
REGULARITY OF WEAK SOLUTIONS TO THE

NAVIER-STOKES EQUATIONS IN EXTERIOR DOMAINS

REINHARD FARWIG, CHRISTIAN KOMO

Abstract. Let u be a weak solution of the Navier-Stokes equations in
an exterior domain Ω ⊂ R

3 and a time interval [0, T [ , 0 < T ≤ ∞, with
initial value u0, external force f = divF , and satisfying the strong energy
inequality. It is well known that global regularity for u is an unsolved
problem unless we state additional conditions on the data u0 and f or
on the solution u itself such as Serrin’s condition ‖u‖Ls(0,T ;Lq(Ω)) < ∞

with 2 < s < ∞ , 2
s

+ 3
q

= 1. In this paper, we generalize results on
local in time regularity for bounded domains, see [2], [5], [6], to exterior
domains. If e.g. u fulfills Serrin’s condition in a left-side neighborhood
of t or if the norm ‖u‖

Ls′ (t−δ,t;Lq(Ω)) converges to 0 sufficiently fast as
δ → 0+, where 2

s′
+ 3

q
> 1, then u is regular at t. The same conclusion

holds when the kinetic energy 1
2
‖u(t)‖2

2 is locally Hölder continuous with
exponent α > 1

2
.

1. Introduction and main results

In this paper, Ω ⊂ R
3 is an exterior domain, i.e. an open, connected subset

having a nonempty, compact complement in R
3, with smooth boundary ∂Ω ∈

C2,1, and [0, T [ , 0 < T ≤ ∞, denotes the time interval. In [0, T [×Ω we
consider the instationary Navier-Stokes equations

ut − ν∆u + u · ∇u + ∇p = f in ]0, T [×Ω

div u = 0 in ]0, T [×Ω

u = 0 on ]0, T [×∂Ω

u = u0 at t = 0

(1.1)

with constant viscosity ν > 0 (fixed throughout this paper), external force

f = divF = (
∑3

i=1 ∂iFi,j)
3
j=1 and initial value u0. First we recall the defini-

tion of weak and strong solutions. The space of test functions is defined to
be

C∞
0 ([0, T [;C∞

0,σ(Ω)) := {u |[0,T [×Ω ; u ∈ C∞
0 (] − 1, T [×Ω) ; div u = 0}.

Definition 1.1. Let Ω ⊂ R
3 be an exterior domain and let u0 ∈ L2

σ(Ω),
f = divF with F ∈ L1

loc([0, T [;L2(Ω)) where 0 < T ≤ ∞. Then a vector
field u ∈ LHT , where LHT denotes the Leray-Hopf class

LHT := L∞
loc([0, T [;L2

σ(Ω)) ∩ L2
loc([0, T [;W 1,2

0,σ (Ω)) , (1.2)
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is called weak solution (in the sense of Leray-Hopf ) of the instationary
Navier-Stokes system (1.1) with data f , u0, if the following identity is satis-
fied for all test functions w ∈ C∞

0 ([0, T [;C∞
0,σ(Ω)):

∫ T

0

(
− 〈u, wt〉Ω + ν〈∇u,∇w〉Ω + 〈u · ∇u, w〉Ω

)
dt

= 〈u0, w(0)〉Ω −

∫ T

0
〈F,∇w〉Ω dt.

(1.3)

As a consequence of (1.2), (1.3), u : [0, T [→ L2
σ(Ω) is - after a possible

redefinition on a set of Lebesgue measure 0 - weakly continuous and the
initial value u0 is attained in the sense

〈u(t), φ〉 → 〈u0, φ〉 , t → 0 + ∀φ ∈ L2
σ(Ω).

Moreover, there exists a distribution p, called an associated pressure, such
that the equality

ut − ν∆u + u · ∇u + ∇p = f

holds in the sense of distributions on ]0, T [×Ω, see [14, V.1.7].
A weak solution of (1.1) is called a strong solution if there exist exponents

s, q with 2 < s < ∞, 3 < q < ∞, 2
s + 3

q = 1 such that additionally Serrin’s

condition

u ∈ Ls(0, T ; Lq(Ω)) (1.4)

is satisfied. By Hölder’s inequality, such a strong solution u satisfies u ⊗ u ∈
L2

loc([0, T [;L2(Ω)). Moreover, by Serrin’s Uniqueness Theorem [14, V. The-
orems 1.5.1, 1.4.1], a weak solution with (1.4) is unique within the class of
weak solutions satisfying the energy inequality, i.e., fulfilling (1.5) below with
s = 0. Finally, u : [0, T [→ L2

σ(Ω) is strongly continuous and satisfies the
energy identity (1.15) below.

For sufficiently smooth Ω , f , u0 a strong solution u has the regularity
property

u ∈ C∞(]0, T [×Ω̄) , p ∈ C∞(]0, T [×Ω̄) ,

see [14, Theorem V.1.8.2], and therefore a strong solution is also called a
regular solution. We call a weak solution u of (1.1) regular at t, if there
exists a δ = δ(t) > 0 with u ∈ Ls(t − δ, t + δ; Lq(Ω)) where s , q satisfy
2
s + 3

q = 1.

Now let Ω ⊂ R
3 be an exterior domain with smooth boundary. We know,

see [13], that there exists at least one weak solution u of (1.1) satisfying the
strong energy inequality

1

2
‖u(t)‖2

2 + ν

∫ t

s
‖∇u‖2

2 dτ ≤
1

2
‖u(s)‖2

2 −

∫ t

s
〈F,∇u〉Ω dτ (1.5)

for almost all s ∈ [0, T [ and all t ∈ [s, T [.
Our first main theorem states that if u fulfills the Serrin condition in

a left-side neighborhood of t then u is regular at t. Furthermore, it gives
conditions depending on ‖u‖Ls′ (0,T ;Lq(Ω)) with 2

s′ + 3
q > 1 to imply regularity

of u at t; note that in this case, the integrability of u is weaker than in
Serrin’s condition.
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Theorem 1.2. Let Ω ⊂ R
3 be an exterior domain with ∂Ω ∈ C2,1, let

2 < s < ∞, 2
s + 3

q = 1, 1
3 + 1

q = 1
r and let 1 ≤ s′ < s. Assume that f = divF

with F ∈ Ls(0, T ; Lr(Ω))∩L4(0, T ; L2(Ω)), u0 ∈ L2
σ(Ω), 0 < T < ∞, and let

u ∈ LHT be a weak solution of the Navier-Stokes equations (1.1) satisfying
the strong energy inequality (1.5). Then we have:

(1) Left-side Ls(Lq)-condition. If for t ∈]0, T [

u ∈ Ls(t − δ, t; Lq
σ(Ω)) for some 0 < δ = δ(t) < t , (1.6)

then u is regular at t.
(2) Left-side Ls′(Lq)-condition. The condition

lim inf
δ→0+

1

δ1− s′

s

∫ t

t−δ
‖u(τ)‖s′

q dτ = 0 (1.7)

is necessary and sufficient for regularity of u at t.
(3) Global Ls′(Lq)-condition.There exists a constant ǫ∗ = ǫ∗(q, s

′, Ω)>0,

independent of f , u0 , T with the following property: If u0 ∈ L2
σ(Ω)∩

L
q
σ(Ω), u ∈ Ls′(0, T ; Lq

σ(Ω)) and the conditions

∫ T

0
‖F (τ)‖s

r dτ ≤ ǫ∗ν
2s−1 and

∫ T

0
‖u(τ)‖s′

q dτ ≤ ǫ∗
νs−1

‖u0‖
s−s′
q

(1.8)

are satisfied, then u ∈ Ls(0, T ; Lq(Ω)).

The following theorem states that Hölder continuity of the kinetic energy
with exponent α ∈]12 , 1[ implies regularity of u at t. In the case α = 1

2 we
need a smallness condition for the corresponding Hölder term under which
we can prove regularity of u at t.

Theorem 1.3. Let Ω ⊂ R
3 be an exterior domain with boundary ∂Ω ∈ C2,1,

let 0 < T < ∞ and let u be a weak solution of the Navier-Stokes equa-
tions (1.1) satisfying the strong energy inequality (1.5) with initial value
u0 ∈ L2

σ(Ω) and external force f = divF which will be specified below. Fur-
thermore, we assume that the kinetic energy E(t) := 1

2‖u(t)‖2
2 is a continuous

function of t ∈ [0, T [. Then we have:

(1) Let α ∈]12 , 1[ , 2 < s′ < 4α , 3 < q < 6 , 2
s′ + 3

q = 3
2 , 2

s + 3
q = 1,

f ∈ L
s

s′ (0, T ; L2(Ω)) and F ∈ L4(0, T ; L2(Ω)) ∩ Ls(0, T ; Lr(Ω)),
where 1

3 + 1
q = 1

r , and let u satisfy at t ∈]0, T [ the left-side condition

sup
t−µ<t′<t

|E(t) − E(t′)|

|t − t′|α
< ∞ (1.9)

with a µ > 0. Then u is regular at t.
(2) (The case α = 1

2) Let f ∈ L2(0, T ; L2(Ω)), F ∈ L4(0, T ; L2(Ω)).
Then there exists a constant γ∗ = γ∗(Ω) such that the left-side con-
dition

sup
t−µ<t′<t

|E(t) − E(t′)|

|t − t′|
1
2

≤ γ∗ν
5
2 (1.10)

with a µ > 0 implies regularity of u at t.
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Remark. (1) The proof of Theorem 1.3, in particular see (4.8), will yield the
following regularity criteria using the dissipation energy: If

α ∈]
1

2
, 1[ and lim inf

δ→0+

1

δα

∫ t

t−δ
‖∇u(τ)‖2

2 dτ < ∞ , (1.11)

or

lim inf
δ→0+

1

δ
1
2

∫ t

t−δ
‖∇u(τ)‖2

2 dτ ≤ γ∗ν
3
2 (1.12)

then u is regular at t.
(2) In the case α = 1

2 a smallness condition as in (1.10) and (1.12) is
necessary. Indeed, if f = 0 and ]0, t[ is a maximal regularity interval of u,
then

‖∇u(τ)‖2 ≥
c0

(t − τ)
1
4

, 0 < τ < t,

where c0 = c0(Ω) > 0, see [8]. Hence

lim inf
δ→0+

1

δ
1
2

∫ t

t−δ
‖∇u(τ)‖2

2 dτ ≥ 2c2
0 > 0 ,

and due to the strong energy inequality (1.5) it holds for all µ > 0

sup
t−µ<t′<t

|E(t) − E(t′)|

|t − t′|
1
2

≥ 2νc2
0 > 0.

The proofs of the regularity criteria formulated in this paper are based on
a local or global identification of a weak solution with a very weak solution,
a concept described in Definition 2.3 below. The following key result, The-
orem 1.4, gives conditions under which a given very weak solution is also a
weak solution in the sense of Leray-Hopf and, therefore, yields under certain
smallness conditions on the data f and u0 the existence of a unique strong
solution of (1.1) on [0, T [×Ω.

Theorem 1.4. Let Ω ⊂ R
3 be an exterior domain with ∂Ω ∈ C2,1, let

2 < s < ∞ , 2
s + 3

q = 1 and let 1
3 + 1

q = 1
q∗ . Then there exists a constant ǫ∗ =

ǫ∗(q, Ω) > 0 with the following property: Given 0 < T < ∞ and data u0 ∈
L2

σ(Ω) ∩ L
q
σ(Ω) and f = divF with F ∈ Ls(0, T ; Lq∗(Ω)) ∩ L4(0, T ; L2(Ω))

satisfying the following two conditions:
∫ T

0
‖F (τ)‖s

q∗ dτ ≤ ǫ∗ν
2s−1 , (1.13)

∫ T

0
‖e−ντAqu0‖

s
q dτ ≤ ǫ∗ν

s−1. (1.14)

In this case, there exists a unique weak solution u ∈ LHT of (1.1) satisfy-
ing the Serrin condition u ∈ Ls(0, T ; Lq(Ω)). After a possible redefinition
on a set of Lebesgue measure 0, we get that u : [0, T [→ L2

σ(Ω) is strongly
continuous and it holds the energy identity

1

2
‖u(t)‖2

2 + ν

∫ t

0
‖∇u‖2

2 dτ =
1

2
‖u0‖

2
2 −

∫ t

0
〈F,∇u〉Ω dτ (1.15)

for all t ∈ [0, T [.
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The proof of this crucial result is the content of Section 3 and differs from
the case of bounded domains, see [4], [6], where the trivial inclusion Lq(Ω) ⊂
Lr(Ω), q > r, yielding also better embedding properties of fractional powers
of the Stokes operator, was used several times. The main idea of the proof is
to construct a very weak solution v ∈ Ls(0, T ; Lq

σ(Ω)) for the given data u0, f

and to identify u and v by Serrin’s Uniqueness Theorem; for this reason, we
have to show that v lies in the Leray-Hopf class LHT .

After some preliminaries to be discussed in Section 2 we prove Theorem 1.4
in Section 3. Finally, Section 4 deals with the proofs of the main results
Theorem 1.2 and 1.3.

