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Abstract

We analyze the spatial anisotropic pro�le at in�nity of steady Stokes
ow around a rotating obstacle. It is shown that the ow is largely
concentrated along the axis of rotation in the leading term and that a
rotating pro�le can be found in the second term. The proof relies upon
a detailed analysis of the associated fundamental solution tensor.
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1 Introduction and main result

This paper studies the asymptotic anisotropic pro�le near in�nity of steady
Stokes ow around a rotating obstacle immersed in a viscous incompressible
uid. Considering the motion of a viscous incompressible uid in an exterior
domain D � R

3 with smooth boundary @D, particular interest is focussed
on the case where the rigid body (� R

3 n D) is rotating about the y3-axis
with constant angular velocity ! = ae3; here a 2 R n f0g and e3 = (0; 0; 1)T .
The unknown velocity v(y; t) = (v1; v2; v3)

T and pressure q(y; t) obey the
Navier-Stokes equation

@tv + v � rv = �v �rq; div v = 0
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for y 2 D(t) subject to the boundary condition

vj@D(t) = ! � y � a(�y2; y1; 0)T ; v ! 0 as jyj ! 1:

Here, the domain D(t) occupied by the uid at time t and its boundary
@D(t) are given by

D(t) = fy = O(at)x; x 2 Dg; @D(t) = fy = O(at)x; x 2 @Dg;
where

O(t) =

0@ cos t � sin t 0
sin t cos t 0
0 0 1

1A : (1.1)

We take the reference frame attached to the body to reduce the problem
above to the system

@tu+ u � ru = �u+ (! � x) � ru� ! � u�rp; div u = 0 (1.2)

in D subject to

uj@D = ! � x; u! 0 as jxj ! 1; (1.3)

where x = O(at)Ty and

u(x; t) = (u1; u2; u3)
T = O(at)Tv(O(at)x; t); p(x; t) = q(O(at)x; t); (1.4)

see [1], [12], [20]. A di�culty is the hyperbolic operator (!�x)�r, which is no
longer a minor perturbation of the Laplace operator even though j!j is small.
A typical hyperbolic e�ect was found by Farwig and Neustupa [8] in the study
of the spectrum; the essential spectrum consists of an in�nite set of equally
spaced half lines in the left half of the complex plane. Nevertheless, the
semigroup generated by the operator in the right-hand side of (1.2) possesses
a certain smoothing e�ect ([17], [19], [20]) and also enjoys a typical large time
behavior of parabolic type ([22]).

In [13] Galdi �rst proved that the problem (1.2){(1.3) has a unique steady
solution which satis�es

ju(x)j � C

jxj ; jru(x)j+ jp(x)j � C

jxj2 (1.5)

for large jxj provided j!j is small enough. Later on, the present authors [6]
gave another outlook on (1.5) in terms of weak-Lq spaces: u 2 L3;1; (ru; p) 2
L3=2;1. This class or the pointwise decay (1.5) of the steady ow is important
to deduce its stability, which has been established by [14] and, later on, by
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[22]. The rate of decay (1.5) is the same as that of usual Navier-Stokes ow
in 3D exterior domains in which the rotation of the body is absent (! = 0).
But some e�ects of rotation should be found in the pro�le of the ow, which
might be anisotropic since the axis of rotation singles out a special direction.
Up to now, however, we have no such information.

Toward a better understanding of the e�ect of rotation on the pro�le, in
this paper, we concentrate ourselves on the linear steady problem

��u� (! � x) � ru+ ! � u+rp = f; div u = 0 in D: (1.6)

Our purpose is to �nd the asymptotic representation as jxj ! 1 of the
solution to (1.6) subject to (1.3). By [6] and [21] we already know that
the optimal rate of decay of the solution to (1.6) is 1=jxj in general even
if the external force has good properties such as, for instance, f = div F
with F 2 C1

0 (D)3�3. Our asymptotic representation provides its rigorous
explanation when we look at the �rst two leading terms. Roughly speaking,
the main result of this paper tells us that the pro�le of the leading term which
decays like 1=jxj is the third column vector of the usual Stokes fundamental
solution tensor and that the second term which decays like 1=jxj2 includes
the rotating pro�le e3� x. Thus the direction of the axis of rotation, the x3-
axis, is actually preferred in the sense that the ow can be observed mainly
along that axis.

For the sake of simplicity to catch the pro�le, the external force is of the
form f = div F with F 2 C1

0 (D)3�3, the restriction of F 2 C1
0 (R3)3�3 to D

(although divergence form is not needed, see Theorem 4.1 below). It is proved
by the present authors [6] that, for any F 2 L3=2;1(D)3�3, the problem (1.6)
with f = div F subject to the homogeneous boundary condition uj@D = 0
possesses a unique solution (u; p) with estimate

kukL3;1 + k(ru; p)kL3=2;1 � CkFkL3=2;1 : (1.7)

For the problem (1.6) subject to (1.3), we have only to subtract an auxiliary
function given by (5.1) below; then, we obtain a solution (u; p) that satis�es
(1.7) with kFkL3=2;1 replaced by kFkL3=2;1 + j!j in the right-hand side.

To describe our main result we will use the usual Stokes fundamental
solution, i.e., the pair

ESt(x) =
1

8�

�
1

jxjI+
x
 x

jxj3
�
; QSt(x) = r

� �1
4�jxj

�
=

x

4�jxj3 ; (1.8)

where I is the 3�3-identity matrix and x
x = (xixj)1�i;j�3. Corresponding
to the geometry of the problem, vectors in R3 are often written in the form

x = (x0; x3)
T where x0 = (x1; x2)

T :
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Moreover, we need the Cauchy stress tensor

T = T (u; p) = ru+ (ru)T � pI : (1.9)

Let � 2 R
3 denote the exterior unit normal to the boundary @D. Then

� � (T +F ) =
�
(� � (T +F ))0; (� � (T +F ))3

�T
stands for the vector

�P
j(Tij +

Fij)�j
�
1�i�3

.

