
13 July 2010

SPATIAL RANDOM PERMUTATIONS AND

POISSON-DIRICHLET LAW OF CYCLE LENGTHS

VOLKER BETZ AND DANIEL UELTSCHI

Abstract. We study spatial permutations with cycle weights that are

bounded or slowly diverging. We show that a phase transition occurs at

an explicit critical density. The long cycles are macroscopic and their

cycle lengths satisfy a Poisson-Dirichlet law.

Keywords: Spatial random permutations, cycle weights, Poisson-Dirichlet dis-

tribution.

2010 Math. Subj. Class.: 60K35, 82B26.

1. Introduction

The structure for spatial permutations consists of a large box Λ ⊂ Rd, a large
numberN of points in Λ, and permutations of those points such that all permutation
jumps remain small. The relevant parameter is the density ρ = |Λ|/N . In many
models there is a critical density ρc that corresponds to a transition from a phase
with only finite cycles (when ρ < ρc) to a phase where a nonzero fraction of points
belong to infinite cycles (when ρ > ρc). The goal of the present article is twofold.
First, we prove that such a transition occurs in a class of models of spatial random
permutations with cycle weights. Second, we show that the cycle structure of
infinite cycles satisfies a Poisson-Dirichlet law.

The main motivation for our models comes from the interacting Bose gas of
quantum statistical mechanics. The possible relevance of long permutation cycles to
Bose-Einstein condensation was pointed out by Matsubara [17] and Feynman [10].
Sütő made important clarifications for the ideal Bose gas, showing in particular
that long cycles are macroscopic [19, 20]. In the recent article [5], we derived a
simplified model of spatial permutations where the original interactions between
quantum particles are replaced by cycle weights. Those calculations involved five
conjectures. The last conjecture dealt with the validity of the formula for the critical
density and it is proved in the present article.

Models of spatial permutations are also attractive per se. They have both specific
and general features. One general feature that is especially striking is the Poisson-
Dirichlet law for the distribution of cycle lengths. The literature on the subject is
huge, see e.g. [1, 14, 12] for a sample. The Poisson-Dirichlet distribution is expected
to make an appearance in other models with spatial structure and permutations
such as the random stirring model [13, 21]. This was proved recently by Schramm
on the complete graph [18]; see also Berestycki [2] for several useful observations
and clarifications.

The models considered here are “annealed” in the sense that spatial positions
vary and they are integrated upon. Annealed models are both simpler and more
relevant for the Bose gas. But the “quenched ” models, where the positions are
fixed and chosen according to a suitable point process, look very interesting in
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probability theory. One conjectures that long cycles satisfy the same Poisson-
Dirichlet law as in the annealed model — the only difference being the critical
density. This is supported by numerical evidence [11, 15]. An unrelated but very
interesting problem is the complete description of Gibbs states, involving crossing
fluxes that depend on the boundary conditions. Such a description was recently
achieved by Biskup and Richthammer in the one-dimensional model [7].

2. Setting & results

The state space of the (annealed) model of spatial permutations with cycle
weights is ΩΛ,N = ΛN × SN , where Λ ⊂ Rd is a cubic box of size L, and SN
is the symmetric group of permutations of N elements. We denote by |Λ| = Ld the
volume of Λ. We equip ΩΛ,N with the product of the Borel σ-algebra on ΛN and
the discrete σ-algebra on SN . We introduce a “Hamiltonian” and its corresponding
Gibbs state. Namely, the Hamiltonian is a function H : ΩΛ,N → R that we suppose
of the form

H(x, π) =

N∑
i=1

ξ(xi − xπ(i)) +
∑
` > 1

α`r`(π). (2.1)

Here, x = (x1, . . . , xN ) ∈ ΛN and π ∈ SN . We always suppose that e−ξ is
continuous and spherically symmetric, that it has positive Fourier transform, and
that it is normalized,

∫
Rd e−ξ(x) dx = 1. Notice that ξ is allowed to take the value

+∞. The cycle weights α1, α2, . . . are fixed parameters. Finally, r`(π) denotes the
number of `-cycles in the permutation π.

Boundary conditions are not expected to play a prominent rôle here, and we
therefore choose those that make proofs simpler. These are the “periodized” bound-
ary conditions, where we replace ξ by the function ξΛ, defined by

e−ξΛ(x) =
∑
z∈Zd

e−ξ(x−Lz) . (2.2)

When e−ξ has bounded support with diameter smaller than L we recover the usual
periodic boundary conditions. We let HΛ be as H in (2.1), but with ξΛ instead of
ξ. The Gibbs state is given by the probability measure

Prob(dx, π) =
1

N !Y
e−HΛ(x,π) dx (2.3)

on ΩΛ,N , where dx is the Lebesgue measure on ΛN and Y is a suitable normaliza-
tion, namely

Y =
1

N !

∑
π∈Sn

∫
ΛN

e−HΛ(x,π) dx. (2.4)

In typical realizations of the system, points are spread all over the space because
of the Lebesgue measure that prevents accumulations. The lengths of permuta-
tion jumps ‖xi − xπ(i)‖ stay bounded uniformly in Λ because of the jump weights

e−ξ(xi−xπ(i)) . The lengths of permutation cycles depend on the density of the sys-
tem. For small density, points are far apart and jumps are unlikely, which typically
results in small cycles. But as the density increases, points have more and more
possibilities to hop, and a phase transition takes place where “infinite” cycles ap-
pear. The cycle weights modify the critical density and also the distribution of
cycle lengths, see below. The model is illustrated in Fig. 1.
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Figure 1. A typical realization of a spatial permutation. As
|Λ|, N → ∞, the jumps remain finite but the cycle length may
diverge.

