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Chapter 1

Introduction

1.1 Basic Axioms

The Quantum Mechanics description of a ’point particle’ is given by three hypothesis:

H1 The state of a particle at time t is described by a function ψ(·, t) : R3 → C (the wavefunction).
The time evolution is given by the Schrödinger equation

i~∂tψ(x, t) = − ~2

2m
∆ψ(x, t) + V (x)ψ(x, t) (1.1)

where ~ = h
2π , where h is Planck’s constant. m is the mass of the particle and V : R3 → R is

the potential in which the particle moves. ∆ is the Laplace operator.

H2 The probability to find the particle at time t in a region A ⊂ R3 is given by∫
A

|ψ(x, t)|2dx

|ψ(x, t)|2 = ψ(x, t)ψ(x, t) is interpreted as the probability density, thus∫
R3

|ψ(x, t)|2dx = 1

We can compare this to Newton’s law:

mẋ = p
ṗ = −∇V (x(t))

}
mẍ = −∇V (x(t))

Classical mechanics gives us a path along which the particle travels, whereas Quantum me-
chanics gives us a ’path of probability’ densities which correspond to the particles position. V
is the same in quantum and classical mechanics

H3 The probability to find the value of the particle momentum in the set B ⊂ R3, at time t is
given by ∫

B

∣∣∣∣ 1

(2π~)
3
2

ψ̂(
p

~
, t)

∣∣∣∣2 dp (1.2)
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CHAPTER 1. INTRODUCTION 3

where ψ̂(k, t) =
∫
R3 e
−ik·xψ(x, t)dx is the Fourier transform of ψ with respect to x. Thus the

momentum is related to the oscillation of frequencies of ψ. We will see later that H3 makes
sense as the analogue of momentum

Axioms H1-H3 only give probabilities, not trajectories. In classical mechanics initial position and
momentum determine the trajectory, whereas in quantum mechanics, initial wave function determines
ψ(x, t) for every t.

1.2 Consistency of the Axioms

Since |ψ(x, t)|2 and | 1

(2π~)
3
2
ψ̂( p~ , t)|

2 are interpreted as probability densities, they have to have total

integral 1, for all times. We now prove this under somewhat restrictive conditions. It holds for
greater generality.

Definition 1.1. Assume V : R3 → R is continuous, a function ψ : R3 × R→ C is called a classical
solution to (1.1) if ψ(x, ·) ∈ C1(R) for every x and ψ(·, t) ∈ C2(R3) for every t and if (1.1) holds for
every x and t. (Later we shall study weak solutions which are not C2)

A classical solution is not good enough. We need
∫
|ψ(x, t)|2dx <∞ for H2 and H3, i.e. we need

|ψ(x, t)| → 0 as |x| → ∞ fast enough. (i.e. we need boundary conditions). A convenient assumption
is:

Assume that for all time intervals [a, b] there exists Ca,b <∞ and α > 3
2 with

|ψ(x, t)| ≤ Ca,b
|x|α

|∇ψ(x, t)| ≤ Ca,b
|x|α−1

(1.3)

for every x ∈ R3, t ∈ [a, b].

We remark that α = 3
2 is the borderline integrability of |ψ(x, t)|2∫

|ψ(x, t)|2dx ∼
∫ ∞

0

|ψ(r, t)|2r2dr · 2π

i.e. so need |ψ(r, t)| to have at least r−
3
2 decay at ∞. So as a decay rate, (1.3) is optimal.

Lemma 1.2. Assume that V is continuous, ψ is a classical solution to (1.1) and satisfies (1.3) then

t 7→
∫
|ψ(x, t)|2dx

is constant.

Proof. First we rewrite (1.1) as

∂tψ(x, t) = iβ∆ψ(x, t) + iγV (x)ψ(x, t) (1.4)
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with β = ~
2m and γ = −1

~ . Now for BR = {x ∈ R3 : |x| < R}

d

dt

∫
BR

|ψ(x, t)|2dx =
d

dt

∫
BR

ψ(x, t)ψ(x, t)dx =

∫
BR

(ψ̇(x, t)ψ(x, t) + ψ(x, t)
˙

ψ(x, t))dx

(1.1)
=

∫
BR

[iβ∆ψ + iγV ψ]ψ + ψ[(−i)β∆ψ + (−i)γV ψ]dx

=

∫
BR

(iβ(∆ψ)ψ − iβψ∆ψ)dx since V = V

IBP
= iβ

[
−
∫
BR
((((

((((
(

(∇ψ∇ψ −∇ψ∇ψ)dx+

∫
∂BR

[(∇ψ)ψ − ψ∇ψ]
x

|x|
ds

]
Now integrating this over t gives∫

BR

|ψ(x, t)|2dx−
∫
BR

|ψ(x, 0)|2dx = β

∣∣∣∣∫ t

0

[∫
∂BR

(∇ψψ − ψ(∇ψ) x
|x|ds

]
dτ

∣∣∣∣ (1.5)

Then since

Area of ∂BR = 4πR2 |∇ψ||ψ| ≤
C2

0,t

R2α−1

where α > 3
2 . Then

(1.5) ≤ βC2
0,t

8π

R2α−3

R→∞
→ 0

The limit of the LHS of (1.5) is
∫
|ψ(x, t)|2dx−

∫
|ψ(x, 0)|2dx and so it follows that∫

|ψ(x, t)|2dx =

∫
|ψ(x, 0)|2dx

for every t

Thus if
∫
|ψ(x, 0)|2dx = 1 then

∫
|ψ(x, t)|2dx = 1 for all t.

Theorem 1.3 (Uniqueness). If two solutions to (1.1) and (1.3) agree at time t = 0, then they are
agree for all time.

Proof. If ψ, φ solves (1.1), then ψ−φ solves (1.1), and ψ(x, 0)−φ(x, 0) = 0 for every x by assumption.
Then

∫
|ψ(x, t)− φ(x, t)|2dx = 0 for all time t and so ψ(x, t)− φ(x, t) = 0 for all t and x.

We remark that this theorem implies causality.

1.3 Solution to the Free Schrödinger equation

The ’free’ refers to the fact that we have linear motion, no external forces. In Newtonian mechanics,
either the particle stays still or moves in a straight line. We consider (1.1) with V = 0, and in atomic
units, we can assume ~ = m = 1.

i∂t(x, t) = −1

2
∆ψ(x, t) (1.6)
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A simple solution can be guessed:

ψ(x, t) = ei(k·x+ 1
2 |k|

2t)

called de Broglie’s wave. But |ψ(x, t)|2 = 1 and so
∫
|ψ(x, t)|2dx = ∞. To find square integrable

solutions, we need a more systematic approach. Recall the Fourier transform:

(Fψ)(k, t) = ψ̂(k, t) =

∫
R3

e−ik·xψ(x, t)dx

and its inverse

(F−1ψ)(x, t) = ψ̌(k, t) =
1

(2π)3

∫
R3

eik·xψ̂(k, t)dk ∨ ∧

Moreover, F∂xjF−1 = ikj :

[F∂xjF−1ψ](k) =
1

(2π)3

[
F∂xj

∫
eik̃·xψ(k̃)dk̃

]
(k)

=
1

(2π)3

F ∫ eik̃·x [ik̃jψ(k̃)]︸ ︷︷ ︸
g(k̃)

dk̃

 (k)

= FF−1g(k) = g(k) = ikjψ(k)

and thus it follows F∆F−1 = −|k|2, where we think of F ,∆, ∂xj ,F−1 as operators of functions.
One can say that ∆ is diagonal in Fourier space. By viewing f(x) as a ’vector’ with index x (think
spectrum!), then

F∆F−1f(k) = −|k|2f(k)

So, we can solve (1.6) by looking at it in Fourier space:

i ̂∂tψ(x, t) = −
̂1

2
∆ψ(x, t)

⇔ i∂tψ̂(k, t) = −1

2
F∆F−1Fψ =

1

2
|k|2ψ̂(k, t)

The solution to this is trivial for fixed k:

ψ̂(k, t) = e−i
|k|2t

2 ψ̂(k, 0)

and is well defined if ψ̂(k, 0) ∈ L2 (equivalently ψ(x, 0) ∈ L2). Recall that the Fourier representation
is good for studying momentum from (1.2). Note that we have immediately Newton’s first law -

conservation of momentum, using |e−i
|k|2
2 t| = 1∫

B

∣∣∣∣ 1

(2π~)
3
2

ψ̂(k~ , t)

∣∣∣∣2 dk =

∫
B

∣∣∣∣ 1

(2π~)
3
2

ψ̂(k~ , 0)

∣∣∣∣2 dk
This also means that wavepackets are spread over time.

We are interested in position space, so we need to do an inverse Fourier transform.

ψ(x, t) = F−1ψ̂(k, t) =
1

(2π)d

∫
eik·xe−i

|k|2
2 tψ̂(k, 0)dk

=
1

(2π)d

∫
eik·xe−i

|k|2t
2

[∫
e−ik·yψ(y, o)dy

]
dk
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Now do the integral over k:∫
eik·(x−y)e−i

|k|2t
2 dk =

e
i
2t (x−y)2

(2π)d

∫
e−

it
2 (k− 1

t (x−y))2dk

=
e
i
2t (x−y)2

(2πit)
d
2

Where for the last inequality we have used that the integral is in Gaussian form with mean 1
t (x− y)

and variance
√

1
it . And thus

ψ(x, t) =
1

(2πit)
d
2

∫
e
i
2t (x−y)2ψ(y, 0)dy (1.7)

We define an operator Pt : ψ(·, 0)→ ψ(·, t), called the propagator. It is given by integrating against
the kernel

K(x− y, t) =
1

(2πit)
d
2

e
i
2t (x−y)2 (1.8)

An important special case is the Gaussian wavepacket (in d dimensions). It is given by the initial
condition:

ψ(x, 0) =
1

2πσ2

1

4
eiv0·(x−x0)− |x−x0|

2

4σ2

The integral in (1.7) can now be done explicitly to give

ψ(x, t) = (
σ2

2π
)
d
4

1

(σ2 + it
2 )

3
2

exp

[
|σ2v0 + i |x−x0|2

2 |2

σ2 + i t2
− σ2v2

0

]
What does ψ(x, t) look like? ψ(x, 0) is a Gaussian, with total probability 1, mean position x0 and
standard deviation (or ’uncertainty’) σ. Furthermore it can be shown that ψ(x, t) has mean x0 + tv0

and standard deviation σ(t) =
√
σ2 + ( t

2σ )2. Note that

(i) The mean solves mẍ = 0
x(0) = x0

ẋ(0) = v0

Newton’s equations - i.e. behaves classically

(ii) uncertainty increases over time

(iii) speed is encoded by oscillations. Note that

Re(ψ(x, 0)) =
1

2πσ2

d
4

cos(v0 − (x− x0))e−
|x−x0|

2

4σ2

i.e. faster oscillations = bigger v0 = faster wavefunction.

1.4 Ehrenfest equations

We’ve seen that the mean position of a Gaussian wavepacket solves free Newton’s equation (for the
free Schrodinger equation). A similar thing holds fore more general wavepackets and potentials.
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Definition 1.4. For a wavefunction ψ(x, t) with
∫
|ψ(x, t)|2 = 1 the expected position and expected

momentum are vectors given by

〈X(t)〉 =

∫
Rd
x|ψ(x, t)|2dx

〈P (t)〉 =

∫
Rd
k| 1

(2π~)
d
2

ψ̂(
k

~
, t)|2dk

respectively.
The idea is that |ψ(x, t)|2 is the position probability density and | 1

(2π~)
d
2
ψ̂(k~ , t)|

2 the momentum

probability density. Taking derivatives of 〈X(t)〉 and 〈P (t)〉 we might expect that they satisfy

〈Ẍ(t)〉 = ∂2
t 〈X(t)〉 ?

=
1

m
(−∇V 〈X(t)〉)

similar to mẍ(t) = −∇V (x(t)). But this is not true. However, we do have the following

Proposition 1.5.
d

dt
〈Xj(t)〉 =

1

m
〈Pj(t)〉

Proof.

d

dt
〈Xj(t)〉 =

∫
Rd

d

dt
[xjψ(x, t)ψ(x, t)]dx

=

∫
Rd
xj [(∂tψ)ψ + ψ∂tψ]dx

=

∫
Rd
xj [(iβ∆ψ + iγV ψ)ψ + ψ(iβ∆ψ + iγV ψ)]dx

= iβ

∫
Rd
xj [(∆ψ)ψ − ψ(∆ψ)]dx

= −iβ
∫
Rd
∇xj · [(∇ψ)ψ − ψ∇ψ]dx IBP

= −iβ
∫
Rd

(∂xjψ)ψ − ψ(∂xjψ)dx

and by integration by parts on the second term we get

= −2iβ

∫
Rd

(∂xjψ)ψdx (1.9)

=
1

m

∫
Rd

(
~
i
∂xjψ)ψdx

=
1

m

1

(2π)d

∫
Rd

~̂
i
∂xjψψ̂dk Plancherel

=
1

m

1

(2π)d

∫
Rd

~kjψ̂ψ̂dk

=
1

m

∫
Rd
pj |

1

(2π~)
d
2

ψ̂(
p

~
)|2dp =

1

m
〈Pj(t)〉
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Consider (1.9) again, taking one more derivative and (1.4) using and integration by parts

d2

dt2
〈Xj(t)〉 = −2iβ

∫
Rd
ψ̇∂xjψ + ψ∂xj ψ̇dx

= −2iβ

∫
Rd

(−iβ∆ψ − iγV ψ)∂xjψ + ψ∂xj [iβ∆ψ + iγV ψ]dx

= −2iβ

∫
Rd
−iγV ψψ′ + iγ(V ψ)′ψdx

= 2γβ

∫
Rd

(V ′ψψ + V ψ
′
ψ − ψ′V ψdx

= 2γβ

∫
Rd
V ′|ψ|2dx = − 1

m

∫
(∂xjV )(x)|ψ(x, t)|2dx

Def
= − 1

m
〈∂xjV (t)〉

Thus, we have shown that
d2

dt2
〈X(t)〉 = − 1

m
〈∇V (t)〉

where the right hand side is not the same as ∇V (〈X(t)〉). We can compare this to Newton’s equation

d2

dt2
x(t) = − 1

m
V (x(t))

So the mean function fulfils a Newton equation but the force is given by the mean value of the
potential with respect to the wave function, not by the potential at the mean position. We have
proved

Theorem 1.6 (Ehrenfest’s Equations). Let V : Rd → R be in C1, ψ ∈ C2 be a solution to the (1.1)
satisfying ∫

|ψ|2dx = 1

∫
|x||ψ|2dx <∞

∫
(∇V (x))|ψ|2dx <∞

Then

(i) d
dt 〈X(t)〉 = 1

m 〈P (t)〉

(ii) d
dt 〈P (t)〉 = −〈∇V (t)〉

Now the mean value of the energy

〈E(t)〉 = 〈 |P (t)|2

2m
〉+ 〈V (t)〉

=

∫
|k|2

2m
| 1

(2π~)
d
2

ψ̂(
k

~
, t)|2dk +

∫
V (x)|ψ(x, t)|2dx

Classically E(t) = |p(t)|2
2m + V (x, t) and

∂tE(t) =
1

m
p(t)ṗ(t) +∇V (x, t) · ẋ(t)

=
1

m
p(t)[ṗ(t) +∇V (x, t)] = 0

This is also true in quantum mechanics.
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Theorem 1.7. Let ψ(x, t) be a solution of (1.1) with∫
| − 1

2
∆ψ + V ψ|2dx <∞

then ∂t〈E(t)〉 = 0

Proof. Exercise



Chapter 2

Quantum Mechanics via Operators

2.1 Hilbert spaces and operators

2.1.1 Hilbert spaces

If we have the equation (the Schrödinger equation with ~ = m = 1)

i∂tψ = (−1

2
∆ + V )ψ = Hψ

then it is reasonable to suspect that the solution will be of the form

ψ(t) = e−itHψ0

but we need to make sense of an exponential of an operator. In this section we study operators from
functional analysis and apply them to the study of the Schrödinger equation.

