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Consider the Navier-Stokes equations in a smooth bounded domain Ω ⊂ R3 and
a time interval [0, T ), 0 < T ≤ ∞. It is well-known that there exists at least
one global weak solution u with vanishing boundary values u

∣∣
∂Ω

= 0 for any given

initial value u0 ∈ L2
σ(Ω), external force f = div F , F ∈ L2

(
0, T ; L2(Ω)

)
, and

satisfying the strong energy inequality. In this paper we extend this existence
result to the case of inhomogeneous boundary values u

∣∣
∂Ω

= g 6= 0. Given f as
above and u0 ∈ L2(Ω) satisfying the necessary compatibility conditions div u0 = 0
and N ·u0

∣∣
∂Ω

= N ·g, where N denotes the exterior normal vector on ∂Ω, we prove

as a main result the existence of a weak solution u satisfying u
∣∣
∂Ω

= g, the strong
energy inequality and an energy estimate.
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1 Introduction and main results

Throughout this paper Ω ⊂ R3 denotes a bounded domain with boundary ∂Ω of
class C1,1 and [0, T ), 0 < T ≤ ∞, is a given time interval. We are interested in
the Navier-Stokes system

ut −∆u + u · ∇u +∇p = f, div u = 0
u
∣∣
∂Ω

= g, u(0) = u0
(1.1)
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in [0, T ) × Ω where the initial value u0, the boundary values g and the external
force f satisfy the properties

u0 ∈ L2(Ω), g ∈ W
1
2
,2(∂Ω), f = div F, F ∈ L2

(
0, T ; L2(Ω)

)
(1.2)

and the compatibility conditions

div u0 = 0 in Ω, N · u0

∣∣
∂Ω

= N · g. (1.3)

Here N = N(x) denotes the exterior normal vector at x ∈ ∂Ω, so that (1.3) yields
the flux condition

∫
∂Ω

N · g dσ = 0.
Before discussing (1.1) with g 6= 0 let us recall some classical results in the

case g = 0.

Definition 1.1 Let u0 ∈ L2
σ(Ω) and f = div F , F ∈ L2

(
0, T ; L2(Ω)

)
. Then a

vector field
u ∈ L∞(

0, T ; L2(Ω)
)
∩ L2

(
0, T ; W 1,2

0 (Ω)
)

(1.4)

is called a weak (Leray-Hopf) solution of (1.1) in [0, T )× Ω with data u0, g = 0,
f if

−〈u, wt〉Ω,T + 〈∇u,∇w〉Ω,T − 〈uu,∇w〉Ω,T = 〈u0, w(0)〉Ω − 〈F,∇w〉Ω,T

is satisfied for each test function w ∈ C∞
0

(
[0, T ); C∞

0,σ(Ω)
)
, and u satisfies the

energy inequality

1

2
‖u(t)‖2

2 +

∫ t

0

‖∇u‖2
2 dτ ≤ 1

2
‖u0‖2

2 −
∫ t

0

〈F,∇u〉Ω dτ (1.5)

for 0 ≤ t < T .

In this definition 〈·, ·〉Ω denotes the pairing of vector fields in Ω, and 〈·, ·〉Ω,T

means the corresponding pairing in [0, T ) × Ω. Given a vector field u on Ω, let
u · ∇u = (u · ∇)u = u1D1u + u2D2u + u3D3u where Dj = ∂/∂xj, j = 1, 2, 3.
For a matrix field F = (Fij)

3
i,j=1 let f = div F = (D1F1j + D2F2j + D3F3j)

3
j=1

so that when div u = 0 and uu = (uiuj)
3
i,j=1, we have u · ∇u = div (uu). With

C∞
0,σ(Ω) = {v ∈ C∞

0 (Ω) : div v = 0} we define L2
σ(Ω) = C∞

0,σ(Ω)
‖·‖2

where ‖·‖q

denotes the norm of the Lebesgue space Lq(Ω), 1 ≤ q ≤ ∞. For vector fields u,
it will be convenient to define the Lq-norm by the Lq-norm of the scalar function
|u|, where | · | denotes the Euclidean norm in R3. Further, W k,q(Ω), k ∈ N0,

1 ≤ q < ∞, and W k,q
0 (Ω) = C∞

0 (Ω)
‖·‖

Wk,q(Ω) denote the usual Sobolev spaces.
Finally we need the Bochner spaces Ls

(
0, T ; Lq(Ω)

)
, 1 < s, q < ∞, with norm

‖·‖Ls(0,T ;Lq(Ω)) = ‖·‖q,s;T =
( ∫ T

0

‖·‖s
q dτ

)1/s

,
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and correspondingly the spaces L∞(
0, T ; L2(Ω)

)
, L∞

loc

(
[0, T ); L2(Ω)

)
, and

L2
(
0, T ; W 1,2

0 (Ω)
)
. The trace space of functions in W 1,q(Ω), 1 < q < ∞, is

denoted by W 1− 1
q
,q(∂Ω), its dual space by W

− 1
q′ ,q

′
(∂Ω), q′ = q

q−1
. The surface

measure on ∂Ω is called dσ.
As is well-known there always exists at least one weak solution u in the sense

of Definition 1.1 of the Navier-Stokes system (1.1) with g = 0. We may assume
without loss of generality (after modifying u on a null set in (0, T )) that u :
[0, T ) → L2

σ(Ω) is weakly continuous. Thus u
∣∣
t=0

= u0 is well-defined. Further,
there exists a distribution p in (0, T )× Ω such that

ut −∆u + u · ∇u +∇p = f in (0, T )× Ω

in the sense of distributions. Finally, from (1.5) and the Cauchy-Schwarz inequal-
ity we obtain the energy estimate

‖u(t)‖2
2 +

∫ t

0

‖∇u‖2
2 dτ ≤ ‖u0‖2

2 +

∫ t

0

‖F‖2
2 dτ, 0 ≤ t < T. (1.6)

The extension from homogeneous boundary values g = 0 to the case g 6= 0 in
(1.1) requires some obvious modifications caused by the compatibility conditions
(1.3). Further, the form of the energy inequalities (1.5), (1.6) will be different,
see (1.13), (1.15) below, but as before, they are formally obtained by testing the
Navier-Stokes system with the weak solution u itself.