This model arises naturally from the Feynman-Kac representation of the dilute
Bose gas. The jump function is then ξ(x) = 1

4β ‖x‖
2 (plus a normalization constant),

with β the inverse temperature of the system. Notice that if the original quantum
system has periodic boundary conditions, we get the periodized Gaussian function.
Cycle weights were introduced in [3] as a crude way to account for the particle
interactions. But the calculations of [5] suggest that the cycle weights can be
chosen so that the model describes the Bose gas exactly in the dilute regime. We
do not write here the precise formula for the weights, but we observe that they
satisfy the asymptotic αj = −c(1−O(j−1/5)), so that αj converges as j →∞ fast
enough for our purpose.

We are solely interested in properties of permutations and we introduce random
variables that are functions on SN rather than ΩΛ,N . Let `(1)(π), `(2)(π), . . . denote
the cycle lengths in non-increasing order, repeated with multiplicities. We will prove
that, above the critical density, the cycle lengths scale like N and they converge
in distribution to Poisson-Dirichlet. The latter is conveniently defined using the
Griffiths-Engen-McCloskey distribution GEM(θ), which is the distribution for(

X1, (1−X1)X2 , (1−X1)(1−X2)X3 , . . .
)
,

where X1, X2, . . . are i.i.d. beta random variables with parameter (1, θ); that is,
Prob(Xi > s) = (1−s)θ for 0 6 s 6 1. The Poisson-Dirichlet distribution PD(θ) is
the law obtained by rearranging those numbers in non-increasing order. See [1, 14]
for more information and background. In the sequel, we say that a sequence of

random variables Y
(1)
n , Y

(2)
n , . . . converges in distribution to Poisson-Dirichlet as

n→∞ if, for each fixed k, the joint distribution of Y
(1)
n , . . . , Y

(k)
n converges weakly

to the joint distribution of the first k random variables in Poisson-Dirichlet. This
is denoted

(Y (1)
n , Y (2)

n , . . . )⇒ PD(θ). (2.5)
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As already mentioned, we make the important assumption that the jump func-
tion has nonnegative Fourier transform. This allows to define the “dispersion rela-
tion” ε(k), k ∈ Rd, by the equation

e−ε(k) =

∫
Rd

e−2πikx e−ξ(x) dx. (2.6)

Notice that ε(k) is real and that ε(0) = 0 since
∫

e−ξ = 1. We suppose that
ε(k) > a‖k‖η for small k, for some a > 0 and η < d. It is easy to see that ε(k)
is always greater than a|k|2 so this assumption always holds in dimensions d > 2.
Among possible jump functions other than Gaussians, let us mention e−ξ(x) =
const (|x| + 1)−γ with 1 < γ < 2 in d = 1, for which η = γ − 1. As for the cycle
weights, we consider three cases:

(i) limj→∞ αj = α with α > 0, and
∑
j |αj − α| <∞.

(ii) limj→∞ αj = α with α 6 0, and
∑
j

1
j |αj − α| <∞.

(iii) αj = γ log j with γ > 0.

We now introduce the fraction ν of points in infinite cycles. It is obvious that
finite systems can only host finite cycles, so the definition of ν must involve the
thermodynamic limit. Given a finite number K, let νK denote the fraction of points
in cycles of length larger than K. Precisely,

νK = lim inf
|Λ|,N→∞

E
( 1

N

∑
i:`(i)>K

`(i)
)
. (2.7)

Here and in the sequel, the limit |Λ|, N →∞ means that both go to infinity while
keeping the density ρ = N/|Λ| fixed. This is the standard thermodynamic limit of
statistical mechanics. We then define

ν = lim
K→∞

νK . (2.8)

This limit exists since (νK) is decreasing and bounded. Let ν̄K denote the lim sup
of (2.7). We expect that ν̄K = νK but we do not prove it. On the other hand, we
will prove in Section 5 that ν̄K also converges to ν as K →∞.

Next we introduce the critical density by

ρc =
∑
j > 1

e−αj
∫
Rd

e−jε(k) dk. (2.9)

It follows from our assumptions that the critical density is finite. Indeed, the
numbers e−αj are bounded, so ρc is bounded by the integral of a geometric series,∫

1
eε(k)−1

, which is finite.

We propose now two theorems that confirm that ρc is indeed the critical den-
sity of the model, at least in several interesting situations. The formula (2.9) is
presumably valid beyond the cases treated in this article, but the precise extent
of its validity is not clear. The first theorem states that macroscopic cycles occur
precisely above the critical density, and that they obey the Poisson-Dirichlet law.

Theorem 2.1. Assume that αj → α as described above. Then

(a) the fraction of points in infinite cycles is given by

ν = max
(

0, 1− ρc

ρ

)
;
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(b) when ν > 0, i.e. when ρ > ρc, the cycle structure converges in distribution
to Poisson-Dirichlet:(`(1)

νN
,
`(2)

νN
, . . .

)
⇒ PD( e−α ).