Definition 2.1. An inner product on a vector space X is a map 〈·, ·〉 : X ×X → C, that satisfies
the following for every α, β ∈ C and v, w, z ∈ X

(i) Linearity in second term: 〈v, αw + βz〉 = α〈v, w〉+ β〈v, z〉

(ii) Conjugate symmetry: 〈v, w〉 = 〈w, v〉

(iii) Positivity: 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0.

The above implies that 〈αv+βw, z〉 = α〈v, w〉+β〈v, z〉. Also the map v 7→ ||v|| :=
√
〈v, v〉 is a norm.

A complex vector space X with an inner product is called Hilbert if it is complete with respect
to this inner product. A Hilbert-Schmidt basis is a set of mutually orthogonal vectors that is big
enough to construct X. Formally it is a family {vn : n ∈ N} of mutually orthogonal vectors such
that the set of finite linear combinations

{
n∑
j=1

αjvnj : n ∈ N, αj ∈ R, {nj} ⊂ N}

is dense in X. If {vn} is a Hilbert-Schmidt basis then

Parseval relation: ||w||2 =
∑
n∈N |〈w, vn〉|2

Fourier series : w =
∑
n∈N〈w, vn〉vn

10
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2.1.2 Operators

Unfortunately many operators that we come across in physics are unbounded maps A : H → H.
These are defined on a a subset D(A) ⊂ H.

We look at some common operators:

(i) I, 1, id : ψ 7→ ψ

(ii) Multiplication by a co-ordinate (’position operator is unbounded’)

xj : ψ 7→ xjψ

(iii) Multiplication by a function V : Rd → C

MV , V : ψ 7→ V ψ; (V ψ)(x) = V (x)ψ(x)

(iv) Momentum operator (unbounded)

Pj : ψ 7→ −i~∂xjψ

(v) Laplace operator (unbounded)

∆ : ψ 7→
n∑
j=1

∂2
xjψ

(vi) Integral Operators

(Kψ)(x) =

∫
K(x, y)ψ(y)dy

for some kernel K(x, y) : Rd × Rd → C

(vii) Schrödinger operator (unbounded)

H : ψ 7→ − ~2

2m
∆ψ + V ψ

If an operator is bounded, then the operator norm is given by

||A|| := sup
ψ∈H,||ψ||=1

||Aψ|| ≡ sup
ψ∈H\{0}

||Aψ||
||ψ||

<∞

2.1.3 Commutators

Definition 2.2. The commutators of A and B is

[A,B] = AB −BA

e.g. [∂x, x] = 1

∂x(xf(x))− x∂xf(x) = f(x) + xf ′(x)− xf ′(x) = 1f(x)

(Note that there are some domain issues here as not all functions are differentiable).
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2.2 Existence of solution to the Schrödinger equation

We reformulate the Schrödinger equation (1.1) in language of operators:

i∂tψ = Hψ
ψ(0) = ψ0

(2.1)

with H = − 1
2∆ + V (take ~ = m = 1). If H were a number the solution would be trivial: ψ(t) =

e−itHψ0. If H was a matrix we could define define

Ut =

∞∑
n=0

(−it)n

n!
Hn =: e−itH

and check that

∂

∂t
Utψ0 = −iHUtψ0 U0ψ0 = ψ0

So Utψ0 solves (2.1). The same works for bounded operators. An operator Ut such that Utψ0 solves
(2.1) is called a propagator of (2.1).

Problems arise when H is unbounded, since
∑∞
n=0

(−it)n
n! Hn may not make sense. For example if

H = − 1
2∆, then Hn is defined only for ψ ∈ C2n. Thus we need at least ψ0 ∈ C∞. We could try to

define

eitH := lim
n→∞

(1− it

n
H)n

but we have the same problem. What does work, however, is

eitH := lim
n→∞

(1 +
it

n
H)−n (2.2)

because (1 + it
nH)−1 exists and is bounded. Before continuing we make a few more definitions.

Definition 2.3. An operator is symmetric if

〈Aψ, φ〉 = 〈ψ,Aφ〉 ∀ψ, φ ∈ D(A)

For example the operator MV is symmetric if and only if V is real. Since

〈MV ψ, φ〉 =

∫
V (x)ψ(x)φ(x)dx =

∫
ψ(x)V (x)φ(x)dx = 〈ψ,MV φ〉

Note that using integration by parts, ∂x is anti-symmetric, i∂x is symmetric and ∂2
x is symmetric.

In particular ∆ is symmetric, and thus H is also symmetric.

Lemma 2.4. Let A be a symmetric operator. For every φ ∈ D(A), δ > 0

||(iδ +A)φ||2 ≥ δ2||φ||2 (2.3)

Proof.

||(iδ +A)φ||2 = 〈(iδ +A)φ, (iδ +A)φ〉
= δ2||φ||2 + ||Aφ||2 + iδ〈φ,Aφ〉 − iδ〈Aφ, φ〉
= δ2||φ||2 + ||Aφ||2 ≥ δ2||φ||2
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So in particular (iδ + H) is always injective. However, as an operator (iδ + H) : C2 → L2 it is
not onto (the domain is too small).

Definition 2.5. The adjoint A∗ of an operator A is the unique operator with

〈A∗ψ, φ〉 = 〈ψ,Aφ〉 ∀φ ∈ D(A), ψ ∈ D(A∗)

where D(A∗) = {ψ ∈ L2 : |〈ψ,Aφ〉| ≤ Cψ||φ||} for some constant Cψ and for all φ ∈ D(A)}. A
symmetric operator is called self-adjoint if D(A) = D(A∗)

The good news is that H is self-adjoint on suitable domains for all physically relevant potentials V
(but not, for example, for V (x) = − C

|x|2 with C > 1
4 ).

Proposition 2.6. Assume that A is self-adjoint then for all δ ∈ R\{0} (iδ + A)−1 is bounded and
||(iδ +A)−1|| < 1

|δ| .

So, for example if for φ ∈ L2 put u = (iδ− 1
2∆)−1φ, then u is the solution to the inhomogeneous

equation.

iδu− 1

2
∆u = φ

We now return to constructing e−itH .

Theorem 2.7. Let H be self-adjoint with D(H) dense in L2. Then for each φ ∈ L2

Utφ := lim
n→∞

(1 +
it

n
H)−nφ

exists in L2

Proof. Set Vn(t) = (1 + it
nH)−n. By proposition 2.6 and the fact that 1 + aH = a( 1

a + H) then
(1 + aH)−1 = 1

a ( 1
a +H)−1. Thus we have

||(1 +
it

n
H)−1|| = ||n

it
(
n

it
+H)−1|| ≤ n

t

t

n
= 1

It follows ||Vn(t)|| ≤ 1 for every n ∈ N. Furthermore we have

lim
t→0

Vn(t)φ = φ (2.4)

To see this, for φ ∈ D(H) compute

V1(t)φ− φ =
(
(1 + itH)−1 − 1

)
φ =

1− 1− itH
1 + itH

φ =
−itH

1 + itH
φ

= −it(1 + itH)−1Hφ

It follows that ||V1(t)φ−φ|| ≤ t||(1 + itH)−1||||Hφ||. For general φ, by denseness of D(H) in L2 take
φ̃ ∈ D(H) with ||φ̃− φ|| < ε. Then

||V1(t)φ− φ|| = ||(V1(t)− 1)φ|| ≤ ||(V1(t)− 1)φ̃||+ ||(V1(t)− 1)(φ− φ̃)||

≤ t||Hφ̃||+ 2||φ− φ̃|| t→0→ 2ε



CHAPTER 2. QUANTUM MECHANICS VIA OPERATORS 14

for every ε. For general n note

(Vn(t)− 1)φ = (V1( tn )n − 1)φ = (V1( tn )− 1)

n−1∑
k=0

(V1( tn ))kφ

This implies

||(Vn(t)− 1)φ|| ≤ ||V1( tn )− 1||
n−1∑
k=0

||V1( tn )||k ≤ nt t→0→ 0

We now show that {Vn(t)φ}∈N is a Cauchy sequence for every φ. That is

||Vn(t)− Vm(t)||L2

m,n→∞
→ 0 ∀ψ ∈ L2

and so this implies strong convergence. Note

(Vn(t)− Vm(t))φ = lim
ε→0

∫ t−ε

ε

d

ds
[Vm(t− s)Vn(s)φ]ds

= lim
ε→0

∫ t−ε

t

[−V ′m(t− s)Vn(s) + Vm(t− s)V ′m(s)]φds (2.5)

Now

V ′m(t− s)Vn(s)− Vm(t− s)V ′n(s) = −iH

[
1

(1 + i(t−s)
m H)m+1

1

(1 + is
nH)n

− 1

(1 + i t−sm H)m
1

(1 + is
nH)n+1

]

= −iH

[
1 + is

nH − 1− i(t−s)
m H

(1 + i(t−s)
m H)m+1(1 + is

nH)n+1

]

= H2

(
s

n
− t− s

m

)
︸ ︷︷ ︸
→0 as n,m→∞

(
1 +

i(t− s)
m

H

)−m−1(
1 +

is

n
H

)−n−1

︸ ︷︷ ︸
bounded by 1

But what about H2? Assume φ ∈ D(H2), then

||2.5|| ≤
∫ t

0

||( s
n
− t− s

m
) (1 +

i(t− s)
m

H)−m−1(1 +
is

n
H)−n−1︸ ︷︷ ︸

||·||≤1

H2φ||

≤ t2

2
(

1

n
+

1

m
)||H2φ|| m,n→∞→ 0 (2.6)

So (Vn(t)φ) is Cauchy for φ ∈ D(H2). For general φ we use denseness of D(H2). We claim the
following (proof is left as an exercise)

(i) D(H2) = (H + i)−1D(H)
(ii) range((H + i)−1 = D(H)

}
⇒ D(H2) dense

With this we get {Vn(t)}∈N is a Cauchy sequence and so a limit exists.

Later we shall write Ut = e−itH but for it to warrant the notation we need to check that it actually
behaves like an exponential. So far we have shown that the operator Ut defined as

Utφ := lim
n→∞

Vn(t)φ

actually exists.
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Theorem 2.8. Define Ut as above. Then

(i) Ut is strongly continuous i.e.

L2 − lim
t→t0

Utφ = Ut0φ ∀φ ∈ L2.

(i) For every φ ∈ D(H)
UtHφ = HUtφ.

So in particular Utφ ∈ D(H) for each t and φ ∈ D(H).

(iii) For φ ∈ D(H)
i∂t(Utφ) = H(Utφ).

So φ(x, t) = Utφ0(x) solves (2.1) with initial condition φ0.

Proof. (a) Vn(t)φ
t→t0→ Vn(t0)φ as the resolvent is analytic (for t0 > 0) or by direct computation for

t0 = 0 (see above). By (2.6) convergence is uniform in t on on compact intervals.

(b) Let φ ∈ D(H) Then
UtHφ = lim

n→∞
Vn(t)Hφ = lim

n→∞
HVn(t)φ.

Now let ψn = Vn(t)φ Then we have

(i) ψn
n→∞→ Utφ

(ii) (Hφn)n∈N is convergent in L2

Since H is a closed operator we have Utφ ∈ D(H) and HUtφ = limn→∞Hφn = UtHφ.

(c) By part (b) the claim is that

i∂t(Utφ) = H(Utφ) = UtHφ

Consider the limit

lim
n→∞

V ′n(t) = lim
n→∞

∂t(1 + it
nH)−nφ

= lim
n→∞

i
nH(−n)(1 + it

nH)−n−1φ

= lim
n→∞

−iH(1 + it
nH)−1Vn(t)φ

We will now show that Ut behaves like an exponential.

Definition 2.9. An operator U is unitary if U∗U = UU∗ = 1. If U is unitary then

||Uφ||2 = 〈Uφ,Uφ〉 = 〈φ,U∗Uφ〉 = ||φ||2.

So unitaries are always isometries.

Theorem 2.10. Ut = limn→∞ Vn(t) is unitary for every t ∈ R.
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Proof. Clearly the adjoint of Vn(t) is given by

V ∗n (t) = (1− it
nH)−n

Now consider Wn(t) := V ∗n (t)Vn(t) = (1 + t2

n2H
2)−n. We will show that Wn(t) → 1 strongly. For

φ ∈ D(H2),

(Wn(t)− 1)φ = (W1( tn )n − 1)φ = (W1( tn )− 1)

n−1∑
k=0

(W1( tn ))kφ (2.7)

Now, since

||(1 + t2

n2H
2)φ||2 ≥ ||φ||2 + 2 t

2

n2 ||Hφ||2 + t4

n4 ||H2φ||2

≥ ||φ||2

we have that ||(1 + t2

n2H
2)−1|| ≤ 1. Also

(W1( tn )− 1)φ =

(
1

1 + t2

n2H2
− 1

)
φ =

(
− t2

n2H
2

1 + t2

n2H2

)
φ.

