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Abstract

We present the error analysis of a particular Oldroyd-B type model
with the limiting Weissenberg number going to infinity. Assuming a suit-
able regularity of the exact solution we study the error estimates of a
standard finite element method and of a combined finite element/finite
volume method. Our theoretical result shows first order convergence of
the finite element method and the error of the order O(h3/4) for the finite
element/finite volume method. These error estimates are compared and
confirmed by the numerical experiments.
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1 Introduction

Many biological, industrial or geological fluids can no longer be described by
a linear relation between the stress and the deformation tensor. These com-
plex fluids fall into a class of the so-called non-Newtonian fluids. Recently, an
increasing number of mathematicians have become interested in mathematical
modeling and numerical simulation of complex fluids and there exists already a
rich body of literature on mathematical analysis and problem-suited numerical
methods. Mathematical models consist of the conservation laws describing the
conservation of mass (div-free condition for the velocity vector) and momentum.
The stress tensor is typically written as a sum of viscous stress tensor depending
linearly on the deformation tensor and the extra stress due to the polymer con-
tribution. In macroscopic models the latter is given by a complex constitutive
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equation to capture the corresponding viscoelastic properties. In order to de-
scribe the evolution of viscoelastic stress tensor various approaches can be used.
Let us mention, for example, differential, integral models or macro-micro models
based on the kinetic formulation of the probability distribution function. Well-
known differential models are the Oldroyd-B or the Johnson-Segelman models,
where an additional transport equation is added to describe the time evolu-
tion of the polymer stress tensor. In what follows we will concentrate on the
differential viscoelastic models.

In the mathematical literature we can find already various results dealing
with the questions of well-posedness of the viscoelastic flows and in particular
with the Oldroyd-B model. Let us mention classical results on strong solutions
published by Fernández-Cara, Guillén and Ortega [15] and of Guillopé and Saut
[17], see also [19] for further related results on the existence of strong solutions
in exterior domains obtained by Hieber, Naito and Shibata.

Recently, the global existence result for fully two- and three-dimensional flow
has been obtained by Lions and Masmoudi [25] for the case of the co-rotational
Oldroyd model. In [24] the local existence of solutions and global existence of
small solutions of some rate type fluids have been shown, global existence of
weak solutions for small data can be found, e.g., in [8]. In the recent work
[1] Barrett and Boyaval studied the so-called diffusive Oldroyd-B model both
from numerical as well as analytical point of view. For two space dimensions
they were able to prove the global existence of weak solutions. The diffusive
Oldroyd-B model has also been studied by Constantin and Kliegl in [7] and the
global regularity in two space dimensions has been proven.

Concerning numerical simulation of the Oldroyd-B type flows a major obsta-
cle is the high Weissenberg number problem. The so-called numerical blow-up
is a widely known phenomenon in numerical simulations of high Weissenberg
number viscoelastic flows. It is anticipated that the blow-up has various rea-
sons: influence of domain singularities, missing analytical results on the well-
posedness of global weak solutions and numerical instabilities. The latter is
a purely numerical phenomenon that arises due to the inadequacy of polyno-
mial interpolations to approximate spatial exponential profiles, which is the
case of the elastic stress tensor. In [13] a new promising approach using the
log-conformation tensor has been proposed, see also further related works [5],
[2], [10] and the references therein.

The Oldroyd-B equations consist of the conservation laws of momentum
and mass and an additional transport equation describing time evolution of the
elastic tensor Te

∂tu+ div(u⊗ u)− ν∆u +∇π = div(Te) (1a)

divu = 0 (1b)

∂tT
e + (u · ∇)Te − (∇u)Te − T

e(∇u)⊤ =
1

We

(
ν̃(∇u+ (∇u)⊤)− T

e
)
. (1c)

Here u and π denote the velocity vector and pressure, Te stays for the elastic
tensor, while the total stress tensor reads −πI+ ν(∇u+∇(u)⊤)+Te. We have
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denoted by a constant ν > 0 the Newtonian part of the viscosity, ν̃ > 0 is the
rest non-Newtonian viscosity part and We is the reference number expressing
a ratio of the relaxation time to a typical flow time scale. Denoting λ the
relaxation time of the non-Newtonian fluid and U,L the characteristic velocity
and length, respectively, we have We = λU

L .
In this paper we study the viscoelastic model with Te = FF⊤, where F is

the deformation gradient of the material; F := ∂X/∂x using the Langrangian
and Eulerian coordinates X and x, respectively. Due to the incompressibility
condition we have detF = 1. The model considered in this paper can be achieved
as a limiting case of the Oldroyd-B model (1) when the Weissenberg number
We is set to infinity. Consequently, we obtain from (1c) the following transport
equation for the viscoelastic stress

∂tT
e + (u · ∇)Te − (∇u)Te − T

e(∇u)⊤ = 0.

Now writing the transport equation for the tensor F we obtain altogether
the following system

∂tu+ div(u ⊗ u)− ν∆u+∇π = div(FF⊤) (2a)

divu = 0 (2b)

∂tF+ (u · ∇)F = (∇u)F. (2c)

The system (2a)–(2c) describes the unsteady motion of a viscoelastic fluid in a
bounded domain Ω ⊂ R2 with Lipschitz boundary in the time interval (0, T )
and is complemented with the no-slip boundary condition

u|∂Ω = 0 (2d)

and the initial conditions

u(0, ·) = u0, F(0, ·) = F0. (2e)

Note that there is no need to prescribe the boundary condition for F since (2c)
is a first-order transport equation and u = 0 on the boundary.

We should mention that the question of global in time existence of weak
solutions of (2) is still open. Local existence of strong solutions has been proven
in [21], [24] as well as in [6]. As far as we know this model has not yet been
studied from the numerical point of view and our paper is the first contribution
in this direction. More interestingly, we would like to point out that we do
not need any particular stabilization techniques for high Weissenberg number
problems and obtain stable and convergent results using some suitable numerical
approximations that are typically used in computational fluid dynamics.

The main aim of this paper is to present error analysis of two finite element-
type approximations of the problem (2). In particular, we combine the low-
est order Taylor-Hood finite element discretization of the flow part (piecewise
quadratic velocity and piecewise linear pressure) with either piecewise linear
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finite elements or finite volumes for the deformation gradient. The paper is
organized as follows. In Section 2 we introduce space discretizations of (2). The
main result on convergence rates is stated in Section 3. Sections 4 and 5 are
devoted to the proof of the main result. In the second part of the proof we use
a variant of the multiplicative trace inequality, which is proved in Section 6.
Finally, we present results of a numerical test in Section 7.

