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Abstract

Consider a smooth bounded domain Ω ⊆ R3, a time interval [0, T ),
0 < T ≤ ∞, and a weak solution u of the Navier-Stokes system. Our aim
is to develop several new sufficient conditions on u yielding uniqueness
and/or regularity. Based on semigroup properties of the Stokes operator
we obtain that the local left-hand Serrin condition for each t ∈ (0, T )
is sufficient for the regularity of u. Somehow optimal conditions are ob-
tained in terms of Besov spaces. In particular we obtain such properties
under the limiting Serrin condition u ∈ L∞

loc([0, T );L3(Ω)). The complete
regularity under this condition has been shown recently for bounded do-
mains using some additional assumptions in particular on the pressure.
Our result avoids such assumptions but yields global uniqueness and the
right-hand regularity at each time when u ∈ L∞

loc([0, T );L3(Ω)) or when
u(t) ∈ L3(Ω) pointwise and u satisfies the energy equality. In the last
section we obtain uniqueness and right-hand regularity for completely
general domains.
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1 Introduction and Preliminaries

Let Ω ⊆ R3 be a bounded domain with boundary ∂Ω of class C2,1 and let 0 < T ≤ ∞.
Then we consider in [0, T )×Ω the Navier-Stokes system

ut −∆u + u · ∇u +∇p = 0, div u = 0 (1.1)
u
∣∣
∂Ω

= 0, u
∣∣
t=0

= u0 .

In particular, we are interested in weak solutions u of this system for initial values
u0 ∈ L2

σ(Ω); here p means the associated pressure.

Definition 1.1: Let u0 ∈ L2
σ(Ω). Then a vector field

u ∈ L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;W 1,2

0 (Ω)) (1.2)

is called a (Leray-Hopf type) weak solution of the system (1.1), if the relation

−〈u, wt〉Ω,T + 〈∇u,∇w〉Ω,T − 〈uu,∇w〉Ω,T = 〈u0, w(0)〉Ω (1.3)

holds for each w ∈ C∞
0 ([0, T );C∞

0,σ(Ω)), and if the strong energy inequality

1
2
||u(t)||22 +

∫ t

t0

||∇u||22 dτ ≤ 1
2
||u(t0)||22 (1.4)

holds for almost all t0 ∈ [0, T ), including for t0 = 0, and all t ∈ [t0, T ).

Usually, the energy inequality (1.4) is supposed for weak solutions u only for
t0 = 0. However, since Ω is bounded, we can prove the existence of weak solutions u
satisfying (1.2) - (1.4), see [10, Theorem V.3.6.2].

Another interesting problem concerns the energy equality

1
2
||u(t)||22 +

∫ t

t0

||∇u||22 dτ =
1
2
||u(t0)||22 for all 0 ≤ t0 ≤ t < T, (1.5)

describing the precise energy balance between the kinetic energy 1
2 ||u(t)||22 and the

dissipation energy
t∫

t0

||∇u||22 dτ in the interval [t0, t].

To prove (1.5) we need an additional condition on the given weak solution u.
Assume that u satisfies one of the following conditions:

a) uu ∈ L2
loc([0, T );L2(Ω)), (1.6)

b) u ∈ L4
loc([0, T );L4(Ω)), (1.7)

c) u ∈ Ls
loc([0, T );Lq(Ω)), 2 < s ≤ ∞, 3 ≤ q < ∞,

2
s

+
3
q

= 1. (1.8)
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Then the energy equality (1.5) is satisfied for all 0 ≤ t0 ≤ t < T .

Concerning the proof for a), see [10, Theorem V.3.6.1], obviously b) implies a),
and to prove the assertion in c) we observe that "c) ⇒ a)" follows from the embedding
inequality

||uu||L2(0,T ′;L2(Ω)) ≤ C ||u||Ls(0,T ′;Lq(Ω)) ||u||Ls1 (0,T ′;Lq1 (Ω)) (1.9)

≤ C ||u||Ls(0,T ′;Lq(Ω)) ||∇u||3/q

L2(0,T ′;L2(Ω))
||u||2/s

L∞(0,T ′;L2(Ω))
,

0 < T ′ ≤ T, T ′ < ∞, where C = C(Ω) > 0 is a constant and s1 = (1
2 −

1
s )−1, q1 =

(1
2 −

1
q )−1; see [10, Lemma V.1.2.1, b)]. Note that the case s = ∞, q = 3 is included

in (1.8).

It is important in Definition 1.1 that, after redefinition on a null set of [0, T ),

u : [0, T ) → L2
σ(Ω) is weakly continuous, (1.10)

see [10, Theorem V.1.3.1]. Therefore, each value u(t) ∈ L2
σ(Ω), t ∈ [0, T ), and, in

particular, the condition u
∣∣
t=0

= u(0) = u0 are well defined.

