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Abstract

We present a sufficient condition for the energy equality of Leray-Hopf’s weak solu-
tions to the Navier-Stokes equations in general unbounded 3-dimensional domains.
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1 Introduction

In this paper, we consider a viscous incompressible fluid in general (unbounded) 3-

dimensional domains Ω. The motion of such a fluid is governed by the Navier-Stokes

equations

(N-S)


∂tu−∆u + u · ∇u +∇p = f, t > 0, x ∈ Ω,

div u = 0, t > 0, x ∈ Ω,
u|∂Ω = 0,
u(0) = a,

where u = (u1(x, t), u2(x, t), u3(x, t)), and p = p(x, t) denote the velocity vector and the

pressure, respectively, of the fluid at the point (x, t) ∈ Ω×R+. Here a is the given initial

data and f the external force. For simplicity, we assume that the coefficient of viscosity

equals 1. Leray [10] and Hopf [6] showed the global existence of weak solutions u ∈
L∞(0,∞; L2

σ(Ω))∩L2
loc([0,∞); H1

0 (Ω)) to (N-S) satisfying the energy inequality. However,
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uniqueness and regularity of Leray-Hopf’s weak solutions are still open problems. Even

the question whether or not every Leray-Hopf’s solution satisfies the energy equality

(1.1) ‖u(t)‖2
2 + 2

∫ t

t0

‖∇u(τ)‖2
2 dτ = ‖u(t0)‖2

2 + 2

∫ t

t0

(u(τ), f(τ)) dτ, 0 ≤ t0 < t < T,

is still an open problem.

Serrin [11] showed – in addition to a uniqueness result – that if a weak solution u

belongs to Ls(0, T ; Lq(Ω)) for some q > 3, s > 2 with

3/q + 2/s ≤ 1,

then u satisfies the energy equality (1.1). Later, Shinbrot [12] derived the same conclusion

if the weak solution u belongs to Ls(0, T ; Lq(Ω)) for some q, s > 1 with

(1.2) 3/q + 2/s ≤ 1 + 1/q, q ≥ 4,

see also [13]. By using the exponents s = q = 4 in (1.2) and Hölder’s inequality in

space-time, the same result holds when

(1.3) 3/q + 2/s ≤ 1 + 1/s, s ≥ 4.

Recently, Cheskidov–Friedlander–Shvydkoy [2] proved the energy equality in a func-

tion class with better scaling properties than that of Shinbrot. They showed that if

Ω is a bounded domain with C2-boundary and if a Leray–Hopf weak solution u be-

longs to L3(0, T ; V 5/6), then u satisfies the energy equality. Here V 5/6 := D(A
5/12
2 ) ⊂

H5/6,2(Ω) ⊂ L9/2(Ω), and A2 denotes the Stokes operator on L2
σ(Ω). Moreover, if Ω =

R3, Cheskidov–Constantin–Friedlander–Shvydkoy [3] proved the same conclusion if u ∈
L3(0, T ; B

1/3
3,∞(R3)) (⊃ L3(0, T ; H5/6,2(R3))). For the Euler equation they also prove the

same result under the slightly stronger condition u ∈ L3(0, T ; B
1/3
3,c (R3)); here, B

1/3
3,c (R3)

denotes the closure of C∞
0 (R3) in B

1/3
3,∞(R3).

In the present paper we generalize the result of Cheskidov–Friedlander–Shvydkoy [2]

to arbitrary unbounded domains and Sobolev or Besov spaces of W k
q -type with order

of differentiability k ≥ 1
2

only, see Theorem 1 below. By using properties of Stokes

semigroups, roughly speaking, we prove that the energy equality holds if u satisfies some

conditions in terms of intermediate spaces between H5/6,2 and B
1/3
3,∞ such that (1.3) is

satisfied with s = 3, q = 9
2
. Moreover, we consider more general domains Ω of C1,1-type.

For general unbounded domains Ω ⊂ R3 of uniform C1-class (cf. Definition 1 below)

Farwig-Kozono-Sohr [4] showed the existence of the Helmholtz projection by replacing
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the space Lq by

L̃q(Ω) :=

{
Lq(Ω) ∩ L2(Ω), 2 ≤ q < ∞
Lq(Ω) + L2(Ω), 1 < q < 2

.