Theorem 1.1 Let ! = ae3 with a 2 R n f0g. Given f = divF with F 2
C1
0 (D)3�3, let (u; p) be the solution to (1.6) subject to (1.3). Then it has the

representation

u(x) = U1st(x) + U2nd(x) +

�
1 +

1

jaj
�
O

�
1

jxj3
�
; (1.10)

p(x) = P1st(x) +O

�
1

jxj3
�

(1.11)

for jxj ! 1 with

U1st(x) =
1

8�

Z
@D

(� � (T + F ))3 d�y

�
e3
jxj +

x3x

jxj3
�

= ESt(x)

0@ 0
0R

@D
(� � (T + F ))3 d�y

1A ;

(1.12)

U2nd(x) =
1

8�jxj3

0@ � �� 0
� � 0
0 0 �

1A0@ x1
x2
x3

1A� 3 (x
 x)

8�jxj5

0@ �0

2
x1

�0

2
x2

�3x3

1A
=
�(e3 � x)

8�jxj3 +
�
�3 � �0

2

� jx0j2 � 2x23
jxj2

x

8�jxj3 ;

(1.13)

and

P1st(x) =

Z
@D

f(� � (�u)) y � p� + � � Fg d�y �QSt(x): (1.14)

Here, the quantities �; �0; �3 and � are de�ned as

� = �
Z
@D

y � (� � (T + F )) d�y +

Z
D

trF dy = �0 + �3;

�0 = �
Z
@D

y0 � (� � (T + F ))0 d�y +

Z
D

(F11 + F22) dy;

�3 = �
Z
@D

y3(� � (T + F ))3 d�y +

Z
D

F33 dy;

� = e3 �
Z
@D

y � (� � (T + F )) d�y +

Z
D

(F12 � F21) dy :
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Remark 1.1 In view of (1.12), the pro�le of the leading term is ESt(x)e3,
that is, the third column vector of the Stokes fundamental solution (1.8).
Since ESt(x)e3 is symmetric about the axis of rotation (x3-axis), we have

(! � x) � rESt(x)e3 � ! � ESt(x)e3 = 0

in R
3 n f0g and, furthermore, this equality holds in D0(R3)3; thus, we �nd

��ESt(x)e3 � (! � x) � rESt(x)e3 + ! � ESt(x)e3 +r (e3 �QSt(x)) = �e3

together with divESt(x)e3 = 0 in the sense of distributions, where � denotes
the Dirac measure at 0.

Remark 1.2 When ! = 0, it is easy to see that the usual Stokes ow satis�es
the asymptotic representation

u(x) =

Z
@D

� � (T + F ) d�y � ESt(x) +O

�
1

jxj2
�

for jxj ! 1, where
R
@D

� � (T + F ) d� stands for the total net force exerted
on the boundary @D by the uid and the external force term F . Compared
to this case, our leading term U1st(x) given by (1.12) shows that the third
component of the net force is su�cient to control the rate of decay of u(x).
For example, if the obstacle, the external force and the solution are symmetric
with respect to the x1x2-plane, we �nd e3 �

R
@D

� � (T +F ) d� = 0 to conclude
that u(x) = O(1=jxj2).

Remark 1.3 In (1.10) the remaining term which decays like 1=jxj3 must be
singular as a ! 0 in view of Remark 1.2; in fact, the last term of (1.10)
means that

ju(x)� fU1st(x) + U2nd(x)gj �
�
1 +

1

jaj
�

C

jxj3

for large jxj. On the other hand, the leading term P1st(x) of the pressure in
(1.11) takes the same form as in the case ! = 0. This is because

div [(! � x) � ru� ! � u] = (! � x) � rdiv u = 0 (1.15)

and because
� � [(! � x) � ru� ! � u]

���
@D

= 0: (1.16)
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Remark 1.4 When the direction !=j!j of the rotating axis is generally pre-
scribed (this can be reduced to the case of !=j!j = e3 discussed here), the
leading term is given by�

!

j!j �
Z
@D

� � (T + F ) d�y

�
ESt(x)

!

j!j :

Remark 1.5 In the second term U2nd(x), see (1.13), the �rst part of the
coe�cient � of the rotating pro�le e3 � x is the third component ofZ

@D

y � (� � (T + F )) d�y;

which stands for the total torque exerted on the boundary @D.

The proof of Theorem 1.1 is based on the potential representation formula
(3.1) of the solution in terms of the fundamental solution �(x; y) of the
equation (2.1). The crucial step is to divide �(x; y) exactly into three parts
�1(x) + �2(x; y) +O(1=jxj3) with �k � 1=jxjk (k = 1; 2) for jxj � 2R � 2jyj,
where R > 0 is �xed. The principle that oscillations may imply rapid decay
plays an important role; so, we have to �nd which part does not oscillate to
derive �1(x) and �2(x; y).

For the problem in which the body is translating with constant velocity,
the anisotropic decay structure yielding a wake region behind the body is
well known; see Finn [9], [10], Farwig [3], [4], Galdi [11], Shibata [28] and
the references therein. One may take into account translation of the body
along the axis of rotation together with rotation. In this case as well, one
can still �nd a wake region, existence of which was proved by [15] for the
Navier-Stokes problem and also by [25] for the Stokes problem in terms of
weighted-L2 spaces. In both papers, however, no e�ect of rotation was found;
it seems that such an e�ect is hidden behind the drastic e�ect of translation
and the corresponding wake.

