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Abstract

We study the spectrum of a linear Oseen–type operator which arises from equations
of motion of a viscous incompressible fluid in the exterior of a rotating compact body.
Considering the operator in the function space Lq

σ(Ω), 1 < q < ∞, we prove that the
essential spectrum consists of an infinite set of overlapping parabolic regions in the
left half–plane of the complex plane. The full spectrum coincides with the essential
and continuous spectrum if Ω = R3. Our approach is based on the Fourier transform
in R3 and the transfer of the results to the exterior domain Ω.
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1 Introduction and main results

Suppose that B is a compact body in R3 which is rotating about the x1–axis with a
constant angular velocity ω > 0. Denote by Ω(t) the exterior of B at time t and assume
that Ω(t) is a domain with boundary of class C1,1. Put ω := ωe1, where e1 is the unit
vector oriented in the direction of the x1–axis.

The flow of a viscous incompressible fluid in the exterior of the body B can be described
by the Navier–Stokes equation in the space–time region {(x, t) ∈ R3×I; t ∈ I, x ∈ Ω(t)}
where I is a time interval. The disadvantage of this description is the variability of the
spatial domain Ω(t). This is why many authors use a time–dependent transformation of
spatial coordinates which in fact also represents the rotation about the x1–axis such that
the body B is fixed and its exterior is just Ω := Ω(0) in the new coordinate system. The
system of equations after the transformation has the form

∂tu− ν∆u− (ω × x) · ∇u+ ω × u+ (u · ∇)u+∇p = f in Ω× I,

∇ · u = 0 in Ω× I.
(1.1)

Among a series of results on qualitative properties of the system (1.1) and related lin-
ear problems, let us mention T. Hishida [17], [18], [19], G. P. Galdi [13], [14], R. Farwig,
T. Hishida, D. Müller [6], R. Farwig [4], [5], M. Geissert, H. Heck, M. Hieber [15], R. Far-
wig, J. Neustupa [10], [11], R. Farwig, Š. Nečasová, J. Neustupa [9], R. Farwig, M. Krbec,
Š. Nečasová [7], [8].
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If u(x, t) tends to the constant velocity γe1 for |x| → ∞, it is advantageous to write
u = v + γe1 and to deal with a new system for the unknown function v:

∂tv − ν∆v − (ω × x) · ∇v + ω × v + γ∂1v + (v · ∇)v +∇p = f in Ω× I,

∇ · v = 0 in Ω× I.
(1.2)

The analysis of this system is based on properties of the steady linear Oseen problem

ν∆v + (ω × x) · ∇v − ω × v − γ∂1v −∇p = f in Ω,

∇ · v = 0 in Ω,

v = 0 on ∂Ω.

(1.3)

This problem can be written in the form of one operator equation Aω
γv = f , where Aω

γ is
the Oseen–type operator

Aω
γv = Pqν∆v + Pq[(ω × x) · ∇v − ω × v − γ∂1v] (1.4)

with domain

D(Aω
γ ) :=

{
v ∈W 2,q(Ω)3 ∩W 1,q

0 (Ω)3 ∩ Lq
σ(Ω); (ω × x) · ∇v ∈ Lq(Ω)3

}
(1.5)

in the function space Lq
σ(Ω), 1 < q < ∞; this function space as well as the Helmholtz

projection Pq in Lq(Ω)3 will be defined below. We shall further treat the domain D(Aω
γ )

as a Banach space with the norm

‖v‖D(Aω
γ ) := ‖v‖2,q + ‖(ω × x) · ∇v‖q . (1.6)

The information on the spectrum of the linear operator Aω
γ plays a fundamental role

in studies of (1.3) and (1.2). The cases q = 2 and γ = 0 or γ 6= 0 were treated in our
papers [10], [11], and the case 1 < q < ∞, γ = 0 was studied in our paper [9] (together
with Š. Nečasová). In this paper, we consider the case 1 < q < ∞ and γ 6= 0. We
assume, without loss of generality, that γ > 0.

We shall use the usual function spaces and norms:
• The norm in Lq(Ω)3 is denoted by ‖ . ‖q = ‖ . ‖q; Ω.

• W 1,q
0 (Ω) is the subspace of the Sobolev space W 1,q(Ω) consisting of functions vanishing

on ∂Ω in the sense of traces.

• The norm in W k,q(Ω)3, k ∈ N, is denoted by ‖ . ‖k,q = ‖ . ‖k,q; Ω.

• C∞0,σ(Ω) denotes the linear space of all divergence–free vector fields from C∞0 (Ω)3.

• Lq
σ(Ω) is the closure of C∞0,σ(Ω) in Lq(Ω)3 and coincides with the space of all divergence–

free (in the sense of distributions) vector fields u ∈ Lq(Ω)3 such that u · n = 0 on ∂Ω
in the sense of traces ([12], pp. 111–115); here n is the outer normal vector on ∂Ω.

• Pq denotes the projection of Lq(Ω)3 onto Lq
σ(Ω), associated with the Helmholtz decom-

position

Lq(Ω)3 = Lq
σ(Ω)⊕

{
∇p ∈ Lq(Ω)3; p ∈W 1,q

loc (Ω)
}
.
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Let us recall definitions and basic properties from spectral theory of linear operators.
Assume that X is a Banach space with the norm ‖ . ‖, X∗ is its dual and T is a closed
linear operator in X. We denote by D(T ) the domain and by R(T ) the range of T and
we assume that D(T ) is dense in X. This guarantees that the adjoint operator T ∗ exists.

• nul (T ) and def (T ) denote the nullity and the deficiency of the operator T , respectively.
If R(T ) is closed then nul (T ) = def (T ∗) and def (T ) = nul (T ∗) (see e.g. T. Kato [20,
p. 234]).

• nul ′(T ) and def ′(T ) := nul ′(T ∗) denote the approximate nullity and the approxi-
mate deficiency of T , respectively. We recall that nul ′(T ) is the maximum integer m
(m = +∞ being permitted) with the property that to each ε > 0 there exists an m–
dimensional linear manifold Mε in D(T ) such that ‖Tv‖ < ε for all v ∈ Mε, ‖v‖ = 1.
Note that nul (T ) ≤ nul ′(T ) and def (T ) ≤ def ′(T ) and the equalities hold if R(T ) is
closed. On the other hand, if R(T ) is not closed then nul ′(T ) = def ′(T ) = ∞. The
identity nul ′(T ) = ∞ is equivalent to the existence of a non–compact sequence {un}
on the unit sphere in X such that Tun → 0 for n→∞, see [20, p. 233].

• We say that T is a Fredholm operator if its range R(T ) is closed in X and both the
numbers nul (T ) and def (T ) are finite.

• The operator T is called semi–Fredholm if the range R(T ) is closed in X and at least
one of the numbers nul (T ) and def (T ) is finite. Consequently, T is semi–Fredholm if
and only if at least one of the numbers nul ′(T ) and def ′(T ) is finite.

• We denote by ρ(T ) the resolvent set of T , by σ(T ) = C \ ρ(T ) the spectrum of T and
by σess(T ) the essential spectrum of T . Recall that ρ(T ) is the set of all λ ∈ C such
that R(T − λI) = X and the operator T − λI has a bounded inverse in X. Thus,
nul (T −λI) = nul ′(T −λI) = def (T −λI) = def ′(T −λI) = 0 for λ ∈ ρ(T ). Moreover,
σess(T ) = {λ ∈ C; T − λI is not semi−Fredholm}. Both σ(T ) and σess(T ) are closed
subsets of C and σess(T ) ⊂ σ(T ).

• Let us also mention that σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T ) where the sets σp(T ), σc(T )
and σr(T ) are called the point spectrum, the continuous spectrum and the residual
spectrum of T , respectively. They are mutually disjoint and they are defined in this
way:
◦ σp(T ) :=

{
λ ∈ C; nul (T − λI) > 0

}
,

◦ σc(T ) is the set of λ ∈ C such that nul (T − λI) = 0, R(T − λI) is dense in X,
but R(T − λI) 6= X. In this case, R(T − λI) is not closed in X, which implies
that def (T − λI) = def ′(T − λI) = nul ′(T − λI) = ∞.

◦ σr(T ) is the set of λ ∈ C such that nul (T − λI) = 0 and the range R(T − λI) is
not dense in X.

