Asymptotic profile of steady Stokes
flow around a rotating obstacle

Reinhard Farwig
FB Mathematik, Technische Universitat Darmstadt
64289 Darmstadt, Germany

and

Toshiaki Hishida

Graduate School of Mathematics, Nagoya University
Nagoya 464-8602 Japan

Dedicated to our colleague Jiii Neustupa on the occasion of his 60th birthday

Abstract
We analyze the spatial anisotropic profile at infinity of steady Stokes
flow around a rotating obstacle. It is shown that the flow is largely
concentrated along the axis of rotation in the leading term and that a
rotating profile can be found in the second term. The proof relies upon
a detailed analysis of the associated fundamental solution tensor.
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1 Introduction and main result

This paper studies the asymptotic anisotropic profile near infinity of steady
Stokes flow around a rotating obstacle immersed in a viscous incompressible
fluid. Considering the motion of a viscous incompressible fluid in an exterior
domain D C R? with smooth boundary 0D, particular interest is focussed
on the case where the rigid body (= R®\ D) is rotating about the yz-axis
with constant angular velocity w = aes; here a € R\ {0} and e3 = (0,0,1).
The unknown velocity v(y,t) = (v1,ve,v3)7 and pressure ¢(y,t) obey the
Navier-Stokes equation

o +v-Vv=Av— Vg, diveo =0
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for y € D(t) subject to the boundary condition
U|6D(t) =WwXyYy= a(_y27y170)T7 v—0 as [y — oo

Here, the domain D(t) occupied by the fluid at time ¢ and its boundary
dD(t) are given by

D(t) = {y = O(at)z; z € D}, 0D(t) = {y = O(at)z; x € 0D},

where
cost —sint 0
O(t)= | sint cost 0 |. (1.1)
0 0 1

We take the reference frame attached to the body to reduce the problem
above to the system

Ou+u-Vu=Au+ (wxz) Vu—wxu—Vp, divu=0 (1.2)
in D subject to
ulgp = w X x, u— 0 as|z| — oo, (1.3)
where z = O(at)Ty and
u(z,t) = (ur,up, uz)” = O(at)"v(O(at)z,t), p(x,t) = q(O(at)z,t), (1.4)

see [1], [12], [20]. A difficulty is the hyperbolic operator (wx z)-V, which is no
longer a minor perturbation of the Laplace operator even though |w| is small.
A typical hyperbolic effect was found by Farwig and Neustupa [8] in the study
of the spectrum; the essential spectrum consists of an infinite set of equally
spaced half lines in the left half of the complex plane. Nevertheless, the
semigroup generated by the operator in the right-hand side of (1.2) possesses
a certain smoothing effect ([17], [19], [20]) and also enjoys a typical large time
behavior of parabolic type ([22]).

In [13] Galdi first proved that the problem (1.2)—(1.3) has a unique steady
solution which satisfies

ju(z)] < Tk [Vu(z)| + [p(r)] < BE (1.5)
for large || provided |w| is small enough. Later on, the present authors [6]
gave another outlook on (1.5) in terms of weak-L? spaces: v € L>* (Vu,p) €
L322 This class or the pointwise decay (1.5) of the steady flow is important
to deduce its stability, which has been established by [14] and, later on, by

C C
|z
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[22]. The rate of decay (1.5) is the same as that of usual Navier-Stokes flow
in 3D exterior domains in which the rotation of the body is absent (w = 0).
But some effects of rotation should be found in the profile of the flow, which
might be anisotropic since the axis of rotation singles out a special direction.
Up to now, however, we have no such information.

Toward a better understanding of the effect of rotation on the profile, in
this paper, we concentrate ourselves on the linear steady problem

—Au— (wx2z)-Vu+wxu+Vp=f, divu=0 inD. (1.6)

Our purpose is to find the asymptotic representation as |z| — oo of the
solution to (1.6) subject to (1.3). By [6] and [21] we already know that
the optimal rate of decay of the solution to (1.6) is 1/|x| in general even
if the external force has good properties such as, for instance, f = div F'
with F € C°(D)**3. Our asymptotic representation provides its rigorous
explanation when we look at the first two leading terms. Roughly speaking,
the main result of this paper tells us that the profile of the leading term which
decays like 1/|x| is the third column vector of the usual Stokes fundamental
solution tensor and that the second term which decays like 1/|z|* includes
the rotating profile e3 x x. Thus the direction of the axis of rotation, the x3-
axis, is actually preferred in the sense that the flow can be observed mainly
along that axis.

For the sake of simplicity to catch the profile, the external force is of the
form f = div F with F' € C$°(D)**3, the restriction of F' € C§°(R3)**3 to D
(although divergence form is not needed, see Theorem 4.1 below). It is proved
by the present authors [6] that, for any F' € L3/2°(D)3*3 the problem (1.6)
with f = div F' subject to the homogeneous boundary condition u|sp = 0
possesses a unique solution (u,p) with estimate

[ull oo + (Ve p)[| 127200 < CJ[F[ 27200 (1.7)

For the problem (1.6) subject to (1.3), we have only to subtract an auxiliary
function given by (5.1) below; then, we obtain a solution (u,p) that satisfies
(1.7) with ||F|| 3/2.c Teplaced by ||F||zs/2.00 + |w| in the right-hand side.

