On the energy equality of Navier-Stokes equations in general unbounded domains

Reinhard Farwig*, Yasushi Taniuchi ${ }^{\dagger}$

Abstract

We present a sufficient condition for the energy equality of Leray-Hopf's weak solutions to the Navier-Stokes equations in general unbounded 3-dimensional domains.

AMS Subject Classification(2000): 35Q35; 76D05
Key words: Navier-Stokes equations; energy equality; weak solutions; general unbounded domains

1 Introduction

In this paper, we consider a viscous incompressible fluid in general (unbounded) 3dimensional domains Ω. The motion of such a fluid is governed by the Navier-Stokes equations

$$
\left\{\begin{align*}
\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p & =f, & t>0, & x \in \Omega, \tag{N-S}\\
\operatorname{div} u & =0, & t>0, & x \in \Omega, \\
\left.u\right|_{\partial \Omega} & =0, & & \\
u(0) & =a, & &
\end{align*}\right.
$$

where $u=\left(u^{1}(x, t), u^{2}(x, t), u^{3}(x, t)\right)$, and $p=p(x, t)$ denote the velocity vector and the pressure, respectively, of the fluid at the point $(x, t) \in \Omega \times \mathbb{R}_{+}$. Here a is the given initial data and f the external force. For simplicity, we assume that the coefficient of viscosity equals 1. Leray [10] and Hopf [6] showed the global existence of weak solutions $u \in$ $L^{\infty}\left(0, \infty ; L_{\sigma}^{2}(\Omega)\right) \cap L_{\mathrm{loc}}^{2}\left([0, \infty) ; H_{0}^{1}(\Omega)\right)$ to (N-S) satisfying the energy inequality. However,

[^0]uniqueness and regularity of Leray-Hopf's weak solutions are still open problems. Even the question whether or not every Leray-Hopf's solution satisfies the energy equality
\[

$$
\begin{equation*}
\|u(t)\|_{2}^{2}+2 \int_{t_{0}}^{t}\|\nabla u(\tau)\|_{2}^{2} d \tau=\left\|u\left(t_{0}\right)\right\|_{2}^{2}+2 \int_{t_{0}}^{t}(u(\tau), f(\tau)) d \tau, \quad 0 \leq t_{0}<t<T \tag{1.1}
\end{equation*}
$$

\]

is still an open problem.
Serrin [11] showed - in addition to a uniqueness result - that if a weak solution u belongs to $L^{s}\left(0, T ; L^{q}(\Omega)\right)$ for some $q>3, s>2$ with

$$
3 / q+2 / s \leq 1
$$

then u satisfies the energy equality (1.1). Later, Shinbrot [12] derived the same conclusion if the weak solution u belongs to $L^{s}\left(0, T ; L^{q}(\Omega)\right)$ for some $q, s>1$ with

$$
\begin{equation*}
3 / q+2 / s \leq 1+1 / q, \quad q \geq 4 \tag{1.2}
\end{equation*}
$$

see also [13]. By using the exponents $s=q=4$ in (1.2) and Hölder's inequality in space-time, the same result holds when

$$
\begin{equation*}
3 / q+2 / s \leq 1+1 / s, \quad s \geq 4 \tag{1.3}
\end{equation*}
$$

Recently, Cheskidov-Friedlander-Shvydkoy [2] proved the energy equality in a function class with better scaling properties than that of Shinbrot. They showed that if Ω is a bounded domain with C^{2}-boundary and if a Leray-Hopf weak solution u belongs to $L^{3}\left(0, T ; V^{5 / 6}\right)$, then u satisfies the energy equality. Here $V^{5 / 6}:=D\left(A_{2}^{5 / 12}\right) \subset$ $H^{5 / 6,2}(\Omega) \subset L^{9 / 2}(\Omega)$, and A_{2} denotes the Stokes operator on $L_{\sigma}^{2}(\Omega)$. Moreover, if $\Omega=$ \mathbb{R}^{3}, Cheskidov-Constantin-Friedlander-Shvydkoy [3] proved the same conclusion if $u \in$ $L^{3}\left(0, T ; B_{3, \infty}^{1 / 3}\left(\mathbb{R}^{3}\right)\right)\left(\supset L^{3}\left(0, T ; H^{5 / 6,2}\left(\mathbb{R}^{3}\right)\right)\right)$. For the Euler equation they also prove the same result under the slightly stronger condition $u \in L^{3}\left(0, T ; B_{3, c}^{1 / 3}\left(\mathbb{R}^{3}\right)\right)$; here, $B_{3, c}^{1 / 3}\left(\mathbb{R}^{3}\right)$ denotes the closure of $C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ in $B_{3, \infty}^{1 / 3}\left(\mathbb{R}^{3}\right)$.

In the present paper we generalize the result of Cheskidov-Friedlander-Shvydkoy [2] to arbitrary unbounded domains and Sobolev or Besov spaces of W_{q}^{k}-type with order of differentiability $k \geq \frac{1}{2}$ only, see Theorem 1 below. By using properties of Stokes semigroups, roughly speaking, we prove that the energy equality holds if u satisfies some conditions in terms of intermediate spaces between $H^{5 / 6,2}$ and $B_{3, \infty}^{1 / 3}$ such that (1.3) is satisfied with $s=3, q=\frac{9}{2}$. Moreover, we consider more general domains Ω of $C^{1,1}$-type.