Definition 1 [4, 5] A domain Ω ⊂ Rn, n ≥ 2, is called a uniform C1,1-domain of type

(α, β, K) (where α > 0, β > 0, K > 0) if for each x0 ∈ ∂Ω we can choose a Cartesian co-

ordinate system with origin at x0 and coordinates y = (y′, yn), y′ = (y1, y2, · · · , yn−1), and

a C1,1-function h(y′), |y′| ≤ α, with C1,1-norm ‖h‖C1,1 ≤ K such that the neighborhood

Uα,β,h(x0) := {(y′, yn) ∈ Rn; h(y′)− β < yn < h(y′) + β, |y′| < α}

of x0 satisfies

Ω ∩ Uα,β,h(x0) = {(y′, yn); h(y′)− β < yn < h(y′), |y′| < α}

and ∂Ω ∩ Uα,β,h(x0) = {(y′, h(y′)); |y′| < α}. Similarly, uniform Ck-domains, k ∈ N, of

type (α, β, K) are defined.

Let Lq
σ(Ω) := C∞

0,σ(Ω)
‖·‖q

, Gq(Ω) := {∇p ∈ (Lq(Ω))3 ; p ∈ Lq
loc(Ω)}, 1 < q < ∞, and

define the spaces

L̃q
σ(Ω) :=

{
Lq

σ(Ω) ∩ L2
σ(Ω), 2 ≤ q < ∞

Lq
σ(Ω) + L2

σ(Ω), 1 < q < 2
, G̃q(Ω) :=

{
Gq(Ω) ∩G2(Ω), 2 ≤ q < ∞
Gq(Ω) + G2(Ω), 1 < q < 2

.

Then Farwig-Kozono-Sohr [4] showed that the Helmholtz decomposition

L̃q(Ω) = L̃q
σ(Ω) + G̃q(Ω), 1 < q < ∞,

holds for unbounded domains Ω ⊂ Rn of uniform C1-class. When Ω is a uniform C1,1-

domain, using the corresponding Helmholtz projection P̃q: L̃q(Ω) → L̃q
σ(Ω), they defined

the Stokes operator Ãq in L̃q
σ(Ω) as the linear operator with domain

D(Ãq) :=

{
Dq(Ω) ∩D2(Ω), 2 ≤ q < ∞
Dq(Ω) + D2(Ω), 1 < q < 2

,

where Dq(Ω) := W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lq

σ(Ω), by setting

Ãqu := −P̃q∆u, u ∈ D(Ãq),

see [5]. They also proved that −Ãq generates an analytic semigroup in L̃q
σ(Ω) and Ãq has

maximal Ls-regularity for 1 < s < ∞. Recently, Kunstmann [8] showed that the operator

ε+ Ãq has a bounded H∞-calculus in L̃q
σ(Ω), 1 < q < ∞, for ε > 0, hence admits bounded
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imaginary powers and the domain of (ε + Ãq)
s, 0 < s < 1, coincides with the complex

interpolation space [L̃q
σ(Ω),D(Ãq)]s. In particular,

(1.4) D((ε + Ãq)
1/2) = W̃ 1,p

0 (Ω) ∩ L̃q
σ(Ω),

where W̃ 1,q
0 (Ω) = W 1,q

0 (Ω) ∩ W 1,2
0 (Ω) for q ≥ 2 and W̃ 1,q

0 (Ω) = W 1,q
0 (Ω) + W 1,2

0 (Ω) for

1 < q < 2, see [8, Corollary 1.2]. For simplicity, we use the notation

D̃2s
q := D((1 + Ãq)

s) = [L̃q
σ(Ω),D(Ãq)]s.