To describe our main result we will use the usual Stokes fundamental
solution, i.e., the pair

Bale) = o (H0+250) . Qa0 =V () = o 09

8t \[z| | |zf Aclz|) ~ 4x|zP’

where I is the 3 x 3-identity matrix and 2 ® z = (2;2;)1<i,j<3. Corresponding
to the geometry of the problem, vectors in R? are often written in the form

= (2 23)" where 2’ = (2,15)".
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Moreover, we need the Cauchy stress tensor
T =T(u,p) = Vu+ (Vu)" —pl. (1.9)

Let v € R? denote the exterior unit normal to the boundary dD. Then
v-(T+F)=(v-(T+F)), (v (T+F))3)T stands for the vector (Z](Tm +
Ej)yj)1§i§3'

Theorem 1.1 Let w = aez with a € R\ {0}. Given f = divF with F' €

C*(D)**3, let (u,p) be the solution to (1.6) subject to (1.3). Then it has the
representation

() = Upot () + Unnal) + (1 + —) 0 (L> , (1.10)
p(z) = Pig(z) + O (L) (1.11)

for |z| = oo with

Viale) =g [ Py (1 5

81 |z|3
0 (1.12)
- ESt( ) ’
Jop (v T+ F))sdoy,
-8 0 Oy
1 o —f 3rx) [ 2 !
Usn, =— 0 — o
2na() 87|x|3 g a ) 8|z 22
0 a azr3 ) (1.13)
. Bes x x) ( B 2x3 T
EAEE ’ 2 |g;|2 87|z
and
Pig(z) = {(v-(Au))y —pv+v- F}do, - Qsi(x). (1.14)
aD

Here, the quantities o, o, a3 and B are defined as
a:—/ y~(1/-(T—|—F))day+/tery:a'—l—ag,
oD D
Oél:—/ yl'(V'(T+F))Id0y+/(F11+F22)dy,
oD D
a3:—/ yg(V(T+F))3d0y+ Fggdy,
oD D
5:63-/ y><(1/-(T+F))day+/(F12—F21)dy.
oD D
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Remark 1.1 In view of (1.12), the profile of the leading term is Eg;(x)es,
that is, the third column vector of the Stokes fundamental solution (1.8).
Since Esi(z)es is symmetric about the axis of rotation (x3-azis), we have

(wx ) VEg(x)es —w X Egi(r)ez =0
in R*\ {0} and, furthermore, this equality holds in D'(R?)?; thus, we find
—AFEgi(x)es — (wx x) - VEg(x)es + w X Egi(x)es + V (e3 - Qsi(r)) = des

together with div Es;(x)es = 0 in the sense of distributions, where § denotes
the Dirac measure at 0.

Remark 1.2 Whenw = 0, it is easy to see that the usual Stokes flow satisfies
the asymptotic representation

() = / v (T +F)do, - Esi(z) + O (L)
aD |z |?

for |x| = oo, where [, v (T + F)do stands for the total net force exerted
on the boundary 0D by the fluid and the external force term F. Compared
to this case, our leading term Uyg(x) given by (1.12) shows that the third
component of the net force is sufficient to control the rate of decay of u(zx).
For example, if the obstacle, the external force and the solution are symmetric
with respect to the xixo-plane, we find es - f@D v-(T+ F)do =0 to conclude
that u(x) = O(1/|z|?).
Remark 1.3 In (1.10) the remaining term which decays like 1/|z|* must be
singular as a — 0 in view of Remark 1.2; in fact, the last term of (1.10)
means that

0(e) — {Ura(2) + Vnna()}] < (1 n i) ¢

lal - |=]?

for large |x|. On the other hand, the leading term Pig(x) of the pressure in
(1.11) takes the same form as in the case w = 0. This is because

div [(wxx) - Vu—wxu|=(wxz) - Vdivu=0 (1.15)
and because

y-[(wxx)~Vu—w><u]aD:O. (1.16)



Remark 1.4 When the direction w/|w| of the rotating axis is generally pre-
scribed (this can be reduced to the case of w/|lw| = e3 discussed here), the
leading term is given by

(“’ / V-(T—f—F)day) E5t<x)%.

lw| Jap

Remark 1.5 In the second term Uspq(x), see (1.13), the first part of the
coefficient B of the rotating profile es X x s the third component of

/8Dy><(l/-(T—|—F))day,

which stands for the total torque exerted on the boundary 0D.

The proof of Theorem 1.1 is based on the potential representation formula
(3.1) of the solution in terms of the fundamental solution I'(z,y) of the
equation (2.1). The crucial step is to divide I'(x, y) exactly into three parts
@, () + o2, y) + O(1/|2*) with @4 ~ 1/|x]* (k = 1,2) for 2] > 2R > 2Jy],
where R > 0 is fixed. The principle that oscillations may imply rapid decay
plays an important role; so, we have to find which part does not oscillate to
derive ®;(x) and Po(z,y).

For the problem in which the body is translating with constant velocity,
the anisotropic decay structure yielding a wake region behind the body is
well known; see Finn [9], [10], Farwig [3], [4], Galdi [11], Shibata [28] and
the references therein. One may take into account translation of the body
along the axis of rotation together with rotation. In this case as well, one
can still find a wake region, existence of which was proved by [15] for the
Navier-Stokes problem and also by [25] for the Stokes problem in terms of
weighted-L? spaces. In both papers, however, no effect of rotation was found;
it seems that such an effect is hidden behind the drastic effect of translation
and the corresponding wake.