2 Approximation

Before passing to the finite dimensional approximation, let us introduce the basic
notation. Throughout the paper we shall use the space Ck(B) of continuously k-
times differentiable functions in an compact set B, the Lebesgue space Lp(Ω), its
subspace Lp

0(Ω) of functions with zero integral mean, the Sobolev spaceW k,p(Ω)
and the Sobolev space W 1,p

0 (Ω) of functions with vanishing trace. Lebesgue and
Sobolev spaces with values in some Banach spaceX will be denoted by Lp(Ω;X),
W k,p(Ω;X), respectively; p ∈ [1,∞). The norm in Lp(Ω) and W k,p(Ω) will be
denoted ‖ · ‖p, ‖ · ‖k,p, respectively. We shall employ the continuous embeddings

W 1,p(Ω) →֒ L
2p

2−p (Ω), p ∈ [1, 2) (3)

W 1,2(Ω) →֒ Lq(Ω), q ∈ [1,∞)

W 1,p(Ω) →֒ C(Ω), p > 2

W 2,2(Ω) →֒ L∞(Ω)

and the Sobolev inequality

∀v ∈ W 1,2
0 (Ω) : ‖v‖24 ≤ C‖v‖2‖∇v‖2. (4)

Here and in what follows, C will stand for a generic positive constant whose value
may change from line to line. If fg ∈ L1(Ω) then we shall write (f, g) in place of
∫

Ω
fg. The following variant of Young’s inequality holds: For every p ∈ (1,∞)

there exists C = C(p) > 0 such that for any α > 0, f ∈ Lp(Ω), g ∈ Lq(Ω):

(f, g) ≤ α

∫

Ω

|f |p + Cα− q

p

∫

Ω

|g|q, (5)

where q = p/(p− 1).
Let Ωh be a polynomial approximation of a computational domain Ω. Fur-

ther, let {Th}h>0 be a family of partitions of Ωh into triangles and h be the
length of the largest edge in Th; Ωh =

⋃

T∈Th
T . To simplify our considerations

we set that Ω = Ωh. In the present work we do not include the theory of varia-
tional crimes that should be used when a smooth domain Ω is approximated by
its polygonal approximation Ωh, cf., e.g., [14]. For any T ∈ Th and k = 0, 1, 2, . . .
we denote by Pk(T ) the space of k-th degree polynomials on T . We define the
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spaces

Wh := {v ∈ W 1,2
0 (Ω;R2); ∀T ∈ Th : v|T ∈ P2(T )2},

Lh := {q ∈ L2
0(Ω) ∩ C(Ω); ∀T ∈ Th : q|T ∈ P1(T )},

Xh := {G ∈ C(Ω;R2×2); ∀T ∈ Th : G|T ∈ P1(T )2×2},

Zh := {G ∈ L2(Ω;R2×2); ∀T ∈ Th : G|T ∈ P0(T )}.

Let e be an interior edge shared by elements T1 and T2. Define the unit
normal vectors n1 and n2 on e pointing exterior to T1 and T2, respectively. For
a function ϕ, piecewise smooth on Th, with ϕi = ϕ|Ti

we define the average {ϕ}
and the jump [ϕ] :

{ϕ} =
1

2
(ϕ1 + ϕ2), [ϕ] = ϕ1n1 + ϕ2n2 on e ∈ E0

h,

where E0
h is the set of all interior edges. For a vector-valued function φ, piecewise

smooth on Th, we define the average and the jump analogously

{φ} =
1

2
(φ1 + φ2), [φ] = φ1 · n1 + φ2 · n2 on e ∈ E0

h.

Let β be a vector-valued function, continuous across e. The upwind value of a
quantity βϕ is defined as follows:

{βϕ}u =







βϕ1 if β · n1 > 0,

βϕ2 if β · n1 < 0,

β{ϕ} if β · n1 = 0.

We introduce the following space semi-discretizations of (2).

A. Finite element approximation. Find (uh, πh,Fh) ∈ C1([0, T ];Wh) ×
C([0, T ];Lh)× C1([0, T ];Xh) such that

• for all (vh, qh,Gh) ∈ Wh × Lh ×Xh and t ∈ (0, T ) the following integral
identities hold:

(∂tuh(t),vh)− (uh(t)⊗ uh(t),∇vh)−
1

2
((divuh(t))uh(t),vh)

+ ν(∇uh(t),∇vh)− (πh(t), div vh) + (Fh(t)F
⊤
h (t),∇vh) = 0, (6a)

(qh, divuh(t)) = 0, (6b)

(∂tFh(t),Gh)− ((uh(t) · ∇)Gh,Fh(t))−
1

2
((divuh(t))Fh(t),Gh)

− ((∇uh(t))Fh(t),Gh) = 0; (6c)

• uh and Fh satisfy the initial conditions: for all vh ∈ Wh and Gh ∈ Xh

(uh(0, ·),vh) = (u0,vh), (Fh(0, ·),Gh) = (F0,Gh). (7)
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B. Finite element-finite volume approximation. Find (uh, πh,Fh) ∈
C1([0, T ];Wh)× C([0, T ];Lh)× C1([0, T ];Zh) such that

• for all (vh, qh,Gh) ∈ Wh × Lh × Zh and t ∈ (0, T ), the integral identities
(6a), (6b) hold true and furthermore

(∂tFh(t),Gh) +
∑

e∈E0

h

({uh(t)Fh(t)}u, [Gh])e −
1

2
((divuh(t))Fh(t),Gh)

− ((∇uh(t))Fh(t),Gh) = 0; (8)

• uh and Fh satisfy the initial conditions: for all v ∈ Wh and G ∈ Zh

(uh(0, ·),v) = (u0,v), (Fh(0, ·),G) = (F0,G). (9)

In what follows we shall assume that the family {Th} is regular (see e.g. [3]).
Consequently, the discrete spaces Wh, Lh, Xh and Zh enjoy the following prop-
erties:

• (inf-sup condition) There exists a constant C > 0 independent of h > 0
such that for all qh ∈ Lh

sup
vh∈Wh, vh 6=0

(qh, div vh)

‖vh‖1,2
≥ C‖qh‖2; (10)

• (interpolation into Wh) There exists an operator Πu
h : W 1,2

0 (Ω;R2) → Wh

such that

– for all v ∈ W 1,2
0 (Ω;R2) ∩ W k,q(Ω;R2), 1 ≤ q ≤ ∞, k ∈ {1, 2, 3},

r ∈ {0, . . . , k}:
‖Πu

hv − v‖r,q ≤ Chk−r‖v‖k,q, (11)

where C > 0 is independent of h > 0;

– for all v ∈ W 1,2
0 (Ω;R2) and qh ∈ Lh:

(qh, div Π
u
hv) = (qh, div v); (12)

• (interpolation into Lh) There exists an operator Ππ
h : L2

0(Ω) → Lh and a
constant C > 0 independent of h > 0, such that

‖Ππ
hs− s‖r,q ≤ Ch2−r‖s‖2,q (13)

for all s ∈ L2
0(Ω) ∩W 2,q(Ω), 1 ≤ q ≤ ∞, r ∈ {0, 1};

• (interpolation into Xh) There exists an operator ΠF
h : L2(Ω;R2×2) → Xh

and a constant C > 0 independent of h > 0, such that

‖ΠF
hG−G‖r,q ≤ Ch2−r‖G‖2,q, (14)

for all G ∈ W 2,q(Ω;R2×2), 1 ≤ q ≤ ∞, r ∈ {0, 1}.
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• (interpolation into Zh) There exists an operator Π0
h : L2(Ω;R2×2) → Zh

and a constant C > 0 independent of h > 0, such that

‖Π0
hG−G‖q ≤ Ch‖G‖1,q, (15)

for all G ∈ W 1,q(Ω;R2×2), 1 ≤ q ≤ ∞.

The inequality (10) is the Babuška-Brezzi condition for the Taylor-Hood finite
element (see e.g. [4]), (11)-(15) are standard properties of interpolation opera-
tors [3].

In the error analysis of the finite element-finite volume scheme we will need
the following variant of multiplicative trace inequality.

Lemma 1. Let F ∈ W 2,2(Ω). Then there exists a constant c > 0 independent
of h such that

∑

e∈E0

h

‖F −Π0
hF‖4,e ≤ ch3/4‖F‖2,2. (16)

The proof of this statement is postponed to Section 6.
For a smooth domain Ω and initial data of the form

F0 = ∇×Φ0, ∇Φ0 ∈ W k,2(Ω), u0 ∈ W k,2(Ω), k ≥ 2, (17)

it has been proved [24, Theorem 2.2] that there exists a positive time T , which
depends only on ‖∇Φ0‖2,2 and ‖u0‖2,2, such that the system (2) possesses a
unique solution in the time interval [0, T ] with

∂j
t∇

αu ∈ L∞(0, T ;W k−2j−|α|,2(Ω)) ∩ L2(0, T ;W k−2j−|α|+1,2(Ω)),

∂j
t∇

α
F ∈ L∞(0, T ;W k−2j−|α|,2(Ω)),

(18)

for all j and α satisfying 2j + |α| ≤ k.
For the approximate problems we have the following result.