Using real interpolation, let

(1.5) L̃q,r(Ω) := (L̃q0(Ω), L̃q1(Ω))θ,r,

where 1 ≤ r ≤ ∞ and

(1.6)
1 < q0 < q < q1 < ∞, 0 < θ < 1 with 1

q
= 1−θ

q0
+ θ

q1
,

q0, q1 > 2 if q > 2, q0 < 2 < q1 if q = 2, q0, q1 < 2 if q < 2 ,

see [9, Section 4]. Then, by interpolation, the Helmholtz projection P̃q,r is defined as a

bounded operator from L̃q,r(Ω) to

L̃q,r
σ (Ω) := (L̃q0

σ (Ω), L̃q1
σ (Ω))θ,r,

where q0, q1, θ, r are as in (1.6). We can also define the Stokes operator Ãq,r by

Ãq,ru = −P̃q,r∆u, u ∈ D(Ãq,r) := [D(Ãq0),D(Ãq1)]θ,r,

with q0, q1, θ, r as in (1.6). Then, by real interpolation, we see that −Ãq,r generates an

analytic semigroup in L̃q,r
σ (Ω) and the operator ε + Ãq,r has a bounded H∞-calculus in

L̃q,r
σ (Ω) for ε > 0. Consequently the domain of (ε + Ãq,r)

s, 0 < s < 1, coincides with the

complex interpolation space [L̃q,r
σ (Ω),D(Ãq,r)]s. In particular, for s ∈ (0, 1),

(1.7) D((ε + Ãq,r)
s) = (D((ε + Ãq0)

s), D((ε + Ãq1)
s))θ,r,

where q0, q1, θ, r are as in (1.6), see Kunstmann [9, Section 4]. We also denote this space

by

D̃2s
q,r := D((1 + Ãq,r)

s).

Note that D̃k
q,1 ⊂ D̃k

q ⊂ D̃k
q,∞. From now on we will write Ã instead of Ãq,r for simplicity.

Before stating our result, we introduce the definition of weak solutions to the Navier-

Stokes equations. Let H1
0,σ(Ω) = H1

0 (Ω) ∩ L2
σ(Ω); for simplicity, we assume f = 0.

Definition 2. Let a ∈ L2
σ. A measurable function u on Ω × (0, T ), 0 < T ≤ ∞, is

called a weak solution of (N-S) on (0, T ) if
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(i) u ∈ L∞(0, T ; L2
σ) ∩ L2

loc([0, T ); H1
0,σ);

(ii) u(t) is continuous on [0, T ] in the weak topology of L2
σ and u(0) = a;

(iii) for every 0 ≤ s ≤ t < T and every Φ ∈ H1((s, t); H1
0,σ)

(1.8)

∫ t

s

{−(u, ∂τΦ) + (∇u,∇Φ) + (u · ∇u, Φ)} dτ = −(u(t), Φ(t)) + (u(s), Φ(s)).

Now our main result reads as follows:

Theorem 1. Let u be a weak solution to the Navier-Stokes equations in a uniform C1,1-

domain on (0, T ). Assume that

u ∈ L3(0, T ; D̃
1/2
18/7), or(1.9)

u ∈ L3(0, T ; D̃k
p,∞) for some k, p with

2

9
=

1

p
− k

3
,

1

2
< k <

5

6
, 2 < p <

18

7
.(1.10)

Then the energy equality

(1.11) ‖u(t)‖2
2 + 2

∫ t

0

‖∇u(τ)‖2
2 dτ = ‖u(0)‖2

2

holds for all t ∈ (0, T ).

Remarks. 1. On the one hand, the space L3(0, T ; D̃
1/2
18/7) (1.9) is not contained in

L3(0, T ; D̃k
p,∞) when k > 1

2
. On the other hand, when k > 1

2
is sufficiently close to 1

2
,

the space D̃k
p,∞(⊂ L9/2,∞) in (1.10) contains some functions having the singularity of

|x|−2/3 at the origin, while D̃
1/2
18/7(⊂ L9/2) does not contain such functions. Indeed, let

φ ∈ C∞
0 (B2(0)) satisfy φ ≡ 1 in B1(0) and define

a(x) := rot (0, 0, φ(x)|x|1/3).

Obviously, a(x) ∼ |x|−2/3 and (1−∆)a ∼ |x|−8/3 for x ∼ 0 so that (1−∆)a ∈ L9/8,∞(R3).

