+1
21 )i,j+1/2 +

β

We
(δyσ

n+1
22 )i,j+1/2, (23b)

∇h · un+1
i,j :=δxU

n+1
i,j + δyV

n+1
i,j = 0. (23c)

Here the discrete difference operators for the convective terms are defined as follows

(δxU
2)i+1/2,j :=

(
(Ūh)2 − γ|Ūh|Ũh

)

i+1,j
−
(
(Ūh)2 − γ|Ūh|Ũh

)

i,j

hx
,

(δy(UV ))i+1/2,j :=
(ŪvV̄ h − γ|V̄ h|Ũv)i+1/2,j+1/2 − (ŪvV̄ h − γ|V̄ h|Ũv)i+1/2,j−1/2

hy
,

(δx(UV ))i,j+1/2 :=
(ŪvV̄ h − γ|Ūv|Ṽ h)i+1/2,j+1/2 − (ŪvV̄ h − γ|Ūv|Ṽ h)i−1/2,j+1/2

hx
,

(δyV
2)i,j+1/2 :=

(
(V̄ v)2 − γ|V̄ v|Ṽ v

)

i,j+1
−
(
(V̄ v)2 − γ|V̄ v|Ṽ v

)

i,j

hy
,

(24)

where γ = min(1.2∆t ·max(max |Ui+1/2,j |,max |Vi,j+1/2|), 1), the superscripts “−” and “∼”

represent the average and difference operators, “h” and “v” denote horizontal (x-direction) and
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DISSIPATIVE CHARACTERISTIC SCHEMES FOR THE DIFFUSIVE OLDROYD-B 13

vertical (y-direction), i.e.

(Ūh)i,j :=
Ui−1/2,j + Ui+1/2,j

2
, (Ũh)i,j :=

Ui+1/2,j − Ui−1/2,j

2
,

(Ūv)i+1/2,j+1/2 :=
Ui+1/2,j + Ui+1/2,j+1

2
, (Ũv)i+1/2,j+1/2 :=

Ui+1/2,j+1 − Ui+1/2,j

2
,

(V̄ h)i+1/2,j+1/2 :=
Vi+1,j+1/2 + Vi,j+1/2

2
, (Ṽ h)i+1/2,j+1/2 :=

Vi+1,j+1/2 − Vi,j+1/2

2
,

(V̄ v)i,j :=
Vi,j+1/2 + Vi,j−1/2

2
, (Ṽ v)i,j :=

Vi,j+1/2 − Vi,j−1/2

2
.

(25)

The approximation of convective terms reduces to the averaged central difference for γ = 0, and

conservative upwind for γ = 1.

The Laplace operator ∆h for the discrete velocity components is given as

∆hUi+1/2,j := δ2xUi+1/2,j + δ2yUi+1/2,j , ∆hVi,j+1/2 := δ2xVi,j+1/2 + δ2yVi,j+1/2, (26)

where

δ2xUi+1/2,j :=
Ui−1/2,j − 2Ui+1/2,j + Ui+3/2,j

h2x
, δ2xVi,j+1/2 :=

Vi+1,j+1/2 − 2Vi,j+1/2 + Vi−1,j+1/2

h2x
,

δ2yUi+1/2,j :=
Ui+1/2,j+1 − 2Ui+1/2,j + Ui+1/2,j−1

h2y
, δ2yVi,j+1/2 :=

Vi,j−1/2 − 2Vi,j+1/2 + Vi,j+3/2

h2y
.

The discrete difference operators for the conformation tensor components are defined as follows

δx(σ11)i+1/2,j :=
(σ11)i+1,j − (σ11)i,j

hx
, δy(σ22)i,j+1/2 :=

(σ22)i,j+1 − (σ22)i,j
hy

,

δy(σ12)i+1/2,j :=
(σ12)i+1,j+1 + (σ12)i,j+1 − (σ12)i+1,j−1 − (σ12)i,j−1

4hy
,

δx(σ21)i,j+1/2 :=
(σ21)i+1,j + (σ21)i+1,j+1 − (σ21)i−1,j − (σ21)i−1,j+1

4hx
.

(27)

Analogously, the discrete difference operators for the pressure are defined as

δxpi+1/2,j :=
pi+1,j − pi,j

hx
, δypi,j+1/2 :=

pi,j+1 − pi,j
hy

.

In order to solve the nonlinear system (20), (23) implicitly in time, we use the fix point iteration

approach. Let ℓ represent the iteration step and u
n,ℓ, pn,ℓ,ψn,ℓ be the solution of the ℓ-th iteration.

Starting from ℓ = 0, we get the solution for the next iteration step ℓ+ 1 in the following way:

Step1: Viscoelastic part We first approximate the viscoelastic part (20) in the following steps:

a) Decompose the velocity gradient ∇hu
n,ℓ
i,j to obtain Ω

n,ℓ
i,j and B

n,ℓ
i,j according to (6), (7).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)

Prepared using fldauth.cls DOI: 10.1002/fld



14 LUKACOVA ET AL.

b) Approximate equation (20) in the following manner

ψ
n,ℓ+1
i,j − ε∆t∆hψ

n,ℓ+1
i,j =ψn

i,j ◦X
n +∆t(Ωn,ℓ

i,j ψ
n,ℓ
i,j −ψn,ℓ

i,j Ω
n,ℓ
i,j + 2Bn,ℓ

i,j )

+
∆t

We
(e−ψ

n,ℓ
i,j − I).

(28)

c) Update the conformation tensor

σ
n,ℓ+1
i,j = eψ

n,ℓ+1
i,j . (29)

In what follows we present the algorithm that evaluates the foot value ψn
i,j ◦X

n for the

characteristic of a particle. The current position of the particle is

x(i, j) = (xi, yj) =
(
(i− 1/2)hx, (j − 1/2)hy

)
.

Now we approximate the position of the particle at the previous time step according to the

characteristic (17)

x
′(i, j) = (xi′ , yj′) =

(
xi − (Ūh)ni,j∆t, yj − (V̄ v)ni,j∆t

)
,

where Ūh
i,j and V̄ v

i,j are computed using (25).

Let i′ = xi′/hx + 0.5, j′ = yj′/hy + 0.5 and iL = ⌊i′⌋, iR = iL + 1, jL = ⌊j′⌋, jR = jL + 1,

where ⌊x⌋ returns the largest integer not greater than x. Suppose that x′ is surrounded by the points

{Pk, k = 1, 2, 3, 4} (see Figure 2), where

x(Pk) = x(iPk
, jPk

).

It is obvious that iP1 = iP3 = iL, iP2 = iP4 = iR, jP1 = jP2 = jL, jP3 = jP4 = jR. We

approximate the old time step value at the foot of the characteristic x
′ = (xi′ , yj′) in the following

way:

ψn
i,j ◦X

n(tn) =

4∑

k=1

wkψ
n(Pk),

where wk = (1− iPk
+ i′)(1− jPk

+ j′) represents the weight of k − th point, see Figure 2.
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j’
i−1/2 i+1/2

j−1/2

j+1/2

j
P3P4

P1 P2

iL

jL

jR

x’(i,j)

x(i,j)

w 2 w 1

w 3 w 4

i

iRi’

Figure 2. Characteristic position.

Step2: Navier-Stokes part Approximation of the fluid part (23) is realized by the Chorin projection

method in two steps.

a) We first neglect the influence of pressure and approximate the following equation

Reut − α∆u = −Reu · ∇u+
β

We
∇ · σ.