For this purpose we have to find a suitable extension E ∈ W 1,2(Ω) of the
given boundary data

g ∈ W
1
2
,2(∂Ω) with

∫
∂Ω

N · g dσ = 0, (1.7)

e.g., as the uniquely determined weak solution of the stationary Stokes system

−∆E +∇p̃ = f0 = div F0, div E = 0, E
∣∣
∂Ω

= g (1.8)

with data g, f0 = div F0 where F0 ∈ L2(Ω), and pressure p̃ ∈ L2(Ω) satisfying
the estimate

‖E‖W 1,2(Ω) ≤ c
(
‖F0‖2 + ‖g‖W 1/2,2(∂Ω)

)
(1.9)

with a constant c = c(Ω) > 0. In particular, if F0 = 0, then the map g 7→ E

is a well-defined linear bounded extension operator from W
1
2
,2(∂Ω) to W 1,2(Ω).

However, we will see that it is reasonable to consider also the inhomogeneous
Stokes system (1.8) with f0 6= 0.

Now, setting v = u− E and h = p− p̃ we can write (1.1) in the form

vt −∆v + (v + E) · ∇(v + E) +∇h = f − f0, div v = 0
v
∣∣
∂Ω

= 0, v(0) = v0
(1.10)
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where v0 = u0 − E. Since

(v + E) · ∇(v + E) = v · ∇v + (v · ∇E + E · ∇v) + E · ∇E,

the system (1.10) may be considered as a perturbation of the usual Navier-Stokes
system with zero boundary conditions, using the perturbation terms E · ∇E and
v · ∇E + E · ∇v. Moreover, formally testing (1.10) with a weak solution v itself
and noting the identity 〈(v +E) ·∇v, v〉Ω = 1

2

∫
Ω
(v +E) ·∇|v|2 dx = 0, we get the

energy inequality (1.13) below. Since v : (0, T ] → L2
σ(Ω) is weakly continuous (as

in the case above), we conclude that v
∣∣
t=0

= v0 is well-defined, v0 ∈ L2
σ(Ω) and

div u0 = 0, N · u0

∣∣
∂Ω

= N · g as in (1.3).
These considerations lead to the following definition:

Definition 1.2 (Navier-Stokes system with u
∣∣
∂Ω

= g) Let u0 ∈ L2(Ω), g ∈
W

1
2
,2(∂Ω) satisfy the compatibility conditions div u0 = 0 in Ω, N · u0

∣∣
∂Ω

= N · g,
cf. (1.3), let f = div F , F ∈ L2

(
0, T ; L2(Ω)

)
, be given, and let E ∈ W 1,2(Ω)

be the weak solution of the Stokes system (1.8) with data g, f0 = div F0 where
F0 ∈ L2(Ω), satisfying the a priori estimate (1.9). Then a vector field

u ∈ L∞
loc

(
[0, T ); L2(Ω)

)
∩ L2

loc

(
[0, T ); W 1,2(Ω)

)
(1.11)

is called a weak (Leray-Hopf) solution of the system (1.1) in [0, T )×Ω with data
u0, g and f if the relation

−〈u, wt〉Ω,T + 〈∇u,∇w〉Ω,T − 〈uu,∇w〉Ω,T = 〈u0, w(0)〉Ω − 〈F,∇w〉Ω,T (1.12)

is satisfied for all w ∈ C∞
0

(
[0, T ); C∞

0,σ(Ω)
)
, and if the energy inequality

1

2
‖u(t)−E‖2

2+

∫ t

0

‖∇(u−E)‖2
2 dτ ≤ 1

2
‖u0−E‖2

2−
∫ t

0

〈F−F0−uE,∇(u−E)〉Ω dτ

(1.13)
holds for all 0 ≤ t < T .

Now our main result reads as follows:

Theorem 1.3 Let u0 ∈ L2(Ω) and g ∈ W
1
2
,2(∂Ω) satisfy the compatibility con-

ditions (1.3), let f = div F with F ∈ L2
(
0, T ; L2(Ω)

)
and f0 = div F0 where

F0 ∈ L2(Ω) be given, and let E ∈ W 1,2(Ω) satisfy (1.8), (1.9). Then there exists
at least one weak solution u of the Navier-Stokes system (1.1) with data u0, g, f
in [0, T ) × Ω in the sense of Definition 1.2. This solution u satisfies the strong
energy inequality

n
1

2
‖u(t)− E‖2

2 +

∫ t

s

‖∇(u− E)‖2
2 dτ

≤ 1

2
‖u(s)− E‖2

2 −
∫ t

s

〈F − F0 − uE,∇(u− E)〉Ω dτ

(1.14)
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for almost all s ∈ (0, T ) and all t ∈ (s, T ), and the energy estimate

1
2
‖u− E‖2

2,∞;T ′ + ‖∇(u− E)‖2
2,2;T ′

≤ 2eαT ′‖E‖84
(
‖u0 − E‖2

2 + 2‖F − F0‖2
2,2;T ′ + 4T ′‖E‖4

4

) (1.15)

for all finite 0 < T ′ ≤ T , where α ≥ 0 is an absolute constant.