Moreover, div a = 0 in the sense of distributions on R3 Let θ, k, p0 and p1 satisfy
1
2

< k < 5
6
, 2 < p0 < p < p1,

2
9

= 1
p
− k

3
and 1

p
= 1−θ

p0
+ θ

p1
. Then

D̃k
p,∞(R3) = (1 + A)−k/2L̃p,∞

σ (R3) = (1−∆)−k/2P (L̃p0(R3), L̃p1(R3))θ,∞

= P (1−∆)−k/2(Lp0 ∩ L2, Lp1 ∩ L2)θ,∞ ⊃ P (1−∆)−1(Ld0 ∩ Lh, Ld1 ∩ Lh)θ,∞,

where
1

p0

=
1

d0

− 2− k

3
,

1

p1

=
1

d1

− 2− k

3
,

1

2
=

1

h
− 2− k

3
.
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Let E0 be the 0-extension operator from functions defined on B2(0) to functions on R3:

E0f(x) =

{
f(x) if x ∈ B2(0)

0 otherwise
.

Since d0, d1 > h, we have Ldi(R3) ∩ Lh(R3) ⊃ E0L
di(B2(0)) for i = 0, 1. Hence,

D̃k
p,∞(R3) ⊃ P (1−∆)−1E0(L

d0(B2(0)), L
d1(B2(0)))θ,∞ = P (1−∆)−1E0L

9/8,∞(B2(0)).

Let b := (1 − ∆)a (∈ L9/8,∞). Since div b = 0 and supp b ⊂ B2(0), we have a =

P (1 − ∆)−1E0b, which implies a ∈ D̃k
p,∞(R3). Therefore, there is no inclusion between

conditions (1.9) and (1.10).

2. When Ω is a bounded domain,

D̃
1/2
18/7 = [L̃18/7

σ ,D(Ã18/7)]1/4 = [L18/7
σ ,D(A18/7)]1/4 = D(A

1/4
18/7) ⊃ V 5/6 = D(A

5/12
2 ) .

Hence (1.9) is a better condition than that in [2] requiring less regularity. Moreover, note

that L3(0, T ; D̃
1/2
18/7) ⊂ L3(0, T ; L9/2); here, with s = 3, q = 9

2
we have 2/s+3/q = 1+1/s,

cf. (1.3).

2 Preliminaries

In this section we introduce some lemmata.

Lemma 2.1. Let u be a weak solution to (N-S) on (0, T ) and S be a bounded, linear

and self-adjoint operator in L2
σ with ‖Sv‖D(A2) ≤ C‖v‖2. Assume A1/2Sv = SA1/2v for

v ∈ D(A2). Then, it holds that

(2.1) (u(t), Su(t)) + 2

∫ t

s

(SA1/2u, A1/2u) dτ = (u(s), Su(s)) + 2

∫ t

s

(u · ∇u, Su) dτ

for all s, t ∈ [0, T ).

Proof. We follow Serrin [11]. Let ρ ≥ 0 be a function in C∞
0 (0, 1) with ρ(t) = ρ(|t|) and∫ 1

−1
ρ dt = 1, ρε(t) := 1

ε
ρ( t

ε
) for ε > 0, fix arbitrary 0 ≤ s < t < T and let

uε(τ) :=

∫ t

s

ρε(|τ − σ|)u(σ) dσ, ul
ε(τ) :=

∫ t

s

ρε(|τ − σ|)Su(σ) dσ(= Suε(τ)).

Then uε → u in L2(s, t; L2(Ω)) as ε → 0+. Since S is a self adjoint operator,∫ t

s

(u(τ), ∂τu
l
ε(τ)) dτ =

∫ t

s

∫ t

s

(u(τ), ∂τρε(|τ − σ|)Su(σ)) dτ dσ

=

∫ t

s

∫ t

s

(Su(τ),−∂σρε(|τ − σ|)u(σ)) dτ dσ =: K

(2.2)

6



By replacing (σ, τ) by (τ, σ), we have

K =

∫ t

s

∫ t

s

(Su(σ),−∂τρε(|σ − τ |)u(τ)) dσ dτ

= −
∫ t

s

∫ t

s

(∂τρε(|τ − σ|)Su(σ), u(τ)) dσ dτ

= −
∫ t

s

(∂τu
l
ε(τ), u(τ)) dτ = −K = 0 .

