Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence

R. Farwig ${ }^{1}$, H. Kozono ${ }^{2}$, H. Sohr ${ }^{3}$

Abstract

Consider a smooth bounded domain $\Omega \subseteq \mathbb{R}^{3}$ with boundary $\partial \Omega$, a time interval $[0, T), 0<T \leq \infty$, and the Navier-Stokes system in $[0, T) \times \Omega$, with initial value $u_{0} \in L_{\sigma}^{2}(\Omega)$ and external force $f=\operatorname{div} F, F \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$. Our aim is to extend the well-known class of Leray-Hopf weak solutions u satisfying $\left.u\right|_{\partial \Omega}=0, \operatorname{div} u=0$ to the more general class of Leray-Hopf type weak solutions u with general data $\left.u\right|_{\partial \Omega}=g$, $\operatorname{div} u=k$ satisfying a certain energy inequality. Our method rests on a perturbation argument writing u in the form $u=v+$ E with some vector field E in $[0, T) \times \Omega$ satisfying the (linear) Stokes system with $f=0$ and nonhomogeneous data. This reduces the general system to a perturbed Navier-Stokes system with homogeneous data, containing an additional perturbation term. Using arguments as for the usual Navier-Stokes system we get the existence of global weak solutions for the more general system.

MSC: 35Q30; 35J65; 76D05
Keywords: Navier-Stokes equations; weak solutions; nonhomogeneous boundary values; energy inequality; nonzero divergence

1 Introduction and main results

Let $\Omega \subseteq \mathbb{R}^{3}$ be a bounded domain with boundary $\partial \Omega$ of class $C^{2,1}$, and let $[0, T)$, $0<T \leq \infty$, be a time interval. We consider in $[0, T) \times \Omega$, together with an associated pressure p, the following general Navier-Stokes system

$$
\begin{align*}
u_{t}-\Delta u+u \cdot \nabla u+\nabla p & =f, & & \operatorname{div} u=k \\
\left.u\right|_{\partial \Omega} & =g, & & \left.u\right|_{t=0}=u_{0} \tag{1.1}
\end{align*}
$$

with given data f, k, g, u_{0}.

[^0]First we have to give a precise characterization of this general system. To this aim, we shortly discuss our arguments to solve this system in the weak sense (without any smallness assumption on the data). Using a perturbation argument we write u in the form

$$
\begin{equation*}
u=v+E, \tag{1.2}
\end{equation*}
$$

and the initial value u_{0} at time $t=0$ in the form

$$
\begin{equation*}
u_{0}=v_{0}+E_{0} . \tag{1.3}
\end{equation*}
$$

Here E is the solution of the (linear) Stokes system

$$
\begin{align*}
E_{t}-\Delta E+\nabla h & =0, \quad \operatorname{div} E=k \\
\left.E\right|_{\partial \Omega} & =g,\left.\quad E\right|_{t=0}=E_{0} \tag{1.4}
\end{align*}
$$

with some associated pressure h, and v has the properties

$$
\begin{array}{r}
v \in L_{\mathrm{loc}}^{\infty}\left([0, T) ; L_{\sigma}^{2}(\Omega)\right) \cap L_{\mathrm{loc}}^{2}\left([0, T) ; W_{0}^{1,2}(\Omega)\right), \\
v:[0, T) \mapsto L_{\sigma}^{2}(\Omega) \quad \text { is weakly continuous, }\left.v\right|_{t=0}=v_{0} . \tag{1.5}
\end{array}
$$

Inserting (1.2), (1.3) into the system (1.1) we obtain the modified system

$$
\begin{align*}
v_{t}-\Delta v+(v+E) \cdot \nabla(v+E)+\nabla p^{*} & =f, & \operatorname{div} v & =0 \\
\left.v\right|_{\partial \Omega} & =0, & \left.v\right|_{t=0} & =v_{0} \tag{1.6}
\end{align*}
$$

with associated pressure $p^{*}=p-h$ and homogeneous conditions for v. Thus (1.6) can be called a perturbed Navier-Stokes system in $[0, T) \times \Omega$. This system reduces the general system (1.1) to a certain homogeneous system which contains an additional perturbation term in the form

$$
(v+E) \cdot \nabla(v+E)=v \cdot \nabla v+v \cdot \nabla E+E \cdot \nabla(v+E) .
$$

Therefore, the perturbed system (1.6) can be treated similarly as the usual Navier-Stokes system obtained from (1.6) with $E \equiv 0$.

In order to give a precise definition of the general system (1.1) we need the following steps:

First we develop the theory for the perturbed system (1.6) for data f, v_{0} and a given vector field E, as general as possible. In the second step we consider the $\operatorname{system}(1.4)$ for general given data k, g, E_{0} to obtain a vector field E in such a way that $u=v+E$ with v from (1.6) yields a well-defined solution of the general system (1.1) in the (Leray-Hopf type) weak sense.

Thus we start with the definition of a weak solution v of (1.6) under rather weak assumptions on E needed for the existence of such solutions.

Definition 1.1 (Perturbed system) Suppose

$$
\begin{align*}
& f=\operatorname{div} F \quad \text { with } \quad F=\left(F_{i, j}\right)_{i, j=1}^{3} \in L^{2}\left(0, T ; L^{2}(\Omega)\right) \\
& v_{0} \in L_{\sigma}^{2}(\Omega) \tag{1.7}\\
& E \in L^{s}\left(0, T ; L^{q}(\Omega)\right), \operatorname{div} E=k \in L^{4}\left(0, T ; L^{2}(\Omega)\right)
\end{align*}
$$

with $4 \leq s<\infty, 4 \leq q<\infty, \frac{2}{s}+\frac{3}{q}=1$.
Then a vector field v is called a weak solution of the perturbed system (1.6) in $[0, T) \times \Omega$ with data f, v_{0} if the following conditions are satisfied:
a) For each finite $T^{*}, 0<T^{*} \leq T$,

$$
\begin{equation*}
v \in L^{\infty}\left(0, T^{*} ; L_{\sigma}^{2}(\Omega)\right) \cap L^{2}\left(0, T^{*} ; W_{0}^{1,2}(\Omega)\right) \tag{1.8}
\end{equation*}
$$

b) for each test function $w \in C_{0}^{\infty}\left([0, T) ; C_{0, \sigma}^{\infty}(\Omega)\right)$,

$$
\begin{gather*}
-\left\langle v, w_{t}\right\rangle_{\Omega, T}+\langle\nabla v, \nabla w\rangle_{\Omega, T}-\langle(v+E)(v+E), \nabla w\rangle_{\Omega, T} \tag{1.9}\\
-\langle k(v+E), w\rangle_{\Omega, T}=\left\langle v_{0}, w(0)\right\rangle_{\Omega}-\langle F, \nabla w\rangle_{\Omega, T},
\end{gather*}
$$

c) for $0 \leq t<T$,

$$
\begin{align*}
& \frac{1}{2}\|v(t)\|_{2}^{2}+\int_{0}^{t}\|\nabla v\|_{2}^{2} d \tau \leq \frac{1}{2}\left\|v_{0}\right\|_{2}^{2}-\int_{0}^{t}\langle F, \nabla v\rangle_{\Omega} d \tau \tag{1.10}\\
& \quad+\int_{0}^{t}\langle(v+E) E, \nabla v\rangle_{\Omega} d \tau+\frac{1}{2} \int_{0}^{t}\langle k(v+2 E), v\rangle_{\Omega} d \tau
\end{align*}
$$

d) and

$$
\begin{equation*}
v:[0, T) \rightarrow L_{\sigma}^{2}(\Omega) \text { is weakly continuous and } v(0)=v_{0} \tag{1.11}
\end{equation*}
$$

In the classical case $E \equiv 0$ we obtain with (1.8)-(1.11) the usual (Leray-Hopf) weak solution v. As in this case the condition (1.11) already follows from the other conditions (1.8)-(1.10), after possibly a modification on a null set of $[0, T)$, see, e.g., $[16, \mathrm{~V}, 1.6]$. Here (1.11) is included for simplicity. The relation (1.9) and the energy inequality (1.10) are based on formal calculations as for $E \equiv 0$. The existence of an associated pressure p^{*} such that

$$
\begin{equation*}
v_{t}-\Delta v+(v+E) \cdot \nabla(v+E)+\nabla p^{*}=f \tag{1.12}
\end{equation*}
$$

in the sense of distributions in $(0, T) \times \Omega$ follows in the same way as for $E \equiv 0$.
In the next step we consider the linear system (1.4). A very general solution class for this system, sufficient for our purpose, has been developed by the theory of so-called very weak solutions, see [1], [3, Sect. 4]. In particular, the boundary values g are given in a general sense of distributions on $\partial \Omega$.