Lemma 2. Let T > 0, u0 ∈ L2(Ω;R2) and F0 ∈ L2(Ω;R2×2). Then there exists
h0 > 0 such that for every h ∈ (0, h0) problem A (or problem B, respectively)
has a unique global in time solution (uh, πh,Fh), which satisfies

‖uh(τ, ·)‖
2
2 + ‖Fh(τ, ·)‖

2
2 + 2ν

∫ τ

0

‖∇uh‖
2
2 = ‖u0‖

2
2 + ‖F0‖

2
2 (19)

for all τ ∈ (0, T ).

Proof. The semidiscrete systems (6), (7) or (6a), (6b), (8), (9) yield the system
of ordinary differential equations, whose solution can be proven applying the
standard arguments for the ordinary differential systems and showing the apriori
estimates (19) following [24].
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3 Main result

Now let us state the main result on the error rates.

Theorem 1. Let the family {Th}h>0 be regular, the initial data (u0,∇× Φ0)
satisfy u0,∇Φ0 ∈ W 2,2(Ω) and [0, T ] be the maximal time interval in which the
strong solution (u, π,F) to (2) satisfying (18) with k = 2 exists. Further, let
(uh, πh,Fh) be the solution to the problem A, i.e. (6)–(7), satisfying (19). Then
there exist constants h0 > 0 and C > 0 such that for all h ∈ (0, h0) it holds

‖u− uh‖L∞(0,T ;L2(Ω)) + ‖∇(u− uh)‖L2(0,T ;L2(Ω))

+ ‖F− Fh‖L∞(0,T ;L2(Ω)) ≤ Ch. (20)

Similarly, there exist constants h0 > 0 and C > 0 such that for all h ∈ (0, h0)
it holds

‖u− ūh‖L∞(0,T ;L2(Ω)) + ‖∇(u− ūh)‖L2(0,T ;L2(Ω))

+ ‖F− F̄h‖L∞(0,T ;L2(Ω)) ≤ Ch3/4, (21)

where (ūh, π̄h, F̄h) is the solution to the problem B, i.e. (6a), (6b), (8) and (9),
that satisfy (19).

4 Error estimates for finite element approxima-

tion

The aim of this section is to prove the first part of Theorem 1. To this end we
first realize that the following regularity property of the exact solution holds.

Regularity of the solution to (2). In accordance with (17)–(18), the as-
sumptions of Theorem 1 imply that the exact solution (u, π,F) satisfies

∂tu ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)),

u ∈ L∞(0, T ;W 2,2(Ω)) ∩ L2(0, T ;W 3,2(Ω)),

∂tF ∈ L∞(0, T ;L2(Ω)),

F ∈ L∞(0, T ;W 2,2(Ω)).

(22)

Using (2b) and (2c), we furthermore obtain from (22) that

∇π = div(FF⊤)− ∂tu− div(u ⊗ u) + ν∆u ∈ L2(0, T ;W 1,2(Ω)),

∂tF = (∇u)F− (u · ∇)F ∈ L∞(0, T ;W 1,2(Ω)).
(23)
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Equations satisfied by the errors. Multiplying (2) with vh ∈ Wh, qh ∈ Lh

and Gh ∈ Xh, respectively, and integrating over Ω, we obtain for a.a. t ∈ (0, T )
the following identities

(∂tu(t),vh)− (u(t)⊗ u(t),∇vh) + ν(∇u(t),∇vh)

− (π(t), div vh) + (F(t)F⊤(t),∇vh) = 0, (24a)

(qh, divu(t)) = 0, (24b)

(∂tF(t),Gh)− ((u(t) · ∇)Gh,F(t))− ((∇u(t))F(t),Gh) = 0. (24c)

Let us denote eu := u−uh, eπ := π−πh and eF := F−Fh. Taking the difference
of (24) and (6) we obtain

∫ T

0

[
(∂teu,vh)− (eu ⊗ u+ uh ⊗ eu,∇vh) +

1

2
((divuh)uh,vh)

+ ν(∇eu,∇vh)− (eπ, div vh) + (FF⊤ − FhF
⊤
h ,∇vh)

]
= 0, (25a)

∫ T

0

(qh, div eu) = 0, (25b)

∫ T

0

(∂teF ,Gh)− (uiF− uhiFh, ∂iGh) +
1

2
((divuh)Fh,Gh)

− ((∇u)F− (∇uh)Fh,Gh) = 0 (25c)

for any (vh, qh,Gh) ∈ L2(0, T ;Wh)× L2(0, T ;Lh)× L2(0, T ;Xh).

Estimates of the errors. In order to derive estimates of eu, eπ, eF in suitable
norms, we decompose

eu = (u−Πu
hu) + (Πu

hu− uh) =: ηu + δu.

Similarly we introduce

ηπ := π −Ππ
hπ, δπ := Ππ

hπ − πh, ηF := F−ΠF
h F, δF := ΠF

h F− Fh.

The properties of the interpolation operators imply the following estimates

sup
τ∈(0,T )

‖ηu(τ, ·)‖
2
2 ≤ Ch4 sup

τ∈(0,T )

‖u(τ, ·)‖22,2,

∫ T

0

‖∇ηu‖
2
2 ≤ Ch4

∫ T

0

‖u‖23,2,

sup
τ∈(0,T )

‖ηF (τ, ·)‖
2
2 ≤ Ch4 sup

τ∈(0,T )

‖F(τ, ·)‖22,2.
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Hence, with the help of (22) we obtain

sup
τ∈(0,T )

(
‖eu(τ, ·)‖

2
2 + ‖eF (τ, ·)‖

2
2

)
+ ν

∫ T

0

‖∇eu‖
2
2 ≤ Ch4

+ sup
τ∈(0,T )

(
‖δu(τ, ·)‖

2
2 + ‖δF (τ, ·)‖

2
2

)
+ ν

∫ T

0

‖∇δu‖
2
2. (26)

The proof of (20) will be completed as soon as we estimate the δ-terms in
the previous inequality by Ch2. Due to the initial conditions (7) it holds that
‖δu(0)‖2 = ‖δF (0)‖2 = 0. Hence, for any τ ∈ (0, T ) we have

1

2

(
‖δu(τ, ·)‖

2
2 + ‖δF (τ, ·)‖

2
2

)
+ ν

∫ τ

0

‖∇δu‖
2
2

=
1

2

(
‖δu(τ, ·)‖

2
2 − ‖δu(0, ·)‖

2
2 + ‖δF (τ, ·)‖

2
2 − ‖δF (0, ·)‖

2
2

)
+ ν

∫ τ

0

‖∇δu‖
2
2

=

∫ τ

0

[(∂tδu, δu) + (∂tδF , δF ) + ν(∇δu,∇δu)]

=

∫ τ

0

[(∂teu, δu) + (∂teF , δF ) + ν(∇eu,∇δu)]

−

∫ τ

0

[(∂tηu, δu) + (∂tηF , δF ) + ν(∇ηu,∇δu)] = J1 + J2. (27)

The last integral can be estimated using the Hölder and the Young inequality
and (11)–(14)

