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Abstract

Consider the stationary Navier-Stokes equations in a bounded domain Ω ⊂ Rn whose
boundary ∂Ω consists of L+1 smooth n−1 dimensional closed hypersurfaces Γ0, Γ1, · · · ,ΓL,
where Γ1, · · · , ΓL lie inside of Γ0 and outside of one another. The Leray inequality of the
given boundary data β on ∂Ω plays an important role for the existence of solutions. It is
known that if the flux γi ≡

∫
Γi

β · νdS = 0 on Γi(ν: the unit outer normal to Γi) is zero for
each i = 0, 1, · · · , L, then the Leray inequality holds. We prove that if there exists a sphere S
in Ω separating ∂Ω in such a way that Γ1, · · · , Γk (1 5 k 5 L) are contained inside of S and
that the others Γk+1, · · · ,ΓL are outside of S, then the Leray inequality necessarily implies
that γ1 + · · · + γk = 0. In particular, suppose that there are L spheres S1, · · · , SL in Ω such
that Γi lies inside of Si for all i = 1, · · · , L. Then the Leray inequality holds if and only if
γ0 = γ1 = · · · = γL = 0.

1 Introduction.

We consider Leray’s problem on the stationary Navier-Stokes equations with the inhomogeneous
boundary data under the general flux condition. Let Ω be a bounded domain in Rn, n ≥ 2 with
smooth boundary ∂Ω. Throughout this paper, we impose the following assumption on Ω.

Assumption. The boundary ∂Ω has L + 1 connected components Γ0, Γ1, · · · , ΓL of n − 1
dimensional C∞-closed hypersurfaces such that Γ1, · · · , ΓL lie inside of Γ0 and outside of one
other;

∂Ω =
L∪

j=0

Γj .
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In the most interesting case when n = 3, it is often called that Ω has the second Betti number
L. In Ω we consider the boundary value problem for the stationary Navier-Stokes equations:

(N-S)


−µ∆v + v · ∇v + ∇p = 0 in Ω,
div v = 0 in Ω,
v = β on ∂Ω,

where v = v(x) = (v1(x), · · · , vn(x)) and p = p(x) denote the unknown velocity vector and the
unknown pressure at the point x = (x1, · · · , xn) ∈ Ω, while µ > 0 is the given viscosity constant,
and β = β(x) = (β1(x), · · · , βn(x)) is the given boundary data on ∂Ω. We use the standard
notation as ∆v =

∑n
j=1

∂2v
∂x2

j
, ∇p =

(
∂p
∂x1

, · · · , ∂p
∂xn

)
, div v =

∑n
j=1

∂vj

∂xj
, and v · ∇v =

∑n
j=1 vj

∂v
∂xj

.

Since the solution v satisfies div v = 0 in Ω, the given boundary data β on ∂Ω is required to
fulfill the following compatibility condition which we call the general flux condition:

(G.F.)
L∑

j=0

∫
Γj

β · νdS = 0,

where ν denotes the unit outer normal to ∂Ω. Leray [11] proposed to solve the following problem.

Leray’s problem. Let n = 2, 3. Suppose that β ∈ H1/2(∂Ω) satisfies the general flux condition
(G.F.). Does there exist at least one weak solution v ∈ H1(Ω) of (N-S) ?

Up to now, we are not yet successful to give a complete answer to this question. However,
some partial answer has been proved by Leray [11], Fujita[3] and Ladyzehenskaya [10] under the
restricted flux condition (R.F.) on β:

(R.F.) γi ≡
∫

Γj

β · νdS = 0 for all j = 0, 1, · · · , L.

Indeed, under the restricted flux condition (R.F.) on β, they showed that there exists at least
one weak solution v of (N-S). Although more refined existence results were given by Galdi [6,
Chapter VIII, Theorem 4.1] and the second and the third authors [9], it is still an open problem
to prove an existence theorem under the general flux condition (G.F.).

If the given boundary data β satisfies the general flux condition (G.F.), then there exists
an extension b into Ω with b|∂Ω = β such that div b = 0. See e.g., Borchers-Sohr [2]. We call
such b a solenoidal extension into Ω of β. Introducing a new unknown variable u ≡ v − b, we
can reduce the original equations (N-S) to the following ones with the homogeneous boundary
condition:

(N-S’)


−µ∆u + b · ∇u + u · ∇b + u · ∇u + ∇p = µ∆b − b · ∇b in Ω,
div u = 0 in Ω,
u = 0 on ∂Ω.