Theorem 1.3 considers the worst and most general case in which the energies
1
2
‖u − E‖2

2,∞,T ′ and ‖∇(u − E)‖2
2,2;T ′ may grow exponentially in time with an

exponent proportional to ‖E‖8
4, i.e., when α > 0. Here, we may simply take E

as the solution of the Stokes system (1.8) with data g and f0 = 0. However, a
modification of its proof will show that under certain assumptions on the bound-
ary data and a careful choice of E, better to say, of F0 in (1.8), the exponent α
in (1.15) may vanish. Since generally the vector field E will not be the limit of
the weak solution u(t) as t → ∞, the energy term ‖∇(u − E)‖2

2,2;T ′ necessarily
implies a linear growth in time in the energy estimate.

Corollary 1.4 Let Ω ⊂ R3 be a bounded and possibly multiply connected domain
with boundary components Γ0, . . . , Γm of class C1,1. Further let u0 ∈ L2(Ω),

f = div F , F ∈ L2
(
0, T ; L2(Ω)

)
and g ∈ W

1
2
,2(∂Ω) satisfy

div u0 = 0, u0

∣∣
∂Ω

= g

and the flux condition ∫
Γj

N · g dσ = 0 for j = 0, . . . ,m. (1.16)

Then there exists a vector field E ∈ W 1,2(Ω) and a weak (Leray-Hopf) solution
u of the Navier-Stokes system (1.1) satisfying (1.11) – (1.12) and the energy
estimate

‖u− E‖2
2,∞;T ′ + ‖∇(u− E)‖2

2,2;T ′ (1.17)

≤ ‖u0 − E‖2
2 + 8‖F‖2

2,2;T ′ + cT ′(‖g‖2
W 1/2,2(∂Ω) + ‖g‖4

W 1/2,2(∂Ω)

)
for all finite 0 < T ′ ≤ T where c = c(Ω) > 0.

Before proving Theorem 1.3 and Corollary 1.4 in Section 2 we summarize some
well-known results and introduce further notations.

For a bounded smooth domain Ω ⊂ R3 as in Section 1 let P : L2(Ω) → L2
σ(Ω)

denote the Helmholtz projection, and let A : D(A) → L2
σ(Ω), A = −P∆, denote

the Stokes operator with domain D(A) = W 2,2(Ω) ∩W 1,2
0 (Ω) ∩ L2

σ(Ω) and range
R(A) = L2

σ(Ω). Then Aα : D(Aα) → L2
σ(Ω), −1 ≤ α ≤ 1, denote the fractional

powers of A; it holds

D(A) ⊆ D(Aα) ⊆ L2
σ(Ω), R(Aα) = L2

σ(Ω) for 0 ≤ α ≤ 1,
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and (Aα)−1 = A−α for −1 ≤ α ≤ 1. In particular, the square root A1/2 of A
satisfies

〈A
1
2 v, A

1
2 w〉 = 〈∇v,∇w〉 for v, w ∈ D(A

1
2 ) = W 1,2

0,σ (Ω) := W 1,2
0 (Ω) ∩ L2

σ(Ω).

Moreover, Aα is a selfadjoint operator in L2
σ(Ω) for every α ∈ [−1, 1].

Let v ∈ D(Aα), 0 ≤ α ≤ 1
2
, and let 2 ≤ q < ∞ satisfy 2α + 3

q
= 3

2
. Then we

obtain the embedding estimate

‖v‖q ≤ c‖Aαv‖2 (1.18)

with c = c(α) > 0. Moreover, if v ∈ D(A) and 0 ≤ α ≤ 1, then

‖Aαv‖2 ≤ ‖Av‖α
2 ‖v‖1−α

2 (1.19)

and, if v ∈ D(A
1
2 ), 0 ≤ α ≤ 1, then

‖A
α
2 v‖2 ≤ ‖A

1
2 v‖α

2 ‖v‖1−α
2 , (1.20)

where ‖A 1
2 v‖2 = ‖∇v‖2. As consequence of (1.18) and (1.20) we see that for

2 ≤ q < ∞ and β = 3
2
− 3

q
there exists a constant c = c(β) > 0 such that

‖v‖q ≤ c‖∇v‖β
2 ‖v‖

1−β
2 for v ∈ W 1,2

0,σ (Ω). (1.21)

Let F = (Fij)
3
i,j=1 ∈ L2(Ω) be given. Then the term A− 1

2 P div F is well-
defined (in a generalized sense) in L2

σ(Ω) by the relation

〈A− 1
2 P div F, v〉Ω = 〈F,∇A− 1

2 v〉, v ∈ L2
σ(Ω),

and it holds
‖A− 1

2 P div F‖2 ≤ ‖F‖2 ; (1.22)

indeed, w := A− 1
2 (A− 1

2 P div F ) is the weak solution of the Stokes system −∆w+
∇h = div F in W 1,2

0,σ (Ω) with pressure h. For the latter results we refer to [9,
Chapter III].

