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Abstract
We present a sufficient condition for the energy equality of Leray-Hopf’s weak solu-

tions to the Navier-Stokes equations in general unbounded 3-dimensional domains.
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1 Introduction

In this paper, we consider a viscous incompressible fluid in general (unbounded) 3-

dimensional domains 2. The motion of such a fluid is governed by the Navier-Stokes

equations
ou—Au+u-Vu+Vp = f t>0, xze€f,
divu = 0 t>0, x€(
N_S ) ? ?
(N-5) ulpga = 0,
u(0) = a,

where u = (u'(z,t),u?(x,t),u(x,t)), and p = p(z,t) denote the velocity vector and the
pressure, respectively, of the fluid at the point (z,¢) €  x R,. Here a is the given initial
data and f the external force. For simplicity, we assume that the coefficient of viscosity
equals 1. Leray [10] and Hopf [6] showed the global existence of weak solutions u €
L>(0,00; L2(Q))NLE ([0, 00); H3 (2)) to (N-S) satisfying the energy inequality. However,
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uniqueness and regularity of Leray-Hopf’s weak solutions are still open problems. Even

the question whether or not every Leray-Hopf’s solution satisfies the energy equality

L) Ju) +2 / V()2 dr = [futo) 3 + 2 / (u(r), f(r))dr, 0<to<t<T,

to
is still an open problem.
Serrin [11] showed — in addition to a uniqueness result — that if a weak solution u
belongs to L*(0,7; L4(2)) for some ¢ > 3, s > 2 with

3/q+2/s <1,

then w satisfies the energy equality (1.1). Later, Shinbrot [12] derived the same conclusion
if the weak solution u belongs to L*(0,T; L?(£2)) for some ¢,s > 1 with

(1.2) 3/q+2/s<1+1/q, q>4,

see also [13]. By using the exponents s = ¢ = 4 in (1.2) and Hélder’s inequality in

space-time, the same result holds when
(1.3) 3/q+2/s<1+1/s, s>4.

Recently, Cheskidov—Friedlander—-Shvydkoy [2] proved the energy equality in a func-
tion class with better scaling properties than that of Shinbrot. They showed that if
Q2 is a bounded domain with C%-boundary and if a Leray-Hopf weak solution u be-
longs to L3(0,T;V?°/%), then u satisfies the energy equality. Here V°/6 := D(Ag/u) C
HY/62(Q) ¢ L?(), and A, denotes the Stokes operator on L2(Q2). Moreover, if =
R3, Cheskidov—Constantin—Friedlander—Shvydkoy [3] proved the same conclusion if u €
L3(0,T; Bé/oi(RS)) (D L3(0,T; H%2(R?))). For the Euler equation they also prove the
same result under the slightly stronger condition u € L3(0, T Béf’(ﬂ@)); here, B;/;’(R‘q’)
denotes the closure of C§°(R?) in B;{;(R?’).

In the present paper we generalize the result of Cheskidov—Friedlander—Shvydkoy [2]
to arbitrary unbounded domains and Sobolev or Besov spaces of Wq"’—type with order
of differentiability & > % only, see Theorem 1 below. By using properties of Stokes
semigroups, roughly speaking, we prove that the energy equality holds if u satisfies some
conditions in terms of intermediate spaces between H°/%2 and Bé/oi such that (1.3) is
satisfied with s = 3, ¢ = %. Moreover, we consider more general domains € of Ct!-type.

For general unbounded domains © C R? of uniform C'-class (cf. Definition 1 below)

Farwig-Kozono-Sohr [4] showed the existence of the Helmholtz projection by replacing
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the space L? by )

. q

oy { 0y 251
Definition 1 [4, 5] A domain Q C R™, n > 2, is called a uniform CY'-domain of type
(e, B, K) (where o > 0,3 > 0, K > 0) if for each xq € 02 we can choose a Cartesian co-
ordinate system with origin at xo and coordinates y = (Y, yn), ¥ = (Y1,Y2, "+ ,Yn—1), and
a CH-function h(y'), |v'| < a, with C*'-norm ||h||c11 < K such that the neighborhood

Uapn(w0) == {(¥,yn) €ER™; W(y') =B <yn <h(y)+ 06, [¥] < a}

of xqy satisfies

QN Uapn(zo) ={W ym); W) =B <wyn <h(y), ly| < a}

and O N Uy sn(xo) = {(v, h(¥)); |y < a}. Similarly, uniform C*-domains, k € N, of
type (o, B, K) are defined.