J2 ≤

(
∫ T

0

‖∂tηu‖
2
2

)1/2(∫ τ

0

‖δu‖
2
2

)1/2

+

(
∫ T

0

‖∂tηF ‖
2
2

)1/2(∫ τ

0

‖δF ‖
2
2

)1/2

+ ν

(
∫ T

0

‖∇ηu‖
2
2

)1/2(∫ τ

0

‖∇δu‖
2
2

)1/2

≤
1

2

∫ τ

0

‖δu‖
2
2 +

1

2

∫ T

0

‖∂tηu‖
2
2 +

1

2

∫ τ

0

‖δF‖
2
2 +

1

2

∫ T

0

‖∂tηF ‖
2
2

+ αν

∫ τ

0

‖∇δu‖
2
2 +

Cν

α

∫ T

0

‖∇ηu‖
2
2

≤
1

2

∫ τ

0

‖δu‖
2
2 + Ch2

∫ T

0

‖∂tu‖
2
1,2 +

1

2

∫ τ

0

‖δF‖
2
2 + Ch2

∫ T

0

‖∂tF‖
2
1,2

+ αν

∫ τ

0

‖∇δu‖
2
2 +

Cνh4

α

∫ T

0

‖u‖23,2. (28)

Here α ∈ (0, 1) is a number to be specified later. The regularity of the solution
(22), (23) implies that

J2 ≤
1

2

∫ τ

0

‖δu‖
2
2 +

1

2

∫ τ

0

‖δF ‖
2
2 + αν

∫ τ

0

‖∇δu‖
2
2 + Ch2 +

Cνh4

α
. (29)
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The first integral on the r.h.s. of (27) can be substituted from (25) as follows

J1 =

∫ τ

0

[
(eu⊗u+uh⊗eu,∇δu)+

1

2
((divuh)uh, δu)+(eπ, div δu)−(FF⊤−FhF

⊤
h ,∇δu)

+ (uiF− uhiFh, ∂iδF ) +
1

2
((divuh)Fh, δF ) + ((∇u)F− (∇uh)Fh, δF )

]

=:

∫ τ

0

7∑

j=1

Tj. (30)

We shall estimate the resulting terms T1, . . . , T7 subsequently.

Term T1 can be decomposed as follows

T1 = (ηu ⊗ u,∇δu) + (δu ⊗ u,∇δu)
︸ ︷︷ ︸

=0

+(uh ⊗ ηu,∇δu) + (uh ⊗ δu,∇δu),

where the second term vanishes since divu = 0. The remaining terms can be
estimated with help of the Hölder inequality, (4), (5) and the properties of the
interpolation operators:

∫ τ

0

|(ηu ⊗ u,∇δu)| ≤

∫ τ

0

‖ηu‖4‖u‖4‖∇δu‖2

≤ C

∫ τ

0

‖ηu‖
1/2
2 ‖∇ηu‖

1/2
2 ‖u‖

1/2
2 ‖∇u‖

1/2
2 ‖∇δu‖2

≤ αν

∫ τ

0

‖∇δu‖
2
2+

C

αν

(

sup
(0,T )

‖ηu‖2

)(

sup
(0,T )

‖u‖2

)(
∫ T

0

‖∇u‖22

)1/2(∫ T

0

‖∇ηu‖
2
2

)1/2

≤ αν

∫ τ

0

‖∇δu‖
2
2 +

Ch4

αν

(

sup
(0,T )

‖u‖2,2

)2(∫ T

0

‖u‖23,2

)

.

Similarly we get

∫ τ

0

|(uh ⊗ ηu,∇δu)| ≤ αν

∫ τ

0

‖∇δu‖
2
2

+
Ch4

αν

(

sup
(0,T )

‖uh‖2

)(

sup
(0,T )

‖u‖2,2

)(
∫ T

0

‖uh‖
2
1,2

)1/2(∫ T

0

‖u‖23,2

)1/2

.

Finally, using the same inequalities we obtain

∫ τ

0

|(uh ⊗ δu,∇δu)| ≤

∫ τ

0

‖uh‖
1/2
2 ‖∇uh‖

1/2
2 ‖δu‖

1/2
2 ‖∇δu‖

3/2
2

≤ αν

∫ τ

0

‖∇δu‖
2
2 +

C

(αν)3

(

sup
(0,T )

‖uh‖2

)2 ∫ τ

0

‖uh‖
2
1,2‖δu‖

2
2.

11



Due to (22), (23) and (19), the previous estimates altogether yield

∫ τ

0

T1 ≤ 3αν

∫ τ

0

‖∇δu‖
2
2 +

C

(αν)3

∫ τ

0

‖uh‖
2
1,2‖δu‖

2
2 +

Ch4

αν
. (31)

Term T2. We can write:

2T2 = −((div ηu)uh, δu)− ((div δu)uh, δu),

where, similarly as in the previous paragraph,

∫ τ

0

|((div ηu)uh, δu)| ≤

∫ τ

0

‖∇ηu‖2‖uh‖
1/2
2 ‖∇uh‖

1/2
2 ‖δu‖

1/2
2 ‖∇δu‖

1/2
2

≤ αν

∫ τ

0

‖∇δu‖
2
2 +

C

αν

(

sup
(0,T )

‖uh‖
2
2

)
∫ τ

0

‖∇uh‖
2
2‖δu‖

2
2 +

∫ T

0

‖∇ηu‖
2
2,

∫ τ

0

|((div δu)uh, δu)| ≤

∫ τ

0

‖∇δu‖
3/2
2 ‖uh‖

1/2
2 ‖∇uh‖

1/2
2 ‖δu‖

1/2
2

≤ αν

∫ τ

0

‖∇δu‖
2
2 +

C

(αν)3

(

sup
(0,T )

‖uh‖
2
2

)
∫ τ

0

‖∇uh‖
2
2‖δu‖

2
2.

Hence

∫ τ

0

T2 ≤ 2αν

∫ τ

0

‖∇δu‖
2
2 +

C

(αν)3

∫ τ

0

‖∇uh‖
2
2‖δu‖

2
2 + Ch4 (32)

Term T3. Thanks to (25b) and (12), we can write

T3 = (ηπ , div δu) + (δπ, div eu)
︸ ︷︷ ︸

=0

− (δπ, div ηu)
︸ ︷︷ ︸

=0

≤ ‖ηπ‖2‖∇δu‖2 ≤
Ch2

αν
‖π‖21,2 + αν‖∇δu‖

2
2.

Thus
∫ τ

0

T3 ≤ αν

∫ τ

0

‖∇δu‖
2
2 +

Ch2

αν
. (33)

Terms T4 and T7. For all v ∈ W 1,2(Ω;R2), G,H ∈ L2(Ω;R2×2) it holds:
((∇v)G,H) = (HG⊤,∇v). Hence, we can write:

T4 + T7 = −(FF⊤ − FhF
⊤
h ,∇δu) + (δFF

⊤,∇u)− (δFF
⊤
h ,∇uh)

= −(ηFF
⊤,∇δu)− (ΠF

h Fη
⊤
F ,∇δu) + (δF η

⊤
F ,∇u) + (δFΠ

F
h F

⊤,∇ηu)

+ (δF δ
⊤
F ,∇Πu

hu)− (ΠF
h Fδ

⊤
F ,∇δu).
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Using the regularity u ∈ L2(0, T ;W 3,2(Ω;R2)), F ∈ L∞(0, T ;W 2,2(Ω;R2×2))
and the embeddings (3), we estimate the resulting terms as follows:

∫ τ

0

|(ηFF
⊤,∇δu)| ≤

∫ τ

0

‖F‖∞‖ηF ‖2‖∇δu‖2

≤ αν

∫ τ

0

‖∇δu‖
2
2 +

Ch4

αν

(

sup
(0,T )