A weak solution u as in Definition 1.1 is called a strong solution of (1.1) if Serrin’s
condition

u ∈ Ls
loc([0, T );Lq(Ω)), 2 < s < ∞, 3 < q < ∞,

2
s

+
3
q

= 1 (1.11)

is satisfied. It is well known, see e.g. [10, Theorem V.1.8.2], that a strong solution u
is regular in (0, T )×Ω and uniquely determined within the class of Leray-Hopf weak
solutions.

In this context we also consider the following restricted Serrin condition. The
weak solution u satisfies the local right-hand Ls(Lq)-Serrin condition in [0, T ) if

u ∈ Ls(t, t + δ;Lq(Ω)), 2 < s < ∞, 3 < q < ∞,
2
s

+
3
q

= 1 (1.12)

holds for each 0 ≤ t ≤ T with some δ = δ(t) > 0, t + δ < T . Obviously, in this case
u is regular in each right-hand interval (t, t + δ) ⊆ [0, T ).

Next we explain some notations. By 〈·, ·〉Ω we denote the pairing of vector fields
in Ω, and 〈·, ·〉Ω,T means the corresponding pairing in [0, T ) × Ω. Given a vector
field u = (u1, u2, u3) in Ω, let u · ∇u = (u · ∇)u = u1D1u + u2D2u + u3D3 where
Dj = ∂

∂xj
, j = 1, 2, 3, x = (x1, x2, x3) ∈ Ω, ∇ = (D1, D2, D3). Further let uu =

(uiuj)3i,j=1 such that u · ∇u = div uu = (D1(u1uj) + D2(u2uj) + D3(u3uj))3j=1 if
div u = ∇ · u = D1u1 + D2u2 + D3u3 vanishes. Finally, we set ut = ∂u

∂t .

With C∞
0,σ(Ω) = {v ∈ C∞

0 (Ω) : div v = 0} we define Lq
σ(Ω) = C∞

0,σ(Ω)
||·||q ,

1 < q < ∞, where ||·||q denotes the norm of the Lebesgue space Lq(Ω). Further,

W k,q(Ω), k ∈ N, and W k,q
0 (Ω) = C∞

0 (Ω)
||·||

Wk,q(Ω) denote the usual Sobolev spaces.
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Further we need the following spaces of solenoidal vector fields, see also [2, Theorem
3.2]. Let Lr,s(Ω), 1 ≤ r < ∞, 1 ≤ s ≤ ∞, with norm ||·||Lr,s denote the usual Lorentz
space, see [12, 1.18.6]. In particular, for r = 3, define

L3,s
σ (Ω) = C∞

0,σ(Ω)
||·||L3,s

, 1 ≤ s < ∞,

cf. [1, (0.16)]. See [1, (0.17)] concerning Lr,∞
σ (Ω) with r > q. Special Besov spaces

will be considered in §4.

We also need the Bochner spaces Ls(0, T ;Lq(Ω)), 1 < s, q < ∞, with norm

||·||Ls(0,T ;Lq(Ω)) = ||·||q,s;T =
(∫ T

0
|| · ||sq dτ

)1/s

, (1.13)

and also the spaces L∞(0, T, Lq(Ω)), L∞
loc([0, T );Lq(Ω)), and L2(0, T ;W 1,2

0 (Ω)).

Let Pq : Lq(Ω) → Lq
σ(Ω) denote the Helmholtz projection, and let Aq = −Pq∆ :

D(Aq) → Lq
σ(Ω) be the Stokes operator with domain D(Aq) = W 2,q(Ω)∩W 1,q

0 (Ω)∩
Lq

σ(Ω) and range R(Aq) = Lq
σ(Ω). Then Aα

q : D(Aα
q ) → Lq

σ(Ω), −1 ≤ α ≤ 1,
denote the fractional powers with D(Aq) ⊆ D(Aα

q ) ⊆ Lq
σ(Ω), R(Aα

q ) = Lq
σ(Ω) for

0 ≤ α ≤ 1. For a bounded smooth domain, the domain D(A
1/4
2 ) ⊆ L2

σ(Ω) will be
equipped with the norm

∥∥A
1/4
2 v

∥∥
2
, v ∈ D(A1/4), a norm equivalent to the usual graph

norm. Important is the embedding estimate

‖v‖q ≤ c
∥∥Aα

γ v
∥∥

γ
, v ∈ D(Aα

γ ), 1 < γ ≤ q, 2α +
3
q

=
3
γ

, 0 ≤ α ≤ 1. (1.14)

The operator −Aq generates an exponentially decreasing analytic semigroup e−tAq :
Lq

σ(Ω) → Lq
σ(Ω), 0 ≤ t < ∞, such that for v ∈ Lq

σ(Ω) and 0 ≤ α ≤ 1∣∣∣∣Aα
q e−tAqv

∣∣∣∣
q
≤ Ct−αe−δt ||v||q (1.15)

with C = C(Ω, q, α) > 0 and δ = δ(Ω) > 0, see [5], [6], [7]. We may write Aq = A,
Pq = P if there is no misunderstanding.