This shows the norm of (W1( tn )− 1)φ is bounded by || t
2

n2H
2φ||. So we can bound the norm of (2.7)

by

t2

n2n||H2φ||

which tends to zero as n→∞. For general φ, we use an approximation argument.

Corollary 2.11 (Conservation of probability). For all ψ0 ∈ D(H) the solution ψ(x, t) of (2.1) with
initial condition ψ0 fulfils

||ψ(·, t)||2 = ||ψ0||2 (2.8)

Finally we show that t 7→ Ut is a group.

Theorem 2.12. For every t, s ∈ R we have

UtUs = Ut+s

Proof. Using the fact HUtφ = UtHφ for φ ∈ D(H)

d

ds
(Ut−sUs) = −U ′t−sUs + Ut−sU

′
s = −HUt−sUs + Ut−sHUs = 0.

So s 7→ Ut−sUs is constant. The result follows.

So we conclude that e−itH := Ut is a unitary group of operators with (e−itH)∗ = eitH and e−itHψ0

solves

i∂tψ = Hψ ψ(0) = φ0 ∈ D(H)
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2.3 Observables and Eigenvalues

An observable is a self-adjoint operator on the Hilbert space L2. For example:

(i) Poisson operator X
(Xjψ)(x) = xjψ(x)

(ii) Momentum operator
Pj : ψ 7→ −i~∂xjψ

(iii) Energy operator E

(Eψ)(x) = (− ~2

2m
∆ +MV )ψ(x)

(iv) Angular momentum L
Lx1φ = −i~(x2∂x3 − x3∂x2)

Definition 2.13. The mean of an operator A with respect to the wave function ψ is

〈A〉ψ = 〈ψ,Aψ〉

Theorem 2.14 (Evolution of the mean). If ψ solves (2.1) then

d

dt
〈A〉ψ(t) = 〈ψ, i

~
[H,A]ψ〉

= 〈 i
~

[H,A]〉ψ(t)

Proof.

d

dt
〈ψ,Aψ〉 =

d

dt

∫
ψ(x, t)(Aψ)(x, t)dx

= 〈∂tψ,Aψ〉+ 〈ψ, ∂tAψ〉
= 〈 1

i~Hψ,Aψ〉+ 〈ψ,A 1
i~Hψ〉

= 〈Aψ,− 1
i~ (HA−AH)ψ〉

= 〈Aψ, i~ [H,A]ψ〉

Corollary 2.15. The energy
E(t) := 〈H〉ψ = 〈P 2 + V 〉ψ

is conserved.

If [A,H] = 0 for any observable, then 〈A〉ψ(t) = constant and we call A a conserved quantity. For

example, P = ~
i ∂x is conserved in the free Schrödinger equation.
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Definition 2.16. An element ψ ∈ L2\{0} is called an eigenvector (or eigenfunction) of A if there
exists an eigenvalue λ such that Hψ = λψ.

Each eigenfuntion ψ gives rise to a conserved operator, Pψ defined by

Pψφ = 〈ψ, φ〉ψ

i.e. the one-dimensional projection onto the subspace spaced by φ. Then

HPψφ = H〈ψ, φ〉ψ = 〈ψ, φ〉Hψ = 〈ψ, φ〉λψ
PψHφ = 〈ψ,Hφ〉ψ = 〈Hψ, φ〉ψ = 〈λψ, φ〉ψ = λ〈ψ, φ〉ψ.

since λ is an eigenvalue of a symmetric operator H, λ||ψ||2 = 〈ψ,Hψ〉 = 〈Hψ,ψ〉 = λ||ψ||2, i.e.
λ ∈ R. It follows that for aj ∈ R

N∑
j=1

αjPψj

for eigenfunctions ψj is a conserved quantity and more generally it can be shown that all spectral
projections are conserved.

We can use eigenfunctions to study dynamics. For ψ0 an eigenfunction with eigenvalue λ we have

e−itHψ0 = e−itλψ0

since i∂tψ0 = Hψ0 = λψ0. So ψ0 is a stationary solution of (2.1). As such eitλψ0 produces the same
expected values as ψ0. More precisely

〈A〉e−itλψ0
= 〈e−itλψ0, Ae

−itλψ0〉 = 〈ψ0, e
+itλAe−itλψ0〉

= 〈ψ0, Ae
+itλe−itλψ0〉 = 〈ψ0, Aψ0〉 = 〈A〉ψ0

wave functions that differ only by a constant (non-x-dependent) phase describe the same physical
state.

Proposition 2.17. Assume that ψ(x, 0) =
∑∞
n=1 αnψn(x) with Hψn = λnψn. Then

(a) ψ ∈ D(A) if and only if
∑∞
n=1 |λnαn|2 <∞

(a) If even
∞∑
n=1

|λn|4|αn|2 <∞

then ψ(0, t) =
∑
αne

−itλnψn is the unique solution of (2.1)

2.4 Heisenberg Picture of Quantum Dynamics

Recall that for any observable we have

〈A〉ψ(t) = 〈e− i
~ tHφ0, Ae

− i
~ tHφ0〉 = 〈φ0, e

+ i
~ tHAe−

i
~ tH︸ ︷︷ ︸

A(t)

φ0〉

= 〈A(t)〉φ0
.
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So instead of solving (2.1) we can solve the following equation in the space of operators:

d

dt
A(t) =

i

~
[H,A(t)]

This gives
i

~
He

i
~HtAe

−i
~ Ht + e

i
~HtA(− i

~
)He−

i
~Ht =

i

~
[H,A(t)] (2.9)

2.5 Uncertainty Principle

Fundamental properties in probability theory

Mean value: E(X) =

∫
xdµ(x) Standard deviation: σ(X) =

(∫
(x− E(X))2dµ(x)

) 1
2

In Quantum Mechanics, the position mean value is

〈X〉ψ =

∫
x|ψ(x)|2dx

or more generally

〈A〉ψ = 〈ψ,Aψ〉

For position it’s clear that ∫
(x− 〈X〉ψ)2|ψ(x)|2dx = 〈X2〉ψ − 〈X〉2ψ

is the variance. So
√
〈X2〉ψ − 〈X〉2ψ is the standard deviation. In general

NA :=
√
〈A2〉ψ − 〈A〉2ψ

is the uncertainty (i.e. standard deviation) of A.

Consider the Gaussian wave packets with zero mean value and zero mean momentum. That is

ψ(x) =
1

2πσ2
e
|x|2

4σ2 .

It can be easily check that 〈Xj〉ψ = 0 and 〈Pj〉ψ = 0. Furthermore

〈NXj〉2 =

∫
x2
j

1

(2πσ2)
d
2

e
−|x|2

2σ2 dx

= 1 · ... · 1︸ ︷︷ ︸
d−1

∫
x2
j

1

(2πσ2)
1
2

e−
x2j

2σ2 dxj = σ2

〈NPj〉2 = 〈P 2
j 〉ψ = 〈ψ, P 2

j ψ〉

=

∫
ψ(x)(−~2∂2

jψ(x))dx
IBP
= ~2

∫
∂jψ∂jψdx

= ~2

∫
(
xj

2σ2
ψ)(

xj
2σ2

ψ)dx =
~2

4σ4

∫
x2
j |ψ(x)|2dx =

~2

4σ2



CHAPTER 2. QUANTUM MECHANICS VIA OPERATORS 20

So either we make σ small and get good information about position or we make σ large and get good
information about momentum, but we cannot have both. In particular

〈NXj〉ψ〈NPj〉ψ =
~
2

The following theorem shows that this is the best we can hope for:

Theorem 2.18 (Heisenberg’s Uncertainty Principle). For any ψ ∈ D(X2
j ) ∩ D(P 2

j ) we have

〈ψNXj〉ψ〈NPj〉ψ ≥
~
2

Implication: it is in principle impossible to measure both position and speed of a particle to
arbitrary accuracy. To prove theorem 2.18 we will need the canonical commutation relation (CCR):
[Pj , Xj ] = ~

i 1 which follows from the observation

PjXjf = ∂xj (xif(x)) = f(x) + xjf
′(x)

XjPjf = xj∂xj (f(x)) = xjf
′(x)

Theorem theorem 2.18 follows immediately from

Theorem 2.19 (Abstract Uncertainty Principle). Let A, B be self-adjoint operators. Then for any
ψ ∈ D(A) ∩ D(A2) ∩ D(B) ∩ D(B2) we have

〈NA〉ψ〈NB〉ψ ≥ |
1

2
〈[A,B]〉ψ|

Proof. We use

|〈[X,Y ]〉ψ| = |〈ψ, (XY − Y X)ψ〉| = |〈Xψ, Y ψ〉 − 〈Y ψ,Xψ〉|
= |〈Xψ, Y ψ〉 − 〈Xψ, Y ψ〉|
= |2 Im〈Xψ, Y ψ〉| ≤ 2|〈Xψ, Y ψ〉|
≤ 2||Xψ||||Y ψ||

Now use

X = A− 〈A〉ψ︸ ︷︷ ︸
α

1 Y = B − 〈B〉ψ︸ ︷︷ ︸
β

1

Then

[X,Y ] = [A− α1, B − β1] = [A,B]− [A, β1]− [α1, B] + αβ[1, 1]

= [A,B]

and

||Xψ||2 = 〈(A− αI)ψ, (A− αI)ψ〉 = 〈Aψ,Aψ〉 − 〈Aψ,αψ〉 − 〈αψ,Aψ〉+ 〈αψ, αψ〉
= 〈ψ,A2ψ〉 − α〈ψ,Aψ〉 − α〈ψ,Aψ〉+ α2||ψ||2

= 〈A2〉ψ − 〈A〉2ψ

The equality

〈[X,Y ]〉φ = 2i Im〈Xψ, Y ψ〉 (2.10)

can be used to prove the following:
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2.6 The Stability of the Hydrogen Atom

In classical mechanics there is a nucleus and one electron. The nucleus is much heavier, so we consider
its position fixed and calculate the motion of the electron. They interact vis the Coulomb potential

V (x) =
−e2

|x− xnuc|
=
−e2

|x|
. (2.11)

This means that the classical energy is given by

E =
ρ2

2
− 1

|x|
x→0→ −∞.

This means that if the electron falls into the nucleus, it gains infinite energy, which is impossible in
the real world. The same problem seems to exist in celestial mechanics, but there, the planets can
be shown to go on stable orbits around the sun for a very long time. The situation is different for an
electron orbiting around a nucleus: As it moves on a curved orbit, it will always accelerate, therefore
emit radiation and be slowed down. So a classical electron orbiting a classical nucleus would crash
into that nucleus sooner rather than later.

In quantum mechanics this does not happen. What do you mean? Again H is the Hamiltonian
operator, in this example with potential given above, i.e.

H = − ~
2m

∆− e2

|x|2

We need that

〈H〉ψ = 〈ψ,Hψ〉 = 〈ψ,− ~
2m

∆ψ〉 − 〈ψ, e
2

|x|2
ψ〉

is bounded from below in the variable ψ. More precisely we want

inf{〈H〉ψ : ψ ∈ L2} > −∞

The key is

Theorem 2.20. For all ψ in a d dense subspace of D(H) we have the following

|〈ψ,−∆ψ〉| ≥ |〈ψ, 1

4|x|2
〉|∫

|∇ψ(x)|2dx ≥ 1

4

∫
|ψ(x)|2 1

|x|2
dx

Proof. First we prove

1

|x|2
=

i

~d

d∑
j=1

[
1

|x|
Pj

1

|x|
, Xj ] (2.12)

(note ∂xj
1
|x| =

−xj
|x|3 ).

1

|x|
∂j

1

|x|
xjf(x) =

1

|x|

[
−x2

j

|x|3
+

1

|x|

]
+

xj
|x|2

∂jf(x)

and
xj
|x|
∂j

1

|x|
f(x) =

xj
|x|

[
−xj
|x|3

f(x) +
1

|x|
∂jf(x)

]
+

xj
|x|2

∂jf(x)
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subtracting and summing over j from 1 to d gives the right-hand side of (2.12). This equality and
(2.10) allows us to express

~d〈ψ, 1

|x|2
ψ〉 = −2

d∑
j=1

Im(〈 1

|x|
Pj

1

|x|
ψ, xjψ〉)

Now using the equality Pj
1
|x| = 1

|x|Pj + [Pj ,
1
|x| ] = 1

|x|Pj + i~ xj
|x|3 . This gives us

〈 1

|x|
Pj

1

|x|
ψ, xjψ〉 = 〈 1

|x|
(

1

|x|
Pj + i~

xj
|x|3

)ψ, xjψ〉

= 〈 1

|x|2
Pjψ, xjψ〉 − i~〈

xj
|x|4

ψ, xjψ〉

= 〈Pjψ,
xj
|x|2

ψ〉 − i~〈ψ,
x2
j

|x|4
ψ〉

Summing over j gives

~d〈ψ, 1

|x|2
ψ〉 = −2 Im

d∑
j=1

〈Pjψ,
xj
|x|2

ψ〉+ 2~〈ψ, 1

|x|2
ψ〉

We use this and then the Cauchy-Schwarz inequality

|〈ψ, 1

|x|2
ψ〉|2 =

4

(~(d− 2))2
| Im(

d∑
j=1

〈Pjψ,
xj
|x|2

ψ)〉|2

≤ 4

(~(d− 2))2
|
d∑
j=1

〈Pjψ,
xj
|x|2

ψ〉|2

=
4

(~(d− 2))2
|〈~Pψ, ~x

|x|2
ψ〉|2

C−S
≤ 4

(~(d− 2))2
〈~Pψ, ~Pψ〉〈 ~x

|x|2
ψ,

~x

|x|2
ψ〉

=
4

(~(d− 2))2
|〈ψ,

d∑
j=1

P 2
j︸ ︷︷ ︸

~2∆

ψ〉||〈ψ,
d∑
j=1

x2
j

|x|4
ψ〉|

=
4

(~(d− 2))2
|〈ψ,−~2∆〉||〈ψ, 1

|x|2
ψ〉|

It follows

|〈ψ, 1

|x|2
ψ〉|2 ≤ 4

(d− 2)2
|〈ψ,−∆ψ〉||〈ψ, 1

|x|2
ψ〉|

which gives the claim (d = 3).