To solve (N-S’) we need to handle the linear convection term b · ∇u + u · ∇b as a perturbation
of −µ∆u. More precisely, to prove the existence of the solution u of (N-S’), we rely on the
following Leray inequality.
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Definition 1 Let Ω be as in the Assumption, and let β ∈ H1/2(∂Ω) ∩ W 1− 2
n

, n
2 (∂Ω). Suppose

that β fulfills (G.F.) . We say that β satisfies the Leray inequality in Ω if for every ε > 0 there
exists bε ∈ H1(Ω) ∩ W 1, n

2 (Ω) with div bε = 0 in Ω and bε = β on ∂Ω such that

(L.I.) |(u · ∇bε, u)| 5 ε‖∇u‖2
L2(Ω) for all u ∈ H1

0,σ(Ω),

where H1
0,σ(Ω) ≡ {u ∈ H1

0 (Ω); div u = 0} and (·, ·) denotes the usual inner product in L2(Ω).

For u ∈ H1
0,σ(Ω) and bε ∈ H1(Ω) ∩ W 1, n

2 (Ω), the left hand side of (L.I.) is well-defined since we

have by the Sobolev imbedding H1
0 (Ω) ⊂ L

2n
n−2 (Ω) that

|(u · ∇bε, u)| 5 ‖u‖2

L
2n

n−2 (Ω)
‖∇bε‖L

n
2 (Ω)

5 C‖∇u‖2
L2(Ω)‖∇bε‖L

n
2 (Ω)

.

Notice that it holds a continuous imbedding H1/2(∂Ω) ⊂ W 1− 2
n

, n
2 (∂Ω) provided n = 2, 3, 4. So,

the space W 1− 2
n

, n
2 (∂Ω) for β is meaningful only for n ≥ 5.

For a moment, let us assume that n = 2 or n = 3. Once (L.I.) is established, by the well-
known identities (b · ∇u, u) = (u · ∇u, u) = 0 and (∇p, u) = 0 for u ∈ H1

0,σ(Ω), we obtain from
(L.I.) with ε = µ/2 such an apriori estimate that

‖∇u‖L2(Ω) 5 2µ−1‖µ∆b − b · ∇b‖H−1(Ω),

which yields the solution u of (N-S’) with the aid of the Leray-Schauder fixed point theorem.
If the given boundary data β satisfies the restricted flux condition (R.F.), then we see that

β fulfills (L.I.). Indeed, under the hypothesis of the restricted flux condition (R.F.) on β, the
solenoidal extension b into Ω of β has a vector potential w ∈ H2(Ω), which means that b can be
expressed as b = rot w. Taking a family {θε}ε>0 of cut-off functions with θε(x) ≡ 1 for x near
the boundary ∂Ω so that the support of θε is confined in an arbitrarily narrow closed strip to
∂Ω as ε → +0, and then redefining bε as bε(x) ≡ rot (θε(x)w(x)), we see that β satisfies (L.I.).
For instance, see Temam [14, Chapter II, Lemma 1.8] and Galdi [6, Chapter VIII, Lemma 4.2].
It should be noted that the boundary value of bε is invariant under the multiplication of w by
θε. In the previous work [8, Remark 1 (4)](see also [9]), we showed that the solenoidal extension
b into Ω of β has a vector potential if and only if β satisfies the restricted flux condition (R.F.).

Now the natural question arises whether the general flux condition (G.F.) implies (L.I.).
Unfortunately, Takeshita[13] gave a negative answer to this question. Indeed, he treated the
annular domain Ω = {x ∈ Rn; R1 < |x| < R0} with Γ0 = {x ∈ Rn; |x| = R0}, Γ1 = {x ∈
Rn; |x| = R1}, and proved that β satisfies (L.I.) in such an annulus Ω if and only if∫

Γ0

β · νdS =
∫

Γ1

β · νdS = 0.

Another refined proof in the 2D annular region was given by Galdi [6, page 23]. In the last part
of Takeshita’s paper [13, Theorm 2], he treated the domain Ω as in the Assumption and stated
without any detail that if for each i = 0, 1, · · · , L, Γi is diffeomorphically deformed to the sphere
in Ω̄, then the Leray inequality (L.I.) is equivalent to (R.F.).
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In this paper, we generalize Galdi-Takeshita’s result with a simple proof. Although our result
is not altogether new, we do not need to impose any topological restriction on the boundary,
while Takeshita [13] requires that each Γi, i = 0, 1, · · · , L, is diffeomorphic to the sphere. The
main theorem now reads:

Theorem 1 Let n ≥ 3 and let Ω be as in the Assumption. Suppose that β ∈ H1/2(∂Ω) ∩
W 1− 2

n
, n
2 (∂Ω) and that β satisfies (G.F.). Assume that there is a sphere S in Ω such that Γ1,

· · ·, and Γk lie inside of S and such that the others Γk+1, · · ·, ΓL and Γ0 lie outside of S. If β
satisfies (L.I.) in Ω, then we have

γ1 + · · · + γk = 0, γk+1 + · · · + γL + γ0 = 0.(1.1)

As an immediate consequence of this theorem, we obtain the following necessary and sufficient
condition on the Leray inequality.