The Yosida approximation, based on the operator A
1
2 , is defined by the se-

quence of operators

Jk =
(
I +

1

k
A

1
2

)−1
, k ∈ N,

where I denotes the identity. As is well-known,

‖Jkv‖2 ≤ ‖v‖2, ‖1

k
A

1
2 Jkv‖2 ≤ ‖v‖2 for k ∈ N, v ∈ L2

σ(Ω), (1.23)

and Jkv → v in L2(Ω) as k →∞ for every v ∈ L2
σ(Ω). Moreover, for k ∈ N,

‖∇Jkv‖2 = ‖A
1
2 Jkv‖2 = ‖JkA

1
2 v‖2 ≤ ‖A

1
2 v‖2 = ‖∇v‖2, v ∈ D(A

1
2 ). (1.24)
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The operator −A generates a bounded analytic semigroup e−tA : L2
σ(Ω) →

L2
σ(Ω), 0 ≤ t < ∞, such that for 0 ≤ α ≤ 1

‖Aαe−tAv‖2 ≤ t−α‖v‖2 for t > 0, v ∈ L2
σ(Ω), (1.25)

see [9, Chapter IV.1]
Finally we need some properties of the linear instationary Stokes system

vt −∆v +∇h = f̂ , div v = 0 in Ω× (0, T )
v
∣∣
∂Ω

= 0, v(0) = v0 at t = 0
(1.26)

with data v0 ∈ L2
σ(Ω), f̂ = div F̂ , where F̂ ∈ L2

(
0, T ; L2(Ω)

)
. There exists a

unique weak solution v ∈ L∞(
0, T ; L2

σ(Ω)
)
∩ L2

(
0, T ; W 1,2

0 (Ω)
)

defined by the
relation

−〈v, wt〉Ω,T + 〈∇v,∇w〉Ω,T = 〈v0, w(0)〉 − 〈F̂ ,∇w〉Ω,T ,

w ∈ C∞
0

(
[0, T ); C∞

0,σ(Ω)
)
, which has the well-defined integral representation

v(t) = e−tAv0 +

∫ t

0

A
1
2 e−A(t−τ) A− 1

2 P div F̂ dτ, 0 ≤ t < T. (1.27)

Moreover, the solution v satisfies the energy inequality

1

2
‖v(t)‖2

2 +

∫ t

0

‖∇v‖2
2 dτ ≤ 1

2
‖v0‖2

2 −
∫ t

0

〈F̂ ,∇v〉Ω dτ, 0 ≤ t < T, (1.28)

and consequently the energy estimate

‖v‖2
2,∞;T + ‖∇v‖2

2,2;T ≤ ‖v0‖2
2 + ‖F̂‖2

2,2;T . (1.29)

Further, v : [0, T ) → L2
σ(Ω) is strongly continuous, see [9, Chapter IV].

2 Proofs

There are several proofs of Theorem 1.3 when u
∣∣
∂Ω

= g = 0, see e.g. [6] - [9], [11].
Usually, in a first step, a sequence of approximate equations yields approximate
solutions uk, k ∈ N. In a second step energy estimates for uk with a bound
independent of k ∈ N are derived. Hence a subsequence of (uk) will converge in a
weak sense to an element u which is shown to be a solution of the original prob-
lem. One possibility is to use the Yosida approximation yielding the approximate
system

ut −∆u + (Jku) · ∇u +∇p = f, div u = 0

u
∣∣
∂Ω

= 0, u(0) = u0.
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In the following we will use a modification of this procedure and consider the
mollified perturbed system

vt −∆v + (Jkv + E) · ∇(v + E) +∇p = f, div v = 0

v
∣∣
∂Ω

= 0, v(0) = v0 (2.1)

where u0, E are given as in Definition 1.2, and

v0 = u0 − E ∈ L2
σ(Ω), f = div (F − F0),

F ∈ L2
(
0, T ; L2(Ω)

)
, F0 ∈ L2(Ω).

(2.2)

We may assume in the following that E 6= 0. Then we are looking for a weak
solution

v = vk ∈ L∞
loc

(
[0, T ); L2

σ(Ω)
)
∩ L2

loc

(
[0, T ); W 1,2

0 (Ω)
)

(2.3)

of (2.1) with data (2.2) in the sense that

− 〈v, wt〉Ω,T + 〈∇v,∇w〉Ω,T − 〈(Jkv + E) · (v + E),∇w〉Ω,T

= 〈v0, w(0)〉Ω − 〈F − F0,∇w〉Ω,T (2.4)

for all w ∈ C∞
0

(
[0, T ; C∞

0,σ(Ω)
)
, and satisfying the energy inequality

1

2
‖v(t)‖2

2 +

∫ t

0

‖∇v‖2
2 dτ ≤ 1

2
‖v0‖2

2 −
∫ t

0

〈F − F0 − (Jkv + E)E,∇v〉Ω dτ, (2.5)

0 ≤ t < T .

Lemma 2.1 For every k ∈ N there exists some 0 < Tk = T (k, ‖v0‖2, ‖F −
F0‖2,2;T , ‖E‖4) ≤ min(1, T ) such that the perturbed mollified Navier-Stokes system
(2.1) has a unique weak solution

v = vk ∈ XTk
:= L∞(

0, Tk; L
2
σ(Ω)

)
∩ L2

(
0, Tk; W

1,2
0 (Ω)

)
(2.6)

in the sense (2.4), (2.5).