For general unbounded domains $\Omega \subset \mathbb{R}^{3}$ of uniform C^{1}-class (cf. Definition 1 below) Farwig-Kozono-Sohr [4] showed the existence of the Helmholtz projection by replacing
the space L^{q} by

$$
\tilde{L}^{q}(\Omega):=\left\{\begin{array}{ll}
L^{q}(\Omega) \cap L^{2}(\Omega), & 2 \leq q<\infty \\
L^{q}(\Omega)+L^{2}(\Omega), & 1<q<2
\end{array} .\right.
$$

Definition $1[4,5]$ A domain $\Omega \subset \mathbb{R}^{n}$, $n \geq 2$, is called a uniform $C^{1,1}$-domain of type (α, β, K) (where $\alpha>0, \beta>0, K>0)$ if for each $x_{0} \in \partial \Omega$ we can choose a Cartesian coordinate system with origin at x_{0} and coordinates $y=\left(y^{\prime}, y_{n}\right), y^{\prime}=\left(y_{1}, y_{2}, \cdots, y_{n-1}\right)$, and a $C^{1,1}$-function $h\left(y^{\prime}\right),\left|y^{\prime}\right| \leq \alpha$, with $C^{1,1}$-norm $\|h\|_{C^{1,1}} \leq K$ such that the neighborhood

$$
U_{\alpha, \beta, h}\left(x_{0}\right):=\left\{\left(y^{\prime}, y_{n}\right) \in \mathbb{R}^{n} ; h\left(y^{\prime}\right)-\beta<y_{n}<h\left(y^{\prime}\right)+\beta,\left|y^{\prime}\right|<\alpha\right\}
$$

of x_{0} satisfies

$$
\Omega \cap U_{\alpha, \beta, h}\left(x_{0}\right)=\left\{\left(y^{\prime}, y_{n}\right) ; h\left(y^{\prime}\right)-\beta<y_{n}<h\left(y^{\prime}\right),\left|y^{\prime}\right|<\alpha\right\}
$$

and $\partial \Omega \cap U_{\alpha, \beta, h}\left(x_{0}\right)=\left\{\left(y^{\prime}, h\left(y^{\prime}\right)\right) ;\left|y^{\prime}\right|<\alpha\right\}$. Similarly, uniform C^{k}-domains, $k \in \mathbb{N}$, of type (α, β, K) are defined.

Let $L_{\sigma}^{q}(\Omega):=\overline{C_{0, \sigma}^{\infty}(\Omega)}{ }^{\|\cdot\|_{q}}, G^{q}(\Omega):=\left\{\nabla p \in\left(L^{q}(\Omega)\right)^{3} ; p \in L_{\mathrm{loc}}^{q}(\Omega)\right\}, 1<q<\infty$, and define the spaces
$\tilde{L}_{\sigma}^{q}(\Omega):=\left\{\begin{array}{ll}L_{\sigma}^{q}(\Omega) \cap L_{\sigma}^{2}(\Omega), & 2 \leq q<\infty \\ L_{\sigma}^{q}(\Omega)+L_{\sigma}^{2}(\Omega), & 1<q<2\end{array} \quad, \quad \tilde{G}^{q}(\Omega):=\left\{\begin{array}{ll}G^{q}(\Omega) \cap G^{2}(\Omega), & 2 \leq q<\infty \\ G^{q}(\Omega)+G^{2}(\Omega), & 1<q<2\end{array}\right.\right.$.
Then Farwig-Kozono-Sohr [4] showed that the Helmholtz decomposition

$$
\tilde{L}^{q}(\Omega)=\tilde{L}_{\sigma}^{q}(\Omega)+\tilde{G}^{q}(\Omega), \quad 1<q<\infty,
$$

holds for unbounded domains $\Omega \subset \mathbb{R}^{n}$ of uniform C^{1}-class. When Ω is a uniform $C^{1,1}$ _ domain, using the corresponding Helmholtz projection $\tilde{P}_{q}: \tilde{L}^{q}(\Omega) \rightarrow \tilde{L}_{\sigma}^{q}(\Omega)$, they defined the Stokes operator \tilde{A}_{q} in $\tilde{L}_{\sigma}^{q}(\Omega)$ as the linear operator with domain

$$
\mathcal{D}\left(\tilde{A}_{q}\right):=\left\{\begin{array}{ll}
D_{q}(\Omega) \cap D_{2}(\Omega), & 2 \leq q<\infty \\
D_{q}(\Omega)+D_{2}(\Omega), & 1<q<2
\end{array},\right.
$$

where $D_{q}(\Omega):=W^{2, q}(\Omega) \cap W_{0}^{1, q}(\Omega) \cap L_{\sigma}^{q}(\Omega)$, by setting

$$
\tilde{A}_{q} u:=-\tilde{P}_{q} \Delta u, \quad u \in \mathcal{D}\left(\tilde{A}_{q}\right),
$$