‖F‖2,2

)4

,

∫ τ

0

|(ΠF
h Fη

⊤
F ,∇δu)| ≤

∫ τ

0

‖ΠF
h F‖∞‖ηF ‖2‖∇δu‖2

≤ αν

∫ τ

0

‖∇δu‖
2
2 +

Ch4

αν

(

sup
(0,T )

‖F‖2,2

)4

,

∫ τ

0

|(δF η
⊤
F ,∇u)| ≤

∫ τ

0

‖δF‖2‖ηF ‖3‖∇u‖6 ≤

∫ τ

0

‖δF‖
2
2‖u‖

2
2,2+Ch2

∫ T

0

‖F‖22,2,

∫ τ

0

|(δFΠ
F
h F

⊤,∇ηu)| ≤

∫ τ

0

‖δF‖2‖Π
F
h F‖∞‖∇ηu‖2

≤

(

sup
(0,T )

‖F‖2,2

)2 ∫ τ

0

‖δF ‖
2
2 + Ch4

∫ T

0

‖u‖23,2,

∫ τ

0

|(δF δ
⊤
F ,∇Πu

hu)| ≤ C

∫ τ

0

‖δF ‖
2
2‖u‖3,2,

∫ τ

0

|(ΠF
h Fδ

⊤
F ,∇δu)| ≤

∫ τ

0

‖ΠF
h F‖∞‖δF‖2‖∇δu‖2

≤ αν

∫ τ

0

‖∇δu‖
2
2 +

C

αν

(

sup
(0,T )

‖F‖2,2

)2 ∫ τ

0

‖δF‖
2
2.

In summary we have

∫ τ

0

T4 + T7 ≤ 3αν

∫ τ

0

‖∇δu‖
2
2 + C

∫ τ

0

(
1

αν
+ ‖u‖3,2

)

‖δF‖
2
2 + Ch2 +

Ch4

αν
.

(34)
Before proceeding to the remaining two terms we recall some basic identities

related to the advective term (u · ∇)F.

Lemma 3. Let v ∈ W 1,2(Ω;R2) be such that v · n = 0. Then

∀G ∈ W 1,2(Ω;R2×2) : (viG, ∂iG) =
1

2
((div v)G,G); (35)

∀G,H ∈ W 1,2(Ω;R2×2) : (viG, ∂iH) = −((div v)G,H)− (viH, ∂iG). (36)

The proof is done by integrating by parts.
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Terms T5 and T6. We rearrange these terms as follows

T5 + T6 = (uiηF , ∂iδF ) + (euiΠ
F
h F, ∂iδF ) + (uhiδF , ∂iδF ) +

1

2
((divuh)Fh, δF ).

(37)
Using (36) we obtain

(uiηF , ∂iδF ) = −(uiδF , ∂iηF ), (38)

(euiΠ
F
h F, ∂iδF ) = ((divuh)Π

F
h F, δF )− (euiδF , ∂iΠ

F
h F). (39)

Due to (35), the last two terms in (37) can be rewritten as

(uhiδF , ∂iδF ) +
1

2
((divuh)Fh, δF ) =

1

2
((divuh)δF , δF ) +

1

2
((divuh)Fh, δF )

=
1

2
((divuh)Π

F
h F, δF ). (40)

Equations (37)–(40) and the fact that divu = 0 yield

T5 + T6 = −(uiδF , ∂iηF )−
3

2
((div eu)Π

F
h F, δF )− (euiδF , ∂iΠ

F
h F). (41)

Decomposing eu = ηu + δu and using similar arguments as in the previous
paragraphs we can estimate terms on the r.h.s. of (41) as follows

−

∫ τ

0

(uiδF , ∂iηF ) ≤

∫ τ

0

‖u‖∞‖δF‖2‖∇ηF ‖2

≤
1

2

∫ τ

0

‖u‖22,2‖δF‖
2
2 +

1

2

∫ T

0

‖∇ηF ‖
2
2

≤

(

sup
(0,T )

‖u‖2,2

)2 ∫ T

0

‖δF ‖
2
2 + Ch2

(

sup
(0,T )

‖F‖2,2

)2

, (42)

−
3

2

∫ τ

0

((div eu)Π
F
h F, δF ) ≤

3

2

∫ τ

0

(‖∇ηu‖2 + ‖∇δu‖2) ‖Π
F
h F‖∞‖δF ‖2

≤ Ch4

∫ T

0

‖u‖23,2 + αν

∫ τ

0

‖∇δu‖
2
2 +

C

αν

(

sup
(0,T )

‖F‖2,2

)2 ∫ τ

0

‖δF‖
2
2,

−

∫ τ

0

(euiδF , ∂iΠ
F
h F) ≤

∫ τ

0

(‖ηu‖4 + ‖δu‖4) ‖δF ‖2‖∇ΠF
h F‖4

≤ Ch4

∫ T

0

‖u‖23,2 + αν

∫ T

0

‖∇δu‖
2
2 +

C

αν

(

sup
(0,T )

‖F‖2,2

)2 ∫ T

0

‖δF ‖
2
2. (43)

Altogether we have

∫ τ

0

T5 + T6 ≤ 2αν

∫ τ

0

‖∇δu‖
2
2 +

C

αν

∫ τ

0

‖δF‖
2
2 + Ch2 + Ch4. (44)
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Gronwall’s inequality for the errors and the end of the proof. Col-
lecting (29), (31), (32), (33), (34), (44) and inserting the result to (27), we
obtain

1

2

(
‖δu(τ)‖

2
2 + ‖δF (τ)‖

2
2

)
+ (1− Cα)ν

∫ τ

0

‖∇δu‖
2
2

≤ C

∫ τ

0

(

1 +
‖uh‖

2
1,2

(αν)3

)

‖δu‖
2
2+C

∫ τ

0

(
1

αν
+ ‖u‖3,2

)

‖δF ‖
2
2+

C

αν

(
h2 + h4

)
.

Choosing α sufficiently small and using the Gronwall inequality we obtain for
h ∈ (0, h0)

sup
(0,T )

‖δu‖
2
2 + sup

(0,T )

‖δF ‖
2
2 +

∫ T

0

‖δu‖
2
1,2 ≤ Ch2. (45)

This in accordance with (26) completes the proof of Theorem 1.

Remark 1. From the proof and the estimate (19) it can be deduced that the
constant in (45) has the form C = c1 exp c2, where

ci = ci

(

ν, ‖u0‖
2
2 + ‖F0‖

2
2,

∫ T

0

‖u‖3,2, sup
(0,T )

‖u‖2,2, sup
(0,T )

‖F‖2,2

)

> 0, i = 1, 2,

are independent of h.

Remark 2. The question arises, whether the derived error estimate can be
improved provided the exact solution is more regular. Essentially, the first order
with respect to h arises due to (42), where ‖∇ηF ‖2 can only be bounded by O(h)
due to the piecewise linear approximation of F. In view of this, it seems that
the result cannot be improved.

Remark 3. One can easily incorporate a forcing term f ∈ L2(0, T ;L2(Ω;R2))
on the right hand side of the momentum equation. This would yield the same
error estimates.

5 Error estimates for finite element - finite vol-

ume approximation

The main aim of this section is to prove the second part of Theorem 1. The
essential difference in the proof of error estimates for the solution of problem
(6a), (6b), (8) and (9) is in the term (u · ∇)F. In particular, the term J1
introduced in (27) is now substituted by the sum

J1 = T1 + T2 + T3 + T4 + TFV + T7,

where Ti, i ∈ {1, 2, 3, 4, 7} arise from (30) and

TFV =

∫ T

0



−((u · ∇)F, δF ) +
∑

e∈E0

h

({uhFh}u, [δF ])e −
1

2
((divuh)Fh, δF )



 .