2. Preliminaries

Given 1 ≤ q ≤ ∞ , k ∈ N we need the usual Lebesgue and Sobolev spaces,
Lq(Ω) , W k,q(Ω) with norm ‖ · ‖Lq(Ω) = ‖ · ‖q and ‖ · ‖W k,q(Ω) = ‖ · ‖k,q,
respectively. For two measurable functions f , g with the property f · g ∈
L1(Ω), where f · g means the usual scalar product of vector or matrix fields,
we set

〈f, g〉Ω :=

∫

Ω
f(x) · g(x) dx.

Note that the same symbol Lq(Ω) etc. will be used for spaces of scalar-,
vector or matrix-valued functions. Let Cm(Ω) , m = 0, 1, . . . ,∞, denote the
usual space of functions for which all partial derivatives of order |α| ≤ m

exist and are continuous. As usual, Cm
0 (Ω) is the set of all functions from

Cm(Ω) with compact support in Ω. Further we need the space of smooth
solenoidal vector fields

C∞
0,σ(Ω) := { v ∈ C∞

0 (Ω)3; div v = 0 }

and define the spaces

Lq
σ(Ω) := C∞

0,σ(Ω)
‖·‖q

, W
1,2
0,σ (Ω) := C∞

0,σ(Ω)
‖·‖

W1,2
.

For 1 ≤ q ≤ ∞ let q′ ∈ [1,∞] denote its dual exponent. It is well known that

L
q
σ(Ω)′ = L

q′
σ (Ω) using the standard pairing 〈·, ·〉Ω. Moreover, let us write

[d, v]Ω for the application of a distribution d ∈ C∞
0 (Ω)′ on a test function

v ∈ C∞
0 (Ω).

Given a Banach space X and an interval [0, T ], 0 < T ≤ ∞, we denote
by Lp(0, T ; X), 1 ≤ p ≤ ∞, the space of all equivalence classes of strongly
measurable functions f : [0, T ) → X such that

‖f‖p :=

(∫ T

0
‖f(t)‖p

X dt

) 1
p

< ∞

if p < ∞, and ‖f‖∞ := ess sup[0,T [ ‖f(·)‖X , if p = ∞. Moreover, we define

the set of locally integrable Lp-functions on [0, T [ as

L
p
loc([0, T [;X) := {u : [0, T [→ X strongly measurable,

u ∈ Lp(0, T ′; X) for all 0 < T ′ < T}.

When X = Lq(Ω), 1 ≤ q ≤ ∞, we denote the norm in Lp(0, T ; Lq(Ω)) by
‖ · ‖q,p,Ω;T . For 1 < p , q < ∞ it holds

Lp(0, T ; Lq(Ω))′ = Lp′(0, T ; Lq′(Ω))
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and we define

〈f, g〉Ω,T :=

∫ T

0

∫

Ω
f(t, x) · g(t, x) dx dt

for f ∈ Lp(0, T ; Lq(Ω)) , g ∈ Lp′(0, T ; Lq′(Ω)).
Given an exterior domain Ω ⊂ R

3 with ∂Ω ∈ C2,1 and 1 < q < ∞,
there exists a bounded, linear projection Pq : Lq(Ω)) → L

q
σ(Ω) with range

R(Pq) = L
q
σ(Ω) and nullspace N(Pq) = {∇p ∈ Lq(Ω) ; p ∈ L

q
loc(Ω) }. The

operator Pq is called Helmholtz projection and is consistent in the sense that

Pqf = Prf ∀f ∈ Lq(Ω) ∩ Lr(Ω). (2.1)

Furthermore, we get P ′
q = Pq′ for the dual operator, i.e.,

〈Pqf, g〉Ω = 〈f, Pq′g〉Ω ∀f ∈ Lq(Ω) ∀g ∈ Lq′(Ω). (2.2)

For 1 < q < ∞ we define the Stokes operator Aq on L
q
σ(Ω) by

D(Aq) = Lq
σ(Ω) ∩ W

1,q
0 (Ω) ∩ W 2,q(Ω), (2.3)

Aqu := −Pq∆u , u ∈ D(Aq). (2.4)

The Stokes operator is consistent in the sense that for 1 < q, r < ∞ it holds

Aqu = Aru ∀u ∈ D(Aq) ∩ D(Ar). (2.5)

In general, D(Aq) will be equipped with the graph norm ‖u‖D(Aq) := ‖u‖q +
‖Aq‖q for u ∈ D(Aq) which makes D(Aq) to a Banach space since the Stokes
operator is closed. For simplicity, we use the notation A = A2.

For α ∈ [−1, 1] the fractional power Aα
q : D(Aα

q ) → L
q
σ(Ω) with dense

domain D(Aα
q ) ⊆ L

q
σ(Ω)) is a well defined, injective, closed operator such

that
(Aα

q )−1 = A−α
q , R(Aα

q ) = D(A−α
q ) and (Aα

q )′ = Aα
q′ .

It holds D(A
1/2
q ) = W

1,q
0 (Ω) ∩ L

q
σ(Ω) for 1 < q < 3, and the estimate

‖∇u‖q,Ω ≤ c‖A1/2
q u‖q,Ω for 1 < q < 3, u ∈ D(A1/2

q ), (2.6)

with a constant c = c(Ω, q) > 0. Moreover,

‖u‖γ,Ω ≤ c‖Aα
q u‖q,Ω where 0 ≤ α ≤

1

2
, 1 < q < 3 , 2α +

3

γ
=

3

q
, (2.7)

for all u ∈ D(Aα
q ) with a constant c = c(Ω, q, γ) > 0. It is well known that

−Aq generates a uniformly bounded analytic semigroup { e−tAq : t ≥ 0 } on
L

q
σ(Ω) satisfying the decay estimate

‖Aα
q e−tAq‖q ≤ ct−α ∀t > 0 , (2.8)

where α ≥ 0 , 1 < q < ∞ and c = c(Ω, q, α) > 0.

Lemma 2.1. Let d ∈ C∞
0 (Ω)′ be a distribution, well defined for all v ∈

D(Aα
q′) where 1 < q < ∞ , 0 < α ≤ 1. We assume that there exists a

constant c ≥ 0, independent of v ∈ D(Aα
q′), such that

|[d, v]Ω| ≤ c‖Aα
q′v‖q′,Ω ∀v ∈ D(Aα

q′). (2.9)

Then there exists a unique element d̃ ∈ L
q
σ(Ω), to be denoted by A−α

q Pqd,

with the properties

〈A−α
q Pqd, Aα

q′v〉Ω = [d, v]Ω ∀v ∈ D(Aα
q′) and ‖A−α

q Pqd‖q ≤ c (2.10)
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with the constant c from (2.9). In particular, if F ∈ Lq(Ω), and 3
2 < q < ∞,

then A
− 1

2
q PqdivF ∈ L

q
σ(Ω) and

‖A
− 1

2
q PqdivF‖q ≤ c‖F‖q . (2.11)

Proof. We define for w ∈ R(Aα
q′)

[d̃, w]Ω := [d, v]Ω , where w = Aα
q′v , v ∈ D(Aα

q′).