If B1, B2 are two Banach spaces with norms ||·||B1
, ||·||B2

, then we write B1 ↪→ B2

if B1 is strictly contained in B2 and if

||v||B2
≤ C ||v||B1

, v ∈ B1,

holds with some constant C > 0 not depending on v.

Our results are based in particular on Proposition 1.2 and Corollary 1.3 below
concerning initial value conditions for the existence of strong solutions at least in a
certain (sufficiently) small initial interval [0, T ), T > 0. These conditions are optimal
in a certain sense, see [2, Theorem 1.1, Theorem 1.2]. Replacing [0, T ) by some
interval [t0, t0 + δ), δ > 0, and the initial value u0 by any u(t0), 0 < t0 < T , we try
to identify a given weak solution u locally in [t0, t0 + δ) by a strong solution. This
method of local identification of u with strong solutions enables us to obtain several
new uniqueness and regularity results for weak solutions (compare [2]) .
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Proposition 1.2: Let 2 < s < ∞, 3 < q < ∞, 2
s + 3

q = 1, and let u0 ∈ L2
σ(Ω).

Then there exists a constant ε∗ = ε∗(Ω, q) > 0 with the following property: If(∫ T

0

∣∣∣∣e−tAu0

∣∣∣∣s
q
dt

)1/s

≤ ε∗, (1.16)

then the Navier-Stokes system (1.1) has a unique strong solution u ∈
Ls

loc([0, T );Lq(Ω)).

Conversely, if u ∈ Ls
loc([0, T );Lq

σ(Ω)) is a strong solution of the system (1.1), then
it holds (1.16) with T replaced by some (sufficiently small) T ′ with 0 < T ′ ≤ T .

Corollary 1.3: Let u be a weak solution as in Definition 1.1, let t0 ∈ [0, T ), let
s, q, ε∗ be as in Lemma 1.2, and let (1.4) be valid for t0 and t ∈ [t0, T ). Suppose(∫ δ

0

∣∣∣∣e−τAu(t0)
∣∣∣∣s

q
dτ

)1/s

≤ ε∗ with δ > 0, t0 + δ < T. (1.17)

Then
u ∈ Ls(t0, t0 + δ;Lq(Ω)). (1.18)

In particular, u is regular in (t0, t0 + δ).

Conversely, if u satisfies (1.18) then (1.17) is satisfied with δ replaced by some
δ′ ∈ (0, δ).

In §2 we describe left-hand and right-hand side conditions for local and also
global regularity. Optimal initial value conditions in the Ls(Lq)-framework are given
in terms of Besov spaces, see §3. Conditions in the limit space L∞(L3) to get unique-
ness and the local right-hand regularity (4.1) are found in §4; e.g., if u(t) ∈ L3(Ω)
for all t > 0 and u satisfies the energy equality rather than the energy inequality,
then u satisfies the local right-hand Serrin condition. Finally §5 deals with general
unbounded domains where only the L2-theory of the Stokes operator can be used to
get results similar to those of §4.

2 New regularity conditions for weak solutions

Applying (1.17) for a.a. t0 ∈ [0, T ) we obtain the following regularity results. In the
following u is always a weak solution of the system (1.1) with initial value u0 ∈ L2

σ(Ω)
in the sense of Definition 1.1, and q, s, ε∗ are given as in Proposition 1.2.

In the first result we suppose (1.17) for a.a. t0 ∈ [0, T ) with a δ > 0 independent
of t0.
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Theorem 2.1: Suppose it holds(∫ δ

0

∣∣∣∣e−τAu(t0)
∣∣∣∣s

q
dτ

)1/s

≤ ε∗ with fixed δ > 0 (2.1)

for almost all t0 ∈ [0, T ) including t0 = 0. Then it holds u ∈ Ls
loc([0, T );Lq(Ω));

hence u is regular in (0, T ).

Proof: Applying (1.17) for a.a. t0 ∈ [0, T ), including t0 = 0, we are able to cover
[0, T ) by intervals [t0, t0 + δ) as in Corollary 1.3 for a.a. t0 ∈ [0, T ). Then the result
follows from Corollary 1.3

Corollary 2.2: Suppose it holds

lim
δ↓0

(∫ δ

0

∣∣∣∣e−τAu(t0)
∣∣∣∣s

q
dτ

)1/s

= 0 (2.2)

for t0 = 0 and uniformly for almost all t0 ∈ [0, T ). Then u ∈ Ls
loc([0, T );Lq(Ω)), and

u is regular in (0, T ).

Proof: Using (2.2) and the uniform condition we find for the given ε∗, some fixed
δ0 > 0 such that (2.1) is satisfied with δ replaced by given δ0. This proves the
corollary.

Next we obtain so-called local regularity results.