We should note an advantage arising from the translation of the body.
For the purely translating problem without rotation, the leading profile of the
Navier-Stokes flow is the Oseen fundamental solution because the nonlinear
term decays faster due to a better decay structure outside the wake region,
see for instance [4]. If we take both translation and rotation into account,
very probably, the same reasoning implies that the leading profile of the
Stokes flow becomes that of the Navier-Stokes flow as well. However, that
is not the case when the translation of the body is absent. In fact, Deuring
and Galdi [2] proved that the leading profile of the Navier-Stokes flow (with
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zero velocity at infinity) is no longer the Stokes fundamental solution; in
other words, the effect of nonlinearity must be involved. On the other hand,
Kozono, Sohr and Yamazaki [24] suggested that the leading term should be
related to the net force

N = v-(T(u,p)+F —u®u) do.
oD

In fact, they showed that N = 0 if the Navier-Stokes flow u (as weak solution
with finite Dirichlet integral) belongs to L3. The asymptotic representation
has been studied by Nazarov and Pileckas [27], and recently, by Korolev and
Sverak [23]. In particular, the latter paper shows that the leading term is the
Landau solution which is a (—1)-homogeneous solution of the Navier-Stokes
equation in R?® with the forcing term N§, where § denotes the Dirac measure
at 0 and N is the net force above of the given Navier-Stokes flow. This fact
combined with Theorem 1.1 suggests that the leading term of the steady
solution to (1.2)—(1.3) is the Landau solution for the forcing term (e3- N)esd;
this will be discussed in a forthcoming paper.

This paper consists of five sections. In the next section we look for the
fundamental solution of our linear equation in R3®. In terms of it, Section
3 is devoted to the deduction of a potential representation formula of the
solution. Section 4 is the main part in which a detailed analysis of the
fundamental solution is carried out. With its help we derive the leading and
second terms of the solution u to (1.6) subject to the homogeneous boundary
condition ulsp = 0. In the final section we complete the proof of Theorem
1.1 by reducing the problem with the boundary condition (1.3) to the case
discussed in section 4. The asymptotic representation of the pressure is also
considered finally.

The authors are grateful to Prof. G. P. Galdi, who informed us of the
paper [23] and gave us a comment on a physical meaning of 8 (Remark 1.5).
The second author is supported in part by Grant-in-Aid for Scientific Re-
search, No. 19540170, from the Japan Society for the Promotion of Science.

2 Fundamental solution

In this section we find an explicit representation of the fundamental solution,
closely related to the profile of the flow and thus playing a crucial role.

We say that the pair of a 3 x 3-matrix I'(z, y) and a column vector Q(z, y)
is the fundamental solution of the equation

—Au—(wxz) - Vu+wxu+Vp=f, dive =0 in R* (2.1)



if the volume potentials
ua) = [ T o) = [ Q)i
R3 R3
solve (2.1) for all f = (fi, fo, f3)T € C°(R?)3. It follows from (2.1) that

Ap = div f on account of (1.15); consequently, we find

1

Qz,y) = Vym

= QSt(‘T - y)7
see (1.8). We thus look for I'(x, y) in the form

in such a way that

solves

—Au® — (wxz) Vu' + (wx u’) = f,

2.2
—Au' — (wxz) - Vu' + (wx u') = —-Vp, 22)

respectively. Therefore, once we have I'°(z, i) which is called the fundamental
solution of the operator

L=-A—(wxz)-V+wxX, (2.3)
we get from (1.8) and (2.2) that
1
It = [ div.I" ——d 2.4
(x,y) \/1&3 v (I72)®Vy4ﬂ,|z_y| 2y ( )

or more exactly,
1 _ 0 i Y5
k
Setting u = u® + u', we easily see that (2.2) implies

—Adivu — (wxz)-Vdivu=0  inR3

since Ap = div f. Consequently, v = divu € §'(R?), a tempered distribu-
tion, satisfies —Av — (w x z) - Vo = 0, and by [7] (and also [21, Lemma 4.2])
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we conclude that its Fourier transform ¥ satisfies Supp v C {0}. From this
it follows that div u = 0, since we know |Vu(z)| < C/|z|* for large |z| (see
[6, Proposition 3.3]). Set

Gz, t) = (4t) 32 1217/(4)

which is the heat kernel in R? and satisfies

/OO Gl t) dt = — (2.5)

4|z

In view of the derivation of the equation (1.2) from (1.4), the function

Ulz,t) =O(at)" | G(O(at)z —y,t)f(y)dy

RS

solves the initial value problem
U =AU+ (wx ) - VU —w x U, U(x,0) = f(x)
in R®, where O(t) is given by (1.1) and w = aez. We thus find that

M) = [ 0 GOt — y.t)d

> (2.6)

E/ O(at)" (47t) 32 10(t)e—y*/(41) gy
0

is a fundamental solution of L defined by (2.3). In fact, one can justify
L/RS (e, ) (y) dy = L/OOO U(x,t) dt
= —/OooatU(:E,t) dt =U(x,0) = f(x)
in, say, L"(R?)® provided that f € C°(R?)3. As for another deduction of