We should note an advantage arising from the translation of the body.
For the purely translating problem without rotation, the leading pro�le of the
Navier-Stokes ow is the Oseen fundamental solution because the nonlinear
term decays faster due to a better decay structure outside the wake region,
see for instance [4]. If we take both translation and rotation into account,
very probably, the same reasoning implies that the leading pro�le of the
Stokes ow becomes that of the Navier-Stokes ow as well. However, that
is not the case when the translation of the body is absent. In fact, Deuring
and Galdi [2] proved that the leading pro�le of the Navier-Stokes ow (with
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zero velocity at in�nity) is no longer the Stokes fundamental solution; in
other words, the e�ect of nonlinearity must be involved. On the other hand,
Kozono, Sohr and Yamazaki [24] suggested that the leading term should be
related to the net force

N =

Z
@D

� � (T (u; p) + F � u
 u) d�:

In fact, they showed that N = 0 if the Navier-Stokes ow u (as weak solution
with �nite Dirichlet integral) belongs to L3. The asymptotic representation
has been studied by Nazarov and Pileckas [27], and recently, by Korolev and
�Sver�ak [23]. In particular, the latter paper shows that the leading term is the
Landau solution which is a (�1)-homogeneous solution of the Navier-Stokes
equation in R3 with the forcing term N�, where � denotes the Dirac measure
at 0 and N is the net force above of the given Navier-Stokes ow. This fact
combined with Theorem 1.1 suggests that the leading term of the steady
solution to (1.2){(1.3) is the Landau solution for the forcing term (e3 �N)e3�;
this will be discussed in a forthcoming paper.

This paper consists of �ve sections. In the next section we look for the
fundamental solution of our linear equation in R

3. In terms of it, Section
3 is devoted to the deduction of a potential representation formula of the
solution. Section 4 is the main part in which a detailed analysis of the
fundamental solution is carried out. With its help we derive the leading and
second terms of the solution u to (1.6) subject to the homogeneous boundary
condition uj@D = 0. In the �nal section we complete the proof of Theorem
1.1 by reducing the problem with the boundary condition (1.3) to the case
discussed in section 4. The asymptotic representation of the pressure is also
considered �nally.

The authors are grateful to Prof. G. P. Galdi, who informed us of the
paper [23] and gave us a comment on a physical meaning of � (Remark 1.5).
The second author is supported in part by Grant-in-Aid for Scienti�c Re-
search, No. 19540170, from the Japan Society for the Promotion of Science.

2 Fundamental solution

In this section we �nd an explicit representation of the fundamental solution,
closely related to the pro�le of the ow and thus playing a crucial role.

We say that the pair of a 3�3-matrix �(x; y) and a column vector Q(x; y)
is the fundamental solution of the equation

��u� (! � x) � ru+ ! � u+rp = f; divu = 0 in R3 (2.1)
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if the volume potentials

u(x) =

Z
R3

�(x; y)f(y) dy; p(x) =

Z
R3

Q(x; y) � f(y) dy

solve (2.1) for all f = (f1; f2; f3)
T 2 C1

0 (R3)3. It follows from (2.1) that
�p = div f on account of (1.15); consequently, we �nd

Q(x; y) = ry
1

4�jx� yj = QSt(x� y);

see (1.8). We thus look for �(x; y) in the form

�(x; y) = �0(x; y) + �1(x; y) =
�
�0
ij(x; y) + �1

ij(x; y)
�
1�i;j�3

in such a way that

um(x) =

Z
R3

�m(x; y)f(y) dy (m = 0; 1)

solves

��u0 � (! � x) � ru0 + (! � u0) = f;

��u1 � (! � x) � ru1 + (! � u1) = �rp ; (2.2)

respectively. Therefore, once we have �0(x; y) which is called the fundamental
solution of the operator

L = ��� (! � x) � r+ !�; (2.3)

we get from (1.8) and (2.2) that

�1(x; y) =

Z
R3

divz�
0(x; z)
ry

1

4�jz � yj dz; (2.4)

or more exactly,

�1
ij(x; y) =

Z
R3

X
k

@zk�
0
ik(x; z)

zj � yj
4�jz � yj3 dz:

Setting u = u0 + u1, we easily see that (2.2) implies

��div u� (! � x) � rdiv u = 0 in R3

since �p = div f . Consequently, v = div u 2 S 0(R3), a tempered distribu-
tion, satis�es ��v� (!� x) � rv = 0, and by [7] (and also [21, Lemma 4.2])
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we conclude that its Fourier transform bv satis�es Supp bv � f0g. From this
it follows that div u = 0, since we know jru(x)j � C=jxj2 for large jxj (see
[6, Proposition 3.3]). Set

G(x; t) = (4�t)�3=2e�jxj
2=(4t)

which is the heat kernel in R3 and satis�esZ 1

0

G(x; t) dt =
1

4�jxj : (2.5)

In view of the derivation of the equation (1.2) from (1.4), the function

U(x; t) = O(at)T
Z
R3

G(O(at)x� y; t)f(y) dy

solves the initial value problem

@tU = �U + (! � x) � rU � ! � U; U(x; 0) = f(x)

in R3, where O(t) is given by (1.1) and ! = ae3. We thus �nd that

�0(x; y) =

Z 1

0

O(at)TG(O(at)x� y; t) dt

�
Z 1

0

O(at)T (4�t)�3=2e�jO(at)x�yj2=(4t) dt

(2.6)

is a fundamental solution of L de�ned by (2.3). In fact, one can justify

L

Z
R3

�0(x; y)f(y) dy = L

Z 1

0

U(x; t) dt

= �
Z 1

0

@tU(x; t) dt = U(x; 0) = f(x)

in, say, Lr(R3)3 provided that f 2 C1
0 (R3)3. As for another deduction of

(2.6) by use of the Fourier transform, see [7]. By (2.4), (2.5) and (2.6) we
employ the semigroup property of G(x; t) to obtain

�1
ij(x; y)

=

Z
R3

 X
k

@zk

Z 1

0

O(at)TikG (O(at)x� z; t) dt

!
@yj

Z 1

0

G(z � y; �) d�dz

= �
Z 1

0

Z 1

0

Z
R3

@xiG (O(at)x� z; t) @yjG(z � y; �) dzdtd�

= �
Z 1

0

Z 1

0

@xi@yjG (O(at)x� y; t+ �) d�dt
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which implies

�1(x; y) = �
Z 1

0

Z s

0

rxryG(O(at)x� y; s) dtds

=

Z 1

0

(4�s)�3=2
Z s

0

e�jO(at)x�yj2=(4s)

�
(�

x�O(at)Ty
�
 (O(at)x� y)

4s2
� 1

2s
O(at)T

)
dtds;

(2.7)

where z 
 w = (ziwj)1�i;j�3.