More precisely, it reads

(
Re

∆t
− α∆h

)
U∗
i+1/2,j =Re

1

∆t
Un
i+1/2,j −Reδx(U

n,ℓ)2i+1/2,j −Reδy(U
n,ℓV n,ℓ)i+1/2,j

+
β

We

(
δx(σ

n,ℓ+1
11 )i+1/2,j + δy(σ

n,ℓ+1
12 )i+1/2,j

)
,

(
Re

∆t
− α∆h

)
V ∗
i,j+1/2 =Re

1

∆t
V n
i,j+1/2 −Reδx(U

n,ℓV n,ℓ)i,j+1/2 −Reδy(V
n,ℓ)2i,j+1/2

+
β

We

(
δx(σ

n,ℓ+1
21 )i,j+1/2 + δy(σ

n,ℓ+1
22 )i,j+1/2

)
.

(30)

b) In the next step we need to approximate the pressure terms ut = ∇p, i.e.,

Un,ℓ+1
i+1/2,j − U∗

i+1/2,j

∆t
= −δxp

n,ℓ+1
i+1/2,j ,

V n,ℓ+1
i,j+1/2 − V ∗

i,j+1/2

∆t
= −δyp

n,ℓ+1
i,j+1/2. (31)
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16 LUKACOVA ET AL.

This is realized by the following pressure projection step:

b1) Compute Fi,j = ∇h · u∗
i,j ≡ (δxU

∗)i,j + (δyV
∗)i,j .

b2) Solve Poisson equation −∆hp
n,ℓ+1
i,j = −

1

∆t
Fi,j to get pn,ℓ+1

i,j .

b3) Update velocity field u
n,ℓ+1
i,j = u

∗
i,j −∆t∇hp

n,ℓ+1
i,j , i.e.

Un,ℓ+1
i+1/2,j = U∗

i+1/2,j −∆tδxp
n,ℓ+1
i+1/2,j , and V n,ℓ+1

i,j+1/2 = V ∗
i,j+1/2 −∆tδyp

n,ℓ+1
i,j+1/2.

Here, the discrete difference operators are defined as follows

∇h · ui,j := δxUi,j + δyVi,j , ∆hpi,j := δ2xpi,j + δ2ypi,j ,

δ2xpi,j :=
pi−1,j − 2pi,j + pi+1,j

h2x
, δ2ypi,j :=

pi,j−1 − 2pi,j + pi,j+1

h2y
,

where δxUi,j and δyVi,j are computed using (21).

The incompressibility condition (8b) is naturally satisfied. Indeed, we have

∇h · un,ℓ+1
i,j = ∇h · u∗

i,j −∆t∇h · (∇hp
n,ℓ+1
i,j ) = Fi,j −∆t∆hp

n,ℓ+1
i,j = 0.

Finally, we summarize the characteristic FD scheme in the following algorithm

Algorithm 2 Characteristic FD scheme

1: Given u
n, pn,ψn, set un,0 = u

n,ψn,0 = ψn, pn,0 = pn.

2: for ℓ = 0, 1, · · · do

3: solve the viscoelastic equation (28)

4: update the conformation tensor with equation (29)

5: solve the Navier-Stokes part (30) and (31)

6: if (‖vn,ℓ+1 − v
n,ℓ‖ ≤ ξ‖vn,ℓ‖ for v ∈ {u, p,σ} and ξ is small enough) then

7: break

8: end if

9: end for

10: Update solution: un+1 = u
n,ℓ+1, pn+1 = pn,ℓ+1,ψn+1 = ψn,ℓ+1.

5. ENERGY STABILITY OF THE CHARACTERISTIC SCHEMES

In this section, we shall demonstrate the energy stability of the numerical schemes derived in the

previous section.

5.1. Energy stability of the characteristic finite element method, Algorithm 1

In this subsection we will study the diffusive Oldroyd-B model (8), where the logarithmic

transformation has been applied for the conformation tensor.
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Theorem 2. Let (un
h , p

n
h,ψ

n
h)0≤n≤NT

be a solution to (19) supplied with homogeneous Dirichlet

boundary condition for velocity and with the zero Neumann boundary condition forψh. Further, we

assume that initially eψh is a symmetric positive-definite tensor and the determinant of the Jacobi

matrix is 1 for any n, 0 ≤ n ≤ NT , i.e.

det

(
∂Xn(tn)

∂x

)
= 1. (32)

Then there exists a Ck > 0 (cf. (35b)), such that the free energy of the system (19)

Fn
h = F (un

h, e
ψn

h ) =
Re

2

∫

Th

|un
h|

2 +
β

2We

∫

Th

tr(eψ
n
h −ψn

h − I)

satisfies

Fn+1
h − Fn

h +∆t

∫

Th

(
2αCk|∇u

n+1
h |2 +

β

2We2
tr(eψ

n+1
h + e−ψ

n+1
h − 2I)

)
≤ O(∆th). (33)

In particular, the sequence {Fn
h }

NT

n=0 is non-increasing in the leading order terms having an error

of O(∆th).

Proof

We choose (un+1
h ,−pn+1

h , β
2We(Π

(3)
h (eψ

n+1
h )− I)) as a test function for the system (19) and get

0 =

∫

Th

(
Re

u
n+1
h − u

n
h ◦Xn(tn)

∆t
· un+1

h + 2αD(un+1
h ) : D(un+1

h ) +
β

We
eψ

n+1
h : ∇u

n+1
h

)

+ δ
∑

K∈Th

h2K

∫

K

|∇pn+1
h |2 +

β

2We

∫

Th

(
ψn+1

h −ψn
h ◦Xn(tn)

∆t
:
(
Π

(3)
h (eψ

n+1
h )− I

)

−
(
Ω

n+1
h ψn+1

h −ψn+1
h Ω

n+1
h + 2Bn+1

h

)
:
(
Π

(3)
h (eψ

n+1
h )− I

)

−
1

We
(I− e−ψ

n+1
h ) :

(
Π

(3)
h (eψ

n+1
h )− I

)
+ ε∇ψn+1

h : ∇
(
Π

(3)
h (eψ

n+1
h )− I

))

≡ I1 + I2 + I3.

We separately evaluate I1 + I2 and I3, which correspond to the momentum and transport equations,

respectively. The assumption (32) implies

∫

Th

|un
h ◦Xn(tn)|2 =

∫

Th

|un
h |

2 and

∫

Th

ψn
h ◦Xn(tn) =

∫

Th

ψn
h . (34)
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18 LUKACOVA ET AL.