Theorem 2.3: Suppose that at a ∈ (0, T ) the left-hand condition

δ−α

(∫ a

a−δ

∣∣∣∣A−αu(t)
∣∣∣∣s

q
dt

)1/s

≤ ε∗ (2.3)

holds with 0 < δ < a, and some 0 ≤ α < 1
s . Then there exists 0 < δ′ < δ such that

u ∈ Ls(a− δ′, a + δ′;Lq(Ω)). Thus u is regular in (a− δ′, a + δ′) and a is a so-called
regular point.

Proof: Using (1.15) we obtain that

1
δ

∫ a

a−δ

(∫ δ

0

∣∣∣∣e−τAu(t)
∣∣∣∣s

q
dτ

)
dt =

1
δ

∫ a

a−δ

(∫ δ

0

∣∣∣∣Aαe−τAA−αu(t)
∣∣∣∣s

q
dτ

)
dt

≤ C

δ

∫ a

a−δ

(∫ δ

0

1
ταs

dτ

) ∣∣∣∣A−αu(t)
∣∣∣∣s

q
dt ≤ C

(
δ−αs

∫ a

a−δ

∣∣∣∣A−αu(t)
∣∣∣∣s

q
dt

)
≤ Cεs

∗

with C = C(Ω, q, α) > 0. We conclude that there is at least one t0 ∈ (a− δ, a) such
that (∫ δ

0

∣∣∣∣e−τAu(t0)
∣∣∣∣s

q
dτ

)1/s

≤ C
1
s ε∗ (2.4)
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and that (1.4) is satisfied for this t0. Otherwise we would obtain that

Cεs
∗ =

1
δ

∫ a

a−δ
Cεs

∗ dt <
1
δ

∫ a

a−δ

(∫ δ

0

∣∣∣∣e−τAu(t)
∣∣∣∣s

q
dτ

)
dt ≤ Cεs

∗

which is a contradiction. We may replace C1/sε∗ by ε∗ in (2.4), and use (1.17). This
shows that u ∈ Ls(t0, t0 + δ;Lq(Ω)), and setting δ′ = min(a − t0, t0 + δ − a) we see
that [a− δ′, a + δ′) ⊆ [t0, t0 + δ). This proves Theorem 2.3.

Setting α = 0 in (2.3) we obtain as a consequence the next corollary which has
been shown in [4].

Corollary 2.4: Suppose that the conditions

u ∈ Ls(0, δ0;Lq(Ω)) with 0 < δ0 < T and (2.5)

u ∈ Ls(t− δ; t;Lq(Ω)) for each t ∈ [δ0, T ) with 0 < δ = δ(t) < δ0 (2.6)

are satisfied. Then Serrin’s condition

u ∈ Ls
loc([0, T );Lq(Ω)) (2.7)

is satisfied, and u is regular in (0, T ).

Remark 2.5: Obviously (2.5) and (2.6) yield a strictly weaker condition than (2.7)
for general vector fields. Hence Corollary 2.4 gives a strict extension of Serrin’s
regularity class (2.7) for weak solutions.

The following corollary yields a local regularity result.

Corollary 2.6: Suppose that at a ∈ (0, T )

δ−
2/3 ||u0||

2/3
2

∫ a

a−δ
||∇u(t)||22 dt ≤ ε∗ (2.8)

holds with 0 < δ < a. Then there is some δ′ ∈ (0, δ) such that u ∈ Ls(a − δ′, a +
δ′;Lq(Ω)). Thus u is regular in (a− δ′, a + δ′) and a is a regular point.

Proof: Using (1.14) with q = 12, γ = 4, α = 1
4 , the multiplicative estimate

‖v‖4 ≤ c‖∇v‖3/4
2 ‖v‖1/4

2 for v ∈ W 1,2
0 (Ω), see [10, Lemma II.1.3.1 a)], and the energy

inequality (1.4) with t0 = 0, we obtain with s = 8
3 and for t ∈ (a− δ, a) that∣∣∣∣A−αu(t)

∣∣∣∣s
q
≤ C ||u(t)||8/34 ≤ C ||∇u(t)||22 ||u(t)||2/32 ≤ C ||∇u(t)||22 ||u0||

2/3
2

with some absolute constant C > 0. Now the result follows from Theorem 2.3.
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We can treat (2.8) as an energy smallness condition. Thus a is a regular point if
the dissipation energy

∫ a
a−δ ||∇u(t)||22 dt in a left-hand neighborhood of a is sufficiently

small. Using the energy inequality and some sufficiently large δ > 0 we conclude from
(2.8) in the case T = ∞ the well-known result that u is regular for t > T0 where
T0 = T0(||u0||2) > 0 is sufficiently large. See [4] for further local regularity results.

3 Optimal initial value conditions with norms in
Besov spaces

Consider a weak solution u of the system (1.1) with initial value u(0) = u0 ∈ L2
σ(Ω)

as in Definition 1.1, and let q, s be as in Proposition 1.2.