see [5]. They also proved that $-\tilde{A}_{q}$ generates an analytic semigroup in $\tilde{L}_{\sigma}^{q}(\Omega)$ and \tilde{A}_{q} has maximal L^{s}-regularity for $1<s<\infty$. Recently, Kunstmann [8] showed that the operator $\epsilon+\tilde{A}_{q}$ has a bounded H^{∞}-calculus in $\tilde{L}_{\sigma}^{q}(\Omega), 1<q<\infty$, for $\epsilon>0$, hence admits bounded
imaginary powers and the domain of $\left(\epsilon+\tilde{A}_{q}\right)^{s}, 0<s<1$, coincides with the complex interpolation space $\left[\tilde{L}_{\sigma}^{q}(\Omega), \mathcal{D}\left(\tilde{A}_{q}\right)\right]_{s}$. In particular,

$$
\begin{equation*}
D\left(\left(\epsilon+\tilde{A}_{q}\right)^{1 / 2}\right)=\tilde{W}_{0}^{1, p}(\Omega) \cap \tilde{L}_{\sigma}^{q}(\Omega) \tag{1.4}
\end{equation*}
$$

where $\tilde{W}_{0}^{1, q}(\Omega)=W_{0}^{1, q}(\Omega) \cap W_{0}^{1,2}(\Omega)$ for $q \geq 2$ and $\tilde{W}_{0}^{1, q}(\Omega)=W_{0}^{1, q}(\Omega)+W_{0}^{1,2}(\Omega)$ for $1<q<2$, see [8, Corollary 1.2]. For simplicity, we use the notation

$$
\tilde{D}_{q}^{2 s}:=D\left(\left(1+\tilde{A}_{q}\right)^{s}\right)=\left[\tilde{L}_{\sigma}^{q}(\Omega), \mathcal{D}\left(\tilde{A}_{q}\right)\right]_{s}
$$

Using real interpolation, let

$$
\begin{equation*}
\tilde{L}^{q, r}(\Omega):=\left(\tilde{L}^{q_{0}}(\Omega), \tilde{L}^{q_{1}}(\Omega)\right)_{\theta, r}, \tag{1.5}
\end{equation*}
$$

where $1 \leq r \leq \infty$ and

$$
\begin{align*}
& 1<q_{0}<q<q_{1}<\infty, 0<\theta<1 \text { with } \frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}}, \tag{1.6}\\
& q_{0}, q_{1}>2 \text { if } q>2, \quad q_{0}<2<q_{1} \text { if } q=2, \quad q_{0}, q_{1}<2 \text { if } q<2,
\end{align*}
$$

see [9, Section 4]. Then, by interpolation, the Helmholtz projection $\tilde{P}_{q, r}$ is defined as a bounded operator from $\tilde{L}^{q, r}(\Omega)$ to

$$
\tilde{L}_{\sigma}^{q, r}(\Omega):=\left(\tilde{L}_{\sigma}^{q_{0}}(\Omega), \tilde{L}_{\sigma}^{q_{1}}(\Omega)\right)_{\theta, r},
$$

where q_{0}, q_{1}, θ, r are as in (1.6). We can also define the Stokes operator $\tilde{A}_{q, r}$ by

$$
\tilde{A}_{q, r} u=-\tilde{P}_{q, r} \Delta u, \quad u \in \mathcal{D}\left(\tilde{A}_{q, r}\right):=\left[\mathcal{D}\left(\tilde{A}_{q_{0}}\right), \mathcal{D}\left(\tilde{A}_{q_{1}}\right)\right]_{\theta, r},
$$

with q_{0}, q_{1}, θ, r as in (1.6). Then, by real interpolation, we see that $-\tilde{A}_{q, r}$ generates an analytic semigroup in $\tilde{L}_{\sigma}^{q, r}(\Omega)$ and the operator $\epsilon+\tilde{A}_{q, r}$ has a bounded H^{∞}-calculus in $\tilde{L}_{\sigma}^{q, r}(\Omega)$ for $\epsilon>0$. Consequently the domain of $\left(\epsilon+\tilde{A}_{q, r}\right)^{s}, 0<s<1$, coincides with the complex interpolation space $\left[\tilde{L}_{\sigma}^{q, r}(\Omega), \mathcal{D}\left(\tilde{A}_{q, r}\right)\right]_{s}$. In particular, for $s \in(0,1)$,

$$
\begin{equation*}
D\left(\left(\epsilon+\tilde{A}_{q, r}\right)^{s}\right)=\left(D\left(\left(\epsilon+\tilde{A}_{q_{0}}\right)^{s}\right), D\left(\left(\epsilon+\tilde{A}_{q_{1}}\right)^{s}\right)\right)_{\theta, r} \tag{1.7}
\end{equation*}
$$

where q_{0}, q_{1}, θ, r are as in (1.6), see Kunstmann [9, Section 4]. We also denote this space by

$$
\tilde{D}_{q, r}^{2 s}:=D\left(\left(1+\tilde{A}_{q, r}\right)^{s}\right)
$$

Note that $\tilde{D}_{q, 1}^{k} \subset \tilde{D}_{q}^{k} \subset \tilde{D}_{q, \infty}^{k}$. From now on we will write \tilde{A} instead of $\tilde{A}_{q, r}$ for simplicity.
Before stating our result, we introduce the definition of weak solutions to the NavierStokes equations. Let $H_{0, \sigma}^{1}(\Omega)=H_{0}^{1}(\Omega) \cap L_{\sigma}^{2}(\Omega)$; for simplicity, we assume $f=0$.