Proposition 2.1 Let ! = ae3. Then the pair f�(x; y); QSt(x � y)g with
�(x; y) = �0(x; y) + �1(x; y) is a fundamental solution of the equation (2.1),
where �0(x; y);�1(x; y) and QSt(x) are given by (2.6), (2.7) and (1.8), re-
spectively.

Set

H(x; t) =

Z 1

t

r2G(x; s) ds =

Z 1

t

G(x; s)

�
x
 x

4s2
� I

2s

�
ds:

It is well known that G(x; t)I + H(x; t) is the fundamental solution of the
usual unsteady Stokes equation (! = 0), and it is worth noting the relation

�1(x; y) =

Z 1

0

O(at)TH(O(at)x� y; t) dt:

When we have to take care of the dependence of the fundamental solution
�(x; y) on the angular velocity ! = ae3 (the direction e3 of the rotating axis
is �xed), we write

�a(x; y) = (�a;ij(x; y))1�i;j�3 :

Note that Proposition 2.1 covers the case ! = 0; in fact,

�0(x; y) =

Z 1

0

fG(x� y; t)I+H(x� y; t)g dt = ESt(x� y);

see (1.8). Since the operator (! � x) � r � !� is skew-symmetric, ��a(x; y)
is (the velocity part of) the fundamental solution of the adjoint equation

��v + (! � x) � rv � ! � v �rq = g; div v = 0 in R3 (2.8)

and it is easy to verify the relation

��a(x; y)
T = �a(y; x): (2.9)
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Pointwise estimates of �(x; y) for jxj; jyj ! 1 are very complicated. Even
�0(x; y) given by (2.6), does not satisfy an estimate from above by C=jx� yj
when we take, for instance, x = �e1; y = �e2 with �!1, see [7]. However,
when y is �xed and jxj ! 1, it is easy to estimate �(x; y). Let jxj � 2jyj.
Then we have e�jO(at)x�yj2=(4s) � e�jxj

2=(16s) in (2.7). From this together with
the simple equality (where (�) denotes the gamma function)Z 1

0

s�m=2e�cjxj
2=s ds =

c�m=2+1(m=2� 1)

jxjm�2 ; m > 2; c > 0; (2.10)

it follows that j�1(x; y)j � C=jxj and jrx�
1(x; y)j � C=jxj2. Since �0(x; y)

can be estimated similarly, we obtain

j�(x; y)j � C

jxj ; jrx�(x; y)j � C

jxj2 (2.11)

for jxj � 2jyj, which will be used to show Proposition 3.1.

3 Potential representation formula

This section is devoted to the deduction of the following potential represen-
tation formula (3.1) of the solution u(x) to (1.6) in terms of the fundamental
solution �(x; y) given by Proposition 2.1.

Proposition 3.1 Let f 2 C1
0 (D)3, the restriction of f 2 C1

0 (R3)3 to D.
Then the solution (u; p) to (1.6) with uj@D = 0 can be represented as

u(x) =

Z
D

�(x; y)f(y) dy +

Z
@D

�(x; y) (� � T (u; p)) (y) d�y; (3.1)

p(x) =

Z
D

QSt(x� y) � f(y) dy +
Z
@D

� � (rp� f)(y)

4�jx� yj d�y

�
Z
@D

� �QSt(x� y)p(y) d�y:

(3.2)

Here, QSt(x) is given by (1.8) and the formula (3.2) for the pressure holds
true even for the boundary condition uj@D = ! � x.

For the proof, we derive the Green formula (3.5) below associated with
the Stokes equation with rotation e�ect. In what follows we always assume
that div u = div v = 0. Let W � R

3 be a bounded domain with smooth
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boundary @W . We start with the classical hydrodynamical Green formula,
see e.g. [26, Chap. 2., Sec. 3, (10)-(11)],Z

W

fv � (�u�rp)� u � (�v +rq)g dx

=

Z
@W

� � fv � T (u; p)� u � T (v;�q)g d�;
(3.3)

where � is the exterior unit normal to @W and T (u; p) is the Cauchy stress
tensor (1.9). Moreover, we need thatZ

W

[v � f(! � x) � rug+ u � f(! � x) � rvg] dx

=

Z
W

X
i;j

@j f(! � x)juivig dx =

Z
@W

� � (! � x)(u � v) d�:
(3.4)

We collect (3.3), (3.4) and the obvious equality v � (! � u) + u � (! � v) = 0
to obtain thatZ

W

[v � f�u+ (! � x) � ru� ! � u�rpg

� u � f�v � (! � x) � rv + ! � v +rqg] dx

=

Z
@W

[� � fv � T (u; p)� u � T (v;�q)g+ � � (! � x)(u � v)] d�:

(3.5)

Proof of Proposition 3.1. Suppose that (u; p) is the solution to (1.6) with
f 2 C1

0 (D)3 subject to (1.3) or uj@D = 0. Then we know that it is smooth
and satis�es

ju(x)j � C

jxj ; jru(x)j+ jp(x)j � C

jxj2 ; jrp(x)j � C

jxj3 (3.6)

for large jxj, see Galdi [13, Theorem 4.1]. Let y 2 D be a given point and
let R � 2jyj. We use (3.5) in the domain W = DR = D \ BR, where
BR = fx 2 R

3; jxj < Rg. Then we get

�
Z
DR

[v � f + u � f�v � (! � x) � rv + ! � v +rqg] dx

=

Z
@DR

� � fv � T (u; p)� u � T (v;�q)g d� +
Z
@D

� � (! � x)(u � v) d�:
(3.7)

