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Abstract

We consider the spectrum of the Stokes operator with and without rotation
e�ect for the whole space and exterior domains in Lq{spaces. Based on similar
results for the Dirichlet{Laplacian on Rn, n � 2, we prove in the whole space
case that the spectrum as a set in C does not change with q 2 (1;1), but it
changes its type from the residual to the continuous or to the point spectrum
with q. The results for exterior domains are less complete, but the spectrum
of the Stokes operator with rotation mainly is an essential one, consisting of
in�nitely many equidistant parallel half{lines in the left complex half{plane.
The tools are strongly based on Fourier analysis in the whole space case and
on stability properties of the essential spectrum for exterior domains.

2000 Mathematics Subject Classi�cation: 35Q35; 35P99; 47A10; 76D07

Keywords: Stokes operator, Stokes operator with rotation, spectrum, essential spectrum,
point spectrum, Lq{theory

1 Introduction

We will study spectral properties of a Stokes type operator which arises from the problem
of viscous uid ow around a rotating body. To be more precise, the starting point is the
non{stationary Navier{Stokes system modelling viscous incompressible uid ow around
a rotating obstacle in R3 with angular velocity ! 2 R3; this Navier{Stokes system is
formulated in a time{dependent exterior domain 
(t), t � 0. Then, introducing a new
coordinate system attached to the rotating body, see e.g. [7], [10], [23], and assuming that
the velocity satis�es the no{slip boundary condition on the surface of the body and tends
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to zero at in�nity, we get for the modi�ed velocity u and pressure p the non{stationary
Navier{Stokes{type problem

@tu� ��u� (! ^ x) � ru+ ! ^ u+ u � ru+rp = f in 
� (0;1);

divu = 0 in 
� (0;1);

u(x; : ) ! 0 as jxj ! 1;

u(x; : ) = ! ^ x for x 2 @
;
u(x; 0) = u0(x) for x 2 
:

(1.1)

Here f denotes the modi�ed external force density, and 
 � R3 is the time{independent
unbounded domain exterior to the obstacle.

In the linearized stationary case, i.e., in the linearized and time{periodic case of the
original system, we are led to the Stokes{type problem

���u� (! ^ x) � ru+ ! ^ u+rp = f in 
;

divu = 0 in 
;

u(x) ! 0 as jxj ! 1;

u(x) = ! ^ x for x 2 @
:

(1.2)

The linear problem (1.2) has been analyzed in Lq{spaces, 1 < q <1, in [10], proving the
existence of a strong solution (u; p) satisfying the estimate

k�r2ukq + k(! ^ x) � ru� ! ^ ukq + krpkq � C kfkq (1.3)

with a constant C = C(q) > 0 independent of f , ! and of the coe�cient of viscosity �.
Similar results were obtained in the case of a rotating body with constant translational
velocity u1 parallel to !, leading to an Oseen system like (1.2) in which the term u1 �ru
has to be added in the equation of the balance of momentum, see [7, 8]. For related Lq{
results on weak solutions we refer to [22], for the investigation of several auxiliary linear
problems to [30, 31], and for weak solutions to an Oseen system of type (1.2) in L2 with
anisotropic weights see [26]; for results in Lq{spaces see [27, 28]. Pointwise estimates, even
for solutions of the nonlinear Navier{Stokes equations, can be found in [16]; indeed, there
exists a stationary strong solution us satisfying the estimate jus(x)j � C=jxj. On the
one hand, this result must be considered with regard to the fact that the corresponding
fundamental solution �(x;y) of (1.2) cannot be dominated uniformly by jx�yj�1, see [10].
On the other hand, these pointwise estimates suggest to discuss (1.2) in weak Lq{spaces
(L3=2;1 and L3;1) as done in [9, 22]. Extensions of the pointwise decay estimates and also
representation formulae can be found in [3, 4]. Stability estimates in the L2{setting are
proved in [18], and in the L3;1{setting in [24].

In this paper, we denote spaces of vector{valued functions by boldface letters. Oth-
erwise we preserve the standard notation for Lebesgue and Sobolev spaces. As usually,
L
q
�(
) denotes the closure of the space of all in�nitely di�erentiable divergence{free vector

�elds in 
, with compact support in 
, in Lq(
). The Helmholtz projection of Lq(
),
1 < q < 1, onto Lq�(
) is denoted by Pq. The spectrum of an operator is denoted by �,
the essential spectrum by �ess, the point spectrum by �p, the continuous spectrum by �c
and the residual spectrum by �r.
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Assuming that ! := j!j 6= 0 and, say, !jje3, and we analyze the Stokes{type operator

L!q u := Pq
����u� (! ^ x) � ru+ ! ^ u�

in the space Lq�(
), 1 < q <1. The domain of the operator L!q is

D(L!q ) :=
�
u 2W2;q(
) \W1;q

0 (
) \ Lq�(
); (! ^ x) � ru 2 Lq(
)
	
:

We consider D(L!q ) to be equipped by the norm

kvkD(L!q ) := kvk2;q + k(! ^ x) � rvkq ; (1.4)

equivalent to the graph norm kvkq + kL!q vkq, to yield a Banach space since L!q is a
closed operator; here k : k2;q denotes the norm in W2;q(
). From [23], we know that the
semigroup generated by L!2 for the whole space does not map L2

�(R
3) into the domain

D(L!2 ) for t > 0, so that the semigroup e�tL!2 , t � 0, is not analytic. The same result
holds in Lq{spaces and for exterior domains, see [19]. Hence the analysis of the spectrum
of L!q is an interesting problem.

We know from [14] that the adjoint operator to L!q equals L�!q0 (with q0 = q=(q � 1))
so that

(L!q )�u = Pq0
���+ (! ^ x) � ru� ! ^ u� for u 2 D(L�!q0 ) = D((L!q )�):

In [12] the �rst and third author proved in the whole space case and for q = 2 that

�(�L!q ) = �ess(�L!q ) = �c(�L!q ) = S
! :=

+1[
k=�1

�
(�1; 0] + i!k

	
; (1.5)

i.e., the spectrum of �L!2 is a purely continuous one and equals a countable set of equidis-
tant half{lines in the left complex half{plane. This result was extended via detailed techni-
cal arguments by the authors to the case Lq, q 6= 2, see [13]. Exactly the same result holds
for an exterior domain 
 � R3 which is rotationally symmetric with respect to the axis of
rotation. However, if 
 is not rotationally symmetric, then the above result holds for the
essential spectrum only, i.e., �ess(�L!q ) = S!; the question of existence of eigenvalues in
the left complex half{plane is open up to now.

The spectrum of a corresponding linear Oseen{type operator, i.e. the operator �L!q +
@3,  6= 0, was studied in [14]: The essential spectrum consists of a countable set of
overlapping parabolic regions in the left half{plane of the complex plane. Moreover, the
full spectrum coincides with the essential and continuous one if 
 = R3.

The aim of this paper is not only to present a new, functional analytic proof of the
result (1.5) for all q 2 (1;1), but also to determine whether the spectrum is a continuous
or residual one, or whether it consists of eigenvalues, and to prove similar results for the
classical Stokes operator and also the Laplacian in all dimensions n � 2. Actually, our
methods are based on techniques from harmonic analysis developed for the Laplacian on
Rn, see Theorem 3.1, and the Stokes operator on Rn, see Theorem 3.2. Our result on the
operator L!q on the whole space R3 shows that the character of the spectrum (not the

set itself) strictly depends on q changing from a residual spectrum for 1 < q < 3
2 to a

continuous one for 3
2 � q � 3 and to a pure point spectrum for q > 3. To be precise, we

prove the theorem:
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Theorem 1.1. Let 1 < q < 1 and 
 = R3. Then the spectrum �(�L!q ) of the operator

(�L!q ) is the set S!, cf. (1.5). For each � 2 S! the range R(�+L!q ) is not closed, which
implies that �(�L!q ) = �ess(�L!q ). Furthermore, i!Z � �c(�L!q ) and
(i) if 1 < q < 3

2 then S! r i!Z = �r(�L!q ) and for each � in this set the codimension

of R(�+ L!q ) equals in�nity,
(ii) if 3

2 � q � 3 then S! r i!Z = �c(�L!q ),
(iii) if 3 < q < 1 then S! r i!Z = �p(�L!q ) and the geometric multiplicity of each

eigenvalue is in�nite.

Moreover, we estimate the resolvent operator �+L!q , q = 2, for � = �+i�, � < 0, � =2 !Z,
lying between two half{lines and going to in�nity, i.e. �! �1, see Theorem 3.4. Finally,
we describe the spectrum of L!q in the case of an exterior domain 
 � R3, see Section 4.