By the density of R(Aα
q′) in L

q′
σ (Ω), we extend d̃ to a functional defined on

L
q′
σ (Ω). We use L

q′
σ (Ω)′ = L

q
σ(Ω) to obtain a unique element A−α

q Pqd ∈

L
q
σ(Ω) satisfying the identity in (2.10). For the proof of (2.11) we exploit

(2.6) with q replaced by q′ ∈]1, 3[. �

Theorem 2.2. Let Ω ⊂ R
3 be an exterior domain with ∂Ω ∈ C2,1, let

1 < q , s < ∞ and 0 < T < ∞. Furthermore, let f ∈ Ls(0, T ; Lq
σ(Ω)) and

u0 ∈ L
q
σ(Ω) such that

∫∞
0 ‖Aqe

−tAqu0‖
s
q,Ω dt < ∞. Then the instationary

Stokes system

ut + νAqu = f in (0, T )

u(0) = u0
(2.12)

has a unique strong solution u ∈ Ls(0, T ; D(Aq)) with ut ∈ Ls(0, T ; Lq
σ(Ω))

and u ∈ C([0, T [;Lq
σ(Ω)). Moreover, u satisfies the maximal regularity esti-

mate

‖ut‖q,s,Ω;T +‖νAqu‖q,s,Ω;T ≤ c



(∫ T

0
‖νAqe

−νtAqu0‖
s
q,Ω dt

) 1
s

+ ‖f‖q,s,Ω;T




(2.13)
with a constant c = c(Ω, q, s) independent of T und ν. It holds the represen-
tation

u(t) = e−νtAqu0 +

∫ t

0
e−ν(t−τ)Aqf(τ) dτ (2.14)

for all t ∈ [0, T [. In the case T = ∞ we get a unique strong solution
u ∈ Ls

loc(0,∞; D(Aq)) of (2.12) satisfying ut ∈ Ls(0,∞; Lq
σ(Ω)) and u ∈

C([0,∞[;Lq
σ(Ω)) and it holds the estimate (2.13) and the representation (2.14)

for all t ∈ [0,∞[.

Proof. See [10, Theorem 4.2]. �

A major tool for the proof of Theorem 1.4 is the theory of very weak solutions.
In this context we refer to [3] for exterior domains and to [4] for bounded
domains. In the following definition let

C1
0 ([0, T [;C2

0,σ(Ω̄)) := {w |[0,T [×Ω̄ with w ∈ C
1,2
0 (−]1, T [×R

3); (2.15)

div w = 0, w |∂Ω= 0 for all t ∈ [0, T [ } (2.16)

denote the space of test functions and let

J q,s(Ω) := {u0 ∈ C∞
0 (Ω)′; (2.17)

A−1
q Pqu0 ∈ Lq

σ(Ω),

∫ ∞

0
‖Aqe

−tAq(A−1
q Pqu0)‖

s
q,Ω dt < ∞} (2.18)

denote the space of initial values.
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Definition 2.3. Let Ω ⊂ R
3 be an exterior domain, let F ∈ Ls(0, T ; Lr(Ω))

and u0 ∈ J q,s(Ω) where 2 < s < ∞, 2
s + 3

q = 1 , 1
3 + 1

q = 1
r . Then u ∈

Ls(0, T ; Lq
σ(Ω)) is called very weak solution of the instationary Navier-Stokes

equations (1.1) if
∫ T

0
〈−u, wt〉Ω−ν〈u, ∆w〉Ω−〈u⊗u,∇w〉Ω dt = [u0, w(0)]Ω−

∫ T

0
〈F,∇w〉Ω dt

(2.19)
holds for all test functions w ∈ C1

0 ([0, T [;C2
0,σ(Ω̄)) .

In the corresponding definition of very weak solutions to the linear, insta-
tionary Stokes system where the nonlinear term u · ∇u is absent, we may
omit in Definition 2.3 the restriction 2

s + 3
q = 1, and in (2.19) the term

〈u⊗ u,∇w〉Ω,T is absent. A proof of the following Theorem can be found in
[3], [12].

Theorem 2.4. Let Ω ⊂ R
3 be an exterior domain with ∂Ω ∈ C2,1 and let

2 < s < ∞ , 2
s+3

q = 1, 1
3+1

q = 1
r . Then there exists a constant c = c(q, Ω) > 0

with the following property: For data f = divF with F ∈ Ls(0, T ; Lr(Ω)) and
u0 ∈ J q,s(Ω), satisfying the condition

(∫ T

0
‖νAqe

−νtAq(A−1
q Pqu0)‖

s
q,Ω dt

) 1
s

+ ‖F‖r,s,Ω;T ≤ cν1+α (2.20)

with α := 3
2q + 1

2 = 1 − 1
s , there exists a unique very weak solution u ∈

Ls(0, T ; Lq
σ(Ω)) of the instationary Navier-Stokes system (1.1). Moreover, u

has the representation u = E + ũ, where E ∈ Ls(0, T ; Lq
σ(Ω)) is the unique

very weak solution of the linear Stokes system with data f , u0 and ũ is the
unique solution in Ls(0, T ; Lq

σ(Ω)) of the nonlinear fixed point equation

ũ(t) = −

∫ t

0
Aα

q e−ν(t−τ)AqA−α
q Pqdiv

(
(ũ(τ) + E(τ)) ⊗ (ũ(τ) + E(τ))

)
dτ

(2.21)
for almost all t ∈ [0, T [.

Finally we recall the Hardy-Littlewood inequality [14, II Lemma 3.3.2]. Let
0 < α < 1, 1 < r < q < ∞ with α + 1

q = 1
r and let f ∈ Lr(R). Then the

integral

u(t) :=

∫

R

|t − τ |α−1f(τ) dτ

converges absolutely for almost all t ∈ R and it holds

‖u‖Lq(R) ≤ c‖f‖Lr(R) (2.22)

with a constant c = c(α, q) > 0.

3. Proof of Theorem 1.4

Before proving Theorem 1.4 we discuss the nonlinear term arising in the
nonlinear fixed point problem (2.21). We denote by div(u⊗u) the functional
defined for suitable vector fields w by

[div(u ⊗ u), w]Ω := −〈u ⊗ u,∇w〉Ω.
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The following lemma is technical but essential for Lemma 3.2 below.