(46)
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In spite of the weaker bound (15) for ηF , the estimates of Ti, i ∈ {1, 2, 3, 4, 7}
still yield terms of order at least h2. It is therefore sufficient to estimate the
error of TFV .

Proof. (Error estimate for term (u · ∇)F)
Let us first denote by F one component of the tensor F, similarly by Gh one
component of Gh. Then we can write

((u · ∇)F,Gh) =
∑

T∈Th

∫

T

div(uF)Gh dx =
∑

T∈Th

∫

∂T

(u · n)F [Gh] dS

=
∑

e∈E0

h

∫

e

{uF}[Gh] dS.

For the approximate solution it holds

∫

e

{uhFh}u [Gh] dS =

∫

e

{uhFh}[Gh] dS +

∫

e

|uh · n|

2
[Fh][Gh] dS ∀ Gh ∈ Zh.

Thus, we can rewrite (46) as follows:

TFV =

∫ T

0

∑

e∈E0

h

∫

e

{(uh − u)F}[δF ] dS dt+

∫ T

0

∑

e∈E0

h

∫

e

{uh(Fh − F)}[δF ] dS dt

+

∫ T

0

∑

e∈E0

h

∫

e

|uh · n|

2
[Fh − F][δF ] dS dt−

1

2

∫ T

0

∫

Ω

divuhFhδF =

4∑

i=1

Ii.

In what follows, we will estimate these terms separately.
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Term I1.

I1 =

∫ T

0

∑

e∈E0

h

∫

e

{(uh − u)F}[δF ] dS dt =

∫ T

0

∑

T∈Th

∫

∂T

(uh − u) · n F δF dS dt

=

∫ T

0

∑

T∈Th

∫

T

div
(
(uh − u)F

)
δF dx dt

= −

∫ T

0

∫

Ω

div δu FδF dx dt−

∫ T

0

∫

Ω

div ηu FδF dx dt

−

∫ T

0

∫

Ω

(δu · ∇)F δF dx dt−

∫ T

0

∫

Ω

(ηu · ∇)F δF dx dt

≤

∫ T

0

c1‖∇δu‖2,Ω‖F‖2,2,Ω‖δF ‖2,Ω + c2‖∇ηu‖2,Ω‖F‖2,2,Ω‖δF ‖2,Ω

+

∫ T

0

c3‖δu‖4,Ω‖∇F‖4,Ω‖δF ‖2,Ω + c4‖ηu‖4,Ω‖∇F‖4,Ω‖δF ‖2,Ω

≤ αν

∫ T

0

‖∇δu‖
2
2 +

C

αν

(

sup
(0,T )

‖F‖2,2

)2
∫ T

0

‖δF‖
2
2

+ C

∫ T

0

‖δF‖
2
2 + Ch4

(

sup
(0,T )

‖F‖2,2

)2
∫ T

0

‖u‖23,2.

Terms I2 + I4 .

I2 =

∫ T

0

∑

e∈E0

h

∫

e

{uh(Fh − F)}[δF ] dS dt

= −

∫ T

0

∑

e∈E0

h

∫

e

{uhδF }[δF ] dS dt−

∫ T

0

∑

e∈E0

h

∫

e

{uhηF }[δF ] dS dt = A1 +A2

A1 = −

∫ T

0

∫

Ω

1

2
divuhδ

2
F dx dt =

∫ T

0

∫

Ω

1

2
div euΠ

0
hFδF dx dt− I4

=

∫ T

0

∫

Ω

1

2
div ηuΠ

0
hFδF dx dt+

∫ T

0

∫

Ω

1

2
div δuΠ

0
hFδF dx dt− I4

≤ C

∫ T

0

‖ηu‖1,2‖δF ‖2 + C

∫ T

0

‖∇δu‖2‖δF ‖2 − I4

≤ Ch2 + αν

∫ T

0

‖∇δu‖
2
2 +

C

αν

∫ T

0

‖δF ‖
2
2 − I4.
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A2 ≤

∫ T

0

∑

e∈E0

h

∫

e

|uh · n|

2
{|ηF |}|[δF ]| dS dt

≤

∫ T

0

∑

e∈E0

h

‖c1/2e [δF ]‖2,e‖c
1/2
e ‖4,e‖{|ηF |}‖4,e

≤ α

∫ T

0

∑

e∈E0

h

‖c1/2e [δF ]‖
2
2,e +

C

α
h3/2

(

sup
(0,T )

‖F‖2,2

)2 ∫ T

0

‖∇uh‖
2
2 dt,

where ηF was estimated using Lemma 1 and ce :=
|uh·n|

2 . Further, we have

I3 = −

∫ T

0

∑

e∈E0

h

∫

e

|uh · n|

2
[ηF ][δF ] dS dt−

∫ T

0

∑

e∈E0

h

∫

e

|uh · n|

2
[δF ][δF ] dS dt

= B1 +B2,

where B1 can be estimated in the same way as A2 and

B2 = −

∫ T

0

∑

e∈E0

h

‖c1/2e [δF ]‖
2
2,e,

hence

I3 ≤ (α− 1)

∫ T

0

∑

e∈E0

h

‖c1/2e [δF ]‖
2
2,e +

C

α
h3/2

(

sup
(0,T )

‖F‖2,2

)2 ∫ T

0

‖∇uh‖
2
2 dt.

Note that I4 is already subtracted in A1, thus we can finally conclude:

TFV ≤ Cαν

∫ T

0

‖∇δu‖
2
2 +

C

αν

∫ T

0

‖δF ‖
2
2 +

C

α
h3/2 + Ch2 + Ch4 . (47)

Substituting (47) in (27) and taking into account that the rest terms T1, T2, T3, T4, T5

and T7 are at least of order h2 conclude the proof of the second part of Theo-
rem 1.

6 Multiplicative trace inequality

As mentioned above we now proceed with the proof of Lemma 1. We first state
the following auxiliary result.

Lemma 4. There exists a constant c > 0 such that for any simplex T in Rd,
d ∈ {2, 3}, with h := diamT , and v ∈ H1(T ), we have

‖v‖4L4(∂T ) ≤ c

[

4‖v‖3L6(T )|v|H1(T ) +
d

hT
‖v‖4L4(T )

]

. (48)
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x̃i

Ti

Tj

nij

tij

x

α

∂Tij

Figure 1: Example of a triangulation with a notation used in Lemma 4.

Proof. The proof of Lemma 4 is analogous to the proof of Lemma 3.1 in [11].
We prove Lemma 4 for the sake of consistency. Let us denote by x̃i the center
of the largest d-dimensional ball inscribed in T = Ti. W.l.o.g. put x̃i to the
origin of the coordinate system, see Figure 1. We start with the relation

∫

∂T

v4 x · n dS =

∫

T

∇ · (v4 x) dx v ∈ H1(T ).

Let us denote nij the outer normal to Ti on ∂Tij = ∂Ti ∩ ∂Tj, where Tj is a
neighbor of Ti, i.e.

j ∈ S(i) ≡ {j;Tj ∩ Ti 6= 0}.

We have

x · nij = |x||nij | cosα = |x| cosα = tij , x ∈ ∂Tij , j ∈ S(i),

where tij is the distance of x̃i from ∂Tij. Clearly,

tij ≥ ρTi
j ∈ S(i),

where ρTi
is the radius of the inscribed ball.