In the above proof we have used Cauchy-Schwarz inequalitys on L2(Rd,Rd) with

〈~f,~g〉 =

d∑
j=1

〈fi, gi〉L2(Rd,R)
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For the Hydrogen atom in R3 we find

〈ψ,Hψ〉 = 〈ψ, (− ~
2m

∆− e2

|x|
)ψ〉 = 〈ψ,− ~

2m
∆ψ〉 − 〈ψ, e

2

|x|
)ψ〉

≥ ~2

8m
〈ψ, 1

|x|2
ψ〉 = 〈ψ, f(x)ψ〉

with f(x) = ~2

8m
1
|x|2 −

e2

|x| ≥
2me4

~2 which proves stability.



Chapter 3

The Harmonic Oscillator

The quantum harmonic oscillator is the quantum mechanical analogue of the classical harmonic
oscillator. It is one of the few quantum mechanical systems for which a simple exact solution is
known. Furthermore it is one of the most most important model systems in quantum mechanics
because an arbitrary potential can be approximated as a harmonic potential at the vicinity of a
stable equilibrium point. This is because particles move very little if they sit close to a potential
energy minimum and have low kinetic energy. In this case we can approximate energy by its Taylor
expansion.

V ≈ V (x0) + (x− x0)V ′(x0) +
1

2
(x− x0)2V ′′(x0)

The V (x0) can be set to zero by an ’energy shift’ and V ′(x0) = 0 as we are at a minimum. Thus we
get the following

V (x) =
κ

2
x2

where κ is some constant.

3.1 Classical Harmonic Oscillator

Using the classical relations

ẋ(t) =
1

m
ρ(t)

ρ̇(t) = −κx(t)

Setting ω =
√

κ
m we get the solutions

x(t) = A sin(ωt− b)
ρ(t) = mωA cos(ωt− b)

The energy of the system is given by

Hclass =
ρ2

2m
+
κ

2
x2

3.2 Quantum Harmonic Oscillator

In quantum mechanics in one dimension

H = − ~2

2m
∂2
x +

κ

2
x2 (3.1)

24
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and in d dimensions

H = − ~2

2m
∆ + xAx

where A is a positive definite matrix, but we shall be dealing only with one dimension. We can
simplify the expression by scaling. For ψ ∈ L2(R) satisfying (3.1) define

ψ̃(λx, ωt) = ψ(x, t) with λ =
√

mw
~ , ω =

√
κ
m

Put y = λx, and τ = ωt then

∂2
xψ(x) = ∂2

x(ψ̃(λx, ωt)) = λ2ψ′′(y, τ) =
mω

~
ψ̃′′(y, τ)

x2ψ(x, t) =
1

λ2
(λx)2ψ̃(λx, ωt) =

~
mω

y2ψ̃(y, τ)

∂tψ(x, t) = ∂tψ̃(λx, ωt) = ω∂τ ψ̃(y, τ)

Thus we have

Hψ(x, t) = − ~2

2m

mω

~
ψ̃′′(y, τ) +

κ

2

~
mω

x̃2ψ̃(y, τ)

= −~ω
2
ψ̃′′(y, τ) +

ω �2��m

2

~
��mω

y2ψ̃(y, τ)

=
~ω
2

(−ψ̃′′(y, τ) + y2ψ̃(x̃))

i∂tψ(x, t) = iω∂τ ψ̃(y, τ)

This gives us the more simplified quantum harmonic oscillator equation of

1

2
(−ψ̃′′(y, τ) + y2ψ̃(y, τ)) = i∂τ ψ̃(y, τ) (3.2)

In a similar way the above we can use scaling to put m = ~ = 1 in the general Schrödinger equation
(1.1).

3.3 Eigenvalues and Eigenvectors

We want to solve
Hψ = λψ (3.3)

For this a different scaling workings better:

ψ̃(x) = ψ(
x

λ0
) with λ0 =

√
m
~ , ω = ~

√
k
m .

Then if ψ solves (3.3), then ψ̃ solves

−1

2
∂2
xψ̃ +

1

2
ω2x2ψ̃ = λψ̃

We drop the˜notation and study

− 1

2
∂2
xψ +

1

2
ω2x2ψ = λψ (3.4)

and we will find all its solutions. We shall use the following strategy:
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(i) Find one eigenfunction

(ii) Find the operators A+, A− that map each eigenfunction to the ’next higher’ (or ’next lower’)
energy eigenfunction. This give us infinitely many eigenfunctions.

(iii) Show this gives them all

We start with (ii) and define

Definition 3.1. The creation operator (at frequency ω) is

A+ :=
1√
2

(− d

dx
+ ωx)

and the annihilation operator (at frequency ω) is

A− :=
1√
2

(
d

dx
+ ωx)

In fact it can be easily shown that A− = A∗+. So we write A = A−, A∗ = A+

Lemma 3.2.

A∗A = H − ω

2
AA∗ = H +

ω

2

Proof.

AA∗ψ =
1

2
(
d

dx
+ ωx)(− d

dx
+ ωx)ψ

=
1

2
(
d

dx
+ ωx)(ωxψ − dψ

dx
)

=
1

2
(ωψ + ωx

dψ

dx
− d2ψ

dx2
− ω2x2ψ − ωxdψ

dx

= (−1

2

d2ψ

dx2
+

1

2
ω2x2)ψ +

ω

2
ψ

= (H +
ω

2
)ψ

The proof of the other is similar.

Before we implement step (ii), we shall first prove the following propositions:

Proposition 3.3. Any eigenvalue of H is greater than or equal to ω
2 .

Proof. Suppose λ is an eigenvalue of H. Then

λ = λ||ψ||2 = 〈ψ, λψ〉 = 〈ψ,Hψ〉 = 〈ψ, (A∗A+
ω

2
)ψ〉

= 〈ψ, (A∗A)ψ〉+ 〈ψ, ω
2
ψ〉

= ||Aψ||+ w

2
≥ w

2
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Proposition 3.4. Assume Hψ = λψ for some λ ≥ ω
2 . Then

(a) A∗ψ is an eigenfunction of H with eigenvalue of λ+ ω

(b) For λ > ω
2 , Aψ is an eigenfunction of H with eigenvalue of λ− ω

(c) λ = ω
2 if and only if Aψ = 0

Proof. Start with (c). Assume Hψ = λψ. Then

||Aψ||2 = 〈ψ,A∗Aψ〉 = 〈ψ, (H − ω

2
)ψ〉 = 〈ψ, (λ− ω

2
)ψ〉 = (λ− ω

2
)||ψ||2

which is zero if and only if λ = ω
2 .

For (b), assume again Hψ = λψ then

H(Aψ) = (AA∗ − ω

2
)Aψ = A(A∗Aψ − ω

2
)ψ

= (H − ω

2
)ψ − ω

2
ψ = (λ− ω

2
)ψ − ω

2
ψ

= (λ− ω)ψ

For (a)

H(A∗ψ) = (A∗A+
ω

2
)A∗ψ = A∗(AA∗ψ − ω

2
)ψ

= (H +
ω

2
)ψ +

ω

2
ψ = (λ+

ω

2
)ψ +

ω

2
ψ

= (λ+ ω)ψ

We need to check that A∗ψ 6= 0. Note that

||A∗ψ|| = 〈ψ,AA∗ψ〉 = 〈ψ, (H +
ω

2
)ψ〉

= 〈ψ, λψ〉+
ω

2
||ψ||2 > 0

So step (ii) is complete. For step (iii):

Proposition 3.5. If λ is an eigenvalue of H then λ ∈ {ω2 + nω : n ∈ N}
Proof. Assume by way of contradiction, λ = ω(γ+n), γ ∈ ( 1

2 ,
3
2 ) n ∈ N. Let ψ be the corresponding

eigenfunction. Then Anψ is an eigenfunction with eigenvalue λ− ωn = ωγ. So H(Anψ) = γωAnψ.
Now apply A again to find H(An+1)ψ = (γ − 1)wAn+1ψ and since γ − 1 < 1

2 this contradicts
proposition 3.3.

So we have shown A∗ is a bijection from the eigenspace with eigenvalues ω
2 +nω to the eigenspace

with eigenvalues ω
2 + (n + 1)ω. Similarly A is a bijection from the ( 1

2 + n + 1)ω-eigenspace to the
( 1

2 + n)ω-eigenspace. It now remains to find one eigenspace, i.e. eigenfunctions corresponding to
λ = ω

2 (step 1). They are given, by part (c) of proposition 3.4 to be exactly the functions for which
Aψ = 0. Thus

Aψ =
1√
2

(ψ′(x) + ωxψ(x)) = 0

⇔ ψ′(x)

ψ(x)
= −ωx

⇔ log(ψ(x)) = −ω
2
x2 + c

⇔ ψ(x) = e−
ω
2 x

2

ec
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We need ||ψ||2 = 1, so we find 1 = e2c
∫
e−ωx

2

dx = e2c(πω )
1
2 . Thus

φ(x) = (
ω

π
)

1
4 e−

ω
2 x

2

Theorem 3.6. The eigenvalues of the (scaled, one dimensional) quantum harmonic oscillator equa-
tion

Hosc = −1

2
∂2
x +

ω2

2
x2

are given by λn = ( 1
2 + n)ω for n ∈ N ∪ {0}. The corresponding normalised eigenfunctions are

φn =
ω

1
4−

n
2

π
1
4

√
n!

(− d

dx
+ wx)ne−

ω
2 x

2

Proof. For n = 0 see above. Then by way of induction assume for n ≥ 0, then

A∗ψn =
1√
2

(− d

dx
+ ωx)ψn

is an eigenfunction, but not normalised. We have

||A∗ψn||2 = 〈ψn, AA∗ψ〉 = (λn + ω)||ψn||2 = (n+ 1)ω.

So it follows that

ψn+1 =
1√

n+ 1
√
ω
A∗ψn

is an eigenfunction and normalised.

A direct calculation of the above gives

(− d

dx
+ ωx)ne−

ω
2 x

2

= Hne
−ω2 x

2

with H0(x) = 1, H2 = 2x,H3 = 4x2 − 2, ...

Hn(x) is called the nth Hermite polynomial. Note that ψ0(x) > 0 for all x and is the only eigenfunc-
tion with that property.

3.4 Dynamics

We want to solve
1

2
(−∂2

x + x2)ψ(x, t) = i∂tψ(x, t) (3.5)

with ψ(x, 0) = ψ0(x).

3.4.1 Periodicity

Let us write

ψ0(x) =

∞∑
n=0

αnψn(x)
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with ψn eigenfunctions to H = 1
2 (−∂2

x + x2)

Hψn = (
1

2
+ n)ψn

(where we are considering ω = 1). It can be shown that {ψn}n∈N is an orthonormal basis of L2(R).
Then by proposition 2.17

ψ(x, t) =

∞∑
n=0

αne
−i(n+ 1

2 )tψn(x)

=

[ ∞∑
n=0

αne
intcnHn(x)

]
e−

x2

2 −
i
2 t

Thus ψ(x, t) is 2π periodic up to a global phase, which is invisible to all observables.

3.4.2 Dynamics of mean values

Recall the Ehrenfest equations

d

dt
〈X(t)〉ψ = 〈P (t)〉ψ

d

dt
〈P (t)〉ψ = −〈∇V (t)〉ψ

For the harmonic oscillator

〈∇V (x)〉ψ = 〈ψ, (1

2
x2)′ψ〉 = 〈ψ, xψ〉 = 〈x〉ψ = ∇V (〈x〉ψ)

so in this case (but not in general) the mean values follow precisely the classical trajection.

3.4.3 Dynamics of observables

For the mean values we now know

d2

dt2
〈X(t)〉ψ = 〈X(t)〉ψ.

Solving this we get

〈X(t)〉 = cos(t)〈X(0)〉+ sin(t)〈P (0)〉 (3.6)

〈P (t)〉 = cos(t)〈P (0)〉 − sin(t)〈X(0)〉

The trick is to note that (3.6) ⇔

〈ψ(t), Xψ(t)〉 = 〈e−itHψ0, Xe
−itHψ0〉 = cos(t)〈ψ(0), Xψ(0)〉+ sin(t)〈ψ(0), Pψ(0)〉

Thus defining:
X(t) := eitHXe−itH = cos(t)X + sin(t)P

This implies
X2(t) := eitHX2e−itH = eitHX e−itHeitH︸ ︷︷ ︸

=1

Xe−itH

It is the same for all powers, so this implies

eiX(t) = 〈ψ, eiXψ〉 =

∫
|ψ(x, t)|2eiXdx

=

∞∑
n=0

in

n!
Xn(t) = exp(i(cos(t)X + sin(t)P ))
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This becomes useful together with the Weyl relation (proof as exercise):

ei(aX+bP ) = eiaXeibP ei
ab
2

Theorem 3.7. [Mehler Kernel] The solution ψ(x, t) of (3.5) is given by

ψ(x, t) =

∫
Kt(x, y)ψ0(y)dy

where

Kt(x, y) =
e−i

t
2√

π(1− e−2it
exp

[
(e−itx− y)2 − (e−ity − x)2

2(1− e−2it)

]
is the Mehler Kernel

Proof. See later (uses Feynman-Kac formula)

Note that for t = π
2 , e−it = −i, e−2it = −1. So

Kt(x, y) =
e−i

π
4

√
2π

exp

[
1

4
((ix+ y)2 + (iy + x)2)

]
= e−i

π
4

1√
2π
eixy

and so Kt is the kernel of the Fourier transform, i.e. turns position into momentum and vice-versa.
For t = kπ the kernel is undefined. But for t→ kπ it converges to a δ−kernel.



Chapter 4

The Feynman-Kac Formula

4.1 Feynman integral

The aim of this section is to compute the integral kernel for e−itH in general, i.e. find a function
Kt(x, y) such that

e−itHf(x) =

∫
Kt(x, y)f(y)dy.

Why? Because then the solution of (1.6) is given by an integral.