Let L1(Q) = Cgo () ", G9(Q) = {Vp € (LI(Q))? ; p € LL ()}, 1 < ¢ < 0o, and

loc

define the spaces

=en . LEQ)NLE(Q), 2<g< o caron ] GUYNG*Q), 2<g< o0
Lo() = { Li(Q) + L3(Q), 1< g <o o GO { GUQ) +G2(Q), 1< 3 <2

Then Farwig-Kozono-Sohr [4] showed that the Helmholtz decomposition

LIQ) = LI(Q) +GIQ), 1<q< oo,
holds for unbounded domains €2 C R"™ of uniform C'-class. When  is a uniform C:!-
domain, using the corresponding Helmholtz projection Pq: LI(Q) — Li(Q), they defined

the Stokes operator flq in Zg(ﬂ) as the linear operator with domain

iy Dg()NDy(2), 2<g< o0
D) = { Dy(Q) + Dy(Q), 1< 3 <92

where D,(Q) := W29(Q) N Wy %(Q) N LL(R), by setting

A= —P,Au, ucD(A,),

see [5]. They also proved that —flq generates an analytic semigroup in Zg(Q) and flq has
maximal L°-regularity for 1 < s < co. Recently, Kunstmann [8] showed that the operator

e+[lq has a bounded H*-calculus in ig(Q), 1 < g < o0, for € > 0, hence admits bounded



imaginary powers and the domain of (e + flq)s, 0 < s < 1, coincides with the complex

interpolation space [LZ(Q), D(A,)]s. In particular,
(1.4) D((e+ Ag)'?) = Wo"(Q) N LE(9),

where Wy 4(Q) = Wy Q) N Wy (Q) for ¢ > 2 and Wy 9(Q) = Wy(Q) + W, *(Q) for
1 < g <2, see [8, Corollary 1.2]. For simplicity, we use the notation

Dy = D((1+ 4,)°) = [LE(2), D(A,)];.

[

Using real interpolation, let
(1.5) I:q”’(Q) = (ZQO(Q), 13’11({2))9770,

where 1 < r < oo and

ith L= 16, 0
1<go<q<q<oo, 0<0<1 with o ="+,

1.6
(16) Q.1 >2if ¢>2, @<2<q if ¢=2, q,q<2if ¢<2,

see [9, Section 4]. Then, by interpolation, the Helmholtz projection P,, is defined as a
bounded operator from L% () to

F7(©) = (L0(©), E2 (©))on,

g o

where qo, g1, 0,7 are as in (1.6). We can also define the Stokes operator flq,r by

AQ,TU = _P%TAU’ u € ID(AQ,T) = [ID(A(IO)?D(AW)]@,T?

with g, q1,6,7 as in (1.6). Then, by real interpolation, we see that —A,, generates an
analytic semigroup in f/gr(Q) and the operator € + flw has a bounded H°-calculus in
L27(Q) for € > 0. Consequently the domain of (¢ + A,,)*, 0 < s < 1, coincides with the
complex interpolation space [L%" (), D(A,,)]s. In particular, for s € (0,1),

(1.7) D((e+ Ags)*) = (D((e + Agy)*), D€ + Agy)*))our,

where qq, q1, 0,7 are as in (1.6), see Kunstmann [9, Section 4]. We also denote this space
by
D;"’T = D((1+ A,,)*).
Note that [?éil C D§ C [)goo. From now on we will write A instead of /Lm for simplicity.
Before stating our result, we introduce the definition of weak solutions to the Navier-
Stokes equations. Let Hj,(Q) = Hg(Q) N L2(); for simplicity, we assume f = 0.
Definition 2. Let a € L. A measurable function u on Q x (0,7), 0 < T < oo, is
called a weak solution of (N-S) on (0,7) if



(i) uwe L®(0,T; L2) N L?

100([07 T)’ H(%,a);
(ii) w(t) is continuous on [0,7] in the weak topology of L? and u(0) = q;

(iii) for every 0 < s <t < T and every ® € H'((s,t); Hy )
(1.8) /{—(u,a@) + (Y, V) + (1~ Vau, @)} dr = —(u(t), ®(8)) + (u(s), (s)).

Now our main result reads as follows:

Theorem 1. Let u be a weak solution to the Navier-Stokes equations in a uniform C1-

domain on (0,T). Assume that

(1.9) we L*0,T; bié%), or

. 1 k 1
(1.10) u € L3(O,T;D£oo) for some k,p with - = — — 3 3 <k<-= 2<p< 78
’ p
Then the energy equality
t
(111) @)l +2 [ I19u(r)Idr = ()

holds for all t € (0,T).