12



Note that the integral of � � (! � x)(u � v) on the sphere @BR vanishes since
x�(!�x) = 0. Let us recall the fundamental solution f��a(x; y);�QSt(x�y)g
of the adjoint equation (2.8). For each k 2 f1; 2; 3g, we denote by ��a;k(x; y)
the k-th column vector of ��a(x; y) and set QSt;k(x) = xk= (4�jxj3); then, we
have

L�x��a;k(x; y) +rxQSt;k(x� y) = �(x� y)ek; divx��a;k(x; y) = 0

in D0(R3)3, where

L�x = ��x + (! � x) � rx � !�;
and �(� � y) is the Dirac measure at y. In (3.7) we take

v(x) = ��a;k(x; y); q(x) = �QSt;k(x� y)

and restrict ourselves to the case uj@D = 0 to �nd

uk(y) =

Z
DR

X
i

��a;ik(x; y)fi(x) dx

+

Z
@D

X
i;j

�j��a;ik(x; y)Tij(u; p)(x) d�x + I@BR

(3.8)

with

I@BR
=

Z
@BR

X
i;j

xj
R

n
��a;ik(x; y)Tij(u; p)(x)

� ui(x)Tij

�
��a;k(�; y); QSt;k(� � y)

�
(x)
o
d�x:

By (2.11) together with (3.6) we see that jI@BR
j ! 0 as R!1, so that

u(y) =

Z
D

��a(x; y)
Tf(x) dx+

Z
@D

��a(x; y)
T (� � T (u; p)) (x) d�x;

which implies (3.1) because of (2.9).
It remains to show (3.2). By (1.6) together with (1.15) we have

�p = div f in D: (3.9)

It thus follows from the usual Green formula that

p(y) = �
Z
DR

div f(x)

4�jx� yj dx+
Z
@DR

(� � rp)(x)
4�jx� yj d�x

�
Z
@DR

� � rx

�
1

4�jx� yj
�
p(x) d�x:

By integration by parts in the �rst integral and by letting R!1, we obtain
(3.2) since the integrals on the sphere @BR go to zero on account of (3.6).
This completes the proof. 2
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4 Case u = 0 on @D

In this section we will prove (1.10) with (1.12) and (1.13) for the case of the
homogeneous boundary condition uj@D = 0. The original boundary condition
(1.3) will be reduced to this case in the next section, in which we will see
that we have the same coe�cients in the leading and second terms for both
cases: uj@D = 0 and uj@D = ! � x.

Since we prefer the representation of the net force
R
@D

� � (T + F ) d�
which involves F , we have taken the external force of the form f = div F
in Theorem 1.1. But, actually, divergence form is not needed to catch the
pro�le. In fact, we show the following.

Theorem 4.1 Let ! = ae3 with a 2 Rnf0g. Given f = (f 0; f3)
T 2 C1

0 (D)3,
let u be the solution to (1.6) subject to uj@D = 0. Then it satis�es the
asymptotic representation (1.10) for jxj ! 1 with

U1st(x) =
1

8�

�Z
@D

(� � T )3 d�y +
Z
D

f3 dy

��
e3
jxj +

x3x

jxj3
�

and U2nd(x) of the same form as in (1.13), where the coe�cients are given
by

� = �
Z
@D

y � (� � T ) d�y �
Z
D

y � f dy = �0 + �3;

�0 = �
Z
@D

y0 � (� � T )0 d�y �
Z
D

y0 � f 0 dy;

�3 = �
Z
@D

y3(� � T )3 d�y �
Z
D

y3f3 dy;

� =

Z
@D

(e3 � y) � (� � T ) d�y +
Z
D

(e3 � y) � f dy:

Corollary 4.1 Assume f = div F with F 2 C1
0 (D)3�3 in Theorem 4.1.

Then we have (1.10) with (1.12) and (1.13), where the coe�cients are exactly
the same as in Theorem 1.1.

Once Theorem 4.1 is obtained, Corollary 4.1 is obvious sinceZ
D

yi
X
k

@kFjk dy =

Z
@D

yi
X
k

�kFjk d�y �
Z
D

Fji dy

for 1 � i; j � 3. For instance, we haveZ
D

(e3 � y) � div F dy =

Z
@D

(e3 � y) � (� � F ) d�y +
Z
D

(F12 � F21) dy;

14



which combined with the identity (b� c) � d = b � (c� d) for arbitrary vectors
b; c; d 2 R

3 implies the representation of � given in Theorem 1.1.
We �x R > 0 such that f(y) = 0 for jyj � R. The proof of Theorem

4.1 is based on the solution formula (3.1), by which we may assume jyj � R
and jxj � 2R in what follows. Our task is now to �nd �1(x) � 1=jxj and
�2(x; y) � 1=jxj2 so that the fundamental solution is represented as

�(x; y) = �1(x) + �2(x; y) +

�
1 +

1

jaj
�
O

�
1

jxj3
�

(4.1)

for jxj ! 1. The last term means that

j�(x; y)� f�1(x) + �2(x; y)gj �
�
1 +

1

jaj
�
CR

jxj3

for jxj � 2R � 2jyj, where CR > 0 is independent of a 2 Rnf0g. Let �0(x; y)
and �1(x; y) be as in (2.6) and (2.7), respectively.

Proposition 4.1 For jyj � R and jxj ! 1 we have

�0(x; y) = �0
1(x) + �0

2(x; y) +

�
1 +

1

jaj
�
O

�
1

jxj3
�

where

�0
1(x) =

1

4�jxj

0@ 0 0 0
0 0 0
0 0 1

1A ; (4.2)

�0
2(x; y) =

1

8�jxj3

0@ x0 � y0 (e3 � x) � y 0
�(e3 � x) � y x0 � y0 0

0 0 2x3y3

1A : (4.3)

Proposition 4.2 For jyj � R and jxj ! 1 one has

�1(x; y) = �1
1(x) + �1

2(x; y) +

�
1 +

1

jaj
�
O

�
1

jxj3
�

with

�1
1(x) =

1

8�jxj3

0@ 0 0 x1x3
0 0 x2x3
0 0 �jx0j2

1A ; (4.4)
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�1
2(x; y) =

�1
8�jxj3

8<:x
 y +

0@ x1y1 x1y2 0
x2y1 x2y2 0
0 0 2x3y3

1A9=;+	(x; y); (4.5)

where

	(x; y) =
3x

8�jxj5 

� jx0j2

2
(y0; 0)T + x23 (0; 0; y3)

T

�
: (4.6)

We postpone the proof of these propositions to that of Theorem 4.1.