2 Preliminaries

Recall that 1 < q < 1 and ! = j!j 6= 0 throughout the whole paper. Consider the
spectral problem

�u� ��u� (! ^ x) � ru+ ! ^ u+rp = f in 
;

divu = 0 in 
;

u(x) ! 0 as jxj ! 1
(2.1)

when 
 = R3 and 
 � R3 is an exterior domain; in the latter case the boundary condition
uj@
 = 0 is added to (2.1). To solve (2.1) explicitly when 
 = R3 we use the Fourier
transform and multiplier operators. For simplicity we assume that the axis of rotation is
parallel to the third unit vector e3, the angular velocity is equal to one, and that � = 1;
hence

! = e3; ! = j!j = 1 and � = 1:

In order to recall this assumption, we use the notation L1
q (instead of L!q ). Due to the

geometry of the problem, it is reasonable to use cylindrical coordinates attached to e3 in
x-space and also in the space of the Fourier variable �. In particular, let � and ' denote
the angular variables in x{ and �{space, respectively. Note that

(e3 ^ x) � rx = �x2 @

@x1
+ x1

@

@x2
= @� (2.2)

is an angular derivative and that the Fourier transform of (e3^x)�ru equals (e3^�)�r�bu =
@'bu. Working at �rst formally or in the space S 0(R3), we apply the Fourier transform F ,
denoted by b, to (2.1); see e.g. [20] for the de�nition and properties of the space S(R3)
of Schwartz functions and the space S 0(R3) of tempered distributions. With the Fourier
variable � 2 R3 and its Euclidean length s = j�j we get from (2.1)

(�+ s2) bu� @'bu+ e3 ^ bu+ i� bp = bf ; i� � bu = 0: (2.3)

Since i� � bu = 0 implies i� � �@'bu � e3 � bu� = 0, the unknown pressure p is given by

�j�j2 bp = i� � bf . Then the H�ormander multiplier theorem yields the estimate

krpkq � C kfkq ; (2.4)
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where C = C(q) > 0. In particular, rp 2 Lq(R3), cf. (1.3) when � = 0.

Hence u can be considered as a (solenoidal) solution of the reduced problem

�u��u� @�u+ e3 ^ u = f 0 := f �rp in R3: (2.5)

or { in Fourier's space { as a solution of the �rst order linear inhomogeneous ordinary
di�erential equation �@'bu+ e3 ^ bu+ (�+ s2)bu = bf 0 (2.6)

with respect to ' for bu(�) as a 2�{periodic function in '. Next we will get rid of the term
e3 ^ bu in (2.6) by introducing the matrix of rotation O(t):

O(t) =

0
@cos t; � sin t; 0
sin t; cos t; 0
0; 0; 1

1
A ; (2.7)

and the new unknown v by bv = O(')T bu: (2.8)

Since @'bu = O(')@'bv + e3 ^ (O(')bv), we see that bv satis�es the equation

�@'bv + (�+ s2)bv = bF := OT (')bf 0 : (2.9)

This problem was solved explicitly in [8], [10] when � = 0. However, replacing in the
solution formulas of [10] the term �s2 by �+ s2, we easily get that

bv(�) =

Z 1

0
e�(�+s2)t bF�O(t)�� dt (2.10)

and, using the de�nition
D(�) := 1� e�2�(�+s2); (2.11)

also

bv(�) =
1

D(�)

Z 2�

0
e�(�+s2)t bF�O(t)�� dt: (2.12)

Hence due to (2.8), with s = j�j as before,

bu(�) =
1

D(�)

Z 2�

0
e�(�+s2)t OT (t) bf 0�O(t)�� dt: (2.13)

We recall the following result from [13, Theorems 2.1 and 2.2]; we note that the Lq-
estimate in Theorem 2.1 below is a straightforward consequence of multiplier theory.

Theorem 2.1. Suppose that f 2 L
q
�(R3), 1 < q < 1, and � = � + i�, �; � 2 R, where

either � > 0 or � =2 Z. Then the resolvent equation (� + L1
q)u = f has a unique solution

u 2 D(L1
q). There exists a real constant C > 0 depending only on � and q such that the

solution satis�es the estimate

kukq � C(�; q) kfkq:

In particular, � belongs to the resolvent set of the operator �L1
q.
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The second result in [13], stating that �(�L1
q) = �ess(�L1

q) = S
!, will be proved in

this paper by other tools.

Recall that for a closed operator T on a Banach space X with dense domain D(T )
and range R(T ), the essential spectrum �ess(T ) is de�ned as the set of those � 2 C for
which the operator � � T is not semi{Fredholm, which is equivalent to the identities
nul 0(� � T ) = def 0(� � T ) = 1. Here nul 0(� � T ) denotes the approximate nullity and
def 0(� � T ) := nul 0(� � T �) is the approximate de�ciency of � � T ; T � denotes the
adjoint operator to T . Note that for a closed operator T as above nul(T ) = nul 0(T ) and
def(T ) = def 0(T ) if R(T ) is closed, and that nul 0(T ) = def 0(T ) =1 if R(T ) is not closed,
see [25, Theorem IV.5.10]. Moroever, nul 0(T ) = 1 if and only if there exists a non{
compact sequence fukgk2N � D(T ) such that kukkq = 1 for all k 2 N and kT ukkq ! 0 as
k !1, see [25, Theorem IV.5.11]. For further properties of these notions we refer to [25,
Ch. IV.5].

The following de�nitions will be important in proofs in Section 3. For  2 S(Rn),
n � 2, let the average operator M be given by

(M )(r) =

Z
�
@B1

 (r;�) d� :=
1

j@B1j
Z
@B1

 (r;�) d�; r � 0;

where (r;�) =
�
r; x=jxj) 2 [0;1) � @B1 denote the polar coordinates of x 2 Rn, d�

indicates integration with respect to the surface measure on @B1 = fx 2 Rn; jxj = 1g and
j@B1j =

R
@B1

d�. A function 	 2 S(Rn) is called radial if and only if 	(x) depends only
on r = jxj for all x 2 Rn. Equivalently, M	 = 	 or 	 � R = 	 for all orthogonal n � n
matrices R. Obviously, M 2 S(Rn) is radial for any  2 S(Rn). Moreover,

dM =M( b ): (2.14)

Actually,

dM (�) =

Z
Rn

e�ixxx���� (M )(jxj) dx =

Z
Rn

e�ixxx����
�Z
�
@B1

 (jxj;�) d�
�
dx:

Using also the expressions x=̂(r;�) where r = jxj and � = x=jxj 2 @B1 and �=̂(s;)
where s = j�j and  = �=j�j 2 @B1, we have x � � = rs� �  and therefore

dM (�) = dM (s;) =

Z 1

0

Z
@B1

e�irs ����
�Z
�
@B1

 (r;�) d�

�
d� rn�1 dr

=

Z
�
@B1

�Z 1

0
 (r;�) rn�1

�Z
@B1

e�irs ���� d�
�
dr

�
d�:

The integral
R
@B1

e�irs ���� d� is independent of  and therefore equals
R
@B1

e�irs ������� d�.
Hence

dM (�) =

Z
�
@B1

�Z 1

0
 (r;�) rn�1

�Z
@B1

e�irs ������� d�

�
dr

�
d�

=

Z
�
@B1

�Z 1

0

�Z
@B1

e�irs �������  (r;�) d�
�
rn�1 dr

�
d�

= (M b )(s) = (M b )�j�j�:
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This proves the identity (2.14).

The de�nition of the average operator M can be easily transferred from S(Rn) to the
space of tempered distributions S 0(Rn): For f 2 S 0(Rn) de�ne Mf by

hMf; i := hf;M i for  2 S(Rn):

Note that this de�nition is consistent with the case when the distribution f is itself rep-
resented by a function from S(Rn). Now (2.14) easily yields the identity

dMf = M( bf); for f 2 S 0(Rn): (2.15)

A distribution f 2 S 0(Rn) is called radial if Mf = f . In this case hf;  i = hf;  �R i for
every orthogonal n� n matrix R and for all  2 S(Rn). Moreover, Mf is radial.

The importance of the average operatorM lies in the construction and classi�cation of
radial tempered distributions bf with support in the unit sphere @B1 � R3: if in this case
f 2 Lq(R3) for some q 2 (1;1), then it is a constant multiple of the function (sin jxj)=jxj;
similar results hold in Rn, n � 2, see Lemma 2.3 below.

Lemma 2.2. Let f be a radial tempered distribution on Rn, n � 2, with supp bf � @B1.

Then there exists m 2 N such that (1 + �)mf = 0.