Now, we have the following estimate
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∫

∂Ti

v4 x · n dS =
∑

j∈S(i)

∫

∂Ti∩∂Tj

v4 x · nij dS =
∑

j∈S(i)

tij

∫

∂Ti∩∂Tj

v4 dS

≥ ρTi

∑

j∈S(i)

∫

∂Ti∩∂Tj

v4 dS = ρTi
‖v‖4L4(∂Ti)

. (49)

Further, it holds
∫

Ti

∇ · (v4x) dx =

∫

Ti

v4 ∇ · x+ x · ∇v4 dx = d

∫

Ti

v4 dx+ 4

∫

Ti

v3 x · ∇v dx

≤ d‖v‖4L4(Ti)
+ 4

∫

Ti

|v3 x · ∇v| dx

≤ d‖v‖4L4(Ti)
+ 4 sup

x∈Ti

|x|

∫

Ti

|v|3.|∇v| dx

≤ d‖v‖4L4(Ti)
+ 4hTi

‖v‖3L6(Ti)
|v|H1(Ti). (50)

From (49) and (50) we have

ρTi
‖v‖4L4(∂Ti)

≤

∫

∂Ti

v4 x · n dS =

∫

Ti

∇ · (v4 x) dx

≤ d‖v‖4L4(Ti)
+ 4hTi

‖v‖3L6(Ti)
|v|H1(Ti),

which finally yields

‖v‖4L4(∂Ti)
≤

d

ρTi

‖v‖4L4(Ti)
+ 4

hTi

ρTi

‖v‖3L6(Ti)
|v|H1(Ti)

≤ c

(

4‖v‖3L6(Ti)
|v|H1(Ti) +

d

hTi

‖v‖4L4(∂Ti)

)

.

Having proven the desired property (48) we can finally present the proof of
Lemma 1.

Proof of Lemma 1. Set v = F − Π0
hF , where F ∈ W 2,2(Ω). Then, due to

Lemma 4 it holds

‖F −Π0
hF‖4L4(∂T ) = ‖ηF ‖

4
L4(∂T ) ≤ c1

[

4h3‖F‖3W 1,6(T )|F |H1(T ) +
2

h
h4‖F‖4W 1,4(T )

]

≤ c2

[

h3‖F‖4W 2,2(T ) + h3‖F‖4W 2,2(T )

]

≤ c3h
3‖F‖4W 2,2(T ).

This implies
∑

e∈E0

h

‖F −Π0
hF‖4,e ≤ ch3/4‖F‖2,2.
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7 Numerical experiments

In order to demonstrate validity of our theoretical error estimates we perform
experimental error analysis. Let us consider the flow in a rectangular domain
Ω = (0, 1)2 driven by the boundary condition

u =

{

(4x(x− 1), 0) if y = 1,

(0, 0) otherwise,

with the initial conditions u0 = (0, 0), F0 = I and the viscosity ν = 1. We have
compared the following three methods:

a) finite element method (FEM) for velocity, pressure and viscoelastic stress,

b) FEM for velocity and pressure, dual finite volume method (FVM) for
viscoelastic stress,

c) finite difference method (FDM) for velocity and pressure, FVM for vis-
coelastic stress.

The case a) is a standard finite element method based on the Taylor-Hood fi-
nite elements of the fluid part (piecewise quadratic velocity and piecewise linear
pressure) combined with the piecewise linear approximation of the deformation
gradient F. In the case b) the deformation gradient was approximated by piece-
wise constants on dual elements, that arise by connecting the barycenters of
primary elements with the edge midpoints. In the case c) we have combined the
finite difference approximation of the fluid equations with the finite volume ap-
proximation of the deformation gradient F. The latter method can be considered
to be another variant of a combined finite element and finite volume method
when a regular rectangular grid is used. To keep the paper self-consistent let
us describe in what follows the combined finite difference/finite volume method
in some more details: we first discretize the domain by dividing it into regular
rectangular mesh cells and then apply the staggered finite difference approxima-
tion for the fluid equations. It means that the discretization nodes for velocities
u1 and u2 are the midpoints of edges in x or y−direction, respectively. Nodes
for pressure and deformation gradient are at the cell centers. We would like
to point out that this finite difference approximation of the Navier-Stokes part
is the well-known MAC (Marker and Cell) method frequently used, e.g., in en-
gineering in order to approximate incompressible flows. As reported in [16]
this method was introduced by the Los Alamos group: B.J. Daly, F.H. Harlow,
J.P. Shannon and J.E. Welch in their 1965 report [9], but an idea of this dis-
cretization has already existed in the Russian paper by V.I. Lebedev in 1964,
cf. [22].

Further, we treat the viscous term ∆u and the viscoelastic term div(FF⊤)
implicitly in time, whereas the convective part div(u⊗u) is approximated in an
explicit manner. To enforce the incompressibility condition, we use the Chorin
projection method. The evolution equation of the deformation gradient F is
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eu ∇eu eπ eF
h L∞(L2) EOC L2(L2) EOC L2(L2) EOC L∞(L2) EOC
1/8 2.08e-02 2.11 1.77e+02 1.00 4.19e+02 0.96 1.37e-01 0.73
1/16 4.80e-03 2.02 8.85e+01 1.00 2.14e+02 0.99 8.21e-02 0.89
1/32 1.18e-03 2.00 4.42e+01 0.99 1.07e+02 1.00 4.41e-02 0.94
1/64 2.95e-04 2.00 2.21e+01 0.99 5.36e+01 1.00 2.29e-02 0.95
1/128 7.37e-05 1.10e+01 2.68e+01 1.17e-02

(a) FEM

eu ∇eu eπ eF
h L∞(L2) EOC L2(L2) EOC L2(L2) EOC L∞(L2) EOC
1/8 2.07e-02 2.00 1.77e+02 1.00 4.73e+02 0.88 1.94e-01 0.73
1/16 5.16e-03 1.40 8.87e+01 0.98 2.55e+02 0.94 1.16e-01 0.88
1/32 1.94e-03 1.34 4.47e+01 0.98 1.33e+02 0.96 6.33e-02 0.90
1/64 7.67e-04 1.35 2.25e+01 0.98 6.83e+01 0.97 3.37e-02 0.91
1/128 3.00e-04 1.13e+01 3.47e+01 1.78e-02

(b) FEM/dual FVM

eu ∇eu eπ eF
h L∞(L2) EOC L2(L2) EOC L2(L2) EOC L∞(L2) EOC
1/8 4.22e-02 0.86 3.61e-01 0.86 2.94e-01 1.27 1.58e-01 0.88
1/16 2.32e-02 1.25 1.98e-01 1.04 1.22e-01 1.54 8.56e-02 1.07
1/32 9.73e-03 1.82 9.62e-02 1.22 4.22e-02 1.76 4.09e-02 1.23
1/64 2.77e-03 2.25 4.14e-02 1.59 1.25e-02 2.03 1.75e-02 1.59
1/128 5.81e-04 1.38e-02 3.06e-03 5.80e-03

(c) FDM/FVM

Table 1: Error norms and experimental order of convergence for driven cavity
problem.
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approximated in the explicit way using the upwind finite volume scheme. More
precisely, we have

F
k+1
i = F

k
i −

∆t

|Ti|

∑

j∈S(i)

Hi j(F
k
i ,F

k
j ) + (∇hu

k)iF
k
i ,

where |Ti| is the volume of an arbitrary (rectangular) mesh cell Ti, ∆t is the
time step, Fk

i ,F
k+1
i are the piecewise constant approximations of F on Ti at time

tk, tk+1, respectively, and (∇hu
k)i is the piecewise constant approximation of

∇uk on Ti. Further, Hi j(F
k
i ,F

k
j ) is the appropriate numerical flux function,

that approximates the cell interface integral
∫

Ti∩Tj
Fkuk · ndS, where n is the

outer normal, j ∈ S(i), and S(i) is the index set of all neighbours corresponding
to the cell Ti. In our computations we have applied the upwind numerical flux
for Hi j . In order to obtain stable finite difference-finite volume scheme, we have
to subiterate between the finite difference approximation of the fluid part and
the finite volume approximation of the deformation gradient. Finally, we have
the combined scheme described in Algorithm 1.