We need the Besov spaces

B−2/s
q,s (Ω) =

(
B2/s

q′,s′(Ω)
)′

,
1
q

+
1
q′

= 1,
1
s

+
1
s′

= 1, (3.1)

which are defined as follows: Let B
2/s

q′,s′(Ω) be the usual Besov space, see [12, 4.2.1
(1)], here to be considered for vector fields with values in R3. Then the Besov space
B2/s

q′,s′(Ω) of solenoidal vector fields in B
2/s

q′,q′(Ω) is defined as the closed subspace

B2/s

q′,s′(Ω) = B
2/s

q′,s′(Ω) ∩ Lq′
σ (Ω) =

{
v ∈ B

2/s

q′,s′(Ω) : div v = 0, N · v
∣∣
∂Ω

= 0
}

where N · v
∣∣
∂Ω

means the (well-defined) normal component of v at ∂Ω; see [1,
(0.5),(0.6)] concerning this space. The space B−2/s

q,s (Ω) is defined in (3.1) as the
dual space of B2/s

q′,s′(Ω). Further we need, among others, the interpolation space
(Lq

σ(Ω), D(Aq))1− 1
s
,s, cf. [12, 1.14.5 (2)].

Let u0 ∈ L2
σ(Ω) and q > 2. Then e−tAqu0 = e−tA2u0 is well-defined for t > 0, but

need not be bounded in Lq
σ(Ω) as t → 0+. However, if (1.16) holds, then∫ ∞

0

∣∣∣∣e−tAu0

∣∣∣∣s
q
dt ≤ C

∫ T

0

∣∣∣∣e−tAu0

∣∣∣∣s
q
dt < ∞ (3.2)

by (1.15). Conversely, if
∫∞
0

∣∣∣∣e−tAu0

∣∣∣∣s
q
dt < ∞, then there is some 0 < T ≤ ∞ such

that the optimal initial value condition (1.16) is satisfied.

Using several well-known arguments we can prove the following equivalence result.

Lemma 3.1: Let u0 ∈ L2
σ(Ω), 2 < s < ∞, 2

s + 3
q = 1. Then the norms

(∫ ∞

0

∣∣∣∣e−tAu0

∣∣∣∣s
q
dt

)1/s

and ||u0||B−2/s
q,s (Ω)

(3.3)
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are equivalent. Therefore, if one of these norms is finite, then also the other one is
finite.

Proof: We use step by step the following arguments: First [12, 1.14.5 (2)] together
with (1.15), then the identity 〈A−1u0, Aϕ〉Ω = 〈u0, ϕ〉Ω, ϕ ∈ D(A), then [12, 1.11.2
(3a)], then [12, 1.3.3 (1)], then [1, Prop. 3.4, (3.18)], and finally the definition [1,
(0.6)]. This proves the lemma. Note that this calculation slightly improves the
arguments in [2, Sect. 3].

Lemma 3.2: Let 2 < s < ∞, 3 < q < ∞, 2
s + 3

q = 1. Then there hold the following
embedding properties:

a) L3
σ(Ω) ↪→ L3,s

σ (Ω), if s ≥ 3, (3.4)

b) L3,s
σ (Ω) ↪→ B−2/s

q,s (Ω), if s ≥ q, (3.5)

c) D(A1/4) ↪→ B−2/s
q,s (Ω), (3.6)

d) Lr,∞
σ (Ω) ↪→ B−2/s

q,s (Ω), if r ≥ 3. (3.7)

Proof: See [1, (0.16)] concerning (3.4), (3.5), and [1, (0.17)] concerning (3.7). To
prove (3.6) we use the embedding estimate (1.14) with α = 1

s + 1
4 and [10, Lemma

IV.1.5.3] to get that(∫ ∞

0

∣∣∣∣e−tAv
∣∣∣∣s

q
dt

)1/s

≤ C

(∫ ∞

0

∣∣∣∣∣∣A1/se−tAA
1/4v

∣∣∣∣∣∣s
2
dt

)1/s

≤ C
∣∣∣∣∣∣A1/4v

∣∣∣∣∣∣
2
,

v ∈ D(A
1
4 ), C = C(Ω, q) > 0. This proves Lemma 3.2.

The next result follows from Proposition 1.2 using the norm equivalence of
Lemma 3.1, see [2, Theorem 1.2].

Proposition 3.3: Let u0 ∈ L2
σ(Ω), let u be a weak solution of the system (1.1) in

[0, T )×Ω as in Definition 1.1, and let 2 < s < ∞, 3 < q < ∞ with 2
s + 3

q = 1. Then
the condition

u0 ∈ B−2/s
q,s (Ω) (3.8)

is sufficient and necessary that

u ∈ Ls
loc([0, T ′);Lq(Ω)) (3.9)

is a strong solution in some interval [0, T ′) with 0 < T ′ ≤ T .

In particular, if u0 /∈ B−2/s
q,s (Ω) then (3.9) does not hold for each 0 < T ′ ≤ T .