4.1.1 Trotter Product Formula

We know

(a) H = − 1
2∆⇒ Kt(x, y) = 1

(2πit)
1
2
e
i
2t (x−y)2 (free motion)

(b) H = − 1
2∆ + x2

2 ⇒ Kt(x, y) = Mehler Kernel

and that’s all. We do know the kernel of e−it(−
1
2 ∆)e−itV :

Kt(x, y) =
1

(2πit)
1
2

e
i
2t (x−y)2e−itV (y)

but unfortunately
e−it(−

1
2 ∆+V ) 6= e−it(−

1
2 ∆)e−itV

But what is true is the following

Theorem 4.1 (Trotter Product Formula). Let A,B be operators. Assume, alternatively

(i) either A or B are bounded

(ii) or A,B and A+B are self-adjoint and bounded below.

Then for any λ ∈ C with Re(λ) ≤ 0 and any ψ ∈ D(A) ∩ D(B) ∩ D(A+B) we have

eλ(A+B)ψ = lim
n→∞

(exp(
λ

n
A) exp(

λ

n
B))nψ

31
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Proof. Only for (i). In this case the theorem is called the Lie product formula. Without loss of

generality let λ = 1. And let Sn = e
A+B
n and Tn = e

A
n e

B
n then

eA+B − (e
1
nAe

1
nB)n = Snn − Tnn = Snn − TnSn−1

n + TnS
n−1
n − T 2

nS
n−2
n + T 2

nS
n−2
n ...+ ...− Tnn

=

n−1∑
k=0

T kn (Sn − Tn)Sn−k−1
n

Thus,

||eA+B − (e
1
nAe

1
nB)n|| ≤

n−1∑
k=0

||T kn ||||(Sn − Tn)||||Sn||n−k−1

≤
n−1∑
k=0

||(Sn − Tn)||(max{||Tn||, ||Sn||})n−1

= n||(Sn − Tn)||(max{||Tn||, ||Sn||})n−1

≤ n||(Sn − Tn)||(e
||A||
n e

||B||
n )n−1

Since,

||Sn|| ≤ e
||A+B||

n ≤ e
||A||
n e

||B||
n

||Tn|| = ||e
A
n e

B
n || ≤ ||eAn ||||eBn || ≤ e

||A||
n e

||B||
n

Finally since Sn and Tn are bounded operators,

Sn = 1 +
A+B

n
+

(A+B)2

2!n2
+ ...

Tn = (1 +
A

n
+

A2

2!n2
+ ...)(1 +

B

n
+

B2

2!n2
+ ...) = 1 +

A+B

n
+
A2 + 2AB +B2

2n2
+ ...

So

||Sn − Tn|| =
∞∑
k=2

| 1

k!nk
something in A,B| ≤ c

n2

n→∞→ 0

Let us apply this to H = − 1
2∆ + V and λ = −it (so A = − 1

2∆, B = V ). Then we know

exp(λnA)exp(λnB) has kernel with

K t
n

(x, y) =
1

(2πi tn )
1
2

e

i

2
t
n

|x−y|2

e−i
t
nV (y).

It follows,

[ Kernel of e−itH ](x, y) = lim
n→∞

∫
K t

n
(x, x1)...K t

n
(xn−2, xn−1)K t

n
(xn−1, y)dx1...dxn−1
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since, letting H0 = − 1
2∆

e−itHf(x)
trotter

= lim
n→∞

e−i
t
nH0e−i

t
nV · e−i tnH0e−i

t
nV · ...︸︷︷︸

n times

·e−i tnH0e−i
t
nV f(x)

= lim
n→∞

∫
dx1K t

n
(x, x1)...

∫
dxn−1K t

n
(xn−2, xn−1)

∫
dyK t

n
(xn−1, y)f(y)

Fubini
= lim

n→∞

∫
dx1...dxn−1dyK t

n
(x, x1)K t

n
(x1, x2)...K t

n
(xn−2, xn−1)K t

n
(xn−1, y)f(y)

= lim
n→∞

∫ [∫
...

∫
dx1...dxn−1K t

n
(x, x1)K t

n
(x1, x2)...K t

n
(xn−2, xn−1)K t

n
(xn−1, y)

]
f(y)dy

= lim
n→∞

∫ [∫
...

∫
dx1...dxn−1 exp

(
i
∑n−1
k=0( 1

2
1
t
n

|xk+1 − xk|2 − V (xk+1) tn )

)
( 2πit
n )

−nd
2

]
f(y)dy

(4.1)

with x0 = x, xn = y.

4.1.2 Feynman’s ingenious interpretation

We now consider the part inside the exponential

Sn =

n−1∑
k=0

(
1

2

1
t
n

|xk+1 − xk|2 − V (xk+1) tn )

and Feynman’s interpretation of it.

Let φn : R → Rd be piecewise linear with φn(ktn ) = xk for k = 0, 1, ..., n and x0 = x and xn = y.
Then

Sn =
t

n

n−1∑
k=0

1

2

(
φn(k+1

n t)− φn( kn t)
t
n

)2

− V (φn(k+1
n t))

and instead of integrating over xi we can integrate over functions that start at x and finish at y.
What’s more, Sn converges as a Riemann sum to∫

1

2
|φ′(s)|2 − V (φ(s))ds =: S(φ, t).

So by taking the limit in the exponent only, gives an answer. S(φ, t) is the classical action corre-
sponding to the classical Newton equation ẍ = −∇V (x). So we can get the integral kernel of e−itH

by

(i) evaluating the classical action ’all’ possible paths

(ii) averaging over the results.

So in a sense, the final integral should be over (Rd)∞ or rather (Rd)[0,t] (the space of all functions
[0, t]→ Rd.

Great heuristic advantage: Since S(φ, t) is stationary at the classical solution those paths that are
’close’ to it shall count most (’stationary phase argument’). Feynman went one step further than
(4.1) and took the limit n→∞ also in the measure. The result:

e
i
~ tH(x, y) =

∫
e
i
~S(φ,t)dφ
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where ’dφ’ is the ’Lebesgue’ measure on all functions from x to y. The bad news is that it can be
shown that there is no way to make sense of such a measure. This does not stop physicists! And the
Feynman integral is used widely (e.g. for guessing results that have to be proved by other means).
We want a rigorous general theory, and have to settle for less.

4.1.3 Feynman integrals for imaginary time

Marc Kac noticed that Feynman integrals make mathematical sense for imaginary time. Put differ-
ently

e−tH = e−i(−itH)

has kernel given by a space of functions. So from now on we aim to find the kernel of e−tH for t ∈ R.

Idea: Incorporate the 1
2

∫ t
0
|φ′(s)|2ds term into the measure. So consider the measure on functions

by

µn(φ( tn ) ∈ A1, φ( 2t
n ) ∈ A2, ..., φ( (n−1)t

n ) ∈ An−1)

= ( 2πt
n )−

nd
2

∫
dx1...dxn−1e

− 1

2
t
n

|x−x1|2

1A1
(x1)e

− 1

2
t
n

|x2−x1|2

1A2(x2)...1An−1(xn−1)e
− 1

2
t
n

|y−xn−1|2

=

∫
dx1...dxn−1g t

n
(x, x1)1A1

(x1)g t
n

(x1, x2)1A2
(x2)...1An−1

(xn−1)g t
n

(xn−1, y) (4.2)

where

gs(x, y) =
1

(2πs)
d
2

e−
1
2s |x−y|

2

Note that this function satisfies∫
gs(x, y)gt(y, z)dy = gt+s(x, z)

and replacing the 1An(x) in (4.2) with e−
t
nV (

xt
n ) gives back the ’real time’ of (4.1). What about the

limit n → ∞? The idea is to view the measures µn as the finite dimensional distributions of some
’big’ measure. So the question is: Is there a measure µ on functions φ : [0, t]→ Rd such that for all
t1 < ... < tn we have

µn(φ(t1) ∈ A1, φ(t2) ∈ A2, ..., φ(tn) ∈ An)

=

∫
gt1(x, x1)1A1(x1)gt2−t1(x1, x2)1A2(x2)gt3−t2(x3, x2)1A3(x3)...gt−tn(y, xn)dx1...dxn?

The answer is yes by Kolmogorov’s consistency (sometimes extension or existence) theorem:

Theorem 4.2 (Kolmogorov consistency theorem). Let {µt1,...,tn : 0 ≤ t1 < t2 < ... < tn < t} be a
family of finite measures (e.g. probability measures). Each ut1,...,tn is assumed to be on (Rd)n and
we assume the consistency condition

µt1,..,tk,τ,tk+1,...tn(A1×...×Ak×Rd×Ak+1×...×An) = µt1,..,tk,tk+1,...tn(A1×...×Ak×Ak+1×...×An)

for every tj ∈ (0, t) and τ ∈ [0, t] with tk < τ < tk+1 and Aj ∈ Rd measurable. Then there exists a
measure µ on (Rd)[0,t] (i.e. functions from [0, t] to Rd) such that

µ(φ(t1) ∈ A1, ..., φ(tn) ∈ An) = µt1,...,tn(A1 × ...×An)
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Let us check that our measures are consistent.

µ4(φ( t4 ) ∈ A, φ( 2t
4 ) ∈ R, φ( 3t

4 ) ∈ B) = µ 1
4 ,

2
4 ,

3
4

(A× R×B)

=

∫
dx1

e
− 1

2t
4

|x−x1|2

(2π t4 )
d
2

1A(x1)

∫
dx2

e
− 1

2t
4

|x2−x1|2

(2π t4 )
d
2

1R(x2)

∫
dx3

e
− 1

2t
4

|x3−x2|2

(2π t4 )
d
2

1B(x3)
e
− 1

2t
4

|y−x3|2

(2π t4 )
d
2︸ ︷︷ ︸

=:hy(x3)

= [e−
t
4H01Ae

− t4H01Rde
− t4H0hy](x)

= [e−
t
4H01Ae

− t2H0hy](x)

= µ 1
4 ,

3
4

(A×B)

The measure µ will turn out to be the conditional Brownian motion from x to y in time t. We
write W x,y

t (dφ) for it. Then formally

e−tH(x, y) = lim
n→∞

∫
e−

t
n

∑n−1
k=0 V (φ(

k+1
n t)µn(dφ)

=

∫
e−

∫ t
0
V (φ(s))dsW x,y

t (dφ) (4.3)

Note that the term inside the exponential converges to
∫ t

0
V (φ(s))ds) but we need to be careful

about the limit of µn. We will prove this rigorously later. (4.3) is called the Feynman-Kac formula.
We aim to prove it.

4.2 Brownian Motion

Classical Construction: Let {Xi}i∈N be independent random variables with probability P(Xi = 1) =
P(Xi = −1) = 1

2 . Put Sn =
∑n
i=1Xi. So Sn can be viewed as piecewise linear function, just as before.

Actually if Xi is Gaussian random variable rather than Bernoulli we get precisely the picture we
had in the imaginary time Feynman integrals.

P(S1 ∈ A1, ..., Sn ∈ An) =

∫
g1(0, x1)1A1(x1)g1(x1, x2)1A2(x2)...g1(xn, xn−1)1An(xn)dx1...dxn

Now we want to make the grid finer. Identify i ∈ N with i
N t ∈ R and send N → ∞. Keeping step

size 1 would make the function to rough. Try jump size 1
N , but then

N∑
i=1

1

N
Xi =

1

N
Sn

law of large numbers→ E(X1) = 0

So this step size is too small!. The central limit theorem implies.

N∑
i=1

1√
N
Xi

distribution→ N (0, 1)

Now formalise this: Define a map G : {−1, 1}N → C([0, t];R), (Xi)i≤N 7→ B(N) : [0, t]→ R, where

B(N)
s

{
1√
N

∑k
i=1Xi if s = t kn

linear interpolation otherwise
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Let W (N) be the image measure of the Bernoulli measure (B(−1, 1))N under G i.e. for a subset
of A of C([0, 1];R) we define WN to be the pushforward measure

W (N)(A) = (B(−1, 1))N [G−1(A)] (4.4)

Note that the σ−algebra on C([0, T ];R) will always be the one generated by point evaluations
f 7→ f(t) for some t.

Facts about W (N):

(i) It is concentrated on piecewise linear functions with corners at t kN and slopes 1
t

√
N

(ii) Each possible path has weight 1
2N

Theorem 4.3 (Donsker). W (N) converges weakly (with respect to the topology of local uniform
convergence) to a probability measure W 0 on C([0, T ];R)

W 0 is called Brownian motion starting at 0. The same construction works on C(R+,R) or
C(R+,Rd). Shifting the starting point of the random walk to x ∈ Rd gives W x - Brownian mo-
tion starting at x. Since W 0 is a measure on C(R+,Rd) we can say things about almost all paths
q : R+ → Rd. A remark on notation: a path is a (random) function drawn according to W x. We
will use q(s) or qs for a path (evaluated at time s).

Remarks

(a) q(0) = x for W x-almost all paths

(b) t 7→ qt is nowhere differentiable W x-almost surely. Since the finite approximations slope
√
N

we could expect that |qt − qs| ∼ |t− s|
1
2 for small |t− s|. This is almost correct. The reality is

a bit more involved.

lim sup
t→t0

qt − qt0√
2|t− t0|ln(ln( 1

|t−t0| ))
= 1 almost surely

lim
δ→0

sup

 qs − qt√
2|t− s|ln( 1

|t−s| )

 = 1 almost surely

Theorem 4.4 (Finite Dimensional Distributions on Brownian Motion). For 0 < t1 < t2 < ... < tn
and A1, A2, ..., An ∈ B(Rd) (Borel sets) where P(A) = W x(A). Then

W x(qt1 ∈ A1, ..., qtn ∈ An)

=

∫
1

(2πt1)
d
2
e
− 1

2t1
|x−x1|21A1(x1) 1

(2π(t2−t1))
d
2
e
− 1

2(t2−t1) |x2−x1|2
1A2(x2)...

... 1

(2π(tn−tn−1))
d
2
e
− 1

2(tn−tn−1) |xn−xn−1|2
1An(xn)dx1...dxn

= [e−t1H01A1
e−(t2−t1)H01A2

e−(t3−t2)H0 ...e−(tn−tn−1)H01An ](x) (4.5)

where H0 = − 1
2∆
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Sketch Proof. Use Donsker’s Theorem 4.3 with Gaussian jumps: Start with jumps of size t1, t2 −
t1, t3− t2, .. and then refine the grid (retaining original points t1, t2, ...). By the semi-group property
of (W x)(N)(qt1 ∈ A1, ..., qtn ∈ An) = right hand side of (4.5) for all N and the left hand side converges
to W x by Donsker.