For I1 and I2 we have

∫

Th

(un+1
h − u

n
h ◦Xn(tn)) · un+1

h =

∫

Th

1

2

(
|un+1

h |2 − |un
h ◦Xn(tn)|2 + (un+1

h − u
n
h ◦Xn(tn))2

)

≥

∫

Th

1

2

(
|un+1

h |2 − |un
h|

2
)
, (35a)

∫

Th

D(un+1
h ) : D(un+1

h ) ≥ Ck

∫

Th

|∇u
n+1
h |2, (35b)

I2 = δ
∑

K∈Th

h2K

∫

K

|∇pn+1
h |2 ≥ 0, (35c)

where the first identity of (34) has been employed for (35a) and Ck in (35b) is a positive constant

independent of h and ∆t due to the Korn inequality. From (35) we obtain the estimate of the

momentum part, I1 + I2,

I1 + I2 ≥
Re

2∆t

∫

Th

(
|un+1

h |2 − |un
h|

2
)
+ 2αCk

∫

Th

|∇u
n+1
h |2 +

β

We

∫

Th

eψ
n+1
h : ∇u

n+1
h . (36)

The transport part, I3, is evaluated as follows. Let Ti, i = 1, · · · , 5, be the terms defined by

T1 ≡

∫

Th

(
ψn+1

h −ψn
h ◦Xn(tn)

)
:
(
Π

(3)
h (eψ

n+1
h )− I

)

=

∫

Th

(
ψn+1

h −ψn
h ◦Xn(tn)

)
: Π

(3)
h (eψ

n+1
h )−

∫

Th

(
ψn+1

h −ψn
h ◦Xn(tn)

)
: I

≡ T11 − T12,

T2 ≡

∫

Th

(Ωn+1
h ψn+1

h −ψn+1
h Ω

n+1
h ) :

(
Π

(3)
h (eψ

n+1
h )− I

)
,

T3 ≡

∫

Th

B
n+1
h :

(
Π

(3)
h (eψ

n+1
h )− I

)
, T4 ≡

∫

Th

(I− e−ψ
n+1
h ) :

(
Π

(3)
h (eψ

n+1
h )− I

)
,

T5 ≡

∫

Th

∇ψn+1
h : ∇

(
Π

(3)
h (eψ

n+1
h )− I

)
.

We know that

T11 =

∫

Th

(ψn+1
h −ψn

h ◦Xn(tn)) : Π
(3)
h (eψ

n+1
h )

=

∫

Th

(ψn+1
h −ψn

h ◦Xn(tn)) : eψ
n+1
h +

∫

Th

(ψn+1
h −ψn

h ◦Xn(tn)) :
(
Π

(3)
h (eψ

n+1
h )− eψ

n+1
h

)

=

∫

Th

(ψn+1
h −ψn

h ◦Xn(tn)) : eψ
n+1
h +O(h)

≥

∫

Th

tr
(
eψ

n+1
h − eψ

n
h◦Xn(tn)

)
+O(h),

T12 =

∫

Th

tr(ψn+1
h −ψn

h ◦Xn(tn)),
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where we have assumed that our numerical solution is enough regular to obtain
∫
Th

|Π
(3)
h (eψ

n+1
h )−

eψ
n+1
h | = O(h). From the fact that

∫
Th

tr(eψ
n
h −ψn

h ) ◦X
n(tn) =

∫
Th

tr(eψ
n
h −ψn

h), cf. (34), we

obtain

T1 = T11 − T12 ≥

∫

Th

tr
((
eψ

n+1
h −ψn+1

h

)
−
(
eψ

n
h −ψn

h

)
◦Xn(tn)

)
+O(h)

=

∫

Th

tr
((
eψ

n+1
h −ψn+1

h

)
−
(
eψ

n
h −ψn

h

))
+O(h). (37)

Applying analogous arguments for other terms, we have

T2 =

∫

Th

(
Ω

n+1
h ψn+1

h −ψn+1
h Ω

n+1
h

)
:
(
eψ

n+1
h − I

)

+

∫

Th

(
Ω

n+1
h ψn+1

h −ψn+1
h Ω

n+1
h

)
:
(
Π

(3)
h (eψ

n+1
h )− eψ

n+1
h

)

= 0 +O(h), (38a)

T3 =

∫

Th

B
n+1
h :

(
eψ

n+1
h − I

)
+

∫

Th

B
n+1
h :

(
Π

(3)
h (eψ

n+1
h )− eψ

n+1
h

)

=

∫

Th

∇u
n+1
h : eψ

n+1
h +O(h), (38b)

T4 =

∫

Th

(
I− e−ψ

n+1
h

)
:
(
eψ

n+1
h − I

)
+

∫

Th

(
I− e−ψ

n+1
h

)
:
(
Π

(3)
h (eψ

n+1
h )− eψ

n+1
h

)

=

∫

Th

tr
(
eψ

n+1
h + e−ψ

n+1
h − 2I

)
+O(h). (38c)

Note that since ψn+1
h and eψ

n+1
h commute in (38a), we have

(
Ω

n+1
h ψn+1

h −ψn+1
h Ω

n+1
h

)
:
(
eψ

n+1
h − I

)
=
(
Ω

n+1
h ψn+1

h −ψn+1
h Ω

n+1
h

)
: eψ

n+1
h

= tr
((

Ω
n+1
h ψn+1

h −ψn+1
h Ω

n+1
h

)
eψ

n+1
h

)
= 0.

Further, the identity trBn+1
h = ∇ · un+1

h has been employed in (38b). By using the fact that the

gradient of piecewise linear function is piecewise constant and the inequality (12d), the viscous

term gives

T5 =

∫

Th

∇ψn+1
h : ∇

(
Π

(3)
h (eψ

n+1
h )− I

)
=
∑

K

∫

K

∇ψn+1
h : ∇Π

(3)
h (eψ

n+1
h )

=
∑

K

∫

K

∇ψn+1
h (PK

i ) : ∇eψ
n+1
h (PK

i ) ≥ 0, (39)
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where PK
i is an arbitrary fixed vertex of triangle K . Putting (37), (38) and (39) together, we get the

estimate of the transport part, I3,

I3 ≥
β

2We∆t

∫

Th

tr
((
eψ

n+1
h −ψn+1

h

)
−
(
eψ

n
h −ψn

h

))
−

β

We

∫

Th

∇u
n+1
h : eψ

n+1
h

+
β

2We2

∫

Th

tr
(
eψ

n+1
h + e−ψ

n+1
h − 2I

)
+ O(h). (40)

From (36) and (40) we obtain the energy inequality (33), i.e.,

Fn+1
h − Fn

h ≤ −∆t

∫

Th

(
2αCk|∇u

n+1
h |2 +

β

2We2
tr(eψ

n+1
h + e−ψ

n+1
h − 2I)

)
+O(∆th).

Thus the free energy inequality implies that we have for leading order terms

Fn+1
h ≤ Fn

h

with the error of O(h2) by assuming that ∆t = O(h).

Remark 2. It should be noted that assuming (32), we actually suppose that the approximation of

the discrete velocity field is divergence free ∇ · un
h = 0. In fact, we have

−

∫

Th

∇ · un+1
h qh − δ

∑

K∈Th

h2K

∫

K

∇pn+1
h ∇qh = 0 for any qh ∈ Qh.

Taking into account that the second term is small, we have ∇ · un+1
h ≈ 0 in Th.

In the characteristic FD scheme, see Theorem 3 below, we do not need the above assumption

as the strong incompressibility condition is naturally satisfied. For our characteristic finite element

method an alternative way to obtain the strong incompressibility condition is to use the orthogonal

projection, cf. [9,38].