Lemma 1.2 (Linear system for E, [3]) Suppose

$$
\begin{align*}
& k \in L^{s}\left(0, T ; L^{q^{*}}(\Omega)\right), \quad g \in L^{s}\left(0, T ; W^{-\frac{1}{q}, q}(\partial \Omega)\right), E_{0} \in L^{q}(\Omega), \\
& 4 \leq s<\infty, 4 \leq q<\infty, \frac{2}{s}+\frac{3}{q}=1, \frac{1}{q}=\frac{1}{q^{*}}-\frac{1}{3} \tag{1.13}
\end{align*}
$$

satisfying the compatibility condition

$$
\begin{equation*}
\int_{\Omega} k(t) d x=\int_{\partial \Omega} N \cdot g(t) d S \quad \text { for almost all } t \in[0, T) \tag{1.14}
\end{equation*}
$$

where $N=N(x)$ means the exterior normal vector at $x \in \partial \Omega$, and $\int_{\partial \Omega} \ldots d S$ the surface integral (in a generalized sense of distributions on $\partial \Omega$).

Then there exists a uniquely determined (very) weak solution

$$
\begin{equation*}
E \in L^{s}\left(0, T ; L^{q}(\Omega)\right) \tag{1.15}
\end{equation*}
$$

of the system (1.4) in $[0, T) \times \Omega$ with data k, g, E_{0} defined by the conditions:
a) For each $w \in C_{0}^{1}\left([0, T) ; C_{0, \sigma}^{2}(\bar{\Omega})\right)$,

$$
\begin{equation*}
-\left\langle E, w_{t}\right\rangle_{\Omega, T}-\langle E, \Delta w\rangle_{\Omega, T}+\langle g, N \cdot \nabla w\rangle_{\Omega, T}=\left\langle E_{0}, w(0)\right\rangle_{\Omega} \tag{1.16}
\end{equation*}
$$

b) for almost all $t \in[0, T)$,

$$
\begin{equation*}
\operatorname{div} E=k,\left.N \cdot E\right|_{\partial \Omega}=N \cdot g \tag{1.17}
\end{equation*}
$$

Moreover, E satisfies the estimate

$$
\begin{equation*}
\left\|A_{q}^{-1} P_{q} E_{t}\right\|_{q, s ; \Omega, T}+\|E\|_{q, s ; \Omega, T} \leq C\left(\left\|E_{0}\right\|_{q}+\|k\|_{q^{*}, s ; \Omega, T}+\|g\|_{-\frac{1}{q} ; q, s ; \partial \Omega, T}\right) \tag{1.18}
\end{equation*}
$$

with constant $C=C(\Omega, T, q)>0$.
The trace $\left.E\right|_{\partial \Omega}=g$ is well-defined at $\partial \Omega$ for almost all $t \in[0, T)$, and the initial value condition $\left.E\right|_{t=0}=E_{0}$ is well-defined (modulo gradients) in the sense that $P_{q} E:[0, T) \rightarrow L_{\sigma}^{q}(\Omega)$ is weakly continuous satisfying

$$
\begin{equation*}
\left.P_{q} E\right|_{t=0}=P_{q} E_{0} \tag{1.19}
\end{equation*}
$$

Finally, there exists an associated pressure h such that

$$
\begin{equation*}
E_{t}-\Delta E+\nabla h=0 \tag{1.20}
\end{equation*}
$$

holds in the sense of distributions in $(0, T) \times \Omega$.
To obtain a precise definition for the general system (1.1) we have to combine Definition 1.1 and Lemma 1.2 as follows:

Definition 1.3 (General system) Let $k \in L^{s}\left(0, T ; L^{q^{*}}(\Omega)\right) \cap L^{4}\left(0, T ; L^{2}(\Omega)\right)$ with s, q^{*} as in (1.13) and suppose that

$$
\begin{equation*}
E \text { is a very weak solution of the linear system (1.4) in } \tag{1.21}
\end{equation*}
$$

and
v is a weak solution of the perturbed system (1.6) in $[0, T) \times \Omega$ in the sense of Definition 1.1 with data f, v_{0} as in (1.7).

Then the vector field $u=v+E$ is called a weak solution of the general system (1.1) in $[0, T) \times \Omega$ with data f, k, g and initial value $u_{0}=v_{0}+E_{0}$. Thus it holds

$$
\begin{equation*}
u_{t}-\Delta u+u \cdot \nabla u+\nabla p=f, \operatorname{div} u=k \tag{1.23}
\end{equation*}
$$

in the sense of distributions in $(0, T) \times \Omega$ with associated pressure $p=p^{*}+h, p^{*}$ as in (1.12), h as in (1.20). Further,

$$
\begin{equation*}
\left.u\right|_{\partial \Omega}=\left.v\right|_{\partial \Omega}+\left.E\right|_{\partial \Omega}=g \tag{1.24}
\end{equation*}
$$

is well-defined by $\left.E\right|_{\partial \Omega}=g$, and the condition

$$
\begin{equation*}
\left.u\right|_{t=0}=\left.v\right|_{t=0}+\left.E\right|_{t=0}=v_{0}+E_{0}=u_{0} \tag{1.25}
\end{equation*}
$$

is well-defined in the generalized sense modulo gradients by (1.19).
Therefore the general system (1.1) has a well-defined meaning for weak solutions u in a generalized sense.

However, if we suppose in Definition 1.3 additionally the regularity properties

$$
\begin{align*}
& k \in L^{s}\left(0, T ; W^{1, q}(\Omega)\right), k_{t} \in L^{s}\left(0, T ; L^{2}(\Omega)\right) \\
& g \in L^{s}\left(0, T ; W^{2-1 / q, q}(\partial \Omega)\right), g_{t} \in L^{s}\left(0, T ; W^{-\frac{1}{q}, q}(\partial \Omega)\right) \tag{1.26}\\
& E_{0} \in W^{2, q}(\Omega)
\end{align*}
$$

and the compatibility conditions $\left.u_{0}\right|_{\partial \Omega}=\left.g\right|_{t=0}$, $\operatorname{div} u_{0}=\left.k\right|_{t=0}$, then the solution E in Lemma 1.2 satisfies the regularity properties

$$
E \in L^{s}\left(0, T ; W^{2, q}(\Omega)\right), E_{t} \in L^{s}\left(0, T ; L^{q}(\Omega)\right), E \in C\left([0, T) ; L^{q}(\Omega)\right)
$$

and $\left.E\right|_{\partial \Omega}=g,\left.\quad E\right|_{t=0}=E_{0}$ are well-defined in the usual sense, see [3, Corollary 5]. Further it holds $\nabla h \in L^{s}\left(0, T ; L^{q}(\Omega)\right)$ for the associated pressure h in (1.20). Therefore, $u=v+E$ satisfies in this case the boundary condition $\left.u\right|_{\partial \Omega}=g$ and the initial condition $\left.u\right|_{t=0}=v_{0}+E_{0}$ in the usual (strong) sense.

The most difficult problem is the existence of a weak solution v of the perturbed system (1.6). For this purpose we have to introduce, see (2.12) in Sect.2, an approximate system of (1.6) for each $m \in \mathbb{N}$ which yields such a weak solution when passing to the limit $m \rightarrow \infty$. Then the existence of a weak solution $u=v+E$ of the general system (1.6) is an easy consequence.

This yields the following main result.
Theorem 1.4 (Existence of general weak solutions)
a) Suppose

$$
\begin{align*}
& f=\operatorname{div} F, F \in L^{2}\left(0, T ; L^{2}(\Omega)\right), v_{0} \in L_{\sigma}^{2}(\Omega) \\
& E \in L^{s}\left(0, T ; L^{q}(\Omega)\right), \operatorname{div} E=k \in L^{4}\left(0, T ; L^{2}(\Omega)\right), \tag{1.27}\\
& 4 \leq s<\infty, 4 \leq q<\infty, \frac{2}{s}+\frac{3}{q}=1
\end{align*}
$$

Then there exists at least one weak solution v of the perturbed system (1.6) in $[0, T) \times \Omega$ with data f, v_{0} in the sense of Definition 1.1. The solution v satisfies with some constant $C=C(\Omega)>0$ the energy estimate

$$
\begin{align*}
& \|v(t)\|_{2}^{2}+\int_{0}^{t}\|\nabla v\|_{2}^{2} d \tau \leq C\left(\left\|v_{0}\right\|_{2}^{2}+\int_{0}^{t}\|F\|_{2}^{2} d \tau\right. \tag{1.28}\\
& \left.\quad+\int_{0}^{t}\|E\|_{4}^{4} d \tau\right) \exp \left(C\|k\|_{2,4 ; t}^{4}+C\|E\|_{q, s ; t}^{s}\right)
\end{align*}
$$

for each $0 \leq t<T$.
b) Suppose additionally

$$
\begin{align*}
& k \in L^{s}\left(0, T ; L^{q^{*}}(\Omega)\right), g \in L^{s}\left(0, T ; W^{-\frac{1}{q}, q}(\partial \Omega)\right), E_{0} \in L^{q}(\Omega), \\
& \int_{\Omega} k d x=\int_{\partial \Omega} N \cdot g d S \text { for a.a. } t \in[0, T), \tag{1.29}
\end{align*}
$$

and let E be the very weak solution of the linear system (1.4) in $[0, T) \times \Omega$ with data k, g, E_{0} as in Lemma 1.2. Then $u=v+E$ is a weak solution of the general system (1.1) with data f, k, g and initial value $u_{0}=v_{0}+E_{0}$ in the sense of Definition 1.3.