Definition 2. Let $a \in L_{\sigma}^{2}$. A measurable function u on $\Omega \times(0, T), 0<T \leq \infty$, is called a weak solution of (N-S) on $(0, T)$ if
(i) $u \in L^{\infty}\left(0, T ; L_{\sigma}^{2}\right) \cap L_{\mathrm{loc}}^{2}\left([0, T) ; H_{0, \sigma}^{1}\right)$;
(ii) $u(t)$ is continuous on $[0, T]$ in the weak topology of L_{σ}^{2} and $u(0)=a$;
(iii) for every $0 \leq s \leq t<T$ and every $\Phi \in H^{1}\left((s, t) ; H_{0, \sigma}^{1}\right)$

$$
\begin{equation*}
\int_{s}^{t}\left\{-\left(u, \partial_{\tau} \Phi\right)+(\nabla u, \nabla \Phi)+(u \cdot \nabla u, \Phi)\right\} d \tau=-(u(t), \Phi(t))+(u(s), \Phi(s)) . \tag{1.8}
\end{equation*}
$$

Now our main result reads as follows:
Theorem 1. Let u be a weak solution to the Navier-Stokes equations in a uniform $C^{1,1}$ domain on $(0, T)$. Assume that
(1.9) $u \in L^{3}\left(0, T ; \tilde{D}_{18 / 7}^{1 / 2}\right)$, or
(1.10) $u \in L^{3}\left(0, T ; \tilde{D}_{p, \infty}^{k}\right)$ for some k, p with $\frac{2}{9}=\frac{1}{p}-\frac{k}{3}, \quad \frac{1}{2}<k<\frac{5}{6}, \quad 2<p<\frac{18}{7}$.

Then the energy equality

$$
\begin{equation*}
\|u(t)\|_{2}^{2}+2 \int_{0}^{t}\|\nabla u(\tau)\|_{2}^{2} d \tau=\|u(0)\|_{2}^{2} \tag{1.11}
\end{equation*}
$$

holds for all $t \in(0, T)$.
Remarks. 1. On the one hand, the space $L^{3}\left(0, T ; \tilde{D}_{18 / 7}^{1 / 2}\right)(1.9)$ is not contained in $L^{3}\left(0, T ; \tilde{D}_{p, \infty}^{k}\right)$ when $k>\frac{1}{2}$. On the other hand, when $k>\frac{1}{2}$ is sufficiently close to $\frac{1}{2}$, the space $\tilde{D}_{p, \infty}^{k}\left(\subset L^{9 / 2, \infty}\right)$ in (1.10) contains some functions having the singularity of $|x|^{-2 / 3}$ at the origin, while $\tilde{D}_{18 / 7}^{1 / 2}\left(\subset L^{9 / 2}\right)$ does not contain such functions. Indeed, let $\phi \in C_{0}^{\infty}\left(B_{2}(0)\right)$ satisfy $\phi \equiv 1$ in $B_{1}(0)$ and define

$$
a(x):=\operatorname{rot}\left(0,0, \phi(x)|x|^{1 / 3}\right)
$$

Obviously, $a(x) \sim|x|^{-2 / 3}$ and $(1-\Delta) a \sim|x|^{-8 / 3}$ for $x \sim 0$ so that $(1-\Delta) a \in L^{9 / 8, \infty}\left(\mathbb{R}^{3}\right)$. Moreover, div $a=0$ in the sense of distributions on \mathbb{R}^{3} Let θ, k, p_{0} and p_{1} satisfy $\frac{1}{2}<k<\frac{5}{6}, 2<p_{0}<p<p_{1}, \frac{2}{9}=\frac{1}{p}-\frac{k}{3}$ and $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$. Then

$$
\begin{aligned}
\tilde{D}_{p, \infty}^{k}\left(\mathbb{R}^{3}\right) & =(1+A)^{-k / 2} \tilde{L}_{\sigma}^{p, \infty}\left(\mathbb{R}^{3}\right)=(1-\Delta)^{-k / 2} P\left(\tilde{L}^{p_{0}}\left(\mathbb{R}^{3}\right), \tilde{L}^{p_{1}}\left(\mathbb{R}^{3}\right)\right)_{\theta, \infty} \\
& =P(1-\Delta)^{-k / 2}\left(L^{p_{0}} \cap L^{2}, L^{p_{1}} \cap L^{2}\right)_{\theta, \infty} \supset P(1-\Delta)^{-1}\left(L^{d_{0}} \cap L^{h}, L^{d_{1}} \cap L^{h}\right)_{\theta, \infty}
\end{aligned}
$$

where

$$
\frac{1}{p_{0}}=\frac{1}{d_{0}}-\frac{2-k}{3}, \quad \frac{1}{p_{1}}=\frac{1}{d_{1}}-\frac{2-k}{3}, \quad \frac{1}{2}=\frac{1}{h}-\frac{2-k}{3} .
$$

Let E_{0} be the 0 -extension operator from functions defined on $B_{2}(0)$ to functions on \mathbb{R}^{3} :

$$
E_{0} f(x)=\left\{\begin{array}{cl}
f(x) & \text { if } x \in B_{2}(0) \\
0 & \text { otherwise }
\end{array} .\right.
$$