(2.6) by use of the Fourier transform, see [7]. By (2.4), (2.5) and (2.6) we
employ the semigroup property of G(x,t) to obtain

lej (.’137 y)
_ / (Z o., / T Olal)T.G (O(al)s — 2,1) dt) 5, / TGl =y 1) drdz

= —/ / / 0y,G (O(at)r — 2,t) 0,,G(z — y, 7) dzdtdr
o Jo Jms

- —/ / 0,0,,G (O(at)x — y,t + 1) drdt
o Jo
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which implies

M(z,y) = —/ / V.V,G(O(at)x — vy, s) dtds
o Jo

_ /0 (47s) /2 /0 o 10ana—y[2/(4s) 27

, { (- 0<at>Ty)4 - (Olat)z —y) 2; OW)T} s,

where 2 @ w = (z;w;)1<i,j<3-

Proposition 2.1 Let w = aes. Then the pair {I'(z,y), Qs:(x — y)} with
T(z,y) =T%z,y) + T (x,y) is a fundamental solulion of the equation (2.1),
where T%(z,y), T (x,y) and Qsi(x) are given by (2.6), (2.7) and (1.8), re-
spectively.

Set

B o) ) %) r®r B i
H(z,1) —/t VG(z,s)ds /t G(x,s)( 152 23) ds.

It is well known that G(x,t)I + H(z,t) is the fundamental solution of the
usual unsteady Stokes equation (w = 0), and it is worth noting the relation

(2, y) = /0 " O(at)TH(O(at)x — y, 1) dt.

When we have to take care of the dependence of the fundamental solution
['(z,y) on the angular velocity w = ae; (the direction e; of the rotating axis
is fixed), we write

Loz, y) = (Faﬁj(x:y))gz’,jg?)'

Note that Proposition 2.1 covers the case w = 0; in fact,
Lo(w9) = [ {Gla = 0.0+ Hiz = .0)) di = Eala ).
0

see (1.8). Since the operator (w x z) -V — wx is skew-symmetric, I'_,(z,y)
is (the velocity part of) the fundamental solution of the adjoint equation

—Av+ (wxz)-Vv—wxv—Vg=g, dive=0 inR* (2.8)
and it is easy to verify the relation

L u(z,y)" = Taly, ). (2.9)
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Pointwise estimates of I'(z, y) for |z|, |y| — oo are very complicated. Even
['%(z,y) given by (2.6), does not satisfy an estimate from above by C/|z — y|
when we take, for instance, x = pey, y = pey with p — oo, see [7]. However,
when y is fixed and |z| — oo, it is easy to estimate I'(x,y). Let |z| > 2|y|.
Then we have e~10(@)s=yl*/(45) < =[2*/(165) in (2.7). From this together with
the simple equality (where () denotes the gamma function)

o0 ) 7m/2+1 2 _ 1
/ gm/2—cle/s g = © | 7|£'T?/ ), m>2¢>0, (2.10)
0 X

it follows that |I''(x,y)| < C/|z| and |V, [ (z,y)| < C/|z|*. Since I'°(x,y)
can be estimated similarly, we obtain

C
Pz, y)| < Ek VoI'(z,9)] < (2.11)

for |x| > 2]y|, which will be used to show Proposition 3.1.

3 Potential representation formula

This section is devoted to the deduction of the following potential represen-
tation formula (3.1) of the solution u(z) to (1.6) in terms of the fundamental
solution I'(x,y) given by Proposition 2.1.

Proposition 3.1 Let f € C(D)?, the restriction of f € C(R?)? to D.
Then the solution (u,p) to (1.6) with ulsp =0 can be represented as

wa) = [ Penf@dr+ [ T T @de, 6D

oD

v-(Vp—f)y)
p Arlr =yl

ple) = /D Qsile — ) - F(y) dy+ / do,

- /E)D v Qsi(z —y)p(y) doy.

Here, Qgi(x) is given by (1.8) and the formula (3.2) for the pressure holds
true even for the boundary condition u|gp = w X .

(3.2)

For the proof, we derive the Green formula (3.5) below associated with
the Stokes equation with rotation effect. In what follows we always assume
that div u = div v = 0. Let W C R? be a bounded domain with smooth
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boundary 0W. We start with the classical hydrodynamical Green formula,
see e.g. [26, Chap. 2., Sec. 3, (10)-(11)],

/ {v-(Au—Vp)—u-(Av+Vq)} dzx
v (3.3)
= /awy Av-T(u,p) —u-T(v,—q)} do,

where v is the exterior unit normal to OW and T'(u,p) is the Cauchy stress
tensor (1.9). Moreover, we need that

[ 1t a) - Vuy £ e {lw x @) - Vol da
(3.4)
:/WZ@{(wxx)juivi} cl:zc:/8 v (wxz)(u-v)do.

1474

We collect (3.3), (3.4) and the obvious equality v - (w X u) + u - (w X v) =0
to obtain that

/W[U-{Au—i-(wxx)-Vu—wxu—Vp}
—u-{Av— (wxz) - Vv+wxv+ Vg}]dx (3.5)
:/aW[V-{U-T(u,p)—u-T(v,—q)}+1/-(wXz)(u~v)] do.