There are some partial results with nonhomogeneous smooth boundary conditions $\left.u\right|_{\partial \Omega}=g \neq 0$ based on an independent approach by Raymond [15]. Further there is a result with constant in time nonzero boundary conditions g, see [4]. Further there are several independent results for smooth boundary values $\left.u\right|_{\partial \Omega}=g \neq 0$ in the context of strong solutions u if g or (equivalently) the time interval $[0, T)$ satisfy certain smallness conditions, see [1], [3], [6], [10]. Our existence result for
weak solutions in Theorem 1.4 does not need any smallness condition, like for usual Leray-Hopf weak solutions. But, on the other hand, there is no uniqueness result as for local strong solutions.

A first result on global weak solutions with time-dependent boundary data (and $k=\operatorname{div} u=0$) can be found in [5]. In that paper, the authors consider general $s>2, q>3$ with $\frac{2}{s}+\frac{3}{q}=1$; however, in that case, E has to satisfy the assumptions

$$
E \in L^{s}\left(0, T ; L^{q}(\Omega)\right) \cap L^{4}\left(0, T ; L^{4}(\Omega)\right)
$$

which is automatically fulfilled in the present article, see Theorem 1.4. Moreover, in simply connected domains or under a further assumption on the boundary data g, the energy estimate (1.28) can be improved considerably.

2 Preliminaries

First we recall some standard notations. Let $C_{0, \sigma}^{\infty}(\Omega)=\left\{w \in C_{0}^{\infty}(\Omega) ; \operatorname{div} w=0\right\}$ be the space of smooth, solenoidal and compactly supported vector fields. Then let $L_{\sigma}^{q}(\Omega)=\overline{C_{0, \sigma}^{\infty}(\Omega)}{ }^{\|\cdot\|_{q}}, 1<q<\infty$, where in general $\|\cdot\|_{q}$ denotes the norm of the Lebesgue space $L^{q}(\Omega), 1 \leq q \leq \infty$. Sobolev spaces are denoted by $W^{m, q}(\Omega)$ with norm $\|\cdot\|_{W^{m, q}}=\|\cdot\|_{m, q}, m \in \mathbb{N}, 1 \leq q \leq \infty$, and $W_{0}^{m, q}(\Omega)={\overline{C_{0}^{\infty}(\Omega)}}^{\|\cdot\|_{m, q}}$, $1 \leq q<\infty$. The trace space to $W^{1, q}(\Omega)$ is $W^{1-1 / q, q}(\partial \Omega), 1<q<\infty$, with norm $\|\cdot\|_{1-1 / q, q}$. Then the dual space to $W^{1-1 / q^{\prime}, q^{\prime}}(\partial \Omega)$, where $\frac{1}{q^{\prime}}+\frac{1}{q}=1$, is $W^{-1 / q, q}(\partial \Omega)$; the corresponding pairing is denoted by $\langle\cdot, \cdot\rangle_{\partial \Omega}$.

As spaces of test functions we need in the context of very weak solutions the space $C_{0, \sigma}^{2}(\bar{\Omega})=\left\{w \in C^{2}(\bar{\Omega}) ;\left.w\right|_{\partial \Omega}=0\right.$, $\left.\operatorname{div} w=0\right\}$; for weak instationary solutions let the space $C_{0}^{\infty}\left([0, T) ; C_{0, \sigma}^{\infty}(\Omega)\right)$ denote vector fields $w \in C_{0}^{\infty}([0, T) \times \Omega)$ such that $\operatorname{div}_{x} w=0$ for all $t \in[0, T)$ taking the divergence div_{x} with respect to $x=\left(x_{1}, x_{2}, x_{3}\right) \in \Omega$. The pairing of functions on Ω and $(0, T) \times \Omega$ is denoted by $\langle\cdot, \cdot\rangle_{\Omega}$ and $\langle\cdot, \cdot\rangle_{\Omega, T}$, respectively.

For $1 \leq q, s \leq \infty$ the usual Bochner space $L^{s}\left(0, T ; L^{q}(\Omega)\right)$ is equipped with the norm $\|\cdot\|_{q, s ; T}=\left(\int_{0}^{T}\|\cdot\|_{q}^{s} d \tau\right)^{1 / s}$ when $s<\infty$ and $\|\cdot\|_{q, \infty ; T}=\operatorname{ess} \sup _{(0, T)}\|\cdot\|_{q}$ when $s=\infty$.

Let $P_{q}: L^{q}(\Omega) \rightarrow L_{\sigma}^{q}(\Omega), 1<q<\infty$, be the Helmholtz projection, and let $A_{q}=-P_{q} \Delta$ with domain $D\left(A_{q}\right)=W^{2, q}(\Omega) \cap W_{0}^{1, q}(\Omega) \cap L_{\sigma}^{q}(\Omega)$ and range $R\left(A_{q}\right)=$ $L_{\sigma}^{q}(\Omega)$ denote the Stokes operator. We write $P=P_{q}$ and $A=A_{q}$ if there is no misunderstanding. For $-1 \leq \alpha \leq 1$ the fractional powers $A_{q}^{\alpha}: \mathcal{D}\left(A_{q}^{\alpha}\right) \rightarrow L_{\sigma}^{q}(\Omega)$ are well-defined closed operators with $\left(A_{q}^{\alpha}\right)^{-1}=A_{q}^{-\alpha}$. For $0 \leq \alpha \leq 1$ we have $D\left(A_{q}\right) \subseteq D\left(A_{q}^{\alpha}\right) \subseteq L_{\sigma}^{q}(\Omega)$ and $R\left(A_{q}^{\alpha}\right)=L_{\sigma}^{q}(\Omega)$. Then there holds the embedding estimate

$$
\begin{equation*}
\|v\|_{q} \leq C\left\|A_{q}^{\alpha} v\right\|_{\gamma}, \quad 0 \leq \alpha \leq 1,2 \alpha+\frac{3}{q}=\frac{3}{\gamma}, 1<\gamma \leq q \tag{2.1}
\end{equation*}
$$

for all $v \in D\left(A_{q}^{\alpha}\right)$. Further, we need the Stokes semigroup $e^{-t A_{q}}: L_{\sigma}^{q}(\Omega) \rightarrow L_{\sigma}^{q}(\Omega)$, $t \geq 0$, satisfying the estimate

$$
\begin{equation*}
\left\|A_{q}^{\alpha} e^{-t A_{q}} v\right\|_{q} \leq C t^{-\alpha} e^{-\beta t}\|v\|_{q}, 0 \leq \alpha \leq 1, t>0 \tag{2.2}
\end{equation*}
$$

for $v \in L_{\sigma}^{q}(\Omega)$ with constants $C=C(\Omega, q, \alpha)>0, \beta=\beta(\Omega, q)>0$; for details see $[2,7,8,9,11]$.

In order to solve the perturbed system (1.6) we use an approximation procedure based on Yosida's smoothing operators

$$
\begin{equation*}
J_{m}=\left(I+\frac{1}{m} A^{1 / 2}\right)^{-1} \quad \text { and } \quad \mathcal{J}_{m}=\left(I+\frac{1}{m}(-\Delta)^{1 / 2}\right)^{-1}, \quad m \in \mathbb{N} \tag{2.3}
\end{equation*}
$$

where I denotes the identity and $-\Delta$ the Dirichlet Laplacian on Ω. In particular, we need the properties

$$
\begin{align*}
& \left\|J_{m} v\right\|_{q} \leq C\|v\|_{q}, \quad\left\|A^{1 / 2} J_{m} v\right\|_{q} \leq m C\|v\|_{q}, m \in \mathbb{N} \tag{2.4}\\
& \lim _{m \rightarrow \infty} J_{m} v=v \quad \text { for all } v \in L_{\sigma}^{q}(\Omega)
\end{align*}
$$

and analogous results for $\mathcal{J}_{m} v, v \in L^{q}(\Omega)$; see $[8,9,16]$.
To solve the instationary Stokes system in $[0, T) \times \Omega$, cf. $[1,13,16,17,18]$, let us recall some properties for the special system

$$
\begin{align*}
V_{t}-\Delta V+\nabla H & =f_{0}+\operatorname{div} F_{0}, & \operatorname{div} V & =0 \\
V & =0 \text { on } \partial \Omega, & V(0) & =V_{0} \tag{2.5}
\end{align*}
$$

with data

$$
f_{0} \in L^{1}\left(0, T ; L^{2}(\Omega)\right), F_{0} \in L^{2}\left(0, T ; L^{2}(\Omega)\right), V_{0} \in L_{\sigma}^{2}(\Omega)
$$