An equivalent definition of Brownian motion is the unique probability measure W x on C(R+,Rd)
such that

W x(qt1 ∈ A1, ..., qtn ∈ An) = [e−t1H01A1
e−(t2−t1)H01A2

...e−(tn−tn−1)H01An ](x)

for all t1 < t2 < ... < tn ∈ R+, A1, ..., An ⊂ Rd open where H0 = − 1
2∆.

4.2.1 Markov Property

Intuitively the behaviour of a path q for times after t1 depends only on qt1 ≡ q(t1). Formally, cylinder
sets are sets of functions for the form

Ct(A) = {q ∈ C(R+,Rd) : q(t) ∈ A}

for some A ∈ B(Rd) (Borel set). Generate the σ−algebra

F{t} = σ({Ct(A) : A ∈ B(Rd)})

A subset B of C(R+,Rd) is in F{t} if it can be decided for any function, q ∈ B, whether q belongs
to B or not by knowledge of q(t) alone. Define

F[a,b] = σ({Ct(A) : A ∈ B(Rd), t ∈ [a, b]})

Definition 4.5. Let F : C(R+,Rd) → R) be measurable. Then for a ≤ b we define conditional
expectation, W x(F |F[a,b]), to be the (almost surely) unique random variable C(R+,Rd) → R such
that

(i) W x(F |F[a,b]) is F[a,b] measurable

(ii) For all F[a,b] measurable functions G we have∫
W x(F |F[a,b])(q)G(q)dW x(q) =

∫
F (q)G(q)dW x(q)

We can think of F[a,b] measurable functions, F (F ∈ mF[a,b]), as functions that depend only on qs
for a ≤ s ≤ b. For example:

F (q) =

∫ b

a

q(s)ds is F[a,b] measurable

F (q) =

∫ 1

0

q(s)q(1− s)ds is F[0,1] measurable

If

F (q) =

∫ t

0

q2(s)ds
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Then

W 0(

∫ t

0

q2
sds) =

∫ ∫ t

0

q2
sdsdW

0(q) =

∫ t

0

(∫
q2
sdW

0(q)

)
ds

=

∫ t

0

(
1√
2πs

∫
x2e−

1
2s |x|

2

dx

)
ds integrating over all paths, looking only at q(s).

=

∫ t

0

(
s2
)
ds =

1

3
t3

Intuitively W x(qt ∈ A|F[a,b])(q) is the probability that qt ∈ A if we know that qs = qs for s ∈ [a, b].

Theorem 4.6. Conditional expectation exists.

Theorem 4.7 (Conditional Expectation of Brownian Motion). For f ∈ L∞, set y ∈ Rd we have

W y(f(qt)|F{s})(q) = (e−(t−s)H0f)(qs) = W qs(f(qt−s))

the last expression is the expectation with respect to a standard Brownian motion started at the point
q(s) at time s.

Proof. [e−(t−s)H0f ](qs) depends only on qs and so is F{s} measurable. Now for g ∈ mF{s} we find

W y([e−(t−s)H0f ](qs)g(qs))
Thm. 4.4

= (e−sH0ge−(t−s)H0f)(y)
Thm. 4.4

= W y(g(qs)f(qt))

The moral is that Brownian motion starts a fresh at x ∈ Rd when conditioned to be at x ∈ Rd.

Theorem 4.8 (Markov Property). For all F ∈ mF[t,∞) t > 0 we have

W y(F |F[0,t]) = W y(F |F{t})

Proof. Since F{t} ⊂ F[0,t], then clearly W y(F |F{t}) ∈ mF[0,t]. For G ∈ mF[0,t] we first consider

G(q) = g1(qt1)g2(qt2)...gn(qtn)

with t1 < t2 < ... < tn = t and

F (q) = f1(qtn+1
)f2(qtn+2

)...fm(qtn+m
).

Then

W y(GW y(f |F{t}))
Thm. 4.7

= W y(g1(qt1)g2(qt2)...gn(qtn)× [e−(tn+1−tn)H0f1e
−(tn+2−tn+1)H0f2...

...e−(tn+m−tn+m−1)H0fm](qtn)
Thm. 4.4

= [e−t1H0g1e
−(t2−t1)H0g2..

...gne
−(tn+1−tn)H0f1e

−(tn+2−tn+1)H0f2...e
−(tn+m−tn+m−1)H0fm](y)

= W y(FG)



CHAPTER 4. THE FEYNMAN-KAC FORMULA 39

Define τt : L1(C(R+,Rd))→ L1(C(R+,Rd))

(τth)(q) = h({qt+s : s ∈ R})

which translates Brownian motion. For example:

F : g 7→
∫ T

0

q2
sds (τtF )(q) = F (q·+t) =

∫ T

0

q2
t+sds

We will need the following consequence of this

Lemma 4.9. Let f, g : C(R+,R) → R+ with f ∈ mF[0,t], W
x(|f |) < ∞ and supyW

y(|g|) < ∞.
Then

W x(fτtg) ≤W x(f) sup
y
W y(g)

Proof. By the definition of conditional expectation (ii):

W x(fτtG)
f∈mF[0,t]

= W x(fW x(τtg : F[0,t]))

Markov
= W x(fW x(τtg : F{t}))

Thm4.7
= W x(fW q(t)(g))

≤ W x(f sup
y
W y(g))

= W x(f) sup
y
W y(g)

4.3 Feynman-Kac Formula

Theorem 4.10. Assume V : Rd → R is bounded above and below and continuous. Then for each
f, g ∈ L2(Rd) we have

〈f, e−t(H0+V )〉 =

∫
Rd
f(x)W x

(
e−

∫ t
0
V (qs)dsg(qt)

)
dx

=

∫
Rd
f(x)

(∫
e−

∫ t
0
V (qs)dsg(qt)dW

x

)
dx

this means that

e−t(H0+V ) = W x
(
e−

∫ t
0
V (qs)dsg(qt)

)
in L2 sense

Proof. exercise - using Trotter and DCT

But what we really want is difficult potentials like V (x) = 1
|x| in R3. For instances does the integral

with respect to Brownian motion of e−
∫ t
0
V (qs)dsg(qt) make sense? For example V (x) = − 1

|x| . Where

the integrand is infinite we hope that such paths have measure zero. A key result is:
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Theorem 4.11 (Kashminski). Let V : Rd → R, V ≥ 0 be measurable with

sup
x∈Rd

W x

(∫ t

0

V (qs)ds

)
= α < 1

then

sup
x
W x

(
e
∫ t
0
V (qs)ds

)
≤ 1

1− α

Proof. We will show that

In := sup
x∈Rd

W x

(
1

n!
(

∫ t

0

V (qs)ds)
n

)
≤ αn (4.6)

Then supx∈RdW
x
(
e
∫ t
0
V (qs)ds

)
≤
∑∞
n=0 In = 1

1−α . To show that note:

In =
1

n!
sup
x∈Rd

W x

(∫ t

0

ds1...

∫ t

0

dsnV (qs1)...V (qsn)

)
= sup

x∈Rd
W x

(∫ t

0

ds1

∫ t

s1

ds2...

∫ t

sn−1

dsnV (qs1)V (qs1)...V (qsn)

)

= sup
x∈Rd

W x

∫
s∈[0,1]n

s1≤s2≤...≤sn

V (qs1)...V (qsn)ds1...dsn


Fubini

= sup
x∈Rd

∫ t

0

ds1

∫ t

s1

ds2...

∫ t

sn−2

dsn−1W
x

(
V (qs1)V (qs1)...V (qsn−1)

∫ t

sn−1

V (qsn))dsn

)

The second equality follows since the integrand is symmetric in s1, ..., sn, so we can integrate over the
lower triangle, i.e. over the set {(s1, ..., sn) : sn ≥ ... ≥ s1} and multiply by the number of different
orderings n!. That is, there are n! permutations of s1, ..., sn and

V (s1)...V (sn) = V (sπ(1))...V (sπ(n))

for all permutations π : {1, ..., n} → {1, ..., n}. Now, using conditional expectation and the fact that
V (qs1)V (qs1)...V (qsn−1) is Fsn−1 measurable then,

W x

(
V (qs1)V (qs1)...V (qsn−1

)

∫ t

sn−1

V (qsn))dsn

)
≤ W x

V (qs1)...V (qsn−1
) sup

y
W y

∫ t−sn−1

0

V (qr)dr︸ ︷︷ ︸
≤α


≤ αW x

(
V (qs1)...V (qsn−1

)
)

repeat n times to get result.

Definition 4.12. A measurable function V : Rd → R is Kato class, V ∈ K(Rd) if

(i) supx∈Rd
∫

1{|x−y|≤1}|V (y)|dy <∞ if d = 1

(ii) limr→0 supx∈Rd
∫

1{|x−y|≤r}g(x− y)|V (y)|dy = 0 if d ≥ 2
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where

g(x) =

{
−ln|x| d = 2

1
|x|d−2 d ≥ 3

V ∈ K(Rd) can be locally singular but not too much. Check this for V (x) = 1
|x|q in R3:

lim
r→0

sup
x∈Rd

∫
1{|x−y|<r}

1

|x− y|
1

|y|q
dy

x=0
= lim

r→0

∫
|y|≤r

1

|q|q+1
dy = 0

So 1
|x| ∈ K(R3) but 1

|x|2 /∈ K(R3).

Definition 4.13. V is locally Kato-class, V ∈ Kloc, if 1KV ∈ K for every compact set K. V is
Kato-decomposable,V ∈ K±, if V = V + − V − with V +, V − ≥ 0 and V + ∈ Kloc and V − ∈ K.

Remember that we want W x
(
e−

∫ t
0
V (qs)ds

)
<∞ so we don’t care too much about what V + does at

infinity.

Theorem 4.14. A non-negative function V ∈ K(Rd) if and only if

lim
t↓0

sup
x∈Rd

W x

(∫ t

0

V (qs)ds

)
= 0

Proof for d = 4. By Fubini

W x

(∫ t

0

V (qs)ds

)
=

∫ t

0

W x(V (qs))ds =

∫ t

0

∫
e−

1
2s |x−y|

2 1

(2πs)
d
2

V (y)dyds

Fubini
=

∫ [∫ t

0

e−
1
2s |x−y|

2 1

(2πs)
d
2

ds

]
V (y)dy

Then by using the substitution |x−y|
2

2s =: u(s), then∫ t

0

e−
|x−y|2

2s
1

(2πs)
d
2

ds =
|x− y|2−d

(2π)
d
2

∫ ∞
|x−y|2

2t

e−uu
d
2−2du =: Q(|x− y|, t)

So

lim
t→0

sup
x∈R4

W x

(∫ t

0

V (qs)ds

)
= lim
r→0

sup
x∈R4

∫
Q(|x− y|, r)V (y)dy

We show that the right hand side of the above equation is equal to

lim
r→0

sup
x∈R4

∫
g|x− y|1{|x−y|<r}V (y)dy

where g is as in the definition of Kato-class (definition 4.12). To see this, note that

Q(|x− y|, r) ≈ g(|x− y|) for |x− y|2 ≤ 2r

while Q(|x− y|, r)� 1 if |x− y|2 � r. We only look at d = 4, then

Q(|x− y|, r) =
1

(2π)2(x− y)2
e−
|x−y|2

2t

≥ 1

(2π)4
e−

t
2 1{|x−y|≤t}
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So

4π2e−r
∫
g(x− y)1{|x−y|≤r}V (y)dy ≤

∫
Q(|x− y|, r)V (y)dy

≤ 4π2e−r
∫
g(x− y)1

{|x−y|≤r
1
4 }
V (y)dy

+ 4π2

∫
{|x−y|≥r

1
4 }
e−
|x−y|2

2r g(x− y)V (y)dy

The first inequality shows that

lim
t→0

sup
x∈R4

W x

(∫ t

0

V (qs)ds

)
= 0⇒ V ∈ K(R4)

For V ∈ K(R4), the first term in the last line vanishes when taking limr→0 supx∈R4 . The second
term also vanishes: if V ∈ K(R4), there exists r0 such that

sup
x∈R4

∫
|x−y|<r

g(x, y)V (y)dy < 1

for all r < r0. We partition Rd into cubes of size r0 and find on each cube that the second term

≤ max{e−
|x−y|2

2r : y ∈ cube }
∫
V (y)g(x− y)dy︸ ︷︷ ︸

≤1

summing up over all the cubes gives a finite results (since the function decays very quickly) which
vanishes as r → 0.

Corollary 4.15. Assume V ∈ K(Rd). Then for any t ≥ 0

sup
x∈Rd

W x

(
exp

∫ t

0

V (qs)ds

)
<∞ (4.7)

Proof. By theorems 4.14, 4.11, for sufficiently small t > 0 we find

sup
x
W x

(
exp

∫ t

0

V (qs)ds

)
<

1

1− α

where α < 1. Now, via conditional expectation

W x

(
exp(

∫ 2t

0

V (qs)ds)

)
= W x

(
W x

(
exp(

∫ t

0

V (qs)ds) exp(

∫ 2t

t

V (qs)ds)

∣∣∣∣F[0,t]

))
= W x

(
exp(

∫ t

0

V (qs)dsW
x

(
exp(

∫ 2t

t

V (qs)ds

∣∣∣∣F[0,t]

))
= W x

(
exp(

∫ t

0

V (qs)dsW
qt

(
exp(

∫ 2t−t

0

V (qs)ds

))
≤ 1

1− α
W x

(
exp(

∫ t

0

V (qs)ds

)
≤ 1

(1− α)2
.