Such a law was already observed in absence of spatial structure, and when the
cycle weights are constant. This case is known as the Ewens distribution, see e.g.
[9, 12, 1]. Results about weights that are asymptotically Ewens can be found in
[16, 6]. Spatial permutations with small cycle weights, i.e. when the limit is α = 0,
were studied in [4].

The second theorem concerns cycle weights that diverge logarithmically — it is
somehow the limit α→∞ of Theorem 2.1. Cycle weights have a striking effect as
a single giant cycle occurs above the critical density! This is in accordance with a
similar observation for non-spatial permutations [6].

Theorem 2.2. Assume that αj = γ log j with γ > 0. Then

(a) the fraction of points in infinite cycles is given by

ν = max
(

0, 1− ρc

ρ

)
;

(b) when ν > 0, i.e. when ρ > ρc, there is a single giant cycle that contains
almost all points in infinite cycles:

`(1)

νN
⇒ 1.

The rest of this article is devoted to the proof of the results above. We reformu-
late the problem in the Fourier space in Section 3, following Sütő [20]. The model
involves a measure on occupation numbers of Fourier modes, and of random per-
mutations of those numbers. In Section 4 we obtain information about occupation
numbers using techniques of Buffet and Pulé [8], and using certain estimates of our
recent joint work with Velenik [6]. Random permutations within each mode involve
the cycle weights and are thus similar to those studied in [6]. Combining all those
results allow us to prove Theorems 2.1 and 2.2 in Section 5.

3. Random permutations and Fourier modes

The goal of this section is to introduce an alternative model of random permuta-
tions that involves Fourier modes, and that has the same marginal distribution on
cycle lengths. Let Λ∗ = 1

LZ
d be the space dual to Λ in the sense of Fourier theory.

3.1. The marginal distribution of cycle lengths. Recall that the cycle struc-
ture of a permutation π ∈ SN is the sequence of cycle lengths ` = (`(1), `(2), . . . , `(m)),
with `(i) > `(i+1) and `(m) > 1; the number of cycles m depends on π, 1 6 m 6 N .
Those numbers form a partition of {1, . . . , N}. Another way to write ` is to in-
troduce the occupation numbers r = (r1, . . . , rN ), where rj = #{i : `(i) = j}. We
always have

m∑
i=1

`(i) =

N∑
j=1

jrj = N. (3.1)

One should not confuse the occupation numbers r with the occupation numbers
n = (nk) to be introduced later; they are not related in any direct way.
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Proposition 3.1. The marginal of the probability measure (2.3) on occupation
numbers is

Prob(r) =
1

Y

N∏
j=1

1

rj !

( e−αj

j

∑
k∈Λ∗

e−jε(k)
)rj

,

with Y the normalization of (2.4).

Proof. The marginal probability on permutations is

Prob(π) =
1

N !Y

∫
ΛN

e−HΛ(x,π) dx

=
1

N !Y

∫
ΛN

e−
∑N
i=1 ξΛ(xi−xπ(i))−

∑
j > 1 αjrj(π) dx1 . . . dxN .

(3.2)

We observe that integrals factorize according to permutation cycles. The contribu-
tion of a cycle of length j is (with yj+1 ≡ y1)

e−αj
∫

Λj
e−

∑j
i=1 ξΛ(yi−yi+1) dy1 . . . dyj = e−αj |Λ|

∑
z∈Zd

(
e−ξ

)∗j
(Lz). (3.3)

The Fourier transform of ( e−ξ )∗j is e−jε(k) . The Poisson summation formula
states that ∑

z∈Zd
f(Lz) =

1

|Λ|
∑
k∈Λ∗

f̂(k). (3.4)

We then get

Prob(π) =
1

N !Y

N∏
j=1

(
e−αj

∑
k∈Λ∗

e−jε(k)
)rj(π)

. (3.5)

All permutations of a given equivalence class have the same probability, and there
are

N !∏
j j
rjrj !

(3.6)

elements in the equivalence class defined by r. We get the claim by multiplying the
above probability by this number. �

3.2. Decomposition of permutations according to Fourier modes. We de-
note by n = (nk) the occupation numbers indexed by k ∈ Λ∗, and by NΛ,N the set
of occupation numbers such that

∑
k∈Λ∗ nk = N . Next, we introduce permutations

that are also indexed by Fourier modes, π = (πk). Let MΛ,N be the set of pairs
(n,π) where n ∈ NΛ,N and π = (πk) with πk ∈ Snk for each k ∈ Λ∗. We introduce
a probability measure on NΛ,N :

Prob(n) =
1

Y

∏
k∈Λ∗

e−ε(k)nk hnk (3.7)

with

hn =
1

n!

∑
π∈Sn

e−
∑
j > 1 αjrj(π) , (3.8)

and h0 = 1. We will check later that the normalization Y is the same as given in
(2.4). Then we introduce the probability of a pair (n,π) by

Prob(n,π) =
1

Y

∏
k∈Λ∗

1

nk!
e−ε(k)nk−

∑
j > 1 αjrj(πk) . (3.9)
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Notice that (3.7) is the marginal of (3.9) with respect to π. The conditional prob-
ability Prob(π|n), where πk ∈ Snk for all k, is given by

Prob(π|n) =
∏
k∈Λ∗

( 1

nk!hnk
e−

∑
j > 1 αjrj(πk)

)
. (3.10)

That is, given n, each πk is independent and distributed as nonspatial random
permutations with cycle weights (see Eq. (5.1) below). Given π, let rj =

∑
k rj(πk).