here $F_{0}=\left(F_{0, i j}\right)_{i, j=1}^{3}$ and $\operatorname{div} F_{0}=\left(\sum_{i=1}^{3} \frac{\partial}{\partial x_{i}} F_{0, i j}\right)_{j=1}^{3}$. The linear system (2.5) admits a unique weak solution

$$
\begin{equation*}
V \in L^{\infty}\left(0, T ; L_{\sigma}^{2}(\Omega)\right) \cap L^{2}\left(0, T ; W_{0}^{1,2}(\Omega)\right) \tag{2.6}
\end{equation*}
$$

satisfying the variational formulation

$$
\begin{equation*}
-\left\langle V, w_{t}\right\rangle_{\Omega, T}+\langle\nabla V, \nabla w\rangle_{\Omega, T}=\left\langle V_{0}, w(0)\right\rangle_{\Omega}+\left\langle f_{0}, w\right\rangle_{\Omega, T}-\left\langle F_{0}, \nabla w\right\rangle_{\Omega, T} \tag{2.7}
\end{equation*}
$$

for all $w \in C_{0}^{\infty}\left([0, T) ; C_{0, \sigma}^{\infty}(\Omega)\right)$, and the energy equality

$$
\begin{equation*}
\frac{1}{2}\|V(t)\|_{2}^{2}+\int_{0}^{t}\|\nabla V\|_{2}^{2} d \tau=\frac{1}{2}\left\|V_{0}\right\|_{2}^{2}+\int_{0}^{t}\left\langle f_{0}, V\right\rangle_{\Omega} d \tau-\int_{0}^{t}\left\langle F_{0}, \nabla V\right\rangle_{\Omega} d \tau \tag{2.8}
\end{equation*}
$$

for $0 \leq t<T$. As a consequence of (2.8) we get the energy estimate

$$
\begin{equation*}
\frac{1}{2}\|V\|_{2, \infty ; T}^{2}+\|\nabla V\|_{2,2 ; T}^{2} \leq 8\left(\left\|V_{0}\right\|_{2}^{2}+\left\|f_{0}\right\|_{2,1 ; T}^{2}+\left\|F_{0}\right\|_{2,2 ; T}^{2}\right) \tag{2.9}
\end{equation*}
$$

and see that $V:[0, T) \rightarrow L_{\sigma}^{2}(\Omega)$ is continuous with $V(0)=V_{0}$. Moreover, it holds the well-defined representation formula

$$
\begin{equation*}
V(t)=e^{-t A} V_{0}+\int_{0}^{t} e^{-(t-\tau) A} P f_{0} d \tau+\int_{0}^{t} A^{1 / 2} e^{-(t-\tau) A} A^{-1 / 2} P \operatorname{div} F_{0} d \tau \tag{2.10}
\end{equation*}
$$

$0 \leq t<T$; see [16, Theorems IV.2.3.1 and 2.4.1, Lemma IV.2.4.2], and, concerning the operator $A^{-1 / 2} P \operatorname{div},[16$, Ch. III.2.6].

Consider the perturbed system (1.6) with $f=\operatorname{div} F, v_{0}, k$ and E as in Definition 1.1, here written in the form

$$
\begin{equation*}
v_{t}-\Delta v+\operatorname{div}(v+E)(v+E)-k(v+E)+\nabla p^{*}=f, \operatorname{div} v=0 \tag{2.11}
\end{equation*}
$$

together with the initial-boundary conditions $v=0$ on $\partial \Omega$ and $v(0)=v_{0}$.
In order to obtain the following approximate system, see [16, V, 2.2] for the known case $E \equiv 0$, we insert the Yosida operators (2.3) into (2.11) as follows:

$$
\begin{align*}
v_{t}-\Delta v+\operatorname{div}\left(J_{m} v+E\right)(v+E)-\left(\mathcal{J}_{m} k\right)(v+E)+\nabla p^{*} & =f, \operatorname{div} v
\end{align*}=0 .
$$

with $v=v_{m}, m \in \mathbb{N}$. Setting

$$
\begin{equation*}
F_{m}(v)=\left(J_{m} v+E\right)(v+E), f_{m}(v)=\left(\mathcal{J}_{m} k\right)(v+E) \tag{2.13}
\end{equation*}
$$

we write the approximate system (2.12) in the form

$$
\begin{align*}
v_{t}-\Delta v+\nabla p^{*}=f_{m}(v)+\operatorname{div}\left(F-F_{m}(v)\right), \operatorname{div} v & =0 \\
\left.v\right|_{\partial \Omega}=0,\left.v\right|_{t=0} & =v_{0} \tag{2.14}
\end{align*}
$$

as a linear system, see (2.5), with right-hand side depending on v. In this form we use the properties (2.6)-(2.10) of the linear system (2.5).

The following definition for (2.12) is obtained similarly as Definition 1.1.
Definition 2.1 (Approximate system) Suppose

$$
\begin{align*}
& f=\operatorname{div} F, F \in L^{2}\left(0, T ; L^{2}(\Omega)\right), v_{0} \in L_{\sigma}^{2}(\Omega) \\
& E \in L^{s}\left(0, T ; L^{q}(\Omega)\right), \operatorname{div} E=k \in L^{4}\left(0, T ; L^{2}(\Omega)\right) \tag{2.15}\\
& 4 \leq s<\infty, 4 \leq q<\infty, \frac{2}{s}+\frac{3}{q}=1
\end{align*}
$$

Then a vector field $v=v_{m}, m \in \mathbb{N}$, is called a weak solution of the approximate system (2.12) in $[0, T) \times \Omega$ with data f, v_{0} if the following conditions are satisfied:
a)

$$
\begin{equation*}
v \in L_{\mathrm{loc}}^{\infty}\left([0, T) ; L_{\sigma}^{2}(\Omega)\right) \cap L_{\mathrm{loc}}^{2}\left([0, T) ; W_{0}^{1,2}(\Omega)\right), \tag{2.16}
\end{equation*}
$$

b) for each $w \in C_{0}^{\infty}\left([0, T) ; C_{0, \sigma}^{\infty}(\Omega)\right)$,

$$
\begin{align*}
- & \left\langle v, w_{t}\right\rangle_{\Omega, T}+\langle\nabla v, \nabla w\rangle_{\Omega, T}-\left\langle\left(J_{m} v+E\right)(v+E), \nabla w\right\rangle_{\Omega, T} \tag{2.17}\\
- & \left\langle\left(\mathcal{J}_{m} k\right)(v+E), w\right\rangle_{\Omega, T}=\left\langle v_{0}, w(0)\right\rangle_{\Omega}-\langle F, \nabla w\rangle_{\Omega, T}
\end{align*}
$$

c) for $0 \leq t<T$,

$$
\begin{align*}
& \frac{1}{2}\|v(t)\|_{2}^{2}+\int_{0}^{t}\|\nabla v\|_{2}^{2} d \tau \leq \frac{1}{2}\left\|v_{0}\right\|_{2}^{2}-\int_{0}^{t}\left\langle F-\left(J_{m} v+E\right) E, \nabla v\right\rangle_{\Omega} d \tau \tag{2.18}\\
& \quad+\int_{0}^{t}\left\langle\left(\mathcal{J}_{m} k-\frac{1}{2} k\right) v, v\right\rangle_{\Omega} d \tau+\int_{0}^{t}\left\langle\left(\mathcal{J}_{m} k\right) E, v\right\rangle_{\Omega} d \tau
\end{align*}
$$

d) $v:[0, T) \rightarrow L_{\sigma}^{2}(\Omega)$ is continuous satisfying $v(0)=v_{0}$.

3 The approximate system

The following existence result yields a weak solution $v=v_{m}$ of (2.12) first of all only in an interval $\left[0, T^{\prime}\right.$) where $T^{\prime}=T^{\prime}(m)>0$ is sufficiently small.

Lemma 3.1 Let f, k, E, v_{0} be as in Definition 2.1 and let $m \in \mathbb{N}$. Then there exists some $T^{\prime}=T^{\prime}\left(f, k, E, v_{0}, m\right), 0<T^{\prime} \leq \min (1, T)$, such that the approximate system (2.12) has a unique weak solution $v=v_{m}$ in $\left[0, T^{\prime}\right) \times \Omega$ with data f, v_{0} in the sense of Definition 2.1 with T replaced by T^{\prime}.