Remarks. 1. On the one hand, the space L3(0,T; Dié%

L3(0,T; 135’00) when k& > % On the other hand, when k£ > % is sufficiently close to %,

the space D’;OO(C L%/2%) in (1.10) contains some functions having the singularity of

|2|~%/% at the origin, while D;/,

¢ € C§°(B2(0)) satisfy ¢ =1 in B;(0) and define

) (1.9) is not contained in

(C L°?) does not contain such functions. Indeed, let

a(z) :==rot (0,0, ¢(x)|z|"/?).

Obviously, a(z) ~ |2|7%3 and (1 — A)a ~ ||~/ for x ~ 0 so that (1 —A)a € LY/®°(R?).
Moreover, diva = 0 in the sense of distributions on R® Let 0, k, py and p; satisfy

1 5 2 _1_ &k 110, 0
§<k:<6,2<p0<p<p1,§—p 3andp— o —|—p1.Then

DEF ((R?) = (14 A)™2[2=(R%) = (1 — A)*2P(LP(R?), LP (R?))g.00

= (1
= P(1—A)*2(LP N L2 L N L%)g0 D P(1 — AN LY N LY LY N LMy o,

where
1 1 2—k 1 1 2—k 1 1 2—-k

w do 3 'pp d 3 2 h 3
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Let Ey be the 0-extension operator from functions defined on By(0) to functions on R3:

Eof(x):{ f(z) if x € By(0) .

0 otherwise
Since dy, d; > h, we have L%(R?) N L"(R3) D EyL%(By(0)) for i = 0,1. Hence,
D (R®) D P(1 — A) " Eo(L%(B5(0)), L™ (B5(0)))g,c0 = P(1 — A) ' EgL*/%%(By(0)).

Let b := (1 — A)a (€ L®%). Since divb = 0 and supp b C By(0), we have a =
P(1 — A)'Egb, which implies @ € D _ (R3). Therefore, there is no inclusion between
conditions (1.9) and (1.10).

2. When €2 is a bounded domain,

D1/2 o [zé8/77D(1418/7)]1/4 _ [Li8/7,D<A18/7)]1/4 _ D(A1/4 ) S V5/6 _ D(Ag/m).

18/7 — 18/7

Hence (1.9) is a better condition than that in [2] requiring less regularity. Moreover, note
that L3(0,T; f)ié%) C L3(0,T; L°?); here, with s = 3, ¢ = g we have 2/s+3/q=1+1/s,
cf. (1.3).

2 Preliminaries

In this section we introduce some lemmata.

Lemma 2.1. Let u be a weak solution to (N-S) on (0,T) and S be a bounded, linear
and self-adjoint operator in L2 with ||Sv||pay) < Cllvlla. Assume AY2Sv = SAY?v for
v € D(As). Then, it holds that

(2.1) (u(t), Su(t)) + 2/ (SAY?u, AY?u) dr = (u(s),Su(s)) + 2/ (u- Vu,Su)dr

for all s,t € [0,T).

Proof. We follow Serrin [11]. Let p > 0 be a function in C§°(0,1) with p(t) = p(|¢|) and
fjlpdt =1, pe(t) := Lp(%) for € > 0, fix arbitrary 0 < s <t < T and let

ue(T) ::/ pe(|T = o|)u(o) do, ul(r) ::/ pe(|T7 — o])Su(o) do(= Su.()).

Then u, — w in L%(s,t; L2(Q)) as € — 0+. Since S is a self adjoint operator,
t t ot
/ (u(7), O-ul (1)) dr = / / (u(T), Orpe(|T — o|)Su(e)) dr do

(2.2) t ot
= / / (Su(7), =0, pc(|T — o u(o))drdo =1 K
6



By replacing (o, 7) by (7, ), we have

K= /: /:(Su(a), ~0,p.(|o — l)u(r)) do dr

2.3 = [ [ o - ol5uto). utr) do i
_ /t(aTui(T),u(T)) dr=—K=0.

Clearly, since u is weakly continuous in L? and hence u,(t) — ju(t) in L? as € — 0+,
. t t 1
(u(t), uc(t)) :/ pe(lt—a|)(u(t),Su(o)) do 2/ pe([t=0])(Su(t), ulo)) do — o (Sut), u(t))
as € — 0+. Similarly we have
1
(u(s), ue(s) = 5(Su(s), u(s)).
Since A'Y?u, — AY?u in L*(s,t; L*(Q)),
¢ ¢ ¢ ¢
/ (Vu, Vul) dr = / (AY2u, AYV2ul) dr = / (SAY2u, AYV?u,) dr — / (SAY?u, AY?u) dr

as € — 0+4. Finally,

IN

¢ 1/2
Canp Vo ( [ 180~ Sl
s,t s

CS[UI? ull2l|Vul| 20,7522y |tte — ull L2(s,8:02)
s,t

¢
/ (u - Vu,ul — Su) dr

IN

converges to 0 as € — 0+. Substituting u! as test function in (1.8), and then letting
e — 0, we obtain (2.1). O