Proof First assume that v = vk ∈ Xk := XTk
is a weak solution of (2.1) satisfying

(2.3), (2.4), (2.5). To estimate its norm in the space Xk, i.e., the norm

‖v‖Xk
= ‖v‖2,∞;Tk

+ ‖∇v‖2,2;Tk
,

we have to analyze the nonlinear term (Jkv + E)(v + E). By Hölder’s inequality
and the properties (1.18), (1.20), (1.23) with σ = 8, s = 8

3
, β = 3

8
we get when

0 < Tk ≤ 1, that

‖(Jkv + E)(v + E)‖2,2;Tk
≤ ‖Jkv + E‖4,σ;Tk

‖v + E‖4,s;Tk

≤ c(‖AβJkv‖2,σ;Tk
+ ‖E‖4,σ;Tk

)(‖Aβv‖2,s;Tk
+ ‖E‖4,s;Tk

)

≤ c
(
(‖A

1
2 Jkv‖

3
4
2 ‖Jkv‖

1
4
2 )σ;Tk

+ ‖E‖4,σ;Tk

)
×

(
(‖A

1
2 v‖

3
4
2 ‖v‖

1
4
2 )s;Tk

+ ‖E‖4,s;Tk

)
≤ c(k

3
4‖v‖2;8;Tk

+ T
1
8

k ‖E‖4)(‖v‖Xk
+ T

1
8

k ‖E‖4),

8



where c > 0 is an absolute constant. Hence we obtain the estimate

‖(Jkv + E)(v + E)‖2,2;Tk
≤ c k

3
4 T

1
8

k

(
‖v‖Xk

+ ‖E‖4

)2
. (2.7)

Defining the nonlinear operators

Fk(v) = F − F0 − (Jkv + E)(v + E), fk(v) = div Fk(v), (2.8)

we can write (2.1) in the form

vt −∆v +∇p = fk(v), div v = 0,

v
∣∣
∂Ω

= 0, v(0) = v0.
(2.9)

By the above estimate (2.7), Fk(v) ∈ L2
(
0, Tk; L

2(Ω)
)

so that v may be considered
as the weak solution of the Stokes system (2.9). Hence (1.26), (1.27) yield the
representation and fixed point problem

v = Fk(v) in Xk (2.10)

where

Fk(v)(t) = e−tAv0 +

∫ t

0

A
1
2 e−(t−τ)A− 1

2 Pdiv Fk(v)(τ) dτ, (2.11)

0 ≤ t < Tk. Moreover, by the energy estimate (1.29)

‖Fk(v)‖Xk
≤ c

(
‖v0‖2 + ‖F − F0‖2,2;Tk

)
+ c k

3
4 T

1
8

k

(
‖v‖Xk

+ ‖E‖4

)2
,

or, for short,

‖Fk(v)‖Xk
+ d ≤ a

(
‖v‖Xk

+ d
)2

+ b (2.12)

where

a = c k
3
4 T

1
8

k , b = c
(
‖v0‖2 + ‖F − F0‖2,2;T

)
+ d, d = ‖E‖4,

with an absolute constant c > 0.
Up to now v was a given solution of (2.1) in the sense of (2.4), (2.5). In the

next step we solve the fixed point problem (2.10) in Xk by Banach’s fixed point
theorem provided that Tk > 0 is sufficiently small. For any 0 < Tk ≤ min(1, T )
and v ∈ XTk

we know that Fk(v) ∈ L2
(
0, Tk; L

2(Ω)
)
, that Fk(v) is well-defined

and satisfies the estimate (2.12). For fixed k ∈ N choose Tk = T
(
k, ‖v0‖2, ‖F −

F0‖2,2;Tk
, ‖E‖4

)
in

(
0, min(1, T )

)
such that

4ab < 1.

Then the quadratic equation y = ay2 + b has a minimal positive root y1, namely

y1 = 2b
(
1 +

√
1− 4ab

)−1
, satisfying d ≤ b < y1 < 2b. Hence the closed ball
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Bk = B = {v ∈ Xk : ‖v‖Xk
≤ y1 − d} is not empty, and from (2.12) we conclude

that Fk maps B into B. Moreover, if v, v′ ∈ B, then(
Fk(v)−Fk(v

′)
)
(t) = −

∫ t

0

A
1
2 e−(t−τ)AA− 1

2 Pdiv
(
(Jkv + E)(v − v′)

+ (Jk(v − v′))(v′ + E)
)
dτ,

and the same arguments as used for (2.12) lead to the estimate

‖Fk(v)−Fk(v
′)‖Xk

≤ a
(
‖v‖Xk

+ ‖v′‖Xk
+ 2d

)
‖v − v′‖Xk

≤ 2ay1 ‖v − v′‖Xk
< 4ab ‖v − v′‖Xk

. (2.13)

Hence Fk is a strict contraction on B. Now Banach’s fixed point theorem yields
the existence of a unique v = vk ∈ B satisfying v = Fk(v), i.e.,

v(t) = e−tAv0 +

∫ t

0

A
1
2 e−(t−τ)AA

1
2 Pdiv Fk(v)(τ) dτ, 0 ≤ t < Tk.

Obviously, v is the unique weak solution of the Stokes system (2.9) with data
fk(v), v0; in particular, v : [0, Tk) → L2

σ(Ω) is strongly continuous, and the energy
equality

1

2
‖v(t)‖2

2 +

∫ t

0

‖∇v‖2
2 dτ =

1

2
‖v0‖2

2 −
∫ t

0

〈Fk(v),∇v〉dτ (2.14)

holds for every 0 ≤ t < Tk.
Let us consider the term 〈Fk(v),∇v〉Ω in (2.14) with Fk(v) as in (2.8) more

closely. Since by (2.7) (Jkv + E)(v + E)(τ) ∈ L2(Ω) and ∇v(τ) ∈ L2(Ω) for
almost all τ ∈ [0, Tk), we get for these τ

〈(Jkv + E)(v + E),∇v〉Ω = 〈(Jkv + E)E,∇v〉Ω +
1

2

∫
Ω

(Jkv + E)∇(|v|2) dx

= 〈(Jkv + E)E,∇v〉Ω.