Proof First we consider a given weak solution $v=v_{m}$ of (2.12) in $\left[0, T^{\prime}\right) \times \Omega$ with any $0<T^{\prime} \leq 1$. Hence it holds

$$
v \in X_{T^{\prime}}:=L^{\infty}\left(0, T^{\prime} ; L_{\sigma}^{2}(\Omega)\right) \cap L^{2}\left(0, T^{\prime} ; W_{0}^{1,2}(\Omega)\right)
$$

with

$$
\begin{equation*}
\|v\|_{X_{T^{\prime}}}:=\|v\|_{2, \infty ; T^{\prime}}+\left\|A^{\frac{1}{2}} v\right\|_{2,2 ; T^{\prime}}<\infty . \tag{3.1}
\end{equation*}
$$

Using Hölder's inequality and several embedding estimates, see [16, Ch. V.1.2], we obtain with some constant $C=C(\Omega)>0$ the estimates

$$
\begin{align*}
\left\|\left(J_{m} v\right) v\right\|_{2,2 ; T^{\prime}} & \leq C\left\|J_{m} v\right\|_{6,4 ; T^{\prime}}\|v\|_{3,4 ; T^{\prime}} \\
& \leq C\left\|A^{1 / 2} J_{m} v\right\|_{2,4 ; T^{\prime}}\|v\|_{X_{T^{\prime}}} \tag{3.2}\\
& \leq C m\|v\|_{2,4 ; T^{\prime}} \leq C m\left(T^{\prime}\right)^{1 / 4}\|v\|_{X_{T^{\prime}}}^{2}
\end{align*}
$$

and

$$
\begin{align*}
\left\|\left(J_{m} v\right) E\right\|_{2,2 ; T^{\prime}} & \leq C\left\|J_{m} v\right\|_{4,4 ; T^{\prime}}\|E\|_{4,4 ; T^{\prime}} \leq C\left\|J_{m} v\right\|_{6,4 ; T^{\prime}}\|E\|_{4,4 ; T^{\prime}} \tag{3.3}\\
& \leq C m\left(T^{\prime}\right)^{1 / 4}\|v\|_{X_{T^{\prime}}}\|E\|_{4,4 ; T^{\prime}} \\
\|E v\|_{2,2 ; T^{\prime}} & \leq C\|E\|_{q, s ; T^{\prime}}\|v\|_{\left(\frac{1}{2}-\frac{1}{q}\right)^{-1},\left(\frac{1}{2}-\frac{1}{s}\right)^{-1}, T^{\prime}} \leq C\|E\|_{q, s ; T^{\prime}}\|v\|_{X_{T^{\prime}}} \tag{3.4}
\end{align*}
$$

of course, $\|E E\|_{2,2 ; T^{\prime}} \leq C\|E\|_{4,4 ; T^{\prime}}^{2}$. Moreover,

$$
\begin{align*}
\left\|\left(\mathcal{J}_{m} k\right) v\right\|_{2,1 ; T^{\prime}} & \leq C\left\|\mathcal{J}_{m} k\right\|_{3,2 ; T^{\prime}}\|v\|_{6,2 ; T^{\prime}} \leq C\left\|(-\Delta)^{\frac{1}{2}} \mathcal{J}_{m} k\right\|_{2,2 ; T^{\prime}}\|v\|_{X_{T^{\prime}}} \tag{3.5}\\
& \leq C m\|k\|_{2,2 ; T^{\prime}}\|v\|_{X_{T^{\prime}}} \leq C m\left(T^{\prime}\right)^{\frac{1}{4}}\|k\|_{2,4 ; T^{\prime}}\|v\|_{X_{T^{\prime}}} \\
\left\|\left(\mathcal{J}_{m} k\right) E\right\|_{2,1 ; T^{\prime}} & \leq C\left\|\mathcal{J}_{m} k\right\|_{4,2 ; T^{\prime}}\|E\|_{4,2 ; T^{\prime}} \leq C\left\|(-\Delta)^{\frac{1}{2}} \mathcal{J}_{m} k\right\|_{2,2 ; T^{\prime}}\|E\|_{4,4 ; T^{\prime}} \tag{3.6}\\
& \leq C m\|k\|_{2,2 ; T^{\prime}}\|E\|_{4,4 ; T^{\prime}} \leq C m\left(T^{\prime}\right)^{\frac{1}{4}}\|k\|_{2,4 ; T^{\prime}}\|E\|_{4,4 ; T^{\prime}}
\end{align*}
$$

Using (2.14) and the energy estimate (2.9) with f_{0}, F_{0} replaced by $f_{m}(v)$, $F-F_{m}(v)$ we get from (3.2)-(3.5) the estimate

$$
\begin{align*}
\|v\|_{X_{T^{\prime}}} \leq C & \left(\left\|v_{0}\right\|_{2}+\|F\|_{2,2 ; T^{\prime}}+\|E\|_{4,4 ; T^{\prime}}^{2}+m\left(T^{\prime}\right)^{\frac{1}{4}}\|v\|_{X_{T^{\prime}}}^{2}+\right. \\
& +m\left(T^{\prime}\right)^{\frac{1}{4}}\|v\|_{X_{T^{\prime}}}\|E\|_{4,4 ; T^{\prime}}+\|v\|_{X_{T^{\prime}}}\|E\|_{q, s ; T^{\prime}}+ \tag{3.7}\\
& \left.+m\left(T^{\prime}\right)^{\frac{1}{4}}\|k\|_{2,4 ; T^{\prime}}\left(\|E\|_{4,4 ; T^{\prime}}+\|v\|_{X_{T^{\prime}}}\right)\right)
\end{align*}
$$

with $C=C(\Omega)>0$.
Applying (2.10) to (2.14) we obtain the equation

$$
\begin{equation*}
v=\mathcal{F}_{T^{\prime}}(v) \tag{3.8}
\end{equation*}
$$

where

$$
\begin{aligned}
\left(\mathcal{F}_{T^{\prime}}(v)\right)(t)= & e^{-t A} v_{0}+\int_{0}^{t} e^{-(t-\tau) A} P f_{m}(v) d \tau \\
& +\int_{0}^{t} A^{\frac{1}{2}} e^{-(t-\tau) A} A^{-\frac{1}{2}} P \operatorname{div}\left(F-F_{m}(v)\right) d \tau
\end{aligned}
$$

Let

$$
\begin{align*}
& a=C m\left(T^{\prime}\right)^{\frac{1}{4}}, b=C\|E\|_{q, s ; T^{\prime}}+C m\left(T^{\prime}\right)^{\frac{1}{4}}\|E\|_{4,4 ; T^{\prime}}+C m\left(T^{\prime}\right)^{\frac{1}{4}}\|k\|_{2,4 ; T^{\prime}}, \tag{3.9}\\
& d=C\left(\left\|v_{0}\right\|_{2}+\|E\|_{4,4 ; T^{\prime}}^{2}+\|F\|_{2,2 ; T^{\prime}}+m\left(T^{\prime}\right)^{\frac{1}{4}}\|k\|_{2,4 ; T^{\prime}}\|E\|_{4,4 ; T^{\prime}}\right)
\end{align*}
$$

with C as in (3.7). Then (3.7) may be rewritten in the form

$$
\begin{equation*}
\left\|\mathcal{F}_{T^{\prime}}(v)\right\|_{X_{T^{\prime}}} \leq a\|v\|_{X_{T^{\prime}}}^{2}+b\|v\|_{X_{T^{\prime}}}+d \tag{3.10}
\end{equation*}
$$

Up to now $v=v_{m}$ was a given solution as desired in Lemma 3.1. In the next step we treat (3.8) as a fixed point equation in $X_{T^{\prime}}$ and show with Banach's fixed point principle that (3.8) has a solution $v=v_{m}$ if $T^{\prime}>0$ is sufficiently small.

Thus let $v \in X_{T^{\prime}}$ and choose $0<T^{\prime} \leq \min (1, T)$ such that the smallness condition

$$
\begin{equation*}
4 a d+2 b<1 \tag{3.11}
\end{equation*}
$$

is satisfied. Then the quadratic equation $y=a y^{2}+b y+d$ has a minimal positive root given by

$$
0<y_{1}=2 d\left(1-b+\sqrt{b^{2}+1-(4 a d+2 b)}\right)^{-1}<2 d
$$

and, since $y_{1}=a y_{1}^{2}+b y_{1}+d>d$, we conclude that $\mathcal{F}_{T^{\prime}}$ maps the closed ball $B_{T^{\prime}}=\left\{v \in X_{T^{\prime}}:\|v\|_{X_{T^{\prime}}} \leq y_{1}\right\}$ into itself.