Proof of Theorem 4.1. It follows from Propositions 4.1 and 4.2 that (4.1)
holds with

�1(x) = �0
1(x) + �1

1(x) =
1

8�jxj3

0@ 0 0 x1x3
0 0 x2x3
0 0 jxj2 + x23

1A ;

�2(x; y) = �0
2(x; y) + �1

2(x; y)

=
�1

8�jxj3 fx
 y � (e3 � x)
 (e3 � y)g+	(x; y);

where 	(x; y) is given by (4.6). This combined with (3.1) provides the de-
sired asymptotic representation of u(x). 2

For the proof of Proposition 4.1, we use the following elementary decay
property due to oscillation, which should be compared to (2.10). For our
purpose, the case n = 1 is enough.

Lemma 4.1 Let a 2 R n f0g; m > 2 and c > 0. Given n 2 N arbitrarily,
there is a constant K = K(n;m; c) > 0 such that����Z 1

0

�
cos at
sin at

�
t�m=2e�cjxj

2=t dt

���� � K

jajnjxj2n+m�2 (4.7)

for x 2 R
3 n f0g.

Proof. Since Z 1

0

��@nt �t�m=2e�c=t
��� dt <1
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for every n 2 N, n-times integration by parts yieldsZ 1

0

eiatt�m=2e�cjxj
2=t dt =

1

jxjm�2
Z 1

0

eiajxj
2t t�m=2e�c=t dt

=
1

jxjm�2
� �1
iajxj2

�n Z 1

0

eiajxj
2t @nt

�
t�m=2e�c=t

�
dt;

where i =
p�1. This immediately implies the assertion. 2

Proof of Proposition 4.1. We employ the Taylor formula (with respect to y)
to get that

e�jO(at)x�yj2=(4t) = e�jxj
2=(4t) + e�jxj

2=(4t) (O(at)x) � y
2t

+
1

2
e�jO(at)x��yj2=(4t) yT

(O(at)x� �y)
 (O(at)x� �y)� 2tI

4t2
y

(4.8)

with some � = �(x; y; t) 2 (0; 1). We decompose �0(x; y) as

�0(x; y) = �01(x; y) + �02(x; y) + �03(x; y)

correspondingly to (4.8). By (4.7) (n = 1; m = 3) together with (2.5) we
�nd

�01(x; y) = �0
1(x) +

1

jaj O
�

1

jxj3
�
;

where �0
1(x) is as in (4.2). Since the last term of (4.8) is estimated from

above by Ce�jxj
2=(16t)R2(jxj2 + t)=t2 for jxj � 2R � 2jyj, we obtain���03(x; y)

�� � C

jxj3

by (2.10) without using (4.7). Concerning

�02(x; y) =

Z 1

0

O(at)T (4�t)�3=2e�jxj
2=(4t) (O(at)x) � y

2t
dt;

we note

(O(at)x) � y = (x0 � y0) cos at+ ((e3 � x) � y) sin at+ x3y3 (4.9)

and �
cos2 at
sin2 at

�
=

1

2

�
1 + cos 2at
1� cos 2at

�
17



to �nd
(O(at)x) � y

2
O(at)T =

1

4
A(x; y) + (remainder) (4.10)

with

A(x; y) =

0@ x0 � y0 (e3 � x) � y 0
�(e3 � x) � y x0 � y0 0

0 0 2x3y3

1A (4.11)

where the remainder contains oscillating terms cos kat and sin kat (k = 1; 2)
and has degree one with respect to x. By (4.7) (n = 1; m = 5) together with
(2.10) (m = 5) we are led to

�02(x; y) =
1

8�jxj3A(x; y) +
1

jaj O
�

1

jxj4
�
;

which completes the proof. 2

Proof of Proposition 4.2. Similarly to the proof of Proposition 4.1, we use

e�jO(at)x�yj2=(4s) = e�jxj
2=(4s) + e�jxj

2=(4s) (O(at)x) � y
2s

+
1

2
e�jO(at)x��yj2=(4s) yT

(O(at)x� �y)
 (O(at)x� �y)� 2sI

4s2
y

with some � = �(x; y; t; s) 2 (0; 1) and, correspondingly to this, decompose
�1(x; y), see (2.7), as

�1(x; y) = �11(x; y) + �12(x; y) + �13(x; y):

It is seen that j�13(x; y)j � C=jxj3 for jxj � 2R � 2jyj. By a series of
elementary calculations we will show that

�11(x; y) = �1
1(x) + �11

2 (x; y) +

�
1 +

1

jaj
�
O

�
1

jxj3
�
; (4.12)

�12(x; y) = �12
2 (x; y) +O

�
1

jxj3
�
+

�
1 +

1

jaj
�
O

�
1

jxj4
�
: (4.13)

Here, �1
1(x) is as in (4.4), and

�11
2 (x; y) =

�1
8�jxj3

0@ 3
2
x1y1 � 1

2
x2y2

1
2
x2y1 +

3
2
x1y2 x1y3

3
2
x2y1 +

1
2
x1y2 �1

2
x1y1 +

3
2
x2y2 x2y3

x3y1 x3y2 2x3y3

1A ;

�12
2 (x; y) =

�1
16�jxj3A(x; y) + 	(x; y);
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where A(x; y) and 	(x; y) are given by (4.11) and (4.6), respectively.
In fact, we further decompose �11(x; y) as

�11(x; y) = �111(x; y) + �112(x; y)

with

�111(x; y) =
(4�)�3=2

4

Z 1

0

s�7=2e�jxj
2=(4s)

