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Abstract

Consider the stationary Navier-Stokes equations in a bounded domain Q C R™ whose
boundary 02 consists of L+ 1 smooth n — 1 dimensional closed hypersurfaces I'g,I'y,---,T'p,
where I'y,---, ' lie inside of I’y and outside of one another. The Leray inequality of the
given boundary data [ on 02 plays an important role for the existence of solutions. It is
known that if the flux v; = fFi B-vdS =0 on I';(v: the unit outer normal to T';) is zero for
each¢=0,1,---, L, then the Leray inequality holds. We prove that if there exists a sphere .S
in Q separating 0f in such a way that I'y,---, T (1 £ k < L) are contained inside of S and
that the others I'yyq,---,['p are outside of .S, then the Leray inequality necessarily implies
that v7 + - - - + v = 0. In particular, suppose that there are L spheres Sy,---, Sy in € such
that I'; lies inside of S; for all ¢ = 1,---, L. Then the Leray inequality holds if and only if

’70:71:"':'7[1:0-

Introduction.

We consider Leray’s problem on the stationary Navier-Stokes equations with the inhomogeneous
boundary data under the general fluxz condition. Let € be a bounded domain in R”, n > 2 with

smooth boundary 9€2. Throughout this paper, we impose the following assumption on 2.

Assumption. The boundary 92 has L 4+ 1 connected components I'g,I'1,---, T’ of n — 1

dimensional C*°-closed hypersurfaces such that I'y,---, 'y lie inside of I'g and outside of one
other;
L
o =Jr;.
§=0



In the most interesting case when n = 3, it is often called that €2 has the second Betti number
L. In Q we consider the boundary value problem for the stationary Navier-Stokes equations:

—pAv+v-Vo+Vp=0 in Q,

(N-S) dive=0 in,
v=/0 on 0,
where v = v(z) = (vi(x), -, vy(x)) and p = p(x) denote the unknown velocity vector and the
unknown pressure at the point x = (x1,---,z,) € Q, while u > 0 is the given viscosity constant,
and § = f(x) = (Bi(x),---,Bn(x)) is the given boundary data on 0. We use the standard
: 52 g 8 . dv; 9
notation as Av =", %%’ Vp = <8T§)17 e %), dive=>7", %, and v- Vo =371, vja—;j.

Since the solution v satisfies div v = 0 in 2, the given boundary data § on 0 is required to
fulfill the following compatibility condition which we call the general flux condition:

L
(G.F.) B-vdS =0,

where v denotes the unit outer normal to 0€2. Leray [11] proposed to solve the following problem.

Leray’s problem. Let n = 2,3. Suppose that § € H/2(9Q) satisfies the general flux condition
(G.F.). Does there exist at least one weak solution v € H'(2) of (N-S) ?

Up to now, we are not yet successful to give a complete answer to this question. However,
some partial answer has been proved by Leray [11], Fujita[3] and Ladyzehenskaya [10] under the
restricted flux condition (R.F.) on f:

(R.F.) %E/ f-vdS=0 forall j=0,1,---,L.
Ly

Indeed, under the restricted flux condition (R.F.) on (3, they showed that there exists at least
one weak solution v of (N-S). Although more refined existence results were given by Galdi [6,
Chapter VIII, Theorem 4.1] and the second and the third authors [9], it is still an open problem
to prove an existence theorem under the general flux condition (G.F.).

If the given boundary data [ satisfies the general flux condition (G.F.), then there exists
an extension b into 2 with b|pq = § such that div b = 0. See e.g., Borchers-Sohr [2]. We call
such b a solenoidal extension into €2 of 3. Introducing a new unknown variable u = v — b, we
can reduce the original equations (N-S) to the following ones with the homogeneous boundary
condition:

—pAu+b-Vut+u-Vb+u-Vu+Vp=pAb—5b-Vb in Q,
(N-S”) divu =0 in €,
u=0 on 0.

To solve (N-S’) we need to handle the linear convection term b - Vu + u - Vb as a perturbation
of —uAu. More precisely, to prove the existence of the solution u of (N-S’), we rely on the
following Leray inequality.



Definition 1 Let Q be as in the Assumption, and let 3 € HY2(9Q) N Wl_%’%(aﬁ). Suppose
that B fulfills (G.F.) . We say that 3 satisfies the Leray inequality in Q if for every e > 0 there
exists b. € H'(Q) N W2 (Q) with div b, = 0 in Q and b. = 3 on O such that

(L.I) |(u- Vbe,u)| < €||Vu|\%2(9) Jor all uw € Hj (),
where H&U(Q) = {u € H}(Q);div u =0} and (-,-) denotes the usual inner product in L*(€2).

For u € H&U(Q) and b, € H'(Q) N W1z (Q), the left hand side of (L.I.) is well-defined since we
have by the Sobolev imbedding Hg () C L%(Q) that

2
(- Vo)) < Jul? s, ) IVl

2
n

Notice that it holds a continuous imbedding H/2(9Q) ¢ W'~ #°2 (9Q) provided n = 2,3,4. So,

the space Wl_%’%(ﬁﬁ) for B is meaningful only for n > 5.