5.2. Energy stability of the characteristic finite difference method, Algorithm 2

In this subsection we will show that the characteristic finite difference scheme also dissipates the free

energy. To this end, we introduce some useful discrete integration by parts techniques in Lemma 4–

6. We note that the proofs of these Lemmas can be found in [41].
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Lemma 4. ( [41]) For the discrete difference of the transport terms (24) appearing in the momentum

equation (23) the following properties hold

M−1∑

i=1

N∑

j=1

(
Uδx(U

2)
)
i+1/2,j

≥
1

4

M−1∑

i=1

N∑

j=1

(Ui+1/2,j)
2

(
(δxU)i+1,j + (δxU)i,j

)
, (41a)

M−1∑

i=1

N∑

j=1

(Uδy(UV ))i+1/2,j ≥
1

4

M−1∑

i=1

N∑

j=1

(Ui+1/2,j)
2

(
(δyV )i,j + (δyV )i+1,j

)
, (41b)

M∑

i=1

N−1∑

j=1

(V δx(UV ))i,j+1/2 ≥
1

4

M∑

i=1

N−1∑

j=1

(Vi,j+1/2)
2

(
(δxU)i,j+1 + (δxU)i,j

)
, (41c)

M∑

i=1

N−1∑

j=1

(
V δy(V

2)
)
i,j+1/2

≥
1

4

M∑

i=1

N−1∑

j=1

(Vi,j+1/2)
2

(
(δyV )i,j+1 + (δyV )i,j

)
. (41d)

The next lemma presents the discrete derivative calculus for the velocity Laplace terms defined

in (26).

Lemma 5. ( [41]) Let us define

|∇hUi+1/2,j |
2 :=

1

2

(
(δxU)2i+1,j + (δxU)2i,j + (δyU)2i+1/2,j+1/2 + (δyU)2i+1/2,j−1/2

)
,

|∇hVi,j+1/2|
2 :=

1

2

(
(δxV )2i+1/2,j+1/2 + (δxV )2i−1/2,j+1/2 + (δyV )2i,j+1 + (δyV )2i,j

)
.

Then we have the following properties for the Laplace terms used in the momentum equations (23)

M−1∑

i=1

N∑

j=1

(∆hU)i+1/2,j Ui+1/2,j ≤ −

M−1∑

i=1

N∑

j=1

|∇hUi+1/2,j |
2, (42a)

M∑

i=1

N−1∑

j=1

(∆hV )i,j+1/2 Vi,j+1/2 ≤ −

M∑

i=1

N−1∑

j=1

|∇hVi,j+1/2|
2. (42b)

Our next goal is to demonstrate the discrete derivative calculus for the elastic stress tensor defined

in (27) and the velocity gradient defined in (21).

Lemma 6. ( [41]) Denoting for simplicityA = σ11, B = σ12, C = σ22 allows us to rewrite σ on the

finite difference cell Ki,j as

σi,j =

(
A B

B C

)

i,j

.

Let

S1(σ,u) :=

M−1∑

i=1

N∑

j=1

(
(δxA+ δyB)U

)
i+1/2,j

+

M∑

i=1

N−1∑

j=1

(
(δxB + δyC)V

)
i,j+1/2

, (43a)

S2(σ,u) :=

M∑

i=1

N∑

j=1

(∇uh : σ)i,j =

M∑

i=1

N∑

j=1

(
(δxU)A+ (δyU)B + (δxV )B + (δyV )C

)
i,j
. (43b)
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Then the following identity holds

S1(σ,u) + S2(σ,u) = 0. (44)

With the knowledge of above lemmas, we proceed with the main result of this section which

demonstrates the dissipation of free energy.

Theorem 3. Let (Un
i+1/2,j , V

n
i,j+1/2, p

n
i,j ,ψ

n
i,j)0≤n≤NT

be a solution of the discrete characteristic

FD scheme, which is the combination of (23) and (20), supplied with homogeneous Dirichlet

boundary condition for velocity and with the zero Neumann boundary condition for ψh. Further,

we assume that initially eψh is a symmetric positive-definite tensor. Then the free energy

Fn
h =

Re

2

(
M−1∑

i=1

N∑

j=1

(Un
i+1/2,j)

2 +

M∑

i=1

N−1∑

j=1

(V n
i,j+1/2)

2

)
+

1− α

2We

M∑

i=1

N∑

j=1

tr
(
eψ

n

−ψn − I
)
i,j

(45)

satisfies

Fn+1
h − Fn

h + α∆t

(
M−1∑

i=1

N∑

j=1

|∇hU
n+1
i+1/2,j |

2 +

M∑

i=1

N−1∑

j=1

|∇hV
n+1
i,j+1/2|

2

)

+
∆tβ

2We2

M∑

i=1

N∑

j=1

tr(eψ
n+1

+ e−ψ
n+1

− 2I)i,j ≤ 0.

(46)

In particular, the sequence {Fn
h }

NT

n=0 is non-increasing.

Proof

Let us first recall the finite difference part of the characteristic FD scheme for the momentum

equation, and make the following operations: we multiply (23a) with Un+1
i+1/2,j , (23b) with

V n+1
i+1/2,j , (23c) with pn+1

i,j and sum them together. Let

S :=

M−1∑

i=1

N∑

j=1

(
Re

(Un+1 − Un)i+1/2,j

∆t
+Re

(
δx(U

n+1)2 + δy(UV )n+1
)
i+1/2,j

)
Un+1
i+1/2,j

−

(
α(δ2xU

n+1 + δ2yU
n+1)− δxp

n+1 +
β

We
(δxσ

n+1
11 + δyσ

n+1
12 )

)

i+1/2,j

Un+1
i+1/2,j

+

M∑

i=1

N−1∑

j=1

(
Re

(V n+1 − V n)i,j+1/2

∆t
+Re

(
δx(UV )n+1 + δy(V

n+1)2
)
i,j+1/2

)
V n+1
i,j+1/2

−

(
α(δ2xV

n+1 + δ2yV
n+1)− δyp

n+1 +
β

We
(δxσ

n+1
21 + δyσ

n+1
22 )

)

i,j+1/2

V n+1
i,j+1/2

+

M∑

i=1

N∑

j=1

(
δxU

n+1 + δyV
n+1
)
i,j
pn+1
i,j .

(47)
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Obviously, we have S = 0. It is easy to get

(Un+1
i+1/2,j − Un

i+1/2,j) · U
n+1
i+1/2,j =

(Un+1
i+1/2,j)

2 − (Un
i+1/2,j)

2

2
+

(Un+1
i+1/2,j − Un

i+1/2,j)
2

2

≥
(Un+1

i+1/2,j)
2 − (Un

i+1/2,j)
2

2
.

(48)

Similarly

(V n+1
i,j+1/2 − V n

i,j+1/2) · V
n+1
i,j+1/2 ≥

(V n+1
i,j+1/2)

2 − (V n
i,j+1/2)

2

2
. (49)

Using Lemma 4 and the fact that (δxU + δyV )i,j = 0 we also obtain

M−1∑

i=1

N∑

j=1

(
Uδx(U

2)
)n+1

i+1/2,j
+

M−1∑

i=1

N∑

j=1

(
Uδy(UV )

)n+1

i+1/2,j
= 0,

M∑

i=1

N−1∑

j=1

(
V δx(UV )

)n+1

i,j+1/2
+

M∑

i=1

N−1∑

j=1

(
V δy(V

2)
)n+1

i,j+1/2
= 0.

(50)

For the pressure terms we have

M−1∑

i=1

N∑

j=1

(
(δxp)U

)n+1

i+1/2,j
=

1

hx

N∑

j=1

M−1∑

i=1

(pn+1
i+1,j − pn+1

i−1,j)U
n+1
i+1/2,j

= −
1

hx

N∑

j=1

M∑

i=1

(Un+1
i+1/2,j − Un+1

i−1/2,j)p
n+1
i,j = −

M∑

i=1

N∑

j=1

(
(δxU)p

)n+1

i,j
,

and similarly
M∑

i=1

N−1∑

j=1

(
(δyp)V

)n+1

i,j+1/2
= −

M∑

i=1

N∑

j=1

(
(δyV )p

)n+1

i,j
.