Further let $v_{1}, v_{2} \in B_{T^{\prime}}$. Then we obtain similarly as in (3.10) the estimate

$$
\begin{align*}
& \left\|\mathcal{F}_{T^{\prime}}\left(v_{1}\right)-\mathcal{F}_{T^{\prime}}\left(v_{2}\right)\right\|_{X_{T^{\prime}}} \leq C m\left(T^{\prime}\right)^{\frac{1}{4}}\left\|v_{1}-v_{2}\right\|_{X_{T^{\prime}}}\left(\left\|v_{1}\right\|_{X_{T^{\prime}}}+\left\|v_{2}\right\|_{X_{T^{\prime}}}\right) \\
& \left.\quad+C\left\|v_{1}-v_{2}\right\|_{X_{T^{\prime}}}\|E\|_{q, s ; T^{\prime}}+m\left(T^{\prime}\right)^{\frac{1}{4}}\|k\|_{2,4 ; T^{\prime}}+m\left(T^{\prime}\right)^{\frac{1}{4}}\|E\|_{4,4 ; T^{\prime}}\right) \tag{3.12}\\
& \quad \leq\left\|v_{1}-v_{2}\right\|_{X_{T^{\prime}}}\left(a\left(\left\|v_{1}\right\|_{X_{T^{\prime}}}+\left\|v_{2}\right\|_{X_{T^{\prime}}}\right)+b\right)
\end{align*}
$$

where

$$
\begin{equation*}
a\left(\left\|v_{1}\right\|_{X_{T^{\prime}}}+\left\|v_{2}\right\|_{X_{T^{\prime}}}\right)+b \leq 2 a y_{1}+b<4 a d+2 b<1 . \tag{3.13}
\end{equation*}
$$

This means that $\mathcal{F}_{\mathcal{T}^{\prime}}$ is a strict contraction on $B_{T^{\prime}}$. Now Banach's fixed point principle yields a solution $v=v_{m} \in B_{T^{\prime}}$ of (3.8) which is unique in $B_{T^{\prime}}$.

Using (2.6)-(2.10) with $f_{0}+\operatorname{div} F_{0}$ replaced by $f_{m}(v)+\operatorname{div}\left(F-F_{m}(v)\right)$ we conclude from (3.8) that $v=v_{m}$ is a solution of the approximate system (2.12) in the sense of Definition 2.1.

Finally we show that v is unique not only in $B_{T^{\prime}}$, but even in the whole space $X_{T^{\prime}}$. Indeed, consider any solution $\tilde{v} \in X_{T^{\prime}}$ of (2.12). Then there exists some $0<T^{*} \leq \min \left(1, T^{\prime}\right)$ such that $\|\tilde{v}\|_{X_{T^{*}}} \leq y_{1}$, and using (3.12), (3.13) with v_{1}, v_{2} replaced by v, \tilde{v} we conclude that $v=\tilde{v}$ on $\left[0, T^{*}\right]$. When $T^{*}<T^{\prime}$ we repeat this step finitely many times and obtain that $v=\tilde{v}$ on $\left[0, T^{\prime}\right)$. This completes the proof of Lemma 3.1.

The next preliminary result yields an energy estimate for the approximate solution $v=v_{m}$ of (2.12). It is important that the right-hand side of this estimate does not depend on $m \in \mathbb{N}$. This will enable us to treat the limit $m \rightarrow \infty$ and to get the desired solution in Theorem 1.4, a).

Lemma 3.2 Consider any weak solution $v=v_{m}, m \in \mathbb{N}$, of the approximate system (2.12) in the sense of Definition 2.1. Then there is a constant $C=$
$C(\Omega)>0$ such that the energy estimate

$$
\begin{align*}
& \|v(t)\|_{2}^{2}+\int_{0}^{t}\|\nabla v\|_{2}^{2} d \tau \tag{3.14}\\
& \leq C\left(\left\|v_{0}\right\|_{2}^{2}+\|F\|_{2,2 ; t}^{2}+\|E\|_{4,4 ; t}^{4}\right) \exp \left(C\|k\|_{2,4 ; t}^{4}+C\|E\|_{q, s ; t}^{s}\right)
\end{align*}
$$

holds for $0 \leq t<T$.
Proof The proof of (3.14) is based on the energy inequality (2.18). Using similar arguments as in (3.2)-(3.6) we obtain the following estimates of the right-hand side terms in (2.18); here $\varepsilon>0$ means an absolute constant, $C_{0}=C_{0}(\Omega)>0$ and $C=C(\varepsilon, \Omega)>0$ do not depend on m, and $\alpha=\frac{2}{s}=1-\frac{3}{q}$. First of all

$$
\begin{align*}
\left|\int_{0}^{t}\left\langle\left(J_{m} v\right) E, \nabla v\right\rangle_{\Omega} d \tau\right| & \leq C_{0} \int_{0}^{t}\left\|J_{m} v\right\|_{\left(\frac{1}{2}-\frac{1}{q}\right)-1}\|E\|_{q}\|\nabla v\|_{2} d \tau \\
& \leq C_{0} \int_{0}^{t}\|v\|_{\left(\frac{1}{2}-\frac{1}{q}\right)^{-1}}\|E\|_{q}\|\nabla v\|_{2} d \tau \tag{3.15}\\
& \leq C_{0} \int_{0}^{t}\|v\|_{2}^{\alpha}\|E\|_{q}\|\nabla v\|_{2}^{2-\alpha} d \tau \\
& \leq \varepsilon\|\nabla v\|_{2,2 ; t}^{2}+C \int_{0}^{t}\|E\|_{q}^{s}\|v\|_{2}^{2} d \tau
\end{align*}
$$

and

$$
\begin{aligned}
& \left|\int_{0}^{t}\langle E E, \nabla v\rangle_{\Omega} d \tau\right| \leq C_{0} \int_{0}^{t}\|E\|_{4}^{2}\|\nabla v\|_{2} d \tau \leq \varepsilon\|\nabla v\|_{2,2 ; t}^{2}+C\|E\|_{4,4 ; t}^{4}, \\
& \quad\left|\int_{0}^{t}\langle F, \nabla v\rangle_{\Omega} d \tau\right| \leq \varepsilon\|\nabla v\|_{2,2 ; t}^{2}+C\|F\|_{2,2 ; t}^{2} .
\end{aligned}
$$

Moreover, since $\|v\|_{4} \leq C_{0}\|\nabla v\|_{2}^{1 / 4}\|\nabla v\|_{2}^{3 / 4}$,

$$
\begin{aligned}
\left|\int_{0}^{t}\left\langle\mathcal{J}_{m} k v, v\right\rangle_{\Omega} d \tau\right| & \leq \varepsilon\|\nabla v\|_{2,2 ; t}^{2}+C \int_{0}^{t}\|k\|_{2}^{4}\|v\|_{2}^{2} d \tau \\
\left|\int_{0}^{t}\left\langle\left(\mathcal{J}_{m} k\right) E, v\right\rangle_{\Omega} d \tau\right| & \leq C_{0} \int_{0}^{t}\left\|\left(\mathcal{J}_{m} k\right) E\right\|_{\frac{6}{5}}\|v\|_{6} d \tau \\
& \leq C_{0} \int_{0}^{t}\|k\|_{2}\|E\|_{3}\|\nabla v\|_{2} d \tau \\
& \leq \varepsilon\|\nabla v\|_{2,2 ; t}^{2}+C\left(\|k\|_{2,4 ; t}^{4}+\|E\|_{4,4 ; t}^{4}\right)
\end{aligned}
$$

A similar estimate as for $\int_{0}^{t}\left\langle\mathcal{J}_{m} k v, v\right\rangle_{\Omega} d \tau$ also holds for $\int_{0}^{t}\langle k v, v\rangle_{\Omega} d \tau$.
Choosing $\varepsilon>0$ sufficiently small we apply these inequalities to (2.18) and obtain that

$$
\begin{aligned}
\|v(t)\|_{2}^{2}+\|\nabla v\|_{2,2 ; t}^{2} \leq & C\left(\left\|v_{0}\right\|_{2}^{2}+\|F\|_{2,2 ; t}^{2}+\|E\|_{4,4 ; t}^{4}+\|k\|_{2,4 ; t}^{4}\right) \\
& +C \int_{0}^{t}\left(\|k\|_{2}^{4}+\|E\|_{q}^{s}\right)\|v\|_{2}^{2} d \tau
\end{aligned}
$$

for $0 \leq t<T$. Then Gronwall's lemma implies that

$$
\begin{align*}
\|v(t)\|_{2}^{2}+\int_{0}^{t}\|\nabla v\|_{2}^{2} d \tau \leq & C\left(\left\|v_{0}\right\|_{2}^{2}+\|F\|_{2,2 ; t}^{2}+\|E\|_{4,4 ; t}^{4}+\|k\|_{2,4 ; t}^{4}\right) \tag{3.16}\\
& \times \exp \left(C\|k\|_{2,4 ; t}^{4}+C\|E\|_{q, s ; t}^{s}\right)
\end{align*}
$$

for $0 \leq t<T$. Taking C_{2} sufficiently large we may omit in (3.16) the term $\|k\|_{2,4 ; t}^{4}$ at its first place. This yields the estimate (3.14).

The next result proves the existence of a unique approximate solution $v=v_{m}$ for the given interval $[0, T)$.

Lemma 3.3 Let f, k, E, v_{0} be given as in Definition 2.1 and let $m \in \mathbb{N}$. Then there exists a unique weak solution $v=v_{m}$ of the approximate system (2.12) in $[0, T) \times \Omega$ with data f, v_{0}.