Proof. Since bf 2 S 0(Rn) and supp bf � @B1, there exists m 2 N and a constant C � 0
such that ��h bf; b' i�� � C

mX
j�j=0

kD� b'kL1(B2rB1=2); ' 2 S(Rn);

where � 2 Nn
0 is a multi{index, D� denotes the corresponding partial derivative of order

j�j and BR = fx 2 Rn : jxj < Rg. Choose an even cut{o� function � 2 C1
0 (R) with

�(r) = 1 for r 2 (�1; 1), and de�ne �"(x) = �
�
(jxj2 � 1)="

�
, x 2 Rn, " > 0. Since �"(x) is

radial, we will also write �"(r) where r = jxj. Then for every j 2 N0 there exists cj > 0
such that jD��"j � cj"

�j for all " > 0 and � such that j�j = j. Since f and consequently

also bf are radial, we easily get that

h bf; b' i = h bf;M b' i = h bf; �"M b' i:
Hence for all " > 0 su�ciently small

h bf; b' i =
D bf; �M b'� mX

j=0

1

j!
@j�(M b')(�)��

�=1
(r � 1)j

�
�"

E

+
D bf; � mX

j=0

1

j!
@j�(M b')(�)��

�=1
(r � 1)j

�
�"

E
: (2.16)

By the classical estimate of the remainder in Taylor's expansion of the smooth function
M b'(r), r > 0, we know that there exists C > 0 such that for k = 0; : : : ;m

���@kr�(M b')(r)� mX
j=0

1

j!

�
@j�(M b')(�)��

�=1

�
(r � 1)j

���� � C jr � 1jm+1�k; r 2 �12 ; 2�:
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Thus for all " > 0 su�ciently small and k = 0; : : : ;m we are led to the estimate@kr h�(M b')(r)� mX
j=0

1

j!

�
@j�(M b')(�)��

�=1

�
(r � 1)j

�
�"(r)

i
L1(B2rB1=2)

� C "m+1�k

with a constant C > 0. Consequently the �rst term on the right{hand side of (2.16)
vanishes. Hence (2.16) may be rewritten in the form

h bf; b' i =
mX
j=0

aj @
j
�(M b')(�) ��

�=1
(2.17)

where the constant aj 2 C equals (1=j!)

 bf; (r � 1)j �"

�
, j = 0; : : : ;m and " > 0. Now,

by Plancherel's theorem, (2.17) yields the identities



(�1��)m+1f; '

�
=


 bf; (j�j2 � 1)m+1 b'� =
mX
j=0

aj @
j
r

�
(r2 � 1)m+1 (M b')(r)���

r=1

=
mX
j=0

aj

Z
�
@B1

@jr
�
(r2 � 1)m+1 b'(r�)���

r=1
d� = 0:

Replacing m by m� 1, the lemma is proved.

In the next Lemma 2.3 below we will use the Bessel functions of the �rst kind J�,
de�ned by the formula

J�(r) :=
1X

m=0

(�1)m (r=2)�+m

m! �(�+m+ 1)
; (2.18)

and of the second kind Y�, � 2 R; for de�nitions and the main properties see e.g. [33,
Ch. III and VII]. Let us recall the following crucial items: If C� denotes one of the Bessel
functions, i.e. C� = J� or C� = Y�, thenh

@2r +
1

r
@r +

�
1� �2

r2

�i
C�(r) = 0; for � 2 R; r > 0: (2.19)

The asymptotic behavior of C� for large r is determined { up to the constant
p
2=� { by

J�(r) � 1p
r
cos
�
r � ��

2
� �

4

�
; Y�(r) � 1p

r
sin
�
r � ��

2
� �

4

�
as r !1; (2.20)

see [33, 7�21 (1), (2)]. Due to the recursion formula @rC� = C��1 � (�=r) C�, see [33, 3�22
(3)], a similar behavior holds for all derivatives @kr C�, k 2 N; in particular, @kr J� and @kr Y�
do decay as r�1=2 and not faster as r !1. Finally, by [33, 3�1 (8), 3�51 (3), 3�52 (3), 3�53
(1)], we know that up to the constant [2��(�+ 1)]�1

J�(r) � r� as r ! 0; (2.21)

and, up to appropriate constants,

Y�(r) �

8><
>:

r�� if � 2 1
2 + Z;

ln r if � = 0;

r�� if � 2 N
as r ! 0: (2.22)
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For later use we de�ne the function

Jn(r) = r�
n�2
2 Jn�2

2

(r): (2.23)

Note that by (2.18) Jn is a smooth function on [0;1), that @krJn (for k � 0, n � 2) decays

as r�
n�1
2 when r !1 and

J2(r) = J0(r) and J3(r) =
1p
r
J 1

2

(r) =

r
2

�

sin r

r
:

Lemma 2.3. Let 0 6= f 2 Lq(Rn), n � 2, q 2 (1;1), be radial with supp bf = @B1.

(i) If n � 3, then necessarily q > 2n
n�1 and f is a multiple of Jn. In particular, if n = 3,

then f is a multiple of (sin r)=r where r = jxj.
(ii) If n = 2 and f 2W 1;q(R2), then q > 4 and f is a multiple of J0.

Proof. Consider a radial function f 2 Lq(Rn), q 2 (1;1), with supp bf = @B1. Then
Lemma 2.2 implies that there exists m 2 N such that (1 + �)mf = 0. In the setting of
radial solutions on Rn the operator (1 + �)m equals Tm

n where Tn is the second order
ordinary di�erential operator

Tn = @2r +
n� 1

r
@r + 1: (2.24)

Let us determine a fundamental system of 2m solutions of the ordinary di�erential equation
Tm
n f(r) = 0.

Assertion. For each m 2 N and dimension n � 2 there hold the identities

Tm
n

�
r�

n
2
+m Jn

2
+m�2(r)

�
= Tm

n

�
r�

n
2
+m Yn

2
+m�2(r)

�
= 0: (2.25)

Proof. For m = 1 we use (2.19) for the Bessel functions C� = J� and C� = Y�. Since

Tn Cn
2
�1(r) =

hn� 2

r
@r +

�n
2
� 1

�2
r�2

i
Cn

2
�1(r);

we get that for every n � 2

Tn
�
r�

n
2
+1 Cn

2
�1(r)

�
= r�

n
2
+1 Tn Cn

2
�1(r)

+
h�
� n

2
+ 1

��
� n

2

�
r�

n
2
�1 + 2

�
� n

2
+ 1

�
r�

n
2 @r +

n� 1

r

�
� n

2
+ 1

�
r�

n
2

i
Cn

2
�1(r)

= 0: (2.26)

Assume that m � 2 and that identity (2.25) holds for m� 1. At �rst we compute

Tn
�
r�

n
2
+mCn

2
+m�2(r)

�
=
h
Tn+2m�2 +

2� 2m

r
@r

i �
r2m�2 � r�(n

2
+m�2) Cn

2
+m�2(r)

�
:

Since Tn+2m�2

�
r�(n

2
+m�2) Cn

2
+m�2(r)

�
= 0 by (2.26) (with n replaced by n + 2m) and�

1
2n + m � 2 + r @r

� Cn
2
+m�2(r) = r Cn

2
+m�3(r), see [33, 3�9 (3)], a lengthy calculation

implies that

Tn
�
r�

n
2
+m Cn

2
+m�2(r)

�
9



=
h
(2m� 2)(2m� 3) r2m�4 + 2(2m� 2) r2m�3 @r +

n+ 2m� 3

r
(2m� 2) r2m�3

� (2m� 2)2 r2m�4 + r2m�2 2� 2m

r
@r

i �
r�(n

2
+m�2) Cn

2
+m�2(r)

�
= (2m� 2) r�

n
2
+m�2

h�n
2
+m� 2 + r @r

�
Cn

2
+m�2(r)

i
= (2m� 2) r�

n
2
+m�1 Cn

2
+m�3(r):

The validity of (2.25) for m� 1 now implies that Tm�1
n Tn

�
r�

n
2
+m Cn

2
+m�2(r)

�
= 0.

Continuation of the proof of Lemma 2.3. To obtain information on Lq-integrability
properties of the functions

r�
n
2
+k Jn

2
+k�2(r); r�

n
2
+k Yn

2
+k�2(r) for n � 2; k 2 N; (2.27)

we look at the behavior of these functions for r ! 0 and r ! 1. By (2.20) the fastest

decaying functions in (2.27) are those with k = 1, they decay as r�
n�1
2 when r ! 1.

Hence the exponent q must satisfy q > 2n
n�1 . Moreover, by (2.21), (2.22), Jn(r) is the

only integrable function in the kernel of Tm
n . To be more precise, it is integrable with all

powers q > 2n
n�1 . If n = 2, then J0; Y0 2 Lq(R2) for all q > 4, but only J0 2W 1;q(R2).

Now let f be an arbitrary radial solution of Tm
n f = 0: To complete the proof it su�ces

to show that f is a linear combination of the 2m functions in (2.27) corresponding to
k = 1; : : : ;m, or in other words, that these functions are linearly independent. However,
the linear independence is an immediate consequence of the decay properties (2.20) taking
also into account the di�erent behavior of the functions cos and sin. Now the proof of
Lemma 2.3 is complete.

Finally we mention and prove a classical result which is important for the discussion
concerning the spectral point � = 0.