Consequently, the following property holds

M−1∑

i=1

N∑

j=1

(
(δxp)U

)n+1

i+1/2,j
+

M∑

i=1

N−1∑

j=1

(
(δyp)V

)n+1

i,j+1/2
+

M∑

i=1

N∑

j=1

(
(δxU)p+ (δyV )p

)n+1

i,j
= 0.

(51)

Using (43a), (48)–(51) and Lemma 5 we derive

0 = S ≥
−β

We
Sn+1
1 (σ,u) +

M−1∑

i=1

N∑

j=1

Re
(Un+1

i+1/2,j)
2 − (Un

i+1/2,j)
2

2∆t
+ α|∇hU

n+1
i+1/2,j |

2

+

M∑

i=1

N−1∑

j=1

Re
(V n+1

i,j+1/2)
2 − (V n

i,j+1/2)
2

2∆t
+ α|∇hV

n+1
i,j+1/2|

2.

(52)
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Now we consider the transport equation for the elastic stress tensor ψ and multiply (20) with

(eψ
n+1
i,j − I). This leads to

0 = S′ =

M∑

i=1

N∑

j=1

(ψn+1 −ψn ◦Xn)i,j
∆t

: (eψ
n+1

− I)i,j

−

(
Ω

n+1ψn+1 −ψn+1
Ω

n+1 + 2Bn+1 +
1

We
(e−ψ

n+1

− I) + ε∆hψ
n+1

)

i,j

: (eψ
n+1

− I)i,j .

(53)

Similar to the proof of Theorem 2 we have

M∑

i=1

N∑

j=1

(ψn+1 −ψn ◦Xn)i,j : (e
ψ

n+1
i,j − I) ≥

M∑

i=1

N∑

j=1

(
tr(eψ

n+1
i,j −ψn+1

i,j )− tr(eψ
n
i,j −ψn

i,j)
)
,

M∑

i=1

N∑

j=1

(
Ω

n+1ψn+1 −ψn+1
Ω

n+1 + 2Bn+1
)
: (eψ

n+1
i,j − I) =

M∑

i=1

N∑

j=1

2∇u
n+1
i,j : eψ

n+1
i,j ,

M∑

i=1

N∑

j=1

(e−ψ
n+1
i,j − I) : (eψ

n+1
i,j − I) = −

M∑

i=1

N∑

j=1

tr(e−ψ
n+1
i,j + eψ

n+1
i,j − 2I).

(54)

For the diffusive terms, we first obtain

M∑

i=1

N∑

j=1

∆hψ
n+1
i,j : eψ

n+1
i,j = −

M∑

i=1

N∑

j=1

∇hψ
n+1
i,j : ∇he

ψ
n+1
i,j

= −

M∑

i=1

N∑

j=1

(ψn+1
i+1,j −ψ

n+1
i−1,j) : (e

ψ
n+1
i+1,j − eψ

n+1
i−1,j )

−

M∑

i=1

N∑

j=1

(ψn+1
i,j+1 −ψ

n+1
i,j−1) : (e

ψ
n+1
i,j+1 − eψ

n+1
i,j−1) ≤ 0,

(55)

where we have used (12a). Further, it is easy to show

M∑

i=1

N∑

j=1

∆ψn+1
i,j : I =

M∑

i=1

N∑

j=1

tr(ψi+1,j +ψi,j+1 − 4ψi,j +ψi−1,j +ψi,j−1)
n+1

=

M∑

i=1

tr(ψi,N+1 −ψi,N −ψi,1 +ψi,0)
n+1 +

N∑

j=1

tr(ψM+1,j −ψM,j −ψ1,jψ0,j)
n+1

= 0,

(56)
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due to the corresponding boundary condition.

Combining (54), (55), (56) together yields

0 = S′ ≥ −2Sn+1
2 (σ,u)

+

M∑

i=1

N∑

j=1

1

∆t
tr
(
(eψ

n+1
i,j −ψn+1

i,j )− (eψ
n
i,j −ψn

i,j)
)
+ tr(eψ

n+1
i,j + e−ψ

n+1
i,j − 2I). (57)

Multiplying (57) with a factor β
2We , summing with (52) and using (44) together with Lemma 6

leads to

M−1∑

i=1

N∑

j=1

Re
(Un+1

i+1/2,j)
2 − (Un

i+1/2,j)
2

2∆t
+ α|∇hU

n+1
i+1/2,j |

2

+

M∑

i=1

N−1∑

j=1

Re
(V n+1

i,j+1/2)
2 − (V n

i,j+1/2)
2

2∆t
+ α|∇hV

n+1
i,j+1/2|

2

+

M∑

i=1

N∑

j=1

1

∆t

β

We
tr
(
(eψ

n+1

−ψn+1)− (eψ
n

−ψn)
)

i,j
+

β

2We2
tr(eψ

n+1

+ e−ψ
n+1

− 2I)i,j

≤ 0.

(58)

Consequently, the sequence {Fn
h }

NT

n=0 is non-increasing since we have

Fn+1 − Fn ≤ −∆t

(
α
(M−1∑

i=1

N∑

j=1

|∇hU
n+1
i+1/2,j |

2 +

M∑

i=1

N−1∑

j=1

|∇hV
n+1
i,j+1/2|

2
)

+
β

2We2

M∑

i=1

N∑

j=1

tr(eψ
n+1

+ e−ψ
n+1

− 2I)i,j

)
≤ 0.

(59)

Using the discrete integration by parts formulas from the previous subsection we have shown that

the characteristic FD method also dissipates the free energy.

Remark 3. In the case that the characteristic approach is also used to approximate the convective

term in the Navier-Stokes part, the energy stability can be proven in an analogous way. Indeed, the

only difference to the proof of Theorem 3 is that instead of (48)–(50) we have an analogous estimate

as in (35a)

M−1∑

i=1

N∑

j=1

(
Un+1
i+1/2,j − Un

i+1/2,j ◦X
n
)
Un+1
i+1/2,j ≥

M−1∑

i=1

N∑

j=1

|Un+1
i+1/2,j |

2 − |Un
i+1/2,j |

2

2
,

M∑

i=1

N−1∑

j=1

(
V n+1
i,j+1/2 − V n

i,j+1/2 ◦X
n
)
V n+1
i,j+1/2 ≥

M∑

i=1

N−1∑

j=1

|V n+1
i,j+1/2|

2 − |V n
i,j+1/2|

2

2
.

(60)
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6. NUMERICAL TESTS

In this section we illustrate the behaviour of our characteristic schemes and support our theoretical

results. In particular our aim is to study the influence of the diffusive parameter ε and the

Weissenberg number We on the stability and accuracy of our schemes.

6.1. Lid-driven Cavity

Our first test case is the lid-driven cavity problem. The geometry and mesh of the problem are given

in Figure 3.

u

Figure 3. Geometry and mesh for the cavity flow problem.