Obviously, σc(T ) ⊂ σess(T ). There are no generally valid relations between σp(T ), σr(T )
on one hand and σess(T ) on the other hand. However, any point on the boundary of
σ(T ) belongs to σess(T ) unless it is an isolated point of σ(T ), see [20, p. 244].

• The so-called approximate point spectrum σap(T ) of T consists of all points λ ∈ C such
that there exists a sequence {un} in D(T ) such that ‖un‖ = 1 and (T − λI)un → 0 as
n→∞. Obviously, nul ′(T − λI) > 0 for λ ∈ σap(T ), which implies that λ ∈ σ(T ), and
σp(T ) ⊂ σap(T ). Finally, if λ ∈ σc(T ) then nul ′(T − λI) = ∞, which also implies that
there exists a sequence {un} with the properties required in the definition of σap(T ).
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Hence λ ∈ σap(T ). We have thus shown that σp(T ) ∪ σc(T ) ⊂ σap(T ) ⊂ σ(T ) and
σap(T ) ∪ σr(T ) = σ(T ). We note that the approximate spectrum has been introduced
for the sake of completeness, but will not be used in this paper.

The main theorems of this paper concern the concrete operator Aω
γ in the space Lq

σ(Ω):

Theorem 1.1. Let 1 < q <∞ and Ω = R3. Then

(i) σ(Aω
γ ) = σc(Aω

γ ) = σess(Aω
γ ) = Λω

γ , where

Λω
γ := {λ = α+ iβ + ikω ∈ C; α, β ∈ R, k ∈ Z, α ≤ −νβ2/γ2}.

(ii) If q = 2 then Aω
γ is a normal operator in Lq

σ(R3) ( = L2
σ(R3)).

Theorem 1.2. Let 1 < q <∞ and Ω ⊂ R3 be an exterior domain with boundary of class
C1,1. Then the spectrum of Aω

γ lies in the left complex half plane {λ ∈ C; Reλ ≤ 0} and
consists of the essential spectrum σess(Aω

γ ) = Λω
γ and possibly a set Γ of isolated eigenvalues

λ ∈ CrΛω
γ with Reλ < 0 and finite algebraic multiplicity, which can cluster only at points

of σess(Aω
γ ). The set Γ of such isolated eigenvalues is independent of q ∈ (1,∞).

The set Λω
γ is a union of infinitely many equally shifted filled parabolas in the left half–

plane of C, see Fig. 1. Theorem 1.1 is proved in Section 3. The proof of Theorem 1.2 is
given in Section 4.
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qqq

qqq

Λω
γ

C0 : α = −νβ2/γ2

Fig. 1 : The shape of set Λω
γ in

the complex domain C

The question whether the identities of Theorem 1.1 (i) also hold in the case when Ω is
an exterior domain in R3 is open. The reason consists in the application of the Fourier
transform, which is a useful tool in R3 but cannot be used in a general exterior domain Ω.
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2 Preliminary results

The domain D(Aω
γ ) of the operator Aω

γ is dense in Lq
σ(Ω), because C∞0,σ(Ω) ⊂ D(Aω

γ ) and
C∞0,σ(Ω) is dense in Lq

σ(Ω)). Hence the adjoint operator (Aω
γ )∗ exists as a linear operator

in Lq′
σ (Ω), where q′ = q/(q − 1). The next lemma brings more information on both the

operators Aω
γ and (Aω

γ )∗.

Lemma 2.1. The operator Aω
γ is closed in Lq

σ(Ω) and generates a C0–semigroup in Lq
σ(Ω).

Its adjoint operator is

(Aω
γ )∗v = Pq′ν∆v + Pq′ [−(ω × x) · ∇v + ω × v + γ∂1v] (2.1)

with domain

D((Aω
γ )∗) =

{
v ∈W 2,q′

(Ω)3 ∩W 1,q′

0 (Ω)3 ∩ Lq′
σ (Ω); (ω × x) · ∇v ∈ Lq′

(Ω)3
}
. (2.2)

It is a closed operator in Lq′
σ (Ω) and generates a C0–semigroup in Lq′

σ (Ω).

Proof. The fact that Aω
γ is a generator of a C0–semigroup in Lq

σ(Ω) follows from [23,
Theorem 1.1]. It also implies that Aω

γ is a closed operator in Lq
σ(Ω) and that R(Aω

γ −ζI) =
Lq

σ(Ω) for all ζ > 0 sufficiently large. Let us denote by Tω
γ the operator on the right hand

side of (2.1) with the domain given by (2.2):

D(Tω
γ ) =

{
v ∈W 2,q′

(Ω)3 ∩W 1,q′

0 (Ω)3 ∩ Lq′
σ (Ω); (ω × x) · ∇v ∈ Lq′

(Ω)3
}
.

By analogy with Aω
γ , the operator Tω

γ is closed in Lq′
σ (Ω) and R(Tω

γ − ζI) = Lq′
σ (Ω) if

ζ > 0 is sufficiently large. It is easy to verify that the operators Aω
γ and Tω

γ are adjoint to
each other in the sense of T. Kato [20, p. 167]; hence Tω

γ ⊂ (Aω
γ )∗. In order to show that

Tω
γ = (Aω

γ )∗, we need to verify that Tω
γ is the maximal operator adjoint to Aω

γ . Suppose
that v ∈ D((Aω

γ )∗) and put f = (ζI − (Aω
γ )∗)v. Since f ∈ R(Tω

γ − ζI), there exists
w ∈ D(Tω

γ ) such that f = (Tω
γ − ζI)w. Hence ((Aω

γ )∗ − ζI)v = (Tω
γ − ζI)w. Multiplying

both sides of this identity by u ∈ D(Aω
γ ) and integrating in Ω, we arrive at∫

Ω
v · (Aω

γ − ζI)u dx =
∫

Ω
w · (Aω

γ − ζI)u dx.

Since this holds for all u ∈ D(Aω
γ ), we get v = w ∈ D(Tω

γ ); thus (Aω
γ )∗ = Tω

γ . As for Aω
γ

we conclude that (Aω
γ )∗ generates a C0–semigroup in Lq′

σ (Ω) and is closed. �

Lemma 2.2. There exist constants c1 > 0 and c2 > 0 such that if v ∈ D(Aω
γ ) and

f ∈ Lq
σ(Ω) satisfy the equation Aω

γv = f then

‖v‖2,q + ‖(ω × x) · ∇v‖q ≤ c1 ‖f‖q + c2 ‖v‖q . (2.3)

Proof. If Ω = R3 then (2.3) follows from [4, Theorem 1.1] and an interpolation argument.
Now consider an exterior domain Ω ⊂ R3 of class C1,1. Let v ∈ D(Aω

γ ) and f ∈ Lq
σ(Ω)

satisfy the equation Aω
γv = f . Then there exists a pressure function p such that

∇p = ν∆v + (ω × x) · ∇v − ω × v − γ∂1v − f ∈ Lq(Ω)3

5



For simplicity, we assume that in the following all pressure functions have a vanishing mean
on ΩR = Ω∩BR(0), i.e.,

∫
ΩR

p dx = 0, where R > 0 is chosen such that R3rBR−1(0) ⊂ Ω.
Let η ∈ C∞0 (R3) denote a cut-off function with values in [0, 1] such that

η(x) =

{
0 for |x| ≤ R− 1,

1 for |x| ≥ R.

Then (ηv, ηp) can be considered as a solution of the whole space problem

ν∆u+ (ω × x) · ∇u− ω × u− γ∂1u−∇p̃ = f1, ∇ · u = g1 in R3,

where

f1 = ηf + 2ν∇η · ∇v + νv∆η +
(
(ω × x) · ∇η

)
v − γ(∂1η)v − p∇η, g1 = v · ∇η.

Note that f1 coincides with ηf up to perturbation terms with support in supp (∇η) ⊂ ΩR.
Similarly, supp g1 ⊂ ΩR. By [4, Theorem 1.1] there exists a solution (u, p̃) satisfying the
estimate

‖∇2u‖q + ‖(ω × x) · ∇u− ω × u‖q + ‖∇p̃‖q ≤ c
(
‖f‖q + ‖v‖1,q; ΩR

+ ‖p‖q; ΩR

)
.