(2.3)

Clearly, since u is weakly continuous in L2 and hence uε(t) ⇀ 1
2
u(t) in L2 as ε → 0+,

(u(t), ul
ε(t)) =

∫ t

s

ρε(|t−σ|)(u(t), Su(σ)) dσ =

∫ t

s

ρε(|t−σ|)(Su(t), u(σ)) dσ → 1

2
(Su(t), u(t))

as ε → 0+. Similarly we have

(u(s), ul
ε(s)) →

1

2
(Su(s), u(s)).

Since A1/2uε → A1/2u in L2(s, t; L2(Ω)),∫ t

s

(∇u,∇ul
ε) dτ =

∫ t

s

(A1/2u, A1/2ul
ε) dτ =

∫ t

s

(SA1/2u, A1/2uε) dτ →
∫ t

s

(SA1/2u, A1/2u) dτ

as ε → 0+. Finally,∣∣∣∣∫ t

s

(u · ∇u, ul
ε − Su) dτ

∣∣∣∣ ≤ C sup
[s,t]

‖u‖2‖∇u‖L2(0,T ;L2)

(∫ t

s

‖Suε − Su‖2
D(A2) dτ

)1/2

≤ C sup
[s,t]

‖u‖2‖∇u‖L2(0,T ;L2)‖uε − u‖L2(s,t;L2)

converges to 0 as ε → 0+. Substituting ul
ε as test function in (1.8), and then letting

ε → 0, we obtain (2.1).

Lemma 2.2. Let Ã := 1 + Ã, 0 ≤ α ≤ θ and 1 ≤ r ≤ ∞. Then, for all 0 < t < 1, it

holds that

(2.4)

‖e−tÃf‖D̃θ
q,1

≤ Ct
θ−α

2
− 3

2
( 1

p
− 1

q
)‖f‖D̃α

p,∞
for 2 < p < q < ∞,

‖f − e−tÃf‖D̃α
p

≤ Ct
θ−α

2 ‖f‖D̃θ
p

for 1 < p < ∞.

‖f − e−tÃf‖D̃α
p,r

≤ Ct
θ−α

2 ‖f‖D̃θ
p,r

for 1 < p < ∞.

Here D̃0
p,r := L̃p,r.
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Proof. Since ‖u‖L̃q ≤ C‖Ãβu‖L̃p for 1/q = 1/p−2β/3, 0 < β < min(1, 3/2p), p > 1, (see

[9, Corollary 2.7]), it holds that

(2.5) ‖u‖L̃q,r ≤ C‖Ãβu‖L̃p,r

for 1/q = 1/p− 2β/3, p > 2, 1 ≤ r ≤ ∞ and 0 < β < 3/2p. Then we have

‖e−tÃu‖L̃q,∞ ≤ C‖Ãβe−tÃu‖L̃p,∞ ≤ Ct
3
2
( 1

p
− 1

q
)‖u‖L̃p,∞ .

By the reiteration theorem (cf. [14, Sect. 1.10.2]) it holds that L̃q,1 = (L̃q0,∞, L̃q1,∞)θ,1

for 2 < q0 < q < q1 with 1/q = (1 − θ)/q0 + θ/q1. Then the interpolation inequality

‖f‖L̃q,1 ≤ C‖f‖1−θ

L̃q0,∞‖f‖θ
L̃q1,∞ (cf. [14, Sect. 1.3.3(5)] ) and the above estimate yield

‖e−tÃu‖L̃q,1 ≤ Ct
3
2
( 1

p
− 1

q
)‖u‖L̃p,∞

which proves the first part of (2.4). The proofs of the two other inequalities are easy and

are omitted.