Iterate for arbitrary time intervals.
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Corollary 4.16. Assume V ∈ K±(Rd). Then for any t ≥ 0

sup
x∈Rd

W x

(
exp−

∫ t

0

V (qs)ds

)
<∞ (4.8)

Proof. Proof exercise. Note we have a negative exponential so V + only makes things small, but why
is
∫ t

0
V (qs)ds finite for almost all Brownian motion paths?

This corollary means we can make the following definition:

Definition 4.17. For V ∈ K±(Rd), f ∈ L∞(Rd) define

(Ptf)(x) := W x
(
e−

∫ t
0
V (qs)dsf(qt)

)
{Pt}t≥0 is called the Feynman-Kac semigroup

The aim is show that Ptf = e−t(−
1
2 ∆+V )f . To achieve this we will first show that {Pt}t≥0 is a

strongly continuous symmetric semi-group in L2. Strong continuity means that

lim
t→0
||Ptf − f ||L2 = 0 ∀f ∈ L2

We fist show that Pt is symmetric.

Lemma 4.18. If ∫
f(x)Ptg(x)dx <∞

then ∫
f(x)Ptg(x)dx =

∫
g(x)Ptf(x)dx

Thus, in L2, this means 〈f, Ptg〉 = 〈Ptf, g〉. For the proof, recall the measure introduced just
before Kolmogorov’s Consistency Theorem 4.2.

W x,y
t (gt1 ∈ A1, ..., gtn ∈ An) =

(
1∏n+1

i=1 2π(ti+1 − ti)

) 1
2 ∫

dx1...dxne
−

∑n+1
i=1

1
2|tj−tj−1|

|xj−xj−1|2
1A1(x1)...1An(xn)

with 0 = t0 < t1 < ... < tn < tn+1 = t and x0 = x1, xn+1 = y. This is called Conditional Brownian
Motion from x to y in time t.

Proof of lemma 4.18. Note that for s < t∫
W x,y
t (f(qs))g(y)dy = W x

t (f(qs)g(qt))

(we can prove this using a denseness argument)∫
f(x)W x

(
e−

∫ t
0
V (qs)dsg(qt)

)
dx =

∫ ∫
f(x)g(y)W x,y

t

(
e−

∫ t
0
V (qs)dsg(qt)

)
dxdy (4.9)



CHAPTER 4. THE FEYNMAN-KAC FORMULA 44

We use the following fact of Brownian Motion (see exercise): time reversibility

W x,y
t (qt1 ∈ A1, ..., qtn ∈ An) = W y,x

t (qt−t1 ∈ A1, ..., qt−tn ∈ An)

which extends to general functions of paths. Then

RHS of 4.9 =

∫ ∫
f(x)g(y)W y,x

t

(
e−

∫ t
0
V (qt−s)ds

)
dxdy using substitution s 7→ t− s

=

∫
g(y)W y

(
e−

∫ t
0
V (qs)dsf(qt)

)
=

∫
g(y)Ptf(y)dy

Next we show that Pt acts on L2 as a bounded operator. In fact, we show more.

Theorem 4.19 (Simon-1982). Let f ∈ Lp(Rd) with 1 ≤ p ≤ ∞. Then for every q ≥ p

Ptf ∈ Lq(Rd) and sup{||Ptf ||Lq : ||f ||Lp ≤ 1} <∞.

We say that Pt is bounded from Lp to Lq.

Proof. The proof uses the Riesz-Thorin interpolation theorem: If an operator A is bounded from
Lpj → Lqj for p1, ..., pn and q1, ..., qn with 1 ≤ pj , qj ≤ ∞ then it is bounded from Lr to Ls such
that ( 1

r ,
1
s ) is in the convex hull of

{( 1

pj
,

1

qj
) : j = 1, ..., n}

So we only need to prove it is bounded

(i) from L1 to L1

(ii) from L1 to L∞

(iii) from L∞ to L∞

and we have already seen (iii). For (i), let f ∈ L1∫
|Ptf |dx =

∫
|W x

(
e−

∫ t
0
V (qs)dsf(qt)

)
|dx

≤
∫
W x

(
e−

∫ t
0
V (qs)ds|f(qt)|

)
dx

Now

∞ >

∫
|f(x)| W x

(
e−

∫ t
0
V (qs)ds1(qt)

)
︸ ︷︷ ︸

supx ...<∞ by Kashminski’s theorem 4.11

dx

Lemma 4.18
=

∫
1W x

(
e−

∫ t
0
V (qs)ds|f(qt)|

)
=

∫
(Pt|f |)dx

Thus ||Ptf ||L1 ≤
∫
Pt|f |dx ≤ supxW

x
(
e−

∫ t
0
V (qs)ds1(qt)

)
||f ||L1 .
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For (ii), first show that Ptf ∈ L∞ for f ∈ L2.

||Ptf ||2∞ = sup
x

(∫
e−

∫ t
0
V (qs)dsf(qt)dW

x(q)

)2

Cauchy-Schwarz

≤ sup
x

(∫
e−2

∫ t
0
V (qs)dsdW x(q)

)(∫
(f(qt))

2dW x(q)

)
≤ sup

x

∫
e−2

∫ t
0
V (qs)dsdW x(q)︸ ︷︷ ︸

≤C since 2V ∈K±

sup
x

∫
1

(2πt)
d
2

e−
|x−y|2

2t (f(y))2dy︸ ︷︷ ︸
1

(2πt)
d
2

||f ||22

Finally we show that Ptf ∈ L2 for each f ∈ L1. For each g ∈ L2

〈Ptf, g〉 =

∫
Ptf(x)g(x)dx =

∫
Ptg(x)︸ ︷︷ ︸
∈L∞

f(x) <∞

which justifies the use of lemma 4.18, and so by above,

〈Ptf, g〉 ≤ ||Ptg||∞||f ||1 ≤ C1||g||2||f ||1

A general fact:

f ∈ L2 ⇔ sup{
∫
f(x)g(x)dx : g ∈ L2, ||g||2 = 1} <∞

So Ptf ∈ L2, ||Ptf ||L2 ≤ C2||f ||L2 and finally

||Ptf ||L2 = ||P t
2
P t

2
f ||L2 ≤ C1C2||f ||2

Once we know that Pt = e−tH this shows the amazing statement that

Corollary 4.20. Suppose that u solves

∂tu(x, t) = − 1
2∆u+ V u

u(x, 0)− u0

with V ∈ K±. Then u0 ∈ Lp implies u(x, t) ∈ Lq for all t ≥ 0 and q ≥ p

So Pt takes Lp functions in Lq for q ≥ p. In fact, even more is true:

Theorem 4.21. Let V ∈ K±(Rd). Then for each f ∈ Lp, 1 ≤ p ≤ ∞ and each t > 0, Ptf is a
continuous function.

For the proof we need

Lemma 4.22. For V ∈ K we have

lim
t→0

sup
x∈Rd

W x
(∣∣∣1− e− ∫ t

0
V (qs)ds

∣∣∣) = 0
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Proof. Note that

W x
(∣∣∣1− e− ∫ t

0
V (qs)ds

∣∣∣) ≤ ∞∑
k=1

1

k!
W x

([∫ t

0

|V (qs)|ds
]k)

(4.10)

Put α(t) = supxW
x(
∫ t

0
|V (qs)|ds). By theorem (4.14) limt→0 α(t) = 0. By Kashminski theorem 4.11

sup
x

RHS of (4.10) ≤
∞∑
k=1

α(t)k =
α(t)

1− α(t)

t→0→ 0

Proof of theorem 4.21. Note that Pt = P t
2
P t

2
, so by theorem 4.19, we only need to consider f ∈ L∞.

Assume first that V ∈ K(Rd). Define

gτ (x) = W x
(
e−

∫ t
τ
V (qs)dsf(qt)

)
Then

gτ (x)
Markov

= W x
(
W qτ

(
e−

∫ t−τ
0

V (qs)dsf(qt−τ )
))

= [e−τH0(Pt−τ )]f(x)

So x 7→ gτ (x) is continuous as it solves the heat equation

∂tgτ = −1

2
∆gτ

gτ (0) = Pt−τf ∈ L∞

Now

||gτ − Ptf ||L∞ = sup
x
W x

(
(1− e−

∫ τ
0
V (qs)ds)e−

∫ t
τ
V (qs)dsf(qt)

)
Markov

= sup
x
W x

(
(1− e−

∫ τ
0
V (qs)ds)W qτ (e−

∫ t−τ
0

V (qs)dsf(qt))
)

≤ sup
x
W x

(∣∣∣1− e− ∫ τ
0
V (qs)ds

∣∣∣) sup
y

sup
r≤t

W y
(
e−

∫ r
0
V (qs)ds

)
||f ||L∞

On the right hand side, the first term tends to zero as τ → 0. The second term is bounded by
a constant, by corollary 4.16 and ||f ||∞. So Ptf is the uniform limit of continuous functions and
therefore continuous. For V ∈ K± the proof is completed by showing that in this case Pt is the
uniform limit on compact sets of continuous functions, and therefore again continuous. Thus the
proof is completed by the following lemma.

Lemma 4.23. Let V ∈ K±. Put

Vn(x) = V (x)1{|x|≤n} ∈ K(Rd)

and put

Pt,n(x) = W x
(
e−

∫ t
0
Vn(qs)dsf(qt)

)
Then for f ∈ L∞, limn→∞ Pt,nf(x) = Ptf(x) uniformly on compact subsets of Rd.
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Proof. For all paths qs that never leave {x ∈ Rd : |x| ≤ n} clearly∫ t

0

V (qs)ds =

∫ t

0

Vn(qs)ds

Put An = {w ∈ C(R+,Rd) : sup0≤s≤t |ws| ≤ n}. Then by Cauchy-Schwarz inequality

|Ptf(x)− Pt,nf(x)| =
∣∣∣W x

((
e−

∫ t
0
V (qs)ds − e−

∫ t
0
Vn(qs)ds

)
(��1An + 1cAn)f(qt)

)∣∣∣
≤
[
W x

((
e−

∫ t
0
V (qs)ds − e−

∫ t
0
Vn(qs)ds

)2

|f(qt)|2
)] 1

2 [
W x(1Acn)

] 1
2 .

Notice that the second term on the right hand side is equal to

W x

(
{w ∈ C(R+,Rd) : sup

0≤s≤t
|ws| > n}

) 1
2
n→∞−−−−→ 0

by properties of Brownian motion. We now show that the supremum over x ∈ Rd of the first term
on the right hand side is finite, independently of n. This is because

W x
(
e−2

∫ t
0
V (qs)ds + e−2

∫ t
0
Vn(qs)ds − 2e−

∫ t
0
Vn(qs)+V (qs)ds

)
= W x

(
e−2

∫ t
0
V (qs)ds

)
︸ ︷︷ ︸
<∞ by Kashminski’s 4.11

+W x
(
e−2

∫ t
0
Vn(qs)ds

)
+ cross terms

and the second term is bounded

W x
(
e−2

∫ t
0
V −n (qs)ds

)
≤W x

(
e−2

∫ t
0
V −(qs)ds

)
<∞

as V ∈ K±(Rd). Similarly the cross terms are bounded uniformly in x and n. Taking supx∈M for
compact sets M ⊂ Rd above proves the lemma.

Next we show

Theorem 4.24. Assume that V is Kato-decomposable. Then the semigroup Pt is strongly continu-
ous, i.e.

lim
t→0
‖Ptf − f‖L2 = 0 for all f ∈ L2.

Proof. We first consider f bounded with compact support, say |f(x)| ≤ D and f(x) = 0 when
|x| > R. We write

Qt = e−tH0 , with H0 = −1

2
∆

for the propagator of the heat equation. Recall that

Qtf(x) =
1

(2πt)d/2

∫
e−
|x−y|2

2t f(y) dy.

It is a classical result of the heat equation (and can be checked using the above formula) that
limt→0 ‖Qtf − f‖L2 = 0 for all f ∈ L2. The strategy of this proof is to compare Pt with Qt. Lemma
(4.22) gives

|Qtf(x)− Ptf(x)| =
∣∣∣∣∫ (1− e−

∫ t
0
V (qs) ds

)
dW x(q)

∣∣∣∣→ 0
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as t → 0, for all x. So if we can find a function that dominates |Qtf(x) − Ptf(x)| and is square
integrable, the dominated convergence will prove the claim. It is enough to study the case t ≤ 1. We
find

(Ptf(x)−Qtf(x))2 =

(∫ (
e−

∫ t
0
V (qs)ds − 1

)
f(qt)dW

x(q)

)2

≤
∫ (

e−
∫ t
0
V (qs)ds − 1

)2

dW x(q)

∫
f2

0 (qt)dW
x(q),

by the Cauchy-Schwarz inequality. Now the first factor above is bounded uniformly in x (by C, say),
by Kasminskiis Lemma, and the integrand f2(qt) in the second factor is bounded by D, and zero
whenever |qt| ≥ R. We conclude

(Ptf(x)−Qtf(x))2 ≤ CDW x(|qt| ≤ R) = CD
1

(2πt)d/2

∫
|y|≤R

e−|x−y|
2/2t dy

≤ CD sup
|y|≤R

e−|x−y|
2/4t 1

(2πt)d/2

∫
|y|≤R

e−|x−y|
2/4t dy.

The last factor above is bounded in x by a constant independent of x, and the first factor decays
quicker than exponentially for |x| > R. So Ptf(x) − Qtf(x) is bounded by a square integrable
function, and dominated convergence shows the claim for all bounded, compactly supported f . For
general f ∈ L2, we use the old triangle inequality trick: Let f ∈ L2 be given. Since bounded,
compactly supported functions are dense in L2, we can find f0 bounded and compactly supported
with ‖f − f0‖2L2 < ε. Then,

‖Ptf − f‖ ≤ ‖Ptf − Ptf0‖+ ‖Ptf0 − f0‖+ ‖f − f0‖.

The first term above is bounded by ‖Pt‖‖f − f0‖ ≤ ε‖Pt‖, where ‖Pt‖ is the operator norm. It is
not difficult to see that this operator norm is finite uniformly in 0 ≤ t ≤ t0 for each fixed t0. The
second term converges to zero as t → 0 by our argument above. The third term is bounded by ε.
So, we have shown that

lim sup
t→0

‖Ptf − f‖ < (1 + sup
0≤s≤t0

‖Pt‖)ε.

Since ε was arbitrary, this finishes the proof.

We can now state the main result: the general Feynman-Kac formula.

Theorem 4.25. Assume V is Kato-deomposable. Then Af := limt→0
1
t (Ptf−f) exists for all f from

a dense subset of L2(Rd). A is a self-adjoint operator on the domain D(A) := {f : limt→∞
1
t (Ptf −

f) exists.}. For smooth functions f0 ∈ D(A) with compact support, we have Af0 = Hf0, where
H = − 1

2∆ + V is as usual the Schrödinger operator. Thus, we can write Pt = e−tH .