The computational domain is T = [0, 1]2. The initial conditions are taken to be

u = 0, σ = I. (61)

A Dirichlet boundary condition is set for velocity

u =

{
(16x2(1− x)2, 0)T , if y = 1, x ∈ [0, 1],

0, else.
(62)

Further, we choose extrapolated boundary condition for the logarithmic conformation tensor, which

means
∂ψ

∂n
= 0, (63)

where n is the outer normal of the boundary.
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Influence of the Weissenberg number and the diffusion coefficient ε This subsection aims to study

the effects of the Weissenberg number We and the diffusion coefficient ε in the diffusive Oldroyd-

B model (8) using the logarithmic transformation. This test is based on the characteristic finite

element scheme, Algorithm 1. We fix either the Weissenberg number We and vary the diffusion

coefficient ε, or in the opposite way we fix ε and vary We. The free energy is presented in

Figures 4 and 5 for Weissenberg numbers We = 0.1, 0.5, 1, 5, 50 and diffusion coefficients

ε = 1, 1e− 1, 1e− 2, 1e− 3. From the two sets of results we can clearly see that the free energy

is controlled even for high Weissenberg number. We also note, that for smaller We the free energy

converges very fast, while for higher We longer time is required to reach to a steady state.
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(a) ε = 1
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(b) ε = 0.1
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(c) ε = 0.01
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(d) ε = 0.001

Figure 4. Free energy of the diffusive Oldroyd-B model (8) for different We, computed by the characteristic
FEM, Algorithm 1.
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(a) We = 0.1
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(b) We = 0.5
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(c) We = 1
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(d) We = 5
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(e) We = 50

Figure 5. Free energy of the diffusive Oldroyd-B model (8) for different diffusion coefficients ε at We =

0.5, 5, computed by the characteristic FEM, Algorithm 1.

Analysis of the experimental order of convergence The aim of this section is to analyze the

experimental order of convergence of our characteristic schemes for various Weissenberg numbers.
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Let φh denote the numerical solution and φ be the corresponding exact solution. We denote the L2-

error as e(φh) = ‖φh − φ‖L2 and H1-error e1(φh) = ‖φh − φ‖H1 . In our experiments the exact

solution φ is replaced by the reference solution computed at a very fine mesh since the exact

analytical solution is not available. The experimental order of convergence (EOC) is defined as

EOC = log2
error of φh

error of φh/2
.

Table I illustrates the mesh convergence results of the characteristic FEM at t = 30 for

different Weissenberg numbers. The results demonstrate that the EOC is not influenced by the

Weissenberg numbers even for relatively small diffusion parameter. Indeed, we have the second

order convergence in the L2-norm for velocity and superlinear convergence for conformation tensor.

Besides, we observe the first order convergence for the L2-norm of pressure and H1-norm of

velocity and stress tensor.

Table II presents the mesh convergence results for the characteristic FDM at t = 30 for different

Weissenberg numbers. It indicates that the EOC results are similar to those for the characteristic

FEM. Interestingly, if the characteristic approximation is applied to both convective terms in the

equation of ψ as well as for u, we have obtained a super convergence of the L2-norm for pressure

as well as H1-norm for velocity, cf. [30,31]. We present in Table III only the results for We = 0.5,

the results for other We numbers are analogous.

6.2. 4 to 1 contraction flow

In this test we will consider a well-known benchmark for the viscoelastic fluids, the so-called 4:1

contraction problem. Hereby, the Algorithm 1 will be studied for the diffusive Oldroyd-B model (8).

Previous studies on the numerical simulation of this problem can be found, e.g. [1,4,18,33]. One of

the main difficulties is the singularity at the re-entrant corner due to the abrupt contraction [21,33].

−20

inflow

outflow

0

1

4

50

Figure 6. Geometry of 4:1 contraction flow.

As shown in Figure 6, the computational domain is taken to be from −20 to 50 in the x-direction.

The upstream has a width of 8 while downstream width is set to be 2. Analogously as in [10,33] we

use only the upper half of the computational domain as it is symmetric with respect to x axis.
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For the velocity we prescribe the parabolic Dirichlet condition on inlet

U =
1

8

(
1− y2/16

)
, V = 0 with u = (U, V ). (64a)

At the outflow the zero-Neumann boundary conditions are applied

∂u

∂n
= 0.

Boundary conditions for the conformation tensor are used as in (63). Moreover, no-slip conditions

U = 0 = V are imposed on the solid walls and symmetry conditions are specified on the symmetric

axis

σ12(x, 0) = V (x, 0) = 0. (64b)

Other parameters are chosen similarly as in [10,33], i.e.

α = 1/9, Re = 0.

Figure 7. Mesh of 4:1 contraction flow, created by “FreeFEM++-cs” [27].

The center part of the computational mesh for the 4:1 contraction flow together with a

local refinement near the abrupt contraction corner is shown in Figure 7. Details of the

mesh are as follows. Total number of mesh points and mesh elements are np = 26538

and ne = 50874, respectively. Maximum, minimum and mean values of the mesh length are

(hmax, hmin, hmean) = (2.05e− 01, 1.62e− 02, 7.29e− 02).

6.2.1. Non-diffusive case We first present the results for the non-diffusive case with ε = 0. Figure 8

shows the streamline, pressure and elastic stress tensor for the case We = 3 at t = 1. We can clearly

recognize a big vertex at the corner of abrupt contraction. The pressure is decreasing along the x

axis.

In Figure 9 we compare the results for different Weissenberg numbers. Figure 9(a) indicates that

the pressure is decreasing along the x axis having a gradual decline rate in the upstream region and

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)

Prepared using fldauth.cls DOI: 10.1002/fld



DISSIPATIVE CHARACTERISTIC SCHEMES FOR THE DIFFUSIVE OLDROYD-B 31

(a) Streamlines

(b) Pressure: min=0, max=19.2

(c) Conformation tensor σ11: min=0.398, max=4.54

(d) Conformation tensor σ12: min=-2.05, max=0.8

(e) Conformation tensor σ22: min=0.745, max=2.76

Figure 8. Results of the non-diffusive Oldroyd-B model at We = 3, t = 1, streamlines, pressure isolines,
σ11, σ12 and σ22 isolines, computed by the characteristic FEM, Algorithm 1.

a steeper rate in the downstream channel. Moreover, it can be concluded that larger We number

causes to smaller pressure drop at outlet with respect to the inlet pressure. Velocities for different

We numbers are almost indistinguishable. In Figures 9(c) and 9(d) we can recognize that jumps of

the conformation tensor at the contraction corner increase for larger We.
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(a) Pressure along y = 0
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(b) Velocity component U along y = 0
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(c) σ11 along y = 0
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(d) σ22 along y = 0

Figure 9. Results of the non-diffusive Oldroyd-B model at t = 1 along the symmetric axis y = 0 for different
We: pressure p, velocity component U , components of the conformation tensor σ11 and σ22, computed by

the characteristic FEM, Algorithm 1.

6.2.2. Diffusive case In the following test we will present the results for the diffusive case with

ε > 0. In Figures 10 and 11 we present the results for fixed diffusive coefficients ε = 0.01 or ε = 1

and different We numbers.

Similar to the non-diffusive model, the pressure is decreasing along x-axis and larger We

numbers cause a smaller pressure drop. The jumps of the conformation tensor around the contraction

corner increase for largerWe numbers. Comparing the results with a small diffusion coefficient, e.g.