This identity and (2.14) yield the energy identity

1

2
‖v(t)‖2

2 +

∫ t

0

‖∇v‖2
2 dτ =

1

2
‖v0‖2

2 −
∫ t

0

〈F − F0 − (Jkv + E)E,∇v〉Ω dτ, (2.15)

i.e., (2.5) with ”=” instead of ”≤” for t ∈ [0, T ). Moreover, v satisfies (2.4) in
Ω× (0, Tk). Thus v is a weak solution of (2.1) with data (2.2) in (0, Tk)× Ω.

To prove the uniqueness of this solution v not only in the ball B = Bk ⊂ Xk,
but in the whole of Xk, let w ∈ Xk be another weak solution of (2.1), (2.2) in
Ω× (0, Tk). Then w = Fk(w) with Fk as in (2.11), and the estimate (2.13) with
‖ · ‖XT ′ replacing ‖ · ‖XTk

for any 0 < T ′ ≤ Tk implies that

‖v−w‖XT ′ = ‖Fk(v)−Fk(w)‖XT ′ ≤ a′
(
‖v‖XT ′ +‖w‖XT ′ +2d)‖v−w‖XT ′ (2.16)
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where a′ = ck
3
4 (T ′)

1
8 and d = ‖E‖4. Now we choose

T ′ = T ′(k, ‖v‖Xk
, ‖w‖Xk

, ‖E‖4

)
∈ (0, Tk)

in such a way that a′
(
‖v‖Xk

+‖w‖Xk
+2d

)
≤ 1

2
. Then we obtain from (2.15) that

v ≡ w in [0, T ′). Repeating this procedure finitely many times with the same T ′

we finally get that v = w in [0, Tk). This completes the proof of Lemma 2.1.

For the final passage to the limit k →∞ in the proof of Theorem 1.3 we need an
energy estimate which holds uniformly in k ∈ N.

Lemma 2.2 For k ∈ N let v = vk be a weak solution of the perturbed mollified
Navier-Stokes system (2.1) with data (2.2) in [0, T )×Ω, 0 < T < ∞. Then there
exists an absolute constant α ≥ 0 not depending on k ∈ N such that the energy
estimate

1

2
‖v‖2

2,∞;T + ‖∇v‖2
2,2;T ≤ 2eαT‖E‖84

(
‖v0‖2

2 + 2‖F − F0‖2
2,2;T + 4T‖E‖4

4

)
(2.17)

holds.

Proof By a slight modification of the proof of (2.7) where 0 < Tk ≤ 1 was assumed
we get that (Jkv + E)(v + E) ∈ L2

(
0, T ; L2(Ω)

)
and consequently that

Fk(v) ∈ L2
(
0, T ; L2(Ω)

)
,

see (2.8). Moreover, v is the weak solution of the Stokes system (2.9) so that
v : [0, T ) → L2

σ(Ω) is strongly continuous.
We will use the following notation for 0 ≤ t0 < t1 ≤ T :

‖v‖2,∞;t0,t1 = max
t0≤t≤t1

‖v(t)‖2, ‖∇v‖2,2;t0,t1 =
( ∫ t1

t0

‖∇v‖2
2 dτ

) 1
2
,

and correspondingly ‖F‖2,2;t0,t1 etc.
From the energy inequality (2.5) we obtain the estimate

1

2
‖v‖2

2,∞;0,T + ‖∇v‖2
2,2;0,T ≤

1

2
‖v0‖2

2 +

∫ T

0

(
‖F −F0‖2 + ‖(Jkv + E)E‖2

)
‖∇v‖2 dτ.

(2.18)
Next, by Young’s inequality∫ T

0

‖F − F0‖2 ‖∇v‖2 dτ ≤ 1

4
‖∇v‖2

2,2;0,T + ‖F − F0‖2
2,2;0,T ,

and by Hölder’s inequality and (1.21)∫ T

0

‖(Jkv + E)E‖2 ‖∇v‖2 dτ ≤
∫ T

0

(
‖Jkv‖4 ‖E‖4 + ‖E‖2

4

)
‖∇v‖2 dτ

≤ c

∫ T

0

‖∇(Jkv‖
3
4
2 ‖Jkv‖

1
4
2 ‖E‖4 ‖∇v‖2 dτ +

∫ T

0

‖E‖2
4 ‖∇v‖2 dτ.
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Hence, by (1.23), (1.24) and Young’s inequality,∫ T

0

‖(Jkv + E)E‖2 ‖∇v‖2 dτ

≤ c

∫ T

0

‖∇v‖
7
4
2 ‖v‖

1
4
2 ‖E‖4 dτ +

∫ T

0

‖E‖2
4 ‖∇v‖2 dτ

≤ 1

4
‖∇v‖2

2,2;0,T + c′
∫ T

0

‖v‖2
2 ‖E‖8

4 dτ + 2

∫ T

0

‖E‖4
4 dτ

≤ 1

4
‖∇v‖2

2,2;0,T + T
(
c′‖v‖2,∞;0,T‖E‖8

4 + 2‖E‖4
4

)
with an absolute constant c′ > 0. Summarizing the previous estimates we deduce
from (2.18) the inequality(