Since $d_{0}, d_{1}>h$, we have $L^{d_{i}}\left(\mathbb{R}^{3}\right) \cap L^{h}\left(\mathbb{R}^{3}\right) \supset E_{0} L^{d_{i}}\left(B_{2}(0)\right)$ for $i=0,1$. Hence,

$$
\tilde{D}_{p, \infty}^{k}\left(\mathbb{R}^{3}\right) \supset P(1-\Delta)^{-1} E_{0}\left(L^{d_{0}}\left(B_{2}(0)\right), L^{d_{1}}\left(B_{2}(0)\right)\right)_{\theta, \infty}=P(1-\Delta)^{-1} E_{0} L^{9 / 8, \infty}\left(B_{2}(0)\right) .
$$

Let $b:=(1-\Delta) a\left(\in L^{9 / 8, \infty}\right)$. Since $\operatorname{div} b=0$ and $\operatorname{supp} b \subset B_{2}(0)$, we have $a=$ $P(1-\Delta)^{-1} E_{0} b$, which implies $a \in \tilde{D}_{p, \infty}^{k}\left(\mathbb{R}^{3}\right)$. Therefore, there is no inclusion between conditions (1.9) and (1.10).
2. When Ω is a bounded domain,

$$
\tilde{D}_{18 / 7}^{1 / 2}=\left[\tilde{L}_{\sigma}^{18 / 7}, \mathcal{D}\left(\tilde{A}_{18 / 7}\right)\right]_{1 / 4}=\left[L_{\sigma}^{18 / 7}, \mathcal{D}\left(A_{18 / 7}\right)\right]_{1 / 4}=D\left(A_{18 / 7}^{1 / 4}\right) \supset V^{5 / 6}=D\left(A_{2}^{5 / 12}\right)
$$

Hence (1.9) is a better condition than that in [2] requiring less regularity. Moreover, note that $L^{3}\left(0, T ; \tilde{D}_{18 / 7}^{1 / 2}\right) \subset L^{3}\left(0, T ; L^{9 / 2}\right) ;$ here, with $s=3, q=\frac{9}{2}$ we have $2 / s+3 / q=1+1 / s$, cf. (1.3).

2 Preliminaries

In this section we introduce some lemmata.
Lemma 2.1. Let u be a weak solution to ($N-S$) on $(0, T)$ and \mathbb{S} be a bounded, linear and self-adjoint operator in L_{σ}^{2} with $\|\mathbb{S} v\|_{D\left(A_{2}\right)} \leq C\|v\|_{2}$. Assume $A^{1 / 2} \mathbb{S} v=\mathbb{S} A^{1 / 2} v$ for $v \in D\left(A_{2}\right)$. Then, it holds that

$$
\begin{equation*}
(u(t), \mathbb{S} u(t))+2 \int_{s}^{t}\left(\mathbb{S} A^{1 / 2} u, A^{1 / 2} u\right) d \tau=(u(s), \mathbb{S} u(s))+2 \int_{s}^{t}(u \cdot \nabla u, \mathbb{S} u) d \tau \tag{2.1}
\end{equation*}
$$

for all $s, t \in[0, T)$.
Proof. We follow Serrin [11]. Let $\rho \geq 0$ be a function in $C_{0}^{\infty}(0,1)$ with $\rho(t)=\rho(|t|)$ and $\int_{-1}^{1} \rho d t=1, \rho_{\epsilon}(t):=\frac{1}{\epsilon} \rho\left(\frac{t}{\epsilon}\right)$ for $\epsilon>0$, fix arbitrary $0 \leq s<t<T$ and let

$$
u_{\epsilon}(\tau):=\int_{s}^{t} \rho_{\epsilon}(|\tau-\sigma|) u(\sigma) d \sigma, \quad u_{\epsilon}^{l}(\tau):=\int_{s}^{t} \rho_{\epsilon}(|\tau-\sigma|) \mathbb{S} u(\sigma) d \sigma\left(=\mathbb{S} u_{\epsilon}(\tau)\right)
$$

Then $u_{\epsilon} \rightarrow u$ in $L^{2}\left(s, t ; L^{2}(\Omega)\right)$ as $\epsilon \rightarrow 0+$. Since \mathbb{S} is a self adjoint operator,

$$
\begin{align*}
\int_{s}^{t}\left(u(\tau), \partial_{\tau} u_{\epsilon}^{l}(\tau)\right) d \tau & =\int_{s}^{t} \int_{s}^{t}\left(u(\tau), \partial_{\tau} \rho_{\epsilon}(|\tau-\sigma|) \mathbb{S} u(\sigma)\right) d \tau d \sigma \tag{2.2}\\
& =\int_{s}^{t} \int_{s}^{t}\left(\mathbb{S} u(\tau),-\partial_{\sigma} \rho_{\epsilon}(|\tau-\sigma|) u(\sigma)\right) d \tau d \sigma=: K
\end{align*}
$$