Corollary 1 Let n ≥ 3 and let Ω be as in the Assumption. Suppose that β ∈ H1/2(∂Ω) ∩
W 1− 2

n
, n
2 (∂Ω) and that β satisfies (G.F.). Assume that there exist L spheres S1, · · · , SL in Ω

such that Si contains only Γi in its inside and the rests ∂Ω \ Γi lie in the outside of Si for all
i = 1, · · · , L. Then β satisfies (L.I.) in Ω if and only if (R.F.) holds.

Remarks. 1. Corollary 1 may be regarded as a generalization of Takeshita [13, Theorm 2] since
it is only assumed that each component Γi, i = 1, · · · , L is a smooth n − 1 dimensional closed
hypersurface in Rn with n ≥ 3.

2. The assumption on regularity of the boundary ∂Ω can be relaxed so that the Stokes
integral formula holds for vector fields on Ω̄. For instance, Theorem 1 holds for bounded locally
Lipschitz domains Ω. More generally, we may treat the case when Ω is a bounded domain in
Rn with locally finite perimeter as in Ziemer [15, Theorem 5.8.2].

3. A similar argument to make use of the sphere covering each component of the boundary
was established by Kobayashi [7] in the two-dimensional multi-connected domains. Indeed, he
proved the corresponding result to Corollary 1 in the plane. However, it seems difficult to apply
his method directly to our higher-dimensional case.

4. Under some hypothesis on symmetry of the multi-connected domain Ω in R2, Amick [1]
and Fujita [4] proved (L.I.) for all solenoidal vector fields u with symmetry. See also Morimoto
[12].

5. For solvability of (N-S’) itself in the case n = 2, 3, the Leray inequality (L.I.) can be
relaxed to the following weaker condition (E.C.).

(E.C.) −(u · ∇bε, u) 5 ε‖∇u‖2
L2(Ω) for all u ∈ H1

0,σ(Ω).

Galdi[6, page 21] called it extension condition on β, and proved that in the 2D annular region
(E.C.) necessarily implies (R.F.) for j = 0, 1 under the inflow condition that γ1 5 0. It is
also possible to prove in Theorem 1 that (E.C.) yields the same conclusion as (1.1) provided
γ1 + · · · + γk 5 0.

In Theorem 1, it is sufficient to cover Γ1, · · · , Γk by the sphere S in Ω so that the rests of
Γk+1, · · · , ΓL and Γ0 lie outside of S. Taking a slightly larger sphere S′ in Ω containing S with
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its same origin so that Γk+1, · · · ,ΓL and Γ0 also lie outside of S′, we may reduce the problem to
that in the annular domain D between S and S′. Indeed, if the given boundary data β satisfies
(G.F.) and (L.I.) with some solenoidal vector field bε ∈ H1(Ω) ∩ W 1, n

2 (Ω), then it holds∫
S

bε · νdS =
k∑

i=1

γi ≡ γ,

∫
S′

bε · νdS = −γ.

In the similar manner to Takeshita [13], by introducing the mean M(bε) of bε with respect to
the normalized Haar measure on the SO(n)-action, we see that each flux on S and S′ of M(bε)
remains invariant, and that the inequality∣∣∣∣∫

D
u · ∇M(bε) · udx

∣∣∣∣ 5 ε

∫
D
|∇u|2dx(1.2)

holds for all u ∈ C∞
0 (D) with div u = 0. An appropriate choice of u in (1.2) enables us to obtain

γ = 0.

2 Proof of Theorem 1.

Suppose that the boundary data β ∈ H1/2(∂Ω) ∩ W 1− 2
n

, n
2 (∂Ω) satisfies the Leray inequality

in Ω in the sense of Definition 1 Then, for every ε > 0 there exists bε ∈ H1(Ω) ∩ W 1, n
2 (Ω)

with div bε = 0 in Ω and bε = β such that (L.I.) holds. By the hypothesis on ∂Ω, without
loss of generality, we may take 0 < R < R′ such that both spheres SR ≡ {x ∈ Rn; |x| = R}
and SR′ ≡ {x ∈ Rn; |x| = R′} are contained in Ω, Γ1, · · · , Γk lie inside of SR and such that
Γk+1, · · · , ΓL and Γ0 lie outside of SR′ . Since

∑L
i=0 γi = 0, implied by (G.F.), and since div bε = 0

in Ω with bε = β on ∂Ω, it holds∫
SR

bε · νdS = γ ≡
k∑

i=1

γi,

∫
SR′

bε · νdS = −γ.(2.1)

Now we reduce our problem to that in the concentric spherical domain D ≡ {x ∈ Rn; R < |x| <
R′} and follow the argument given by Takeshita [13].