Proof of Proposition 3.1. Suppose that (u,p) is the solution to (1.6) with

f € C(D)? subject to (1.3) or ulspp = 0. Then we know that it is smooth
and satisfies

C C C

u(z)| < Ek [Vu(z)| + [p(z)] < e Vp(z)] < EE (3.6)

for large |z|, see Galdi [13, Theorem 4.1]. Let y € D be a given point and
let R > 2|y|. We use (3.5) in the domain W = Dr = D N Bpg, where
Br = {z € R% |z| < R}. Then we get

_/ [v-f4+u-{Av—(wxzx) - Vo+wxv+Vq}] dz
Dr (3.7)

oD

:/BDRV-{U-T(u,p)—u-T(U,—Q)}d0+/ v (wx z)(u-v)do.
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Note that the integral of v - (w x x)(u - v) on the sphere dBpg vanishes since
z-(wxz) = 0. Let us recall the fundamental solution {I'_,(x,y), —Qs:(x—y)}
of the adjoint equation (2.8). For each k € {1,2,3}, we denote by I'_, x(z,y)
the k-th column vector of I'_,(z, y) and set Qg (x) = xx/ (47|z|?); then, we
have

LT (@, y) + VaQsik(x — y) = 6(z — y)ey, div,[' k(@ y) =0

in D'(R?)?, where

L =—-A,+(wxzx)-V, —wXx,
and 0(- — y) is the Dirac measure at y. In (3.7) we take

v(z) =Tak(z,y),  ale) = —Qaxlz —y)
and restrict ourselves to the case u|gp = 0 to find
(@) = [ Y Taiale )it da
o (3.8)
+ /OD Z vl _gir(z,y)Tij(u, p)(z) dog + Isp,
j

with

one = [ 30 2 sl )T (0.0) 0

— ()T (T ), Qe (- — 1)) (@) fdor.
By (2.11) together with (3.6) we see that |[Ipp,| — 0 as R — o0, so that
u(y) = / T o(z,y)" f(z)d +/ T (z,y)" (v-T(u,p)) (z)doy,
D oD
which implies (3.1) because of (2.9).
It remains to show (3.2). By (1.6) together with (1.15) we have

Ap =div f in D. (3.9)

It thus follows from the usual Green formula that

= [ WSy, [T,

L Ar|z — | Dy 4m|r —y| ‘

1
— v-Vy| ———|plx)do,.
Jon % (e 1) 7

By integration by parts in the first integral and by letting R — oo, we obtain
(3.2) since the integrals on the sphere 0Bg go to zero on account of (3.6).
This completes the proof. O
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4 Case u=0on 0D

In this section we will prove (1.10) with (1.12) and (1.13) for the case of the
homogeneous boundary condition u|9p = 0. The original boundary condition
(1.3) will be reduced to this case in the next section, in which we will see
that we have the same coefficients in the leading and second terms for both
cases: ulpp = 0 and ulsp = w X .

Since we prefer the representation of the net force [, v (T + F)do
which involves F', we have taken the external force of the form f = div F
in Theorem 1.1. But, actually, divergence form is not needed to catch the
profile. In fact, we show the following.

Theorem 4.1 Let w = aes with a € R\{0}. Given f = (f, f3)T € C°(D)3,
let w be the solution to (1.6) subject to ulsp = 0. Then it satisfies the
asymptotic representation (1.10) for |z| — oo with

_ 1 €3 r3x
Vi) = 5 (/8D<”'T>3d% v ] g dy) (m § W)

and Usnq(z) of the same form as in (1.13), where the coefficients are given
by

az—/ y-(V-T)dOy—/y-fdyza’+a3,
oD D

o/z—/ y"(V'T)'de—/y’-f’dy,
oD D

043Z—/aDys(V'T)sty—/D%fsdy,
6:/ (egxy)-(y-T)day+/D(eg><y)-fdy.

Corollary 4.1 Assume f = div F with F € C(D)*** in Theorem 4.1.
Then we have (1.10) with (1.12) and (1.13), where the coefficients are exactly
the same as in Theorem 1.1.

Once Theorem 4.1 is obtained, Corollary 4.1 is obvious since

Y 3kF‘kdy:/ Yi v Fi do —/F‘idy

for 1 <1i,5 < 3. For instance, we have

/D(egxy)-didey:/BD(esxy>.<y-F)day+/(Flg—Fﬂ)dy,

D
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which combined with the identity (b x ¢) -d = b- (¢ x d) for arbitrary vectors
b,c,d € R? implies the representation of 3 given in Theorem 1.1.

We fix R > 0 such that f(y) = 0 for |y| > R. The proof of Theorem
4.1 is based on the solution formula (3.1), by which we may assume |y| < R
and |z| > 2R in what follows. Our task is now to find ®;(x) ~ 1/|z| and
®y(z,y) ~ 1/]x]* so that the fundamental solution is represented as

[(z,y) = ®1(x) + Po(,y) + (1 + i) @) <L> (4.1)

lal | ?

for |x| — oo. The last term means that

‘F(l‘,y) - {q)l(l') -+ CDQ(x,y)}‘ S <1 + ﬁ) E_‘};

for |z| > 2R > 2|y|, where Cr > 0 is independent of a € R\ {0}. Let T'°(z, y)
and T''(z,y) be as in (2.6) and (2.7), respectively.