Proof Lemma 3.1 yields such a solution if $0<T \leq 1$ is sufficiently small. Let $\left[0, T^{*}\right) \subseteq[0, T), T^{*}>0$, be the largest interval of existence of such a solution $v=v_{m}$ in $\left[0, T^{*}\right) \times \Omega$, and assume that $T^{*}<T$. Further we choose some finite $T^{* *}>T^{*}$ with $T^{* *} \leq T$, and some T_{0} satisfying $0<T_{0}<T^{*}$. Then we apply Lemma 3.1 with $\left[0, T^{\prime}\right)$ replaced by $\left[T_{0}, T_{0}+\delta\right)$ where $\delta>0, T_{0}+\delta \leq T^{* *}$, and find a unique weak solution $v^{*}=v_{m}^{*}$ of the system (2.12) in $\left[T_{0}, T_{0}+\delta\right) \times \Omega$ with initial value $\left.v^{*}\right|_{t=T_{0}}=v\left(T_{0}\right)$. The length δ of the existence interval $\left[T_{0}, T_{0}+\right.$ δ), see the proof of Lemma 3.1, only depends on $\left\|v\left(T_{0}\right)\right\|_{2} \leq\|v\|_{2, \infty ; T^{*}}<\infty$ and on $\|F\|_{2,2 ; T^{* *}},\|E\|_{q, s ; T^{* *}},\|k\|_{2,4 ; T^{* *}}$, and can be chosen independently of T_{0}. Therefore, we can choose T_{0} close to T^{*} in such a way that $T^{*}<T_{0}+\delta \leq T^{* *}$. Then v^{*} yields a unique extension of v from $\left[0, T^{*}\right)$ to $\left[0, T_{0}+\delta\right)$ which is a contradiction. This proves the lemma.

In the next step, see $\S 4$ below, we are able to let $m \rightarrow \infty$ similarly as in the classical case $E \equiv 0$. This will yield a solution of the perturbed system (1.6).

4 Proof of Theorem 1.4

It is sufficient to prove Theorem 1.4, a). For this purpose we start with the sequence $\left(v_{m}\right)$ of solutions of the approximate system (2.12) constructed in Lemma 3.3. Then, using Lemma 3.2, we find for each finite $T^{*}, 0<T^{*} \leq T$, some constant $C_{T^{*}}>0$ not depending on m such that

$$
\begin{equation*}
\left\|v_{m}\right\|_{2, \infty ; T^{*}}^{2}+\left\|\nabla v_{m}\right\|_{2,2 ; T^{*}}^{2} \leq C_{T^{*}} \tag{4.1}
\end{equation*}
$$

Hence there exists a vector field

$$
\begin{equation*}
v \in L^{\infty}\left(0, T^{*} ; L_{\sigma}^{2}(\Omega)\right) \cap L^{2}\left(0, T^{*} ; W_{0}^{1,2}(\Omega)\right) \tag{4.2}
\end{equation*}
$$

and a subsequence of $\left(v_{m}\right)$, for simplicity again denoted by $\left(v_{m}\right)$, with the following properties, see, e.g. [16, Ch. V.3.3]:

$$
\begin{align*}
& v_{m} \rightharpoonup v \text { in } L^{2}\left(0, T^{*} ; W_{0}^{1,2}(\Omega)\right) \quad(\text { weakly }) \\
& v_{m} \rightarrow v \text { in } L^{2}\left(0, T^{*} ; L^{2}(\Omega)\right) \quad \text { (strongly) } \tag{4.3}\\
& v_{m}(t) \rightarrow v(t) \text { in } L^{2}(\Omega) \text { for a.a. } t \in\left[0, T^{*}\right) .
\end{align*}
$$

Moreover, for all $t \in\left[0, T^{*}\right)$ we obtain that

$$
\begin{align*}
\|\nabla v\|_{2,2 ; t}^{2} & \leq \liminf _{m \rightarrow \infty}\left\|\nabla v_{m}\right\|_{2,2 ; t}^{2}, \tag{4.4}\\
\|v(t)\|_{2}^{2} & \leq \liminf _{m \rightarrow \infty}\left\|v_{m}(t)\right\|_{2}^{2}
\end{align*}
$$

Further, using Hölder's inequality and (4.2) - (4.4) we get with some further subsequence, again denoted by $\left(v_{m}\right)$, that

$$
\begin{gather*}
v_{m} \rightharpoonup v \quad \text { in } L^{s_{1}}\left(0, T^{*} ; L^{q_{1}}(\Omega)\right), \frac{2}{s_{1}}+\frac{3}{q_{1}}=\frac{3}{2}, 2 \leq s_{1}, q_{1}<\infty, \\
v_{m} v_{m} \rightharpoonup v v \quad \text { in } L^{s_{2}}\left(0, T^{*} ; L^{q_{2}}(\Omega)\right), \frac{2}{s_{2}}+\frac{3}{q_{2}}=3,1 \leq s_{2}, q_{2}<\infty, \tag{4.5}\\
v_{m} \cdot \nabla v_{m} \rightharpoonup v \cdot \nabla v \quad \text { in } L^{s_{3}}\left(0, T^{*} ; L^{q_{3}}(\Omega)\right), \frac{2}{s_{3}}+\frac{3}{q_{3}}=4,1 \leq s_{3}, q_{3}<\infty,
\end{gather*}
$$

and that with some constant $C=C_{T^{*}}>0$:

$$
\begin{align*}
\left\|\left(J_{m} v_{m}\right) v_{m}\right\|_{q_{2}, s_{2} ; T^{*}} & \leq C\left\|v_{m}\right\|_{q_{1}, s_{1} ; T^{*}}^{2} \tag{4.6}\\
\left\|\left(J_{m} v_{m}\right) E\right\|_{\left(\frac{1}{q}+\frac{1}{q_{1}}\right)^{-1},\left(\frac{1}{s}+\frac{1}{s_{1}}\right)^{-1} ; T^{*}} & \leq C\left\|v_{m}\right\|_{q_{1}, s_{1} ; T^{*}}\|E\|_{q, s ; T^{*}} \tag{4.7}\\
\left\|E v_{m}\right\|_{\left(\frac{1}{q}+\frac{1}{q_{1}}\right)^{-1},\left(\frac{1}{s}+\frac{1}{s_{1}}\right)^{-1} ; T^{*}} & \leq C\left\|v_{m}\right\|_{q_{1}, s_{1} ; T^{*}}\|E\|_{q, s ; T^{*}} \tag{4.8}\\
\left|\left\langle\left(J_{m} v_{m}\right) E, \nabla v_{m}\right\rangle_{\Omega, T^{*}}\right| & \leq C\left\|v_{m}\right\|_{q_{1}, s_{1} ; T^{*}}\|E\|_{q, s ; T^{*}}\left\|\nabla v_{m}\right\|_{2,2 ; T^{*}} \tag{4.9}
\end{align*}
$$

as well as

$$
\begin{align*}
\left|\left\langle k v_{m}, v_{m}\right\rangle_{\Omega, T^{*}}\right| & \leq C\|k\|_{2,4 ; T^{*}}\left\|v_{m}\right\|_{q_{1}, s_{1} ; T^{*}}^{2} \\
\left|\left\langle\left(\mathcal{J}_{m} k\right) v_{m}, v_{m}\right\rangle_{\Omega, T^{*}}\right| & \leq C\|k\|_{2,4 ; T^{*}}\left\|v_{m}\right\|_{q_{1}, s_{1} ; T^{*}}^{2} \tag{4.10}\\
\left|\left\langle\left(\mathcal{J}_{m} k\right) E, v_{m}\right\rangle_{\Omega, T^{*}}\right| & \leq C\|k\|_{2,4 ; T^{*}}\|E\|_{q, s ; T^{*}}\left\|v_{m}\right\|_{q_{1}, s_{1} ; T^{*}}
\end{align*}
$$

The theorem is proved when we show that (2.16)-(2.18) imply letting $m \rightarrow \infty$ the properties (1.8)-(1.10) and the estimate (1.28). This proof rests on the above arguments (4.1)-(4.10).

Obviously, (1.8) follows from (4.1), letting $m \rightarrow \infty$. Further, the relation (1.9) follows from (2.17) and (2.4) using that

$$
\begin{align*}
\left\langle v_{m}, w_{t}\right\rangle_{\Omega, T^{*}} & \rightarrow\left\langle v, w_{t}\right\rangle_{\Omega, T^{*}} \\
\left\langle\nabla v_{m}, \nabla w\right\rangle_{\Omega, T^{*}} & \rightarrow\langle\nabla v, \nabla w\rangle_{\Omega, T^{*}} \tag{4.11}\\
\left\langle\left(J_{m} v_{m}+E\right)\left(v_{m}+E\right), \nabla w\right\rangle_{\Omega, T^{*}} & \rightarrow\langle(v+E)(v+E), \nabla w\rangle_{\Omega, T^{*}} \\
\left\langle\left(\mathcal{J}_{m} k\right)\left(v_{m}+E\right), w\right\rangle_{\Omega, T^{*}} & \rightarrow\langle k(v+E), w\rangle_{\Omega, T^{*}} .
\end{align*}
$$

To prove the energy inequality (1.10) we need in (2.18), letting $m \rightarrow \infty$, the following arguments.