Proposition 3.2. The marginal of the probability measure (3.9) with respect to r
is identical to the marginal of the probability measure (2.3).

Proof. We check that the marginal of (3.9) gives the formula of Proposition 3.1.
For this, let r be a collection of occupation numbers, and write (rjk) : r for the set
of all integers rjk such that

∑
k rjk = rj for all j. Then,

Prob(r) =
1

Y

∑
(rjk):r

∑
(n,π):

rj(πk)=rjk

∏
k∈Λ∗

( 1

nk!
e−ε(k)nk−

∑
j αjrj(πk)

)

=
1

Y

∑
(rjk):r

∏
k∈Λ∗

( 1∏
j j
rjkrjk!

e−ε(k)
∑
j jrjk−

∑
j αjrjk

)
.

(3.11)

We have summed over πk that are compatible with rjk, using the formula (3.6) for
the number of elements. The bracket above factorizes according to j. Using∏

k∈Λ∗

e−αjrjk

jrjk
=
( e−αj

j

)rj
, (3.12)

we get

Prob(r) =
1

Y

∏
j > 1

[( e−αj

j

)rj ∑
(rjk):rj

∏
k∈Λ∗

1

rjk!
e−jε(k)rjk

]
. (3.13)

For each fixed j, the multinomial theorem gives∑
(rjk):rj

∏
k∈Λ∗

e−jε(k)rjk

rjk!
=

1

rj !

(∑
k∈Λ∗

e−jε(k)
)rj

. (3.14)

Then Prob(r) is indeed given by the formula of Proposition 3.1. This also proves
that Y is the correct normalization that makes (3.7) and (3.9) probability measures.

�

4. Properties of occupation numbers

We study in this section the probability measure of occupation numbers of
Fourier modes, Prob(n), that is defined in (3.7). We show that the typical n
has the following properties:

• n0

N = max(0, 1− ρc

ρ );

• 1
N

∑
0<|k|<δ nk is small when δ is small.

• For all δ > 0, 1
N

∑
|k| > δ nk1nk>M is small when M is large.

We recall two properties of the normalizations hn defined in (3.8). First, their
generating function is equal to∑

n > 0

e−γn hn = exp
∑
j > 1

1
j e−γj−αj ; (4.1)
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see [4, 16]. Second, the following estimates were obtained in [6]: There exist κ and
0 < c < C <∞ such that for any n > 1,

c nκ 6 hn 6 C n
κ. (4.2)

The exponent turns out to be κ = e−α − 1 when αj → α, and κ = −1 − γ when
αj = γ log j; see [6]. The results of the present article actually extend to other cycle
weights, as long as these bounds hold true.

4.1. Macroscopic occupation of the zero mode. We use a strategy that is
inspired by Buffet and Pulé in their study of the ideal Bose gas [8]. It consists in
looking at the Laplace (or Fourier) transform of the distribution of n0

N . Let Y (N) be
the normalization of Eq. (2.4). We now put the explicit dependence on N because
it is going to vary. Notice that Y (N) also depends on Λ, but the domain is fixed
throughout.

We have

Prob(n0 = j) =
hj

Y (N)

∑
n∈NΛ,N

n0=j

∏
k 6=0

e−ε(k)nk hnk = hj
Y̌ (N − j)
Y (N)

, (4.3)

with

Y̌ (N) =
∑

n∈NΛ,N

n0=0

∏
k∈Λ∗

e−ε(k)nk hnk . (4.4)

Notice the relation

Y (N) =

N∑
j=0

hj Y̌ (N − j). (4.5)

We introduce the following probability measure on [0,∞):

µΛ =
1

Ž

∑
N > 0

Y̌ (N)δN/|Λ|. (4.6)

The motivation for µΛ is that the distribution of the occupation of the zero mode
can be expressed as

Prob(n0

N > a) =

N∑
j=daNe

hj
Y̌ (N − j)
Y (N)

=

b(1−a)Nc∑
j=0

hN−j
Y̌ (j)

Y (N)

=

∫ (1−a)ρ

0
h(|Λ|(ρ− s)) dµΛ(s)∫ ρ

0
h(|Λ|(ρ− s)) dµΛ(s)

.

(4.7)

We can write a useful expression for the normalization Ž. Let NΛ = ∪N > 0NΛ,N

be the set of unconstrained occupation numbers on Λ∗. Then

Ž =
∑
N > 0

Y̌ (N) =
∑
n∈NΛ
n0=0

∏
k∈Λ∗

e−ε(k)nk hnk

=
∏
k 6=0

(∑
n > 0

e−ε(k)n hn

)
= exp

(∑
j > 1

1
j e−αj

∑
k 6=0

e−jε(k)
)
.

(4.8)
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The last identity follows from (4.1). Finally, we introduce a Riemann approximation
to the critical density (2.9), namely

ρ(Λ)
c =

∑
j > 1

e−αj
1

|Λ|
∑
k 6=0

e−jε(k) . (4.9)

We now have all the elements that allow to state and to prove the key properties
leading to the macroscopic occupation of the zero Fourier mode.

Proposition 4.1.

(a) µΛ → δρc weakly as |Λ| → ∞.