Proposition 4.1 For |y| < R and || — oo we have

(xz,y) = ®(x) + ®(x,y) + (1 + ﬁ) 0 (ﬁ)

where
) 00 0
®Y(z) = 7 000 ], (4.2)
T\ o 0 1
1 -y (esxz)-y 0
Qy(1,y) = o5 | —(esxa)-y 2y 0o . (4.3)
8| 0 0 20393

Proposition 4.2 For |y| < R and |z| — oo one has

I (2,y) = 9 (x) + ®3(z,y) + (1 * i) ¢ <L>

o] |
with
1 0 0 r1T3
Pi(z) === 0 0 muas |, (4.4)
$rlel \ o 0 —jap2

15



1 ryr r1y2 0

(I%(,T, y) = o3 3\% Ky + TaY1 T2oY2 0 + \Ij(l‘a y)7 (45)
8 |x| 0 0 2x3y3
where
i) = e [ 0 a2 0,0, (16)
yY) = 871—’.’17‘5 9 v, 3 , U Y3 . .

We postpone the proof of these propositions to that of Theorem 4.1.

Proof of Theorem 4.1. It follows from Propositions 4.1 and 4.2 that (4.1)
holds with

1 00 173
®y(z) = ®)(2) + ®}(7) = e 0 0 o3 ,
TP\ 0 0 |op + a2

Dy (z,y) = DY (z,y) + Py(z,y)
-
~ 8m|x]3

where W(z,y) is given by (4.6). This combined with (3.1) provides the de-
sired asymptotic representation of u(x). O

{t@y—(e3xx)®(e3 xy)} + V(x,y),

For the proof of Proposition 4.1, we use the following elementary decay
property due to oscillation, which should be compared to (2.10). For our
purpose, the case n =1 is enough.

Lemma 4.1 Let a € R\ {0}, m > 2 and ¢ > 0. Given n € N arbitrarily,
there is a constant K = K(n,m,c) > 0 such that

* [ cosat > K
—m/2 —c|z|*/t <
[ (o o dt‘ = T (47)

Jor z € R3\ {0}.

Proof. Since
/ ‘8? (t’m/Qe’C/t) ‘ dt < oo
0

16



for every n € N, n-times integration by parts yields

/ eiattfm/Qefc\xP/t dt = 7]7'1_2 / eia\r|2t tfm/2€fc/t dt
0 || 0

_ 1 —1 B ia|x\2tan (tfm/Z 7c/t) dt
Tl NaR) S © R T

where ¢+ = v/—1. This immediately implies the assertion. O

Proof of Proposition 4.1. We employ the Taylor formula (with respect to y)
to get that

o~ Oty /() _ xR/t | e/ (OL0)T) Y
21
L 0(atyr—oy)2/(at) 7 (O(at)z — 0y) ® (O(at)x — Oy) — 21

toe 412

(4.8)

Yy
with some 6 = 0(z,y,t) € (0,1). We decompose I'°(z, 1) as
[(z,y) = % (2, y) + T%(2,y) + T%(2, y)

correspondingly to (4.8). By (4.7) (n = 1, m = 3) together with (2.5) we
find

1 1
01 N N
I (Iay)_cbl(x)—i_ |G|O<|ZE|3> y

where ®{(z) is as in (4.2). Since the last term of (4.8) is estimated from
above by Ce /(60 R2(||2 4 ¢) /¢2 for |z| > 2R > 2|y|, we obtain

C
M| <

by (2.10) without using (4.7). Concerning

L%(x,y) = / O(at)T (4rt) 32117/ (40) w .
0

we note

(O(at)z) -y = (2" - y')cosat + ((e3 X x) - y) sin at + x3y3 (4.9)

cos’at \ _ 1 ( 1+ cos2at
sinat )~ 2\ 1— cos2at

17
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to find

(O2) -y gy = iA(x, y) + (remainder) (4.10)
with
-y (esxz)-y 0
Alz,y)=| —(esxx)-y 'y 0 (4.11)

0 0 2$3y3

where the remainder contains oscillating terms cos kat and sin kat (k = 1, 2)
and has degree one with respect to z. By (4.7) (n = 1, m = 5) together with
(2.10) (m = 5) we are led to

1 1 1
FO? _ A N R
(2, y) (z,y) + — O <|x|4> ,

- Safaf? lal

which completes the proof. O

Proof of Proposition 4.2. Similarly to the proof of Proposition 4.1, we use

o~ 10tz g/ (4s) _ —aP (1) o e/t (OLat)T) -y

2s
T otatie—tul /(4s O(at)r — 0y) ® (O(at)x — Oy) — 251
+ 3 emlot ol as) (O] ) 4(152( ) ) )

with some 6 = 0(x,y,t,s) € (0,1) and, correspondingly to this, decompose
[z, y), see (2.7), as

M (z,y) =Tz, y) + T(z,y) + T (, ).

It is seen that |T'3(z,y)| < C/|z|® for |z] > 2R > 2Jy|. By a series of
elementary calculations we will show that

T (z,y) = &1 (z) + B3 (z,y) + (1 + i) O <L> , (4.12)

lal |z f?