1−2c′T‖E‖8
4

)
‖v‖2

2,∞;0,T +‖∇v‖2
2,2;0,T ≤ ‖v0‖2

2+2‖F−F0‖2
2,2;0,T +4T‖E‖4

4. (2.19)

The estimate (2.19) holds for T replaced by any 0 < T ′ ≤ T . Now choose
T ′ = min

(
T, 1

4c′‖E‖84

)
so that 1− 2c′T ′‖E‖8

4 ≥ 1
2
. If T ′ = T , Lemma 2.2 is proved

(use (2.19) to get (2.17) with α = 0). Otherwise, (2.19) yields the estimate

1

2
‖v‖2

2,∞;0,T ′ + ‖∇v‖2
2,2;0,T ′ ≤ ‖v0‖2

2 + ‖h‖0,T ′ (2.20)

where

h(τ) = 2‖(F − F0)(τ)‖2
2 + 4‖E‖4

4,

‖h‖t1,t2 =

∫ t2

t1

h dτ for any 0 ≤ t1 < t2 < T.

Then choose m ∈ N such that mT ′ < T ≤ (m + 1)T ′ and use (2.20) on the
consecutive intervals (0, T ′), (T ′, 2T ′), . . .,

(
(m − 1)T ′, mT ′) and (mT ′, T ) to-

gether with the initial values v(0), v(T ′), . . . , v
(
(m−1)T ′) and v(mT ′). Since e.g.

‖h‖0,T ′ + ‖h‖T ′,2T ′ = ‖h‖0,2T ′ etc., we easily get that

1

2
‖v‖2

2,∞;(j−1)T ′,jT ′ + ‖∇v‖2
2,2;(j−1)T ′,jT ′ ≤ 2j−1

(
‖v(0)‖2

2 + ‖h‖0,jT ′
)
, j = 1, . . . ,m.

Then a final estimate on (mT ′, T ) and the previous estimates for j = 1, . . . ,m
imply that

1

2
‖v‖2

2,∞;0,T + ‖∇v‖2
2,2;0,T ≤ 2m+1

(
‖v(0)‖2

2 + ‖h‖0,T

)
.

Since m ≤ T
T ′ , we see that 2m = em log 2 ≤ eαT‖E‖84 with α = 4c′ log 2. Now Lemma

2.2 is proved.
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Lemma 2.3 For every k ∈ N the perturbed mollified Navier-Stokes equation
system (2.1) with data (2.2) has a unique global weak solution vk in [0, T ) × Ω,
0 < T ≤ ∞, satisfying (2.3), (2.4), the energy inequality (2.5) and the energy
estimate (2.17) with T replaced by each finite 0 < T ′ ≤ T .

Proof By Lemmata 2.1 and 2.2 there exists a weak solution vk in some interval
[0, Tk) with 0 < Tk ≤ T . Let [0, T ∗), Tk ≤ T ∗ ≤ T , be the largest interval within
[0, T ) such that a weak solution with the above properties exists. If T ∗ = T , then
the proof is complete; the energy estimate (1.15) follows from (2.17).

Thus suppose that 0 < T ∗ < T . Then T ∗ < ∞ and we apply Lemma 2.2
and the energy estimate (2.17) with T replaced by T ∗. Since vk is strongly
L2

σ(Ω)-continuous in [0, T ∗), we can choose some T0 ∈ (0, T ∗) close to T ∗

such that Lemma 2.1 yields the existence of a unique weak solution of (2.1)
with initial value vk(T0) ∈ L2

σ(Ω) in some interval [T0, T1) with T1 > T ∗.
Indeed, the length of the interval of existence, T1 − T0, is determined by
T (k, ‖vk(T0)‖2, ‖F‖2,2,T , ‖F0‖2, ‖E‖4), see Lemma 2.1, where by (2.17)

‖vk(T0)‖2
2 ≤ 4eαT ∗‖E‖84

(
‖v0‖2

2 + 2‖F − F0‖2
2,2;0,T ∗ + 4T ∗‖E‖4

4).

Thus there exists a δ > 0 independent of T0 chosen sufficiently close to T ∗ such
that the existence of the weak solution starting at T0 is guaranteed on [T0, T0 +δ)
with T1 = T0 + δ > T ∗.

This procedure allows to extend the given weak solution from [0, T ∗) to
[0, T1) ⊃ [0, T ∗] in contradiction to choice of T ∗. The uniqueness of the extended
solution vk follows in the same way as in the proof of Lemma 2.1.

Now we are in a position to pass to the limit k →∞ for the functions vk and to
prove Theorem 1.3.