(b) If |λ(Λ)| 6 |Λ|
1−η/d

2 , then

EµΛ

(
eλ(Λ)(s−ρ(Λ)

c )
)
→ 1.

The parameter η in the claim (b) is the one that appears in the condition for
ε(k), see the paragraph after Eq. (2.6). The relevant aspect of the claim (b) is that
the expectation is bounded uniformly in the domain even though λ(Λ) diverges.
A consequence is the following concentration property for |Λ| large enough, which
will be used later:

EµΛ
(1|s−ρc|>ε) 6 e−

1
2 ε|Λ|

1−η/d
2 EµΛ( e|Λ|

1−η/d
2 (s−ρ(Λ)

c ) + e−|Λ|
1−η/d

2 (s−ρ(Λ)
c ) )

6 3 e−
1
2 ε|Λ|

1−η/d
2 .

(4.10)

Proof of Proposition 4.1. For (a) we show that the characteristic function of µΛ

converges to that of the Dirac measure δρc
. First, by the same calculations as in

(4.8) for Ž, we have

EµΛ
( e−iλs ) =

∫ ∞
0

e−iλs dµΛ(s) =
1

Ž

∑
N > 0

Y̌ (N) e−iλN/|Λ|

=
1

Ž

∑
n∈NΛ
n0=0

∏
k 6=0

e−(ε(k)+iλ/|Λ|)nk hnk

=
1

Ž
exp
(∑
j > 1

1
j e−αj

∑
k 6=0

e−j(ε(k)+iλ/|Λ|)
)

= exp
(
−iλ

∑
j > 1

e−αj
1

|Λ|
∑
k 6=0

e−jε(k) |Λ|
iλj

(
1− e−iλj/|Λ| )).

(4.11)

For all λ 6= 0 we have∣∣∣ |Λ|
iλj

(
1− e−iλj/|Λ| )∣∣∣ 6 1, lim

|Λ|→∞

|Λ|
iλj

(
1− e−iλj/|Λ| ) = 1. (4.12)

One can use dominated convergence to show that (4.11) converges to e−iλρc as
|Λ| → ∞. Indeed, one can use the lower bound ε(k) > a‖k‖η for small k; the
Riemann sum is then essentially bounded by the integral, yielding a term of the form
const
jd/η

which is summable for η < d. For large k one can use e−jε(k) 6 e−cj e−cε(k)

with a constant c > 0 that is uniform in j, k.
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For (b) we can repeat the calculations above so as to get

EµΛ

(
eλ(Λ)(s−ρ(Λ)

c )
)

= exp
(∑
j > 1

e−αj
1

|Λ|
∑
k 6=0

e−jε(k) |Λ|
j

(
ejλ(Λ)/|Λ| − 1− j λ(Λ)

|Λ|
))
.

(4.13)
We now use 1

|x| | e
x − 1 − x| 6 |x| e|x| (which is easy to check using Taylor series)

with x = jλ(Λ)/|Λ|. Observe also that

e−
1
2 jε(k) j λ

2(Λ)
|Λ| ej|λ(Λ)|/|Λ| 6 1 (4.14)

for all j, all Λ large enough, and all k 6= 0; this holds because ε(k) > a‖k‖η and
because of the upper bound on λ(Λ). We can then check that the term in the
exponential in (4.13) is less than∑

j > 1

e−αj
1

|Λ|
∑
k 6=0

e−
1
2 jε(k) .

Again summing separately over small and large k, as in the proof of (a), we can
use dominated convergence and take the limit |Λ| → ∞ under the sum over j. The
term in the exponential in (4.13) converges then to zero. �

Proposition 4.2. Suppose that ρ > ρc. Then, in the thermodynamic limit |Λ|, N →
∞,

Prob(n0

N > a)→

{
1 if a < 1− ρc

ρ ,

0 if a > 1− ρc

ρ .

Proof. We use the expression (4.6) which involves the measure µΛ. It can be written
as

Prob(n0

N > a) =
J1(a)

J1(a) + J2(a)
=

1

1 + J2(a)/J1(a)
, (4.15)

with

J1(a) =
1

|Λ|κ

∫ (1−a)ρ

0

h(|Λ|(ρ− s))dµΛ(s),

J2(a) =
1

|Λ|κ

∫ ρ

(1−a)ρ

h(|Λ|(ρ− s))dµΛ(s).

(4.16)

Above, κ is the constant of (4.2). Using the latter estimates, we get

c

∫ (1−a)ρ

0

(ρ− s)κdµΛ(s) 6 J1(a) 6 C
∫ (1−a)ρ

0

(ρ− s)κdµΛ(s), (4.17)

and by Proposition 4.1 (a) we find that lim|Λ|→∞ J1(a) = 0 if (1− a)ρ < ρc, while
lim inf |Λ|→∞ J1(a) > c(ρ− ρc) if (1− a)ρ > ρc.