D20 y) = 32(z,y) + O (%) + (1 + ﬁ) 0 (ﬁ) S (413)

Here, ®}(z) is as in (4.4), and

. 1 STy — %IzyQ %lbyl + 310 11y
Oy (z,y) = a3 %ﬂhyl +3T1Y2 —sT1y + %xng T2Y3 )
§lz] T3y Z3Yo 2x3y3
@%Q(x, y) = 167T—|113|3A($, y) + \I’(l‘, y)7

18



where A(z,y) and U(x,y) are given by (4.11) and (4.6), respectively.
In fact, we further decompose I''!(z,y) as

I'(z,y) =Tz, y) + T (z,y)

with
Aq)—8/2 e 2 s
I (z,y) = %/ 5 /2¢lal /(45)/ S(x,y,t)dtds,
0 0
_ 4 *3/2 o0 9 s
I (z,y) = %/ §75/2¢lal /(45)/ O(at)" dtds,
0 0

where S(z,y,t) = (S;(z,y,1))

L<i denotes the matrix with entries
<z,7<3

Sij(@,y,t) = {zi — (O(at)"y), }{ (O(at)z); - y;}. (4.14)

Among them, we here calculate the typical cases (i,7) = (1,1), (1, 3),(3,1)
and (3, 3) only (since the others are treated similarly):

5 3 1 sin as
/ Sll(l’, y,t) dt = (—51’1’3/1 + §$2y2> S+ ’1‘1’2 E—
0

a
1—cosas 1, , , sin2as
+( $1I2+y1y2)7 5(513 y) %
1( « 7) 1 — cos2as
__6 :L' - —_—_—
9 3 Y %2, )

/ 513 iU 'Y, )dt = 951(373 - y3)5 - (953 - ys) (Zh

sin as 1 —cosas
Y2 )

sin as 1 —cosas
a ?

/ Ssi(x,y,1) —(z3 — y3)y1s + (23 — y3) (351 —— 2
/ 533(1'> Y, t) dt - ($3 - 93)237
0

from which together with (2.10), without using (4.7), it follows that

3 1
111 . _ixlyl + §$2y2 1
Fll (:E7y) - 87T‘,T’3 + |a‘0 ( )

— 1 1
Flll _ T1T3 $1y3 —O -
i (9) = gl T areP Tl )

— 1 1
I ay) = 2 4 (1 05
31 (.T,y) 87T|ZE|3 + + |a| |I|3 )
2 2 1
Pl (0,y) = i = 202 40 (—)

8r|z|?  8w|x|?
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We eventually get

1 00 13 1 1
M'azy)=——| 0 0 zozs | + O (z,y)+ 1+ —=|O(—=).
8rlxf? 2 |al |z[?
0 0 a3
This combined with
0 0 O
1 1 1
M (z,y) = 00 0 |+—0 (—3>
87 |z| 00 —1 |al 2]
see (2.10), implies (4.12).
We proceed to I''?(z, y), that is decomposed as
[z, y) = T (2, y) + 0% (2,y)
with
4) =32 [ : * (O(at)x) -
2 (3, y) = ( 77)4 / 8—9/26—:c|2/(4s)/ ( (GQ)@ ?/S(%%t) dtds.
0 0

_(47)-3/2 oo , s :
F122(x,y) _ (4772) / 5~ T/2p—lal /(45)/ (O(atz)x) yo(at)T dtds,
0 0

where S(x,y,t) is as in (4.14). For each (4, j), one can write

(O(at)z) - y

9 Sij (z,y,t) = Ky (x,y) + (remainder)

by use of (4.9), such that the remainder consists of cos kat and sin kat, k =
1,2, 3, while K;;(z,y) does not depend on ¢. It is obvious that the remainder
above yields ﬁO(l/\x!‘l) after integration in the representation of I''?!(z, y).

Among all the terms in K(z,y) = (Ki;j(x,y))1<i <3, what we need is the
matrix

M(x,y) = (M1(1‘7y);Mz(Ly);Ms(Ly))

whose column vectors are given by

1 . .
]\/—fl(lﬁy):—{ﬂj yxl_(63XI') y:l:z}:m

2 2 2
1 (2 €3 X x)-y
M2($>y):§{ 5 9024‘(3 2) 371}307
1
M3 (z,y) = E(xgys)l"-



In fact, M(z,y) is the part of K(z,y), whose degree with respect to z is
just three, while the degree of K(x,y) — M(xz,y) is at most two with re-
spect to x and, therefore, this part yields O(1/|x|?) after integration in the
representation of T2 (z,y). We set

1

00 , 3
/ 1121217/ (4s) 4o M(z,y) = M(z,y) ~ W
; x

(47)~3/2
A7z

Yz, y) = —

for |z| > 2R > 2|y| to conclude that

P2 (3 y) = W(a,y) + O (#) + (1 + ﬁ) 0 (@) S (@1)

One can rewrite M (z,y) as
||
2

T
M) = 5o {EL 007 + 2 0.0},
which implies (4.6). Along the same line as above with the aid of (4.10), we

obtain
’ 16x(z[> 77 fal  \fa]* )

where A(z,y) is given by (4.11). This combined with (4.15) implies (4.13).
Finally, setting ®3(z,y) = &3 (z,y) + P3%(z,y) yields (4.5), which com-
pletes the proof. O

5 Caseu=wXxxon dD

We have two approaches to the boundary condition (1.3); one is the reduc-
tion to the homogeneous one u|gp = 0 and the other is the direct use of a
representation formula derived from (3.7). Both lead us to the same con-
clusion and we here adopt the former because it is easier. Concerning the
pressure, one can easily deal with (1.3) directly.