Proof. We have just seen that Pt is a strongly continuous semigroup on L2(Rd). Now, all of the
statements except the one about Af0 = hf0 follow from general theory, see Reed/Simon, Methods
of Modern Mathematical Physics, Volume 2, Chapter X.8, page 236.

For the last remaining statement, we restrict to bounded, continuous V for simplicity. The
statement is true for general Kato-decomposable potentials, but the proofs become much more
technical then. For bounded continuous V , put (as above) H0 = − 1

2∆ and Qt = e−tH0 . Then

1

t
(Ptf − f) =

1

t
(Ptf −Qtf) +

1

t
(Qtf − f).

The last term converges to − 1
2∆f by the theory of the heat equation, for smooth f . For the first

term on the right hand side, we use the expansion (for small t)

e−
∫ t
0
V (qs) ds ≈ 1−

∫ t

0

V (qs) ds,
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which is also the place where we need that V is bounded. Then,

1

t
(Ptf −Qtf)(x) =

1

t

∫ (
e−

∫ t
0
V (qs) ds − 1

)
f(qt)dW

x(q)

≈ −1

t

∫ ∫ t

0

V (qs) ds f(qt)dW
x(q) =

− 1

t

∫ t

0

W x(V (qs)f(qt)) ds→ −V (x)f(x)

as t→ 0. The last statement can be shown by examining the explicit expression for the expectation
under W x of the two time-point function V (qs)f(qt). This finishes the proof in the easy case where
V is bounded and continuous (the latter is needed so that the evaluation V (x) makes sense). For
general V several things need to be done more carefully; we need to show that Brownian paths
usually do not hit the singularities of V , we need to localize the argument (to allow for V that
grow at infinity), and we need to make sure that we understand the implications of the requirement
f ∈ D(A); this may e.g. mean that f has to vanish where the potential V has a particularly bad
singularity. We will not do any of this here and declare the proof as finished.

Finally, let us state a nice property of the integral kernel of Ptf :

Theorem 4.26. Assume that V is Kato-decomposable, H = − 1
2∆. Then e−tH is an integral operator

with kernel

Kt(x, y) =

∫
e−

∫ t
0
V (qs)dsdW x,y

t (q).

Moreover, (x, y) 7→ Kt(x, y) is continuous.

Proof. We already know that e−tHf(x) =
∫
Kt(x, y)f(y) dy, so the first statement is true almost

everywhere. The proof will thus be finished once we show the continuity statement. For this, we use
a nice little trick. Let s = t/3. Then, by the Markov property,

Kt(x, y) =

∫
Ks(x, z)Ks(z, w)Ks(w, y) dz dw. (4.11)

Now, Ks(w, y) = Ks(y, w) by the time reversibility of Brownian motion, and

Ks(x, z)Ks(y, w) =

∫
e−

∫ s
0

(V (qr)+V (q̃r) drdW (x,y),(z,w)(q, q̃).

Here, W (x,y),(z,w) is the measure of 2d-dimensional conditional Brownian motion starting at (x, y)
and ending at (z, w), and we denote its paths by (qr, q̃r). Thus Ks(x, z)Ks(y, w) is the kernel of
a Schrödinger operator in L2(R2d), with potential V(x, y) = V (x) + V (y). You should check that
Kato-decomposability of V implies that of V, in the higher dimensional space. Thus, the Schrödinger
semigroup e−tH with H = − 1

2∆+V takes bounded functions into continuous functions, by our earlier
results. Since e−sH is bounded as an operator from L1 to L∞, its kernel Ks(z, w) is bounded (to
see this, note first that boundedness from L1 to L∞ means |

∫
Ks(x, y)f(y)dy| ≤ C‖f‖L1 , and then

approximate a delta distribution at y by functions fn ∈ L1 with ‖fn‖L1 = 1). So, (4.11) means that
Kt(x, y) = e−tHKs(x, y), and is therefore continuous.

Corollary 4.27. Assume that f(x) ≥ 0 and f(x) > 0 for all x from some set of positive measure.
Then e−tHf(x) > 0 for every x ∈ Rd.

Proof. Assume f(x) > ε on A ⊂ Rd, with
∫
A
dx ≥ δ. Without loss of generality we can assume A is

compact. Then Kt(x, y) > c on A, since Kt(x, y) is continuous and pointwise positive. Then

e−tHf(x) :=

∫
Kt(x, y)f(y)dy ≥

∫
A

Kt(x, y)f(y) ≥ εcδ > 0
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4.4 Some applications of the Feynman-Kac formula

The first application is the Perron-Frobenius theorem. It says that quantum minimal energy states
are unique and that the wave function can be chosen to be strictly positive. Let us give some
necessary preparations.

The spectrum of an operator H is, by definition,

σ(H) = {z ∈ C : zI −H is not invertible }.

Here I is the identity operator. For example, all eigenvalues are in σ(H), but the spectrum can be
larger than that. It is known that for self-adjoint H, σ(H) is contained in the real line. Furthermore,
for Kato-decomposable V and H = − 1

2∆ + V , λ = inf σ(H) > −∞. This follows from the fact

e−t inf σ(H) = ‖e−tH‖L2→L2 ,

where the latter is the operator norm of e−tH as an operator on L2, which as we know is finite.
The main ingredient for the following theorem is the fact that e−tH improves positivity. This

means that for any f ∈ L2 such that f(x) ≥ 0 almost everywhere and f 6= 0, we have Ptf(x) > 0
everywhere. This is what we have seen in Corollary 4.27. We state the main theorem for a general
operator.

Theorem 4.28 (Perron-Frobenius). Let T be a bounded operator on L2, and assume that T improves
positivity. Assume further that λ = ‖T‖ = supσ(T ) is an eigenvalue of T . Then it has multiplicity
one, and the eigenfunction can be chosen to be strictly positive (remember, it is only determined
up to a complex constant). In other words, there exists ψ ∈ L2 with ψ(x) > 0 for all x such that
Hψ(x) = λψ(x).

Proof. Since T improves positivity, in particular it maps real-valued functions into real-valued func-
tions. Thus, we may assume that all of its eigenfunctions are real: namely, for any (possibly complex
valued) eigenfunction φ, also the real and imaginary part of φ are eigenfunctions, and obviously
φ = Re(φ) + iIm(φ) is in the linear span of its real sand imaginary part. So, each possibly com-
plex valued eigenfunction can be replaced by at most two real-valued ones (or only one, if real and
imaginary part are not independent).

Let us therefore assume that ψ is a real-valued eigenfunction to the eigenvalue λ = ‖T‖. Since
obviously |ψ(x)| − ψ(x) ≥ 0, we find

0 ≤ T (|ψ| − ψ)(x) = T |ψ|(x)− Tψ(x). (4.12)

Equality only holds if ψ = |ψ| almost everywhere. Furthermore, we have

〈ψ, Tψ〉 =

∫
ψ(x)Tψ(x) dx ≤

∫
|ψ(x)||Tψ(x)| dx

≤
∫
|ψ(x)|T |ψ|(x) dx ≤ ‖ψ‖‖Tψ‖ ≤ ‖ψ‖2‖T‖ = λ‖ψ‖2.

The inequality at the line break follows from (4.12). But now notice that since Tψ = λψ, the very
left hand side of the above string of inequalities is also equal to λ‖ψ‖2, and thus all the inequalities
are in fact equalities. We have thus found

〈T |ψ|, |ψ|〉 = 〈Tψ, ψ〉. (4.13)

We now decompose ψ into positive and negative part: ψ(x) = ψ+(x)− ψ−(x), with ψ+(x) ≥ 0 and
ψ−(x) ≥ 0. Then (4.13) reads

〈Tψ+, ψ+〉 − 2〈Tψ+, ψ−〉+ 〈Tψ−, ψ−〉 = 〈Tψ+, ψ+〉+ 2〈Tψ+, ψ−〉+ 〈Tψ−, ψ−〉,
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and we conclude that 〈Tψ+, ψ−〉 = 0. Now if ψ+ 6= 0, then Tψ+ is strictly positive, so in this case
ψ− must be zero almost everywhere (both are non-negative). It follows that ψ is either non-negative
or non-positive, and by multiplying with −1 if necessary we may assume that ψ ≥ 0. But ψ = 1

λTψ,
and since T improves positivity, it follows that indeed ψ(x) > 0 for all x.

Let us now assume that there is another linearly independent eigenvector for the eigenvalue λ.
Then in particular, there is another eigenvector φ to λ that is orthogonal to ψ. But by the argument
above, we would find that φ(x) > 0. But it is impossible for two strictly positive functions to be
orthogonal in L2, thus the multiplicity of λ is one.

When we apply the above theorem to Pt = e−tH , we find that

Corollary 4.29. Assume that H = − 1
2∆ + V , V is Kato-decomposable, and λ = inf σ(H) is an

eigenvalue. Then the corresponding eigenspace has dimension one, and the eigenvector can be chosen
to be strictly positive.

Proof. It is enough to note that an eigenvector of H for the eigenvalue λ is also an eigenvalue of Pt
for the eigenvalue e−λ, and vice versa, and that ‖Pt‖ = e−tλ. Now apply the theorem to Pt.

The final result will deal with the spatial decay of eigenstates. Assume that V is Kato-decomposable,
and that Hψ = Eψ for some E ∈ R. To see how we can estimate the decay rate of ψ, let us start by
writing

ψ(x) = etEe−tHψ(x) = etE
∫
e−

∫ t
0
V (qs)dsψ(qt)dW

x(q).

If V grows as |x| → ∞, then the last term becomes small as |x| → ∞; this is because the Brownian
motion travels a distance of

√
t in time t (roughly), so if t is not too large, the path qs will not be

able to leave the region where V is large.
To formalize this, we first separate positive and negative part of the potential:

|ψ(x)|2 = e2tE

(∫
e−

∫ t
0
V (qs)dsψ(qt)dW

x(q)

)2

≤ e2tE‖ψ‖L∞
(∫

e−
∫ t
0
V+(qs)dse

∫ t
0
V−(qs)dsdW x(q)

)2

≤ e2tE‖ψ‖L∞
∫
e−2

∫ t
0
V+(qs)dsdW x(q)

∫
e2

∫ t
0
V−(qs)dsdW x(q),

where in the last line we used the Cauchy-Schwarz inequality on L2(dW x). The second term is
bounded by eCKt for some constant CK , by Kashminskiis Lemma. To tackle the first term we
introduce

Ar(t) = {q ∈ C(R+,Rd) : sup
s≤t
|qs − q0| < r},

i.e. the set of continuous functions that deviate no more than r from their value at t = 0 inside the
interval [0, t]. It is a fact about Brownian motion that there is a constant D such that

W x(Acr(t)) ≤ D
∫
r/
√
t

ud−1e−u
2/2 du.

Here Acr(t) denotes the complement of Ar(t). Thus,∫
e−2

∫ t
0
V+(qs)dsdW x(q) =

∫
e−2

∫ t
0
V+(qs)ds1Ar(t)(q)dW

x(q) +

∫
e−2

∫ t
0
V+(qs)ds1Acr(t)(q)dW

x(q) ≤

≤ exp (−2t inf{V (y) : |x− y| ≤ r}) +D

∫
r/
√
t

ud−1e−u
2/2 du.

In the last inequality, we used e−2
∫ t
0
V+(qs)ds ≤ 1. In order to make further progress, we now need to

make assumptions about the growth of V at infinity.
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Theorem 4.30 (Carmonas Estimate). Let V be Kato-decomposable, and assume V+(x) ≥ γ|x|2m
for some γ > 0, m > 0, and all x outside of some compact set. Let H = − 1

2∆ + V , and let ψ be any
eigenfunction of H. Then there exist constants δ,D > 0 such that

|ψ(x)| ≤ D exp(−δ|x|m+1) for all x ∈ R.

Proof. By the calculations above,

|ψ(x)|2 ≤ e(2E+CK)t

(
e−2t inf{V (y):|x−y|≤r} +D

∫
r/
√
t

ud−1e−u
2/2 du

)
.

Since
∫
r/
√
t
ud−1e−u

2/2 du ≤ CI(r/
√
t)d−1e−r

2/2t, and inf{V (y) : |x − y| ≤ r} ≥ γ(|x| − r)2m, this

implies

|ψ(x)|2 ≤ e(2E+CK)t
(
e−γt(|x|−r)

2m

+ CI(r/
√
t)d−1e−r

2/2t
)
.

We ignore the prefactor (r/
√
t)d−1 for now and try to maximize the negative exponent

M(r, t) = tγ(|x| − r)2m + r2/2t.

For r, we just fix r = α|x| with some 0 < α < 1. For t, we differentiate and find

M ′(α|x|, t) = γ(1− α)|x|2m − α2|x|2

2t2
.

Equating this zero gives t∗ =
√

α2

γ(1−α) |x|
1−m, and putting this back into M gives

M(α|x|, t∗) = α
√

(1− α)γ|x|1−m|x|2m +
1

2
α
√
γ(1− α)|x|2|x|m−1 =

3

2
α
√

(1− α)γ|x|m+1.

We can now optimize over α and find α∗ = 2/3. This finally gives M(α∗, t∗) =
√
γ/3|x|m+1. With

the choices of α∗ and t∗,

r/
√
t =

α∗|x|
(α2
∗/γ(1− α∗))1/4|x|(m+1)/2

=
√

2/3(γ/3)−1/4|x|1/2−m/2,

and e(2E+CK)t∗ = e2/3(2E+CK)
√

3/γ|x|1−m . Altogether,

|ψ(x)|2 ≤
(

1 + CI
√

2/3(γ/3)−1/4|x|1/2−m/2
)
e2/3(2E+CK)

√
3/γ|x|1−me−

√
γ/3|x|m+1

.

As m > 0, the decaying exponential term decays faster than the growing exponential term grows.
The prefactor |x|1/2−m/2 grows if m < 1, but only like a power law, so this is irrelevant for the
exponential decay. The claim follows.

The above theorem is only a first taste of Carmonas technique. Lower bounds on the decay, and
sharper constants on it, can be found in [R. Carmona, Commun. Math. Phys. 62, 97-108 (1978)].
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