For J2(a), we write
J2(a) = J2,0(a) + Jε(a), (4.18)

with

Jε(a) =
1

|Λ|κ

∫ ρ

ρ−ε
h(|Λ|(ρ− s))dµΛ(s) (4.19)

and 0 < ε < min(ρ−ρc

2 , aρ). Then in the same way as above, lim|Λ|→∞ J2,0(a) = 0
if (1−a)ρ > ρc, and lim inf |Λ|→∞ J2,0(a) > c(ρ−ρc) if (1−a)ρ < ρc. We now want
to show that lim|Λ|→∞ Jε(a) = 0. In the case κ > 0, this is done in the same way
as with J1 and J2,0 above. But for κ < 0, the function s 7→ (s− ρ)κ is not bounded
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when s → ρ, and thus Proposition 4.1 (a) is not strong enough. However, we can
check that

Jε(a) 6 C|Λ||κ|EµΛ(1s>ρc+ε), (4.20)

which goes to zero as |Λ| → ∞ by (4.10). Inserting these findings into (4.15) proves
the claim. �

4.2. No macroscopic occupation below the critical density. For ρ < ρc, the
support of the Dirac measure to which the measures µΛ converge lies outside of the
interval [0, ρ], and the above argument fails. In its place, we use the formula

Prob(n0 > j) =
1

Y (N)

∑
n∈NΛ,N

n0 > j

∏
k∈Λ∗

e−nkε(k) hnk =
Y (N − j, j)
Y (N)

, (4.21)

where

Y (m, j) =
∑

n∈NΛ,m

hn0+j

hn0

∏
k∈Λ∗

e−nkε(k) hnk . (4.22)

We apply summation by parts E(f(X)) = f(0) +
∑N
j=1

[
f(j)− f(j − 1)

]
P (x > j)

to the function e−λn0/N , and we find

E( e−λn0/N ) = 1 +
(1− eλ/N )

Y (N)

N∑
j=0

e−λj/N Y (N − j, j)

= 1 +
e−ρ (1− eλ/N )

Y (N)

N∑
j=0

eλj/N Y (j,N − j).

(4.23)

Proposition 4.3. Suppose that ρ 6 ρc. In the thermodynamic limit |Λ|, N →∞,

Prob(n0

N > δ)→ 0.

for all δ > 0.

Proof. By (4.23),

|E( e
λn0
N )− 1| 6 const

N

(1−ε)N∑
j=0

Y (j,N − j)
Y (N)

+

N∑
j=(1−ε)N

Y (j,N − j)
Y (N)

 . (4.24)

From (4.21) it is obvious that Y (j,N−j)
Y (N) 6 1, as it is a probability. Thus the second

term above, along with the prefactor 1/N , is bounded by constρε. For the first
term, we use the inequality

sup{hr+j/hr : 0 6 r 6 N} 6 C

c
(1 + j)|κ| (4.25)

which follows from (4.2). Then, Y (N, j) 6 Y (N)Cc (1 + j)|κ|, and

b(1−ε)Nc∑
j=0

Y (j,N − j)
Y (N)

6
C

c

b(1−ε)Nc∑
j=0

Y (j)

Y (N)
(N − j + 1)|κ| (4.26)

Now
Y (j)

Y (N)
= e−|Λ|(qΛ(j/|Λ|)−qΛ(ρ)) , (4.27)
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where qΛ(ρ) = − 1
|Λ| log Y (|Λ|ρ) is the finite volume free energy associated with

the partition function Y . It was shown in [4], under conditions on the coefficients
αj that are more general than the present ones, that qΛ converges uniformly on
compact intervals to a convex function q, and that ρ 7→ q(ρ) is strictly decreasing
for ρ < ρc. Thus for each ε > 0 there is bε > 0 such that qΛ(j/|Λ|)− qΛ(ρ) > bε for
all |Λ| large enough, and all j 6 (1− ε)N . So

b(1−ε)Nc∑
j=0

Y (j,N − j)
Y (N)

6 C
c e−bε|Λ|

b(1−ε)Nc∑
j=0

(N − j + 1)|κ| 6 e−bεN/ρN |κ|+1, (4.28)

which converges to zero asN →∞. Since ε was arbitrary, we have shown E( eλn0/N )→
1 for all λ > 0, which implies the claim. �

4.3. Occupation of nonzero modes. We now turn to the modes k 6= 0. The
basic estimate is

Lemma 4.4. Let c, C be the constants from (4.2). Then for 0 < σ < 1, k ∈ Λ∗

and j > 0 we have

Prob(nk > j) 6
C2

c2
σ−2|κ| e−j(1−σ)ε(k) .

Proof. We begin by observing that due to (4.2),

sup
n,j:n > σj

{hn+(1−σ)j

hn

}
6
C

c
sup
n > σj

(
1 + (1−σ)j

n

)κ
6
C

c

(
1 + 1−σ

σ

)|κ|
=
C

c
σ−|κ|.

(4.29)
and

sup
n,j:n > j

{hn−(1−σ)j

hn

}
6
C

c
sup
n > j

(
1− (1− σ)j

n

)κ
6
C

c
σ−|κ|. (4.30)

Using the shorthand C0 = C
c σ
−|κ|, we get

Prob(nk > j) =
1

Y (N)

∑
n∈NΛ,N

nk > j

∏
k′∈Λ∗

e−nk′ε(k
′) hnk′

=
1

Y (N)

∑
n∈NΛ,N−(1−σ)j

nk > σj

e−(1−σ)jε(k) hnk+(1−σ)j

hnk

∏
k′∈Λ∗

e−nk′ε(k
′) hnk′

6
C0

Y (N)
e−(1−σ)jε(k)

∑
n∈NΛ,N−(1−σ)j

nk > σj

∏
k′∈Λ∗

e−nk′ε(k
′) hnk′ .