Proof of Theorem 1.3. First consider the case 0 < T < ∞, so that the sequence
of weak solutions, (vk), constructed in Lemma 2.3, satisfies the energy estimate

1

2
‖vk‖2

2,∞;T + ‖∇vk‖2
2,2;T ≤ c

(
‖v0‖2

2 + ‖F − F0‖2
2,2;0,T + ‖E‖4

4

)
(2.21)

with a constant c = c(T, ‖E‖4) > 0, see (2.17). Then there exists

v ∈ L∞(
0, T ; L2

σ(Ω)
)
∩ L2

(
0, T ; W 1,2

0 (Ω)
)

(2.22)

and a subsequence of (vk), which for simplicity is again denoted by (vk), with the
following properties:

vk converges weakly to v in L2
(
0, T ; W 1,2

0 (Ω)
)

vk converges strongly to v in L2
(
0, T ; L2(Ω)

)
vk(t) converges strongly to v(t) in L2

σ(Ω) for a.a. t ∈ [0, T )
(2.23)
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as k →∞. For the proof of (2.23) we refer to [9, V. 3.2, 3.3].
To prove that v is a weak solution of the perturbed Navier-Stokes system, we

still have to show that v solves the variational problem

−〈v, wt〉Ω,T + 〈∇v,∇w〉Ω,T + 〈(v + E)(v + E),∇w〉Ω,T (2.24)

= 〈u0 − E, w(0)〉Ω − 〈F − F0,∇w〉Ω,T

for any test function w ∈ C∞
0

(
[0, T ); C∞

0,σ(Ω)
)
. Due to (2.23), (1.23)

〈vk, wt〉Ω,T → 〈v, wt〉Ω,T ,

〈∇vk,∇w〉Ω,T → 〈∇v,∇w〉Ω,T ,

〈(Jkvk + E)(vk + E),∇w〉Ω,T → 〈(v + E)(v + E),∇w〉Ω,T ,

〈(Jkvk + E)E,∇vk〉Ω,T → 〈(v + E)E,∇v〉Ω,T , 0 ≤ t < T,

as k → ∞; for the fourth property we also need (1.21) and Lebesgue’s theorem

on dominated convergence to get that
∫ T

0
‖Jkvk − v‖2

4 dτ → 0. Hence v = u− E
satisfies (2.24) and v(0) = v0.

Further we obtain that

‖∇v‖2,2;T ≤ lim inf
k→∞

‖∇vk‖2,2;T .

Now the energy identity (2.15) for vk yields with the help of (2.23)4 for almost
all s ∈ (0, T ) including s = 0 the strong energy inequality

1

2
‖v(t)‖2

2 +

∫ t

s

‖∇v‖2
2 dτ ≤ 1

2
‖v(s)‖2

2 −
∫ t

s

〈F − F0 − (v + E)E,∇v〉Ω dτ .

First, this inequality is proved only for a.a. t ∈ (0, T ), cf. (2.23)3; however, since
v is weakly L2-continuous, the estimate holds for all t ∈ (0, T ). Since v = u− E
satisfies (2.22) and E ∈ W 1,2(Ω), we also get that u satisfies (1.4). This proves
Theorem 1.3 when 0 < T < ∞.

Now let T = ∞. This case can be reduced to the situation above by using
the method of diagonal sequences, see e.g. [9, p. 133]. Choose an strictly
increasing sequence (Tj)

∞
j=1 with limj→∞ Tj = ∞ and let (vk) denote a sequence

of approximate solutions in [0,∞) × Ω as in Lemma 2.3. For T = T1 we find a

subsequence
(
v

(1)
k

)
of (vk) with the properties (2.15), (2.17), (2.21) - (2.23) and

obtain a solution v(1) in [0, T1)×Ω. Then we choose a subsequence
(
v

(2)
k

)
of

(
v

(1)
k

)
to obtain a solution v(2) in [0, T2)×Ω such that v(2)

∣∣
[0,T1]

= v(1). Proceeding in this

way and finally choosing the diagonal sequence of the sequences
(
v

(j)
k

)
, j ∈ N,

we get by passing to the limit a global in time weak solution v of the perturbed
Navier-Stokes system (2.1), such that v

∣∣
[0,Tj)

= v(j), j ∈ N. Obviously v = u− E

satisfies the energy inequality (1.13) and the energy estimate (1.15) in [0,∞).
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Now the proof of Theorem 1.3 is complete.

Proof of Corollary 1.4 Let the boundary data g ∈ W
1
2
,2(∂Ω) satisfy the flux con-

dition (1.16). Then a classical result [11] yields for any ε > 0 a solenoidal vector
field Eε ∈ W 1,2(Ω) such that Eε

∣∣
∂Ω

= g, ‖Eε‖2 ≤ c‖g‖
W

1
2 ,2(∂Ω)

, c = c(ε, Ω) > 0,

and such that the trilinear form

b(u, v, w) =

∫
Ω

u · ∇v · w dx , u, v, w ∈ W 1,2(Ω),

satisfies the estimate

|b(v, Eε, v)| ≤ ε‖∇v‖2
2, v ∈ W 1,2

0 (Ω).

To apply Theorem 1.3 let F0 := −∇Eε ∈ L2(Ω) such that

‖F0‖2 ≤ c ‖g‖
W

1
2 ,2(∂Ω)

.

We use the strong energy inequality (1.14) with s = 0 for v = u−E, E = Eε, in
the form

1

2
‖v(t)‖2

2 +

∫ t

0

‖∇v‖2
2 dτ ≤ 1

2
‖v0‖2

2−
∫ t

0

〈F −F0−EE,∇v〉Ω dτ −
∫ t

0

b(v, E, v) dτ

and get by the estimate of b with ε = 1
4

for any finite T ′ ∈ (0, T ) the inequality

1

2
‖v‖2

2,∞;0,T ′ + ‖∇v‖2
2,2;0,T ′ ≤

1

2
‖v0‖2

2 +
1

4
‖∇v‖2

2,2;0,T ′

+

∫ T ′

0

(
‖F − F0‖2 + ‖E‖2

4

)
‖∇v‖2 dτ.

A further application of Young’s inequality and the above estimate of F0 imply
(1.17).
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