Lemma 2.4. Let n � 2. For all 1 < q <1 the set

S0(Rn) :=
�
u 2 S(Rn); supp bu \ f0g = ;	

is dense in Lq(Rn).

Proof. Let � 2 C1
0 (Rn) be radial such that b�(�) = 1 in a neighborhood of 0 and let

�k(x) := �(x=k)=kn, k 2 N. Since k�kk1 is independent of k 2 N, the family of operators
fTkgk2N, de�ned by Tkf := �k � f , f 2 Lq(Rn), is uniformly bounded. Moreover, if
f 2 S(Rn) � Lq(Rn) then Tkf 2 S(Rn) and the estimate

kTkfkq � kfk1 k�kkq � C kfk1 k�n=q0 ; q0 =
q

q � 1
;

shows that Tkf ! 0 as k !1 in this case. Hence the sequence ff � Tkfgk2N lies in the
set S0(Rn) and converges to f in Lq(Rn). Finally, the density of S(Rn) in Lq(Rn) and
the uniform boundedness of the operator family fTkgk2N on Lq(Rn) proves that S0(Rn) is
dense in Lq(Rn).
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As a �rst application we introduce the (two-dimensional) Riesz transforms R0
1, R

0
2

de�ned on R3: (R0
jf)(x) := F�1

�� i (�j=j�0j) bf(�)�, j = 1; 2, where j�0j =
p
�21 + �22 .

Thus, in the Fourier space, the transforms R0
1, R

0
2 are determined by their multipliers

�i �1j�0j = �i cos'; �i �2j�0j = �i sin';

respectively, where ' is the cylindrical coordinate in �-space. Consequently, the multiplier

of
�
i (R0

1 � iR0
2)
�k

equals e�ik', k 2 Z. Obviously, R0
j , j = 1; 2, is a bounded operator on

Lq(R3).

Lemma 2.5. For 1 < q <1 the operators R0
j (j = 1; 2) are bounded linear operators on

D(L1
q) (equipped with the norm (1.4)). In particular, for every k 2 Z and u 2 D(L1

q)

(�+ L1
q)
�
i (R0

1 � iR0
2)
�k
u =

�
i (R0

1 � iR0
2)
�k

(�+ ik + L1
q)u: (2.28)

Proof. A straightforward calculation shows that R0
j , j = 1; 2, commutes with � �� and

maps D(L1
q) to D(�q) \ L

q
�(R3); here �q denotes the Laplace operator in Lq(R3) with

domain D(�q) =W2;q(R3). As to the operator (e3 ^ x) � r = @�, see (2.2), note that for
any u 2 D(L1

q) and any  2 S0(R3)3

(e3 ^ x) � r(iR0

1u);  
�
= �
u; (iR0

1) @� 
�

= �
bu; cos'@'b � = �
bu; @'�(cos') b �+ (sin') b �
=



(iR0

1)(e3 ^ x) � ru;  
�� 
iR0

2u;  
�
:

A similar identity holds for (iR0
2). Since S0(R3)3 is dense in Lq(R3), we conclude that iR0

j ,

j = 1; 2, are well{de�ned, bounded operators on D(L1
q), satisfying

(e3 ^ x) � r
�
i(R0

1 � iR0
2)
�
u =

�
i(R0

1 � iR0
2)
� �
(e3 ^ x) � r � i

�
u:

From this identity and since (R0
1�iR0

2)(R
0
1+iR0

2) = �id, we get (2.28) for every k 2 Z.

3 The spectrum of �L1

q
on R3

The aim of this section is to analyze the spectrum �(�L1
q) for every 1 < q <1. We start

with the corresponding problem for the Laplacian in Rn, n � 2, proceed with the Stokes
operator Aq = �Pq� and �nish with the operator L1

q . We prove the remarkable result
that the type of the spectrum (point spectrum, continuous spectrum, residual spectrum)
changes with q 2 (1;1), but coincides with the essential one for all q. The results and
ideas in the proofs for the Laplace and Stokes operators are needed in the sequel, but are
also of their own interest.

We always denote by q0 the conjugate exponent to q, i.e. q0 = q=(q � 1).

Theorem 3.1. Let n � 2. The Laplacian �q in Lq(Rn) has the following spectral prop-

erties:

�(�q) = �ess(�q) = (�1; 0]; 0 2 �c(�q);

11



for each � � 0 the range R(���q) is not closed, and

(�1; 0) �

8>>><
>>>:

�r(�q); if 1 < q < 2n
n+1 ;

�c(�q); if 2n
n+1 � q � 2n

n�1 ;

�p(�q); if 2n
n�1 < q <1:

Moreover, if 1 < q < 2n
n+1 then for each � < 0 the codimension of the closure of the

range R(���q) equals in�nity. If 2n
n�1 < q <1 then the geometric multiplicity of each

eigenvalue � < 0 is in�nite.

Proof. Without further proof we mention that the multiplier theory shows that � � �q

has a bounded inverse on Lq(Rn) for every � 2 Cr (�1; 0]. Hence �(�q) � (�1; 0]. The
fact that 0 2 �(�q) is well{known, but also follows from the result (�1; 0) � �(�q) to be
proved below. The assertion 0 2 �c(�q) is a consequence of the inclusion S0(Rn) � R(�q)
and Lemma 2.4. Indeed, given f 2 S0(Rn), multiplier theory implies that the function
u de�ned by bu(�) := bf(�)=j�j2 is a solution of the equation ��qu = f in W 2;q(Rn).
Moreover, �q is injective because there is no nontrivial harmonic function in Lq(Rn).

Now let � < 0. Consider at �rst the case 1 < q � 2. Let u 2 W 2;q(
) = D(�q)
satisfy �u ��qu = 0. Using the Fourier transform we get that (� + j�j2)bu = 0 where bu
is a function from Lq

0

(Rn). Hence bu vanishes almost everywhere, consequently bu = 0 and
also u = 0. This proves that �p(�q) = ; for all 1 < q � 2. By duality, we conclude that
�r(�q) = ; when 2 � q <1.

Next let q > 2n
n�1 . Then a calculation shows that (�1��q)Jn = 0 and Jn 2 Lq(Rn),

see (2.23) and Lemma 2.3, in particular (2.25). Hence �1 2 �p(�q). Moreover, since
any partial derivative of Jn of any order is smooth and decays for r ! 1 as fast

as Jn(r) does, i.e. as r�
n�1
2 , any non{zero linear combination of partial derivatives

of Jn(r) is an eigenfunction of �q with the eigenvalue �1 as well. To prove that
the geometric multiplicity of this eigenvalue is in�nite, consider a linear combination
v =

Pm
k=1 �k @

k
1Jn with (0; : : : ; 0) 6= (�1; : : : ; �m) 2 Cm. The Fourier transform of v isbv(�) = �Pm

k=1 �k i
k �k1

� bJn(�), where bJn is a nonzero multiple of the surface measure d� of
the unit sphere of Rn, see [20, Appendix B.4]. Since the polynomial p(t) =

Pm
k=1 �k i

k tk

has at most m real roots and does not vanish identically, also v cannot vanish identically.

By analogy, if q > 2n
n�1 and � < 0, the function Jn

�p��r� 2 Lq(Rn) is an eigenfunction
corresponding to the eigenvalue � of the operator �q of in�nite geometric multiplicity. By
duality, we conclude for 1 < q < 2n

n+1 that �r(�q) = (�1; 0) and that the codimension of
the closure of the range R(���q) equals in�nity.

Now let 2n
n+1 � q � 2n

n�1 . Assume that e.g. �1 2 �r(�q). Then, by de�nition, the
range R(�1��q) is not dense in L

q(Rn), and Hahn{Banach's Theorem yields a nonzero
f 2 Lq0(Rn) such that



(�1��q)u; f

�
= 0 for all u 2 W 2;q(Rn). In Fourier terms we get

that the tempered distribution bf satis�es

0 =


(�1 + j�j2)bu; bf � =


bu; (�1 + j�j2) bf � for all u 2 S(Rn): (3.1)

Hence
supp bf � @B1: (3.2)
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Our aim is to prove that this implies that either f = 0 or f is a non{vanishing multiple
of Jn in Lq

0

(Rn); the latter case however is impossible since q0 � 2n
n�1 . Since the function

f considered up to now is not necessarily a multiple of Jn unless it is radial, we will apply
the average operator M de�ned in Section 2 to construct a radial function f 2 Lq

0

(Rn)
with the above properties (3.1), (3.2). By (3.1) for all u 2 S(Rn)

0 =


Mbu; (�1 + j�j2) bf � =


bu; M�
(�1 + j�j2) bf �� =


bu; (�1 + j�j2)M bf �;
i.e., even M bf instead of bf satis�es (3.1). Hence suppM bf � @B1. Since M bf = dMf is
radial, we conclude from Lemma 2.3 that Mf = cJn. If c 6= 0 then Mf =2 Lq

0

(Rn) for
any q0 � 2n

n�1 ; hence Mf vanishes. Now, denoting uxxx0 := u(� � x0) and fxxx0 := f(� � x0),
we repeat the same argument with uxxx0 instead of u for arbitrary x0 2 Rn and get that

0 =

buxxx0 ; (�1 + j�j2) bf � =



e�ixxx0���� bu; (�1 + j�j2) bf � =


bu; (�1 + j�j2) bfxxx0 �:
Proceeding as before, i.e. replacing u by Mu, we conclude that Mfxxx0 must vanish for
arbitrary x0 2 Rn. Hence

R
BR(xxx0)

f dx = 0 for all x0 2 Rn and all R > 0, and Lebesgue's

Di�erentiation Theorem shows that f = 0 in Lq
0

(Rn).