(4.31)
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We get an upper bound by replacing the constraint nk > σj by n0 > σj. Then

Prob(nk > j) 6
C0

Y (N)
e−(1−σ)jε(k)

∑
n∈NΛ,N−(1−σ)j

n0 > σj

∏
k′∈Λ∗

e−nk′ε(k
′) hnk′

=
C0

Y (N)
e−(1−σ)jε(k)

∑
n∈NΛ,N

n0 > j

hn0−(1−σ)j

hn0

∏
k′∈Λ∗

e−nk′ε(k
′) hnk′

6
C2

0

Y (N)
e−(1−σ)jε(k)

∑
n∈NΛ,N

n0 > j

∏
k′∈Λ∗

e−nk′ε(k
′) hnk′

6 C2
0 e−(1−σ)jε(k) .

(4.32)

�

We now define three sets of occupation numbers, each of which will be shown
to have measure close to one. Let ν̃ = max(0, 1 − ρc

ρ ); we will prove in the next

section that ν̃ = ν, but we do not know this yet. The sets are

Aε =
{
n ∈ NΛ,N :

∣∣n0

N − ν̃
∣∣ < ε

}
Bε,δ =

{
n ∈ NΛ,N :

∑
0<|k|<δ

nk < εN
}

Cε,δ,M =
{
n ∈ NΛ,N :

∑
k∈Λ∗,|k| > δ
nk > M

nk < εN
}
.

(4.33)

Proposition 4.5. For any ρ > 0, we have in the thermodynamic limit N, |Λ| → ∞:

(a) For any ε > 0, Prob(Aε)→ 1.
(b) For any ε > 0, there exists δ > 0 such that lim inf Prob(Bε,δ) > 1− ε.
(c) For any ε, δ > 0 there exists M > 0 such that lim inf Prob(Cε,δ,M ) > 1− ε.

Proof. The claim (a) immediately follows from Propositions 4.2 and 4.3. For (b),
we use Lemma 4.4 with σ = 1/2 to get

E(nk) =
∑
i > 1

Prob(nk > i) 6 C0

∑
i > 1

e−ε(k)i/2 =
1

eε(k)/2 − 1
. (4.34)

For every δ > 0 we get, by Markov’s inequality,

Prob(Bc
ε,δ) 6

C0

εN

∑
0<|k|<δ

1

eε(k)/2 − 1

N→∞−→ C0

ερ

∫
|k|<δ

dk

eε(k)/2 − 1
. (4.35)

By the assumption ε(k) > a‖k‖η with η < d, the integral is finite, and thus δ can
be chosen so small that lim inf Prob(Bc

ε,δ) < ε.

For (c), we define F (n) =
∑
k∈Λ∗,|k| > δ nk1nk > M , and we note that Prob(Cc

ε,δ,M ) =

Prob(F > εN). Now

E(F/N) =
1

N

∑
k∈Λ∗,|k| > δ

E(nk1nk > M )

=
1

N

∑
k∈Λ∗,|k| > δ

(
MProb(nk >M) +

∑
j>M

Prob(nk > j)
)
,

(4.36)
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where the last equality is summation by parts. By Lemma 4.4,∑
j>M

Prob(nk > j) 6 C0

∞∑
j=M+1

e−jε(k)/2 = C0 e−Mε(k)/2 1

eε(k)/2 − 1
. (4.37)

Define c(δ) = inf |k| > δ ε(k). Note that c(δ) > 0 for all δ > 0. Then,

E(F/N) 6 C0M e−Mc(δ)/4 1

N

∑
k∈Λ∗,|k| > δ

e−Mε(k)/4
(

1 +
1

M( eε(k)/2 − 1)

)
. (4.38)

The sum above, along with the factor 1/N , converges to a Riemann integral which is
finite thanks to our conditions on ε(k). Therefore lim supE(F/N) 6 C1M e−Mc(δ)/4 ,
and Markov’s inequality implies that lim sup Prob(Cc

ε,δ,M ) 6 M
ε e−Mc(δ)/4 . Choos-

ing M large enough for given ε, δ proves the claim. �

5. Cycle lengths of spatial permutations

We now prove the claims of Theorems 2.1 and 2.2, starting with the fraction ν of
points in infinite cycles. We denote by Probn(π) the probability of a permutation
π ∈ Sn in the nonspatial model with cycle weights. That is,

Probn(π) =
1

hnn!

∏
j > 1

e−αjrj(π) (5.1)

with hn the normalization defined in (3.8). We also write En for the corresponding
expectation. We keep the notation Prob, E for probability and expectation with
respect to the spatial model.

Recall that we defined ν̃ = max(0, 1− ρc

ρ ).

Proposition 5.1. Under the assumptions of Theorems 2.1 or 2.2, we have ν = ν̃.