By replacing (σ, τ) by (τ, σ), we have

$$
\begin{align*}
K & =\int_{s}^{t} \int_{s}^{t}\left(\mathbb{S} u(\sigma),-\partial_{\tau} \rho_{\epsilon}(|\sigma-\tau|) u(\tau)\right) d \sigma d \tau \\
& =-\int_{s}^{t} \int_{s}^{t}\left(\partial_{\tau} \rho_{\epsilon}(|\tau-\sigma|) \mathbb{S} u(\sigma), u(\tau)\right) d \sigma d \tau \tag{2.3}\\
& =-\int_{s}^{t}\left(\partial_{\tau} u_{\epsilon}^{l}(\tau), u(\tau)\right) d \tau=-K=0 .
\end{align*}
$$

Clearly, since u is weakly continuous in L^{2} and hence $u_{\epsilon}(t) \rightharpoonup \frac{1}{2} u(t)$ in L^{2} as $\epsilon \rightarrow 0+$,
$\left(u(t), u_{\epsilon}^{l}(t)\right)=\int_{s}^{t} \rho_{\epsilon}(|t-\sigma|)(u(t), \mathbb{S} u(\sigma)) d \sigma=\int_{s}^{t} \rho_{\epsilon}(|t-\sigma|)(\mathbb{S} u(t), u(\sigma)) d \sigma \rightarrow \frac{1}{2}(\mathbb{S} u(t), u(t))$ as $\epsilon \rightarrow 0+$. Similarly we have

$$
\left(u(s), u_{\epsilon}^{l}(s)\right) \rightarrow \frac{1}{2}(\mathbb{S} u(s), u(s))
$$

Since $A^{1 / 2} u_{\epsilon} \rightarrow A^{1 / 2} u$ in $L^{2}\left(s, t ; L^{2}(\Omega)\right)$,
$\int_{s}^{t}\left(\nabla u, \nabla u_{\epsilon}^{l}\right) d \tau=\int_{s}^{t}\left(A^{1 / 2} u, A^{1 / 2} u_{\epsilon}^{l}\right) d \tau=\int_{s}^{t}\left(\mathbb{S} A^{1 / 2} u, A^{1 / 2} u_{\epsilon}\right) d \tau \rightarrow \int_{s}^{t}\left(\mathbb{S} A^{1 / 2} u, A^{1 / 2} u\right) d \tau$ as $\epsilon \rightarrow 0+$. Finally,

$$
\begin{aligned}
\left|\int_{s}^{t}\left(u \cdot \nabla u, u_{\epsilon}^{l}-\mathbb{S} u\right) d \tau\right| & \leq C \sup _{[s, t]}\|u\|_{2}\|\nabla u\|_{L^{2}\left(0, T ; L^{2}\right)}\left(\int_{s}^{t}\left\|\mathbb{S} u_{\epsilon}-\mathbb{S} u\right\|_{D\left(A_{2}\right)}^{2} d \tau\right)^{1 / 2} \\
& \leq C \sup _{[s, t]}\|u\|_{2}\|\nabla u\|_{L^{2}\left(0, T ; L^{2}\right)}\left\|u_{\epsilon}-u\right\|_{L^{2}\left(s, t ; L^{2}\right)}
\end{aligned}
$$

converges to 0 as $\epsilon \rightarrow 0+$. Substituting u_{ϵ}^{l} as test function in (1.8), and then letting $\epsilon \rightarrow 0$, we obtain (2.1).

Lemma 2.2. Let $\tilde{\mathcal{A}}:=1+\tilde{A}, 0 \leq \alpha \leq \theta$ and $1 \leq r \leq \infty$. Then, for all $0<t<1$, it holds that

$$
\begin{array}{lll}
\left\|e^{-t \tilde{\mathcal{A}}} f\right\|_{\tilde{D}_{q, 1}^{\theta}} & \leq C t^{\frac{\theta-\alpha}{2}-\frac{3}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{\tilde{D}_{p, \infty}^{\alpha}} & \text { for } 2<p<q<\infty, \\
\left\|f-e^{-t \tilde{\mathcal{A}}} f\right\|_{\tilde{D}_{p}^{\alpha}} & \leq C t^{\frac{\theta-\alpha}{2}}\|f\|_{\tilde{D}_{p}^{\theta}} & \text { for } 1<p<\infty . \tag{2.4}\\
\left\|f-e^{-t \tilde{\mathcal{A}}} f\right\|_{\tilde{D}_{p, r}^{\alpha}} & \leq C t^{\frac{\theta-\alpha}{2}}\|f\|_{\tilde{D}_{p, r}^{\theta}} & \text { for } 1<p<\infty .
\end{array}
$$

Here $\tilde{D}_{p, r}^{0}:=\tilde{L}^{p, r}$.

Proof. Since $\|u\|_{\tilde{L}^{q}} \leq C\left\|\tilde{\mathcal{A}}^{\beta} u\right\|_{\tilde{L}^{p}}$ for $1 / q=1 / p-2 \beta / 3,0<\beta<\min (1,3 / 2 p), p>1$, (see [9, Corollary 2.7]), it holds that

$$
\begin{equation*}
\|u\|_{\tilde{L}^{q, r}} \leq C\left\|\tilde{\mathcal{A}}^{\beta} u\right\|_{\tilde{L}^{p, r}} \tag{2.5}
\end{equation*}
$$

for $1 / q=1 / p-2 \beta / 3, p>2,1 \leq r \leq \infty$ and $0<\beta<3 / 2 p$. Then we have

$$
\left\|e^{-t \tilde{\mathcal{A}}} u\right\|_{\tilde{L}^{q, \infty}} \leq C\left\|\tilde{\mathcal{A}}^{\beta} e^{-t \tilde{\mathcal{A}}} u\right\|_{\tilde{L}^{p, \infty}} \leq C t^{\frac{3}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\|u\|_{\tilde{L}^{p, \infty}} .
$$