For a moment, let us assume that n = 2 or n = 3. Once (L.I.) is established, by the well-
known identities (b- Vu,u) = (u- Vu,u) = 0 and (Vp,u) = 0 for u € Hj ,(Q), we obtain from
(L.I.) with € = u/2 such an apriori estimate that

IVull 20y < 257 ||[Ab — b - Vb| -1,

which yields the solution u of (N-S’) with the aid of the Leray-Schauder fixed point theorem.
If the given boundary data (3 satisfies the restricted flux condition (R.F.), then we see that
B fulfills (L.I.). Indeed, under the hypothesis of the restricted flux condition (R.F.) on f3, the
solenoidal extension b into  of 3 has a vector potential w € H?((2), which means that b can be
expressed as b = rot w. Taking a family {6.}.~¢ of cut-off functions with 6.(z) = 1 for = near
the boundary 92 so that the support of 6. is confined in an arbitrarily narrow closed strip to
0N as ¢ — +0, and then redefining b. as b.(z) = rot (0-(x)w(x)), we see that [ satisfies (L.I.).
For instance, see Temam [14, Chapter II, Lemma 1.8] and Galdi [6, Chapter VIII, Lemma 4.2].
It should be noted that the boundary value of b, is invariant under the multiplication of w by
6. In the previous work [8, Remark 1 (4)](see also [9]), we showed that the solenoidal extension
b into Q of § has a vector potential if and only if 3 satisfies the restricted flux condition (R.F.).

Now the natural question arises whether the general flux condition (G.F.) implies (L.L.).
Unfortunately, Takeshita[13] gave a negative answer to this question. Indeed, he treated the
annular domain Q@ = {x € R™ Ry < |z| < Ro} with Iy = {& € R";|z| = Ro}, I'1 = {z €
R™; |x| = Ry}, and proved that (3 satisfies (L.I.) in such an annulus Q if and only if

/ B-vdS= [ B-vdS=o.
o

I8

Another refined proof in the 2D annular region was given by Galdi [6, page 23]. In the last part
of Takeshita’s paper [13, Theorm 2], he treated the domain € as in the Assumption and stated
without any detail that if for each i = 0,1,---, L, I'; is diffeomorphically deformed to the sphere
in ©, then the Leray inequality (L.I.) is equivalent to (R.F.).



In this paper, we generalize Galdi-Takeshita’s result with a simple proof. Although our result
is not altogether new, we do not need to impose any topological restriction on the boundary,
while Takeshita [13] requires that each I';, i = 0,1,---, L, is diffecomorphic to the sphere. The
main theorem now reads:

Theorem 1 Let n > 3 and let Q be as in the Assumption. Suppose that 3 € H1/2(8Q) N
Wl_%’%(aﬁ) and that (3 satisfies (G.F.). Assume that there is a sphere S in Q such that Ty,
-+, and 'y lie inside of S and such that the others I'yy1, -+, I'r and Iy lie outside of S. If B
satisfies (L.1.) in S, then we have

(1.1) Nt =0, Yyt +yL+9% =0

As an immediate consequence of this theorem, we obtain the following necessary and sufficient
condition on the Leray inequality.

Corollary 1 Let n > 3 and let Q be as in the Assumption. Suppose that § € H1/2(8Q) N

Wlf%’%(ﬁﬁ) and that B satisfies (G.F.). Assume that there exist L spheres Si,---,SL in
such that S; contains only T'; in its inside and the rests OQ \ T'; lie in the outside of S; for all
i=1,---,L. Then (8 satisfies (L.1.) in Q if and only if (R.F.) holds.

Remarks. 1. Corollary 1 may be regarded as a generalization of Takeshita [13, Theorm 2] since
it is only assumed that each component I';, ¢ = 1,---, L is a smooth n — 1 dimensional closed
hypersurface in R™ with n > 3.

2. The assumption on regularity of the boundary 02 can be relaxed so that the Stokes
integral formula holds for vector fields on €. For instance, Theorem 1 holds for bounded locally
Lipschitz domains 2. More generally, we may treat the case when 2 is a bounded domain in
R™ with locally finite perimeter as in Ziemer [15, Theorem 5.8.2].

3. A similar argument to make use of the sphere covering each component of the boundary
was established by Kobayashi [7] in the two-dimensional multi-connected domains. Indeed, he
proved the corresponding result to Corollary 1 in the plane. However, it seems difficult to apply
his method directly to our higher-dimensional case.

4. Under some hypothesis on symmetry of the multi-connected domain Q in R?, Amick [1]
and Fujita [4] proved (L.I.) for all solenoidal vector fields u with symmetry. See also Morimoto
[12].

5. For solvability of (N-S’) itself in the case n = 2,3, the Leray inequality (L.I.) can be
relaxed to the following weaker condition (E.C.).

(E.C.) —(u-Vbe,u) = EHVUH%Q(Q) for all u € Hg ,(9).

Galdi[6, page 21] called it extension condition on (3, and proved that in the 2D annular region
(E.C.) necessarily implies (R.F.) for j = 0,1 under the inflow condition that v; < 0. It is

also possible to prove in Theorem 1 that (E.C.) yields the same conclusion as (1.1) provided
Y+ =0.