Moreover, by the uniqueness assertion in [4, Theorem 1.1], (ηv, ηp) satisfies the same
estimate so that we get the inequality

‖∇2(ηv)‖q + ‖(ω × x) · ∇(ηv)‖q + ‖∇(ηp)‖q

≤ c
(
‖f‖q + ‖v‖q + ‖v‖1,q; ΩR

+ ‖p‖q; ΩR

)
. (2.4)

Next we consider ((1− η)v, (1− η)p) as a solution of the Stokes problem

ν∆u−∇p̃ = f2, divu = g2 in ΩR, u = 0 on ∂ΩR ,

where g2 = −v · ∇η and

f2 = (1− η)
[
f − (ω × x) · ∇v + ω × v + γ ∂1v

]
− 2ν∇η · ∇v − ν v∆η + p∇η.

Hence classical a priori estimates for the Stokes system in the bounded domain ΩR and
the precise form of f2 imply that

‖∇2((1− η)v)‖q; ΩR
+ ‖∇(1− η)p‖q; ΩR

≤ c
(
‖f‖q + ‖v‖1,q; ΩR

+ ‖p‖q; ΩR

)
. (2.5)

Summing (2.4) and (2.5) and using an interpolation estimate for∇v we obtain the estimate

‖∇2v‖q + ‖(ω × x) · ∇v‖q + ‖∇p‖q ≤ c
(
‖f‖q + ‖v‖q + ‖p‖q; ΩR

)
(2.6)

with a constant c > 0 independent of f , v, p.
Now we will prove (2.3) by contradiction, using (2.6). Suppose that for every n ∈ N

there exist vn ∈ D(Aω
γ ) and pn with ∇pn ∈ Lq(Ω)3 such that

1 = ‖∇2vn‖q + ‖(ω × x) · ∇vn‖q + ‖∇pn‖q ≥ n
(
‖fn‖q + ‖vn‖q

)
(2.7)
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where fn = Aω
γvn. Then we find a subsequence of (vn, pn), again denoted by (vn, pn), and

v ∈ D(Aω
γ ) and p with ∇p ∈ Lq(Ω)3 such that in the weak sense

∇2vn ⇀ ∇2v, (ω × x) · ∇vn ⇀ (ω × x) · ∇v, ∇pn ⇀ ∇p in Lq(Ω) (2.8)

and in the strong sense

fn → 0, vn → 0 in Lq(Ω), pn → p in Lq(ΩR),
∫

ΩR

p dx = 0 (2.9)

as n→∞, and

ν∆v + (ω × x) · ∇v − ω × v − γ∂1v −∇p = 0, div v = 0 in Ω, v = 0 on ∂Ω.

By (2.8), (2.9) we conclude that v = 0 and ∇p = 0 in Ω. Since the limit function p was
chosen with

∫
ΩR

p dx = 0, we have p = 0 in Ω. Using now (2.6) with vn, pn, fn instead
of v, p, f , we observe that the left hand side equals one, while the right hand side tends
to zero as n → ∞. This is the contradiction to the assumption that (2.3) was wrong.

�

Let us further denote by D0(Aω
γ ) the subspace of D(Aω

γ ) which contains only functions
that have a compact support in Ω.

Lemma 2.3. D0(Aω
γ ) is a core of operator Aω

γ , i.e., the graph of the restriction of the
operator Aω

γ to D0(Aω
γ ) is dense in the graph of Aω

γ in the norm of Lq
σ(Ω)× Lq

σ(Ω).

Proof. Let v ∈ D(Aω
γ ) and f = Aω

γv. We will show that [v, Aω
γv] can be approximated

by a sequence of elements [vn, Aω
γv

n] where vn ∈ D0(Aω
γ ), n ∈ N.

Let η ∈ C∞0 (R3) be radially symmetric, with values in [0, 1], such that

η(x) =

{
1 for |x| ≤ 1,

0 for 2 ≤ |x|.

Denote K1 := {x ∈ R3; 1 < |x| < 2} and, more generally, for r > 0, let Kr := {x ∈
R3; r < |x| < 2r}. Due to M. E. Bogovskij [2], there exists a bounded linear operator B :
Lq(K1) −→ W 1,q

0 (K1)3 such that div Bf = f for all f ∈ Lq(K1) satisfying
∫
K1
f dx = 0.

The operator B is bounded from W 1,q
0 (K1) to W 2,q

0 (K1)3 as well.
Let n ∈ N be so large that R3 r Bn(0) ⊂ Ω. Put vn(x) := η(x/n)v(x)− V n(x) with

the correction term V n(x) being equal to Un(x/n), where

Un(y) =

{
B

[
∇η(y) · v(ny)

]
for y ∈ K1,

0 for y ∈ R3 rK1.

The function vn is divergence–free, it coincides with v in Ω ∩ Bn(0) and its support is a
subset of the closure of Ω∩B2n(0). Due to the continuity of the operator B from Lq(K1)
to W 1,q

0 (K1)3 and from W 1,q
0 (K1) to W 2,q

0 (K1)3, the function Un satisfies the estimates

‖∇Un‖q; K1 ≤ C
∥∥∇η · v(n ·)∥∥

q; K1
≤ C

∥∥v(n ·)∥∥
q;K1

= C n−3/q ‖v‖q; Kn ,
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‖∇2Un‖q;K1 ≤ C
∥∥∇(

∇η · v(n ·)
)∥∥

q; K1
≤ C

∥∥v(n ·)∥∥
q; K1

+ C
∥∥∇v(n ·)∥∥

q; K1

= C n−3/q ‖v‖q; Kn + C n1−3/q ‖∇v‖q; Kn .

This means that

‖∇V n‖q; Kn = n−1+3/q ‖∇Un‖q; K1 ≤ C

n
‖v‖q; Kn ,

‖∇2V n‖q; Kn = n−2+3/q ‖∇2Un‖q; K1 ≤
C

n2
‖v‖q; Kn +

C

n
‖∇v‖q; Kn .

Using also the fact that V n(x) = 0 for |x| = n, we derive that

‖V n‖q; Kn ≤ Cn ‖∇V n‖q; Kn ≤ C ‖v‖q; Kn .

All generic constants C are independent of n. Thus, ‖V n‖2,q → 0 as n → ∞. The same
result also holds on the ‖ . ‖2,q–norm of the difference η(x/n)v(x)− v(x). Consequently,

vn −→ v in W 2,q(Ω)3 for n→∞. (2.10)

Furthermore, since (ω × x) · ∇η(x/n) = 0, we have

‖Aω
γv −Aω

γv
n‖q; Ω ≤ C

(
‖v − vn‖2,q; Ω +

∥∥(ω × x) · ∇v − (ω × x) · ∇vn
∥∥

q; Ω

)
≤ C

(
‖v − vn‖2,q; Ω +

∥∥(ω × x) ·
(
1− η(x/n)

)
∇v

∥∥
q; Ω

+
∥∥(ω × x) · ∇V n‖q; Ω

)
≤ C

(
‖v − vn‖2,q; Ω + ‖(ω × x) · ∇v‖q; ΩrBn(0) + n ‖∇V n‖q; Ω

)
−→ 0 for n→∞. (2.11)

We can now observe from (2.10) and (2.11) that

[vn, Aω
γv

n] −→ [v, Aω
γv] in Lq

σ(Ω)× Lq
σ(Ω)

as n→∞. The proof is completed. �

3 The case Ω = R3

If Ω = R3, 1 < q < ∞ and v ∈ D(Aω
γ ), then the terms ν∆v, (ω × x) · ∇v − ω × v and

γ∂1v belong to Lq
σ(R3). Hence the projection Pq in (1.4) can be omitted so that

Aω
γv = ν∆v + (ω × x) · ∇v − ω × v − γ∂1v. (3.1)

By analogy, the adjoint operator – as an operator in Lq′
σ (R3) – can be simplified to

(Aω
γ )∗v = ν∆v − (ω × x) · ∇v + ω × v + γ∂1v . (3.2)

The next lemma provides an information on solutions of the resolvent equation

Aω
γv − λv = f (3.3)

for f ∈ Lq
σ(R3). Recall the definition of the set Λω

γ from Theorem 1.1.
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Lemma 3.1. Suppose that λ ∈ C r Λω
γ . There exists a constant c3 = c3(λ, q) > 0 such

that if f ∈ Lq
σ(R3) and v ∈ D(Aω

γ ) satisfy the resolvent equation (3.3) then

‖v‖q ≤ c3 ‖f‖q . (3.4)

Proof. The linear space D0(Aω
γ ) is a core of Aω

γ − λI due to Lemma 2.3. Thus, it is
sufficient to prove (3.4) only for v ∈ D0(Aω