By the reiteration theorem (cf. [14, Sect. 1.10.2]) it holds that $\tilde{L}^{q, 1}=\left(\tilde{L}^{q_{0}, \infty}, \tilde{L}^{q_{1}, \infty}\right)_{\theta, 1}$ for $2<q_{0}<q<q_{1}$ with $1 / q=(1-\theta) / q_{0}+\theta / q_{1}$. Then the interpolation inequality $\|f\|_{\tilde{L}^{q, 1}} \leq C\|f\|_{\tilde{L}^{q_{0}}, \infty}^{1-\theta}\|f\|_{\tilde{L}^{q_{1}, \infty}}^{\theta}$ (cf. [14, Sect. 1.3.3(5)]) and the above estimate yield

$$
\left\|e^{-t \tilde{\mathcal{A}}} u\right\|_{\tilde{L}^{q, 1}} \leq C t^{\frac{3}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\|u\|_{\tilde{L}^{p, \infty}}
$$

which proves the first part of (2.4). The proofs of the two other inequalities are easy and are omitted.

Lemma 2.3 (cf. [7]). Let $1<p_{1}, p_{2}<\infty$ with $1 / p:=1 / p_{1}+1 / p_{2}<1$ and let $1 \leq q_{1}, q_{2} \leq$ ∞ with $q:=\min \left\{q_{1}, q_{2}\right\}$. Then, for all $f \in L^{p_{1}, q_{1}}(\Omega)$ and $g \in L^{p_{2}, q_{2}}(\Omega)$, it holds that

$$
\begin{equation*}
\|f \cdot g\|_{L^{p, q}} \leq C\|f\|_{L^{p_{1}, q_{1}}}\|g\|_{L^{p_{2}, q_{2}}}, \tag{2.6}
\end{equation*}
$$

where $C=C\left(p_{1}, p_{2}, q_{1}, q_{2}\right)>0$.

3 Proof of Theorem 1

Proof. We prove Theorem 1 by decomposing $u(t)$ into a low frequency part u^{l} and a high frequency part u^{h}, cf. [2]. Let $\mathbb{S}:=e^{-\delta \tilde{\mathcal{A}}}$. Then by Lemma 2.1 we have for $0 \leq s<t<T$ (3.1)

$$
\left(u(t), e^{-\delta \tilde{\mathcal{A}}} u(t)\right)+2 \int_{s}^{t}\left(e^{-\delta \tilde{\mathcal{A}}} A^{1 / 2} u, A^{1 / 2} u\right) d \tau=\left(u(s), e^{-\delta \tilde{\mathcal{A}}} u(s)\right)+2 \int_{s}^{t}\left(u \cdot \nabla u, e^{-\delta \tilde{\mathcal{A}}} u\right) d \tau
$$

Since $\left\{e^{-\delta \tilde{\mathcal{A}}}\right\}_{\delta \geq 0}$ is a C_{0}-semigroup on L_{σ}^{2} and since $A^{1 / 2} u \in L^{2}\left(0, T ; L_{\sigma}^{2}\right)$, letting $\delta \rightarrow 0+$, we obtain

$$
\begin{equation*}
\|u(t)\|_{2}^{2}+2 \int_{s}^{t}\left(A^{1 / 2} u, A^{1 / 2} u\right) d \tau=\|u(s)\|_{2}^{2}+\lim _{\delta \rightarrow 0+} 2 \int_{s}^{t}\left(u \cdot \nabla u, e^{-\delta \tilde{\mathcal{A}}} u\right) d \tau \tag{3.2}
\end{equation*}
$$

Let $u^{l}:=e^{-\delta \tilde{\mathcal{A}}} u$ for $0<\delta<1$ and let $u^{h}:=u-u^{l}$. Since $\nabla \cdot u=0$, by (1.4), Lemma 2.2 and (2.5) we have

$$
\begin{align*}
\left|\left(u \cdot \nabla u, u^{l}\right)\right| & =\left|\left(u \cdot \nabla u^{l}, u^{h}\right)\right| \leq\|u\|_{9 / 2}\left\|\nabla u^{l}\right\|_{18 / 7}\left\|u^{h}\right\|_{18 / 7} \\
& \leq C\|u\|_{9 / 2}\left\|\tilde{\mathcal{A}}^{1 / 2} u^{l}\right\|_{\tilde{L}^{18 / 7}}\left\|u^{h}\right\|_{18 / 7} \\
& \leq C\left\|\tilde{\mathcal{A}}^{1 / 4} u\right\|_{\tilde{L}^{18 / 7}} \delta^{-1 / 4}\left\|\tilde{\mathcal{A}}^{1 / 4} u\right\|_{\tilde{L}^{18 / 7}} \delta^{1 / 4}\left\|\tilde{\mathcal{A}}^{1 / 4} u\right\|_{\tilde{L}^{18 / 7}} \tag{3.3}\\
& \leq C\left\|\tilde{\mathcal{A}}^{1 / 4} u\right\|_{\tilde{L}^{18 / 7}}^{3} .
\end{align*}
$$