Lemma 3.1. Let Ω ⊂ R
3 be an exterior domain with boundary ∂Ω ∈ C2,1,

let 3 < q < ∞ , r ∈ [ q
2 , q] and β := 3

q − 3
2r + 1

2 .

(1) There exists a constant c = c(Ω, q, r) > 0 such that for all u ∈ L
q
σ(Ω)

‖A−β
r Pr div(u ⊗ u)‖r,Ω ≤ c‖u‖2

q,Ω. (3.1)

(2) For 2 < s < ∞ , 3 < q < ∞ , 0 < T ≤ ∞ there exists a constant
c = c(Ω, q, r) > 0 such that for all u ∈ Ls(0, T ; Lq

σ(Ω))

‖A−β
r Pr div(u ⊗ u)‖r, s

2
,Ω;T ≤ c‖u‖2

q,s,Ω;T . (3.2)

Proof. The assumptions of the lemma imply

2(β −
1

2
) +

3
( q

2

)′ =
3

r′
with 1 < r′ < 3 ,

1

2
≤ β < 1. (3.3)

Then we get for arbitrary w ∈ D(Aβ
r′) by (2.6) using 1 <

( q
2

)′
< 3, (2.7)

and (2.5) (applied to A1/2 instead of A)

|[div(u ⊗ u), w]| = | − 〈u ⊗ u,∇w〉|

≤ ‖u ⊗ u‖ q

2
‖∇w‖( q

2)
′

≤ c‖u‖2
q ‖A

1/2

(q/2)′
w‖( q

2)
′

≤ c‖u‖2
q ‖A

(β− 1
2
)

r′ (A
1/2

(q/2)′
w)‖r′

≤ c‖u‖2
q ‖Aβ

r′w‖r′ .

It is possible to choose the constant c > 0 in the above estimate depending
only on Ω , q and r. For the second assertion we use (3.1), which holds for
almost all t ∈ [0, T [, and integrate over [0, T ]. �

Lemma 3.2. Let Ω ⊂ R
3 be an exterior domain with ∂Ω ∈ C2,1, let 0 <

T ≤ ∞, 2 < s < ∞ , 2
s + 3

q = 1 and let u ∈ Ls(0, T ; Lq(Ω)). We define for

r ∈ [ q
2 , q] and β := 3

q − 3
2r + 1

2 the term Λr(u) by

Λru(t) := −

∫ t

0
Aβ

r e−ν(t−τ)ArA−β
r Prdiv(u(τ) ⊗ u(τ)) dτ . (3.4)

Then the following statements are satisfied.

(1) For almost all t ∈ [0, T [ we get
∫ t

0
‖Aβ

r e−ν(t−τ)ArA−β
r Prdiv(u(τ) ⊗ u(τ))‖r dτ < ∞ (3.5)

and

− Aβ
r

∫ t

0
e−ν(t−τ)ArA−β

r Prdiv(u(τ) ⊗ u(τ)) dτ

= −

∫ t

0
Aβ

r e−ν(t−τ)ArA−β
r Prdiv(u(τ) ⊗ u(τ)) dτ.

(3.6)
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(2) For all r1 , r2 ∈ [ q
2 , q] with β1 := 3

q − 3
2r1

+ 1
2 , β2 := 3

q − 3
2r2

+ 1
2 it

holds

Λr1u(t) = Λr2u(t) for almost all t ∈ [0, T [. (3.7)

Therefore, we can denote the expression in (3.4), independently of
r ∈ [ q

2 , q], by Λ(u).

(3) For all q1 ∈ [ q
2 , q] with 3 < q1 < ∞ and s1 > 2 defined by 2

s1
+ 3

q1
= 1

we have
Λu ∈ Ls1(0, T ; Lq1(Ω)) . (3.8)

(4) If q ∈]3, 6[ then

Λu ∈ L
s
2 (0, T ; Lq2(Ω)) (3.9)

where q2 > 3 satisfies 1
3 + 1

q2
= 1

( q

2)
and consequently 2

( s
2)

+ 3
q2

= 1.

Proof. (1) By (2.8) and (3.1) we know that for all t ∈ [0, T [
∫ t

0
‖Aβ

r e−ν(t−τ)ArA−β
r Pr div (u(τ) ⊗ u(τ))‖r dτ

≤ c(Ω, q, r)ν−β

∫ T

0
|t − τ |−β‖u(τ)‖2

q dτ.

(3.10)

Moreover, as for almost all t ∈ [0, T [ the integral in (3.10) is finite (see the
application of the Hardy-Littlewood inequality (2.22) in the proof of part (3)
below) and
∫ t

0
‖e−ν(t−τ)ArA−β

r Prdiv(u ⊗ u)‖r dτ ≤ c

∫ t

0
‖A−β

r Prdiv(u ⊗ u)‖r dτ < ∞ ,

the closedness of the operator A
β
r yields the identity (3.6).

(2) To prove (3.7) for t ∈ (0, T [ as in (1) let

f r
t (τ) := Aβ

r e−ν(t−τ)ArA−β
r Prdiv(u(τ) ⊗ u(τ)) for almost all τ ∈]0, t[ ,

where β = β(r) = 3
q − 3

2r + 1
2 . Since for all φ ∈ C∞

0,σ(Ω)
∫ t

0
〈f r1

t (τ), φ〉Ω dτ = −

∫ t

0
〈u(τ) ⊗ u(τ),∇e−ν(t−τ)Ar′φ〉Ω dτ ,

we see that ∫ t

0
〈f r1

t (τ), φ〉Ω dτ =

∫ t

0
〈f r2

t (τ), φ〉Ω dτ ;

for details of the proof we refer to [12]. A density argument finishes the proof
of (3.7).

(3) We consider (3.10) and use the Hardy-Littlewood inequality (2.22)
with (1 − β) + 1

s1
= 1

( s
2)

to conclude with Λq1u = Λu and (3.2) that

‖Λu‖q1,s1,Ω;T

≤

(∫ T

0

(
cν−β

∫ T

0
|t − τ |−β‖A−β

q1
Pq1div(u(τ) ⊗ u(τ))‖q1 dτ

)s1

dt

) 1
s1

≤ cν−β‖A−β
q1 Pq1div(u(τ) ⊗ u(τ))‖q1, s

2
,Ω;T

≤ c(q, q1, Ω)ν−β‖u‖2
q,s,Ω;T < ∞.
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(4) From 21
2 + 3

q2
= 3

( q

2)
and (2.7) it follows with (3.6) and β = 1

2 , r = q
2 ,

for almost all t ∈ [0, T [

‖Λq2u(t)‖q2 ≤ ‖A
1/2
q

2
Λu(t)‖ q

2

= ‖A q

2

∫ t

0
e
−ν(t−τ)A q

2 A
−1/2
q

2
P q

2
div(u(τ) ⊗ u(τ)) dτ‖ q

2
.