Proof. We use the Fourier modes decomposition of Section 3. Recall that π = (πk),
rjk = rj(πk), and rj =

∑
k rjk. We have

E
( 1

N

∑
i:`(i)>K

`(i)
)

= E
( 1

N

∑
j>K

jrj

)
= E

( 1

N

∑
j>K

jrj0

)
+ E

( 1

N

∑
0<|k|<δ

∑
j>K

jrjk

)
+ E

( 1

N

∑
|k| > δ

∑
j>K

jrjk

)
. (5.2)

The first term of the right-hand side is equal to

E
( 1

N

∑
j>K

jrj0

)
=
∑
n > 0

n

N
Prob(n0 = n)En0

( 1

n

∑
j>K

jrj

)
. (5.3)

It follows from Proposition 4.5 (a) that n0

N → ν̃ as |Λ|, N → ∞. In addition, we
have

En

( 1

n

∑
j>K

jrj

)
= Prob(`1 > K), (5.4)

where `1 is the length of the cycle that contains the index 1. It was shown in [16, 6]
that the latter converges to 1 as n→∞. We have thus proved that, for any finite
K,

lim
|Λ|,N→∞

E
( 1

N

∑
j>K

jrj0

)
= ν̃. (5.5)
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The second term in the right-hand side of (5.2) is less than E( 1
N

∑
0<|k|<δ nk) and

this is as small as we want by choosing δ small, see Proposition 4.5 (b). The last
term is less than

E
( 1

N

∑
|k| > δ

nk1nk>K

)
.

For any δ > 0, this can be made small by choosing K large, see Proposition 4.5 (c).
This shows that both νK and ν̄K converge to ν̃ as K →∞. �

The next step is to relate the distribution of long cycles of the spatial model
with that of nonspatial random permutations. Let

A = [a1, b1]× · · · × [am, bm] ⊂ (0, 1)m. (5.6)

Proposition 5.2. If ν > 0, we have for any m > 1,

lim
|Λ|,N→∞

Prob
((`(1)

νN
, . . . ,

`(m)

νN

)
∈ A

)
= lim
n→∞

Probn

((`(1)

n
, . . . ,

`(m)

n

)
∈ A

)
.

Proof. We clearly have

Prob
(

sup
k 6=0

`
(1)
k

N
> ε
)
6 Prob

(
sup
k 6=0

nk
N

> ε
)
. (5.7)

It follows from Proposition 4.5 (b) and (c) that the right-hand side vanishes in
the limit |Λ|, N → ∞. The zero Fourier mode is consequently the only one that
matters, i.e.

lim
|Λ|,N→∞

Prob
((`(1)

νN
, . . . ,

`(m)

νN

)
∈ A

)
= lim
|Λ|,N→∞

Prob
((`(1)

0

νN
, . . . ,

`
(m)
0

νN

)
∈ A

)
= lim
|Λ|,N→∞

Prob
((`(1)

0

n0
, . . . ,

`
(m)
0

n0

)
∈ A

)
.

(5.8)

The last identity follows from Proposition 4.5 (a). Since n0 → ∞ as |Λ|, N → ∞,
the last term converges to the asymptotic joint probability of the m largest cycles
in nonspatial random permutations with cycle weights. �

Finally, we prove that the distribution of cycle lengths of nonspatial weighted
random permutations is asymptotically equal to Poisson-Dirichlet.

Proposition 5.3. Assume that αj → α as in Theorem 2.1. Then(`(1)

n
, . . . ,

`(m)

n

)
⇒ PD( e−α ).

Proof. Let us order the cycles of a permutation π according to some rule, such as
their smallest element. That is, the first cycle is the one that contains the index 1;
the second cycle is the one that contains the smallest element that is not already in
the first cycle; and so on... Let `1, `2, . . . be the cycle lengths with respect to this
order. We prove that (`1

n
,

`2
n− `1

, . . . ,
`m

n− `1 − · · · − `m−1

)
converges (in distribution) to i.i.d. beta random variables with parameters (1, e−α ).
It then immediately follows that ( `1n , . . . ,

`m
n ) converges to GEM( e−α ), and that
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( `
(1)

n , . . . , `
(m)

n ) converges to PD( e−α ). We proceed by induction on m. The case

m = 1 is just the law for `1
n , whose convergence to the beta random variable was

proved in [16, 6]. For m > 1, let

A = [a1, b1]× · · · × [am−1, bm−1] ⊂ (0, 1)m−1. (5.9)

Then

Probn

((
`1
n , . . . ,

`m
n−`1−···−`m−1

)
∈ A× [am, bm]

)
= Probn

((
`1
n , . . . ,

`m−1

n−`1−···−`m−2

)
∈ A

)
· Probn

(
`m

n−`1−···−`m−1
∈ [am, bm]

∣∣ ( `1
n , . . . ,

`m−1

n−`1−···−`m−2

)
∈ A

)
(5.10)

It is not hard to check that

Probn
(

`m
n−`1−···−`m−1

∈ [am, bm]
∣∣ `1 = c1, . . . , `m−1 = cm−1

)
= Probn−c1−···−cm−1

(
`1

n−c1−···−cm−1
∈ [am, bm]

)
. (5.11)

As n→∞ in (5.10), we necessarily have n− `1− · · ·− cm−1 →∞, so the last term
of the right-hand side converges to the beta measure of [am, bm]. The first term of
the right-hand side converges to a product of beta measures of the set ×m−1

i=1 [ai, bi]
by the induction hypothesis. �

Theorem 2.1 clearly follows from Propositions 5.1, 5.2, and 5.3. Theorem 2.2
follows from Propositions 5.1 and 5.2, and from the fact that `1

n ⇒ 1 for random
permutations with cycle weights of the form e−αj = j−γ with γ > 0, see [6]. Notice
that Proposition 5.2 is trivial here for m > 2, as both sides of the identity converge
to zero.
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