The left-hand side of (1.10) follows obviously from (4.4). To prove the righthand side limit $m \rightarrow \infty$ in (2.18) we first show that

$$
\begin{equation*}
\left\langle\left(J_{m} v_{m}\right) E, \nabla v_{m}\right\rangle_{\Omega, T^{*}} \rightarrow\langle v E, \nabla v\rangle_{\Omega, T^{*}} \tag{4.12}
\end{equation*}
$$

It is sufficient to prove (4.12) with E replaced by some smooth vector field \tilde{E} such that $\|E-\tilde{E}\|_{q, s ; T^{*}}$ is sufficiently small. This follows using (4.9) with E replaced by $E-\tilde{E}$. Thus we may assume in the following that E in (4.12) is a smooth function $E \in C_{0}^{\infty}\left(\left[0, T^{*}\right) ; C_{0}^{\infty}(\Omega)\right)$. Using (4.1) - (4.4) and (2.4), we conclude that

$$
\begin{aligned}
& \left|\left\langle\left(J_{m} v_{m}\right) E-v E, \nabla v_{m}\right\rangle_{\Omega, T^{*}}\right| \\
& \quad \leq\left\|\left(J_{m} v_{m}\right) E-v E\right\|_{2,2 ; T^{*}}\left\|\nabla v_{m}\right\|_{2,2 ; T^{*}} \\
& \quad \leq C(E)\left\|J_{m} v_{m}-v\right\|_{2,2 ; T^{*}} \\
& \quad \leq C(E)\left(\left\|J_{m}\left(v_{m}-v\right)\right\|_{2,2 ; T^{*}}+\left\|\left(J_{m}-I\right) v\right\|_{2,2 ; T^{*}}\right) \\
& \leq C(E)\left(\left\|v_{m}-v\right\|_{2,2 ; T^{*}}+\left\|\left(J_{m}-I\right) v\right\|_{2,2 ; T^{*}}\right) \rightarrow 0
\end{aligned}
$$

as $m \rightarrow \infty$ where $C(E)>0$ is a constant. This yields (4.12).
Similarly, approximating k by a smooth function $k \in C_{0}^{\infty}\left(\left[0, T^{*}\right) ; C_{0}^{\infty}(\Omega)\right)$, we obtain the convergence properties

$$
\begin{aligned}
\left\langle k v_{m}, v_{m}\right\rangle_{\Omega, T^{*}} & \rightarrow\langle k v, v\rangle_{\Omega, T^{*}} \\
\left\langle\left(\mathcal{J}_{m} k\right) v_{m}, v_{m}\right\rangle_{\Omega, T^{*}} & \rightarrow\langle k v, v\rangle_{\Omega, T^{*}} \\
\left\langle\left(\mathcal{J}_{m} k\right) E, v_{m}\right\rangle_{\Omega, T^{*}} & \rightarrow\langle k E, v\rangle_{\Omega, T^{*}}
\end{aligned}
$$

Since $E \in L^{4}\left(0, T^{*} ; L^{4}(\Omega)\right)$, the convergence $\left\langle E E, \nabla v_{m}\right\rangle_{\Omega, T^{*}} \rightarrow\langle E E, \nabla v\rangle_{\Omega, T^{*}}$ is obvious.

This proves that v is a weak solution in the sense of Definition 1.1.
To prove the energy estimate (1.28) we apply (4.4) to (3.14). This completes the proof.

5 More general weak solutions

The existence of a weak solution v for the perturbed system (1.6) under the general assumption on E in Theorem 1.4 a) enables us to extend the solution class of the Navier-Stokes system (1.1) using certain generalized data. For simplicity we only consider the case $k=0$.

Theorem 5.1 (More general weak solutions) Consider

$$
\begin{align*}
& f=\operatorname{div} F, F \in L^{2}\left(0, T ; L^{2}(\Omega)\right), v_{0} \in L_{\sigma}^{2}(\Omega) \tag{5.1}\\
& E \in L^{s}\left(0, T ; L^{q}(\Omega)\right), 4 \leq s<\infty, 4 \leq q<\infty, \frac{2}{s}+\frac{3}{q}=1 \tag{5.2}
\end{align*}
$$

satisfying

$$
\begin{equation*}
E_{t}-\Delta E+\nabla h=0, \operatorname{div} E=0 \tag{5.3}
\end{equation*}
$$

in $(0, T) \times \Omega$ in the sense of distributions with an associated pressure h.
Let v be a weak solution of the perturbed system (1.6) in $[0, T) \times \Omega$ in the sense of Definition 1.1 with E, f, v_{0} from (5.1) - (5.3).

Then the vector field $u=v+E$ is a solution of the Navier-Stokes system

$$
\begin{align*}
u_{t}-\Delta u+u \cdot \nabla u+\nabla p & =f, \operatorname{div} u
\end{aligned}=0 \quad \begin{aligned}
\left.u\right|_{\partial \Omega} & =g,\left.u\right|_{t=0} \tag{5.4}
\end{align*}=u_{0}
$$

in $[0, T) \times \Omega$ with external force f and (formally) given data

$$
\begin{equation*}
g:=\left.E\right|_{\partial \Omega}, \quad u_{0}:=v_{0}+\left.E\right|_{t=0} \tag{5.6}
\end{equation*}
$$

in the generalized (well-defined) sense that

$$
\left.(u-E)\right|_{\partial \Omega}=0,\left.\quad(u-E)\right|_{t=0}=v_{0},
$$

and (5.4) is satisfied in the sense of distributions with an associated pressure p.
Remark 5.2 (Regularity properties)
a) Let E in (5.2) be regular in the sense that g and $E_{0}=\left.E\right|_{t=0}$ in (5.6) have the properties in Lemma 1.2. Then the solution $u=v+E$ has the properties in Theorem 1.4, b).
b) Let E in (5.2) be regular in the sense that g and $E_{0}=\left.E\right|_{t=0}$ in (5.6) have the properties in (1.26). Then the solution $u=v+E$ is correspondingly regular and (5.5) is well-defined in the usual strong sense.

References

[1] H. Amann: On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech. 2 (2000), 16-98
[2] H. Amann: Navier-Stokes equations with nonhomogeneous Dirichlet data, J. Nonlinear Math. Phys. 10 Suppl. 1 (2003), 1-11
[3] R. Farwig, G.P. Galdi and H. Sohr: A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data. J. Math. Fluid Mech. 8 (2006), 423-444
[4] R. Farwig, H. Kozono and H. Sohr: Global weak solutions of the NavierStokes system with nonzero boundary conditions. Funkcial. Ekvac. (to appear)
[5] R. Farwig, H. Kozono and H. Sohr: Global Leray-Hopf weak solutions of the Navier-Stokes equations with nonzero time-dependent boundary values. Manuscript 2010
[6] A.V. Fursikov, M.D. Gunzburger, L.S. Hou: Inhomogeneous boundary value problems for the three-dimensional evolutionary Navier-Stokes equations. J. Math. Fluid Mech. 4 (2002), 45-75
[7] G.P. Galdi: An Introduction to the Mathematical Theory of the NavierStokes Equations. Vol. I, Springer Verlag, New York, 1994
[8] Y. Giga: Analyticity of the semigroup generated by the Stokes operator in L_{r}-spaces. Math. Z. 178 (1981), 297-329
[9] Y. Giga and H. Sohr: Abstract L^{p} estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102 (1991), 72-94
[10] G. Grubb: Nonhomogeneous Dirichlet Navier-Stokes problems in low regularity L_{p} Sobolev spaces. J. Math. Fluid Mech. 3 (2001), 57-81
[11] J.G. Heywood: The Navier-Stokes Equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29 (1980), 639-681
[12] E. Hopf: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4 (1950), 213-231
[13] O.A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York, 1969
[14] J. Leray: Sur le mouvement d'un liquide visqueux emplissant l' espace. Acta Math. 63 (1934), 193-248
[15] J.P. Raymond: Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 24, 921951 (2007)
[16] H. Sohr: The Navier-Stokes Equations. Birkhäuser Verlag, Basel, 2001
[17] V.A. Solonnikov: Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math. 8 (1977), 467-529
[18] R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam, 1977

[^0]: ${ }^{1}$ Department of Mathematics, Darmstadt University of Technology, 64289 Darmstadt, Germany, and Center of Smart Interfaces (CSI), 64287 Darmstadt, Germany, farwig@mathematik.tu-darmstadt.de
 ${ }^{2}$ Mathematical Institute, Tôhoku University, Sendai, 980-8578 Japan, kozono@math. tohoku.ac.jp
 ${ }^{3}$ Faculty of Electrical Engineering, Informatics and Mathematics, University of Paderborn, 33098 Paderborn, Germany, hsohr@math.uni-paderborn.de