ε ≤ 0.01, the results for larger diffusion (ε ≥ 1) are quite different. First, the value of pressure at

the inlet decrease for larger ε. Secondly, the velocity in the downstream region along the x-axis

increases for larger We numbers, which almost does not change for small diffusion coefficients

ε ≤ 0.01, see Figures 10(b) and 11(b). The conformation tensor in the downstream region is also

changing for different We numbers, e.g. the σ22 component of conformation tensor decreases for

larger We numbers.

In Figure 12 we show the results of kinetic energy and free energy for different We numbers.

We can clearly see, that the kinetic energy does not increase for larger We, while the entropy is

increasing quite quickly.
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(a) Pressure along y = 0
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(b) Velocity component U along y = 0
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(c) σ11 along y = 0
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(d) σ22 along y = 0

Figure 10. Results of the diffusive Oldroyd-B model, ε = 0.01, at t = 1 along the symmetric axis y = 0

for different We: pressure p, velocity component U , components of the conformation tensor σ11 and σ22,
computed by the characteristic FEM, Algorithm 1.

6.3. Discussion

Our numerical experiments demonstrate that the diffusive model is more numerically stable than

the non-diffusive one. In the driven cavity test we have obtained the mesh convergent results of

the diffusive Oldroyd-B model even for very high Weissenberg numbers, where the logarithmic

transformation has been applied. The most important ingredients of the energy stable schemes were

approximation of the convective term using the characteristics and the logarithmic transformation

of the conformation tensor. Although we are able to prove theoretically energy dissipation of the

scheme even for the diffusion coefficient ε = 0, our numerical experiments confirm more stable

behaviour if ε > 0.
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(a) Pressure along y = 0
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(b) Velocity component U along y = 0
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(c) σ11 along y = 0
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Figure 11. Results of the diffusive Oldroyd-B model, ε = 1, at t = 1 along the symmetric axis y = 0 for
different We: pressure p, velocity component U , conformation components σ11 and σ22, computed by the

characteristic FEM, Algorithm 1.
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(a) Kinetic energy
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(b) Entropy

Figure 12. Time evolution of the kinetic energy and entropy for the diffusive Oldroyd-B model with ε = 0.01

for different We, computed by the characteristic FEM, Algorithm 1.
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CONCLUSION

In this paper we have proposed and analyzed two energy stable numerical methods for the

Oldroyd-B viscoelastic fluids. In particular, we have applied the logarithmic transformation for the

conformation tensor including also diffusive effects in the equation of the conformation tensor.

We have also shown that the new model dissipates the free energy, which is a sum of the kinetic

energy and the entropy. For the numerical approximation we have studied the characteristic finite

element and the characteristic finite difference methods. Moreover, we have shown that both the

characteristic finite element and the finite difference schemes dissipate the free energy for arbitrary

Weissenberg number.

In our numerical tests it has been observed that the diffusive models are more stable than the

non-diffusive ones, in particular for high Weissenberg numbers. One important result, that we would

like to emphasize is the fact that the mesh convergence has been obtained even for high Weissenberg

numbers when using the diffusive Oldroyd-B model with the logarithmic transformation.
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A. APPENDIX

A.1. Proof of Lemma 3

Proof

As σ and τ are symmetric positive definite matrices, we have the following eigen-decomposition,

σ = R1ΛR
T
1 , τ = R2ΓR

T
2 ,

where R1 and R2 are orthonormal eigenvector matrices, Λ = diag{λi},Γ = diag{γi}, i = 1, · · · , d,

λi and γi are eigenvalues of σ and τ , respectively, and d = 2, 3 is the space dimension.

Let O = R
T
2 R1, then O is also orthonormal.

tr (σf(τ )) = tr
(
R1ΛR

T
1 R2f(Γ)R

T
2

)
= tr

(
R

T
2 R1ΛR

T
1 R2f(Γ)

)
= tr

(
OΛO

T f(Γ)
)

=
∑

i,j

(OΛ)ij
(
O

T f(Γ)
)
ji
=
∑

i,j

((∑

k

OikΛkj

)(∑

k

Okjf(Γ)ki
))

=
∑

i,j

((
OijΛjj

)(
Oijf(Γ)ii

))

=
∑

i,j

(
O

2
ijλjf(γi)

)
.
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Similarly, we have

tr (τf(σ)) =
∑

i,j

(
O

2
ijf(λj)γi

)
.

Since O is orthonormal,
∑
i

O
2
ij = 1 for any j, j = 1, · · · d and

tr (σf(σ)) =
∑

j

(λjf(λj)) =
∑

j

(
λjf(λj)

∑

i

O
2
ij

)
.

Similarly, we have

tr (τf(τ )) =
∑

i

(γif(γi)) =
∑

i

(
γif(γi)

∑

j

O
2
ij

)
.

Combining the above four equations we get

(σ − τ ) :
(
f(σ)− f(τ )

)

= tr
(
(σ − τ ) ·

(
f(σ)− f(τ )

))
= tr

(
σf(σ) + τf(τ )− τf(σ)− σf(τ )

)

=
∑

j

(
λjf(λj)

∑

i

O
2
ij

)
+
∑

i

(
γif(γi)

∑

j

O
2
ij

)
−
∑

i,j

(
O

2
ijf(λj)γi

)
−
∑

i,j

(
O

2
ijλjf(γi)

)

=
∑

j

λj
∑

i

O
2
ij

(
f(λj)− f(γi)

)
+
∑

i

γi
∑

j

O
2
ij

(
f(γi)− f(λj)

)

=
∑

i,j

O
2
ij

(
f(λj)− f(γi)

)
(λj − γi).

If f is an increasing function, we get (12a)

(σ − τ ) : (f(σ)− f(τ )) ≥ 0,

otherwise we get (12b)

(σ − τ ) : (f(σ)− f(τ )) ≤ 0.

Furthermore, we obtain

∂σ

∂x
:
∂f(σ)

∂x
= lim

dx→0

σ(x+ dx)− σ(x)

dx
:
f (σ(x+ dx)) − f (σ(x))

dx
.

For x > 0 we know that f(x) = lnx is an increasing function, and f(x) = 1
x is a decreasing

function. Using (12a) and (12b) we get

∂σ

∂x
:
∂(lnσ)

∂x
≥ 0,

∂σ

∂x
:
∂(σ−1)

∂x
≤ 0.

Analogously, the above inequalities also hold for other space dimension. Thus we have

∇σ : ∇(lnσ) ≥ 0, ∇σ : ∇(σ−1) ≤ 0,
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which concludes the proof.
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Table I. Error norms and EOC for diffusive Oldroyd-B model (8), ε = 0.01, computed by the characteristic
FEM, Algorithm 1.

h e(uh) e(ph) e(σh) e1(uh) e1(ph) e1(σh)
1/8 1.77× 10−2 2.11× 10−1 4.46× 10−1 6.24× 10−1 6.97× 10−1 6.33× 100

1/16 5.32× 10−3 5.88× 10−2 1.04× 10−1 3.45× 10−1 2.32× 10−1 3.35× 100

1/32 1.23× 10−3 2.36× 10−2 2.87× 10−2 1.64× 10−1 8.74× 10−2 1.69× 100

1/64 3.41× 10−4 8.77× 10−3 8.57× 10−3 8.05× 10−2 3.90× 10−2 8.39× 10−1

EOC

1/8 1.73 1.84 2.10 0.85 1.58 0.92

1/16 2.12 1.32 1.85 1.07 1.41 0.99
1/32 1.85 1.43 1.74 1.03 1.17 1.01

(a) We=0.5

h e(uh) e(ph) e(σh) e1(uh) e1(ph) e1(σh)
1/8 1.84× 10−2 2.42× 10−1 1.05× 100 6.33× 10−1 7.55× 10−1 1.45× 101