Z s

0

S(x; y; t) dtds;

�112(x; y) =
�(4�)�3=2

2

Z 1

0

s�5=2e�jxj
2=(4s)

Z s

0

O(at)T dtds;

where S(x; y; t) = (Sij(x; y; t))1�i;j�3 denotes the matrix with entries

Sij(x; y; t) =
�
xi �

�
O(at)Ty

�
i

	�
(O(at)x)j � yj

	
: (4.14)

Among them, we here calculate the typical cases (i; j) = (1; 1); (1; 3); (3; 1)
and (3; 3) only (since the others are treated similarly):Z s

0

S11(x; y; t) dt =

�
�3

2
x1y1 +

1

2
x2y2

�
s+ jx0j2 sin as

a

+ (�x1x2 + y1y2)
1� cos as

a
� 1

2
(x0 � y0)sin 2as

2a

� 1

2
(e3 � x) � y 1� cos 2as

2a
;Z s

0

S13(x; y; t) dt = x1(x3 � y3)s� (x3 � y3)

�
y1
sin as

a
+ y2

1� cos as

a

�
;Z s

0

S31(x; y; t) dt = �(x3 � y3)y1s+ (x3 � y3)

�
x1
sin as

a
� x2

1� cos as

a

�
;Z s

0

S33(x; y; t) dt = (x3 � y3)
2s;

from which together with (2.10), without using (4.7), it follows that

�111
11 (x; y) =

�3
2
x1y1 +

1
2
x2y2

8�jxj3 +
1

jajO
�

1

jxj3
�
;

�111
13 (x; y) =

x1x3
8�jxj3 +

�x1y3
8�jxj3 +

1

jajO
�

1

jxj4
�
;

�111
31 (x; y) =

�x3y1
8�jxj3 +

�
1 +

1

jaj
�
O

�
1

jxj3
�
;

�111
33 (x; y) =

x23
8�jxj3 �

2x3y3
8�jxj3 +O

�
1

jxj3
�
:
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We eventually get

�111(x; y) =
1

8�jxj3

0@ 0 0 x1x3
0 0 x2x3
0 0 x23

1A+ �11
2 (x; y) +

�
1 +

1

jaj
�
O

�
1

jxj3
�
:

This combined with

�112(x; y) =
1

8�jxj

0@ 0 0 0
0 0 0
0 0 �1

1A+
1

jajO
�

1

jxj3
�

see (2.10), implies (4.12).
We proceed to �12(x; y), that is decomposed as

�12(x; y) = �121(x; y) + �122(x; y)

with

�121(x; y) =
(4�)�3=2

4

Z 1

0

s�9=2e�jxj
2=(4s)

Z s

0

(O(at)x) � y
2

S(x; y; t) dtds;

�122(x; y) =
�(4�)�3=2

2

Z 1

0

s�7=2e�jxj
2=(4s)

Z s

0

(O(at)x) � y
2

O(at)T dtds;

where S(x; y; t) is as in (4.14). For each (i; j), one can write

(O(at)x) � y
2

Sij(x; y; t) = Kij(x; y) + (remainder)

by use of (4.9), such that the remainder consists of cos kat and sin kat, k =
1; 2; 3, while Kij(x; y) does not depend on t. It is obvious that the remainder
above yields 1

jaj
O(1=jxj4) after integration in the representation of �121(x; y).

Among all the terms in K(x; y) = (Kij(x; y))1�i;j�3, what we need is the
matrix

M(x; y) =
�
M1(x; y);M2(x; y);M3(x; y)

�
whose column vectors are given by

M1(x; y) =
1

2

�
x0 � y0
2

x1 � (e3 � x) � y
2

x2

�
x;

M2(x; y) =
1

2

�
x0 � y0
2

x2 +
(e3 � x) � y

2
x1

�
x;

M3(x; y) =
1

2
(x23y3)x:
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In fact, M(x; y) is the part of K(x; y), whose degree with respect to x is
just three, while the degree of K(x; y) � M(x; y) is at most two with re-
spect to x and, therefore, this part yields O(1=jxj3) after integration in the
representation of �121(x; y). We set

	(x; y) =
(4�)�3=2

4

Z 1

0

s�7=2e�jxj
2=(4s) dsM(x; y) =

3

4�jxj5M(x; y) � 1

jxj2

for jxj � 2R � 2jyj to conclude that

�121(x; y) = 	(x; y) +O

�
1

jxj3
�
+

�
1 +

1

jaj
�
O

�
1

jxj4
�
: (4.15)

One can rewrite M(x; y) as

M(x; y) =
x

2


� jx0j2

2
(y0; 0)T + x23 (0; 0; y3)

T

�
;

which implies (4.6). Along the same line as above with the aid of (4.10), we
obtain

�122(x; y) =
�1

16�jxj3A(x; y) +
1

jajO
�

1

jxj4
�
;

where A(x; y) is given by (4.11). This combined with (4.15) implies (4.13).
Finally, setting �1

2(x; y) = �11
2 (x; y) + �12

2 (x; y) yields (4.5), which com-
pletes the proof. 2

5 Case u = ! � x on @D

We have two approaches to the boundary condition (1.3); one is the reduc-
tion to the homogeneous one uj@D = 0 and the other is the direct use of a
representation formula derived from (3.7). Both lead us to the same con-
clusion and we here adopt the former because it is easier. Concerning the
pressure, one can easily deal with (1.3) directly.