We have seen for 2n
n+1 � q � 2 that �1 =2 �r(�q) [ �p(�q). To show that �1 2 �c(�q)

we will �nd f 2 S(Rn)rR(�1��q). Indeed, consider any f such that f̂ 2 C1
0 (Rnrf0g)

equals 1 in a neighborhood of j�j = 1. If there exists u 2 D(�q) satisfying (�1��q)u = f ,

then (�1 + j�j2)û(�) = f̂(�) where û 2 Lq0(Rn) since q � 2. Consequently, for j�j close to
1, we see that

1 = jf̂(�)j � 4
��1� j�j�� jû(�)j:

Hence jû(�)j � 1=
�
4j1 � j�j j� for these �; this contradicts the condition û 2 Lq

0

(Rn).
This argument can be applied with any � < 0, not only with � = �1. Thus we proved
(�1; 0) � �c(�q). If 2 < q � 2n

n�1 , the assumption � 2 �p(�q) \ (�1; 0) would lead by

duality to the assertion � 2 �r(�q0) in L
q0(Rn) for 2n

n+1 � q0 < 2 which is impossible. By
the Closed Range Theorem we conclude that (�1; 0) 2 �c(�q) also in this case.

Up to now we have proved that �(�q) = (�1; 0] for all 1 < q < 1. In particular,
since the boundary of the resolvent set of �q coincides with �(�q) = (�1; 0] which as a
continuum does not have isolated points, the spectrum is a purely essential one, cf. [25,
Problem IV.5.37].

Hence nul 0(� � �q) = 1 for all 1 < q < 1 and all � < 0. When 1 < q � 2n
n�1 , we

know that ���q is injective, so that nul(���q) = 0 6= nul 0(���q). Consequently, in
this case, the range R(���q) is not closed. Finally, the Closed Range Theorem implies
even for q > 2n

n�1 that R(���q) is not closed.

Theorem 3.2. Let n � 2. The Stokes operator Aq = �Pq� on L
q
�(Rn) has the following

spectral properties:

�(�Aq) = �ess(�Aq) = (�1; 0]; 0 2 �c(�Aq);

for each � � 0 the range R(�+Aq) is not closed, and

(�1; 0) �

8>>><
>>>:

�r(�Aq); if 1 < q < 2n
n+1 ;

�c(�Aq); if 2n
n+1 � q � 2n

n�1 ;

�p(�Aq); if 2n
n�1 < q <1:
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Moreover, if 1 < q < 2n
n+1 then for each � < 0 the codimension of the closure of the

range R(� + Aq) equals in�nity. If 2n
n�1 < q < 1 then the geometric multiplicity of each

eigenvalue � < 0 is in�nite.

Proof. We follow the ideas of the proof of Theorem 3.1. As is well known, the Stokes
operator � + Aq is boundedly invertible for all � =2 C r (�1; 0]. As in the proof of
Theorem 3.1, we show by means of Lemma 2.4 and multiplier theory that 0 2 �c(�Aq).

If 1 < q � 2 and � < 0, assume that u 2 D(Aq) and rp 2 Lq(Rn) satisfy the
equation �u � �u + rp = 0 in the whole space R3. Since divu = 0, we conclude that
�p = 0 in S 0(Rn) and consequently rp = 0. Using the Fourier transform, we deduce
that (� + j�j2)bu = 0, where bu is a function from Lq

0

(Rn). Hence u = 0, cf. the proof of
Theorem 3.1. This proves that �p(�Aq) = ; for all 1 < q � 2. By duality arguments, in

particular the fact that the dual space of Lq�(Rn) is isomorphic to Lq
0

� (Rn), we also obtain
that �r(�Aq) = ; when 2 � q <1.

Let q > 2n
n�1 . Recall that Jn

�p��r� is an eigenvector of �q corresponding to the
eigenvalue � < 0. Then for i = 1; : : : ; n let us de�ne the solenoidal vector �eld

U(i)(x) := Pq
�Jn�p��r� ei�; (3.3)

where ei denotes the i{th unit vector in Rn. Since � � �q commutes with Pq, we get
(�+Aq)U

(i) = 0. Considering partial derivatives of U(i) of an arbitrary order, we see that
the multiplicity of the eigenvalue � is in�nite. By duality we conclude that (�1; 0) �
�r(�Aq) when 1 < q < 2n

n+1 and that the codimension of R(�+Aq) in L
q
�(Rn) is in�nite

for every � < 0.

Now let 2n
n+1 � q � 2 and assume that �1 2 �r(�Aq), i.e., the closure of the range of

�1 +Aq is a proper subspace of Lq�(Rn). Then Hahn{Banach's theorem yields a nonzero

vector �eld f 2 L
q0
� (Rn) such that

0 =


(�1 + j�j2)bu; bf � =


bu; (�1 + j�j2)bf � for all u 2 Lq�(R
n);

and, since f is solenoidal, even that 0 = h bu; (�1 + j�j2)bf i for all u 2 Lq(Rn). Replacing
u 2 Lq(Rn) by Mu, cf. the proof of Theorem 3.1, we also get that

0 =

dMu; (�1 + j�j2)bf � =


 bu; (�1 + j�j2)dM f
�
:

Hence suppdM f � @B1 and, being radial,M f = cJn, where c 2 Rn, see Lemma 2.3. Since
M f 2 Lq

0

(Rn) and q0 � 2n
n�1 , we conclude that c = 0 and M f = 0. Proceeding as in the

proof of Theorem 3.1 we also derive that M f( : � x0) vanishes for every x0 2 Rn so that
even f = 0 a.e. in Rn. This contradicts the assumption that �1 2 �r(�Aq). The same
arguments can be used for any � < 0.

To prove in this case that (�1; 0) � �c(�Aq) for 2n
n+1 � q � 2 we construct f 2

Lq�(Rn) rR(�1 + Aq). Consider any f with f̂ 2 C1
0 (Rn r f0g) such that f̂(�) = 1 in a

neighborhood of j�j = 1, and let f be de�ned by f(�) = (�2f̂(�);��1f̂(�); 0; : : : ; 0)T so that
f 2 Lq�(Rn). If there exists u 2 D(Aq) with (�1 + Aq)u = f , then (�1 + j�j2)û(�) = f̂(�)
where û 2 Lq0(Rn) since q � 2. Consequently, for j�j � 1 close to 1,

1 � jf̂(�)j � 4
��1� j�j�� jû(�)j:
14



As in the proof of Theorem 3.1 this inequality leads to a contradiction to the condition
û 2 Lq

0

(Rn)n. This argument also proves that (�1; 0) � �c(�Aq) when
2n
n+1 � q � 2.

Then duality arguments imply that (�1; 0) � �c(�Aq) for 2 < q � 2n
n�1 .

So far, we proved for all 1 < q <1 that �(�Aq) = (�1; 0]. Following the arguments
at the end of the proof of Theorem 3.1 we conclude that the spectrum is a purely essential
one and that nul 0(� + Aq) = 1 for all � < 0. Moreover, for 1 < q � 2n

n�1 , the operator
� + Aq is injective and consequently nul(� + Aq) = 0; hence the range of � + Aq is not
closed. Finally, the Closed Range Theorem yields the same result for q > 2n

n�1 .

Now we are ready to discuss our �rst main result on the Stokes operator "with rotation"
L1
q on L

q
�(R3). Besides the set S1, see (1.5), we do need the "relatively open" set

(S1)� :=
1[

k=�1

�
(�1; 0) + ik

	
= S

1
r iZ:

Theorem 3.3. The operator (�L1
q) on Lq�(R3), 1 < q < 1, has the following spectral

properties:

The spectrum of the operator �L1
q is �(�L1

q) = �ess(�L1
q) = S

1 and iZ � �c(�L1
q), For

every � 2 S1 the range R(�+ L1
q) is not closed. Moreover,

(i) if 1 < q < 3
2 , then (S1)� = �r(�L1

q) and for each � 2 (S1)� the codimension of

R(�+ L1
q) equals in�nity,

(ii) if 3
2 � q � 3, then S1 = �c(�L1

q),

(iii) if 3 < q < 1, then (S1)� = �p(�L1
q) and the geometric multiplicity of each eigen-

value � 2 (S1)� is in�nite.