Algorithm 1

1: Given uk, pk,Fk, set uk,0 = uk,Fk,0 = Fk, πk,0 = πk.
2: for ℓ = 0, 1, · · · do

3: solve the viscoelastic equation:
F
k,ℓ+1
i = F

k,0
i − ∆t

|Ti|

∑

j∈S(i) Hi j(F
k,ℓ
i ,Fk,ℓ

j ) + ∆t(∇hu
k,ℓ)iF

k,ℓ
i

4: solve the fluid part in two steps:
(I−∆t∆h)u

∗ = uk,0 +∆t∇h · (−uk,l ⊗ uk,l + (FF⊤)k,ℓ+1)
1
∆t(u

k,ℓ+1 − u∗) = −∇hπ
k,ℓ+1

5: if (‖uk,ℓ+1 − uk,ℓ‖ ≤ ξ‖uk,ℓ‖, ‖πk,ℓ+1 − πk,ℓ‖ ≤ ξ‖πk,ℓ‖, and ‖Fk,ℓ+1 −
Fk,ℓ‖ ≤ ξ‖Fk,ℓ‖ for enough small ξ) then

6: break
7: end if

8: end for

9: Update solution: uk+1 = uk,ℓ+1, πk+1 = πk,ℓ+1,Fk+1 = Fk,ℓ+1.

In order to compute experimental error orders we use a series of regular tri-
angular meshes consisting of 8 to 256 elements in each direction (methods a) and
b)) as well as regular rectangular meshes with 4 to 128 elements (method c)).
Calculations were run for the time interval (0, 0.2) with a fixed timestep 0.001
that satisfies the CFL stability condition for the finest mesh. Our experimen-
tal error analysis, that is presented in Table 1, yields the results comparable
with the theoretical results, cf. Theorem 1. Indeed, simulations using the fi-
nite element method a) confirm the first order error for ∇u in L2(0, T ;L2(Ω))
and for F in L∞(0, T ;L2(Ω)). Moreover, we also show that the pressure π is
approximated in L2(0, T ;L2(Ω)) with the first order and the velocity u with
the second order error in L∞(0, T ;L2(Ω)). The same experimental orders of
convergence are obtained by the finite element/dual finite volume method b).
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Note however that the we have a slightly worse convergence for the velocity
measured in L∞(0, T ;L2(Ω)) than in the method a), though still superlinear.
These experimental results also indicate that our theoretical error estimate (21)
may be suboptimal for u. Furthermore, the experimental error analysis of the
combined finite difference/finite volume method shows the second order error
for u in L∞(0, T ;L2(Ω)) as well as for pressure π in L2(0, T ;L2(Ω)) and the
superlinear convergence for ∇u in L2(0, T ;L2(Ω)) and for F in L∞(0, T ;L2(Ω)),
see Table 1.

Remark 4. History of the error analysis of the MAC scheme for the Navier-
Stokes equations, or its linear version the Stokes equations, is very interesting.
Although the method has been used successfully since 1965, its theoretical numer-
ical analysis was not carried out until 1992 by Nicolaides and his collaborators
[26, 28]. They reinterpreted the MAC scheme as a finite volume approximation
of the velocity-vorticity equations on the dual (co-volume) meshes and proved the
first order error estimates for pressure and velocity in the standard L2 norms.
Moreover, Nicolaides and Wu have reported in [27] that the experimental order
of convergence using regular grids is about 2 for the velocity and pressure and
about 1.5 for the gradients of velocity. We would like to point out that our nu-
merical experiment, presented in Tab. 1 exactly confirms these results. There
has been quite a number of papers where the convergence order of the MAC
scheme was analyzed from the theoretical point of view. For example, in 1996
Girault and Lopez [16] showed that the finite difference equations of the MAC
method can be derived by combining a velocity-vorticity mixed finite element
method of degree one with an adequate quadrature formula. This paper confirms
that the MAC method, applied to the steady-state incompressible Navier-Stokes
equations, satisfies the error estimates of order one. Later, in 2008 Kanschat
[20] showed that the MAC scheme is algebraically equivalent to the first order
local discontinuous Galerkin method with a proper quadrature and also obtained
first order convergence of the scheme. Further, in 2014 Herbin et al. [18] have
shown the convergence of the MAC scheme for the Navier-Stokes equations on
non-uniform grids. In [12] a related method, the so-called colocated finite vol-
ume scheme for the Stokes problem is studied and its first order convergence is
proven theoretically. Here it is also reported that the second order convergence
for velocity is obtained in numerical experiments.

Nevertheless, until very recently the superconvergence of the MAC scheme
has not been confirmed theoretically. In 2014 Li and Sun [23] succeeded to show
the second order convergence of velocity and pressure measured in the L2 norms
even for irregular rectangular grids. The authors do not reinterpret the MAC
method as the finite volume or finite element scheme, but work directly in the
finite difference framework. Careful and elegant analysis of various sources of
errors shows that although the local truncation errors are only first order, a suit-
able cancelation of local errors yields after summation the second order global
errors for both velocity and pressure. Our numerical experiments presented in
Table 1 for the combined finite difference/finite volume method confirm theoret-
ical results of Li and Sun. As a consequence the velocity gradients ∇u as well
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as the deformation gradient F converge superlinearly with the order 1.5.

In what follows we present graphs of the solution at the final time T = 0.2.
In Figure 2 we plot the streamlines, pressure and velocity components. Figure 3
presents all components of the deformation gradient F. Further, Figure 4 illus-
trates time evolution of the kinetic energy 1

2u
2 and the L∞-norm of trace of the

stress tensor FF⊤. Although the kinetic energy is bounded, we see clearly that
L∞-norm of the stress tensor is not bounded.

Re = 1,  t = 0.2
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Figure 2: Graph of the solution at the final time T = 0.2: streamline (top left),
pressure (top right) and velocity components u1 and u2 (bottom).

Conclusions

In this paper we have studied a particular variant of the Oldroyd-B visocelastic
model having the limiting relaxation time going to infinity. Assuming global
in time existence of enough regular weak solution we have studied the error
estimates of a standard finite element method A and of a combined finite ele-
ment/dual finite volume method B. Main theoretical result Theorem 1 shows the
first order error estimates for a standard finite element discretization using the
Taylor-Hood elements for the velocities and pressures and the linear elements
for the deformation gradient F. These results are also confirmed by a number
of numerical experiments, a representative choice is presented in this paper.
Furthermore, our theoretical results indicate the errors of order O(h3/4) for the
combined finite element/dual finite volume method. Numerical experiments for
the above two methods confirm our theoretical results. Moreover, using the
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finite difference/finite volume approximation on a rectangular grid, we get even
the second order convergence of the velocity u and of pressure π, which is a con-
sequence of the superconvergence of the special finite difference approximation
of the Navier-Stokes equations. Using the recent theoretical results of Li and
Sun [23] it would be interesting to study theoretically also the convergence of
the combined finite difference/finite volume scheme for our viscoelastic model
in future.
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Figure 3: Graph of the solution at the final time T = 0.2; four components of
the deformation gradient Fij , i, j = 1, 2, from the top left to the bottom right.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
2

2.5

3

3.5
Re = 1

time

tr
ac

e

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024
Re = 1

time

ki
ne

tic
 e

ne
rg

y

Figure 4: Time evolution of the maximum trace of the elastic stress tensor Te

(left) and of the kinetic energy (right).
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