(3.11)

Since by (3.2)

A
−1/2
q

2
P q

2
div(u ⊗ u) ∈ L

s
2 (0, T ; L

q

2 (Ω)) , (3.12)

the maximal regularity estimate (2.13) yields the last statement of the lemma.
�

Proof of Theorem 1.4. Given the smallness conditions (1.13) and (1.14),
Theorem 2.4 implies the existence of a unique very weak solution u ∈
Ls(0, T ; Lq

σ(Ω)) of (1.1). Moreover, we know the representation u = E + ũ,
where the linear part E satisfies

E(t) = e−νtAqu0 + Aq

∫ t

0
e−ν(t−τ)Aq(A−1

q Pq div F (τ)) dτ (3.13)

in [0, T [ and the nonlinear part ũ ∈ Ls(0, T ; Lq
σ(Ω)) solves the fixed point

equation

ũ(t) = −

∫ t

0
Aα

q e−ν(t−τ)AqA−α
q Pqdiv

(
(ũ(τ) + E(τ)) ⊗ (ũ(τ) + E(τ))

)
dτ

(3.14)
with α := 3

2q + 1
2 for almost all t ∈ [0, T [. Since F ∈ L2(0, T ; L2(Ω)) and

u0 ∈ L2
σ(Ω) it follows with (2.5) that

E(t) = E1(t) + E2(t) := e−νtAu0 + A1/2

∫ t

0
e−ν(t−τ)AA−1/2P divF (τ) dτ

(3.15)

almost everywhere. We use [14, IV Theorems 2.3.1, 2.4.1] to obtain that
E lies in the Leray-Hopf class (1.2) and is a weak solution of the linear
stationary Stokes system with data f , u0. To finish the proof, we want to
show that

u ∈ L8(0, T ; L4(Ω)). (3.16)

The validity of the above property implies

u ⊗ u ∈ L2(0, T ; L2(Ω)). (3.17)

As a consequence of (3.14) and (3.17) we conclude that ũ lies in the Leray-
Hopf class (1.2) and ũ is the unique weak solution of the linear, stationary
Stokes system with the external force div(u⊗ u) and vanishing initial value,
see [14, IV Theorems 2.3.1, 2.4.1]. Furthermore, from these two Theorems
and 〈u⊗u,∇u〉(τ) = 0 almost everywhere, it follows that u is, after a possible
redefinition on a set of Lebesgue measure 0, strongly continuous and satisfies
the energy equality (1.15).

Since in the case q = 4 (and s = 8) there is nothing left to be proved, we
may assume in the proof of (3.16) that q 6= 4.
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Assertion 1: E = E1 + E2 ∈ L8(0, T ; L4(Ω)).
Proof. In the case 4 < q < ∞ it is easily seen since L2

σ(Ω) ∩ L
q
σ(Ω) ⊂ L4

σ(Ω)
that E1(t) = e−νtAu0 = e−νtAqu0 ∈ L8(0, T ; L4(Ω)). If 3 < q < 4 we use [11,
Theorem 1.2 (ii)] to find a constant c > 0, independent of t, such that

‖e−νtA4u0‖4 ≤ c t
− 3

2
( 1

q
− 1

4
)‖u0‖q

for all t > 0. The estimate
∫ T

0
‖e−νtA4u0‖

8
4 dt ≤ c‖u0‖

8
q

∫ T

0
t
−12( 1

q
− 1

4
)
dt < ∞

implies E1 ∈ L8(0, T ; L4(Ω)). To get the property E2 ∈ L8(0, T ; L4(Ω)) we
estimate for almost all t ∈ [0, T [, using (2.7), (2.8) and (2.11), that

‖E2(t)‖4 ≤ c‖A3/8E2(t)‖2

= c

∥∥∥∥
∫ t

0
A7/8e−ν(t−τ)AA−1/2Pdiv F (τ) dτ

∥∥∥∥
2

≤ cν−7/8

∫ T

0
|t − τ |−7/8‖F (τ)‖2 dτ .

(3.18)

Then an application of the Hardy-Littlewood inequality (2.22) yields

‖E2‖4,8,Ω;T ≤ cν− 7
8 ‖F‖2,4,Ω;T < ∞.

Assertion 2: Let 3 < q < 4. Then ũ ∈ L8(0, T ; L4(Ω)).
Proof. We use an iterative argument to improve the regularity in space
step by step. Assume that for almost all t ∈ [0, T [ with certain parameters
sk , rk , βk

ũ(t) = −

∫ t

0
Aβk

rk
e−ν(t−τ)Ark A−βk

rk
Prk

div((ũ + E) ⊗ (ũ + E)) dτ , (3.19)

ũ , E ∈ Lsk(0, T ; Lrk(Ω)) with 3 < rk < 4 ,
2

sk
+

3

rk
= 1 , βk ∈ [

1

2
, 1]. (3.20)

For k = 1 the iteration starts with s1 := s, r1 := q and β1 := 3
2q + 1

2 = α,

see (3.14). We denote by rk+1 > rk the unique element satisfying 1
3 + 1

rk+1
=

1
rk/2 and set sk+1 := sk

2 . Then (3.9) implies that

ũ ∈ Lsk+1(0, T ; Lrk+1(Ω)). (3.21)

We define βk+1 := 3
rk+1

− 3
2rk+1

+ 1
2 = 3

2rk+1
+ 1

2 and get with (3.7)

ũ(t) = −

∫ t

0
A

βk+1
rk+1 e

−ν(t−τ)Ark+1A
−βk+1
rk+1 Prk+1

div((ũ+E)⊗(ũ+E)) dτ. (3.22)

From the first step of the proof we know that E ∈ L8(0, T ; L4(Ω)). There can
occur two different possibilities. If 4 ≤ rk+1 < ∞ we get by an interpolation
argument ũ , E ∈ L8(0, T ; L4(Ω)). Otherwise, if 3 < rk+1 < 4, an interpola-
tion argument yields E ∈ Lsk+1(0, T ; Lrk+1(Ω)). Looking at (3.21), (3.22), we
see that (3.19) and (3.20) are satisfied with the parameters sk+1 , rk+1 , βk+1.
Therefore, we can start a new step of this iterative argument. Repeating
this step finitely many times, we get ũ ∈ L8(0, T ; L4(Ω)) which finishes the
proof of Assertion 2.
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Assertion 3: Let 4 < q < ∞. Then ũ ∈ L8(0, T ; L4(Ω)).
Proof. Assume that we have for almost all t ∈ [0, T [ with certain parameters
sk , rk , βk

ũ(t) = −

∫ t

0
Aβk

rk
e−ν(t−τ)Ark A−βk

rk
Prk

div((ũ + E) ⊗ (ũ + E)) dτ , (3.23)

ũ , E ∈ Lsk(0, T ; Lrk(Ω)) with 4 < rk < ∞ ,
2

sk
+

3

rk
= 1 , βk ∈ [

1

2
, 1].