Proof. We follow the ideas of the proof of Theorems 3.1 and 3.2. First we consider � = ik,
k 2 Z, and assume that u 2 D(L1

q) is a solution of the equation
�
� + L1

q

�
u = 0. Then

even
�
���� @� + e3 ^

�
u = 0. Using the Riesz transforms R0

1, R
0
2 and Lemma 2.5, see

(2.28), we may assume that � = 0. Now [10, Theorem 1.1 (3)] yields that u 2 D(L1
q) must

vanish. This shows that � = ik, k 2 Z, cannot be an eigenvalue. By duality arguments,
� = ik =2 �r(L1

q), k 2 Z, as well. Finally, since (S1)� is a subset of the spectrum, see
below, and the spectrum is closed, we still have to show that the range of ik+L1

q is dense
in Lq�(R3) in order to conclude that � = ik 2 �c(L1

q). For simplicity let again � = 0. Then
the solution formula (2.13), see also [10, (2.4), (2.5)], multiplier theory and Lemma 2.4
imply that we �nd a dense subset of Lq�(R3) in the range of L1

q .

If 1 < q � 2 and � 2 (S1)�, assume that (u;rp) 2 D(L1
q)� Lq(R3) satisfy

�u��u� @�u+ e3 ^ u+rp = 0 in R3:

Hence in Fourier space, omitting the gradient of the pressure which will vanish, we see
that in cylindrical coordinates (with � � (j�0j; �3; ') where �0 = (�1; �2))

(�+ j�j2 � @')bu+ e3 ^ bu = 0; (3.4)

where bu 2 Lq
0

(R3) � L2
loc(R

3). We multiply (3.4) by e�ik', k 2 Z, and integrate with
respect to ' 2 (0; 2�) to get for a.a. j�0j = j(�1; �2)j > 0 and �3 2 R the identity

(�� ik + j�j2)buk + e3 ^ buk = 0; (3.5)
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here buk = buk(j�0j; �3) =

Z 2�

0
bu(j�0j; �3; ') e�ik' d'

denotes the k{th Fourier coe�cient (with respect to ') of bu(j�0j; �3; �) 2 L2(0; 2�). Looking
at the third component of the vector identity (3.5), where the term e3 ^ bu yields no
contribution, we conclude that buk3 = 0, k 2 Z, for a.a. (j�0j; �3). Thus bu3(j�0j; �3; �) = 0 for
a.a. (j�0j; �3), and the L2

loc{function bu3 vanishes. Consequently also u3 = 0. The �rst two
components of buk are coupled in (3.5). An easy calculation yields the identity�

(�� ik + j�j2)2 + 1
� bukj = 0; j = 1; 2:

Now similar arguments as applied to u3 above may be used to show that u1 = u2 = 0 as
well. This proves that � 2 (S1)� is not an eigenvalue, i.e. �p(�L1

q) = ; when 1 < q � 2.
By duality we get that �r(�L1

q) = ; when 2 � q <1.

Next let q > 3 and � 2 (S1)�. For simplicity, we assume that � = �1 � ik, k 2 Z;
the general case in which Re� < 0 can be dealt similarly. Assume that u 2 D(L1

q) is
an eigenfunction of �L1

q with eigenvalue �. Then its Fourier transform, a distributionbu 2 S(R3)3, satis�es the equation

(�+ j�j2 � @')bu+ e3 ^ bu = 0

so that

(�+ j�j2 � @')bu3 = 0�
(�+ j�j2 � @')

2 + 1
�buj = 0; j = 1; 2:

The following calculation is formal, since bu cannot be assumed to be a function, but it
will yield an idea how a possible eigenfunction u may look like. Interpreting the equation
for bu3 as a linear homogeneous ordinary di�erential equation of the �rst order with respect
to ', we get for a.a. (j�0j; �3) that there exists a function a3 = a3(j�0j; �3) such that

bu3(j�0j; �3; ') = a3(j�0j; �3) e(�1�ik+j���j2)' = a3(j�0j; �3) e�ik' e(j���j
2�1)':

Since bu3(j�0j; �3; ') must be 2�{periodic in ', we conclude that bu3(�) vanishes unless
� 2 @B1. Therefore, using the characteristic function �@B1

of @B1, let

bu3(j�0j; �3; ') = a3(j�0j; �3) e�ik' �@B1
:

A formal calculation for the di�erential equation for u1 implies the existence of functions
a1 = a1(j�0j; �3), a2 = a2(j�0j; �3) such that

bu1(j�0j; �3; ') = a1 e
�i(k�1)' e(j���j

2�1)' + a2 e
�i(k+1)' e(j���j

2�1)':

In order to get a 2�{periodic function in ', we assume that

bu1(j�0j; �3; ') = a1 e
�i(k�1)' �@B1

+ a2 e
�i(k+1)' �@B1

: (3.6)

The second component u2 has a similar form, but since (�+ j�j2 � @')bu1 � bu2 = 0 and
(j�j2 � 1)�@B1

= 0 in S 0(R3), we are led to the identity

bu2(j�0j; �3; ') = �a1 i e�i(k�1)' �@B1
+ a2 i e

�i(k+1)' �@B1
: (3.7)
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To satisfy the condition divu = 0, we have to require that

0 = � � bu =
�
a1(�1 � i�2) e

�i(k�1)' + a2(�1 + i�2) e
�i(k+1)' + �3a3 e

�ik'
�
�@B1

=
�
(a1 + a2) j�0j+ �3a3

�
e�ik' �@B1

;

since �1 � i�2 = j�0j e�i'.

In view of (3.6), (3.7) let us choose a1 =
1
2 , a2 = �1

2 , a3 = 0 and de�ne the tempered
distributions

bu1(�) = i sin' e�ik' �@B1
; bu2(�) = �i cos' e�ik' �@B1

; bu3(�) = 0;

or, using the Riesz transforms R0
1, R

0
2, see Lemma 2.5, and up to a multiplicative constant,

u1 = �R0
2

�
i (R0

1 � iR0
2)
�k J3 ; u2 = R0

1

�
i (R0

1 � iR0
2)
�k J3 ; u3 = 0: (3.8)

Since J3 2 Lq(R3) for q > 3 and the Riesz transforms R0
1, R

0
2 are bounded on Lq(R3) (and

on Lq(R2)), we see that u 2 L
q
�(R3). Moreover, it is easy to check that (�1�ik+L1

q)u = 0.
Hence � = �1 � ik is an eigenvalue of �L1

q ; its geometric multiplicity is in�nite since by

@j3u, j 2 N, we are able to �nd in�nitely many linearly independent eigenfunctions of
�L1

q . This proves that (S1)� = �p(�L1
q) for q > 3. A duality argument implies that

(S1)� = �r(�L1
q) for 1 < q < 3

2 ; moreover, for each � 2 (S1)� the codimension of the
closure of the range of �+ L1

q is in�nite.

Now let 3
2 � q � 2 and assume that � = �1+ ik 2 (S1)� lies in the residual spectrum

of �L1
q . By (2.28) it su�ces to consider � = �1. Then Hahn{Banach's Theorem yields a

non{vanishing f 2 L
q0
� (R3) such that

h (�1 + j�j2 � @' + e3^)bu; bf i = 0 for all u 2 D(L1
q):

Hence f 2 D((L1
q)
�) = D(L�1

q0 ) and

0 = h bu; (�1 + j�j2 + @' � e3^)bf i (3.9)

where, since divL�1
q0 f = 0, u may run through all of Lq(R3). From (3.9) we conclude that

suppbf � @B1 (3.10)

as follows: Actually, take any bg 2 S(R3)3 with supp bg \ @B1 = ;. Then

bu(�) =
1

1� e�2�(j���j2�1)

Z 2�

0
e�t(j���j

2�1) O(t)T bg(O(t)�) dt;
see (2.13) and [7, (2.7)], [10, p. 300] for related formulas, yields a solution of the equation
(�1 + j�j2 � @' + e3^)bu = bg; moreover, since supp bg \ @B1 = ;, also bu 2 S(R3)3. Then

(3.9) implies that hbg; bf i = 0 and proves (3.10).