γ ).
Equation (3.3) can be written in the form

ν∆v + (ω × x) · ∇v − ω × v − γ∂1v − λv = f . (3.5)

Due to the geometry of the problem, it is reasonable to use the cylindrical coordinates
(x1, r, ϕ) in R3 with the axis being the x1–axis; then r2 = x2

2 + x2
3. The term (ω×x) · ∇v

in (3.5), which equals ω(−x3 ∂2v + x2 ∂3v), can be simplified to

(ω × x) · ∇v = ω∂ϕv. (3.6)

We shall denote by F the Fourier transform, by F−1 its inverse, by ̂ Fourier images
of functions, by ξ = (ξ1, ξ2, ξ3) their Cartesian Fourier variables, and we put s = |ξ|.
Applying F to (3.5), we obtain

(λ+ iγξ1 + νs2)v̂ − ω∂φv̂ + ω × v̂ = −f̂ . (3.7)

Here ∂φv̂ denotes the angular derivative

∂φv̂ = (e1 × ξ) · ∇v̂ ≡ −ξ3
∂v̂

∂ξ2
+ ξ2

∂v̂

∂ξ3

when using cylindrical coordinates (ξ1, ρ, φ) in the space of the Fourier variables. The
equation div v = 0 (following from the fact that v ∈ D(Aω

γ )) leads to the condition
iξ · v̂ = 0. Now v̂ can be considered to be a solution of the first order ordinary differential
equation (3.7) with respect to the angular variable φ. Writing v̂ in the form

v̂(ρ, φ, ξ1) = O(φ) ŵ(ρ, φ, ξ1)

where

O(t) =

 1 0 0
0 cos t − sin t
0 sin t cos t

 ,

one verifies that ω∂φv̂ = O(φ)ω∂φŵ + ω × [O(φ)ŵ] . Hence (3.7) is equivalent to the
equation

−ω∂φŵ + (λ+ iγξ1 + νs2)ŵ = −O(φ)T f̂ , (3.8)

or using the definition

a(ξ) = λ+ iγξ1 + νs2, s = |ξ| ,

to the inhomogeneous ordinary first order linear differential equation with respect to φ

ω∂φŵ − a(ξ)ŵ = O(φ)T f̂ .
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Its solution ŵ satisfies

ŵ(ξ1, ρ, φ+ 2π) = e2π a(ξξξ)/ω ŵ(ξ1, ρ, φ) +
1
ω

∫ 2π

0
e(2π−t)a(ξξξ)/ω O(t+ φ)T f̂(ξ1, ρ, t+ φ) dt .

Since ŵ is 2π–periodic in the variable φ, we have

ŵ(ξ1, ρ, φ) =
1
ω

∫ 2π

0

e(2π−t)a(ξξξ)/ω

1− e2π a(ξξξ)/ω
O(t+ φ)T f̂(ξ1, ρ, t+ φ) dt (3.9)

and consequently

v̂(ξ1, ρ, φ) =
1
ω

∫ 2π

0

e−ta(ξξξ)/ω

e−2π a(ξξξ)/ω − 1
O(t)T f̂(ξ1, ρ, t+ φ) dt. (3.10)

Returning to the Cartesian variables ξ = (ξ1, ξ2, ξ3) in (3.10), we obtain

v̂(ξ) =
1
ω

∫ 2π

0
Ψ(λ, ξ, t) O(t)T f̂

(
O(t)ξ

)
dt

=
1
ω

∫ 2π

0
Ψ(λ, ξ, t) O(t)T F [f(O(t) · )](ξ) dt (3.11)

where
Ψ(λ, ξ, t) =

e−ta(ξξξ)/ω

e−2π a(ξξξ)/ω − 1
.

In order to complete the proof, we shall need the next lemma.

Lemma 3.2. If λ 6∈ Λω
γ then there exists a positive constant c4 depending only on γ, ω

and on the position of λ in C r Λω
γ such that

∀ ξ ∈ R3 :
∣∣e−2π (λ+iγξ1+νs2)/ω − 1

∣∣ ≥ c4. (3.12)

Proof. The modulus of e−2π a(ξ)/ω − 1 is bounded below by a positive constant de-
pending only on λ, γ and ω (i.e. independent of ξ) if the distance dλ(ξ, k) of the complex
number −2πa(ξ)/ω from 2π ik (for k ∈ Z) is bounded below by another positive constant,
independent of ξ and k. Let λ = α+ iβ and ρ2 = ξ22 + ξ23 so that

d2
λ(ξ, k) =

4π2

ω2

∣∣α+ iβ + iγξ1 + νξ21 + νρ2 + ikω
∣∣2

=
4π2

ω2

(
α+ νξ21 + νρ2

)2 +
4π2

ω2

(
β + γξ1 + kω

)2
.

Assume that minξ∈R3 d2
λ(ξ, k) = 0 for some fixed k ∈ Z; the minimum exists because

lim|ξ|→∞ d2
λ(ξ, k) = ∞. Then ξ1 = −(β + kω)/γ and

α = −νρ2 − ν

γ2
(β + kω)2 ≤ − ν

γ2
(β + kω)2,

but this inequality contradicts with λ = α+ iβ 6∈ Λω
γ . Hence

Dλ(k) := min
ξ∈R3

dλ(ξ, k) > 0
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for every k ∈ Z. Moreover, the sequence {Dλ(k)}k∈Z does not converge to zero as k → +∞
or k → −∞, because this would imply the existence of ξ(k) ∈ R3 such that dλ

(
ξ(k), k

)
→

0 as k → +∞ or k → −∞. Consequently β + γξ1(k) + kω → 0, |ξ1(k)| → ∞ and
α+ νξ1(k)2 + νρ(k)2 →∞, which is in contradiction with dλ

(
ξ(k), k

)
→ 0. Thus Lemma

3.2 is proved. �

Continuation of the proof of Lemma 3.1. Lemma 3.2 implies that, for fixed λ ∈
C r Λω

γ , the modulus of Ψ(λ, ξ, t) is bounded uniformly with respect to t ∈ (0, 2π) and
ξ ∈ R3. Further, if i ∈ {2; 3} and j ∈ {1; 2; 3}, then

∂Ψ
∂ξi

=
2νξi
ω

−t e−ta(ξξξ)/ω
(
e−2πa(ξξξ)/ω − 1

)
+ 2π e−(2π+t)a(ξξξ)/ω[

e−2π a(ξξξ)/ω − 1
]2

and |ξi|
∣∣∂Ψ/∂ξi

∣∣ can be estimated as follows:

|ξi|
∣∣∣∣∂Ψ
∂ξi

∣∣∣∣ ≤
∣∣∣∣2νs2ω

t e−ta(ξξξ)/ω + (2π − t) e−(2π+t)a(ξξξ)/ω[
e−2π a(ξξξ)/ω − 1

]2

∣∣∣∣
≤ C(λ)

[
s2

t

ω
e−νs2 t/ω + s2

2π + t

ω
e−νs2 (2π+t)/ω

]
.

We observe that the right hand side is less than or equal to a constant independent of ξ
and t. We can similarly estimate |ξj |

∣∣∂Ψ/∂ξ1
∣∣ and all other terms of the form

|ξ1|κ1 |ξ2|κ2 |ξ3|κ3

∣∣∣∣ ∂κ1+κ2+κ3Ψ
∂ξκ1

1 ∂ξκ2
2 ∂ξκ3

3

∣∣∣∣ , κ1, κ2, κ3 ∈ {0, 1} .

Applying the inverse Fourier transform to (3.11), we arrive at the formula

v(x) :=
1
ω

∫ 2π

0
O(t)T F−1

[
Ψ(λ, ξ, t) F [f(O(t) · )](ξ)

]
(x) dt.

Using Lizorkin’s multiplier theorem (see e.g. [12, p. 375]) and the estimates of Ψ and its
derivatives discussed above, we derive the inequality∥∥∥F−1

[
Ψ(λ, ξ, t) F [f(O(t) · )](ξ)

] ∥∥∥
q
≤ c5 ‖f‖q , t ∈ [0, 2π] , (3.13)

where c5 = c5(λ, q). Then (3.11) and (3.13) imply that there exists c3 > 0, independent
of f and v, such that v satisfies the estimate (3.4). �

Lemma 3.3. Suppose that λ ∈ C r Λω
γ . Then λ ∈ ρ(Aω

γ ).