1/16 5.41× 10−3 6.74× 10−2 2.29× 10−1 3.49× 10−1 2.35× 10−1 6.64× 100

1/32 1.26× 10−3 2.63× 10−2 6.14× 10−2 1.65× 10−1 8.91× 10−2 3.17× 100

1/64 3.40× 10−4 1.06× 10−2 2.19× 10−2 8.14× 10−2 3.97× 10−2 1.60× 100

EOC

1/8 1.76 1.84 2.20 0.86 1.68 1.13
1/16 2.10 1.36 1.90 1.08 1.40 1.07

1/32 1.89 1.32 1.48 1.02 1.17 0.99

(b) We=1

h e(uh) e(ph) e(σh) e1(uh) e1(ph) e1(σh)
1/8 1.56× 10−2 1.84× 10−1 2.12× 100 5.85× 10−1 5.55× 10−1 3.15× 101

1/16 4.69× 10−3 9.74× 10−2 1.06× 100 3.19× 10−1 2.19× 10−1 1.86× 101

1/32 1.08× 10−3 3.07× 10−2 3.27× 10−1 1.51× 10−1 8.18× 10−2 8.05× 100

1/64 3.16× 10−4 1.21× 10−2 1.31× 10−1 7.54× 10−2 3.68× 10−2 4.12× 100

EOC

1/8 1.73 0.91 0.99 0.88 1.34 0.76

1/16 2.11 1.67 1.70 1.07 1.42 1.21

1/32 1.78 1.34 1.32 1.01 1.15 0.97
(c) We=5

h e(uh) e(ph) e(σh) e1(uh) e1(ph) e1(σh)
1/8 1.37× 10−2 1.16× 10−1 3.21× 100 5.52× 10−1 4.33× 10−1 3.54× 101

1/16 3.93× 10−3 4.99× 10−2 1.23× 100 2.99× 10−1 1.88× 10−1 2.09× 101

1/32 8.03× 10−4 1.70× 10−2 3.38× 10−1 1.39× 10−1 7.47× 10−2 8.40× 100

1/64 1.97× 10−4 7.01× 10−3 9.71× 10−2 7.29× 10−2 3.54× 10−2 4.23× 100

EOC

1/8 1.80 1.22 1.38 0.88 1.21 0.76

1/16 2.29 1.55 1.86 1.10 1.33 1.31
1/32 2.02 1.28 1.80 0.93 1.07 0.99

(d) We=50
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Table II. Error norms and EOC for diffusive Oldroyd-B model (8), ε = 0.01, computed by the characteristic
finite difference method, Algorithm 2.

h e(uh) e(ph) e(σh) e1(uh) e1(ph) e1(σh)
1/8 2.12× 10−2 6.24× 10−1 5.61× 10−1 2.23× 10−1 4.83× 100 7.03× 100

1/16 6.81× 10−3 2.80× 10−1 3.01× 10−1 8.75× 10−2 2.58× 100 4.11× 100

1/32 1.99× 10−3 1.12× 10−1 1.37× 10−1 3.24× 10−2 1.17× 100 1.73× 100

1/64 6.05× 10−4 3.57× 10−2 4.70× 10−2 1.02× 10−2 3.77× 10−1 5.55× 10−1

EOC

1/8 1.64 1.15 0.90 1.35 0.90 0.78

1/16 1.78 1.32 1.14 1.43 1.15 1.25
1/32 1.72 1.65 1.54 1.67 1.63 1.64

(a) We=0.5

h e(uh) e(ph) e(σh) e1(uh) e1(ph) e1(σh)
1/8 2.07× 10−2 6.28× 10−1 1.23× 100 2.41× 10−1 4.82× 100 1.32× 101

1/16 7.26× 10−3 2.95× 10−1 6.70× 10−1 1.05× 10−1 2.64× 100 8.03× 100

1/32 2.68× 10−3 1.25× 10−1 3.12× 10−1 4.28× 10−2 1.24× 100 3.51× 100

1/64 9.43× 10−4 4.18× 10−2 1.10× 10−1 1.42× 10−2 4.13× 10−1 1.17× 100

EOC

1/8 1.51 1.09 0.87 1.21 0.87 0.72
1/16 1.44 1.24 1.10 1.29 1.09 1.19

1/32 1.51 1.58 1.51 1.59 1.59 1.58

(b) We=1

h e(uh) e(ph) e(σh) e1(uh) e1(ph) e1(σh)
1/8 2.08× 10−2 3.76× 10−1 3.32× 100 2.26× 10−1 3.08× 100 3.42× 101

1/16 6.99× 10−3 1.89× 10−1 2.01× 100 9.11× 10−2 1.70× 100 2.13× 101

1/32 2.84× 10−3 8.78× 10−2 1.03× 100 3.80× 10−2 8.29× 10−1 1.02× 101

1/64 1.10× 10−3 3.16× 10−2 3.90× 10−1 1.35× 10−2 2.78× 10−1 3.71× 100

EOC

1/8 1.58 0.99 0.72 1.31 0.86 0.68

1/16 1.30 1.11 0.97 1.26 1.03 1.06

1/32 1.37 1.47 1.40 1.49 1.57 1.46
(c) We=5

h e(uh) e(ph) e(σh) e1(uh) e1(ph) e1(σh)
1/8 1.99× 10−2 1.51× 10−1 3.42× 100 1.94× 10−1 1.62× 100 3.51× 101

1/16 5.89× 10−3 4.73× 10−2 2.10× 100 6.00× 10−2 6.78× 10−1 2.11× 101

1/32 1.43× 10−3 1.48× 10−2 1.12× 100 1.59× 10−2 2.22× 10−1 1.05× 101

1/64 2.81× 10−4 4.34× 10−3 4.33× 10−1 3.59× 10−3 5.18× 10−2 3.93× 100

EOC

1/8 1.76 1.68 0.70 1.70 1.25 0.73

1/16 2.04 1.68 0.91 1.92 1.61 1.02
1/32 2.35 1.77 1.37 2.14 2.10 1.41

(d) We=50
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Table III. Error norms and EOC for diffusive Oldroyd-B model (8), ε = 0.01, computed by the characteristic
finite difference method, with characteristic discretization also in the Navier-Stokes part.

h e(uh) e(ph) e(σh) e1(uh) e1(ph) e1(σh)
1/8 2.74× 10−2 3.16× 10−1 7.57× 10−1 2.28× 10−1 3.05× 100 1.07× 101

1/16 8.05× 10−3 8.17× 10−2 2.38× 10−1 7.57× 10−2 1.18× 100 5.60× 100

1/32 1.90× 10−3 2.15× 10−2 7.47× 10−2 2.20× 10−2 3.89× 10−1 1.92× 100

1/64 3.82× 10−4 5.65× 10−3 2.28× 10−2 5.72× 10−3 9.90× 10−2 5.72× 10−1

EOC

1/8 1.76 1.95 1.67 1.59 1.37 0.94
1/16 2.08 1.92 1.67 1.78 1.60 1.55

1/32 2.32 1.93 1.71 1.95 1.97 1.75
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