To prove that f = 0, let us generalize the last step, take any bv 2 S(R3)3 with supp bv\
@B1 = ;, choose an arbitrary x0 2 R3, and let bu solve the ordinary inhomogeneous linear
�rst order equation�

(�1 + j�j2)� @' + e3 ^
��
e�ix0����bu� = e�ix0���� �(�1 + j�j2)� @' + e3 ^

�bv:
17



As above we conclude that

bu(�) =
eix0����

1� e�2�(j���j2�1)

Z 2�

0
e�t(j���j

2�1) O(t)T e�ix0�O(t)��� �

� �(�1 + j�j2)� @' + e3 ^
�bv(O(t)�) dt

solves this equation and satis�es bu 2 S(R3)3, supp bu\@B1 = ;, as bv did. Hence considering
(3.9) with bu replaced by e�ix0���� bu, we are led to the identity

0 =


e�ix0����bu; (�1 + j�j2 + @' � e3^)bf �

=

bv; (�1 + j�j2 + @' � e3^)

�
e�ix0���� bf ��:

Finally, in the last equation, we replace bv by Mbv, note that M@' = 0, and get that for
all bv 2 S(R3) with supp bv \ @B1 = ;

0 =

bv; M(�1 + j�j2 + @' � e3^)

�
e�ix0���� bf ��

=

bv; (�1 + j�j2 � e3^)M

�
e�ix0���� bf ��:

We conclude that for every x0 2 R3 the radial distribution M
�
e�ix0���� bf � has the property

supp (�1 + j�j2 � e3^)M
�
e�ix0���� bf � � @B1 :

This fact immediately implies that also suppM
�
e�ix0���� bf � � @B1. Hence by Lemma 2.3

M f(� � x0) is a constant multiple of the function J3 =2 Lq
0

(R3) when 2 � q0 � 3. Hence
the constant must vanish, M f( :� x0) = 0 for all x0 2 R3, and Lebesgue's Di�erentiation
Theorem yields the contradiction f = 0. This proves that � = �1 =2 �r(�L1

q).

Since for 3
2 � q � 2 there are also no eigenvalues, we still have to prove that (�1; 0) �

�c(�L1
q). To this aim, let f 2 S(R3) be de�ned by its Fourier transform 0 � f̂ 2 C1

0 (R3)

with support in the �rst octant f�; �1 > 0; �2 > 0; �3 > 0g such that f̂(�) = 1 in a
neighborhood of the point � = 1p

3
(1; 1; 1)T . Then let f 2 L

q
�(R3) be de�ned by f̂(�) =

(��3f(�); 0; �1f̂(�))T . Assuming that f 2 R(�1 + L1
q) there exists u 2 D(L1

q) satisfying
(�1 + L1

q)u = f . Since f is solenoidal, we may ignore the Helmholtz projection in the
de�nition of L1

q and �nd for the third component u3 of u the equation

(�1 + j�j2 � @')û3 = (f̂)3 = �1f̂ :

Now we apply the average operator M , note that M@' = 0 and get for � close to the

point 1p
3
(1; 1; 1)T the estimate j(�1 + j�j2)Mû3(�)j = jM(�1f̂(�))j � � with � > 0.

As in the proofs of Theorems 3.1, 3.2 this estimate will contradict the assumption that
û3 2 Lq

0

(R3). Similarly, we may prove that (�1; 0) � �c(�L1
q). Finally, Lemma 2.5

shows that ik + (�1; 0) � �c(�L1
q) for all k 2 Z, i.e., (S1)� [ iZ = �c(�L1

q).

By duality, we also get that S1 = �c(�L1
q) when 2 < q � 3.

We complete the proof by showing that in each case R(�+ L1
q) is not closed; here we

follow the proofs of Theorems 3.1, 3.2.

Finally we discuss the behavior of the resolvent (� + L1
q)
�1 for � 62 �(�L1

2), when
� = Re� ! �1 and � = Im� is �xed. We do not consider the same result for other
q 2 (1;1), q 6= 2, since our proof is strongly based on L2-Fourier theory.
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Theorem 3.4. For � = � + i�, � < 0, � =2 Z, the operator � + L1
2 has the following

properties: There exists a constant C > 0 independent of � such that

k(�+ L1
2)
�1k2 � C

dist(�;Z)
:

Moreover, for �xed � =2 Z
(�+ L1

2)
�1 ! 0 strongly as �! �1

in the strong operator topology, i.e. k(�+ L1
2)
�1fk2 ! 0 for every f 2 L2

�(R
3). However,

(�+ L1
2)
�1 does not converge to zero in the operator norm as �! �1.

Proof. For simplicity we �x � 2 [�1
2 ;

1
2 ] and let f 2 L2

�(
) so that f 0 = f � rp = f

in (2.5). Then (2.11), (2.13), Plancherel's Theorem, Fubini's Theorem, the inequality of
Cauchy-Schwarz and the orthogonality of the matrix O(t) imply for u = (�+L1

2)
�1f that

kuk22 = kbuk22 =
Z
R3

1

jD(�)j2
����
Z 2�

0
e�(j���j2+�)tOT (t)bf(O(t)�) dt����2 d�

�
Z
R3

1

jD(�)j2
�Z 2�

0
e�(j���j2+�)t dt

�Z 2�

0
e�(j���j2+�)t jbf(O(t)�)j2 dt d�

�
Z
R3

1

jD(�)j2
1� e�2�(j���j2+�)

j�j2 + �

Z 2�

0
e�(j���j2+�)t jbf(O(t)�)j2 dt d�

=

Z
R3

1

jD(�)j2
1� e�2�(j���j2+�)

j�j2 + �

�Z 2�

0
e�(j���j2+�)t dt

�
jbf(�)j2 d�

=

Z
R3

�
1� e�2�(j���j2+�)

(j�j2 + �) jD(�)j
�2
jbf(�)j2 d� ; (3.11)

here D(�) = 1 � exp(�2�(� + j�j2), cf. (2.11). To prove the �rst assertion it su�ces to
�nd a uniform estimate of the multiplier function

m(�) =
1� e�2�(j���j2+�)

(j�j2 + �)D(�)
:

If
��j�j2+��� � 1, then we use the Taylor expansion of the exponential function to get that����1� e�2�(j���j2+�)

j�j2 + �

���� � C and jD(�)j = ��e2� i� � e�2�(j���j2+�)�� � C j�j (3.12)

with a constant C > 0 not depending on �, �; hence jm(�)j � C=j�j for these �. Next
consider the case when

��j�j2 + �
�� > 1. Now we �nd a constant C > 0 independent of �, �

such that

jm(�)j �
��1� e�2�(j���j2+�)����e2� i� � e�2�(j���j2+�)�� � C � C

j�j :

Hence kuk2 � (C=j�j) kfk2. Moreover, (3.11), (3.12) show that we can �nd functions
f� 2 L2

�(R
3) satisfying suppbf = B1(��), kf�k2 = const and k(�+L1

2)
�1f�k2 � const 6= 0.

This implies that the operator family (�+L1
2)
�1 does not converge to zero in the operator

norm.
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For the proof of the strong convergence of the operator family (�+L1
2)
�1 as Re�! �1

it su�ces due to the previous result to consider f in a dense subset of L2
�(R

3), say, in the
set of solenoidal vector �elds f with compact support in Fourier's space. So let f 2 L2

�(R
3)

satisfy suppbf � BR(0), R > 0. For j�j > 2R2 and � 2 BR(0), we �nd a constant C > 0
independent of �, � such that jm(�)j � C=

��j�j2 + �
�� � 2C=j�j. Hence, by (3.11),

k(�+ L1
2)
�1fk2 �

Z
BR(0)

jm(�)j2 jbf(�)j2 d� � C

j�j
Z
BR(0)

jbf(�)j2 d� :
This estimate proves that k(�+ L1

2)
�1fk2 decays as 1=j�j for such a function f .

4 The spectrum of L!

q
on an exterior domain

In this section, we assume that 
 � R3 is an exterior domain with boundary of class C1;1,
di�erent from R3.

Lemma 4.1. For 1 < q <1 it holds �ess(�L!q ) � S!.

Proof. Let � 2 �ess(�L!q ). Then nul 0(� + L!q ) = 1. We will construct a sequence fUmg
in D(L!q ) satisfying kUmkq = 1, k(�+ L!q )Umkq ! 0 as m!1 and

dist
�
Um; Hm�1

�
= 1; m 2 N; (4.1)

where Hm�1 denotes the linear hull of the functions U1, : : : ; Um�1: Suppose that we
have already constructed U1, : : : ; Uk satisfying k(� + L!q )Ujkq � 1=j for j = 1; : : : ; k
and (4.1) for all m = 1; : : : ; k. To �k+1 = 1=(k + 1) there exists an in�nite dimensional
linear manifold Mk+1 in D(L!q ) such that k(� + L!q )ukq � �k+1kukq for all u 2 Mk+1.
Then due to Lemma IV.2.3 in [25], we �nd Uk+1 2 Mk+1 such that kUk+1kq = 1 and
dist

�
Uk+1; Hk

�
= 1. The sequence fUmg satis�es

k(�+ L!q )Umkq � 1

m
for all m 2 N: (4.2)

Denote fm := (�+ L!q )Um. The function Um satis�es the estimate

kUmk2;q + k(! � x) � rUmkq � c3 kfmkq +
�
c4 + c5 j�j

� kUmkq ; (4.3)

where the constants c3, c4, c5 are independent of Um. This estimate was proved in [10] in
the case when 
 = R3 and its validity was later con�rmed in the case of an exterior domain
with a C1;1{boundary in [14, Lemma 2.2]. Using (4.3), we observe that the sequence fUmg
is bounded in the space D(L!q ). Hence there exists a subsequence, again denoted by fUmg,
which is weakly convergent in D(L!q ). The subsequence preserves the property (4.2).