Proof. The estimates (2.3 and (3.4) in Lemmas 2.2 and 3.1 imply that the range of
Aω

γ − λI is closed in Lq
σ(R3) and that the operator is injective. By similar arguments the

same result does hold for its adjoint, (Aω
γ )∗ − λI, on the dual space Lq′

σ (R3) of Lq
σ(R3).

Since (Aω
γ )∗ − λI is injective, we conclude that R(Aω

γ − λI) = Lq
σ(R3). This proves that

λ ∈ ρ(Aω
γ ). �

Lemma 3.4. Let 1 < q <∞. Then σp(Aω
γ ) = ∅.
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Proof. Let λ = α + iβ ∈ Λω
γ , α ≤ 0, β ∈ R, and let v ∈ D(Aω

γ ) satisfy the equation
Aω

γv − λv = 0. Applying the Fourier transform we arrive at the identity

ω∂φv̂ − (λ+ iγξ1 + ν |ξ|2) v̂ − ω × v̂ = 0.

(We are using the same notation as in the proof of Lemma 3.1.) First we consider
the simpler case when 1 < q ≤ 2, in which v̂ is a function from Lq′

(R3)3. Denoting
ŵ(ρ, φ, ξ1) = O(φ)T v̂(ρ, φ, ξ1), we arrive, by analogy with (3.8), at the equation

ω∂φŵ − (λ+ iγξ1 + νs2)ŵ = 0, s = |ξ| . (3.14)

Solving explicitly this ordinary differential equation, we obtain

ŵ(ρ, φ+ 2π, ξ1) = ŵ(ρ, φ, ξ1) e2π (λ+iγξ1+νs2).

Since ŵ is 2π–periodic in the variable φ we get the impossible condition α + νs2 = 0 for
a.a. ξ ∈ R3 unless ŵ = 0. Hence v̂ = 0 a.e. in R3 and also v = 0 in Lq

σ(R3).
In the general case q > 2 let us again fix λ ∈ Λω

γ , λ = α+iβ+ikω where α ≤ −νβ2/γ2,

k ∈ Z. Consider v ∈ D(Aω
γ ) and ŵ(ρ, φ, ξ1) = O(φ)T v̂(ρ, φ, ξ1) as above. Since the

coefficients of O(φ)T are either constant or cosφ = ξ2/ρ or sinφ = ξ3/ρ, the function w
(the inverse Fourier transform of ŵ) is defined by an application of 2D–Riesz transforms
to v. Hence w ∈ Lq(R3)3.

First we determine the support of tempered distributions ŵ solving (3.14).

Assertion 3.1. Let ŵ ∈ S(R3)3 be a solution of (3.14). Then

supp ŵ ⊂ D := {ξ ∈ R3;α+ νs2 = 0, β + γξ1 ∈ ωZ}.

Proof of Assertion 3.1. Given ψ ∈ C∞0 (R3 rD)3 we solve the equation

−ω∂φΨ− a(ξ)Ψ = ψ (3.15)

where a(ξ) = λ+ iγξ1 + νs2, s = |ξ|. Obviously, (3.15) yields the solution

Ψ(φ) = e−a(ξξξ)φ/ω
(
Ψ0 −

1
ω

∫ φ

0
ea(ξξξ)φ′/ωψ(φ′) dφ′

)
when omitting the variables ρ, ξ1 in Ψ and ψ. Since Ψ is 2π-periodic in φ, the initial
value Ψ0 must satisfy the condition

(
e−2πa(ξξξ)/ω − 1

)
Ψ0 =

1
ω

e−2πa(ξξξ)/ω

∫ 2π

0
ea(ξξξ)φ′/ωψ(φ′) dφ′.

This equation is uniquely solvable for the unknown Ψ0 if

2πa(ξ)/ω /∈ 2πiZ ⇐⇒ λ+ iγξ1 + νs2 6= kiω for all k ∈ Z ⇐⇒ ξ /∈ D.

For ξ /∈ D we get the unique solution of (3.15)

Ψ(φ) =
1
ω

1
1− e2πa(ξξξ)/ω

∫ 2π

0
ea(ξξξ)φ′/ωψ(φ′ + φ) dφ′,
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cf. (3.10) with ω replaced by−ω. Since suppψ ⊂ R3rD, we obtain that Ψ ∈ C∞0 (R3rD)3.
Now we use (3.14) to get that for all ψ ∈ C∞0 (R3 rD)3

〈ŵ,ψ〉 = 〈ŵ,−ω∂φΨ− a(ξ)Ψ〉 = 〈ω∂φŵ − (λ+ iγξ1 + νs2)ŵ ,Ψ〉 = 0 .

This identity proves that supp ŵ ⊂ D. �

Continuation of the proof of Lemma 3.4. The set D can be written as the union of
finitely many disjoint sets of type

Dk := {ξ ∈ R3; α+ νs2 = 0, β + γξ1 = ωk}, k ∈ Z ;

each non–void set Dk defines a circle in R3 parallel to the ξ2ξ3–plane with center (ξ(k)
1 , 0, 0)

where ξ(k)
1 = (ωk − β)/γ. At least the set D0 is non–void since λ ∈ Λω

γ . Using a suitable
partition of unity with respect to the variable ξ1 we may write ŵ ∈ S ′(R3)3, a solution
of (3.14), as a finite linear combination of tempered distributions ŵk with supp ŵk ⊂ Dk.
Since w ∈ Lq(R3)3, also wk ∈ Lq(R3)3 for each k. Moreover, since by elliptic regularity
theory, w ∈ C∞(R3)3, also wk ∈ C∞(R3)3. We shall further need the assertion:

Assertion 3.2. Let h ∈ S ′(R3) ∩ C∞(R3) satisfy supp ĥ ⊂ {0} × R2. Then h is a
polynomial with respect to the variable x1.

Proof of Assertion 3.2. Given h ∈ S ′(R3) we find N ∈ N and a constant c > 0 such
that

|〈ĥ, ψ〉| ≤ c
∥∥∥(1 + | . |)N

∑
0≤|µ|≤N

|∂µψ|
∥∥∥
∞

for all test functions ψ ∈ S(R3); here µ ∈ N3 denotes multi-indices and ‖·‖∞ the supremum
norm for functions on R3. Let η ∈ C∞0 (R) be a cut-off function such that η(ξ1) = 1 for ξ1
in a neighborhood of 0, and let ηε(ξ1) = η(ξ1/ε) for ε > 0. Note that ‖∂m

1 ηε‖∞ ≤ cmε
−m

for all m ∈ N. Since supp ĥ ⊂ {0} ×R2 we get that 〈ĥ, ψ〉 = 〈ĥ, ηεψ〉 for all ε > 0. Hence,
with a constant c > 0 independent of ε ∈ (0, 1),∣∣〈ξN+1

1 ĥ, ψ
〉∣∣ =

∣∣〈ĥ, ξN+1
1 ηεψ

〉∣∣ ≤ c ε
∥∥∥(1 + | . |)N

∑
0≤|µ|≤N

|∂µψ|
∥∥∥
∞
.

Consequently, ξN+1
1 ĥ = 0. Now we conclude that ∂N+1

1 h = 0 and that h ∈ C∞(R3) is a
polynomial with respect to the variable x1 of order at most N . �

Completion of the proof of Lemma 3.4. To complete the proof of Lemma 3.4, let
v ∈ D(Aω

γ ) satisfy the equation Aω
γv − λv = 0. By the above arguments it suffices to

show that each wk in the partition of w vanishes. Here wk ∈ Lq(R3)3 ∩ C∞(R3)3 has
the property supp ŵk ⊂ Dk, i.e. supp ŵk ⊂ {ξ(k)

1 } × R2 with ξ
(k)
1 = (ωk − β)/γ. Then

the function x 7→ eix1ξ
(k)
1 wk(x), which satisfies the assumptions of Assertion 3.2, is a

polynomial with respect to the variable x1. Since this function is contained in Lq(R3)3, it
must vanish identically. Now we proved that w = 0 and also v = 0. �

Lemma 3.5. Let 1 < q <∞. Then σr(Aω
γ ) = ∅.
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Proof. Lemma 3.4 and duality arguments yield the assertion. �

Lemma 3.6. Let 1 < q <∞. Then

σ(Aω
γ ) = σc(Aω

γ ) = σess(Aω
γ ) = Λω

γ .