Hence, under the assumption (1.9), Lebesgue's dominated convergence theorem yields

$$
\lim _{\delta \rightarrow 0+} \int_{s}^{t}\left(u \cdot \nabla u, u^{l}\right) d \tau=\int_{s}^{t} \lim _{\delta \rightarrow 0+}\left(u \cdot \nabla u, u^{l}\right) d \tau=0
$$

since by (2.4) we have $\left\|u-u^{l}\right\|_{3} \leq C \delta^{1 / 4}\|u\|_{\tilde{D}_{3}^{1 / 2}} \leq C \delta^{1 / 4}\|u\|_{\tilde{D}_{2}^{1}}$ and consequently

$$
\lim _{\delta \rightarrow+0}\left(u \cdot \nabla u, u^{l}\right)(\tau)=(u \cdot \nabla u, u)(\tau)=0 \quad \text { for a.e. } \quad \tau \in(0, T) .
$$

This equation and (3.2) prove the energy equality under condition (1.9).
Next, we assume condition (1.10). Since by (1.7)

$$
D\left(\left(\epsilon+\tilde{A}_{q, r}\right)^{1 / 2}\right)=\left(D\left(\left(\epsilon+\tilde{A}_{q_{0}}\right)^{1 / 2}\right), D\left(\left(\epsilon+\tilde{A}_{q_{1}}\right)^{1 / 2}\right)\right)_{\theta, r} \subset\left(\tilde{W}_{0}^{1, q_{0}}, \tilde{W}_{0}^{1 / q_{1}}\right)_{\theta, r}
$$

where q_{0}, q_{1}, θ are as in (1.6), we have $\|\nabla u\|_{\tilde{L}^{p, r}} \leq\left\|\tilde{\mathcal{A}}^{1 / 2} u\right\|_{\tilde{L}^{p, r}}$ for all $1<p<\infty$ and $1 \leq r \leq \infty$. Then, using Lemma 2.2, (2.5) and Lemma 2.3, we observe that

$$
\left.\begin{array}{rl}
\left|\left(u \cdot \nabla u, u^{l}\right)\right| & \leq C\|u\|_{L^{9 / 2, \infty}}\left\|\tilde{\mathcal{A}}^{1 / 2} u^{l}\right\|_{\left.\tilde{L}^{\left(\frac{7}{g}-1\right.}-\frac{1}{p}\right)^{-1,1}}
\end{array}\right] u^{h} \|_{L^{p, \infty}} .
$$

Hence,

$$
\left|\left(u \cdot \nabla u, u^{l}\right)\right| \leq C\|u\|_{\tilde{D}_{D, \infty}^{k}}^{3}
$$

As in the above argument, we obtain the energy equality, which proves Theorem 1.
Acknowledgement. The second author of this article greatly acknowledges the support of the Alexander von Humboldt Foundation during his stay in 2009/10 at Technische Universität Darmstadt.

References

[1] J. Bergh and J. Löfström, Interpolation spaces, An introduction, Berlin-New YorkHeidelberg: Springer-Verlag (1976).
[2] A. Cheskidov, S. Friedlander and R. Shvydkoy, On the energy equality for weak solutions of the 3D Navier-Stokes equations, Preprint.
[3] A. Cheskidov, P. Constantin, S. Friedlander and R. Shvydkoy, Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity 21 (2008), 1233-1252.
[4] R. Farwig, H. Kozono and H. Sohr, On the Helmholtz decomposition in general unbounded domains, Arch. Math. 88, 239-248 (2007).
[5] R. Farwig, H. Kozono and H. Sohr, On the Stokes operator in general unbounded domains, Hokkaido Math. J. 38, 111-136 (2009).
[6] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4, 213-231 (1951).
[7] H. Kozono and M. Yamazaki, Uniqueness criterion of weak solutions to the stationary Navier-Stokes equations in exterior domains, Nonlinear Anal., Ser. A: Theory and Methods 38 (1999), 959-970.
[8] P. C. Kunstmann, H^{∞}-Calculus for the Stokes operator on unbounded domains, Arch. Math. 91 (2008), 178-186.
[9] P. C. Kunstmann, Navier-Stokes equations on unbounded domains with rough initial data, Czechoslovak Math. J., to appear.
[10] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), 193-248.
[11] J. Serrin, The initial value problem for the Navier-Stokes equations. In: Nonlinear problems, Univ. Wisconsin Press, Madison (R.E. Langer, ed.) (1963), 69-98.
[12] M. Shinbrot, The energy equation for the Navier-Stokes system, SIAM J. Math. Anal. 5 (1974), 948-954.
[13] Y. Taniuchi, On generalized energy equality of the Navier-Stokes equations, Manuscripta Math. 94 (1997), 356-384.
[14] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, NorthHolland, Amsterdam-New York, (1978).

[^0]: *Fachbereich Mathematik, Technische Universität Darmstadt, 64283 Darmstadt, farwig@mathematik. tu-darmstadt.de
 ${ }^{\dagger}$ Department of Mathematical Sciences, Shinshu University, Matsumoto 390-8621, Japan, taniuchi@ math.shinshu-u.ac.jp