Lemma 2.3 (cf. [7]). Let 1 < p1, p2 < ∞ with 1/p := 1/p1 +1/p2 < 1 and let 1 ≤ q1, q2 ≤
∞ with q := min{q1, q2}. Then, for all f ∈ Lp1,q1(Ω) and g ∈ Lp2,q2(Ω), it holds that

(2.6) ‖f · g‖Lp,q ≤ C‖f‖Lp1,q1‖g‖Lp2,q2 ,

where C = C(p1, p2, q1, q2) > 0.

3 Proof of Theorem 1

Proof. We prove Theorem 1 by decomposing u(t) into a low frequency part ul and a high

frequency part uh, cf. [2]. Let S := e−δÃ. Then by Lemma 2.1 we have for 0 ≤ s < t < T

(3.1)

(u(t), e−δÃu(t)) + 2

∫ t

s

(e−δÃA1/2u, A1/2u) dτ = (u(s), e−δÃu(s)) + 2

∫ t

s

(u · ∇u, e−δÃu) dτ.

Since {e−δÃ}δ≥0 is a C0-semigroup on L2
σ and since A1/2u ∈ L2(0, T ; L2

σ), letting δ → 0+,

we obtain

(3.2) ‖u(t)‖2
2 + 2

∫ t

s

(A1/2u, A1/2u) dτ = ‖u(s)‖2
2 + lim

δ→0+
2

∫ t

s

(u · ∇u, e−δÃu) dτ.
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Let ul := e−δÃu for 0 < δ < 1 and let uh := u− ul. Since ∇ · u = 0, by (1.4), Lemma 2.2

and (2.5) we have

|(u · ∇u, ul)| = |(u · ∇ul, uh)| ≤ ‖u‖9/2‖∇ul‖18/7‖uh‖18/7

≤ C‖u‖9/2‖Ã1/2ul‖L̃18/7‖uh‖18/7

≤ C‖Ã1/4u‖L̃18/7 δ−1/4‖Ã1/4u‖L̃18/7 δ1/4‖Ã1/4u‖L̃18/7

≤ C‖Ã1/4u‖3
L̃18/7 .

(3.3)

Hence, under the assumption (1.9), Lebesgue’s dominated convergence theorem yields

lim
δ→0+

∫ t

s

(u · ∇u, ul) dτ =

∫ t

s

lim
δ→0+

(u · ∇u, ul) dτ = 0,

since by (2.4) we have ‖u− ul‖3 ≤ Cδ1/4‖u‖
D̃

1/2
3
≤ Cδ1/4‖u‖D̃1

2
and consequently

lim
δ→+0

(u · ∇u, ul)(τ) = (u · ∇u, u)(τ) = 0 for a.e. τ ∈ (0, T ).

This equation and (3.2) prove the energy equality under condition (1.9).

Next, we assume condition (1.10). Since by (1.7)

D((ε + Ãq,r)
1/2) = (D((ε + Ãq0)

1/2), D((ε + Ãq1)
1/2))θ,r ⊂ (W̃ 1,q0

0 , W̃
1/q1

0 )θ,r,

where q0, q1, θ are as in (1.6), we have ‖∇u‖L̃p,r ≤ ‖Ã1/2u‖L̃p,r for all 1 < p < ∞ and

1 ≤ r ≤ ∞. Then, using Lemma 2.2, (2.5) and Lemma 2.3, we observe that

|(u · ∇u, ul)| ≤ C‖u‖L9/2,∞‖Ã1/2ul‖
L̃

( 7
9−

1
p )−1,1‖uh‖Lp,∞

≤ C‖u‖L9/2,∞ δ−
1−k
2
− 3

2
[ 1
p
−( 7

9
− 1

p
)]‖Ãk/2u‖L̃p,∞ δk/2‖u‖D̃k

p,∞
≤ C‖u‖3

D̃k
p,∞

.
(3.4)

Hence,

|(u · ∇u, ul)| ≤ C‖u‖3
D̃k

p,∞
.

As in the above argument, we obtain the energy equality, which proves Theorem 1.

Acknowledgement. The second author of this article greatly acknowledges the support

of the Alexander von Humboldt Foundation during his stay in 2009/10 at Technische

Universität Darmstadt.

References
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