Proof. Lemmas 3.3–3.5 imply that σ(Aω
γ ) = σc(Aω

γ ) ⊂ Λω
γ . Thus, we need to show the

opposite inclusion, i.e. Λω
γ ⊂ σc(Aω

γ ).
Suppose at first that λ ∈ (Λω

γ)◦, the interior of Λω
γ . It means that there exist α, β ∈ R

and k ∈ Z such that λ = α + iβ + ikω and α < −νβ2/γ2. The number α can be written
in the form α = α1 + α2 where α1 = −νβ2/γ2 and α2 < 0. Assume that k 6= 0. The
procedure in the case k = 0 would be analogous.

We shall explicitly define a sequence of functions {vn} in D(Aω
γ ) such that ‖vn‖q = 1

and ‖(Aω
γ − λI)vn‖q → 0 as n→∞. It will imply that nul ′(Aω

γ − λI) > 0.
Let us denote by vn

1 , vn
r and vn

ϕ the cylindrical components of vn. Put

vn
1 (x1, r, ϕ) := 0,

vn
r (x1, r, ϕ) := κn U

n(x1)V n(r) eikϕ,

vn
ϕ(x1, r, ϕ) := − 1

ik
∂r [r vn

r (x1, r, ϕ)] = − 1
ik
κn U

n(x1)
[
V n(r) + r

dV n(r)
dr

]
eikϕ.

Here the function Un has the form

Un(x1) := ηn
1 (x1)Y (x1), where Y (x1) = eiax1 , a = −β

γ
,

and where ηn
1 is an infinitely differentiable function on (−∞,+∞) such that 0 ≤ ηn

1 ≤ 1,

ηn
1 (x1) =

{
0 for x1 ≤ −n− n2 and n+ n2 ≤ x1,

1 for −n2 ≤ x1 ≤ n2.

The identity α1 = −νβ2/γ2 guarantees that the characteristic equation νζ2 − γζ − (α1 +
iβ) = 0, corresponding to the equation (3.16) below, has the root ζ1 = ia. Thus, the
function Y is a bounded non–trivial solution of the ordinary differential equation

ν Y ′′(x1)− γ Y ′(x1)− (α1 + iβ) Y (x1) = 0 (3.16)

in the interval (−∞,+∞). The function V n is supposed to have the form

V n(r) := ηn
2 (r) eibr, b =

√
−α2

ν
,

where ηn
2 is an infinitely differentiable function on [0,+∞) such that 0 ≤ ηn

2 ≤ 1 and

ηn
2 (r) =

{
0 for 0 ≤ r ≤ n and 3n+ n2 ≤ r,

1 for 2n ≤ r ≤ 2n+ n2.

Both the functions ηn
1 and ηn

2 can be chosen so that their derivatives are of the order 1/n.
The definition of V n guarantees that it satisfies

ν
d2

dr2
V n(r)− α2 V

n(r) = 0 (3.17)
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for 2n < r < 2n+ n2. Finally, the constant κn is chosen so that ‖vn‖q = 1.
One can easily check that vn satisfies the condition of incompressibility

∇ · vn ≡ ∂1v
n
1 +

1
r
∂r(rvn

r ) +
1
r
∂ϕv

n
ϕ = 0.

The support of vn is a subset of

Sn :=
{
x = [x1, r, ϕ] ∈ R3; |x1| ≤ n+ n2, n ≤ r ≤ 3n+ n2, 0 ≤ ϕ < 2π

}
. (3.18)

Considering the norm of vn, we observe that for large n the decisive contribution comes
from the integral of |vn

ϕ|q, namely of its part
∣∣(−1/ik)κn U

n r (dV n/dr) eikϕ
∣∣q, on the region

Sn
0 :=

{
x = [x1, r, ϕ] ∈ R3; |x1| < n2, 2n < r < 2n+ n2, 0 < ϕ < 2π

}
.

The integrals of all other parts on other regions are of a lower order in n. Calculating the
integral of

∣∣(−1/ik)κn U
n r (dV n/dr) eikϕ

∣∣q on the domain Sn
0 , we obtain∫ n2

−n2

∫ 2n+n2

2n

∫ 2π

0

∣∣∣∣κn

ik
Un(x1) r

dV n(r)
dr

∣∣∣∣q2 r dϕ dr dx1

= 2π
κq

n

|k|q

∫ n2

−n2

|Un(x1)|q dx1

∫ 2n+n2

2n
rq+1

∣∣∣∣dV n(r)
dr

∣∣∣∣q dr

= 2π
κq

n

|k|q
2n2 bq

q + 2

(
(2n+ n2)q+2 − (2n)q+2

)
.

Here we have used the equalities ηn
1 (x1) = ηn

2 (r) = 1, hence |Un(x1)| = |V n(r)| = 1 for
(x1, r, ϕ) ∈ Sn

0 . Thus, there exist n0 ∈ N and positive constants c6 and c7 (independent of
n) such that

∀n ∈ N, n ≥ n0 :
c6

n2+6/q
≤ κn ≤ c7

n2+6/q
. (3.19)

We can naturally use the form (3.1) of the operator Aω
γ . Moreover, if we identify v

with the triplet of its cylindrical coordinates: v , [v1, vr, vϕ]T then we can verify that

Aω
γv = ν∆v + ω∂ϕv − γ∂1v,

see [11]. Hence

(Aω
γ − λI)vn = (ν∆ + ω∂ϕ − γ∂1 − λI)


0

κn U
n(x1)V n(r) eikϕ

− 1
ik
κn U

n(x1)
[
V n(r) + r

dV n(r)
dr

]
eikϕ

 .
Calculating now the norm of (Aω

γ−λI)vn in Lq
σ(R3), we observe that the contributions com-

ing from R3rSn
0 tend to zero as n→∞ because they represent q–roots of integrals of func-

tions bounded by Cκq
nrq on Sn rSn

0 . Due to (3.19), this contribution is of the order n−1/q.
Concerning the integral on Sn

0 , the decisive part again comes from (ν∆+ω∂ϕ−γ∂1−λI)vn
ϕ,

namely from (ν∆ + ω∂ϕ − γ∂1 − λI) applied to the term (−1/ik)κn U
n r (dV n/dr) eikϕ
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because of the factor r inside this term. Note that λ = α1 + α2 + iβ + ikω and due to
(3.16) and (3.17), we have

(
ν∆ + ω∂ϕ − γ∂1 − λI

)(κn

ik
Un(x1) r

dV n(r)
dr

eikϕ

)
=

κn

ik

(
ν∂2

1 + ν∂2
r +

ν

r
∂r +

ν

r2
∂2

ϕ + ω ∂ϕ − γ ∂1 − λI
)(

Un(x1) r
dV n(r)

dr
eikϕ

)
=

κn

ik
Un(x1)

(
ν

d2

dr2
+
ν

r

d
dr

− α2I

) [
r

dV n(r)
dr

]
eikϕ

+
κn

ik

(
νY ′′(x1)− γY ′(x1)− [α1 + iβ]Y (x1)

) [
r

dV n(r)
dr

]
eikϕ

− κn

ik
νk2

r2
Un(x1) r

dV n(r)
dr

eikϕ

=
κn

ik

{
Un(x1) r

d
dr

[
ν

d2V n(r)
dr2

− α2 V
n(r)

]
+ Un(x1) 2ν

d2V n(r)
dr2

+Un(x1)
ν

r

d
dr

[
r

dV n(r)
dr

]
− κn

ik
Un(x1)

νk2

r

dV n(r)
dr

}
eikϕ

=
νκn

ik

(
−3b2 +

ib
r
− k2 ib

r

)
ei(ax1+br) eikϕ

where in the last step we used the simple forms of the functions Un and V n on Sn
0 , i.e.

Un(x1) = eiax1 and V n(r) = eibr. Hence[∫ n2

−n2

∫ 2n+n2

2n

∫ 2π

0

∣∣∣∣(ν∆ + ω∂ϕ − γ∂1 − λI
) (

κn

ik
Un(x1) r

dV n(r)
dr

eikϕ

)∣∣∣∣q r dϕ dr dx1

]1/q

≤ C(ν, k, b)κn

[∫ n2

−n2

∫ 2n+n2

2n
r dr dx1

]1/q

= C(ν, k, b)κn

{
2n2

[
(2n+ n2)2 − (2n)2

]}1/q
.