In Theorem 1, it is sufficient to cover I'y,---, 'y by the sphere S in € so that the rests of
Cky1,---,Tp and Ty lie outside of S. Taking a slightly larger sphere S” in Q containing S with



its same origin so that T'y1,- -+, 'z and Ty also lie outside of S’, we may reduce the problem to
that in the annular domain D between S and S’. Indeed, if the given boundary data 3 satisfies
(G.F.) and (L.I) with some solenoidal vector field b, € H*(Q) N W2 (), then it holds

/Ede Z% ,/EVdS—
S’

In the similar manner to Takeshita [13], by introducing the mean M (b.) of b, with respect to
the normalized Haar measure on the SO(n)-action, we see that each flux on S and S” of M (b.)
remains invariant, and that the inequality

< / |Vu|?da

holds for all u € C§°(D) with div w = 0. An appropriate choice of u in (1.2) enables us to obtain
v=0.

(1.2)

/ u-VM(be) - udzx
D

2 Proof of Theorem 1.

Suppose that the boundary data 8 € HY2(9Q) N Wl_%’%(é?ﬁ) satisfies the Leray inequality
in Q in the sense of Definition 1 Then, for every ¢ > 0 there exists b. € H'(Q) N Wbz (Q)
with div b = 0 in Q and b. = 8 such that (L.I.) holds. By the hypothesis on 92, without
loss of generality, we may take 0 < R < R’ such that both spheres Sp = {z € R™;|z| = R}
and Sg = {x € R";|z| = R'} are contained in Q, I'y,---, T lie inside of Sk and such that
Tgy1,---, T and T'g lie outside of Sgr. Since Zfzo ~vi = 0, implied by (G.F.), and since div b. = 0
in Q with b, = 3 on 912, it holds

k
(2.1) beovdS=7=Y v, be - vdS = —7.
Sk i=1 SR’

Now we reduce our problem to that in the concentric spherical domain D = {z € R"; R < |z| <
R’} and follow the argument given by Takeshita [13].

Let us take the mean M (b.) of b with respect to the normalized Haar measure dg on SO(n)-
action. That is,

M(bs) = / Tgb5d97
SO(n)
Tybe(x) = gbe(¢7'z), x€ D,g€SO(n).
By (2.1) it holds

div M(b:) =0 in D,

M(be) - vdS = 7, M(be) - vdS = —~.
Sk S



Furthermore, by (L.I.) we have

(2.3)

/ v VM(be) - vdx| < 8/ |Vo|?de  for all v € (D),
D D

where Cgf’a(D) is the set of all solenoidal vector fields with compact support in D. Indeed, since

1

det g = 1, by changing the variable x € D — y = ¢ ' € D, we have

/ v-V(Tybe) - vdx = / Tgflv - Vb, - Tgflvdy
D D

for all g € SO(n), which yields with the aid of the Fubini theorem that

/ </ T;lv - Vb - Tglvdy> dg
SO(n) D

/ / Tg_lv - Vb - Tg_lvdy‘ dg.
SO(n) |/ D

Since Tg_lv € C§%(D) and since VT, 'v(y) 2 = |Vu(gy)|? for all y € D, we have by (L.I.) and
again by changing variable y € D — 2z = gy € D with det g~! = 1 that

(2.4) '/Dv -V(Mb,) - vdx

A

/D T, 'v- Vb, - Tg_lvdy‘ =

/Tg_lv-VbE-Tg_lvdy‘
Q
(2.5) < €/Q|VTQ_1’U|2dy
= E/ \VT;IUde
D

= 5/ |Vo|2dx
D
for all g € SO(n). It follows from (2.4) and (2.5) that

< E/ </ |Vv|2d:1:> dg = 5/ |Vo|2dz,
SO(n) D D

’/ v-V(Mb,) - vdx
D

which implies (2.3).

In the next step, we test (2.3) by an appropriate v € Cg5, (D). First, it follows from (2.2)
that M (b.) has the representation as

(2.6) M(b) = —L

wpr™

x, x€D,

where r = |z| and w,, = % is the surface area of S"~!. Now, we choose a test vector function
v of (2.3) as
U(I) = (—,O(T)xg,p(r)xl,(), Tty 0)7 T = (xlv Tty :En) €D



with p € C§°((R, R')). It is easy to see that v € C§% (D) with the property that v(z) -z = 0 for
all z € D. Since

0 ~y Tj Tp )
T M(b)y = (& —nZTRY k=1,
Ox;j (be)e W1 k= 7“) J "

and since v(z) - = 0 for all z € D, it holds that

B " A 0 B ~ 9 vz 2
v- VM (be) v jEk_:l ”J@M(ba)k”k T o <|v\ —-n (T) )
Y 2
9. _
(27) 2

in D. Hence it follows from (2.3) and (2.7) that

2
(2.8) M/ |U|da:§5/ |Vo|?dx
Wn JD rh D

for all € > 0. Since the left and side of (2.8) is independent of ¢ and since Vv # 0, by letting
e — 0 we conclude from (2.8) that
v=0.

This proves Theorem 1.
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