By Lemma 3.2 we obtain the following local regularity properties.
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Lemma 3.4: Let u0, u, s, q be as in Proposition 3.3. Then each of the following
conditions is sufficient for the Serrin condition (3.9) in some interval [0, T ′), 0 < T ′ ≤
∞:

a) u0 ∈ L3
σ(Ω), (3.10)

b) u0 ∈ L3,s
σ (Ω), s ≥ q, (3.11)

c) u0 ∈ D(A1/4), (3.12)
d) u0 ∈ Lr,∞

σ (Ω), r > 3. (3.13)

4 Uniqueness and local right-hand regularity

The class L∞
loc([0, T );L3(Ω)) is the limit case s = ∞, q = 3 of the usual Serrin class

Ls
loc([0, T );Lq(Ω)), 2 < s < ∞, 3 < q < ∞. Therefore, it is interesting to develop

uniqueness and regularity properties of weak solutions u in this class. Seregin [11]
and Mikhailov-Shilkin [9] proved the complete regularity of a weak solution u ∈
L∞

loc([0, T );L3(Ω)) under some additional assumptions in particular on the pressure
p. Our result below does not contain such assumptions but yields, on the other hand,
only the uniqueness and a local right-hand regularity property.

In the following u is a weak solution of the system (1.1) in [0, T )×Ω with initial
value u(0) = u0 ∈ L2

σ(Ω) in the sense of Definition 1.1, and 2 < s < ∞, 3 < q < ∞
are given satisfying 2

s + 3
q = 1.

We say that u satisfies the local right-hand Ls(Lq)-Serrin condition in [0, T ) if

u ∈ Ls(t, t + δ;Lq(Ω)) for each t ∈ [0, T ) with δ = δ(t) > 0, t + δ < T. (4.1)

Theorem 4.1: Suppose that the given weak solution u satisfies

u ∈ L∞
loc([0, T );L3(Ω)). (4.2)

a) Then u is unique in the sense that there is no other weak solution of the system
(1.1) with initial value u0, and

b) u satisfies in [0, T ) the local right-hand Ls(Lq)-Serrin condition (4.1) with 2 <
s < ∞, 3 < q < ∞, 2

s + 3
q = 1.

Proof: By (1.8) with s = ∞, q = 3 we conclude that u satisfies the energy equality
(1.5) for all 0 ≤ t0 ≤ t < T . Using (4.2), (1.10) and weak convergence arguments we
see that u0 ∈ L3

σ(Ω). Hence (3.10) in Lemma 3.4 allows to conclude that u satisfies
Serrin’s condition (3.9) at least in some initial interval [0, T ′), 0 < T ′ ≤ T .
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Suppose there is another weak solution v with v(0) = u0 in the sense of Definition
1.1. Then Serrin’s uniqueness result shows that u = v for t ∈ [0, T ′). To prove the
same result on (0, T ] let t∗ ∈ (0, T ] be defined by

t∗ = sup{t ∈ (0, T ) : u(τ) = v(τ) for all τ ∈ [0, t]}; (4.3)

note that u(t)− v(t) is well-defined in L2
σ(Ω) for each t ∈ [0, T ) because of (1.10). If

t∗ = T , the theorem is proved. Thus we assume that 0 < t∗ < T and we get from
(1.10) that u = v holds in [0, t∗].

Since (1.4) holds for v and for a.a. t0 ∈ [0, T ), we obtain a sequence

0 < t1 < t2 < . . . < tj < . . . < t∗, j ∈ N, (4.4)

with lim
j→∞

tj = t∗ such that

1
2
||v(t)||22 +

∫ t

tj

||∇v||22 dτ ≤ 1
2
||v(tj)||22 , t ≥ t∗, (4.5)

holds for each j ∈ N. Since tj < t∗ we obtain using (1.5) for u = v in [0, t∗] that

1
2
||v(t∗)||22 +

∫ t∗

tj

||∇v||22 dτ =
1
2
||v(tj)||22 , j ∈ N,

which shows that lim
j→∞

||v(tj)||22 = ||v(t∗)||22, and from (4.5) we obtain that

1
2
||v(t)||22 +

∫ t

t∗

||∇v||22 dτ ≤ 1
2
||v(t∗)||22 , t ≥ t∗. (4.6)

Now Serrin’s uniqueness result implies that u = v also holds in some interval
[t∗, T ′′) with t∗ < T ′′ ≤ T , which is a contradiction to (4.3). Therefore, u is uniquely
determined in [0, T ).

Consider any t0 ∈ [0, T ). Then u(t0) ∈ L3
σ(Ω) is well defined and since L3

σ(Ω) ⊆
B−2/s

q,s (Ω), s ≥ q, we obtain from Proposition 3.3 - with [0, T ) replaced by [t0, T ) and
u0 replaced by u(t0) ∈ B−2/s

q,s (Ω) - a local strong solution u∗ ∈ Ls(t0, t0 + δ;Lq(Ω))
in some interval [t0, t0 + δ), δ = δ(t0) > 0, t0 + δ < T , which can be identified with
u by Serrin’s uniqueness result using (1.5). This proves the right-hand Ls(Lq)-Serrin
condition. The proof of Theorem 4.1 is complete.