(3.24)

Again, for k = 1, the iteration starts with s1 := s, r1 := q and β1 := 3
2q + 1

2 =

α, see (3.14). We set rk+1 := 3
4rk and βk+1 := 3

rk
− 3

2rk+1
+ 1

2 = 1
rk

+ 1
2 . Let

sk+1 > 2 be the unique element which satisfies the relation 2
sk+1

+ 3
rk+1

=

1. Then (3.7) implies that ũ has the representation (3.22) with the new
parameters sk+1 , rk+1 , βk+1. From (3.22) we conclude with (3.8) that

ũ ∈ Lsk+1(0, T ; Lrk+1(Ω)). (3.25)

From the first step of the proof we know that E ∈ L8(0, T ; L4(Ω)). There can
occur two different possibilities. If 3 < rk+1 ≤ 4 we get by an interpolation
argument ũ , E ∈ L8(0, T ; L4(Ω)). Otherwise, if 4 < rk+1 < ∞, we use
an interpolation argument to get E ∈ Lsk+1(0, T ; Lrk+1(Ω)). If we look
at (3.22), (3.25) we see that the equations (3.23) and (3.24) are satisfied
with the parameters sk+1 , rk+1 , βk+1. Therefore, we can start a new step
of this iterative argument. Repeating this step finitely many times, we get
ũ ∈ L8(0, T ; L4(Ω)) which finishes the proof of Assertion 3.

Now the claim (3.16) for u = ũ+E follows, and the proof of this theorem
is complete. �

4. Proof of Regularity Results

Before proving Theorems 1.2 and 1.3 we need a useful, but technical lemma.
In this lemma we assume that u satisfies the strong energy inequality (1.5)
to consider the term u(t) for almost all t ∈ [0, T ] as initial value of a local
strong solution which can be identified locally with u. Therefore, the proof
will be based on Theorem 1.4. We will use the notation

−

∫ b

a
f(x) dx :=

1

b − a

∫ b

a
f(x) dx

for the mean value of an integral.

Lemma 4.1. Let Ω , q , s , f , u0 , T satisfy the assumptions of Theorem 1.4,
let 1 ≤ s′ ≤ s, and let u be a weak solution of (1.1) satisfying the strong
energy inequaltiy (1.5). Then there exists a constant ǫ∗ = ǫ∗(q, s

′, Ω) > 0
with the following property: If 0 < t0 < t ≤ t1 ≤ T , and if

∫ t1

t0

‖F (τ)‖s
q∗ dτ ≤ ǫ∗ν

2s−1 , (4.1)

−

∫ t

t0

(t1 − τ)
s′

s ‖u(τ)‖s′

q dτ ≤ ǫ∗ν
s′− s′

s , (4.2)

then there exists a δ = δ(t) > 0 such that u ∈ Ls(t − δ, t1; L
q(Ω)). In

particular, if t1 > t, then t is a regular point of u.
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Proof. We may assume that u(τ) ∈ L2(Ω) for all τ ∈ [0, T [. From (4.2)
and the fact that u satisfies the strong energy inequality we find a null set
N ⊂]t0, t[ such that for τ0 ∈]t0, t[\N it holds u(τ0) ∈ L

q
σ(Ω) and

1

2
‖u(τ1)‖

2
2 + ν

∫ τ1

τ0

‖∇u‖2
2 dτ ≤

1

2
‖u(τ0)‖

2
2 −

∫ τ1

τ0

〈F,∇u〉Ω dτ (4.3)

for all τ1 mit τ0 ≤ τ1 < T . Moreover, the condition (4.2) yields the existence
of τ0 ∈]t0, t[\N which fulfills the inequality

(t1 − τ0)
s′

s ‖u(τ0)‖
s′

q ≤ −

∫ t

t0

(t1 − τ)
s′

s ‖u(τ)‖s′

q dτ ≤ ǫ∗ν
s′− s′

s .

It follows with a constant c = c(Ω, q) > 0 that
∫ t1−τ0

0
‖e−ντAqu(τ0)‖

s
q dτ ≤

∫ t1−τ0

0
c‖u(τ0)‖

s
q dτ

= c(t1 − τ0)‖u(τ0)‖
s
q ≤ c ǫ

s

s′

∗ νs−1.

Hence with a new constant ǫ̃∗ := ( ǫ∗
c )

s′

s , where ǫ∗ is the constant from The-
orem 1.4, the conditions of Theorem 1.4 are satisfied. We get the existence
of a unique weak solution v ∈ Ls([τ0, t1[;L

q
σ(Ω)) to the Navier-Stokes sys-

tem (1.1) with initial value v(τ0) = u(τ0). Considering u as a weak solution
to the Navier-Stokes system with initial value u(τ0) on [0, t1 − τ0], we use
Serrin’s Uniqueness Theorem to get that u = v ∈ Ls(τ0, t1; L

q
σ(Ω)). The

proof is complete. �

Proof of Theorem 1.2. (1) Let s := s′ , t0 := t − δ , t1 := t + δ where
δ > 0 is chosen so small that, see (1.6),

−

∫ t

t−δ
(t1 − τ)‖u(τ)‖s

q dτ ≤ 2

∫ t

t−δ
‖u(τ)‖s

q dτ ≤ ǫ∗ν
s−1 ,

∫ t+δ

t−δ
‖F (τ)‖s

r dτ ≤ ǫ∗ν
2s−1.