To begin with, we �x R > 0 such that R3nD � BR. Let � : [0;1)! [0; 1]
be a smooth function which satis�es �(r) = 0 for r � R+1 as well as �(r) = 1
for r � R. Since ! � x = �1

2
rot (jxj2!), it is reasonable to introduce the

auxiliary function b 2 C1
0 (R3)3 by

b(x) = �1

2
rot f�(jxj)jxj2!g = jxj2

2
[! �rf�(jxj)g] + �(jxj)(! � x)

=

� jxj
2
� 0(jxj) + �(jxj)

�
(! � x) ;

(5.1)
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cf. [1]. Then it satis�es

div b = 0 (x 2 R
3); b(x) = ! � x (x 2 BR); (5.2)

bi(! � x)j � (! � x)ibj = 0 (x 2 R
3; 1 � i; j � 3); (5.3)

rb =
0@ 0 �a 0

a 0 0
0 0 0

1A ; rb+ (rb)T = O (x 2 BR); (5.4)

and, by (5.2) and b3 = 0,

tr rb = div b = 0; @1b1 + @2b2 = @3b3 = 0 (x 2 R
3): (5.5)

From (5.3) it follows that

(! � x) � rbi � (! � b)i

=
X
j

@j fbi(! � x)j � (! � x)ibjg = 0 (x 2 R
3; 1 � i � 3):

(5.6)

By (5.4) we have

� �rb = !� �; y � (� �rb) = y � (!� �) = �� � (!� y) (y 2 @D): (5.7)

Obviously, by Gauss' Theorem and (5.7),Z
@D

� � rb d�y = 0 ; (5.8)

Z
@D

y � (� � rb) d�y = �
Z
@D

� � (! � y) d�y = 0 ; (5.9)Z
@D

y0 � (� � rb)0 d�y = �
Z
@D

y3(� � rb)3 d�y = 0: (5.10)

since by (5.4) rb is constant on BR, div (! � y) = 0 and b3 = 0.

Proof of Theorem 1.1. Let (u; p) be the solution to (1.6) with f = div F ,
F 2 C1

0 (D)3�3, subject to (1.3). Set eu(x) = u(x)� b(x). By (5.2) and (5.6)
it should obey

��eu� (! � x) � reu+ ! � eu+rp = div (F +rb); div eu = 0 in D
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together with euj@D = 0. By Corollary 4.1 we know the asymptotic represen-
tation (1.10) of eu(x), which is the same as that of u(x) since b 2 C1

0 (R3)3.
Both have the same stress tensor on @D, i.e.,

T (eu; p)(y) = T (u; p)(y) (y 2 @D);

see (1.9), thanks to (5.4); thus, in what follows, we may simply write T . The
leading term is

1

8�

Z
@D

(� � (T + F +rb))3 d�y
�
e3
jxj +

x3x

jxj3
�
;

which immediately implies (1.12) by (5.8), or more simply, by rb3 = 0. We
next have a look at the coe�cients of the second term:

� = �
Z
@D

y � (� � (T + F +rb)) d�y +
Z
D

tr (F +rb) dy = �0 + �3;

�0 = �
Z
@D

y0 � (� � (T + F +rb))0 d�y +
Z
D

(F11 + F22 + @1b1 + @2b2) dy;

�3 = �
Z
@D

y3(� � (T + F +rb))3 d�y +
Z
D

(F33 + @3b3) dy;

� = e3 �
Z
@D

y � (� � (T + F +rb)) d�y +
Z
D

(F12 � F21 + @2b1 � @1b2) dy:

From (5.5), (5.9) and (5.10) it follows that �; �0 and �3 are exactly the same
as those given in Theorem 1.1. Concerning �, we �ndZ

D

(@2b1 � @1b2) dy =

Z
DR+1

(@2b1 � @1b2) dy

=

Z
@D

f�2(! � y)1 � �1(! � y)2g d�y

= �
Z
@D

(e3 � �) � (! � y) d�y

= �e3 �
Z
@D

y � (� � rb) d�y

with the help of (5.7). We have thus shown that each of the coe�cients
�; �0; �3 and � does not change in the leading and second terms even when
we take the boundary condition (1.3).

It remains to prove (1.11). To do so, we �rst observeZ
@D

� � (rp� f) d�y = 0 (5.11)
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as well as (1.16). In fact, from (3.9) it follows that, for any � � R,Z
@D

� � (rp� f) d�y = �
Z
@B�

y

�
� (rp� f) d�y;

which goes to zero as � ! 1 since we have (3.6) and since the support of
f is bounded. We thus obtain (5.11). Although (1.16) was essentially found
by [29, Lemma 2.1] and [14, Lemma 3], see also [8, Lemma 2.3], we give a
brief proof. By (5.6) together with (! � eu)j@D = 0, it is su�cient to show

� � [(! � x) � reu]���
@D

= 0: (5.12)

Since u satis�es (3.6), so does eu = u� b; thus, we see that eu 2 bH1
0 (D)3 with

div eu = 0, where

bH1
0 (D) = fw 2 L6(D); rw 2 L2(D)3; wj@D = 0g;

which coincides with the completion of C1
0 (D) with respect to kr(�)kL2 .

Due to Heywood [18, Theorem 8], there is a sequence fvkg � C1
0;�(D) such

that rvk ! reu in L2(D)3�3 as k ! 1, where C1
0;�(D) denotes the class

of solenoidal vector �elds whose components are in C1
0 (D). Since @jv

k 2
C1
0;�(D) for each j = 1; 2; 3, we obtain � � (@jeu)j@D = 0, which implies (5.12)

and, thus, (1.16).
We now denote the terms of the right-hand side of (3.2) by p1(x); p2(x)

and p3(x), respectively: p = p1 + p2 + p3. By (5.11), (1.16) and

1

4�jx� yj =
1

4�jxj +
y � x
4�jxj3 +

1

8�
yT

3(x� �y)
 (x� �y)� jx� �yj2I
jx� �yj5 y

with some � 2 (0; 1), we see that

p2(x) =

Z
@D

� � (rp� f)

�
1

4�jx� yj �
1

4�jxj
�
d�y

=

Z
@D

(� � (�u)) y d�y �QSt(x) +O

�
1

jxj3
�

for jxj ! 1. The terms p1(x) and p3(x) are treated similarly, so that we
obtain (1.11) with

P1st(x) =
�Z

@D

f(� � (�u)) y � p�g d�y +
Z
D

f dy
�
�QSt(x);

which yields (1.14). We have completed the proof. 2
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