Remark 4.2: a) The result of Theorem 4.1 is "very close" to the complete regular-
ity of the given weak solution u. Indeed, if the right-hand local regularity condition
(4.1) holds for u with some fixed 0 < δ0 = δ(t) for each t ∈ [0, T ), then we conclude
from the proof of Theorem 4.1 that u ∈ Ls

loc([0, T );Lq(Ω)).
b) More general, if the local right-hand condition (4.1) holds for u with fixed
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δ(t) = δ0 > 0 only for almost all t ∈ [0, T ), then the proof above implies that
u ∈ Ls

loc([0, T );Lq(Ω)).
c) Consider a general weak solution u as in Theorem 4.1. Then, omitting the con-
dition (4.2), we can use the arguments in its proof because of (1.2) at least for
almost all t0 ∈ [0, T ), and we obtain that u∗ = u ∈ Ls(t0, t0 + δ;Lq(Ω)) holds with
δ = δ(t0) > 0, t0 + δ < T . In this case these local regularity intervals need not cover
the whole interval (0, T ). The union τ ⊆ (0, T ) of such intervals yields a dense open
subset of regular points of (0, T ). The complement S = (0, T )\τ is the null set of
singular points in (0, T ), which is (in the case t = ∞) always bounded because of the
regularity property in (2.8).

To extend Theorem 4.1 to an even larger class than L∞
loc([0, T );L3(Ω)) recall that

each of the conditions uu ∈ L2
loc([0, T );L2(Ω)) or u ∈ L4

loc([0, T );L4(Ω)) is sufficient
for the energy equality (1.5), see (1.6), (1.7). Note that in Theorem 4.3 below u need
not satisfy any Serrin condition; actually, it holds 2

4 + 3
4 = 1 + 1

4 .

Theorem 4.3: Consider a weak solution u with initial value u0 ∈ L2
σ(Ω), and

suppose that

a) u(t) ∈ L3
σ(Ω) for each t ∈ [0, T ), (4.7)

b)
1
2
||u(t)||22 +

∫ t

t0

||∇u||22 dτ =
1
2
||u(t0)||22 for all 0 ≤ t0 ≤ t < T. (4.8)

Then u is uniquely determined in the class of weak solutions with initial value u0

and it holds the local right-hand Ls(Lq)-Serrin condition with some 2 < s < ∞,
3 < q < ∞, 2

s + 3
q = 1.

Proof: Suppose there is another weak solution v of (1.1) with v(0) = u0. Since
u0 = u(0) ∈ L3

σ(Ω) we argue as in the proof of Theorem 4.1 that u satisfies (3.9) and
that u = v holds in some initial interval [0, T ′), T ′ > 0.

Using t∗ as in (4.3)-(4.6) we obtain in the same way that u = v holds in [0, T ),
and the same argument as in the proof of Theorem 4.1 also yields the property (4.1).
This completes the proof.

The same arguments are valid if L3(Ω) (or equivalently L3
σ(Ω)) in (4.7) is replaced

by one of the spaces (3.11)-(3.13), or in the most general case by the space in (3.8).
This finally yields the following result.

Theorem 4.4: Consider a weak solution u with initial value u0 ∈ L2
σ(Ω) and

suppose that

a) u(t) ∈ B−2/s
q,s (Ω), 2 < s < ∞, 3 < q < ∞,

2
s

+
3
q

= 1 for all t ∈ [0, T ), (4.9)

b)
1
2
||u(t)||22 +

∫ t

t0

||∇u||22 dτ =
1
2
||u(t0)||22 for all 0 ≤ t0 ≤ t < T. (4.10)
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Then u is uniquely determined and it holds the local right-hand Ls(Lq)-Serrin con-
dition as in Theorem 4.3.

Obviously, see Lemma 3.2, Theorem 4.4 remains valid if B−2/s
q,s (Ω) in (4.9) is

replaced by each of the following spaces: either

L3,s
σ (Ω), s ≥ q, or D(A

1/4
2 ) ⊆ L2

σ(Ω) or Lr,∞
σ (Ω), r > 3. (4.11)

5 A uniqueness and regularity result for general
domains

In this section let Ω ⊆ R3 be a completely general domain, i.e. an open and connected
subset of R3. In this case we have to modify slightly the definition of a weak solution
u for the system

ut −∆u + u · ∇u +∇p = 0, div u = 0, u
∣∣
t=0

= u0 (5.1)

in [0, T )×Ω, 0 < T ≤ ∞.