Lemma 2.2. Let A := 1+/~1, 0<a<Bandl <r < oo. Then, for all0 <t <1, it
holds that

_3

=y B (e TP
le™ fll 5o, < ¢t Ifllpg., for2<p<q<oo,
i 00—« ’
(2.4) If —eflpe < Ct=|Iflpg for 1 <p < oo.
A 0—a
If —efllpg, < Ct=|Iflp, for 1 <p < oc.

Here DY), .= LP".



Proof. Since ||ul|;, < C||A%ul|;, for 1/g=1/p—26/3, 0 < 3 < min(1,3/2p), p > 1, (see
9, Corollary 2.7]), it holds that

(2.5) ullzar < ClA | fp.r
for 1/¢g=1/p—26/3,p>2,1<r<ooand 0< (< 3/2p. Then we have
le™ullz0n < CIAPe ™ Au] gy < CEG7 0 | e

By the reiteration theorem (cf. [14, Sect. 1.10.2]) it holds that L%' = (L% [31:°),,
for 2 < g < ¢ < @ with 1/¢ = (1 —60)/qo + 0/q1. Then the interpolation inequality
1 £llzan < CIFIEC NI (cf. [14, Sect. 1.3.3(5)] ) and the above estimate yield

a0, La1,o©

it 3,1 1
e U z0r < CE25 ™ ||ul 1pm

which proves the first part of (2.4). The proofs of the two other inequalities are easy and

are omitted. n

Lemma 2.3 (cf. [7]). Let 1 < py,ps < oo with 1/p:=1/p1+1/ps <1 andlet1 < q1,q2 <
oo with ¢ == min{qy, q2}. Then, for all f € LP+7(Q) and g € LP>9(S2), it holds that

(2.6) 1f - gllra < Cllfllovar [lg]l o2z,

where C' = C(p17p27 q1, Q2> > 0.

3 Proof of Theorem 1

Proof. We prove Theorem 1 by decomposing u(t) into a low frequency part u! and a high
frequency part u”, cf. [2]. Let S := e=%4. Then by Lemma 2.1 we have for 0 < s <t <T
(3.1)

(u(t), e_Mu(t)) +2 /t(e_MAl/Qu, AYV2) dr = (u(s), e_Mu(s)) +2 /t(u - Vu, e %) dr.

Since {e 94} 550 is a Cy-semigroup on L2 and since AY2y € L2(0,T; L2), letting 6 — 0+,

we obtain

t t _
3.2 u(t)||2 + 2 AY2u, AY20) dr = ||lu(s)|)2 + lim 2 w - Vu, e ) dr.
2 60—0+



Let u! := e~ %4y for 0 < § < 1 and let u” := u — u!. Since V- u = 0, by (1.4), Lemma 2.2
and (2.5) we have

(- Vu,u)| = |(u- Vul, u)] < Jlullosl| Ve liszllu [ 1s/7
< Cllullos2 | A2 u!| s [l 1157
< Ol AY | prsye 6~ VHIAY ul sy 84| AY Hut] 1o
< O A ul|3 51

(3.3)

Hence, under the assumption (1.9), Lebesgue’s dominated convergence theorem yields
t

t
lim [ (u-Vu,u')dr = / lim (u - Vu,u')dr =0,

0—0+ s 6—0+

since by (2.4) we have |lu — u'[|s < COY4ul| 512 < 051/4HUHD; and consequently
3

5111110(u Vu,u)(7) = (u- Vu,u)(r) =0 forae. 7€ (0,7T).

This equation and (3.2) prove the energy equality under condition (1.9).
Next, we assume condition (1.10). Since by (1.7)

D((e+ Agp)"?) = (D((e + Ayy)'"?), D((e + Ag)*))or € (W5 ™, Wy ™o,

where qo, 1,0 are as in (1.6), we have ||Vu||z,. < [ AY?u|z,. for all 1 < p < oo and
1 <r < oo. Then, using Lemma 2.2, (2.5) and Lemma 2.3, we observe that

[ T, )| < Clful| e || A0

(3.4) . 5
< Cllull e 077 207G A 20| gy 62 Jull g < Cfull,
3OO p,00

TR ([T [F7

Hence,
(- Vu,ul)| < CHUH%’;W'

As in the above argument, we obtain the energy equality, which proves Theorem 1. [
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