The last term tends to zero as n → ∞ due to (3.19). In this way, we are led to the
convergence ‖(Aω

γ − λI)vn‖q → 0 as n→∞.
We have proved that nul ′(Aω

γ − λI) > 0. Hence nul (Aω
γ − λI) 6= nul ′(Aω

γ − λI). It
means that the range R(Aω

γ −λI) is not closed in Lq
σ(R3). Consequently, nul ′(Aω

γ −λI) =
def ′(Aω

γ −λI) = +∞ and λ ∈ σess(Aω
γ ). Since σess(Aω

γ ) is closed, Λω
γ is a subset of σess(Aω

γ ).
Due to Lemmas 3.4 and 3.5, we have the inclusion Λω

γ ⊂ σc(Aω
γ ). �

If q = 2 then Lq
σ(R3) ≡ L2

σ(R3) is a Hilbert space and it is natural to ask whether the
operator Aω

γ is normal. The answer is given by the next lemma.

Lemma 3.7. Let q = 2. Then Aω
γ is a normal operator in L2

σ(R3).

Proof. Using the cylindrical coordinates (x1, r, ϕ) as in the proof of Lemma 3.1, we can
express the operators Aω

γ and (Aω
γ )∗ in accordance with (3.1), (3.2) and (3.6) as

Aω
γv = ν∆v + ω∂ϕv − ω × v − γ∂1v,
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(Aω
γ )∗v = ν∆v − ω∂ϕv + ω × v + γ∂1v,

where D(Aω
γ ) = D((Aω

γ )∗). We need to show that Aω
γ (Aω

γ )∗ = (Aω
γ )∗Aω

γ , i.e.,
a) D

(
Aω

γ (Aω
γ )∗

)
= D

(
(Aω

γ )∗Aω
γ

)
,

b) Aω
γ (Aω

γ )∗u = (Aω
γ )∗Aω

γu for all u ∈ D
(
(Aω

γ )∗Aω
γ

)
.

Let us begin with part a). Suppose that u ∈ D(Aω
γ (Aω

γ )∗), i.e. u ∈ D((Aω
γ )∗) and

(Aω
γ )∗u ∈ D(Aω

γ ). In order to show that u ∈ D((Aω
γ )∗Aω

γ ), we treat the scalar product
(Aω

γu, A
ω
γv)2 of Aω

γu and Aω
γv in L2

σ(R3) for v ∈ D(Aω
γ ) as follows:

(Aω
γu, A

ω
γv)2 =

(
(Aω

γ )∗u, Aω
γv

)
2
+ 2

(
ω∂ϕu− ω × u− γ∂1u, A

ω
γv

)
2

=
(
(Aω

γ )∗u, Aω
γv

)
2
+ 2

(
ω∂ϕu− ω × u− γ∂1u, ν∆v

)
2

+2
(
ω∂ϕu− ω × u− γ∂1u, ω∂ϕv − ω × v − γ∂1v

)
2
. (3.20)

Let us first assume that v has a compact support. Then (∂ϕu,∆v)2 = −(∆u, ∂ϕv)2 and(
−ω × u− γ∂1u, ν∆v

)
2

=
(
ν∆u, ω × v + γ∂1v

)
2
.

Substituting these identities into (3.20), we obtain

(Aω
γu, A

ω
γv)2 =

(
(Aω

γ )∗u, Aω
γv

)
2
− 2

(
ν∆u, ω∂ϕv − ω × v − γ∂1v

)
2

+2
(
ω∂ϕu− ω × u− γ∂1u, ω∂ϕv − ω × v − γ∂1v

)
2

=
(
(Aω

γ )∗u, Aω
γv

)
2
+ 2

(
(Aω

γ )∗u, −ω∂ϕv + ω × v + γ∂1v
)
2

=
(
(Aω

γ )∗u, (Aω
γ )∗v

)
2

=
(
Aω

γ (Aω
γ )∗u, v

)
2
. (3.21)

In fact, (3.21) holds for all v ∈ D(Aω
γ ) because by Lemma 2.3 the set D0(Aω

γ ) = {v ∈
D(Aω

γ ); v has a compact support in R3} is a core of Aω
γ . Now, (3.21) shows that for fixed

u, (Aω
γu, A

ω
γv)2 can be extended to a continuous linear functional of v ∈ L2

σ(R3). Thus,
u ∈ D((Aω

γ )∗Aω
γ ).

We have proved the inclusion D(Aω
γ (Aω

γ )∗) ⊂ D((Aω
γ )∗Aω

γ ). The opposite inclusion can
be proved in the same way.

Concerning part b), (3.21) implies that(
(Aω

γ )∗Aω
γu, v

)
2

=
(
Aω

γ (Aω
γ )∗u, v

)
2

for all v ∈ D(Aω
γ ) and even for all v ∈ L2

σ(R3) due to the density of D(Aω
γ ) in L2

σ(R3).
Hence the operators Aω

γ and (Aω
γ )∗ commute. �

Theorem 1.2 resumes the results of Lemmas 3.3–3.7.

4 The case of an exterior domain Ω

In this section, we assume that Ω ⊂ R3 is an exterior domain, different from R3, with
boundary of class C1,1.

Lemma 4.1. Λω
γ ⊂ σess(Aω

γ ).
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Proof. We prove in almost the same way as in the proof of Lemma 3.6 that if λ ∈ (Λω
γ)◦

then nul ′(Aω
γ − λI) > 0. Unfortunately, since an analogue to Lemma 3.4 is not available,

we cannot deduce directly from this inequality that λ ∈ σess(Aω
γ ) as in the proof of Lemma

3.6. However, we will use that suppvn ⊂ Sn, see (3.18). Thus, there exists n0 ∈ N so large
that vn belongs to the domain of Aω

γ (as an operator in Lq
σ(Ω)) for n ≥ n0. We observe

that any subsequence {Skn} of {Sn} has the intersection property ∩∞n=1S
kn = ∅. It implies

that the sequence {vn}n≥n0 is not compact in Lq
σ(Ω). Consequently, nul ′(Aω

γ − λI) = ∞.
We can prove in the same way that nul ′

(
(Aω

γ )∗ − λI
)

= ∞. Hence def ′(Aω
γ − λI) = ∞,

and the operator Aω
γ − λI is not semi–Fredholm. Thus, λ ∈ σess(Aω

γ ). The inclusion
Λω

γ ⊂ σess(Aω
γ ) now follows from the closedness of σess(Aω

γ ). �

Lemma 4.2. σess(Aω
γ ) ⊂ Λω

γ .

Proof. Let λ ∈ σess(Aω
γ ). Then nul ′(Aω

γ − λI) = ∞. This information enables us to
construct, by mathematical induction, a sequence {un} in D(Aω

γ ) satisfying ‖un‖q = 1,
‖(Aω

γ − λI)un‖q → 0 as n→∞ and

dist
(
un; Ln−1

)
= 1 (4.1)

for all n ∈ N, where Ln−1 denotes the linear hull of the functions u1, . . . , un−1: Suppose
that we have already constructed u1, . . . , uk satisfying ‖(Aω

γ − λI)uj‖q ≤ 1/j for j =
1, . . . , k and (4.1) for all n = 1, . . . , k. To εk+1 = 1/(k + 1) there exists an infinite
dimensional linear manifold Mk+1 in D(Aω

γ ) such that ‖(Aω
γ − λI)u‖q ≤ εk+1 for all

u ∈Mk+1. Then due to Lemma IV.2.3 in [20], we find uk+1 ∈Mk+1 such that ‖uk+1‖q = 1
and dist

(
uk+1; Lk

)
= 1. The sequence {un} satisfies

‖(Aω
γ − λI)un‖q ≤

1
n

for all n ∈ N. (4.2)

Denote fn := (Aω
γ − λI)un. Lemma 2.2 yields the estimates

‖un‖2,q + ‖(ω × x) · ∇un‖q ≤ c1 ‖fn‖q +
(
c2 + c1 |λ|

)
‖un‖q

≤ c1 +
(
c2 + c1 |λ|

)
:= c8 (4.3)

with a constant c8 > 0 independent of n ∈ N. Furthermore, there exists ∇pn ∈ Lq(Ω)3

such that

ν∆un + (ω × x) · ∇un − ω × un − γ∂1v
n − λun −∇pn = fn (4.4)

in Ω and that by (4.3)

‖∇pn‖q ≤ c8 . (4.5)

The sequence {un} is bounded in the space D(Aω
γ ). Hence there exists a subsequence

again denoted by {un} which is weakly convergent in D(Aω
γ ). This subsequence naturally

preserves the property (4.2).
Put vn := (un+1−un)/δn where δn = ‖un+1−un‖q. Then {vn} is a sequence in the unit

sphere in Lq
σ(Ω). It converges weakly to zero in D(Aω

γ ) because (un+1−un) ⇀ 0 in Lq
σ(Ω)

18



as n→∞ and by (4.1) δn ≥ 1. Hence {vn} converges strongly to 0 in W 1,q(Ω ∩BR(0))3

for each R > 0. Note that the function vn satisfies the equation

ν∆vn + (ω × x) · ∇vn − ω × vn − γ∂1v
n − λvn − 1

δn
∇(pn+1 − pn)

=
1
δn

(
fn+1 − fn

)
(4.6)

in Ω. This equation, together with the information on the weak convergence of {vn} to
zero in D(Aω

γ ), implies that the sequence {∇(pn+1 − pn)} weakly converges to zero in
Lq(Ω)3. Thus, the functions pn, which are given uniquely up to an additive constant, can
be chosen so that pn+1 − pn → 0 strongly in Lq(Ω ∩BR(0)) for each R > 0.