Put Vm := (Um+1 �Um)=�m where �m = kUm+1 �Umkq. Then fVmg is a sequence
in the unit sphere in L

q
�(
). The weak limit of this sequence in D(L!q ) must be zero

because (Um+1 � Um) * 0 in L
q
�(
) as m ! 1 and by (4.1) �m � 1. Hence fVmg

converges strongly to 0 in W1;q(
R)
3 for each R > 0; here we denote 
R := 
 \ BR(0).

Note that k(�+ L!q )Vmkq ! 0 as m!1.
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The sequence fVmg does not contain any subsequence, convergent in Lq�(
) as we will
easily prove by contradiction: Assume that fVkmg is a convergent subsequence of fVmg
in Lq�(
). This subsequence has the same weak limit as fVmg, hence Vkm * 0 in Lq�(
)
as m ! 1. Then the strong limit of the sequence fVkmg in L

q
�(
) must also be zero.

However, this is impossible because kVkmkq = 1.

Further, we use a standard cut{o� procedure combined with the so called Bogovskij
operator, see [13, proof of Theorem 3.1] or [14, proof of Lemma 4.2] for more details.
With these tools we modify the functions Vm in 
R (for a �xed R > 0 so large that
R3 r BR�1(0) � 
) such that the new functions, denoted by ~Vm, are equal to zero in

R�1 := 
\BR�1(0), remain in some ball of Lq�(
), and also satisfy k(�+L!q ) ~Vmkq ! 0

as m!1. Moreover, k ~Vmk1;q; 
R � C kVmk1;q; 
R , where the constant C is independent
of m. Hence ~Vm ! 0 strongly in W1;q(
R)

3.

The sequence f ~Vmg does not contain any subsequence convergent in Lq�(
): Otherwise
one can easily derive a contradiction with the facts that Vm ! 0 strongly in Lq(
R) and
the sequence fVmg is non{compact in Lq�(
).

Thus, the functions ~Vm, extended by zero to R3 r 
, de�ne a non{compact sequence
in the unit sphere in L

q
�(R3) such that

�
� + (L!q )R3

�
~Vm ! 0 in L

q
�(R3) as m ! 1;

here (L!q )R3 denotes the operator L!q , acting on functions de�ned in the whole R3, i.e. the
operator treated in Section 3. Hence nul 0

�
� + (L!q )R3

�
= 1, which means that � 2

�(�(L!q )R3). Since �
��(L!q )R3� = S! by Theorem 1.1, we have proven that � 2 S!.

Lemma 4.2. For 1 < q <1 one has S! � �ess(�L!q ).

Proof. Let � 2 S!. Then � 2 �ess
��(L!q )R3� by Theorem 1.1, where (L!q )R3 is the \whole

space" operator de�ned in the proof of the previous Lemma 4.1. Thus, nul 0
�
�+(L!q )R3

�
=

1. Following the idea from the proof of Lemma 4.1, we choose R > 0 so large that
R3 r BR�1(0) � 
 and we construct a non{compact sequence f ~Vmg in the unit sphere
in L

q
�(R3) such that ~Vm = 0 in 
R�1 and (� + (L!q )R3) ~Vm ! 0 in L

q
�(R3) as m ! 1.

However, if we denote the restriction of ~Vm to 
 again by ~Vm, we get a non{compact
sequence in L

q
�(
) such that k ~Vmkq; 
 = 1 and (� + L!q ) ~Vm ! 0 in L

q
�(
) as m ! 1.

This means that nul 0(�+L!q ) =1. We can prove in the same way that nul 0
�
�+(L!q )�

�
=

1. Hence def 0(� + L!q ) = 1, and the operator � + L!q is not semi{Fredholm. Thus,
� 2 �ess(�L!q ).

Lemmas 4.1 and 4.2 imply that �ess(�L!q ) = S!.

Lemma 4.3. Let � 2 CrS!. Then either � is an eigenvalue of �L!q for all 1 < q <1,

whose both algebraic and geometric multiplicities are �nite and independent of q, or � 2
�(L!q ) for all 1 < q < 1. Each eigenfunction and each generalized eigenfunction belongs

to
T

1<s<1D(L!s ). Moreover, [CrS!] \ f� 2 C; Re� � 0g � �(L!q ).

Proof. Since S! = �ess(�L!q ), the set C r S! is a subset of �(�L!q ), with the possible
exception of at most a countable set of isolated eigenvalues of (�L!q ), which have �nite
algebraic multiplicities, see [25, p. 243].

Thus, assume that w is an eigenfunction of �L!q , corresponding to an eigenvalue
� 62 S!. The fact that then � is an eigenvalue of L!s for all 1 < s < 1 is proven in [14].
The idea of the proof is as follows: Let R > 0 be so large that R3rBR�1(0) � 
. We split
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w by means of an appropriate cut{o� function procedure and the Bogovskij operator to
the sumw1+w2, where bothw1 andw2 belong to D(L!q ), w1 is supported in R

3rBR�1(0)
and w2 is supported in 
 \ BR(0). Then (� + L!q )w1 = f1, where f1 can be explicitly
calculated and is supported in BR(0) r BR�1(0). Since w 2 D(L!q ), elliptic regularity
theory and Sobolev's embedding theorem prove that f1 2 Ls�(
) for all 1 < s < q� where
q� = nq

n�q if q < n and q� = 1 if q > n. Extending f1 by zero to R3 r 
, we get a

function from Ls�(R
3). Applying Theorem 2.1, we deduce that w1, extended by zero to

R3 r 
, belongs to Ls�(R
3), s < q�, as well. Applying further estimate (4.3), we obtain

that w1 2 D((L!s )R3). Furthermore, since w2 is supported in a bounded subdomain of 
,
we verify that w2 2 D(L!s ) for all 1 < s < q�. Repeating his step �nitely many times,
if necessary, we see that w = w1 + w2 2 D(L!s ) for all 1 < s < 1. Therefore, w is an
eigenfunction of �L!s to the eigenvalue � for all 1 < s <1.

Since the geometric multiplicity of � is the maximum number of linearly independent
associated eigenfunctions w, and these eigenfunctions are independent of s, the geometric
multiplicity of � is also independent of s.

The algebraic multiplicity of �, since it is �nite, equals the sum of the lengths of all
linearly independent chains of the so called generalized eigenfunctions, associated with the
eigenvalue �. If w1, : : : ; wm is such a chain, then (� + L!q )w1 = 0 and (� + L!q )wk =

wk�1 for k = 2; : : : ;m. By analogy with the eigenfunction w discussed above, one can
successively show that all the functions w1, : : : ; wm also belong to D(L!s ) for all 1 <
s < 1. Consequently, the algebraic multiplicity of �, as an eigenfunction of �L!s , is
independent of s as well.

Finally, if � 2 C r S!, Re� � 0, then one can prove that the operator � + L!2 has
a bounded inverse in L2

�(
), just multiplying the resolvent equation (� + L!2 )u = f by
u and integrating on 
. Hence � 2 �(�L!2 ). Due to the explanation given above, � is
not an eigenvalue of L!q for any q 2 (1;1) and � also cannot belong to �r(�L!q ). Hence
� 2 �(�L!q ), independently of q.

Lemma 4.4. Let domain 
 be axially symmetric about the x3{axis and � 2 CrS!. Then

� 2 �(L!q ).

Proof. We have proved in [12] that if 
 is axially symmetric about the x3{axis then
�(L!2 ) = S!. Hence all � 2 C rS! belong to �(L!2 ). Due to Lemma 4.3, these � belong
to �(L!q ) for all q 2 (1;1) as well.

The next theorem resumes the results of Lemmas 4.1{4.4.

Theorem 4.5. Let 1 < q <1 and 
 � R3 be an exterior domain with boundary of class

C1;1. Then

(i) �ess(�L!q ) = S!,

(ii) fz 2 C; Re z � 0gr fz = i!k; k 2 Zg � �(�L!q ),
(iii) each � 2 C rS! with Re� < 0 is either an eigenvalue of �L!q for all 1 < q < 1,

whose both algebraic and geometric multiplicities are �nite and independent of q, or
� 2 �(�L!q ) for all 1 < q < 1; moreover, each eigenfunction and each generalized

eigenfunction belongs to
T

1<s<1D(L!s ),
(iv) if the domain 
 is axially symmetric about the x3{axis, then �(�L!q ) = CrS!.
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