Let us take the mean M(bε) of bε with respect to the normalized Haar measure dg on SO(n)-
action. That is,

M(bε) =
∫

SO(n)
Tgbεdg,

Tgbε(x) = gbε(g−1x), x ∈ D, g ∈ SO(n).

By (2.1) it holds 
div M(bε) = 0 in D,∫

SR

M(bε) · νdS = γ,

∫
SR′

M(bε) · νdS = −γ.(2.2)
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Furthermore, by (L.I.) we have∣∣∣∣∫
D

v · ∇M(bε) · vdx

∣∣∣∣ 5 ε

∫
D
|∇v|2dx for all v ∈ C∞

0,σ(D),(2.3)

where C∞
0,σ(D) is the set of all solenoidal vector fields with compact support in D. Indeed, since

det g = 1, by changing the variable x ∈ D → y = g−1x ∈ D, we have∫
D

v · ∇(Tgbε) · vdx =
∫

D
T−1

g v · ∇bε · T−1
g vdy

for all g ∈ SO(n), which yields with the aid of the Fubini theorem that∣∣∣∣∫
D

v · ∇(Mbε) · vdx

∣∣∣∣ =

∣∣∣∣∣
∫

SO(n)

(∫
D

T−1
g v · ∇bε · T−1

g vdy

)
dg

∣∣∣∣∣(2.4)

5
∫

SO(n)

∣∣∣∣∫
D

T−1
g v · ∇bε · T−1

g vdy

∣∣∣∣ dg.

Since T−1
g v ∈ C∞

0,σ(D) and since |∇T−1
g v(y)|2 = |∇v(gy)|2 for all y ∈ D, we have by (L.I.) and

again by changing variable y ∈ D → x = gy ∈ D with det g−1 = 1 that∣∣∣∣∫
D

T−1
g v · ∇bε · T−1

g vdy

∣∣∣∣ =
∣∣∣∣∫

Ω
T−1

g v · ∇bε · T−1
g vdy

∣∣∣∣
5 ε

∫
Ω
|∇T−1

g v|2dy(2.5)

= ε

∫
D
|∇T−1

g v|2dy

= ε

∫
D
|∇v|2dx

for all g ∈ SO(n). It follows from (2.4) and (2.5) that∣∣∣∣∫
D

v · ∇(Mbε) · vdx

∣∣∣∣ 5 ε

∫
SO(n)

(∫
D
|∇v|2dx

)
dg = ε

∫
D
|∇v|2dx,

which implies (2.3).

In the next step, we test (2.3) by an appropriate v ∈ C∞
0,σ(D). First, it follows from (2.2)

that M(bε) has the representation as

M(bε) =
γ

ωnrn
x, x ∈ D,(2.6)

where r = |x| and ωn = 2π
n
2

Γ(n/2) is the surface area of Sn−1. Now, we choose a test vector function
v of (2.3) as

v(x) = (−ρ(r)x2, ρ(r)x1, 0, · · · , 0), x = (x1, · · · , xn) ∈ D
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with ρ ∈ C∞
0 ((R,R′)). It is easy to see that v ∈ C∞

0,σ(D) with the property that v(x) · x = 0 for
all x ∈ D. Since

∂

∂xj
M(bε)k =

γ

ωnrn

(
δjk − n

xj

r

xk

r

)
, j, k = 1, · · · , n

and since v(x) · x = 0 for all x ∈ D, it holds that

v · ∇M(bε) · v =
n∑

j,k=1

vj
∂

∂xj
M(bε)kvk =

γ

ωnrn

(
|v|2 − n

(v · x
r

)2
)

=
γ

ωnrn
|v|2(2.7)

in D. Hence it follows from (2.3) and (2.7) that

|γ|
ωn

∫
D

|v|2

rn
dx 5 ε

∫
D
|∇v|2dx(2.8)

for all ε > 0. Since the left and side of (2.8) is independent of ε and since ∇v 6= 0, by letting
ε → 0 we conclude from (2.8) that

γ = 0.

This proves Theorem 1.
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