The sequence {vn} does not contain any subsequence, convergent in Lq
σ(Ω). Indeed,

assume that {vkn} is a convergent subsequence of {vn} in Lq
σ(Ω). This subsequence has

the same weak limit as {vn}, hence vkn ⇀ 0 in Lq
σ(Ω) as n→∞. Then even vkn → 0 in

Lq
σ(Ω) as n→∞. However, this is impossible because ‖vkn‖q = 1.
Suppose that R > 0 is so large that the domain {x ∈ R3; |x| > R} is a subset of Ω.

Let η be an infinitely differentiable cut–off function in Ω, with values in [0, 1], such that

η(x) =

{
0 for |x| ≤ R,

1 for R+ 1 ≤ |x|.

Put KR := {x ∈ R3; R < |x| < R + 1} and let B : W 1,q
0 (KR) 7→ W 2,q

0 (KR)3 be the
Bogovskij operator, see the proof of Lemma 2.3. Then V n := B

(
∇η · vn

)
belongs to

W 2,q
0 (KR)3. If we extend it by zero to Ω r KR, it can be considered as an element of

W 2,q
0 (Ω)3. Due to the continuity of the operator B and the strong convergence of {vn} to

0 in W 1,q
(
Ω ∩BR+1(0)

)3, we get that V n → 0 in W 2,q
0 (Ω)3.

Now we define wn(x) := η(x)vn(x)−V n(x). The function wn belongs to D(Aω
γ ) and,

due to (4.6), satisfies the equation

ν∆wn + (ω × x) · ∇wn − ω ×wn − γ∂1w
n − λwn − 1

δn
∇

[
η(pn+1 − pn)

]
=

η

δn
(fn+1 − fn)− 1

δn
∇η (pn+1 − pn) + ν (∆η)vn + 2ν∇η · ∇vn − ν∆V n + λV n

+(ω × x) · (∇η ⊗ vn)− (ω × x) · ∇V n + ω × V n − γ (∂1η)vn + γ∂1V
n . (4.7)

The right hand side converges strongly to zero in Lq(Ω)3 as n → ∞; this follows from
the strong convergence of {vn} to zero in W 1,q(Ω ∩BR+1(0))3, the strong convergence of
{pn+1 − pn} to zero in Lq(Ω ∩BR+1(0)), from the information on the support of ∇η and
∆η and from the strong convergence of {V n} to zero in W 2,q(Ω)3. Hence

‖(Aω
γ − λI)wn‖q −→ 0 as n→∞. (4.8)

Moreover, given ε > 0, there exists n0 ∈ N such that if n ∈ N, n ≥ n0, then

‖wn‖q ≤
(∫

|x|<R+1
|ηvn − V n|q dx

)1/q

+
(∫

R+1<|x|
|vn|q dx

)1/q

≤ ε+ 1,
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‖wn‖q ≥
(∫

R+1<|x|
|vn|q dx

)1/q

≥
(∫

Ω
|vn|q dx

)1/q

−
(∫

|x|<R+1
|vn|q dx

)1/q

≥ 1− ε .

Let us now normalize the sequence {wn} by dividing each of the functions wn by its norm
in Lq

σ(Ω). In order to preserve a simple notation, we denote the normalized functions again
by wn. If we finally put wn(x) = 0 for x ∈ R3 r Ω, we obtain a non–compact sequence
in the unit sphere in Lq

σ(R3), satisfying (4.8) with ‖ . ‖q being the norm in Lq
σ(R3). Let us

denote, for a while, by (Aω
γ )R3 the operator Aω

γ , considered in Lq
σ(R3). The existence of

the sequence {wn} with the above properties implies that nul ′
(
Aω

γ )R3 − λI) = ∞. Hence
λ 6∈ ρ

(
(Aω

γ )R3

)
, which, due to Theorem 1.1, yields λ ∈ Λω

γ . �

Lemma 4.3. Let λ ∈ C r Λω
γ . Then either λ ∈ σp(Aω

γ ) for all 1 < q < ∞ or λ ∈ ρ(Aω
γ )

for all 1 < q <∞. Moreover, λ ∈ ρ(Aω
γ ) when Reλ ≥ 0.

Proof. Assume that 1 < q < ∞ and that λ ∈ C r Λω
γ is an eigenvalue of (Aω

γ )Ω,q with
nonzero eigenfunction v ∈ D

(
(Aω

γ )Ω,q)
)
, where (Aω

γ )Ω,q denotes the operator Aω
γ on Lq

σ(Ω).
Let p with ∇p ∈ Lq(Ω)3 be a corresponding pressure function. Using the cut–off function
η, the set KR and Bogovskij’s operator B : W 1,q

0 (KR) 7→ W 2,q
0 (KR)3 from the proof of

Lemma 4.2, we get that w1 := ηv−V (where V = B(∇η · v) in KR, V = 0 in R3 rKR)
solves the equation, cf. (4.7),

ν∆w1 + (ω × x) · ∇w1 − ω ×w1 − γ∂1w1 − λw1 −∇(ηp)
= f := −∇η p+ ν (∆η)v + 2ν∇η · ∇v − ν∆V + λV

+(ω × x) · (∇η ⊗ v)− (ω × x) · ∇V + ω × V − γ (∂1η)v + γ∂1V (4.9)

in R3.
First assume that q ≥ 3. Due to the boundedness of the operator B from W 2,q

0 (KR)
to W 3,q

0 (KR)3 (see e.g. [12, p. 130]), the restriction of the vector field V to KR belongs to
W 3,q

0 (KR)3. From this, we deduce that f ∈ W 1,q(KR). Hence, by Sobolev’s embedding
theorem, f ∈ Ls(KR)3 for 1 < s < ∞. Since f is supported in KR, we have that
f ∈ Ls(R3)3 for 1 < s < ∞. Now we may apply Theorem 1.1 (with s instead of q)
to the whole space problem (4.9) and conclude that w1 ∈ D

(
(Aω

γ )R3,s

)
⊂ W 2,s(R3) and

∇(ηp) ∈ Ls(R3)3 because λ ∈ C r Λω
γ belongs to the resolvent set of (Aω

γ )R3,s. Similarly,
we derive that w2 := (1 − η)v + V , the solution of a problem analogous to (4.9) in
the bounded domain ΩR+1 := Ω ∩ BR+1(0), satisfies w2 ∈ W 2,s(ΩR+1). Consequently,
v ≡ w1 +w2 ∈ D

(
(Aω

γ )Ω,s

)
and λ is an eigenvalue of (Aω

γ )Ω,s.
If 1 < q < 3 then we obtain the same result for 1 < s < 3q/(3− q). However, repeating

finitely many times the same argument, we can extend the result to all 1 < s <∞.
Finally, when s = 2, a variational argument implies that Reλ < 0 for all λ ∈ σ(Aω

γ ),
cf. [11, Theorem 1.1]. �

Now Theorem 1.2 is completely proved.

Remark 4.1. If q = 2 then the interesting question occurs whether Aω
γ is a normal

operator in L2
σ(Ω). We have proved in our previous papers [10] and [11] that
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a) if γ = 0 and the domain Ω is axially symmetric with respect to the x1–axis then Aω
γ

s normal,

b) if γ 6= 0 or the domain Ω is not axially symmetric then Aω
γ is not normal.
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