The assertion follows with Lemma 4.1.
(2) Because of (1.7) it is possible to choose a δ > 0 such that with t0 :=

t − δ , t1 := t + δ the estimate

−

∫ t

t−δ
(t1 − τ)

s′

s ‖u(τ)‖s′

q dτ ≤
1

δ

∫ t

t−δ
(2δ)

s′

s ‖u(τ)‖s′

q dτ

=
2

s′

s

δ1− s′

s

∫ t

t−δ
‖u(τ)‖s′

q dτ ≤ ǫ∗ν
s′− s′

s

holds. This shows (4.2). Furthermore, condition (4.1) on F can be fulfilled
as well. Then Lemma 4.1 proves the sufficiency of (1.7) to imply regularity
of u at t. Since by Hölder’s inequaltiy

1

δ1− s′

s

∫ t

t−δ
‖u(τ)‖s′

q dτ ≤

(∫ t

t−δ
‖u(τ)‖s

q dτ

) s′

s

we get that the condition (1.7) is also necessary for regularity of u at t.
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(3) The constant ǫ∗ = ǫ∗(q, Ω) > 0 will be determined in the proof; there-
fore, we begin with considering ǫ∗ as an arbitrary, fixed positive number. Let
ε1 = ε1(q, Ω) > 0 denote the constant from Theorem 1.4 which in (1.13),
(1.14) is called ǫ∗, and let ǫ2 = ǫ2(s

′, Ω) be the constant in Lemma 1.5 called
ǫ∗ in (4.1), (4.2). We assume ǫ∗ ≤ ε1 and u0 6= 0. It holds

∫ δ1

0
‖e−ντAqu0‖

s
q dτ ≤ cδ1‖u0‖

s
q, c = c(Ω, q) > 0.

We define

δ1 := min
(ε1ν

s−1

c‖u0‖s
q

, T
)
. (4.4)

If δ1 = T , we already know that u ∈ Ls(0, T ; Lq(Ω)). So let us assume

that δ1 = ε1νs−1

c‖u0‖s
q
. With this choice of δ1, Theorem 1.4 yields the existence

of a unique weak solution v ∈ Ls(0, δ1; L
q(Ω)) of (1.1), which coincides by

Serrin’s Uniqueness with u on [0, δ1[. For an arbitrary t ∈
[

δ1
2 , T − δ1

2

]
, we

get with t0 := t − δ1
2 , t1 := t + δ1

2

−

∫ t

t0

(t1 − τ)
s′

s ‖u(τ)‖s′

q dτ ≤
2

δ
1− s′

s

1

∫ T

0
‖u(τ)‖s′

q dτ

≤ 2

(
ε1ν

s−1

c‖u0‖s
q

) s′

s
−1

ǫ∗
νs−1

‖u0‖
s−s′
q

= 2
(ε1

c

) s′

s
−1

ǫ∗ν
s′− s′

s .

(4.5)

From this estimate it follows that we may define

ǫ∗ := min
(ε2

2

(ε1

c

)1− s′

s , ε1, ε2

)
. (4.6)

We see that ǫ∗ depends only on Ω, q, s′. Using Lemma 4.1 we find a δ =
δ(t) > 0 such that

u ∈ Ls(t − δ(t), t +
δ1

2
; Lq(Ω)). (4.7)

With (4.7) and u ∈ Ls(0, δ1; L
q(Ω)) we obtain due to the compactness of the

interval [0, T ] that u ∈ Ls(0, T ; Lq(Ω)).
Now the theorem is completely proved. �

Proof of Theorem 1.3. By interpolation, in both cases the weak solution
u satisfies u ∈ Ls′(0, T ; Lq(Ω)). The idea of the proof is to use Lemma 4.1. To
control the term in (4.2) we use the interpolation inequality, see [1, Theorem
4.3.1],

‖v‖q ≤ c‖v‖
1− 2

s′

2 ‖∇v‖
2
s′

2 , v ∈ H1
0 (Ω),
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where c = c(Ω, q) > 0. For δ ∈]0, δ0[ with a small δ0 > 0 we get with
t0 := t − δ , t1 := t + δ the estimate

I(δ) := −

∫ t

t−δ
(t1 − τ)

s′

s ‖u(τ)‖s′

q dτ

≤ cδ
s′

s
−1

∫ t

t−δ

(
‖u(τ)‖

1− 2
s′

2 ‖∇u(τ)‖
2
s′

2

)s′

dτ

≤ cδ
s′

s
−1‖u‖s′−2

2,∞;T

∫ t

t−δ
‖∇u(τ)‖2

2 dτ

(4.8)

with a constant c = c(Ω, q) > 0. Since u is supposed to satisfy the strong
energy inequality (1.5), we may proceed for almost all δ ∈]0, δ0[ as follows:

I(δ) ≤
c

ν
δ

s′

s
−1

(
|E(t − δ) − E(t)| +

∣∣∣∣
∫ t

t−δ
〈f, u〉 dτ

∣∣∣∣
)

(4.9)

where the constant c depends on ‖u‖2,∞;T in the case α > 1
2 and c = c(Ω) if

α = 1
2 . By Hölder’s inequality we get that

∣∣∣∣
1

δ
s′

4

∫ t

t−δ
〈f(τ), u(τ)〉 dτ

∣∣∣∣ ≤ ‖u‖2,∞;T

(∫ t

t−δ
‖f‖

4
4−s′

2 dτ

) 4−s′

4

. (4.10)

As s
s′ = 4

4−s′ and consequently f ∈ L
4

4−s′ (0, T ; L2(Ω)), the left-hand side in
the previous inequality converges to 0 as δ → 0+.

First consider the case α > 1
2 and choose ǫ > 0 with s′ = 4α − ǫ. Due to

the assumption (1.9) we get with 1 − s′

s = s′

4 = α − ǫ
4

lim
δ→0+

c

ν
δ−

s′

4 |E(t − δ) − E(t)| = lim
δ→0+

c

ν
δ

ǫ
4
|E(t − δ) − E(t)|

δα
= 0. (4.11)

Consequently the right hand side of (4.9) converges to 0 as δ → 0+. Hence
we can fulfill (4.2) and, due to the assumption F ∈ Ls(0, T ; Lr(Ω)), it is also
possible to satisfy (4.1). Altogether, Lemma 4.1 yields regularity of u at t.

Secondly, consider the case α = 1
2 in which s′ = 2, s = 4. We will choose

the constant γ∗ = γ∗(Ω) > 0 below. Let ǫ∗ = ǫ∗(q) > 0 denote the constant
from Lemma 4.1. The assumption (1.10) implies that for all 0 < δ < µ

1

ν

|E(t − δ) − E(t)|

δ
1
2

≤ γ∗ν
3
2 . (4.12)

Then by (4.9), (4.10) and (4.12) we get with a constant c = c(Ω) > 0 for
almost all δ ∈]0, δ0[ that

I(δ) ≤ cγ∗ν
3
2 +

c

ν
‖u‖2,∞;T

(∫ t

t−δ
‖f‖2

2 dτ

) 1
2

.

Now with γ∗ := ǫ∗
2c we find 0 < δ < µ such that I(δ) ≤ ǫ∗ν

3
2 , cf. (4.2), and

that (4.1) is satisfied. Hence Lemma 4.1 implies regularity of u at t. �
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