To begin with, we fix R > 0 such that R*\ D C Bg. Let ¢ : [0,00) — [0, 1]
be a smooth function which satisfies ((r) = 0 for r > R+1 as well as {(r) =1
for r < R. Since w x & = —3rot (|z[*w), it is reasonable to introduce the
auxiliary function b € C§*(R3)? by

|z

br) = 2 vot (G o) = 2 x T{C(o)}] + Cllal)(w x 2
_ {mcw i <<|x|)} (o x 2) o
: |
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cf. [1]. Then it satisfies

divb=0 (ze€R?, b(r) =wxz (x€ Bg), (5.2)
bi(w x x); — (wx x);b; =0 (zr €R? 1<i,j<3), (5.3)
0 —a O
Vb=|a 0 0 |, Vb + (Vh)T =0 (z € Bg), (5.4)
0 0 0

and, by (5.2) and b3 = 0,

tr Vo=divb=0,  Oiby +0obya=03b3=0 (v €R%). (5.5)
From (5.3) it follows that

(wxz)- Vb — (w x b);

=39 {hilwx2);—(@xa)ib} =0 (reR%1<i<3).

By (5.4) we have
v-Vb=wxv, y-(v-Vb)=y-(wxv)=—-v-(wxy) (y € D). (5.7)

Obviously, by Gauss’ Theorem and (5.7),

/ v-Vbdo, =0, (5.8)

oD

/ y~(1/~Vb)d0y:—/ v (wxy)do, =0, (5.9)
aD aD

/ y - (v-Vb)do, = —/ y3(v - Vb)3 do, = 0. (5.10)
aD oD

since by (5.4) Vb is constant on Bpg, div (w x y) = 0 and b3 = 0.

Proof of Theorem 1.1. Let (u,p) be the solution to (1.6) with f = div F,
F € C°(D)**3, subject to (1.3). Set u(z) = u(z) — b(z). By (5.2) and (5.6)
it should obey

—Au—(wxz)-Vi+wxu+Vp=div (F+Vb), divu=0 inD
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together with u|sp = 0. By Corollary 4.1 we know the asymptotic represen-
tation (1.10) of u(x), which is the same as that of u(z) since b € C§°(R?)?.
Both have the same stress tensor on 9D, i.e.,

T(u,p)(y) =T(u,p)(y)  (y € 0D),

see (1.9), thanks to (5.4); thus, in what follows, we may simply write 7. The
leading term is

1

€3 I3x
— (T+F b))sd — 4+ —
5 | (o (T4 F V0 0y<$—|— )

which immediately implies (1.12) by (5.8), or more simply, by Vb; = 0. We
next have a look at the coefficients of the second term:

a:—/ y~(l/~(T—|—F—|—Vb))day—i—/tr (F 4+ Vb)dy = o + as,
oD D

o = —/ Z/I . (1/ . (T + F+ Vb))'day + / (F11 + Foo + 0101 + 82b2) dy,
oD D

3 = —/ ’yg(l/ . (T+ F + Vb))g day + / (F33 + 83b3) d'y,
oD D

5263'/ yX (1/(T+F—|—Vb))day+/(F12—F21+82b1—81b2)dy
oD D

From (5.5), (5.9) and (5.10) it follows that «, o’ and a3 are exactly the same
as those given in Theorem 1.1. Concerning 3, we find

/ (32()1 — albg) dy == / (82171 — 81b2) dy
D

Dry1

= aD{l/Q(w X y)i = vi(w X y)2} doy

:—/ (e3 x V) - (w x y)do,
oD
:—63~/ y x (v-Vb)do,
aD
with the help of (5.7). We have thus shown that each of the coefficients
a, ', a3 and  does not change in the leading and second terms even when

we take the boundary condition (1.3).
It remains to prove (1.11). To do so, we first observe

/8D1/-(Vp—f)day:0 (5.11)
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as well as (1.16). In fact, from (3.9) it follows that, for any p > R,

| v o= pdo, == [ L(vo=pan,

aB, P

which goes to zero as p — oo since we have (3.6) and since the support of
f is bounded. We thus obtain (5.11). Although (1.16) was essentially found
by [29, Lemma 2.1] and [14, Lemma 3], see also [8, Lemma 2.3], we give a
brief proof. By (5.6) together with (w x u)|sp = 0, it is sufficient to show

v-[(wxz)- V] _— 0. (5.12)

Since u satisfies (3.6), so does & = u — b; thus, we see that & € HY{(D)? with
div u = 0, where

HH(D) = {w e LY(D); Vw € L*(D)?, wlop = 0},

which coincides with the completion of C§°(D) with respect to ||V (+)]|zz.
Due to Heywood [18, Theorem 8], there is a sequence {v*} C C§% (D) such
that Vo* — Vi in L*(D)*** as k — oo, where C§%(D) denotes the class
of solenoidal vector fields whose components are in C§°(D). Since 9;v* €
C5%, (D) for each j = 1,2,3, we obtain v - (9;u)|sp = 0, which implies (5.12)
and, thus, (1.16).

We now denote the terms of the right-hand side of (3.2) by pi(z), p2(x)
and ps(x), respectively: p = p; + pa + p3. By (5.11), (1.16) and

1 1 y-x 1 73(x—0y) @ (x—0y) — |z — Oy|’T

inle—y|  anlz] | anfaP | &n & — By[s

with some 6 € (0,1), we see that

o) = [ 501 (=~ )
- [ i, Qut +0 ()

for |z| — oo. The terms p;(x) and ps(z) are treated similarly, so that we
obtain (1.11) with

Plst(x):( (v (Aw))y — pv} do, + /D fdy>~Q5t(x),

8D{

which yields (1.14). We have completed the proof. O
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