Let u0 ∈ L2
σ(Ω) = C∞

0,σ(Ω)
||·||2 and W 1,2

0,σ (Ω) = C∞
0,σ(Ω)

||·||2+||∇·||2 . Then

u ∈ L∞(0, T ;L2
σ(Ω)) ∩ L2

loc([0, T );W 1,2
0,σ (Ω)) (5.2)

is called a (Leray-Hopf type) weak solution of the system (5.1) if the relation

−〈u,wt〉Ω,T + 〈∇u,∇w〉Ω,T − 〈uu,∇w〉Ω,T = 〈u0, w(0)〉Ω (5.3)

holds for each w ∈ C∞
0 ([0, T );C∞

0,σ(Ω)), and if the (simple) energy inequality

1
2
||u(t)||22 +

∫ t

0
||∇u||22 dτ ≤ 1

2
||u0||22 (5.4)

holds for all t ∈ [0, T ). A weak solution u is called a strong solution if Serrin’s
condition (1.11) is satisfied.

Without loss of generality we may assume that u in this definition is weakly
continuous as in (1.10); see [10, Theorem V.3.1.1] concerning the existence of a weak
solution. It is an open problem whether each weak solution u satisfies the strong
energy inequality (1.4). However, if Ω is of uniform C2-type, see [3], there exist weak
solutions satisfying (1.4). If a weak solution satisfies additionally one of the conditions
(1.6), (1.7) or (1.8), then the energy equality (1.5) holds for all 0 ≤ t0 ≤ t < T , see
[10, Theorem V.1.4.1]. The proof is the same as for bounded domains.

Our result for general domains rests on [2, Theorem 4.1] which shows that Propo-
sition 1.2 can be extended to the general domain Ω for the special exponents s = 8,
q = 4. Thus it holds for this domain the following result even with some absolute
constant ε∗ > 0 (independent of the domain):
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Lemma 5.1: [2, Theorem 4.1] Let Ω ⊆ R3 be a general domain and let u0 ∈ L2
σ(Ω),

0 < T ≤ ∞. There exists some absolute constant ε∗ > 0 such that if(∫ T

0

∣∣∣∣e−tAu0

∣∣∣∣8
4

dt

)1/8

≤ ε∗, (5.5)

then system (5.1) has a uniquely determined strong solution u ∈ L8
loc([0, T );L4(Ω))

with u|t=0 = u0.

In this case we essentially use the L2-approach to the Stokes operator A = A2.
Further, using (1.14) and [10, Lemma IV.1.5.3], we obtain with u0 ∈ D(A1/4) the
estimate(∫ ∞

0

∣∣∣∣e−tAu0

∣∣∣∣8
4

dt

)1/8

≤ C

(∫ ∞

0

∣∣∣∣∣∣A1/8e−tAA
1/4u0

∣∣∣∣∣∣8
2

dt

)1/8

≤ C
∣∣∣∣∣∣A1/4u0

∣∣∣∣∣∣
2
,

(5.6)
see [2, p.109], with some absolute constant C > 0. Moreover, using the embedding
estimate (1.14) with α = 1

4 , q = 3, γ = 2, we obtain for u0 ∈ D(A1/4) ⊆ L2
σ(Ω) that

||u0||3 =
∥∥A− 1

4 A
1/4u0

∥∥
3
≤ C

∥∥A
1/4u0

∥∥
2

(5.7)

with some absolute constant C > 0. This shows that

D(A1/4) ⊆ L3
σ(Ω) with || · ||D(A1/4) =

∥∥A
1/4
2 ·

∥∥
2
. (5.8)

The properties (5.5)-(5.8) enable us to carry out the proof of Theorem 4.1 with L3
σ(Ω)

replaced by the space D(A1/4) which means a certain restriction. Another restriction
is given by the fact that a weak solution u in (5.1)-(5.4) need not satisfy the strong
energy inequality (1.4).

Suppose u0 ∈ D(A1/4). Then (5.6) shows that
∫∞
0

∣∣∣∣e−tAu0

∣∣∣∣8
4

dt < ∞, and we
find some 0 < T ≤ ∞ such that (5.5) is satisfied. This yields a strong solution u
as above with u(0) = u0. If additionally u ∈ L∞

loc([0, T );D(A1/4)) is satisfied, we
conclude using (5.8) and (1.8) that u satisfies the energy equality (1.5).

Using these arguments, modifying slightly the proof of Theorem 4.1, we obtain
the following result.

Theorem 5.2: Consider a weak solution u of the system (5.1) in [0, T ) × Ω with
u(0) = u0 ∈ L2

σ(Ω) satisfying (5.2)-(5.4), and suppose that

u ∈ L∞
loc([0, T );D(A

1/4
2 )).

a) Then u is uniquely determined in the sense that if there is another weak solution
v ∈ L∞

loc([0, T );D(A
1/4
2 )) with v(0) = u0, then u = v.

b) u satisfies in [0, T ) the local right-hand Ls(Lq)-Serrin condition (4.1) with s = 8,
q = 4.
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